
NORMALIZED CUT PROBLEMS WITH GENERALIZED LINEAR

CONSTRAINTS

by

IVÁN OJEDA-RUIZ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2017

Copyright c© by IVÁN OJEDA-RUIZ 2017

All Rights Reserved

To my parents: Antonia Ruiz and José Ojeda.

ABSTRACT

NORMALIZED CUT PROBLEMS WITH GENERALIZED LINEAR

CONSTRAINTS

IVÁN OJEDA-RUIZ , Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Ren-Cang Li

Several methods are used to process images in many fields, including clustering,

image segmentation and medical imaging. The so-called graph-cut methods in graph

theory are widely used for image segmentation. In these methods graphs determining

the relation between several objects are divided into one or more pieces in order to

solve a variety of problems. Most of these methods are unsupervised, which means

there is no information known about the data objects. In some of the applications

listed above some prior knowledge may be known. Using this prior knowledge can be

the key to designing better methods.

A novel algorithm called the projected power method used to solve the con-

straint eigenvalue problem was published by Xu, Li, and Schuurmans in “Fast Nor-

malized Cut with Linear Constraints” [IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 2866-2873, Jun. 2009]. It is a variant of the power

method which is known to converge often too slow. We propose new methods that

use the subspace iteration and Krylov subspaces in a similar fashion to solve the

iv

constraint eigenvalue problem more accurately and faster. The study has shown this

algorithm can produce better results to a general class of optimization problems which

have a larger number of applications and can impact many fields positively. We also

explore generalizations to the problem.

v

TABLE OF CONTENTS

ABSTRACT . iv

LIST OF ILLUSTRATIONS . viii

Chapter Page

1. Background . 1

1.1 Introduction . 1

1.1.1 Normalized cut with Linear Constraints 2

1.1.2 Constrained and Generalized Constraint Problems 3

2. Review of Numerical Methods . 5

2.1 Eigenvalue Finding Methods . 5

2.1.1 Power Method . 5

2.1.2 Lanczos Process . 8

2.2 Root Finding Methods . 9

2.2.1 Bisection Method . 10

2.2.2 Newton Method . 11

2.3 Constrained Eigenvalue Methods . 13

2.3.1 Root Finding Method using the Secular Equation 13

2.3.2 Projected Power Method . 15

3. Krylov Subspace Method . 19

3.1 Preliminaries . 19

3.2 Transform the Constrained Eigenvalue problem into a zero-finding prob-

lem . 19

3.3 Using Lanczos Method to Obtain a Reduced Secular Function 20

vi

3.4 Finding the Zero by using a Rational Replacement Function 22

4. Generalized Constraint Eigenvalue Problem 26

4.1 Singular Value Decomposition . 26

4.2 Constraint Enforcement . 27

4.3 Reduction to Eigenvalue problem . 28

4.4 Using Economy SVD . 30

4.5 QR Decomposition . 35

4.6 Using Economy QR . 37

5. Modified Generalized Matrix Eigenvalue Problem 42

5.1 Singular Value Decomposition . 42

5.2 Using SVD with partitioning . 43

6. Numerical Results . 47

6.1 Krylov Subspace Method . 47

6.2 SVD Method . 53

6.3 QR Method . 54

REFERENCES . 55

BIOGRAPHICAL STATEMENT . 58

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 A case where the minimum cut gives a bad partition (assume the edge

weights are inversely proportional to the distance between two nodes) . 2

2.1 A geometric view of the projected power method [17] 18

3.1 Graph of the secular function . 22

6.1 A picture of a bird . 48

6.2 Points selected for the constraint of the bird 48

6.3 Normalized cut segmentation of the bird 48

6.4 Constrained segmentation of the bird 48

6.5 A picture of a camel . 48

6.6 Points selected for the constraint of the camel 48

6.7 Normalized cut segmentation of the camel 49

6.8 Constrained segmentation of the camel 49

6.9 Iteration vs. Error for the bird . 51

6.10 Iteration vs. Error for the camel . 51

6.11 Iteration vs. Function Value for the bird 52

6.12 Iteration vs. Function Value for the camel 52

6.13 SVD Methods - Running time vs. Number of Variables 53

6.14 QR Methods - Running time vs. Number of Variables 54

viii

CHAPTER 1

Background

1.1 Introduction

Image processing is a very wide field with many practical applications.

Image segmentation is one area of particular interest because of the variety of appli-

cations including medical imaging, object detection and recognition tasks. In 2000

Shi and Malik [14] presented a general framework for image segmentation using a

graph theory approach. The set of points are represented as a weighted undirected

graph. In order to partition an image we use a graph cut on the graph G = (V,E)

(where V is the set of vertices and E is the set of edges). A graph cut is to partition

a graph G into two disjoint sets A and B (where A ∪B = V and A ∩B = ∅). The

quality of such a graph cut is usually measured by

cut(A,B) =
∑

u∈A,v∈B

w(u, v),

where w(u, v) is the weight of the edge between a vertex u in A and a vertex v in

B. The most common graph cut used is the minimum cut. But there is a flaw in the

minimum cut. It tends to isolate points. This flaw is illustrated in Figure 1.1.

1

Figure 1.1. A case where the minimum cut gives a bad partition (assume the edge
weights are inversely proportional to the distance between two nodes).

In order to work around this flaw, Shi and Malik proposed a new graph cut called

the normalized cut. The normalized cut is defined as

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
,

where assoc(A,V) =
∑

u∈A,t∈V w(u, t) is the total connection from nodes in A to all

nodes in the graph and assoc(B,V) is similarly defined. In [14], Shi and Malik found

a way to compute the minimum of the normalized cut function as follows:

min Ncut(A,B) = min
f

f>(D −W)f

f>Df
subject to f>De = 0, (1.1)

where D be the n×n diagonal matrix with diagonal elements d(i) =
∑

j w(i, j) and W

is the affinity matrix with (i, j)th w(i, j). Now we let g := D
1
2f in order to normalize

f . This will turn problem (1.1) into the following Rayleigh Quotient minimization

problem,

min
g

g>D−
1
2 (D −W)D−

1
2g

g>g
subject to g>D

1
2e = 0. (1.2)

1.1.1 Normalized cut with Linear Constraints

In order to include prior information into the framework we will add extra

constraints to problem (1.2). By adding a set of general linear constraints Bg = c we

2

can consider label assignments of some sort. In this thesis we use grouping information

that classifies certain pixels in a particular graph together with the normalized cut.

By including the set of general linear constraints into problem (1.2) we obtain

min
g

g>D−
1
2 (D −W)D−

1
2g subject to

g>D
1
2e = 0, Bg = c,

‖g‖ = 1,
(1.3)

where ‖g‖ is the 2-norm of the vector g. Notice that D−
1
2 (D−W)D−

1
2 is symmetric

positive semidefinite since (D−W), also called the Laplacian matrix, is known to be

positive semi-definite [12].

1.1.2 Constrained and Generalized Constraint Problems

We solve the following general problem in order to solve the Normalized Cut

problem (1.3).

Let A ∈ Rn×n be a symmetric positive semi-definite (s.p.s.d) matrix,

n > m, B ∈ Rm×n, c ∈ Rm.

Find max
v∈Rn

v>Av subject to ||v|| = 1, Bv = c. (1.4)

The simplified version of this problem that does not consider the constraint Bv = c

can be expressed as follows.

Let A ∈ Rn×n be a s.p.s.d matrix,

n > m, c ∈ Rm.

Find max
v∈Rn

v>Av subject to ||v|| = 1. (1.5)

Problem (1.5) is known to yield the largest eigenvalue of A. We call problem

(1.5) an eigenvalue problem [16]. Problem (1.4) is studied extensively in [4] where

it is called a constrained eigenvalue problem. A new numerical method to the con-

strained eigenvalue problem (1.4) has been studied by Xu, Li and Schuurmans in

3

[17]. The speed of various algorithms has been tested to determine which algorithm

is faster. In chapter 3 we introduce a new method to solve this problem. We also

introduce two new modifications of this problem. In general, we show how to reduce

the modified problems to standard eigenvalue problems so that the standard algo-

rithms may be used [5]. The first problem is the Generalized Constraint Eigenvalue

Problem (GCEP),

find max
v∈Rn

v>Av subject to ||v|| = 1, Bv ∈ {αc|α ∈ R}. (1.6)

We will also study an even more general form called the Modified Matrix Generalized

Eigenvalue Problem (MMEP) which can be expressed as follows.

Find max
W∈Rn×k

tr(W>AW) subject to W>W = Ik, R(BW) ⊆ R(C),

(1.7)

where R(X) be the subspace spanned by the columns of the matrix X.

In this thesis we go in detail about all the progress we have made as to un-

derstand these problem in hopes to find a solution and at the same time find fast

algorithms.

4

CHAPTER 2

Review of Numerical Methods

In this chapter we will review some of the most fundamental methods for finding

eigenvalues and finding roots. These methods have been commonly used for years in

a wide range of fields.

2.1 Eigenvalue Finding Methods

In this section we will outline the basics of two commonly used methods for

finding eigenvalues. Given a matrix A, if there is a vector v such that Av = λv for

some scalar λ, then λ is called the eigenvalue of A with corresponding eigenvector v.

The power method being the most simple method to find eigenvalues is used to find

the largest eigenvalue λ in magnitude. According to [6] Herman Müntz was attributed

the credit of the first use of the power method by Householder in 1913 [10, 11]. It

was also published by Richard Edler Von Mises as the Von Mises Iteration in 1929

[15]. The Lanczos method is a little more sophisticated and it is useful to find a few

largest eigenvalues. We will see that the Lanczos process is also useful to approximate

a function at a certain interval which in turn can be used to approximate zeros.

2.1.1 Power Method

Let A ∈ Cn×n be a diagonalizable matrix. Futhermore, let λ1, ..., λn be the

eigenvalues of A and v1, ...,vn the corresponding eigenvectors. Assume |λ1| > |λ2| ≥

5

... ≥ |λn|. The basic idea behind the power method is to pick an initial vector q and

form the sequence

q, Aq, A2q, A3q, ...

Notice that the vectors vk form a basis of Cn. So we can write q as follows

q = c1v1 + c2v2 + ...+ cnvn,

where c1, ..., cn are scalars. Now we form the first term of the sequence

Aq = c1Av1 + c2Av2 + ...+ cnAvn

= c1λ1v1 + c2λ2v2 + ...+ cnλnvn.

(2.1)

Similarly

A2q = c1λ
2
1v1 + c2λ

2
2v2 + ...+ cnλ

2
nvn.

If we continue this process up to k iterations, we obtain

Akq = c1λ
k
1v1 + c2λ

k
2v2 + ...+ cnλ

k
nvn.

If we factor out λk1, we obtain

Akq = λk1

[
c1v1 + c2

(
λk2
λk1

)
v2 + ...+ cn

(
λkn
λk1

)
vn

]
.

Notice that the magnitude of λ1 is larger than the magnitude of the rest of the

eigenvalues. Now, consider the normalized sequence

q

‖q‖
,
Aq

‖Aq‖
,
A2q

‖A2q‖
,
A3q

‖A3q‖
, ...

The kth term in this sequence can be written as follows

Akq

‖Akq‖
=

λk1

[
c1v1 + c2

(
λk2
λk1

)
v2 + ...+ cn

(
λkn
λk1

)
vn

]
|λk1|

∥∥∥∥[c1v1 + c2

(
λk2
λk1

)
v2 + ...+ cn

(
λkn
λk1

)
vn

]∥∥∥∥ .
6

If we assume λ1 > 0 and let k →∞ then

Akq

‖Akq‖
→ c1v1

‖c1v1‖

Notice that u :=
c1v1

‖c1v1‖
is a multiple of the eigenvector v1. Therefore u is also an

eigenvector corresponding to the largest eigenvalue of A. We can now easily find the

largest eigenvalue of A by computing the value of u>Au. In the case when λ1 < 0

then the same logic applies to the vector −u. Algorithm 2.1 shows the pseudo-code

for the power method. We use the convergence criterion proposed by Saad in [13].

Algorithm 2.1 Power Method.

Given an initial vector q, this procedure computes the largest eigenvalue λ1 in

magnitude of the matrix A.

1: for k = 1 to kmax do

2: y = Aq

3: q =
y

‖y‖
4: λ1 = q>Aq

5: if ‖Aq − λ1q‖ < ε then stop

6: end for

7: return λ1

7

2.1.2 Lanczos Process

The Lanczos process is based on the similarity transformation

T = Q>AQ (2.2)

where T is a tridiagonal matrix and the columns of Q are the orthonormal vectors

q1, ..., qn. In order to be clear we define α1, ..., αn to be the elements in the diagonal

of T and β2, ..., βn to be the elements of the subdiagonal as follows

T =

α1 β2

β2 α2 β3

β3 α3 β4

... ...

βn−1 αn−1 βn

βn αn

. (2.3)

Now, multiply both sides of equation (2.2) by Q to obtain

QT = AQ. (2.4)

Notice that α1 = q>1 Aq1 and β2q2 +q1α1 = Aq1. Let 2 ≤ k ≤ n. Take the kth column

in each side and set them equal to each other to obtain

βk+1qk+1 + qkαk + qk−1βk = Aqk. (2.5)

From equation (2.5) we can infer that αk = q>k Aqk and βk = q>k−1Aqk. Now we can

define a recurrence relation by rearranging equation (2.5),

rk := βk+1qk+1 = Aqk − qkαk − qk−1βk. (2.6)

Notice that βk+1 = ‖rk‖. Then qk+1 =
rk
βk+1

. Let Tk be any submatrix of T of the

form T (1 : k, 1 : k) and let Qk := [q1, ..., qk]. With this information and by letting

8

ek be the kth column of the k × k identity matrix, at the kth step of the Lanczos

algorithm we obtain

AQk = QkTk + rke
>
k . (2.7)

Given q1, the recurrence relation (2.7) generates a set of Lanczos vectors q2, ..., qk

which belong to the Krylov subspace Kk(A, q1)[3]. This fact is later used in Chapter

3 to reduce our original problem. Algorithm 2.2 depicts the pseudo-code for the

Lanczos process [7, 1].

Algorithm 2.2 Lanczos Process.

Given a matrix A, an initial vector q1, and an integer k such that 2 ≤ k ≤ n, this

procedure generates Qk and Tk.

1: r0 = q1

2: β1 = ‖r0‖

3: q0 = 0

4: for j = 1, 2, ..., k do

5: qj = rj−1/βj

6: αj = q>j Aqj

7: rj = Aqj − αjqj − βjqj−1

8: βj+1 = ‖rj‖

9: end for

10: return Qk, Tk

2.2 Root Finding Methods

In this section we describe methods commonly used to find the roots of a func-

tion (i.e. find the solution to f(x) = 0). The bisection method is the most primitive

one whose main idea is to find a midpoint in an interval and determining if the root

9

is above or below this midpoint. With each step the interval is halved and we have a

better approximation of where the root is. Another method is the Newton method,

which relies on the fact that the slope of the tangent line of the curve can be used to

approximate the root faster.

2.2.1 Bisection Method

Suppose that f is a continuous function on the interval [a, b] and f(a)f(b) < 0.

By the intermediate value theorem, f has at least one zero in the interval [a, b]. Now

we calculate the midpoint between a and b, namely c =
a+ b

2
and then find f(c). If

f(a)f(c) < 0 then there is a root in [a, c]. If f(b)f(c) < 0 then there is a root in [c, b].

If f(c) = 0 then c is a root and we are done. This method is used as a boundary

correction step in other root finding methods. Some other root finding methods could

potentially approach an unwanted solution or diverge and this can be corrected in

the algorithm if we know the boundaries for the sought root. This is an optional step

used in Chapter 3. Algorithm 2.3 shows a pseudo-code of the bisection method [8].

10

Algorithm 2.3 Bisection Method.

Given the initial interval [a,b] such that f(a)f(b) < 0, this procedure finds a zero

of a function f(x) in the interval.

1: u = f(a)

2: v = f(b)

3: e = b− a

for k = 1 to kmax do

5: e = e/2

6: c = a+ e

7: w = f(c)

8: if |e| < δ or |w| < ε then stop

9: if sign(w) 6= sign(u) then

10: b = c

11: v = w

12: else

13: a = c

14: u = w

15: end if

16: end for

17: return c

2.2.2 Newton Method

For the Newton method we use an initial guess x0 then we want to take a

correction step such that f(x∗) = 0 where x∗ = x0+h. This implies that f(x0+h) = 0.

11

Now consider the 1st order Taylor expansion centered at x0 and its corresponding

remainder

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(η) = 0, η ∈ (x0, x0 + h). (2.8)

If we neglect the quadratic term in equation (2.8), then we can approximate the step

h ≈ − f(x0)

f ′(x0)
.

This gives the next approximation in the Newton method

xn+1 = xn −
f(x0)

f ′(x0)
.

The Newton method requires the initial guess to be close to the root sought. In order

to correct this problem one can use the bisection method to redirect the approximation

to a value closer to the root. A pseudo-code for the Newton method is shown in

algorithm 2.4 [8, 2].

Algorithm 2.4 Newton Method.

Given an initial value x, this procedure generates a root of a function f(x).

1: for k = 1 to kmax do

2: d =
f(x)

f ′(x)

3: x = x− d

4: if |d| < ε then stop

5: end for

6: return x

12

2.3 Constrained Eigenvalue Methods

In this section we review two of the methods previously used to solve problem

(1.4). The first solution was outlined in [4] by Gander, Golub and von Matt in 1989.

It involves finding the so-called secular equation and then finding the roots of this

equation. The projected power method given in [17] utilizes a similar idea to that

of the power method but changing the direction of the updated vector so that it

satisfies the constraint Bv = c. The numerical results of the root finding method

and the projected power method are compared in [17]. Both methods can achieve

the optimal solution of the problem. In terms of efficiency, the root finding method

is faster on smaller size problems whereas the projected power method is faster for

larger matrices.

2.3.1 Root Finding Method using the Secular Equation

Use the QR decomposition on B>. Then

B> = QR,

B = R>Q>, (2.9)

where R> ∈ Rm×n is a lower triangular matrix and Q ∈ Rn×n is a orthogonal matrix.

Partition R> =

[
R>1

∣∣∣∣∣ 0

]
, where R>1 ∈ Rm×m is lower triangular. Once we make

the substitution we obtain

R>Q>v = c.

Let x = Q>v. Then x ∈ Rn and ‖x‖ = 1. Using this change of variable we obtain

R>x = c.

Let x =

 y

z

, where y ∈ Rm and z ∈ Rn−m. Then

R>1 y = c,

13

y = R−>1 c.

Now we enforce the constraint on equation (1.4) using x = Q>v. We also define

M = Q>AQ. Note that M is an n× n symmetric matrix, and

max
v∈Rn

v>Av = max
x

x>Q>AQx

= max
x

x>Mx.

(2.10)

Partition M =

 M11 M12

M>
12 M22

 to obtain

x>Mx =

[
y z

] M11 M12

M>
12 M22

 y

z

= y>M11y + z>M>

12y + y>M12z + z>M22z

= y>M11y + 2y>M12z + z>M22z.

(2.11)

Our problem now consists of solving the following optimization problem

max
z

(
y>M11y + 2y>M12z + z>M22z

)
subject to ‖y‖2 + ‖z‖2 = 1.

(2.12)

Define γ2 := 1−‖y‖2 and b := M>
12y. Notice that the first term is constant therefore

our problem is equivalent to

max
z

(
2b>z + z>M22z

)
,

subject to ‖z‖2 = γ2.

(2.13)

The Lagrangian of the optimization problem (2.13) is

L(λ, z) =
1

2
z>M22z + z>b− λ

2
(‖z‖2 − γ2).

14

Now we take the partial derivatives of L with respect to z and λ to obtain the

following equations.

(M22 − λI)z =− b,

‖z‖ =γ2.

(2.14)

From the first equation in (2.14),

z = −(M22 − λI)−1b.

Then we substitute it into the second equation in (2.14) to obtain

f(λ) := b>(M22 − λI)−2b− γ2 = 0.

We call f(λ) the secular function. Now we use the eigendecomposition M22 = WΛW>

where Λ ∈ R(n−m)×(n−m) is a diagonal matrix with diagonal entries δi. We define

d := W>b where d = [d1, d2, ..., dn−m]>. Then

f(λ) =b>(M22 − λI)−2b− γ2

=b>(WΛW> − λI)−2b− γ2

=b>W (Λ− λI)−2W>b− γ2

=d>(Λ− λI)−2d− γ2

=
n−m∑
j=1

(
di

δi − λ

)2

− γ2.

(2.15)

Now we want to calculate the largest zero of the explicit secular function (2.15). This

is a rational equation and some methods to find the largest root have been studied

extensively in [4].

2.3.2 Projected Power Method

This method was first presented in [17] by Xu, Li and Schuurmans. It also

solves problem (1.4). The main idea of this method is to combine the power method

15

with a projection step that ensures the resulting vector satisfies the constraint. We

begin by defining the projection matrix P := I − B>(BB>)−1B and the vector

n0 := B>(BB>)−1c. Notice that, for Bv = c,

Pv =
[
I −B>(BB>)−1B)v

]
=v −B>(BB>)−1Bv

=v −B>(BB>)−1c

=v − n0.

(2.16)

Now we use these definitions in order to transform the optimization problem. Notice

that

n0 =v − Pv,

‖n0‖2 =‖v‖2 − 2v>Pv + v>Pv,

‖n0‖2 =1− v>Pv,

v>PPv =1− ‖n0‖2,

‖Pv‖2 =1− ‖n0‖2.

(2.17)

We will now define γ :=
√

1− ‖n0‖2 and b0 := PAn0. Then

max
v

v>Av = max
v

[(n0 + Pv)>A(n0 + Pv)]

= max
v

[n0
>An0 + 2v>PAn0 + v>PAPv]

= max
v

[n0
>An0 + v>PAPv + 2v>Pb0].

(2.18)

Notice that the value of the first term is constant therefore we only need to find the

vector v that solves

max
v

[v>PAPv + 2v>Pb0] subject to ‖Pv‖2 = γ2. (2.19)

The Lagrangian of the optimization problem (2.19) is

L(λ,v) =
1

2
v>PAPv + v>Pb0 −

λ

2
(‖Pv‖2 − γ2).

16

Now we take the partial derivatives of L with respect to v and λ to obtain the

following equations.

(PA− λI)Pv =− b0,

‖Pv‖2 =γ2.

(2.20)

The first equation in (2.20) needs to be satisfied in order to achieve the critical point

of the optimization problem (2.19). From the first equation in (2.20), the definition

of b0, and assuming λ > 0 we obtain

(PA− λI)Pv = −v0,

PAPv − λPv = −PAn0,

PAPv + PAn0 = λPv,

PA(Pv + n0) = λPv,

PAv = λPv,

‖PAv‖ = λ‖Pv‖,
‖PAv‖
‖Pv‖

= λ.

(2.21)

Therefore λ =
‖PAv‖
γ

. This fact is used together with the first equation in (2.20) to

check the convergence of the vector vk+1 in Algorithm 2.5.

The projected power method can be understood intuitively in each step where

vk is multiplied by the matrix A. Then we multiply it by the projection matrix P .

This will project the said vector onto the hyperplane Bv = c. This vector is then

re-scaled to the length γ and added to n0. This ensures that the resulting vector

satisfies both constraints. The steps of this algorithm are illustrated in Figure 2.1.

This algorithm is guaranteed to converge to the globally optimal solution of problem

(1.4). This fact has been proven in [17].

17

Algorithm 2.5 Projected Power Method.

Solves problem (1.4).

1: P = I −B>(BB>)−1B

2: n0 = B>(BB>)−1c

3: γ =
√

1− ‖n0‖2

4: v0 = γ
PAn0

‖PAn0‖
+ n0

5: for k = 1 to kmax do

6: uk+1 = γ
PAvk
‖PAvk‖

7: vk+1 = uk+1 + n0

8: if vk+1 converges then stop

9: end for

10: return vk+1

The process in Algorithm 2.5 is illustrated in a 3-dimensional plot in Figure 2.1.

Figure 2.1. A geometric view of the projected power method [17].

18

CHAPTER 3

Krylov Subspace Method

3.1 Preliminaries

In this section we study a new solution to problem (1.4) in hopes to find a faster

algorithm. We develop a new method of solving this problem by using the Krylov

subspace. The problem is restated here for convenience.

Let A ∈ Rn×n be a symmetric positive semi-definite (s.p.s.d) matrix,

n > m, B ∈ Rm×n, c ∈ Rm.

Find max
v∈Rn

v>Av subject to ||v|| = 1, Bv = c.

3.2 Transform the Constrained Eigenvalue problem into a zero-finding problem

In order to transform our problem we again compute the QR decomposition of

B>,

B> = QR,

B = R>Q>

=

[
R>1

∣∣∣∣∣ 0

][
Q>1

Q>2

]

= R>1 Q
>
1 .

Introduce a projection matrix P ,

P = I −Q1Q
>
1 .

This projection matrix is used to define the vectors n0 := Q1R
−>
1 c and b0 := PAn0.

Notice that Pv = v − n0. Now we use these definitions in order to transform the

19

optimization problem. Notice that ‖Pv‖2 = 1 − ‖n0‖2 . We will now define γ :=√
1− ‖n0‖2. We can now transform problem (1.4) equivalently to

max
v

[v>PAPv + 2v>Pb0] subject to ‖Pv2‖ = γ2. (3.1)

The Lagrangian of the optimization problem (3.1) is

L(λ,v) =
1

2
v>PAPv + v>Pb0 −

λ

2
(‖Pv‖2 − γ2).

Now we take the partial derivatives of L with respect to v and λ to obtain the

following equations.

(PA− λI)Pv =− b0,

‖Pv‖2 =γ2.

(3.2)

Now we manipulate the first equation in (3.2) by using the properties of P .

(PA− λI)Pv =PAPv − λPv

=PAP 2v − λPv

=(PAP − λI)Pv.

(3.3)

Now we combine the two equations in (3.2) in order to obtain a zero-finding problem

of a scalar function. Notice that,

Pv = −(PAP − λI)−1b0.

Then we substitute in the second equation to obtain

f(λ) := b0
>(PAP − λI)−2b0 − γ2 = 0. (3.4)

3.3 Using Lanczos Method to Obtain a Reduced Secular Function

First we begin by defining C := PAP in order to reduce our function. Let

λi be a given approximation of the largest zero of the secular function. The reduction

20

process on Cλi = C−λiI begins by using the Lanczos process to generate the Krylov

subspace Kk(C−1λi , C
−1
λi

b0). We run the Lanczos process up to k steps and we have

C−1λi Yk = YkHk +H(k+1,k)yk+1ek
> and Yk

>C−1λi Yk = Hk,

where Yk = [y1, ...,yk] and Hk ∈ Rk×k is a tridiagonal matrix. Now we compute the

matrix Tk = Yk
>CYk to write our reduced function fk(λ) in the same fashion similarly

to [18].

fk(λ) := b0
>Yk(Tk − λI)−2Yk

>b0 − γ2. (3.5)

The reduced function fk(λ) is an approximation of the secular function f(λ) in (3.4).

Now we use the eigendecomposition Tk = WkΛWk
> where Λ ∈ Rk×k is a diagonal

matrix with diagonal entries δ1 ≤ δ2 ≤ ... ≤ δk and Wk ∈ Rk×k is orthogonal. We

define d = Wk
>Yk

>b0 where d = [d1, d2, ..., dk]
> . Then

fk(λ) =b0
>Yk(Tk − λI)−2Yk

>b0 − γ2

=b0
>Yk(WkΛWk

> − λI)−2Yk
>b0 − γ2

=b0
>YkWk(Λ− λI)−2Wk

>Yk
>b0 − γ2

=d>(Λ− λI)−2d− γ2

=
k∑
j=1

(
dj

δj − λ

)2

− γ2.

(3.6)

Later on we will describe a zero finding method to find the zeros of the explicit

secular function (3.6). It has been shown in [9] that this approximation has a moment

matching property:

f(λ)− fk(λ) = O(|λ− λi|k).

The reader is referred to [9] for details on how to prove this fact. Now we want to

calculate the largest zero of the explicit reduced function (3.6). Figure 3.1 shows the

behavior of the reduced function. We use a rational replacement function in order

to do this.

21

Figure 3.1. Graph of the secular function.

3.4 Finding the Zero by using a Rational Replacement Function

We begin by finding the derivative of (3.6),

f ′k(λ) =
k∑
j=1

2dj
2

(δj − λ)3
.

We want our replacement function to be similar after the largest eigenvalue of Tk so

we will use the function

g(λ) =
a

(δk − λ)2
− c,

then we match the replacement function with the reduced function at a given approx-

imation λi. That is

g(λi) = fk(λi)

and

g′(λi) = f ′k(λi).

The zero of g(λ) will determine the next approximation λi+1. By doing some algebra

we obtain

a =
1

2
(δk − λi)3f ′k(λi),

c =
1

2
(δk − λi)f ′k(λi)− fk(λi).

22

By solving g(λ) = 0 we obtain λi+1 = δk +

√
a

c
. Notice that we use the solution with

addition because we want to find the solution at the right of the largest eigenvalue of

Tk. This expression is equivalent to

λi+1 = δk +

√√√√√√
1

2
(δk − λi)3f ′k(λi)

1

2
(δk − λi)f ′k(λi)− fk(λi)

. (3.7)

Now we give the algorithm that finds the zero of the reduced function (3.6).

Notice that the iterations in this algorithm will be used later in the algorithm that

generates the explicit reduced function (3.6).

Algorithm 3.1 Zero Finder

Given an initial value λ0 close enough to the largest root of a rational function of

the form fk(λ) =
∑k

j=1

(
dj

δj − λ

)2

− γ2, this procedure approximates the largest

root.

1: for i = 1 to imax do

2: b = δk − λi

3: df = f ′k(λi)

4: λi+1 = δk +

√√√√√√
1

2
b3(df)

1

2
b(df)− fk(λi)

5: if f(λi+1) < ε then stop

6: end for

7: return λi+1

In the previous algorithm we use the index i to iterate so that it is not confused

with the outer loop of the next algorithm that we are going to present (Algorithm

3.2).

23

Notice that the largest zero of the reduced function (3.5) is larger than the

largest eigenvalue of the matrix C. We then use the largest eigenvalue of the matrix

C as the lower bound of our algorithm. Also notice that the zero is the solution to

problem (3.1). This value is bounded above by the largest eigenvalue of A. Now we

have an upper bound and a lower bound we can use to find an initial guess for our

algorithm. We pick the midpoint between the upper bound and the lower bound as

our initial guess.

24

Algorithm 3.2 Krylov Subspace Method

Solves problem (1.4).

1: QR = qr(B>, 0)

2: n0 = Q(R−>c)

3: γ =
√

1− ‖n0‖2

4: t = An0

5: b0 = t−Q(Q>t)

6: C = A−Q(Q>A)− (AQ)Q> +Q(Q>AQ)Q>

7: a = max(eigs(C))

8: b = max(eigs(A))

9: λ0 = (a+ b)/2

10: for i = 0 to imax do

11: Cλi = C − λiI

12: [Yk, Hk] = lanczos(C−1λi , C
−1
λi

b0) (use Algorithm 2.2)

13: Tk = Yk
>CYk

14: λi+1 = zerofinder(λi, fk(λ)) (use Algorithm 3.1)

15: if f(λi+1) < ε then stop

16: end for

17: return λi+1

In Algorithm 3.2 we use the index i to iterate the outer loop. Notice that

whenever we call Algorithm 3.1 (at line 14) the variable λi is considered to be the

initial λ0. The inner loop runs and Algorithm 3.1 outputs a new approximation λi+1

which is then checked for convergence at line 15.

25

CHAPTER 4

Generalized Constraint Eigenvalue Problem

We have studied several algorithms to solve (1.4). In this chapter we study

an extension of the original problem by adding a degree of freedom to the linear

constraint. This problem is stated in Chapter 1 in (1.6). Here we restate the problem

for convenience.

Find max
v∈Rn

v>Av subject to ||v|| = 1, Bv ∈ {αc|α ∈ R}.

We will show the progress we have made as to understand this problem in hopes to

find a solution and at the same time find an effective algorithm.

4.1 Singular Value Decomposition

We start out by expressing our constraint

Bv ∈ {αc|α ∈ R}

as the following:

Bv = αc, where α varies in R.

We use Singular Value Decomposition (SVD) on B in order to understand how much

information the constraint provides. At the same time we will use our results from

SVD to simplify our eigenvalue problem. Let

B = UΣV >, (4.1)

26

where U ∈ Rm×m is orthogonal, Σ is a diagonal matrix with diagonal entries σi ≥ 0

for i = 1, 2...,m and V ∈ Rn×n is also orthogonal. Now we make the substitution and

obtain

UΣV >v = αc.

Let x = V >v. Then x ∈ Rn and ‖x‖ = 1. Using this change of variable, we obtain

UΣx = αc,

Σx = αU>c.

Let Σ =

[
Σ1

∣∣∣∣∣ 0

]
where Σ1 ∈ Rm×m is a diagonal matrix with diagonal entries

σi. Then

Σ1y = αU>c,

y = αΣ−11 U>c.

Let w = Σ−11 U>c (notice that this is a known vector with m entries). Then

y = αw. (4.2)

4.2 Constraint Enforcement

Now we enforce the constraint in (1.6) using x = V >v and (4.2). We also define

M = V >AV . Note that M is an n× n symmetric matrix.

max
v∈Rn

v>Av = max
x

x>V >AV x

= max
x

x>Mx.

(4.3)

Partition M =

 M11 M12

M>
12 M22

 to obtain

27

x>Mx =

[
y> z>

] M11 M12

M>
12 M22

 y

z

= y>M11y + z>M>

12y + y>M12z + z>M22z

= y>M11y + 2y>M12z + z>M22z

= α2w>M11w + 2αw>M12z + z>M22z.

(4.4)

Our problem now consists of solving the following optimization problem

max
z,α

(
α2w>M11w + 2αw>M12z + z>M22z

)
,

subject to α2‖w‖2 + ‖z‖2 = 1.

(4.5)

4.3 Reduction to Eigenvalue problem

We now use (4.4) to simplify the problem into an eigenvalue problem with an

(m+ 1)-vector.

x>Mx = α2w>M11w + 2αw>M12z + z>M22z

=

 α‖w‖

z

>

w>M11w

‖w‖2
w>M12

‖w‖
M>

12w

‖w‖
M22

 α‖w‖

z

 . (4.6)

Let C =

w>M11w

‖w‖2
w>M12

‖w‖
M>

12w

‖w‖
M22

 . Then our problem can now be rewritten as follows:

max

 α‖w‖

z

>

C

 α‖w‖

z

 subject to

∥∥∥∥∥∥∥
 α‖w‖

z

∥∥∥∥∥∥∥ = 1,

28

where

 α‖w‖

z

 varies in Rn−m+1. Since the vector

 α‖w‖

z

 is a vector of length

1 by (4.5) we can now maximize x>Mx by finding the maximum eigenvalue of C

which, at the same time, is the solution to (1.6).

Algorithm 4.1 SVD Method.

Given an initial vector t1 = [t
(1)
1 , t

(1)
2 , ..., t

(1)
n−m+1], this procedure solves (1.6)

1: [U,Σ, V] = svd(B)

2: M = V >AV

3: w = Σ−11 (U>c)

4: C =

w>M11w

‖w‖2
w>M12

‖w‖
M>

12w

‖w‖
M22

5: for k = 1 to kmax do

6: tk+1 =
Ctk
‖Ctk‖

7: if tk+1 converges then stop

8: end for

9: m = t>k+1Ctk+1

10: y =
t
(k+1)
1

‖w‖
w

11: z =
[
t
(k+1)
2 , t

(k+1)
3 , ..., t

(k+1)
n−m+1

]>
12: x =

 y

z

13: v = V x

14: return m and v

29

4.4 Using Economy SVD

One of the shortcomings in the SVD method is the high computational cost

of line 1 and line 2 in Algorithm 4.1. In order to avoid this problem we propose a

partition of the matrix V . Partition V =

[
V1

∣∣∣∣∣ V2

]
where V1 is an n×m matrix

and V2 is an n× (n−m) to obtain

B = UΣV >

= U

[
Σ1

∣∣∣∣∣ 0

][
V >1

V >2

]

= U

[
Σ1V

>
1 + 0

]

= UΣ1V
>
1 .

These matrices (U,Σ1 and V1) will represent our new decomposition called the econ-

omy SVD. Notice that only m columns of V are computed which saves time but V2

will be unavailable. We will use an orthogonal projection in order to get around

this obstacle.

Using the partition of V we obtain

v = V x =

[
V1

∣∣∣∣∣ V2

] y

z

 = V1y + V2z = αV1w + V2z. (4.7)

Now we define

ŵ = V1w and ẑ = V2z. (4.8)

Notice that ẑ is in the subspace generated by V2 (not available). Then

v = αV1w + V2z = αŵ + ẑ. (4.9)

30

Since V2 is not available when using the economy SVD we will use the following

orthogonal projection onto the column space of V2

PV2 = V2V
>
2 = I − V1V >1 . (4.10)

Then we have ẑ ∈ {PV2 z̃|z̃ ∈ Rn}.

Use (4.9), make the substitution and use the fact that P = P> = P 2 in the

original problem to obtain the following:

v>Av = (αŵ + ẑ)>A(αŵ + ẑ)

= α2ŵ>Aŵ + 2αŵ>Aẑ + ẑAẑ

=

 α‖ŵ‖

ẑ

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 α‖ŵ‖

ẑ

=

 α‖ŵ‖

PV2 z̃

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 α‖ŵ‖

PV2 z̃

=

 α‖ŵ‖

z̃

> 1 0

0 PV2

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 1 0

0 PV2

 α‖ŵ‖

z̃

 .
(4.11)

Let

CV =

 1 0

0 PV2

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 1 0

0 PV2

 .

31

Notice that the vector

 α‖ŵ‖

z̃

 may not be of length 1. We claim that the result-

ing maximum eigenvalue λ∗ of the matrix CV is in fact the solution to the original

problem.

To show this we let C =

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 and β = α‖ŵ‖ then we may write the

original problem as follows:

max
z̃

 β

ẑ

>

C

 β

ẑ

 subject to β2 + ‖ẑ‖2 = 1, ẑ ∈ {PV2 z̃|z̃ ∈ Rn}.

Theorem 1 Let C ∈ R(n+1)×(n+1) be a symmetric matrix and P ∈ Rn×n be a pro-

jection matrix. If λ∗ is the maximum eigenvalue of CP :=

 1 0

0 P

C
 1 0

0 P

then,

λ∗ = max
z̃

 β

ẑ

>

C

 β

ẑ

 subject to β2 + ‖ẑ‖2 = 1, ẑ ∈ {P z̃|z̃ ∈ Rn}.

Proof: We have

max
z̃

 β

P z̃

>

C

 β

P z̃

= max

z̃

 β

P 2z̃

>

C

 β

P 2z̃

= max

z̃

 β

P z̃

> 1 0

0 P

C
 1 0

0 P

 β

P z̃

≤λ∗max

z̃

 β

P z̃

> β

P z̃

 = λ∗.

(4.12)

32

Now, let

 γ

g

 be the normalized eigenvector corresponding to the maximum eigen-

value λ∗ of CP . Then γ2 + ‖g‖2 = 1, and we have

λ∗ =

 γ

g

> 1 0

0 P

>

C

 1 0

0 P

 γ

g

=

 γ

Pg

>

C

 γ

Pg

= (γ2 + ‖Pg‖2)

 γ

Pg

>

∥∥∥∥∥∥∥
 γ

Pg

∥∥∥∥∥∥∥

C

 γ

Pg

∥∥∥∥∥∥∥
 γ

Pg

∥∥∥∥∥∥∥

≤

 γ

Pg

>

∥∥∥∥∥∥∥
 γ

Pg

∥∥∥∥∥∥∥

C

 γ

Pg

∥∥∥∥∥∥∥
 γ

Pg

∥∥∥∥∥∥∥

=

 β

P z̃

>

C

 β

P z̃

 by letting

 β

P z̃

 :=

 γ

Pg

∥∥∥∥∥∥∥
 γ

Pg

∥∥∥∥∥∥∥
.

(4.13)

Therefore by (4.12) and (4.13) λ∗ =

 β

P z̃

>

C

 β

P z̃

 . �

33

For the following algorithm we define P =

 1 0

0 I − V >1 V1

 .
We will use the following procedure in the iterative step of our algorithm in order to

do less operations.

CV

 β

z̃

 =

 1 0

0 I − V >1 V1

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 1 0

0 I − V >1 V1

 β

z̃

=

 β
ŵ>Aŵ

‖ŵ‖2
+

ŵ>A

‖ŵ‖
z̃ − ŵ>A

‖ŵ‖
V1V

>
1 z̃

β
Aŵ

‖ŵ‖
+ Az̃ − AV1V >1 z̃ − βV1V >1

Aŵ

‖ŵ‖
− V1V >1 Az̃ + V1V

>
1 AV1V

>
1 z̃

=

ŵ>

‖ŵ‖
A

(
β

ŵ

‖ŵ‖
+ z̃ − V1V >1 z̃

)

A

(
β

ŵ

‖ŵ‖
+ z̃ − V1V >1 z̃

)
− V1V >1 A

(
β

ŵ

‖ŵ‖
+ z̃ − V1V >1 z̃

)
 .

Notice that the vector u := A

(
β

ŵ

‖ŵ‖
+ z̃ − V1V >1 z̃

)
is multiplied in several expres-

sions so we only need to compute it once and then find the rest of the entries.

34

Algorithm 4.2 Economy SVD.

Given an initial value α0 and an initial vector z̃0, this procedure solves (1.6).

1: [U,Σ, V1] = svd(B, 0)

2: ŵ = V1(Σ
−1
1 (U>c))

3: a = Aŵ

4: b =
ŵ

‖ŵ‖
5: for k = 0 to kmax do

6: uk = αka + A(z̃k − V1(V >1 z̃k)))

7: αk+1 = b>uk

8: z̃k+1 = uk − V1(V >1 uk)

9: if

 αk+1‖ŵ‖

z̃k+1

 converges then stop

10: end for

11: m =

 αk‖ŵ‖

z̃k

> αk+1‖ŵ‖

z̃k+1

12: ẑ = z̃ − V1(V >1 z̃)

13: v = αk+1ŵ + ẑ

14: return m and v

Notice that we do not compute the matrix P or the matrix C. This avoids the high

computational cost of Algorithm 4.1.

4.5 QR Decomposition

In section 4.2 we used SVD on B in order to understand how much information

the constraint provided. We use QR decomposition in this case to do the same thing

35

and finally simplify the problem into an eigenvalue problem. Recall the constraint

from our problem can be written as follows:

Bv = αc where α varies in R.

Now we use QR decomposition on B>. Then

B> = QR,

B = R>Q>,

where R> ∈ Rm×n is a lower triangular matrix and Q> ∈ Rn×n is a orthogonal matrix.

Partition R> =

[
R>1

∣∣∣∣∣ 0

]
, where R>1 ∈ Rm×m is lower triangular. Once we make

the substitution we obtain

R>Q>v = αc.

Let x = Q>v. Then x ∈ Rn and ‖x‖ = 1. Using this change of variable we obtain

R>x = αc.

Let x =

 y

z

 where y ∈ Rm and z ∈ Rn−m. Then

R>1 y = αc,

y = αR−>1 c.

Let w = R−>1 c. Notice that this is a known vector with m entries. Then

y = αw. (4.14)

Following the procedure in section 4.2 and section 4.3 we can now solve the initial

problem using QR decomposition instead of SVD decomposition.

36

Algorithm 4.3 QR Method.

Given an initial vector t1 = [t
(1)
1 , t

(1)
2 , ..., t

(1)
n−m+1], this procedure solves (1.6).

1: [Q,R] = qr(B>)

2: M = Q>AQ

3: w = Q1(R
−>
1 c)

4: C =

w>M11w

‖w‖2
w>M12

‖w‖
M>

12w

‖w‖
M22

5: for k = 1 to kmax do

6: tk+1 =
Ctk
‖Ctk‖

7: if tk+1 converges then stop

8: end for

9: m = t>k+1Ctk+1

10: y =
t
(k+1)
1

‖w‖
w

11: z =
[
t
(k+1)
2 , t

(k+1)
3 , ..., t

(k+1)
n−m+1

]>
12: x =

 y

z

13: v = V x

14: return m and vk+1

4.6 Using Economy QR

Again, the shortcoming with the QR method is the high computational cost of

line 2 in Algorithm 4.3. In order to avoid this problem we propose a partition of the

37

matrix Q. Partition Q =

[
Q1

∣∣∣∣∣ Q2

]
where Q1 is an n×m matrix and Q2 is an

n× (n−m) to obtain

B = R>Q>

=

[
R>1

∣∣∣∣∣ 0

][
Q>1

Q>2

]

= R>1 Q
>
1 .

These matrices (R1 and Q1) will represent our new decomposition called economy

QR. Notice that only m columns of Q are computed which saves time but Q2 will

be unavailable. We will use an orthogonal projection in order to get around this

obstacle.

Using the partition of Q we obtain

v = Qx =

[
Q1

∣∣∣∣∣ Q2

] y

z

 = Q1y +Q2z = αQ1w +Q2z. (4.15)

Now we define

ŵ = Q1w and ẑ = Q2z. (4.16)

Notice that ẑ is in the subspace generated by Q2 (not available). Then

v = αQ1w +Q2z = αŵ + ẑ. (4.17)

Since Q2 is not available when using economy QR, we will use the following orthogonal

projection onto the column space of Q2

PQ2 = Q2Q
>
2 = I −Q1Q

>
1 . (4.18)

38

Then we have ẑ ∈ {PQ2 z̃|z̃ ∈ Rn}.

Use (4.17), make the substitution and use the fact that P = P> = P 2 in the

original problem to obtain the following:

v>Av = (αŵ + ẑ)>A(αŵ + ẑ)

= α2ŵ>Aŵ + 2αŵ>Aẑ + ẑAẑ

=

 α‖ŵ‖

ẑ

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 α‖ŵ‖

ẑ

=

 α‖ŵ‖

PQ2 z̃

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 α‖ŵ‖

PQ2 z̃

=

 α‖ŵ‖

z̃

> 1 0

0 PQ2

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 1 0

0 PQ2

 α‖ŵ‖

z̃

 .
(4.19)

Let

CQ =

 1 0

0 PQ2

>

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 1 0

0 PQ2

 .

Notice that the vector

 α‖ŵ‖

z̃

 is not of length 1. We claim that the resulting max-

imum eigenvalue λ∗ from the matrix CQ is in fact the solution to the original problem.

To show this, we let C =

ŵ>Aŵ

‖ŵ‖2
ŵ>A

‖ŵ‖
A>ŵ

‖ŵ‖
A

 and β = α‖ŵ‖ then we may write the

original problem as follows:

39

max

 β

ẑ

>

C

 β

ẑ

 subject to β2 + ‖ẑ‖2 = 1, ẑ ∈ {PQ2 z̃|z̃ ∈ Rn}.

Theorem 2 Let λ∗ be the maximum eigenvalue of CQ then,

λ∗ = max

 β

ẑ

>

C

 β

ẑ

 .
This can be proved in a similar way to that of Theorem 1.

Algorithm 4.4 Economy QR.

Given an initial value α0 and an initial vector z̃0, this procedure solves (1.6).

1: [Q,R] = qr(B>)

2: ŵ = Q1(R
−>
1 c)

3: a = Aŵ

4: b =
ŵ

‖ŵ‖
5: for k = 0 to kmax do

6: uk = αka + A(z̃k −Q1(Q
>
1 z̃k)))

7: αk+1 = b>uk

8: z̃k+1 = uk −Q1(Q
>
1 uk)

9: if

 αk+1‖ŵ‖

z̃k+1

 converges then stop

10: end for

11: m =

 αk‖ŵ‖

z̃k

> αk+1‖ŵ‖

z̃k+1

12: ẑ = z̃ − V1(V >1 z̃)

13: v = αk+1ŵ + ẑ

14: return m and v

40

Notice that we do not compute the matrix P or the matrix C.

41

CHAPTER 5

Modified Generalized Matrix Eigenvalue Problem

We now turn our attention to a more general form of the Normalized Cut

problem by maximizing over a matrix W . This problem is stated in chapter 1, in

(1.7). We restate the problem for convenience.

Find max
W∈Rn×k

tr(W>AW) subject to W>W = Ik, R(BW) ⊆ R(C),

(5.1)

where R(X) is the subspace spanned by the columns of X. In the following sections

we show the progress we have made as to understand this problem in hopes to find a

solution.

5.1 Singular Value Decomposition

We start off by expressing the constraint in the following way: there exists

F ∈ Rk×k such that BW = CF . We use Singular Value Decomposition(SVD) on B in

order to understand how much information the constraint provides. At the same time

we will use our results from the SVD to simplify our modified eigenvalue problem.

Let

B = UΣV >, (5.2)

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is a diagonal matrix with diagonal entries

σi ≥ 0 for i = 1, 2, ...,m and V ∈ Rn×n is orthogonal. Once we make the substitution

we obtain

UΣV >W = CF.

42

Let X = V >W . Then X ∈ Rn×k and X>X = Ik. Using this change of variable we

obtain

UΣX = CF,

ΣX = U>CF.

Let X =

 Y

Z

 where Y ∈ Rm×k and Z ∈ R(n−m)×k.

Also, partition Σ =

[
Σ1

∣∣∣∣∣ 0

]
where Σ1 ∈ Rm×m is a diagonal matrix with diago-

nal entries σi. Then

Σ1Y = U>CF,

Y = Σ−11 U>CF.

Let S = Σ−11 U>C. Notice that this is a known matrix of size m× k. Then

Y = SF. (5.3)

5.2 Using SVD with partitioning

We now do a partitioning of V in order to solve the original problem. Let

V =

[
V1

∣∣∣∣∣ V2

]
. Then

W = V X =

[
V1

∣∣∣∣∣ V2

] Y

Z

 = V1Y + V2Z = V1SF + V2Z. (5.4)

Now we define

Ŝ := V1S and Ẑ := V2Z. (5.5)

We will use the following projection onto the space generated by V2,

PV2 = I − V1V >1 . (5.6)

43

Then for some Z̃ ∈ Rn×k we have Z̃ = PV2Ẑ.

We now make the substitution of (5.4) into the objective function.

W>AW = (V1SF + V2Z)>A(V1SF + V2Z)

= (ŜF + Ẑ)>A(ŜF + Ẑ)

= F>Ŝ>AŜF + F>Ŝ>AẐ + Ẑ>AŜF + Ẑ>AẐ

=

 F

Ẑ

> Ŝ>AŜ Ŝ>A

AŜ A

 F

Ẑ

=

 F

Z̃

> Ik 0

0 PV2

 Ŝ>AŜ Ŝ>A

AŜ A

 Ik 0

0 PV2

 F

Z̃

 .

(5.7)

We now rewrite the constraint in terms of F , Ŝ and Ẑ.

W>W = (V1Y + V2Z)>(V1Y + V2Z)

= Y >V >1 V1Y + Y >V >1 V2Z + Z>V >2 V1Y + Z>V >2 V2Z

= Y >V >1 V1Y + Z>V >2 V2Z

= F>Ŝ>ŜF + Ẑ>Ẑ

=

 F

Ẑ

> Ŝ>Ŝ 0

0 Ik

 F

Z̃

=

 F

Ẑ

> Ik 0

0 PV2

 Ŝ>Ŝ 0

0 Ik

 Ik 0

0 PV2

 F

Z̃

 .

(5.8)

Now we define the matrices

T :=

 F

Z̃

 ,

44

G :=

 Ik 0

0 PV2

 Ŝ>AŜ Ŝ>A

AŜ A

 Ik 0

0 PV2

 ,

H :=

 Ik 0

0 PV2

 Ŝ>Ŝ 0

0 Ik

 Ik 0

0 PV2

 .
The dimensions of these new matrices are T ∈ R(n+k)×k, G ∈ R(n+k)×(n+k) and H ∈

R(n+k)×(n+k). Then our problem can be rewritten as:

max
T

tr(T>GT) subject to T>HT = Ik (5.9)

which can now be solved by using the method of Lagrange Multipliers. The Lagrange

function will be the following

L(T,Γ) = trT>GT − trΓ>(T>HT − Ik).

Then we take the derivative with respect to T by adding a perturbation.

L(T + ∆T,Γ) = tr[(T + ∆T)G(T + ∆T)]− trΓ>[(T + ∆T)>H(T + ∆T)− Ik]

= tr(T>GT + 2T>G∆T + ∆T>G∆T)

− trΓ>[(T>HT + 2T>H∆T + ∆T>H∆T − Ik)].

(5.10)

In order to find the derivative we only consider the terms that are linear with respect

to ∆T . The derivative will be given by

DTL(T,Γ)(∆T) = tr(2T>G∆T)− trΓ>(2T>H∆T).

We now set this equal to zero and group terms to obtain

2 tr[(T>G− Γ>T>H)∆T] = 0.

45

This holds for any ∆T . Therefore

T>G− Γ>T>H = 0

which implies that

GT = HTΓ. (5.11)

Finding the values of Γ now only requires us to find the k largest eigenvalues of the

following generalized eigenvalue problem,

Gt = λHt. (5.12)

Several numerical solutions to (5.12) can be found in [1].

46

CHAPTER 6

Numerical Results

In this chapter we show the numerical results by the Krylov Subspace Method

shown in Chapter 3 and the four algorithms in Chapter 4.

6.1 Krylov Subspace Method

For this section we used two examples in order to test the various algorithms

in chapter 3. We selected two pictures in JPEG format. Our examples are given in

Fig. 6.1 and Fig. 6.5. Our objective is to use image segmentation in order to obtain

boundaries that split the image into two different parts. The first image is a bird

and we want to extract the whole bird out of the background. The second image is

a camel and we would like to extract the camel, and discard the sky and the sand.

Our methods will return a matrix with labels 0 or 1 that correspond to each pixel in

the picture. These labels are used to determine the graph that the pixel belongs to.

We use the grouping algorithm in [14] but we maximize the constrained eigenvalue

problem (1.4). We also show the points selected for the constrained examples (Fig.

6.2 and Fig. 6.6) and how the segmentation differs from regular normalized cut (Fig.

6.3 and Fig. 6.7) and constrained normalized cut (Fig. 6.4 and Fig. 6.8). The

normalized cut segmentation code and some other examples can be found in the web

site http://www.cis.upenn.edu/∼jshi/software/.

47

Figure 6.1. A picture of a bird.
Figure 6.2. Points selected for the con-
straint of the bird.

Figure 6.3. Normalized cut segmenta-
tion of the bird.

Figure 6.4. Constrained segmentation
of the bird.

Figure 6.5. A picture of a camel.
Figure 6.6. Points selected for the con-
straint of the camel.

48

Figure 6.7. Normalized cut segmenta-
tion of the camel.

Figure 6.8. Constrained segmentation
of the camel.

An affinity matrix W is generated from these pictures. The entries of the matrix

W are labeled wij and generated with the following formula [14],

wij =

e
−‖F(i) − F(j)‖22

σ2
I

e
−‖X(i) −X(j)‖22

σ2
X

 if ‖X(i) −X(j)‖2 < r

0 otherwise

, (6.1)

where F is the brightness value of each pixel, X is the spacial location of the pixel, σI

is a parameter that controls the difference in brightness and σX is a parameter that

controls the difference in spacial location. Equation (6.1) should reflect the likelihood

that two pixels (nodes i and j) belong to the same point. If the pixels are too far

away (farther than a given radius r) then the value of the edge weight wij is set to 0.

In the following figures we use the Lanczos process to obtain a matrix Tk of size k.

Then we iterate using the zero finding algorithm as in Algorithm 3.2. We compare

the error at each step for increasing values of k.

To study the performance of our algorithm first we calculated the value of the

exact solution λexact by using the Newton method for the secular equation in each

49

example. Then we use the Krylov subspace method and compare our solution λ∗ to

the exact solution,

error =
|λ∗ − λexact|

λexact
(6.2)

50

0 5 10 15 20 25 30 35
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

iteration

er
ro

r

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

Figure 6.9. Iteration vs. Error for the bird.

0 5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

iteration

er
ro

r

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

Figure 6.10. Iteration vs. Error for the camel.

51

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

fu
nc

tio
n

va
lu

e

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

Figure 6.11. Iteration vs. Function Value for the bird.

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration

fu
nc

tio
n

va
lu

e

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

Figure 6.12. Iteration vs. Function Value for the camel.

52

6.2 SVD Method

In this section we compare the performance of the four algorithms presented

in chapter 4. The experiment is performed on a random positive definite matrix

A ∈ Rn×n of the form A = S>S for some S ∈ Rn×n. We also generate a random matrix

B ∈ Rm×n and a random c ∈ Rm. Our convergence criterion in every experiment is

the condition ‖v − vprev‖ < 10−8 in each power iteration.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

number of variables n, with 10% constraints

ru
nn

in
g

tim
e

(s
)

Full SVD
Economy SVD

Figure 6.13. SVD Methods - Running time vs. Number of Variables.

53

6.3 QR Method

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

number of variables n, with 10% constraints

ru
nn

in
g

tim
e

(s
)

Full QR
Economy QR

Figure 6.14. QR Methods - Running time vs. Number of Variables.

54

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for

the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for

Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadel-

phia, PA 19104-2688 USA, 2000.

[2] W. Cheney and D. Kincaid. Numerical Mathematics and Computing, Sixth Edi-

tion. Thomson Higher Education, 10 Davis Drive, Belmont, CA, 94002-3098

USA, 2004.

[3] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and

Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-

2688 USA, 1997.

[4] W. Gander, G. H. Golub, and U. Matt. A constrained eigenvalue problem.

Linear Algebra and its Applications, pages 815–839, 1989.

[5] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Review,

15(2):318–334, 1973.

[6] G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th

century. Journal of Computational and Applied Mathematics, 123(1-2):35–65,

2000.

[7] M. T. Jones and M. L. Patrick. The use of Lanczos method to solve the large

generalized symmetric definite eigenvalue problem. NASA Contractor Report,

ICASE Report, 89-69:8–10, 1989.

55

[8] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Com-

puting, Third Edition. Brooks/Cole, 511 Forest Lodge Road, Pacific Grove, CA

93950 USA, 2002.

[9] R.-C. Li and Q.Ye. Simultaneous similarity reductions for a pair of matrices

to condensed forms. Communications in Mathematics and Statistics, 2:139–153,

2014.

[10] H. Müntz. Solution directe de l’équation séculaire et de quelques problèmes

analogues transcendants. Comptes Rendus de l’Académie des Sciences, 156:43–

46, 1913.

[11] H. Müntz. Sur la solution des équations séculaires et des équations intégrales.

Comptes Rendus de l’Académie des Sciences, 156:860–862, 1913.

[12] A. Pothen, H.D. Simon, and K. P. Liou. Partitioning sparse matrices with eigen-

vectors of graphs. SIAM J. Matrix Analytical Applications, 11:430–452, 1990.

[13] Y. Saad. Numerical Methods for Large Eigenvalue Problems Second Edition.

Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor,

Philadelphia, PA 19104-2688 USA, 2011.

[14] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[15] R. von Mises and H. Pollaczek-Geiringer. Praktische verfahren der gle-

ichungsauflosung. ZAMM - Zeitschrift fur Angewandte Mathematik und

Mechanik, 9:152–164, 1929.

[16] D. S. Watkins. Fundamentals of Matrix Computations, Second Edition. John

Wiley and Sons, Inc., New York, 2002.

[17] L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with linear constraints.

IEEE Conference on Computer Vision and Pattern Recognition, pages 2866–

2873, 2009.

56

[18] L.-H. Zhang, W. H. Yang, C. Shen, and R.-C. Li. A Krylov subspace method for

large scale second order cone linear complementarity problem. SIAM Journal on

Scientific Computing, 37(4):A2046–A2075, 2015.

57

BIOGRAPHICAL STATEMENT

Iván Ojeda-Ruiz was born in Bayamón, Puerto Rico, in 1987. He received

his B.S. degree from the University of Puerto Rico, Rio Piedras Campus, in 2010,

his Ph.D. degree from The University of Texas at Arlington in 2017, in Numerical

Analysis.

58

