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Abstract 

DEVELOPMENT OF DIAGNOSTIC PLATFORMS USING SMART TECHNOLOGIES 

 

Md. Motasim Bellah, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Samir M Iqbal 

Mortality rate of cancer has not significantly dropped over the past six decades 

because there is no effective tool for early detection. Likewise, mortality rate of 

cardiovascular (CV) disease remains alarming due to the lack of convenient and 

accessible tools for monitoring heart conditions regularly over extended periods of time. 

In addition, children with speech impediments, people with impaired hearing, and 

learners of new languages do not have an effective means for improving their speech 

vocalization due to the unavailability of systems that provide quantitative feedback. 

Moreover, patients with vocal cord disorders have to endure uncomfortable and invasive 

diagnostic procedures as a result of inadequate non-invasive methods. As a timely 

diagnosis is the first step towards treating health condition or any problem, the 

development of reliable and efficient early diagnostic platforms can potentially reduce 

costs, improve the quality of life, and save numerous lives. In an era with an ever-

increasing dependence on technology and the availability of highly capable electronic 

gadgets, there lies great potential in harnessing their great computing power to solve 

many of these problems. In this work, three diagnostic platforms reliant on such 

technology have been developed to effectively detect cancer, cardiovascular disease, 

and speech disorders economically, accurately, and early. 
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Chapter 1  

Smart Solutions to Disease Diagnosis 

 
Introduction 

We live in a world with the abundance of technologies and the usage of 

technology is accelerating at an ever increasing pace. Now many people from developing 

countries and almost everyone from developed countries possess multiple electronic 

gadgets. To the very least, each person carries one smart device- a cell phone. Today’s 

cell phones, even with a moderate configuration, have more computing power than the 

sixth generation Intel microprocessors. All of these smart devices (cell phones, tablets, 

mini pcs, digital notebooks, e-readers etc.) have been underutilized in terms of their 

computational capacities. To maximize the capacity of these devices, applications 

development industries for android, windows or iOS platforms have been expanding 

exponentially for last few years. We can take advantage of these daily life technologies to 

make our lives better. What if we could turn a laptop with a data acquisition system into a 

disease diagnosis kit? What if a cell phone is turned into a heart monitoring system that 

can prevent cardiovascular diseases like hypertension or cardiac arrhythmia? What if 

your tablet can identify a speaker by listening his/her voice or it can monitor health of 

vocal cords from variations in the output of sound? What if a mobile application helps 

children with language impediment to learn language in a more engaging ways? If the 

answers of the above questions are yes, definitely it would make our lives much easier 

and safer. We can develop systems for the smart platforms that have already been made 

in bench top or desktop format. The core devices to develop such platforms are out there 

for a while. All we need to build are systems capable of performing particular tasks. 

These new systems can be thought as accessories to the existing technology that can 
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enable us to do more with our smart devices. The main advantages of smart systems are 

their easy accessibility, affordability, and portability. The impact can be huge in terms of 

improving the quality of lives. 

Considering the mortality rate, cancer is one of the leading causes around the 

globe. In the United States, it is placed as the second top cause of deaths as shown in 

Figure 1-1. Deaths caused by some cancer types have not dropped significantly during 

the last six decades [1]. There are six biological capabilities that are gained during the 

multistep development of tumors and considered as the hallmarks of cancer. These are 

sustaining proliferative signaling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis and activating invasion, and 

metastasis. The actual causes of cancer are still not very well understood. However, the 

major hallmarks of cancer are mutations in genes, inability to repair the genes, and 

abnormal expression of genes [2-4]. These traits may be inherited or caused by 

environmental factors such as carcinogens, tobacco, radiation, etc. [5]. 

 

Figure 1-1 Age-adjusted Death Rates in USA [6] 
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Conventional treatments have very low cure rates once the tumor become 

metastatic. Therefore, the stage at which cancer diagnosis is done is very critical for the 

survival of the cancer patients. Early detection of cancer decreases the death rates of 

lung, breast, and colorectal cancers significantly [7]. However, this chance drops 

drastically for patients diagnosed at later stages. Hence, early diagnosis possibly at 

premalignant stage may reduce the mortality rate dramatically. 

Unavailability of consistent phenotypic traits is the primary obstacle toward 

cancer diagnosis. Besides, current diagnosis methods are time consuming and require 

bulky expensive equipment. Moreover, it’s almost impossible to interpret the test results 

without the help of an expert. A point-of-care (POC) device can solve many problems of 

the existing diagnostic tools. Portability, user friendliness, and minimal and noninvasive 

sample drawing from the patient are some of the main features of a POC device. 

Researchers have incorporated many features to design POC systems. Hence, current 

cancer research is almost exclusively multidisciplinary. However, no method has shown 

effectiveness and efficacy at a level required for mass scale production so far. Each 

method has its own limitations and most of these don’t find a way outside of research lab. 

Our body fights against all diseases and foreign agents through bio-affinity based 

interactions. This approach is proven effective; otherwise we couldn’t survive in an 

environment which is full of parasites and infectious organisms. As a result, affinity based 

cancer detection schemes are very important for early cancer detection. In most cases, 

the actual reasons for cancer are unknown. But, it has been established that every 

cancer is associated with one or more mutated genes, called oncogenes. These 

oncogenes are responsible for abnormal protein formation (wrong sequence of amino 

acid, wrong folding, etc.) or unregulated protein synthesis. In any case, one or more 

cellular pathways are disrupted thereby facilitating uncontrolled cell proliferation. As a 
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result, detecting and quantifying such abnormal protein expression, known as 

biomarkers, is the main approach in most diagnosis. However, all these approaches 

suffer from high rate of false results due to their statistical natures. The level of proteins in 

a healthy individual may vary depending on age, heredity, and environment. The 

variations caused by natural factors make the boundary between a healthy and a tumor 

cell very ill-defined. The cells expressing biomarkers with a sufficient degree are very few 

in number. At very early stages, such cells with biomarkers get into the blood circulation. 

They become known as circulatory tumor cells (CTCs). Wandering through the circulatory 

system, CTCs can land into a new tissue site and start a secondary tumor. The process 

by which a tumor cell detaches from its origin and migrates into a new site to form 

secondary tumor is called metastasis. Once metastasis starts, it’s virtually impossible to 

stop the cancer. Apart from the exceedingly low number of CTCs (a few in a million) in 

peripheral blood, the situation is further exacerbated by the fact that the number of blood 

cells in a healthy individual varies over a wide range. As a result, making a device that 

can detect and quantify CTCs with great sensitivity and selectivity is complex and 

daunting. 

Most of the current approaches for cancer cell detection and isolation rely on 

target tagging, mechanical behavior monitoring, and affinity based interactions between a 

probe and a biomarker. Factors like mechanical forces [8, 9], dielectrophoresis [10], 

optical interactions [11], immunohistochemistry [12], magnetic sorting [13], flow cytometry 

[14], etc. have been reported to identify and isolate cancer cells from peripheral blood. 

Affinity based interactions provide higher efficiency and greater specificity compared to 

mechanical and electrical sorting techniques [15]. Affinity based molecules such as 

antibodies use key-lock mechanism to arrest the target molecules. Our body neutralizes 

foreign agents using the same mechanism. The use of antibodies is, however, subject to 
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high levels of off-target cross-reactivity [12, 16, 17]. Another challenge of using antibodies 

for detection is that it is very difficult to retain specific sample conditions that are required 

for antibodies to be completely functional. Many technical challenges related to 

reproducibility are also encountered when cross-linking antibodies onto the surfaces of 

miniaturized devices due to non-homogeneity of conjugation and denaturation on the 

surface. Recently, a special type of single stranded DNA or RNA sequence called 

aptamer has been shown to have similar affinities and specificities like antibodies [18]. 

The aptamers are very stable at a variety of salt and ionic conditions and can be 

reversibly denatured [19, 20]. In recent works, aptamers have been used to activate cell 

signaling pathways and also to label cells [21-24]. Devices incorporating aptamers to 

sort, isolate, and detect tumor cells have also been reported [18, 25-28]. The main 

advantages of aptamers over antibodies lie in the ease of chemical synthesis, site-

specific labeling, and, therefore, site-specific immobilization. 

 All the efforts made toward early cancer detection can be classified into two 

broad categories: 

1) Surface chemistry based detection. Selectivity of this approach is very good, but 

sensitivity is poor. 

2) Micropore based detection. It offers great sensitivity (single cell level), but 

selectivity is based on physical size only 

There are many diseases that can be prevented if proper monitoring devices are 

employed at right time. Heart diseases, also known as cardiovascular (CV) diseases refer 

to any disease that involves the heart, the blood vessels (arteries, capillaries, and veins) 

or both. In last six decades, the death toll due to CV diseases has reduced from 588.8 to 

169.8 per hundred thousand of the population as shown in Figure 1-1 [6]. But it is still the 

leading cause of fatalities in US since 1950. The huge reduction in fatalities is attributed 



6 

to the development of many screening devices, better medication, minimally invasive 

surgical procedures, and awareness. There are many cardiovascular diseases in human 

such as myocardial infarction (heart attack), sudden cardiac death (SCD), angina, 

coronary artery disease (atherosclerosis), congestive heart failure, cardiomyopathy, 

cyanotic heart diseases, hypertensive heart disease (high blood pressure), inflammatory 

heart disease, heart failure, arrhythmia, endocarditis etc. It has been widely accepted that 

most of the cardiovascular diseases except congenital ones can be prevented through 

better life style (dietary habits, exercise, regular monitoring, etc.) [29]. Since heart is 

responsible for pumping blood to the whole body and it does so in a periodic manner, 

most of the cardiovascular diseases, especially hypertension and arrhythmia affect the 

blood pressure or the heart rate or both. A method has been developed on a smart 

platform for monitoring heart rate (HR) and blood pressure (BP) that prevents these CV 

complications from escalating into further detrimental states. 

 

Research Overview 

The primary focus of this dissertation is to develop inexpensive diagnostic 

platforms for diseases, especially cancer and cardiovascular diseases detection. Chapter 

2 studies the behavior of epidermal growth factor receptor (EGFR)-overexpressing 

cancer cells through aptamer-functionalized micropores. This approach exploits the 

aptamer-protein interactions that facilitate early cancer detection. Chapter 3 discusses a 

simple text-dependent speaker recognition method using English vowels. The method 

has the potential to provide a noninvasive way to monitor our vocal cords using speech 

analysis. Speech signal is recorded as sample from the patient on a regular interval and 

analyzed to find if the patient is building any polyp or nodule on his/her vocal cords. 

Chapter 4 concentrates on developing a speech recognition system for children with 
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speech impediment and a visual accent trainer for a foreign language learner. Speech 

and language therapists may use the application to evaluate the speech production of 

each patient quantitatively. Visual accent trainer helps foreign language learners to get 

rid of the accents by providing visual feedback of their speech production. Chapter 5 

focuses on a smartphone based health monitoring system that can measure heart rate 

and blood pressure in a convenient way. Chapter 6 is appendix that includes the details 

of several processes used in the research.  

Differential Behavior of EGFR-Overexpressing Cancer Cells through Aptamer-

Functionalized Micropores 

Cancer cell overexpresses several biomarkers for different types of cancer. 

Some well-known biomarkers are EGFR for brain and lung cancer, HER2/neu for breast 

cancer, gastric cancer, and esophageal cancer; CA-125 for ovarian cancer, CA 15-3 for 

breast cancer, CEA for colon cancer, and PSA for prostate cancer etc. EGFR was 

targeted as a biomarker for human glioblastoma (hGBM, brain tumor). An RNA molecule  

(anti-EGFR aptamer) that can selectively bind to EGFR was used to functionalize a 

micropore. Rat blood and hGBM cells were passed through functionalized and non-

functionalized micropores while measuring the ionic current through the pores. The result 

showed distinct profiles for the functionalized micropore. The translocation behavior 

analysis of cells through aptamer functionalized micropore is a new modality to detect 

cancer at early stage. 

Human voice, A Biometric Signature and A Biospecimen 

Speech is the output of a well-coordinated muscular activity. It is the prime tool 

for human communication. Speech carries two types of information- message and 

information about speaker. The information about the speaker contains the identity of the 

speaker and the conditions of his/her sound-producing apparatus such as vocal chords, 
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tongue, laryngeal tube, etc. As a result, speaker identity as well as the health condition of 

sound-producing apparatus can be extracted by analyzing speech. Human voice has 

potential to be a viable biometric like fingerprints. An authentication system has been 

developed to identify speakers using their voices as signatures. Sounds of English 

vowels from subjects were taken as inputs and processed to extract a feature from each 

sample. These features were stored in a database. Magnitude spectrum of recorded 

sound was used as the feature in this study. The authentication was done by computing 

the percentage match of the sample’s feature with that of the stored in the database. 

When the matching percentage was higher than a threshold, it was considered as a hit. 

The system also has the potential to monitor health of sound producing apparatus non-

invasively. 

Children Speech Recognition and Visual Accent Trainer 

Language is one of the sophisticated invention of human as a species. This is the 

best form of communication medium by far. We learn it at very early stage of our lives. 

Not all children learn their native languages at a same rate. Some of them take longer 

than others because learning to speak a language takes a large amount of information 

processing and coordinated muscular activities. As a result, many children face language 

learning difficulties and there’s no reliable tool in the market that can help them. 

Currently, a speech and language therapist listens to each word produced by a kid and 

evaluates its performance and then decides what therapy the kid might need. Therapist 

needs to record the sound and the accuracy of the vocalization manually to a computer. 

An android application has been developed to alleviate this problem. Parents may use 

the developed application to help their kids or it may complement the services of speech 

and language therapists or other existing applications. It transcribes each word produced 

by a child undergoing speech therapy and tracks them. Words produced by each child is 
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analyzed to compute the accuracy of the pronunciation by providing feedback. The 

application not only tells a patient that the sound production was not accurate but also 

provides a quantitative feedback about how accurate it was. Since each sound is 

produced from a specific location of the sound-producing apparatus, the application 

offers a non-invasive way to investigate the source of the speech disorder. The word 

delivery by each child can be recorded and quantified to measure progress automatically. 

Visual accent trainer was developed on MATLAB GUIDE to help new language 

learner and hearing impaired people to produce sounds more accurately without any 

accents. It provides a visual quantitative feedback about the sound produced by 

comparing with a pool of native speakers. The application is more like a target practicing 

game where you can see your target and practice until the target is reached. 

Smartphone based Heart Monitoring System 

Heart diseases, also known as cardiovascular (CV) diseases are the leading 

cause of death in USA. Due to the development of many screening devices, the fatalities 

have dropped significantly during the last six decades. The huge reduction in fatalities is 

attributed to the development of many screening devices, better medication, minimally 

invasive surgical procedures, and awareness.  

A heart monitoring system capable of measuring heart rate and blood pressure 

using a smartphone has been developed. With this convenient system, people can have 

an easy way to monitor their hearts without going to a clinic. Some of the pathological 

conditions of heart may not be felt by the patients at early stage. But with a convenient 

and affordable monitoring system, gradual changes of heart rate and BP can be detected 

before it’s too late. It can be used as a primary diagnostic tool that can help the patient to 

decide whether s/he needs to see a doctor or not. 
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Chapter 2  

Differential Behavior of EGFR-Overexpressing Cancer Cells through Aptamer-

Functionalized Micropores 

 
Introduction 

An aptamer functionalized micropore system was developed to study behaviors 

of tumor cells. Micropore based detection system has been well known as cell or particle 

counter due to its sensitivity [26, 30]. Its detection limit can go as low as single cell level. 

On the other hand, aptamer functionalized surfaces have been reported to capture, 

isolate or target tumor cells due to the high affinity based interactions between aptamer 

and the tumor cells [27, 28, 31]. Our method brings the selectivity of the aptamer 

functionalized surface together with the sensitivity of micropore based detection system. 

As a result, it has both the sensitivity and selectivity that are highly desired for an 

effective cancer detection system. It has been reported that tumor cells (hGBM) behave 

differently from normal cells when these were pumped through anti-EGFR aptamer 

functionalized micropore [32]. Their translocation behaviors were distinct from the normal 

counterpart. The differentiation was attributed to the selective interaction between the 

anti-EGFR aptamer and the receptors (EGFR) on the cell membranes. This result 

indicated that aptamer functionalized micropore offered a new modality of cancer 

detection without the requirement of cell tagging. 

 

Background 

When a healthy cell turns into a tumor cell, some changes occur in the level of 

expression and structure of few membrane proteins. Mutations in genetic codes are 

primarily responsible for these changes [2-4]. Eventually, gene mutation leads to over or 
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underexpression or wrong folding of proteins. Wrong sequenced or folded protein as well 

as the expression level of a protein can be used as potential biomarkers for specific type 

of cancers. These are the precursors of an imminent cancerous condition. These can 

foretell that some cells will become malignant soon. Many biomarkers have been 

identified over the years. For example, HER-2 and EGFR are biomarkers for breast 

cancers [33, 34]; EGFR, KRAS, BRAF for lung cancers [35-37]; EGFR, HSP27, Annexin 

for bladder cancer, etc. [38-40]. Among these biomarkers, EGFR is the one that is 

overexpressed in most type of cancers. Anti-EGFR antibody and aptamer both can be 

used to capture or bind to tumor cells with overexpressed EGFR. However, aptamer 

based approach has some inherent advantages over antibody based method. Aptamers 

are more stable in a wide range of ionic and salt conditions. The selectivity of aptamer is 

better than antibody and it is much more tolerant to variations in the physiological 

environment. An anti-EGFR RNA aptamer was used in the study due to the benefits it 

offers over antibody. 

 

Materials 

Silicon wafers were bought from University Wafer Inc. Aptamer was provided by 

collaborator from UT-Austin. Silicon etchant, tetramethylammonium hydroxide (TMAH) 

was purchased from VWR International. The linker amino modified DNA oligo was 

purchased from Integrated DNA Technologies (IDT). RNase free was bought from Argos 

Technologies Inc. Silver (Ag) wires with 0.375 mm diameter were bought from Warner 

Instrument. Chloriding solution (Clorox) was bought from Walmart to coat Ag wires. 

Appendix A provides the details of Ag/AgCl electrode preparation. Rat’s blood was 

obtained from 6 month old rat (Sprague Dawley) which was purchased from Charles 

River. It was collected from the rat’s tail by restraining the rat. The blood was then stored 
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in K2-Ethylenediaminetetraacetic acid (EDTA) tube to prevent coagulation. Blood 

samples were stored in refrigerator at 4 0C. The tumor cells (hGBM) samples were 

collected from consenting patient at the University of Texas Southwestern Medical Center 

(Dallas, TX). The isolation and culturing protocols are delineated in Appendix A [18]. The 

remaining chemicals used in the experiments were purchased from Sigma Aldrich. 

 

Methods 

Micropore Fabrication using Focused Ion Beam 

Mask Design 

Every fabrication process starts with designing a mask. A single layer mask (5” x 

5”) was designed using AutoCAD and printed on glass substrate for micropore fabrication 

as shown in Figure 2-1. It has an 8 x 8 array of square windows. These windows were 

used to create openings in silicon dioxide membranes. Once the mask was designed and 

fabricated, then silicon wafer fabrication was started. 

 

Figure 2-1 (a) Array of square windows, (b) Confocal micrograph of a single window on a 

mask 

100 µm

(a) (b) 
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Silicon Wafer Fabrication 

At the first step of wafer fabrication, 0.9 μm thick silicon dioxide (SiO2) layers 

were grown on both sides of a double-side polished (100) p-type silicon wafer. The oxide 

thickness of a batch of silicon wafers was measured using Reflectometer (Ocean Optics 

NC-UV-VIS Reflectometer) and listed in Table 2-1. 

Table 2-1 Oxidation of silicon wafer (double side polished, diameter 4”) 

 Wafer 1 Wafer 2 Wafer 3 Wafer 4 

 

Front 
Side 
(nm) 

Back 
Side 
(nm) 

Front 
Side 
(nm) 

Back 
Side 
(nm) 

Front 
Side 
(nm) 

Back 
Side 
(nm) 

Front 
Side 
(nm) 

Back 
Side 
(nm) 

1 860.00 860.40 865.50 867.30 867.90 868.50 867.90 867.60 

2 868.30 867.30 871.10 873.20 873.60 871.10 872.50 872.00 

3 869.80 870.90 874.50 873.60 874.90 875.30 873.20 873.80 

4 867.80 869.30 871.80 871.40 873.30 872.60 872.90 872.90 

5 864.90 864.30 869.60 870.20 870.30 870.70 871.70 870.20 

Avg 866.16 866.44 870.50 871.14 872.00 871.64 871.64 871.30 

STD 3.47 3.74 2.96 2.28 2.54 2.25 1.94 2.20 

 

An array of square windows was opened by photolithography to start etching on 

the back side of the wafer. Pattern was transferred from the mask onto wafer using 

standard photolithography. Once the photoresist was pattered, buffered hydrofluoric acid 

(BHF) was used to transfer the same pattern from the resist onto SiO2 layer underneath 

as shown in Figure 2-2a. After oxide patterning, 25% TMAH solution, an anisotropic wet 

etchant, was used to etch silicon from the back side through these oxide windows at 90 

°C. A magnetic stirrer was used at 200 rpm to ensure uniform etch. The silicon etch was 

self-limiting due to the presence of oxide layer on the other side of the wafer since TMAH 

has very high selectivity for silicon over SiO2. The membranes with 70 μm X 70 μm 
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dimension were created at the end of silicon etch. The membranes (black region in 

Figure 2-2b) were inspected under scanning electron microscope (SEM) before further 

processing. Micron sized pores were drilled on those oxide membranes using a focused 

ion beam (FIB, ZEISS 1540XB) machine. Diameter of a micropore (Figure 2-2c) was 

controlled by varying acceleration voltages, milling currents, and drilling times [41]. In 

order to drill a micropore with 20 μm diameter in a 0.9 μm thick SiO2 membrane, 30 kV of 

acceleration voltage and 1 nA of drilling current were applied for 5 min. All the steps 

involved in the fabrication till FIB drilling are batch processes i.e. high throughput. But FIB 

can drill one pore at a time. Since any process speed is determined by its slowest step, 

this method of micropore fabrication is a serial process which limits the throughput of the 

entire fabrication. In order to overcome this limitation, a fabrication method was 

developed which is a batch process that doesn’t require any FIB drilling. 

 

Figure 2-2 (a) Confocal micrograph of a window opened after BHF etch of patterned 

SiO2, (b) SEM micrograph of anisotropically etched silicon. Black region at the bottom of 

the etched groove is SiO2 membrane with no micropore, and (c) SEM micrograph of a 

drilled micropore [32] 

 

100 μm
100 μm

10 μm

(a) (b) (c) 
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Batch Fabrication of Micropore 

This method of micropore fabrication requires two masks- one for opening the 

square etch window which is similar to the mask used for previous method and the other 

for creating array of micropores on the center of oxide membranes left after the TMAH 

etch. Two masks are shown in Figure 2-3. Similar to the first approach, 0.9 μm thick 

silicon dioxide layers were grown on both sides of a double-side polished (100) p-type 

silicon wafer. Photolithography was carried out to create an array of square windows on 

the back side of the wafer. 

 

Figure 2-3 (a) Array of square window with alignment markers, (b) Array of micropores 

with alignment markers (inset shows the magnified version of the section) 

 

(b) 
Square Window 

Alignment 
Marker 

Micropore 

(a) 
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Once the photoresist was exposed and developed, the patterns were 

successfully transferred from mask to the wafer. Figure 2-4a shows confocal micrograph 

of such window on photoresist (S1813) and Figure 2-4b shows the profiles measured in 

an profilometer (KLA-Tencor Alpha-Step IQ Profilometer). The pink region is the silicon 

dioxide and the greenish region surrounding the oxide is photoresist. The pattern was 

clean and edges were sharp that is the indication of successful pattern transfer. 

 

 
Figure 2-4 (a) Square window on photoresist after development, (b) Profiles of the 

window measured using profilometer 

After the pattern transfer onto photoresist, oxide etch was done using buffered 

hydrofluoric acid (BHF). This was to open window on the underneath oxide layer. 

Photoresist was used as etch mask to confine the etch process only within the windows. 

Figure 2-5a shows the oxide window after the BHF etch. The white color is due to the 

complete depletion of oxide which was colorful and reflective. The photoresist was spun 

at 3000 rpm and the thickness it produced was 1.46 µm. With the photoresist and a 0.9 

µm oxide made a thickness of around 2.36 µm which was very close to the thickness 

found as shown in Figure 2-5b. The window size was widened up a little (from 771 µm to 

200 µm

771 µm 

(a) (b) 

1.48 µm 
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784 µm) in this step. The window size was measured with both confocal microscope and 

profilometer and the readings matched well.  

 
Figure 2-5 (a) Square window on silicon dioxide after buffered oxide etch (BOE) with 

photoresist, (b) Profiles of the window measured using profilometer 

 
The next step was to create array of micropores aligning with the array of 

windows already created on the back side. The micropores were successfully aligned 

with the square windows using the backside aligner (OAI Model 806 manual 

Front/Backside Contact Mask Aligner). Once the alignment was done, the wafer was 

exposed and developed. A negative mask with a negative photoresist (NR9-1500py) was 

chosen for good visibility of the feature. Figure 2-6a shows the micropore on photoresist 

after development and Figure 2-6b shows the same micropore after BHF etch. The 

diameter of the micropore was 18 µm. The pink region on the left of Figure 2-6 shows the 

color of oxide and grayish region is the negative photoresist NR1500. After the oxide 

strip, the exposed region looks white as the shiny oxide layer is gone from that part. 

200 µm

784 µm 

2.34 µm 

(a) (b) 



18 

 
Figure 2-6 (a) Micropore on photoresist (NR9-1500), (b) Micropore on silicon dioxide after 

buffered oxide etch 

Once the array of micropores was transferred on the oxide layer aligned with the 

oxide windows on the back side, the wafer had to go through a silicon etch process. To 

etch silicon, a solution of 25% of tetramethylammonium hydroxide (TMAH) and deionized 

(DI) water in a ratio of 24:11 (2400 ml TMAH with 1100 ml DI water) was used. Right 

before putting the wafer into TMAH solution, it was dipped into hydrofluoric acid (HF) for 

few seconds to remove the native oxide layer. The solution was kept at a constant 

temperature of 90 0C with a stirring rate of 200 rpm. Stirrer kept the solution temperature 

reasonably uniform throughout the entire beaker. Magnetic stirring rod was used to 

decouple the system. At this concentration and temperature, the etch rate of silicon along 

(100) plane was 0.84 µm/min. TMAH is an anisotropic etchant. It etches (111) plane 37 

times slower than the (100) plane. As a result, the etch structure was like an inverted 

pyramid as shown in Figure 2-7a. To etch the whole thickness of a 4” silicon wafer, it 

usually takes approximately 10 hrs. The stirring rate was kept 200 rpm for first 7 hrs and 

then reduced to 100 rpm in order to reduce the damage on the oxide membrane due to 

mechanical agitation. The wafer was inspected several times during the etch process. 

Once TMAH etch was done, the wafer was inspected under optical and electron 

8 µm 10 µm

(a) (b) 
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microscopes. Figure 2-7b shows the membrane with micropore and Figure 2-7c shows 

the magnified image of a micropore. The final diameter of micropore was 19 µm.  

 

 
Figure 2-7 (a) SEM micrograph of the groove created by TMAH etch, (b) SEM 

micrograph of silicon dioxide membrane with micropore, and (c) Magnified version of the 

micropore 

 
Aptamer Preparation 

Protocol for aptamer preparation was adopted from an early report [42]. The 

sequence of the extended anti-EGFR aptamer was 5’-GGCGCUCCGACCUUAGUC 

UCUGUGCCGCUAUAAUGCACGGAUUUAAUCGCCGUAGAAAAGCAUGUCAAAGCC 

GGAACCGUGUAGCACAGCAGAGAAUUAAAUGCCCGCCAUGACCAG-3’; sequence of 

a mutant aptamer was 5’-GGCGCUCCGACCUUAGUCUCUGUUCCCACAUCAUGCAC 

AAGGACAAUUCUGUGCAUCCAAGGAGGAGUUCUCGGAACCGUGUAGCACAGCAG 

AGAAUUAAAUGCCCGCCAUGACCAG-3’ (extension sequence is underlined). An 

amino-modified capture oligonucleotides, 5’-AmMC6-TTTTTTTTTTTTTTTTTTTTCTGGT 

CATGGCGGGCATTTAATTC-3’ (active capture sequence is underlined) was 

incorporated on the surface to capture the aptamer. 

 

10 µm

10 µm
20 µm

(a) 

(b) 

(c) 
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Preparation of anti-EGFR Aptamer Functionalized Micropores 

The protocol for aptamer attachment on the SiO2 micropore surfaces was 

adapted from earlier works [27, 28, 43]. Each diced silicon chip with micropore was 8 x 8 

mm2 in size. Those were cleaned in piranha solution (H2O2/H2SO4, 1:3 v/v) for 10 

minutes. After rinsing with deionized (DI) water and drying in nitrogen flow, the substrates 

were immersed in 2% v/v 3-amionpropyl tri-ethoxysilane (APTES) in ethanol for 30 

minutes at room temperature. That step was to create amine groups on surface. The 

APTES solution was removed and the substrates were sequentially washed with ethanol 

and DI water. Then 2 mg of p-phenylene diisothiocyanate (PDITC) was mixed in a 

solution of dimethyl sulphoxide (DMSO) and pyridine (9:1 v/v) to prepare PDITC solution. 

The APTES treated substrates were incubated in PDITC solution at 55 °C for 5 hours. 

After 5 hours, the PDITC solution was removed and the substrates were washed three 

times each with isopropyl alcohol (IPA) and diethylpyrocarbonate (DEPC) treated DI 

water. Then 10 μM capture DNA solution was added to DMSO to make 1:1 (v/v) DNA: 

DMSO solution. The substrates were immersed in DNA solution and incubated at 45 °C 

overnight. The chips were then soaked in ethanol followed by sequential washing with 

IPA and DEPC treated DI water. Nitrogen was used to dry the chips. RNA aptamer (1 

μM) was mixed in hybridization buffer at a ratio of 1:5 (v/v). Then a hybridization chamber 

was cleaned with RNase-free DI water thoroughly and a drop of aptamer solution was 

placed on the chip. The chamber was immersed in a water bath (BW-10G, Laboratory 

Companion) for one hour at a temperature of 37 °C. The whole process is summarized in 

Figure 2-8. 
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Figure 2-8 Protocol for aptamer attachment of silicon substrate 

The chips were then washed again with IPA and DEPC water three times each. 

The 6-amino-1-hexanol solution was used to deactivate amine groups that were not 

bound to the nucleic acids. This solution was made by dissolving 1.1719 gm of 6-amino-

1-hexanol in 5.2253 ml N,N-diisopropylethylamine and 200 ml of N,N-dimethylformamide. 

Chips were incubated in the deactivation solution at 45 °C for 5 hours. The chips were 

then washed with ethanol and DEPC treated DI water. Without drying, the chips were put 

in 1X phosphate-buffered saline (PBS) solution. PBS solution was heated to 45 °C for 10 

minutes and then slowly cooled down to room temperature. 

 

Experimental Set-up 

The micropore chip was sandwiched between two polydimethylsiloxane (PDMS) 

gaskets. These gaskets were used to prevent leakage of solution. The chip and gaskets 
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were then held together using two Teflon blocks that had holes at their centers as shown 

in Figure 2-9a. Inlet and outlet tubes were connected to the Teflon blocks. Two Ag/AgCl 

electrodes were connected to the inlet and outlet respectively as shown in Figure 2-9b. A 

syringe pump (Harvard Apparatus) was used to maintain a constant flow rate of cell 

solution as shown in Figure 2-9c.  

 

Figure 2-9 (a) Micropore chip packaging assembly (not to scale), (b) Arrangement of 

micropore for cell passage along with electrical biasing and measurements setup, and (c) 

Final assembled device [32]. 

The hGBM cells (5000 cells/ml) were suspended in 1X PBS and pumped through 

the system while measuring the current across the micropore using a data acquisition 
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(c)
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system (National Instrument data acquisition system, NI SCB-68, NI PXI-1033, NI PXI-

4071). The rat blood, collected in tubes with K2-EDTA and stored at 4 °C, was taken out 

from storage tubes right before the experiments and thawed to room temperature. Then 

1X PBS solution was mixed with rat blood to dilute it one thousand times. Once the blood 

was homogenously mixed with PBS, the solution was also pumped through micropores 

while measuring ionic current through them. A pair of Ag/AgCl electrodes was used to 

measure the ionic current. First, only PBS was pumped through the micropore to 

establish the baseline. The PBS gave a constant ionic current through the micropores. 

When the cell solution was pumped through the micropore, each cell blocked the pore 

temporarily when it passed through. Current dips were seen in the ionic current traces at 

that time. Every downward peak corresponded to a single cell passage. The hGBM cells 

were passed through a bare micropore and an aptamer functionalized micropore to 

observe the differences. 

 

Selection of Target 

For the experiment, human glioblastoma cell (hGBM) was chosen as a tumor cell 

line. Among many other tumor biomarkers, epidermal growth factor receptor (EGFR) was 

the target biomarker for the study. The level of EGFR expression in normal cell varies 

from 40 K to 100 K per cell [44]. It has been reported that such overexpression of EGFR 

especially occurs in case of lung cancer and brain cancer (human glioblastoma) [45]. 

Mutation in EGFRvIII acts as a continuous signaling for cell division, and uncontrolled cell 

division is known as cancer. An absence of a part of amino acid sequence of exon 2-7 

(amino acid 6-273) causes the EGFRvIII mutation [43]. Both types of EGFRs are present 

on a tumor cell but the expression level of the wild type EGFR is much lower than that of 

mutant EGFR. It has been reported that anti-EGFR RNA aptamer binds specifically with 
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both mouse derived wild type EGFR and mutant EGFRvIII. Wild type and mutant EGFRs 

both have extracellular binding domain III. Anti-EGFR aptamer can bind to this site. As a 

result, aptamer has affinity for both types of EGFRs.  

 

Figure 2-10 Size distribution of hGBM cells on surface (N=108) 

The specificity of the aptamer to a particular site reduces any non-specific 

adsorption. Besides, tumor cells are more negatively charged compared to normal cell 

due to the higher level of sialylation on their surface [46]. The size of hGBM cells were 

measured in optical microscope. The size distribution is shown in Figure 2-10. The 

diameter of hGBM cells were 13.57 ± 2.26 µm. 
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Figure 2-11 Schematic showing interactions of hGBM cells with aptamer-functionalized 

and bare micropores (not to scale). (a) The tumor cells have significantly higher 

concentration of EGFR on the cells walls. The anti-EGFR aptamers are in hairpin form. 

(b) The cells interact with the aptamer. Left pane shows a normal cell that has 

significantly less binding with the pore-grafted aptamers than that for the tumor cell 

shown in the right pane. (c) The schematic of the ionic current pulses resulting from 

respective cell passage as in (b) [32] 
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This extra negative charge also helped to minimize non-specific binding. The 

selectivity and sensitivity of aptamers were further improved by an amino modified DNA 

as a capturing agent. The capture DNA did covalently bind to the aptamer. It kept the 

aptamer in a distance from the surface which essentially reduced any steric hindrance. 

The overview of the detection system is shown in Figure 2-11. 

 

Gaussian Pulse Model 

The data of pulses obtained from micropores had a number of parameters that 

were used to understand the biophysical interactions occurring within the confinement of 

the micropore. When a cell passed through the micropore, it replaced or blocked the ionic 

species or charges from the micropore volume. That charge was then calculated. The 

following assumptions were made to calculate the amount of charge physically 

blocked/replaced by a cell while passing through the micropore. 

i) All current pulses were inverted Gaussian in shape. 

ii) Translocation time of the cell or current pulse width was assumed to be the full 

width at tenth of maxima (FWTM). 

iii) The micropore was perfectly circular. 

iv) Ionic concentration of the PBS was homogenous and uniform. PBS consisted of 

137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 and 1.47 mM KH2PO4. 

v) Cells were perfectly spherical. 

The equation of an inverted Gaussian current pulse is (Figure 2-12): 

𝐼(𝑡) = 𝐼𝑝𝑒𝑎𝑘  exp (−
𝑡2

2𝑐2) for –PW/2 < t < PW/2                                                   (Equation 2-1) 

Where I(t) is current at time t within the pulse, Ipeak is the peak current, and c is a 

parameter that controls the width of the pulse (PW). 
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Figure 2-12 A simulated pulse used to model the current pulses obtained from micropore 

blockage [32] 

The area under a Gaussian pulse as shown in Figure 2-12 was calculated. It was 

the amount of charge replaced and blocked by each cell. Now the area under the pulse, 

or in other words, the charge blocked, was calculated by integrating the Gaussian 

function with respect to time. 

𝑄𝑏𝑙𝑜𝑐𝑘𝑒𝑑 = ∫ 𝐼𝑝𝑒𝑎𝑘
∞

−∞
exp (−

t2

2c2) 𝑑𝑡 = 𝑐𝐼𝑝𝑒𝑎𝑘√2𝜋                                              (Equation 2-2) 

and 𝑃𝑊 = 𝐹𝑊𝑇𝑀 = 𝑐√8 ln( 10)                                                                      (Equation 2-3) 

From Equation 2-2 and Equation 2-3, 𝑄𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ≈ 0.584𝐼𝑝𝑒𝑎𝑘𝑃𝑤                      (Equation 2-4) 
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Results 

Since every cell corresponded to a current pulse i.e. every cell was essentially 

blocking charge flow while passing the micropore. This charge was accurately depicted 

by the current peak (Ipeak) and pulse width (Pw) measured experimentally. 

 

Figure 2-13 Histogram showing distribution of the amount of charge blocked by normal 

rat blood cells while passing through bare and aptamer functionalized micropores. The 

inset shows histogram of distribution of amount of charge blocked by hGBM cells while 

passing through bare and aptamer functionalized micropores [32] 

 

When raw rat blood was run through the micropore under the same experimental 

conditions, the two distributions of charge blockages were calculated for the bare and 

aptamer functionalized micropores using this model. The two distributions weren’t 

different as shown in Figure 2-13. Both distributions were single-sided Gaussian in nature 

and showed peaks on the same ranges of blocked charges. The experimental result 
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shown in Figure 2-13 can be explained in terms of the interactions between anti-EGFR 

aptamer and the EGFR present on the surface of hGBM and normal blood cells. As 

normal blood cells don’t have a significant amount of EGFR compared to tumor cells on 

their surfaces [44], the interactions between the anti-EGFR aptamer and the EGFR on 

normal rat blood cells was not sufficient to create significant differences between the 

distributions obtained from aptamer modified micropore and bare micropore. As a result, 

distributions for blocked charges of normal blood cells obtained from bare and aptamer 

functionalized micropores were quite similar. Charge blocked by every hGBM cell was 

also calculated for bare and functionalized micropores. Histograms of blocked charge by 

hGBM cells are shown in inset of Figure 2-13. The charge blocked while the hGBM cells 

passed through the pores showed a skewed Gaussian distributions. The maximum 

occurrence of events for bare micropore was within 50 to 100 pC. On the other hand, the 

maximum occurrence of events for a micropore which is functionalized with aptamer was 

within 100 to 150 pC. The comparison between distributions of the charge blocked 

showed a clear shift of maxima towards the right for aptamer-modified micropore. It 

implies that due to the interactions between the EGFR on the cell surface and the anti-

EGFR aptamer, the amount of charge blocked by the cells was larger. The 

overexpression of EGFR on hGBM cells caused significantly higher interactions between 

the anti-EGFR aptamers on the functionalized pore wall and the tumor cells, resulting in 

the shift of the histograms. This enhanced aptamer-receptor interaction led to spatially 

separable distributions for bare and functionalized micropores. Despite the overlap, the 

distribution peaks are clearly located around different maxima. Given the presence of 

cancer cells in peripheral blood at the outset of cancer [45], the peaks of the histograms 

can be used as non-invasive diagnostic metrics. 
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Translocation Behavior 

Figure 2-14 shows scatter plots of the pulse widths and current peaks obtained 

from hGBM cells passing through bare and aptamer functionalized micropores. Although 

the data points are distributed over a wide region, there is a clear clustering of bare 

micropore data points within 50 to 450 μs and 0.6 to 2.5 µA (within the dashed 

boundary). 

 

Figure 2-14 Scatter plots of hGBM cells passage through a bare micropore (red circles) 

and same sized micropore that was functionalized with anti-EGFR aptamer (blue 

diamonds). The inset shows actual ionic current trace of a typical pulse from an aptamer-

functionalized micropore of 20 μm diameter when single hGBM cell passes at a flow rate 

of 20 μl/min. The electrical data acquisition is done at 200 KHz [32] 
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The data represented by blue diamonds in Figure 2-14 shows scatter plot of the 

pulse widths and current peaks for hGBM cells passing through an aptamer grafted 

micropore. The data points are fairly confined within 50 to 230 μs and 2.5 and 3.8 µA. 

Even though there is a small overlap but the clustering of data points is spatially 

separate. The pulses from the aptamer modified micropore clearly have a different center 

of clustering than that for the bare micropore. 

 

Figure 2-15 Scatter plot of pulse widths versus current peaks of the pulses from rat blood 

cells passage through a bare (blue cross), and same sized micropore that is 

functionalized with anti-EGFR aptamer (red circle). Diameter of micropore is 20 μm, flow 

rate is 20 μl/min. The electrical data acquisition is done at 200 KHz. Inset shows a 

magnified version of the densely populated region near origin. The functionalized pore 

data is shown in front of bare micropore data of the main figure. The two data are dense 

and lie on top of each other [32] 
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The current pulses were much deeper when the micropore was functionalized 

with an aptamer. When an hGBM cell passed through a functionalized micropore, the 

interactions between EGFR on hGBM and an aptamer attached to the micropore’s wall 

reduced the mobility of ions that carried current in the solution. This reduction in mobility 

led to an effective increase of resistance of the pore. As for the nature of interactions, the 

most fundamental mechanism here was the binding between the aptamer and EGFR. 

This binding is still not completely understood as this is neither duplex formation that 

happens in nucleic acids nor irreversible. The understanding on aptamer-receptor binding 

hints at formation of secondary structures like hairpins, G-quartets and loops that show 

selective affinity to certain target molecules. In case of EGFR binding, we have reported 

before that this interaction is due to the hairpin structure formation in the aptamer 

molecule, which could be reversed to release EGFR (and the cells) from the surface of 

the chip [27].  

The current blocked by hGBM cells was higher than that of normal cells due to 

higher resistance, even if their sizes were same (Figure 2-14). As a result, the aptamer 

functionalized micropore clearly differentiated between cells with more EGFR on their 

surfaces and cells with less/no EGFR due to its selective interaction with the EGFR on 

the cell surfaces. On the other hand, Figure 2-15 shows scatter plot of the pulse widths 

and current peaks obtained from rat blood cells passing through the bare and aptamer 

functionalized micropores. The data points obtained from both experiments were 

distributed over a wide region. The pulse width ranges from 50 to 3500 μs and current 

peak ranges from 0.8 to 15 µA for the bare pore. Similarly, the pulse width varies 

between 50 to 4500 μs and current peak varies between 0.8 to 55 µA for the aptamer-

functionalized micropore. Contrary to the data for tumor cells, the two distributions for 

blood cells completely overlap. The expression of EGFR on normal cells results in similar 
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interactions with the bare pore and the aptamer-functionalized micropore. This makes the 

two distributions spatially inseparable. The experimental set up had the unique ability to 

differentiate between cells which had a significantly different number of EFGR on their 

surface. As tumor cells express a sufficiently larger concentration of EGFR compared to 

their normal counterparts, this unique differentiability can be extended to detect cancer 

cells from peripheral blood.  

 

Challenges and Solution 

One of the major challenges is that some data points associated with cancer 

cells might be overlapped with the data points of healthy cells due to the wide variation of 

the levels EGFR expression and sizes. A new methodology was developed to achieve 

enhanced differentiation. Rather than comparing the data points in a cluster, this new 

technique determines whether a cell is cancerous or not by comparing the interaction of a 

single cell with bare micropore and the one modified with aptamer in a single setting.  

 

Single Cell Differentiation 

New Experimental Set-up 

In contrast to the previous set-up, two micropore chips were sandwiched 

between three polydimethylsiloxane (PDMS) gaskets. The chips and gaskets were then 

held together using two Teflon blocks that had holes as shown in Figure 2-16a. Inlets and 

outlets tubes were connected to the Teflon blocks. Three Ag/AgCl electrodes were 

required for this set-up. Two electrodes were connected to the inlet and outlet in a similar 

way as done before and the third electrode was inserted into the PDMS gasket in the 

middle. The third electrode was pierced through the gasket in a way so that the tip was 

exposed a little into the hole. The purpose of this little exposure was to make sure when 
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the ionic solution passed through the hole on the center of PDMS gasket, the electrode 

would get contact with the solution, thereby completing the circuit. The +5 V and -5 V 

electrical potential were applied at the electrodes at inlet and outlet respectively. The third 

electrode was kept at ground potential. The polarities of the applied potentials were 

chosen carefully to ensure the current flow in the direction of the flow of liquid maintained 

by the pump. A syringe pump (11 PLUS, Harvard Apparatus) was used to maintain a 

constant flow rate of cell solution as shown in Figure 2-16a. The cells (5000 cells/ml) 

were suspended in a 1X PBS and pumped through the system while measuring the 

current across the two micropores. A typical electrical pulse of an hGBM cell is shown in 

Figure 2-16b. The process of aptamer functionalization was exactly the same. 

 

 
Figure 2-16 (a) Experimental set-up for single cell differentiation using two micropores in 

series, (b) An exemplary electrical pulse 
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Results for Single Cell Differentiation 

Two identical non-functionalized micropores were used to determine how 

individual cell behave with each micropore. The electrical pulses obtained from these two 

micropores were reasonably similar as expected. Figure 2-17 shows the time series of 

electrical current signal obtained from the first (top) and second (bottom) micropores for 

hGBM cells. The pulse train from the second micropore was time lagged by 

approximately 19 ms from the pulse train from the first micropore. This time was taken by 

each cell travel from the first to second micropore on average.  

 
Figure 2-17 hGBM cells detection using two micropores in series 

Similar result was obtained for rat blood cells as shown in Figure 2-18. Even 

though the data was noisier than the hGBM data but still there was one-to-one 

association between pulses obtained from two micropores. Sometimes the current 

baseline was wildly shifted due to the presence of various particulates in blood. 
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Figure 2-18 Rat blood cells detection using two micropore in series 

 

Data points collected from a 10 s window were analyzed and plotted in Figure 

2-17. Each data point is represented by pulse width and peak current which were 

explained in the first section. The distributions of data points obtained from two 

micropores were fairly similar. The pulse width for micropore 1 and 2 are 38.08 ± 30.06 

µs and 50.65 ± 37.5 µs respectively. The peak current obtained by micropore 1 and 2 

were 4667.54 ± 1691.2 nA and 4210.73 ± 1399.68 nA. Even though the mean pulse 

width and peak current were not that close but standard deviation was fairly large i.e. still 

they could arise from a similar cell when passed through micropore 1 and 2. Most of the 

time cell maintained a fairly constant travel time from micropore 1 to 2 which was 

approximately 19 ms. Ideally each pulse should be inverted Gaussian shape, but it took a 

wide variety of shapes due to the non-uniformity of cells morphology and presence of the 

noise in the electrical signal. As a result, the peaks didn’t appear at the middle of the 
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signal. It sometimes came before the mid-point of the pulse and sometimes later. To 

determine the peak position in a pulse, a quantity was computed. If the entire pulse width 

is considered 100%, at what percent of time the peak appears is called the percent time 

of peak appearance (PTPA). The PTPA of hGBM cells are 54.03 ± 30.34 and 48.13 ± 

19.73 for micropore 1 and 2 respectively. On average, the peaks appeared after 50% of 

the time of pulse width. Standard deviation was fairly large for this quantity. That means 

there were wide variety of pulses present in the data pool and some of them were left 

skewed and some were right skewed pseudo Gaussian in shapes. 

For rat blood cells, the pulse width for micropore 1 and 2 were 18.45 ± 6.64 µs 

and 22.68 ± 9.35 µs respectively. The peak current obtained by micropore 1 and 2 were 

2754.29 ± 1856.25 nA and 3445.90 ± 3343.56 nA. The PTPA of rat blood cells were 

58.85 ± 17.92 and 51.05 ± 18.43 for micropore 1 and 2 respectively. On average, the 

peaks of rat blood cells appeared closer to the midpoints of pulses compared to the 

pulses of hGBM cells. 
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Figure 2-19 Scatter plot of peak current vs pulse width of (a) hGBM cells, (b) Rat blood 

cells passed through two micropores in series 

The amount of charge blocked by each cell during the passage of micropore is 

called blocked charge. This is a good parameter to find if there are different kinds of 

populations in data points. Figure 2-20 shows the frequency distribution of charge 

blocked by hGBM and rat blood cells while passing through micropore 1 and 2. 
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Figure 2-20 Histogram of blocked charges by (a) hGBM cells (N =173), (b) Rat blood 

cells (N = 100) 

The distribution peaks and shapes obtained from hGBM cells are fairly identical. 

The distribution of charge blocked by hGBM cell is Gaussian whereas the distribution 

from rat blood cells are skewed Gaussian in nature. Statistically each cell is interacting 

with each micropore in a similar way since both of the micropores are in identical 

conditions. There were four parameters computed to characterize electrical pulses. They 

were pulse width, peak current, charge blocked by each cell, and PTPA. All of them are 
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listed in Table 2-2 to compare between the behaviors of cells while passing through two 

identical micropores. 

 
Table 2-2 Statistics of electrical pulses for hGBM (blue) and rat blood (red) cells (Data 

collection time 10 sec, N=173, travel time 18.59 ± 2.04 ms) 

 Micropore 1 Micropore 2 

Pulse Width (µs) 38.08 ± 30.06 50.65 ± 37.5 

Current Peak (nA) 4667.54 ± 1691.2 4210.73 ± 1399.68 

Charge Blocked (pC) 107.2 ± 106.81 134.01 ± 126.18 

Relative Peak Position 
(% of pulse width) 

54.03 ± 30.34 48.13 ± 19.73 

Pulse Width (µs) 18.45 ± 6.64 22.68 ± 9.35 

Current Peak (nA) 2754.29 ± 1856.25 3445.90 ± 3343.56 

Charge Blocked (pC) 30.80 ± 25.55 45.95 ± 48.30 

Relative Peak Position 
(% of pulse width) 

58.85 ± 17.92 51.05 ± 18.43 

 

Discussion 

For the first experimental set-up, data points obtained from the passage of hGBM 

cells through bare and aptamer modified micropores had different centers of clustering 

and these were spatially separable. Also, the distributions of blocked charges showed a 

clear right shift of peaks for pores functionalized with the aptamer. In contrast, normal 

blood cells didn’t show any significant difference in the distributions when passed through 

bare and aptamer modified micropores. For normal blood cells, both distributions were 

one-sided Gaussian in nature and there was no relative peak shift observed. These 

findings were attributed to the interactions between the anti-EGFR aptamer and the 

EGFR expression levels on the surface of hGBM and normal blood cells. Unlike hGBM 

cells, normal blood cells don’t have overexpressed EGFR on their surface. So their 
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distributions were not spatially separable as could be done for hGBM cells. This unique 

capability for analysis can alleviate the challenge of cancer cell data enveloped within 

normal cell data in a scatter plot as shown in Figure 2-14. 

Variation in sizes, amount of charges, receptor-ligand interactions [27], and 

differences between stiffness of different cell types may induce differences in the 

translocation behavior [47]. White blood cells (WBCs) have been reported to be in the 

range of 11-22.5 μm while hGBM cells have been known to be around 20 μm [18]. We 

used 20 μm diameter micropores. Since the sizes, heterogeneity, and stiffness of cells 

are similar in normal rat blood, their behavior while passing through the two micropores 

(bare and functional) was not much different (and hence similar histograms). The inset of 

Figure 2-13 (hGBM cells) shows the distribution peak is clearly shifted to the right (toward 

higher blocked charges) for the aptamer functionalized micropore. It implies that with the 

hGBM cells, with their own size variations, heterogeneity, and stiffness range, the shift in 

the distribution peak for functionalized micropore came only from the aptamer binding 

effect. The variations in sizes and other factors can thus be discounted as major 

contributors in the discrimination effect between normal and cancer cells. The micropore 

approach has the potential to detect and quantify tumor cells from a blood sample. The 

same operating principle might be applicable to detect other biological entities such as 

genes, pathogens, proteins, etc. if their corresponding aptamers are employed. The only 

challenges will then be to fabricate micropores/nanopores comparable to the sizes of the 

target entities and functionalize these with the specific ligands. 

For the new set-up, it’s now possible to compare the interaction of a single cell 

with a bare and aptamer-functionalized micropore in a single setting. If the one of the 

micropore is functionalized, then cells with higher EGFR concentration would show 

different level of interaction with the functionalized micropore from the non-functionalized 
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one. The interaction can be quantified for an individual cell rather than for a cluster of 

cells. It can be a new modality to interrogate single cell with two different micropores. The 

method has the potential to be applied to diagnose other type of cancer or even other 

disease. The only requirement is to find a target molecule on the cell surface and 

synthesis of an aptamer for that particular marker. 
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Chapter 3  

Human Voice, a Biometric Signature and a Biospecimen 

 
Introduction 

Speech production is a complex process involving coordinated muscular activity. 

It contains message which is the intended information, and information regarding the 

speaker conditions of the sound producing apparatuses such as vocal chords, tongue, 

laryngeal tube, etc. Due to the uniqueness of human voice, it can be used as a biometric 

signature to identify speaker. It is the process of discriminating one person from others 

using voice. It has also potential to be a biospecimen to diagnose many diseases of 

sound producing apparatus. Voice based speaker identification method can be very 

useful in many areas including security, home or car automation, forensic analysis, 

tracking, etc. [48]. Many researchers have explored this area with variety of approaches. 

Elman et.al. studied the hidden features of sound in 1988 [49]. Neural networks have 

been employed to identify speakers for many years [50, 51]. Reynolds et.al. 

demonstrated a speaker identification and verification method based on Gaussian 

mixture speaker model [52, 53]. The process of identifying speakers can be divided into 

four main steps: voice recording, pre-processing, feature extraction, and decision making. 

The outline of the method is described in Figure 3-1. 
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Figure 3-1 Flow chart of a speaker identification algorithm 

 
Voice as a Viable Biometric 

A biometric is a mathematical representation of any measurable characteristic of 

an individual. Due to sheer number of possible variations in a speaker’s voice, it is 

extremely difficult to mimic someone’s voice for biometric authentication. Our ears may 

not perceive the subtle differences in the voice of an imposter, but an authentication 

system can computationally analyze multiple features ranging from spectral magnitudes, 

formant frequencies, time domain features, pitch, and probably phase spectrum as well. 

As a result, differences that are not discernible to our ears can be caught in a voice 

based authentication system. Similarly, recording of a voice may sound like a perfect 

match to ear, but detailed mathematical analysis reveals many underlying features 

(distortion, traits of the recording system, etc.) that set apart the actual speaker from the 

imposter. An even more robust method would be to employ a text independent voice 

authentication that uses a randomly generated text to prevent the forger from knowing it 
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ahead of time. The probability of a fraud to successfully pass through such an 

authentication system is exceedingly small. 

 

Reliability of Voice Based Authentication System 

The primary task of any biometric system is to allow a user to access a system 

with less number of trials and at the same time prevent any fraudulent access to 

someone else’s account. The latter is actually a more stringent feature of a reliable 

authentication system. No authentication system based on biometrics is perfect. There is 

always a tradeoff between the limit on number of false negatives and false positives. 

A common feature of all biometric based authentication systems is that all of 

them are probabilistic in nature to some extent. As a consequence, there is always a little 

chance of producing wrong result sometimes. When a biometric is recorded, there are 

always some artifacts in the recording, digitization, and encoding processes. Robustness 

of a system is defined by how small these errors are. For any biometric authentication 

system, a threshold probability level is set above (or below) which a new sample is 

accepted (or rejected) when compared to the stored metric. It is possible to control the 

number of false positives and false negatives by changing the threshold. The system can 

tolerate more false positives or negatives depending on particular application. As a result 

of multi-feature authentication, voice biometric usually offers better authentication than 

other biometrics.  

Over the last few years, human voice has become a viable biometric like a 

fingerprint or iris scan. Voice offers a distinct advantage over other biometrics. Contrary 

to other biometric authentications, voice based authentication doesn’t require the subject 

to be present on the spot where the authentication is done. Additionally, voice based 

authentication system has the ability to accept secondary information from the subject in 
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parallel with the authentication process. For example, a new pass code can be input 

while the voice biometric gets processed. This capability of taking additional information 

in the authentication process offers a unique advantage over other systems in real world 

applications.  

A simple text-dependent speaker identification and verification system has been 

developed that identifies (verifies) a speaker with a mere utterance of vowels. The 

system records vowels from a subject, processes it, and extracts few features to be used 

later to identify subjects. A database was formed with the extracted features first. 

Magnitude spectrum of fast Fourier transform (FFT) was used as the feature in the 

analysis. The authentication was done by finding the percentage match of the sample’s 

feature with that stored in the database. 

 

Background 

Sound is a mechanical wave that is produced by any vibrating object. The 

vibration then propagates through a medium (air, water, metal, etc.). The source of 

disturbance could be the vocal cords of a person, a tuning fork, a vibrating string, sound 

board of a guitar or violin, diaphragm of a speaker, etc. All the vibration sources create a 

back and forth motion in the propagation medium. The number of complete cycle of back 

and forth per unit time is called the frequency of the sound. A commonly used unit of 

frequency is Hertz (Hz). If an object makes 100 complete cycle of vibration in 2 seconds, 

its frequency is 50 Hz. 

Our daily communication is almost entirely dominated by speech. It is the primary 

source of raw information used by a listener to recover the message. A sound wave is the 

end product of a complex speech production mechanism. It is a disturbance that results 

from vibration and propagates through any elastic medium. It can be produced from 
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anything that vibrates in audible range (roughly 20 Hz to 20 KHz for humans). A series of 

coordinated muscle actions is required to produce a sound. The whole process of speech 

production is controlled by our brain. A cross-section of larynx is shown in Figure 3-2. In 

the beginning of sound production, the vocal cords are closed. The air pressure from the 

lung keeps building due to this closure. When the muscle of vocal cords can’t hold the 

pressure any more, it suddenly lets go the air in the form of little pops, buzzes, and 

hisses. Then, these sounds are filtered in the laryngeal tube and modified with the help of 

the lips, tongue, soft palate, jaw and other articulators to produce meaningful sounds [54]. 

 

Figure 3-2 Human larynx (a) Vertical cross-section, (b) Horizontal cross-section (adapted 

from [55, 56]) 

The rate at which the vocal cords chop the air flow is called the fundamental 

frequency. When the sound passes through the laryngeal tube, it resonates depending 

on the shape of the tube. Each resonance will produce a spectral peak in the sound 

spectrum. These spectral peaks are known as formant frequencies. There are few 

fundamental and formant frequencies associated with each vowel. For any vowel, first 

three formant frequencies are most important characteristics of any vowel. The range of 

frequencies used to pronounce a vowel may vary depending on the speaker. As a result, 

distributions of frequencies in the sound spectrum can be used as a metric to identify 

speaker. It may also be possible to find a trend in somebody’s voice by monitoring the 

(a) (b) 
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spectrum over a period of time. It might tell if there is a consistent change in the vocal 

chords. In case of paralysis of vocal cords, or formation of lump, polyps, or soars on the 

vocal cords, the frequencies may change. If a database of magnitude spectrum is formed 

under healthy conditions, it can be used as a reference to detect anomaly in the voice of 

other subjects noninvasively. Since the larynx acts as one end closed tube, it produces 

only the odd harmonics i.e. the formant frequencies are odd multiple (1, 3, 5, etc.) of the 

fundamental frequencies. If there is a little lump formed on the vocal cord, it will change 

the fundamental frequency. A little change in fundamental frequency will be multiplied by 

3 or 5 for second or third formant frequencies respectively. Due to this inherent frequency 

multiplication, it might be possible to detect anomaly on vocal cord at very early stage of 

a disease by observing any consistent frequency shift in the spectrum. Since vocal cords 

act like a variable length tuning fork made up with material of variable elasticity, it can 

produce a wide range of frequencies by changing the muscle tension. If a little mass is 

added on a leg (wax) of a tuning fork, its fundamental frequency changes. Similarly, any 

nodule, polyp, bulge on the vocal chords would change the fundamental frequencies as 

well as the formants of a vowel.  

Our ears receive this complex sound and they break into its frequency 

components in a similar fashion as the prism splits white light into color components [57-

59]. If the ear couldn’t do that, it wouldn’t be possible to recognize people just by hearing 

their voices. In principle, an individual speaker can make a finite set of sounds in almost 

an infinite number of ways in time domain. It is impossible for human brain to store all 

these time domain permutations of sounds. 

In order to recognize a person, the brain must find a match between what it hears 

and what is stored in it. Since the time domain information is too much to remember, the 

brain must store the frequency domain information to identify speakers [60]. Since our 
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brains can identify subjects using the frequency domain information, similar method was 

adopted for this study to emulate the identification.  

Voice disorder is a relatively common pathological condition affecting the sound 

producing apparatus in human. Based on the sources, voice disorder can be classified as 

physical, neuromuscular, traumatic, and psychogenic. All of these distort the quality of 

the voice. Like any pathological condition, voice disorders, also need to be diagnosed 

first before treatment. The most common tools for voice pathology are videostroboscopy 

[61] and videokymography [62]. However, these current methods are invasive in nature, 

expensive, and time consuming. A noninvasive and simple method would be ideal for 

diagnosing voice disorder. 

 

Methods 

Data Collection and Database Formation 

Primarily, three subjects voluntarily participated in developing an audio sample 

database. Five distinct English vowel sounds (A, E, I, O, and U) were chosen for each 

individual subject to speak. Each audio sample was recorded using a standard computer 

for the duration of 2 seconds with 22050 samples per second. MATLAB was used to 

control the recordings of the sounds. Five samples of each sound from each subject were 

recorded. Fast Fourier transform (FFT) was performed to calculate the magnitude spectra 

of the samples. The average of these magnitude spectra was considered as the 

signature of a particular individual for that sound. It was stored to form the database. Five 

samples were recorded to retain the consistency and reliability of the collected samples. 
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Figure 3-3 Average of normalized magnitude spectra of vowel sounds for (a) Subject 1, 

(b) Subject 2, and c) Subject 3 (n=5 for each vowel). Partial spectrum (0 – 5 KHz) is 

shown since most of the features lie within this region 

(a) 

(b) 

(c) 
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Feature Extraction 

Once recorded, FFT was performed on each audio sample to analyze the 

frequency domain information. The average of magnitude spectra was calculated from 

every dataset of five samples and served as signature template for future authentication. 

It was the feature that was utilized to identify subjects. A well-defined but distinguishable 

pattern was observed among different signature templates. A time domain and its 

corresponding frequency domain representation of a sample sound (Sound of “A”) are 

shown in Figure 3-4. The distinctive frequency components are clearly visible from the 

magnitude spectrum in Figure 3-4b. Most of the information is confined within 0 to 5 KHz. 

 

Figure 3-4 (a) Time domain representation of Sound A (recording time = 2 sec, sampling 

frequency = 22050 Hz), (b) Normalized magnitude spectrum of that signal 

 
System Verification 

To verify the system, another set of samples of each kind was collected from all 

subjects and cross-referenced with the available templates from the database. The 
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standard correlation coefficient was calculated in order to find matching between sample 

and stored template. The correlation coefficient represented the percentage match of the 

samples with templates. The magnitude spectrum of each sound pronounced by different 

subjects was compared graphically and mathematically. The results provided substantial 

support to the hypothesis that a subject could be identified and verified using their voice 

as a biometric. It only requires computing the correlation coefficient between the 

magnitude spectrum of a sample sound and template stored in the database, then to 

check if the coefficient passed a threshold or not. Setting up the threshold was dependent 

on the target application. In our study, 70% matching was used as threshold. Any match 

above (below) 70% was considered as positive (negative) hit. 

 

Results 

Algorithm 1 

From the Figure 3-4b, it is evident that the magnitude spectrum of a particular 

sound was divided into regions that contained most of its features. The magnitude 

spectrum contained information about the type of sound, speaker, pace, tone, pitch etc. 

Any sound was the final output function of these variables. Variation in any variable 

changed the output depending on how strongly the outcome depended on that particular 

variable. The information about the speaker was one of the many aspects of the 

magnitude spectrum. The multi-features nature of speech makes the speaker’s identity 

concealed. As a result, it was really difficult to extract the speaker’s identity from this 

blend. Any variation of pace, tone, pitch, mood, etc. would make the situation even 

worse. For an effective identification, it was very crucial to keep all the unwanted 

variations at minimum level. To ensure this, five samples of each sound (A, E, I, O, and 

U) were taken under the same environmental conditions from each subject, with the 
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same experimental set-up, at the same time of the day. The configuration of the data 

acquisition system was kept exactly same for all cases. All the subjects were fairly calm 

and quiet during the sample collection. All samples were collected under the consent of 

the speakers. Once the sample collection was done, all the samples were converted into 

frequency domain by computing FFT. The average of FFT magnitude spectra was then 

calculated. The magnitude spectra were used as the signatures of the subjects. Averages 

of magnitude spectra of A, E, I, O, and U sounds of Subject 1 are shown in Figure 3-3a. 

The magnitude spectrum shows distinct characteristics of the sound for each speaker. 

Each spectrum from a single speaker is significantly distinct from others. The variations 

are clearly noticeable in the plot. Similarly Figure 3-3b and Figure 3-3c are the averages 

FFT magnitude plot of Subject 2 and 3, respectively.  

 

Figure 3-5 Flow chart of Algorithm 1 (a) Identification, (b) Verification 
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The flow charts of the speaker identification and verification processes of 

Algorithm 1 are shown in Figure 3-5. Figure 3-6 shows the resemblances in FFTs of 

particular vowels spoken by three speakers. Different sounds had their own characteristic 

frequencies. Different individuals produced the same sound with the emphasis on 

different frequencies. The combination of these two phenomena gave rise to unique 

signatures of each sound made by an individual. From the Figure 3-6, it seems that the 

low frequency region (below 250 Hz) is quite similar for all subjects. On the other hand, 

the frequency region of 250 - 3500 Hz shows significant variations among different 

speakers. 

 

 



55 

 

Figure 3-6 Average normalized magnitude spectra (0 – 3.5 KHz) of (a) Sound “A”, (b) 

Sound “E”, (c) Sound “I”, (d) Sound “O”, and (e) Sound “U” of three subjects (n=5 for 

each average 

(b) 

(d) 

(e) 

(c) 

(a) 
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Table 3-1 Correlation coefficient between the magnitude spectra of the test samples and signatures 

  Signature 1 Signature 2 Signature 3 

  A E I O U A E I O U A E I O U 

Test 
Sample 

of 
Subject 

1 

A 0.88     0.36     0.73     

E  0.78     0.14     0.53    

I   0.75     0.57     0.64   

O    0.77     0.38     0.60  

U     0.68     0.15     0.44 

Test 
Sample 

of 
Subject 

2 

A 0.23     0.70     0.35     

E  0.22     0.70     0.51    

I   0.40     0.79     0.48   

O    0.31     0.86     0.38  

U     0.27     0.57     0.31 

Test 
Sample 

of 
Subject 

3 

A 0.70     0.52     0.90     

E  0.85     0.23     0.76    

I   0.65     0.60     0.86   

O    0.74     0.53     0.91  

U     0.83     0.40     0.91 
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To find the percentage matching of test sample and the stored signatures, we 

computed standard correlation coefficient. The correlation coefficients are charted in 

Table 3-1. Each row represents a test sample from a subject and each column 

corresponds to a stored signature. Table 3-1 is visually presented in Figure 3-7. Each 

sound from each speaker showed the highest match with its corresponding signature in 

all, but one. The technique was tested for three subjects using five vowel sounds (total 15 

cases). Only one out of 15 cases (circled) failed to produce highest correlation with its 

own signature. Sound “E” from Subject 3 produced 85% match with the signature of 

sound “E” of Subject 1 and 76% match with the signature of its own. It should have had 

maximum matching with its own signature, instead of others. As a result, the accuracy of 

the technique was 93.33%. There are multiple reasons for failing to produce the highest 

correlation with its own stored signature. Differences in the feature extracted from sounds 

recorded at different times of the day (morning, noon, night) may be responsible for this. 

The feature can also change depending on the mood of the person. Aging and sickness 

might also cause some variations. Moreover, variability in pitch, pace, and tone introduce 

enough variations to produce false results. Environmental noise can play a crucial role in 

the identification process as well. 

 

 

 

 

 

 

 

 



 

58 

 

Figure 3-7 Correlation coefficient between the magnitude spectrum of test samples and 

their corresponding signatures for three subjects. X-axis represents test samples of a 

vowel pronounced by three subjects; Y-axis represents the correlation coefficient, (a) 

Sound “A”, (b) Sound “E”, (c) Sound “I”, (d) Sound “O”, and (e) Sound “U” 

 

When a test sample was cross-referenced with a number of stored signatures 

including its own, the matching was the highest most of the time, with its own signature. 
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The correlation coefficients with other signatures were not negligible though. For some 

cases, a test sample showed significant amount of matching with others’ signatures. 

 

Figure 3-8 Correlation distance between test sample of a subject with other two subjects, 

(a) Subject 1, (b) Subject 2, and (c) Subject 3 

The significant matching with others makes it difficult to decide whether the 

sampled person is the person he is supposed to be. The number by which the correlation 

coefficient between sample and its own signature differs from that with others gives a 

margin on how well a subject can be differentiated from others. To quantify this margin, 

we defined a metric, called “correlation distance”. It is defined as the difference between 

the matching of a sample with its own signature and that with others’. Figure 3-7Figure 

3-7e explains graphically what correlation distance is. For any identification and 

verification process, the more correlation distance it would produce, the easier it would be 

for the system to identify target from others. To analyze our technique, correlation 
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distances for all cases were calculated. The results are shown in Figure 3-8. Correlation 

distances of Subject 1, 2, and 3 are plotted in Figure 3-8a, b, and c, respectively. The 

amount of memory storage required to store signatures of 1000 users is 168.23 MB. The 

identification and verification times using this technique were 557 ± 23 and 1.762 ± 0.151 

ms, respectively. 

 

Figure 3-9 Mean correlation coefficient vs pair of sounds. X-axis represents the pair of 

sample sounds for a particular subject used to find the mean; Y-axis represents the mean 

of these two correlation coefficients, (a) Subject 1, (b) Subject 2, and (c) Subject 3. Part c 

also explains correlation distance 

 
Algorithm 2 

In order to improve accuracy of authentication of Algorithm 1, a new technique 
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technique, we computed FFT of two different sounds (for example “A” and “E”) instead of 

one. First, correlation coefficients were calculated for each sample sound with the stored 

signatures of the same sounds of all subjects. Then the mean of correlation coefficients 

of two sounds of each pair from the same subject was calculated. It is possible to form 

ten unique pairs with five vowels (AE, AI, AO, AU, EI, EO, EU, IO, IU, and OU). The 

mean of each pair was then used to decide whether the target was found or not. Figure 

3-9 shows the average correlation coefficients for each pair of sounds of each subject. 

Correlation distances as shown in Figure 3-10 were computed to compare the 

performances. 

 

Figure 3-10 Mean correlation distance for pair of sounds of one subject with that of others 

(a) Subject 1, (b) Subject 2, and (c) Subject 3 
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Correlation coefficients and correlation distances were used as two metrics to 

compare the techniques. It was observed that the minimum correlation distances for all 

subjects (three) improved without sacrificing much of the other metric, correlation 

coefficient. The percentage increase of minimum correlation distances for Algorithm 2 

with respect to Algorithm 1 was 18.18, 9.62, and 94.44 for Subject 1, 2, and 3, 

respectively. Five different sounds can form ten distinguishable groups, each with three 

sounds. The performance metrics for groups of triplet sounds i.e. FFT of three separate 

sounds (for example A, E, O) were also taken to calculate the average. The performance 

in terms of correlation distance improved further while the correlation coefficient didn’t 

change much. In the case of group of three sounds, 27.27%, 19.23%, and 155.56% 

increment of minimum correlation distance for Subject 1, 2, and 3, respectively were 

observed compared to Algorithm 1. From the above analysis, we have found that the 

margin (correlation distance) of decision making proportionately improved with the 

number of sounds taken per group to calculate the mean. Mean of multiple correlation 

coefficients worked better than the correlation coefficient of a single sound. 

But there was a tradeoff for this improved performance. The identification and 

verification time increased depending on the number of sounds per group used to 

calculate the mean. Additionally, the storage space was proportional to the number of 

signatures needed to be stored per person. If two separate sounds were needed for 

identification, two signatures per person had to be stored. This doubled the storage 

requirement. For N number of signatures per person, it would be N times of the storage 

of a single sound. Out of 30 cases (10 pairs of sound from each subject), it failed to 

produce highest match for one case as shown in Figure 3-9e (red circled). The accuracy 

of the method was thus 96.67%. Algorithm 2 offered better accuracy than Algorithm 1, 

but it was slower. The identification and verification times were 1126 ± 41 and 3532 ± 261 
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ms, respectively. The memory requirement for Algorithm 2 was 336.46 MB per 1000 

users. 

 

Figure 3-11 Flow chart of Algorithm 2 (a) Identification, (b) Verification 

Algorithm 3 

In order to reduce the identification time of Algorithm 2, a third Algorithm was 

developed. The flow chart of the Algorithm 3 is shown in Figure 3-12 and Figure 3-13. It 

had all the advantages of Algorithm 2, but accelerated the process of decision making. 

Once sample of a sound (for example, Sound “A”) was taken from a subject, its FFT was 
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50% match were filtered out. It eliminated most of the signatures that were not possible 

matches. Only a fraction of cases remained. These remaining signatures went to the next 

round of elimination. Due to the reduction in the number of signatures that  were potential 

match, the decision making became faster. In the second phase of elimination, one 

sample of second sound (for example, Sound “E”) was taken. Correlation coefficients 

were also calculated against all signatures of this second sound (Sound “E”) for the rest 

of the subjects. All signatures that failed to produce more than 50% match with the 

sample were eliminated. Mean of the two coefficients produced for first and second 

sound (“A” and “E”) for each signature was computed. After the second round of 

elimination, the signature that produced highest mean correlation coefficients was 

considered as the match. If the mean correlation coefficient was smaller than 70%, no 

target was identified. Same principle could be used to incorporate third sound to make 

the decision making even more robust. The memory requirement for Algorithm 3 was 

336.46 MB per 1000 users. The identification and verification times were 648 ± 12 and 

3542 ± 131 ms respectively. The accuracy of Algorithm 3 was same as Algorithm 2. It 

enhanced the speed of identification. 
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Figure 3-12 Flow chart of Algorithm 3 (identification) 

 

 

Figure 3-13 Flow chart of Algorithm 3 (verification) 
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Speaker Recognition using Split Spectrum (Algorithm 4) 

Spectrum Splitting 

Human ear is an excellent system for sensing sound. It can sense a wide range 

of frequencies. The audible range of frequencies for human is from 20 to 20,000 Hz. 

Animals have different audible ranges. For human, the sensation caused by frequency is 

usually referred to as the pitch of a sound. Human auditory systems don’t perceive 

frequency in a linear manner over the whole audible range. Since frequency is not 

perceived linearly by human brain, a pitch scale called Mel scale was proposed in 1937 

by Stevens, Volkman, and Newman that is linear with human perception [63]. An 

approximate formula widely used for Mel scale is as below 

𝑚 = 1127 ln (1 +
𝑓

700
)                                                                                     (Equation 3-1) 

Where f is frequency of a sound in Hz and m is pitch in Mels. 

Table 3-2 Relation between frequency and Mel number 

 Frequency (Hz) Pitch (Mel) 

Band1 0 – 174 0 – 250 

Band2 174 – 391 250 – 500 

Band3 391 – 662 500 – 750 

Band4 662 – 1000 750 – 1000 

Band5 1000 – 1422 1000 – 1250 

Band6 1422 – 1949 1250 – 1500 

Band7 1949 – 2607 1500 – 1750 

Band8 2607 – 3429 1750 – 2000 

Band9 3429 – 4454 2000 – 2250 

Band10 4454 – 5734 2250 – 2500 

Band11 5734 – 7332 2500 – 2750 

Band12 7332 – 9327 2750 – 3000 
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It is an empirical scale of pitches judged by listeners to be equal in distance from 

one another. A 1000 Hz pure tone with a sound pressure 40 dB above the threshold of a 

listener was assigned as 1000 Mels. The pitch was almost linearly perceived in the range 

of 0 to 1000 Hz, and then it became logarithmic above 1000 Hz. 

Since the sampling rate was chosen 22050 Hz, i.e. it sampled signals reliably 

below 11025 Hz according to Nyquist criterion. From the plot in Figure 3-14, it is evident 

that very little information is present on the magnitude spectrum of Sound “A” above 5000 

Hz. Considering 0 to 10 KHz (approx.) as the total spectrum, it is divided into 12 equal 

bands each with 250 Mel width as shown in Table 3-2. Out of these 12 bands, first 9 

bands contain most part of the information of the signal. 

 

Determination of Significant Bands 

Given the nonlinearity of the auditory system, it is still capable of separating the 

speaker and the speech without rigorous effort. This observation was incorporated into 

the recognition system. Rather than matching the entire magnitude spectrum, it was split 

according to Mel scale and then these partial spectra were used to find the identity of a 

speaker. 
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Figure 3-14 Spectrum splitting of a Sound (“A”) with an equal Mel interval of 250 Mel 

 
Mel scale splitting of the magnitude spectrum of Sound “A” is shown in Figure 

3-14. Each plot of Figure 3-15 is a bar chart with three triplets. Each bar triplet 
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with signatures of Subject 1, 2, and 3, respectively (from the left). Among these 12 

frequency bands, each band does not carry equal amount of information as can be seen 

from Figure 3-14. The information is distributed in a pattern for a particular sound. Some 

of the bands contain more information than others. From Figure 3-14, it is easily visible 

that Band 1, 2, 3, 7, 8, 9 carry more information than the rest of the bands. Significance 

of a band is defined as the information (visible features that are not noise) content 
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and 9. To find how much information about a speaker was encrypted in a band, 

correlation coefficients was computed for the samples from three subjects with their 

stored signatures. Figure 3-15 and Figure 3-16 shows the comparison of correlation 

coefficients for all subjects. Correlation coefficient and distance are the two important 

parameters to determine the significance of a band in speaker recognition. Ideally any 

sample should produce highest matching (correlation coefficient) with its own signature 

and should not produce higher matching with others when entire magnitude spectrum is 

used to compute the correlation coefficient. Practically it’s a less probable scenario due to 

the many non-idealities such as noise, variation in our voice, physical illness, etc. Most of 

the times even if a sample produces highest matching with its own signature, it also 

produces high matching with few others which makes the decision making less robust. It 

is always better to have highest matching with its’ own signature along with high 

correlation distance (margin of decision making) with others. 
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Figure 3-15 Correlation coefficients between a sample of sound “A” of Subject 1 with 

three stored signatures of three subjects including Subject 1 for different frequency 

bands; (a) Band 1, (b) Band 2, (c) Band 3, (d) Band 4, (e) Band 5, and (f) Band 6 
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Figure 3-16 Correlation coefficients between a sample of Sound “A” of Subject 1 with 

three stored signatures of three subjects including Subject 1 for different frequency 

bands; (a) Band 7, (b) Band 8, (c) Band 9, (d) Band 10, (e) Band 11, and (f) Band 12 

 

Considering matching and contrast, Band 1 to 9 were found to be significant for 

sound “A” and “O”. Similar to Figure 3-15 and Figure 3-16, the correlation coefficients for 

sound “O” were also computed and the significant bands were determined. A linear 

weighting was used to assign numeric significance to each band as shown in Table 3-3. 

Integer weighting was chosen for simplicity. Significance of a band was represented with 
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a numeric weight. Higher weight meant higher significance. Table 3-3 enlists the 

significance of these bands for sound “A” and “O” in descending order. 

Table 3-3 Significant bands and their weights for Sound “A” and “O” 

Sound of “A” Sound of “O” 

Band Weight Band Weight 

3 9 3 9 

7 8 1 8 

9 7 8 7 

1 6 9 6 

2 5 7 5 

8 4 6 4 

4 3 2 3 

5 2 4 2 

6 1 5 1 

 

Target Identification using Split Spectrum 

In most of the significant bands, the target signature produced highest matching 

with the sample. It failed in few cases though. For example, in leftmost triplet of Figure 

3-15f (Band 6), the first bar should be the tallest i.e. sample of Subject 1 should produce 

highest coefficient with the signature of Subject 1. Instead, it produced highest matching 

with signature of Subject 2 which was undesirable. As a result, a single band shouldn’t be 

used to detect a target. The results must be combined from separate bands to make the 

final decision. The natural way of combining results is to calculate average. Since each 

band has different significance in recognizing a speaker, weighted average was used to 

combine results. The effect of combining correlation coefficients from multiple bands is 

shown in Figure 3-17. Most significant band was taken first, then second most significant 

band was taken as second band, and so on in the Figure 3-17. For both Sounds “A” and 

“O”, the first few data points were erratic but they get more stable after taking weighted 

average of multiple bands. The stability is achieved with little expense on the contrast. 
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Figure 3-17 Weighted average of correlation coefficients vs number of most significant 

bands. X-axis represents the number of most significant bands in a descending order to 

calculate the average and Y-axis represents the weighted average of the correlation 

coefficients, (a) Sound “A” of Subject 1, (b) Sound “A” of Subject 2, (c) Sound “A” of 

Subject 3, (d) Sound “O” of Subject 1, (e) Sound “O” of Subject 2, and (f) Sound “O” of 

Subject 3 
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During sound production, humans generate specific band of frequencies for a 

particular sound. The distribution of these bands and frequencies are distinct for different 

individuals. The whole spectrum was analyzed to find such regions called “significant 

bands”. For each significant band, the correlation coefficient was computed and then 

those were used to identify the speaker. The algorithms for identification and verification 

of Algorithm 4 (split spectrum) are shown in Figure 3-18 and Figure 3-19 respectively. 

The memory requirement for Algorithm 4 was 168.23 MB per 1000 users. The 

identification and verification times were 353 ± 1 and 4.938 ± 0.169 ms respectively with 

an accuracy of 100%. 

 

Figure 3-18 Flow chart of the identification using split spectrum (Algorithm 4) 

Compute correlation coefficient (R2) between average 

magnitude spectra of the sample and rest of the 

signatures in the database for second significant band

Find user X for whom

RM, X = max (RM, C(all)). TM (X) =TM (X) + 1; 

M = M +1

Take two samples of sound “A”

Compute correlation coefficient (Ri) between average 

magnitude spectra of the sample and all stored

signatures in the database for first significant band

If Ri > 0.5

Compute average of the two FFT magnitude spectra

Discard the cases

No

Compute weighted average for all signatures, 

RM, C = (w1R1 + w2R2)/(w1 + w2); Band index M = 3; Target 

index for a Subject X is T3 (X). Initialize T3 (X) =0;

If RM, C > 0.5

Yes

For a user X, 

if RN, C > 0. 7 and

TN, X == max (TN, all) 

Subject not found

No

Discard the cases

No

Total number of 

significant bands is N;

If M ≥ N

Yes

No

Yes













1)(   0

 1),-(

    0

 )(

M i

i

MMCM

Mi

i

C M,
W

RWRW

R

Yes

Identified with (100* RN,C) 

percent confidence



 

75 

 

Figure 3-19 Flow chart of the verification process using split spectrum (Algorithm 4) 

Comparison 

Table 3-4 is a chart of storage and average run time (identification and 

verification) required for each Algorithm for 1000 users. Algorithm 1 is the simplest 

approach that is reflected in the memory storage and the average time required to find a 

hit as listed in Table 3-4. But the accuracy is 93.33%. Algorithm 2 is an improved version 

of Algorithm 1 in terms of margin of decision making (minimum correlation distance). 

Higher minimum correlation distance would improve the accuracy when implemented for 

larger samples. The trade-off is in the database size and average identification time. 
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identification time of Algorithm 1. Algorithm 3 keeps the accuracy of Algorithm 2 and 

reduces the identification time by 42.53%. Identification time for Algorithm 3 is almost 

equal to that of Algorithm 1. Although the verification times for Algorithm 2 and 3 are 

almost same, in Algorithm 3, there were ten pairs of sounds as shown in Table 3-5. 

Table 3-4 Memory storage, identification and verification time for 1000 users (n = 22) 

 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

Memory 
Storage (MB) 

168.23 336.46 336.46 168.23 

Identification 
Time (s) 

0.557 ± 0.023 1.126±0.041 0.648±0.012 0.353±0.001 

Verification 
Time (ms) 

1.762 ± 0.151 3.532±0.261 3.542±0.131 4.938±0.169 

Accuracy 93.33% 96.67% 96.67% 100% 

 

Among those pair of sounds, AO pair (circled) produces the highest matching 

(84%) with 35% margin of decision making on an average for all subjects. Sound pair 

“EO” produces 80% matching with the highest margin of 36%. Considering both metrics, 

overall “AO” would be the best candidate to identify and verify speaker more accurately 

and faster if Algorithm 3 is implemented. 

Table 3-5 Comparison of correlation coefficient and correlation distance 

Sound 
Pair 

Average of correlation  
coefficient for three subjects 

Average of correlation distance 
for three subjects 

AE 0.79 0.35 

AI 0.81 0.29 

AO 0.84 0.35 

AU 0.77 0.33 

EI 0.77 0.30 

EO 0.80 0.36 

EU 0.73 0.34 

IO 0.82 0.30 

IU 0.76 0.28 

OU 0.78 0.34 
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Algorithm 4 required 168.23 MB storage for 1000 users which was same as 

Algorithm 1. But it reduced the identification time by 36.62 percent compared to Algorithm 

1. The enhancement in speed could be achieved further if all the significant bands were 

not used to calculate the combined average of correlation coefficients. Only first 3 or 4 

bands were good enough to isolate the target from a pool of subjects. The identification 

and verification times were 353 ± 1 and 4.938 ± 0.169 ms respectively. Algorithm 1, 2, 

and 3 all failed to produce highest matching for one case; Algorithm 4 was able to find the 

right target every time. As a result, the accuracy reached to 100%. The verification times 

for all the algorithms were of the order of couple of milliseconds and by definition, these 

were not dependent on the number of users. As a result, identification time was the most 

important metric to measure the pace of a system. 

 

Peaks of FFT Magnitude Spectrum Analysis 

When computed the FFT magnitude spectra of each sound, it showed many 

peaks. Each sound was recorded six times. Each subject showed a distinct set of 

consistent peaks. Consistent peaks were the ones that appear in all samples for a 

particular sound. The number of consistent peaks (NoCPs) are different for different 

subjects for a particular sound. Each peak has three distinct features- peak location, peak 

width, and normalized peak amplitude. Number inside red balloons on all figures (Figure 

3-20, Figure 3-21, and Figure 3-22) are representing NoCPs. Location, width, and 

amplitude of the peaks were distinct for different subjects. They can provide more metrics 

to make the voice based speaker identification even more robust. Figure 3-20, Figure 

3-21, and Figure 3-22 show the distributions of peak locations, peak widths, and 

normalized peak amplitudes, respectively for 14 subjects. The more the consistent peaks 

are found in a speaker’s sound, the easier it gets to identify that speaker using various 
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features of the peaks. If a particular feature doesn’t appear in all samples of a particular 

sound (e.g. Sound of “A”), the same feature can be taken from the second sound (e.g. 

Sound of “O”) to improve the recognition. 

 

Figure 3-20 Location of peaks for (a) Sound of “A”, (b) Sound of “O” 
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Figure 3-21 Peak widths of (a) Sound of “A”, (b) Sound of “O” 
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Figure 3-22 Normalized peak amplitudes of (a) Sound of “A”, (b) Sound of “O” 

 

3

4

3

1 1

5

2 2

4 4 4 4

3 3

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r 

o
f

C
o

n
s

is
te

n
t 

P
e

a
k

s

P
e
a
k

 A
m

p
li
tu

d
e

 (
H

z
)

Subject Id

1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak NoCP

2

4

1

2

3

5

4 4 4

5

6

5

3

5

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r 

o
f

C
o

n
s
is

te
n

t 
P

e
a

k
s

P
e

a
k

 A
m

p
li

tu
d

e
 (

H
z
)

Subject Id

1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 6th Peak NoCP

(a) 

(b) 



 

81 

Discussion 

Voice based authentication system may replace the traditional passcode based 

authentication system due to its convenience. The technology has already been used in 

many areas but not widely accepted yet due to insufficient robustness. With the 

continuous improvement, it wouldn’t be too far in the future when voice based 

authentication would be integrated in every device we use. Three distinct features of FFT 

peaks can also be used to distinguish speakers along with the spectrum to make the 

recognition process more robust. It will be a two way authentication system. One feature 

will complement others. The computational complexity (O(n)) of all algorithms developed 

here is linear with the number of user, i.e. O(n) = n. Since complexity doesn’t grow 

exponentially, the method can be applied to large database. 
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Chapter 4  

Children Speech Recognition and Personal Language Trainer 

 
Introduction 

Meaningful speech carries speaker’s identity along with the message. The 

message depends on the encryption method i.e. language. Exact same sound can mean 

two totally different things in two languages. It has already been discussed how to extract 

speaker’s identity from human voice in Chapter 3. This section discusses how to extract 

the message content from human speech toward implementing new applications. In the 

first part, how speech recognition can play a crucial role helping children with speech 

impediment will be discussed. Second part focuses on an application that helps learner of 

a new language to master pronunciation accurately. 

Speech recognition has been used in many areas. But the application of this 

technology in some areas is still at its infancy. One such area is to help language 

therapist who evaluates the sound production of children with speech disorder. Children 

learns language by hearing from a person and trying to mimic it. Currently, therapists 

listen and record all the words manually. They keep track of each word pronounced by a 

kid and evaluate the performance of each word production. There’s no automated system 

to do the job. The process is very tedious, laborious, and prone to human error. 

An android application has been developed that uses standard google database 

and speech recognition technology to listen each kid and keep record of all words. The 

goal of the application is to provide an automated system that monitors the progress of 

pronunciation skills of children with speech disorder. It stores words in a database. Words 

produced by children was analyzed to compute the accuracy of the pronunciation in real-

time. The application has the potential to investigate the source location of the speech 
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disorder. The word delivery by each child can be recorded and quantified to measure 

progress with minimal human interaction. The key features of the application developed 

are as follows: 

i) Automation 

ii) Track individual word and overall performance of each user 

iii) Cloud based accessibility 

iv) Personalized voice therapist 

v) Remote supervision 

vi) Real-time feedback 

vii) Complement existing applications 

 

Results and Discussion 

The application was written on an open access platform developed by MIT for 

Android OS. The name of the platform is called MIT App Inventor. The application can be 

run on any android device. The prototype of the application has the minimal set of 

functionalities. At this stage, the application has the capability to do voice to text 

conversion on individual word. There is provision to manually correct the word before 

storing in database. All practice words can be saved in the local memory of a device. 

Words are indexed while saving in the database. It allows sorting and easy indexed 

retrieval of words later. It has the functionality to compute resemblance of a transcribed 

word with all the words stored in the database. By analyzing mismatch between the 

target word and the word produced by a kid, important information regarding the 

language therapy can be determined. Every sound is produced by the incorporation of a 

different set places in our sound producing apparatus (vocal cords, tongue, teeth, lips, 

mouth cavity). If it’s found that a kid has difficulty pronouncing a particular type of sound, 
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then it would be possible to work on that organ to improve the sound production. The 

therapist will have a definitive part to work on. 

Trainer engages in normal conversation with a child and the application records it 

upon tapping the “Record” button on the app. Once the recording is done, the word 

appears in the top blank box as shown in Figure 4-1a. The word can be modified if not 

recognized properly by typing. Figure 4-1b shows the pop-up window when invoked the 

“Record” button. Pressing “Submit” button stores the recorded word in the database as 

shown in Figure 4-1c. While saving the word in the database, it will appear at the center 

of the screen momentarily to prompt the user that it’s saved properly. When a user 

forgets what word was saved in database last time, “Last Item” button retrieves the word 

from the database. The process is explained in Figure 4-1d. 
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Figure 4-1 (a) Screenshots of home screen, (b) when “Record” is pressed, a small 

window prompts to speak (circle). Once speaking is finished, it detects the word and 

shows in the textbox above, (c) Screenshots of home screen while saving a word. Once 

the word is detected, press “Submit” to save the word in database. The left figure shows 

a word (book) while saving in the database, (d) when “Last Item” is pressed, it shows 

what item was stored last in the textbox right below of that button 

 

(a) (b) 

(c) (d) 
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By pressing “Show Database” button, a user can access all the words stored. It 

takes the user to another screen (right side) as shown in Figure 4-2a. Figure 4-2b shows 

how to retrieve an indexed item from the database. 

 

Figure 4-2 (a) Screenshots of the database showing all the words, (b) An index number is 

entered, the textbox on the right shows the indexed item, (c) Screenshots of a warning 

message when pressed “Clear DB”, (d) Explaining quantification of how accurately a 

word was pronounced 

(a) (b) 

(c) (d) 
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When an index number is entered in the text box labeled “Enter Index Number” 

and “Show Indexed Item” is pressed, it pulls up the item associated with that index 

number from the database and shows it in a text box right beside the index number. In 

order to clear the database, “Clear DB” button is used. It will erase everything from the 

database. Since this button can wipe out all the hard works in a click, a warning message 

is prompted to the user to confirm the deletion process. It will provide an extra safety 

layer from losing all data. Figure 4-2c demonstrates this process. A word can be 

searched throughout the database by entering it in the top text box and pressing “Find 

Match” button as shown in Figure 4-2d. It calculates the percent match with each word in 

the database. Once the percentages are computed, it sorts them in a descending order 

and picks the first two words that produce higher match. A kid was asked to pronounce 

“mommy” and he produced the word “mummy” which matches 87.5% with a word 

“mommy” and 25% with the word “daddy” stored in the database. These two words show 

highest matching with the recorded word. One of the algorithms used normal percentage 

matching which assigns equal weight on each letter of a word. There is another algorithm 

that assigns more weight on consonants (1.5) and less weight on vowels (1) to find the 

matching. It is due to the fact that we hear consonant sounds with more certainty than 

vowels. The last algorithm assigns highest weight (2) on the first and last letter and then 

consider nonuniform weighting (consonants 1.5 and vowels 1) for all the other letters in 

the middle. The justification for this weighted average is we don’t listen all the parts of a 

word with equal importance. We put more attentions to the terminals sound than to the 

intermediate ones. 
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Figure 4-3 (a) Screenshot of home screen with highlighted "Help” button, (b) When the 

“Help” button is pressed, it prompts a new screen that describes the functionality of each 

button in the application 

The “Help” button is to guide the user to the functionalities of each button in 

details. It tabulates all the necessary instructions for running the application as shown in 

Figure 4-3. There are three separate screens used for the application. Each new screen 

(not home screen) has a “Back” button at the very top of it which will allow the user to 

back to the home screen (screen 1). 

 

(a) (b) 
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Visual Accent Trainer 

What is it? 

This is an application package developed on MATLAB graphical user interface 

(GUI) to help people learn new language in a more engaging and efficient ways. It 

prompts a user to pronounce a sound in a given language, record the user’s input, and 

then provide a real-time visual feedback on a graphical interface to show how close the 

attempt was compared to a 'native speaker'. The feedback is quantitative and visual. As a 

result, a non-native speaker can evaluate his/her performance of the sound production 

accurately, even if he/she cannot hear the subtle differences in the sound. The speaker 

can attempt to copy each word multiple times trying his/her sound production closer to 

the target.  

 

Formant Frequency 

According to Benade (1976), formants can be defined as the peaks of the 

spectrum envelope of a sound [64]. Acoustical Society of America defines formant as a 

range of frequencies in which there is an absolute or relative maximum in the sound 

spectrum. Formants are essentially the resonance frequencies of a sound. In the process 

of sound production, a puff of air is pushed upward through the laryngeal tube. The vocal 

cords chop the air with a certain frequency and the vibrations produced act as the 

fundamental frequency of that sound. The sound is later shaped by mouth cavity, tongue, 

teeth, and lips. The fundamental frequency produces multiple resonances in the mouth 

cavity depending on the position of tongue, teeth, and lips. 
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Methods 

User Guide for the Application 

i) Once the application is run, a home screen pops up with a set of instructions on the 

front panel as shown in Figure 4-4a. Hovering mouse pointer to any button shows a 

little box with more information about that button. 

 

Figure 4-4 (a) Screenshot of home screen of the MATLAB graphical user interface (GUI) 

application, (b) Time domain signal of the sound of English vowel “A” 

(a) 

(b) 
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ii) All the values displayed in the text boxes are default values. Any of them can be 

tweaked to get desired results. 

iii) Pressing the “Record” button starts recording. Please wait till you hear a dot sound 

(make sure the speaker and microphone are turned on). 

iv) After recording the sound, the display window looks like Figure 4-4b. 

 

Figure 4-5 (a) Time domain signal of sound of “A”, (b) Filtered version of the same signal 

(fCL = 40 Hz and fCH = 3500 Hz), and (c) Automatically detected signal block 

(a) 

(b) 

(c) 
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v) Pressing the “Filter” button removes noise from the signal. A six order elliptic band-

pass filter was used here. It filters out any unwanted signal that falls outside of the 

band 40 – 3500 Hz. The cut-off frequencies were so chosen due to the fact that most 

frequency components of the vowels lie well within this range. Attenuation for pass 

and stop bands were 0.001 and 30 dB respectively. Figure 4-5a, Figure 4-5b, and 

Figure 4-5c show a signal, its filtered version, and detected signal block of the filtered 

version, respectively. 

 

Figure 4-6 (a) FFT magnitude spectrum of sound of “A”, (b) FFT magnitude spectrum of 

the filtered version of the same signal 

 

(a) 

(b) 
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vi) “Signal Block Detection” button is to detect exactly when the signal block appears in 

the time series as shown in Figure 4-5c. 

vii) Pressing “FFT” button performs fast Fourier transform on the signal. Figure 4-6a and 

Figure 4-6b show the magnitude spectrum of the original signal and that of the 

filtered signal, respectively. 

 

Figure 4-7 (a) Parameterization of Sound “e” trial one, (b) trial two 

 
viii) Name of the vowel is required to put in the text box (left) on the “Data Output” panel 

as shown in Figure 4-4a. Once a name is entered in the text box mentioned above, 

(a) 

(b) 
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pressing “Formant Plot” will prompt to save the formant frequencies in a excel file. 

This name is used to index the data. 

ix) Once pressed the “Formant Plot” button, a red circle representing the formant 

frequencies (first two formants) will be appeared on a 2D plot as shown in Figure 

4-7a. There’s a number inside the red circle which is the sequence number of the 

recording. There are five other data points on the plot (blue circles with a letter inside) 

which are the standard locations of the five vowels [a] as in bat, [e] as in bed, [i] as in 

tee, [u] as in coo, O[o] as in code. The input vowel is the red circled one. First three 

formant frequencies will be displayed in a text box (right) on the “Data Output” panel 

which is located on the bottom right corner of the screen. A learner can try multiple 

times to bring his/her sound production closer to the targets as shown in Figure 4-7b. 

x) If a user unselects the radio button “Hold Plot”, the previous data point will be cleared 

from the plot, showing only the current data point. Keeping this button on will allow 

you to hold the consecutive formant points on the plot to compare among them as 

shown in Figure 4-7b. 

xi) “Show Spectrogram” button allows a user to observe the spectrogram of the sound 

as shown in Figure 4-8. Due to the computation loading, this process usually takes a 

little longer (around 22 second). 
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Figure 4-8 (a) Spectrogram of sound of “A”, (b) Detected signal block 

 

xii) Keeping the “Formant Tabulation” radio button on allows the user to store formant 

frequencies in a matrix which can be saved later by clicking “Save Formant” button 

(located on the “Data Output” panel). It prompts the user to select a file name and 

location and save the data in .xlsx format. 

xiii) Any displayed image can be saved by clicking “File” and “Save as”. It allows the user 

to choose a suitable output format (png, jpeg, and emf). There is no functionality of 

the button “Show IPA” and “Edit” at this moment. They will have functionalities in 

future version. 

(a) 

(b) 
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Results and Discussion 

What Problem it Solves? 

Learning a foreign language is difficult and rewarding at the same time. But there 

are very few tools on the market to help a speaker to learn new language without accent. 

Having a trainer is helpful but it doesn’t solve all problems. Usually people from different 

geographical location can’t distinguish many subtly different sounds from other 

languages, particularly vowel sounds since they are the fundamental building blocks of a 

language. This ability is lost by the age of approximately 18 months in humans if not 

exposed to non-native sounds. The situation gets even worse when speaker’s native 

language is very different from the one he/she is trying to learn. To learn how to 

pronounce the sound accurately, the speaker needs to hear the sound. But ironically he 

can’t hear the difference that is why he can’t pronounce the sound properly at the first 

place. Even though the trainer pronounces distinct sounds (for example “live” and 

“leave”), the speaker doesn’t hear any difference. It makes very difficult for a foreign 

language learner to hear the difference between the target sound and their own 

production, leading to a foreign accent when speaking the new language. Without a 

visual feedback, this vicious loop of learning impediment can’t be broken. This application 

is the first one of its kind that provides visual feedback to the speaker in real-time, 

allowing them to practice until they reach their target.   

The software can also be used to the deaf community who wish to use oral 

language. It provides them with visual feedback that allows them to train their accents in 

the same way that the hearing population can do theirs. Parents can also utilize this 

application to train their kids from very early age so that they don’t have accent when 

they grow older. 
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Comparison with Similar Existing Technologies 

Most of the existing language learning applications only plays words in a foreign 

language and asks the user to mimic it. At best, few of them let the speaker knows that 

the production is not accurate. But none of them provide any quantitative feedback of the 

sound production.  As a result, most of the time the speaker doesn’t know whether his 

production is correct or not. If he is informed that the production in incorrect then there is 

no quantitative feedback that tells the speaker how off he was from the target or what 

modification he needs to make to improve his sound production. In a way, this application 

acts as the natural auditory feedback loop that we use as infants to learn our native 

language. Not only the application provides a quantitative feedback, it does provide it 

visually. Moreover, it can recommend the speaker to work on a particular part of his 

sound producing apparatus since each vowel is produced by the participation from 

different parts in our mouth and laryngeal tube. 
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Chapter 5  

Smartphone based Blood Pressure and Heart Rate Monitoring System 

 
Introduction 

Cardiovascular (CV) disease is the leading cause of death in US for last seven 

decades. It refers to any complication associated with the heart, the blood vessels 

(arteries, capillaries, and veins) or both. Although the mortality rate has been reduced 

significantly during this time due to advances in monitoring devices, better diagnostics, 

awareness, and better medications, it still remains at the top of the fatal diseases. The 

CV diseases responsible for the most human fatalities are myocardial infarction (heart 

attack), hypertensive heart disease (high blood pressure), sudden cardiac death (SCD), 

angina, coronary artery disease (atherosclerosis), congestive heart failure, 

cardiomyopathy, cyanotic heart diseases, heart failure, arrhythmia, and endocarditis [65]. 

 

Cardiac Arrhythmia 

It refers to any heart conditions with an abnormal rate or rhythm of the heartbeat. 

It can cause the heart to beat too fast, too slow, or with an irregular rhythm. Any problem 

with the heart’s electrical process can cause an arrhythmia. For example, electrical 

signals travel through the atria in a fast and disorganized way in a common type of 

arrhythmia called atrial fibrillation. In this process, the atria start quivering instead of 

contracting. A heartbeat that is faster than normal is called tachycardia and a heartbeat 

slower than normal is called bradycardia. Many arrhythmias are harmless but some of 

them may cause cardiac arrest. The heart may not be able to pump enough blood to the 

body during an arrhythmia. Lack of sufficient blood flow can damage the brain, heart, and 

other organs. 
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Figure 5-1 A typical ECG signal [66] 

A typical ECG tracing of the cardiac cycle (heartbeat) as shown in Figure 5-1 

consists of a P wave, a QRS complex, a T wave, and a very small U wave (not visible in 

Figure 5-1). When the period between Q and T phases of cardiac cycle gets prolonged, 

it’s called long QT syndrome (LQTS). It is a rare inherited heart condition in which 

delayed repolarization of the heart following a heartbeat increases the risk of a form of 

irregular heartbeat that originates from the ventricles known as torsades de pointes 

(TDP). Mutations in the hERG gene cause LQTS. A blockage of hERG channels by 

various group of drugs can induce arrhythmia [67]. 

 

Hypertension 

Hypertension or high blood pressure is a condition when the force of the blood 

against your artery walls is higher than normal. Normal blood pressure (BP) varies 

depending on the age, gender, mood, heart condition, etc. BP is determined by the 

amount of blood heart pumps and the amount of resistance to blood flow posed by the 

arteries. With the increase pumping and the narrower arteries, the blood pressure would 

be higher. High blood pressure (hypertension) may show no symptom for years. 
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Sustained high blood pressure increases the risk of serious health problems, including 

heart attack and stroke. Hypertension can be detected easily if monitored carefully and 

frequently. Preventive measures can be taken by changing dietary habits, exercising, and 

changing other life styles (smoke and alcohol). Table 5-1 classifies normal and high blood 

pressures for adults. Blood pressure and heartbeat measurements on a regular basis 

play a vital role in the diagnosis of many heart conditions. Cardiac arrhythmia and 

hypertension are two heart diseases that can directly be diagnosed with heartbeat and 

BP monitoring. An ideal monitoring system should be portable, easy-to-use, and 

affordable. Due to prevalence of smartphones now a day, any smartphone based BP and 

HR measuring system can be used as readily available monitoring devices. Frequent 

monitoring of heartbeat and BP provides a much more accurate information about health 

conditions than infrequent readings from doctor’s office. But, the current methods of using 

cumbersome inflatable cuff and electrocardiogram (ECG) do not allow this due to their 

lack of portability. 

 

Table 5-1 Classification of blood pressure for adults [68] 

BP Classification Systolic BP (mm Hg) Diastolic BP (mm Hg) 

Normal <120 and <80 

Prehypertension 120–139 or 80–89 

Stage 1 hypertension 140–159 or 90–99 

Stage 2 hypertension ≥160 or ≥100 

 
Turning a smartphone into a health monitoring device has many inherent 

advantages. Data can be stored in the device as well in the cloud storage where a 

doctor/clinician can review it. Long term trend can be found without the help of a clinic. 

Physicians can have much more comprehensive data than before. 
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Significant numbers of individuals with hypertension are unaware of their 

condition just because they don’t have access to the monitoring tools frequently. If 

diagnosed at early stages, fatalities due to hypertension can be significantly reduced. 

Appropriate measures need to be taken to prevent the development of hypertension and 

to improve awareness, treatment, and control of hypertension in the communities. With 

an accessible and affordable BP and heartbeat monitoring tool, it is possible to prevent 

hypertension and thereby save many lives. 

Additionally, any self-blood pressure monitoring system is believed to be able to 

reduce the white coat hypertension effect, elevation of BP during the examination 

process due to nervousness and anxiety caused in the clinical settings. It is highly 

recommended to measure BP at home by almost all hypertension organizations. This 

would eliminate white coat hypertension effect [69]. The tracking of BP from childhood to 

adulthood has many important implications on public health. There is a growing 

consensus among the experts in the field of hypertension studies that it starts early in life 

[70-72]. Recent studies show a relation between the increasing obesity epidemic and 

high blood pressure in children [73, 74]. Some studies also show that most of the CV 

diseases except congenital ones can be prevented through better life style (food habit, 

exercise, regular monitoring, etc.) [29]. Blood pressure and pulse rate are the two most 

important biomarkers for most of the cardiovascular diseases [75-78]. A smartphone 

based system was developed that monitored heart rate and pulse pressure (difference 

between systolic and diastolic pressure) in a convenient way. Fingertip was placed in 

front of a smartphone camera to record the video for 20 seconds. Then, from the intensity 

analysis of each frame, heart rate and pulse pressure were calculated. 
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Background 

Heart is the central organ of human cardiovascular system, located in the 

thoracic cavity (between two lungs). A dual layered connective tissue sac protects and 

supports the heart. The inner side of the heart wall is formed with cardiac muscle. Each 

side of the heart has an atrium that receives blood from veins and a ventricle that pumps 

blood out to the arteries. There are four chambers in total, left and right atria and left and 

right ventricles, as shown in Figure 5-2. The superior and inferior vena cava are the two 

largest veins that deliver oxygen-poor blood from the body to the right atrium and the 

pulmonary veins deliver the oxygen-rich blood to the left atrium. Atrium and ventricle of 

each side are separated by atrioventricular (AV) valve that ensures unidirectional blood 

flow. When the blood pressure is higher than a threshold, the valve opens and 

automatically shuts off when the pressure falls. 

 

Cardiac Cycle 

Heart is a pulsatile periodic pump. It completes a full cycle with a sequence of 

contraction and relaxation. Each complete cycle is called cardiac cycle or heartbeat as 

shown in Figure 5-2. 

 

Figure 5-2 Cardiac cycle [79] 
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A set of specific events occur in each cardiac cycle. The major steps of a 

complete cardiac cycle are detailed below. 

1) Both atria and ventricles are relaxed and blood entering into atria forces the AV 

valves opens. Ventricles starts filling with blood. P wave of the electrocardiogram 

(ECG) corresponding to the electrical depolarization of the atria causes the 

contraction of the atrial musculature. As the atria contracts, it fills the ventricles with 

more blood as the ventricles are still relaxed. Blood does not flow back into the vena 

cava due to two mechanisms- the inertial effects of the venous return and the milking 

effect [80]. 

2) This phase of the cardiac cycle coincides with the appearance of the QRS complex of 

the ECG that represents ventricular depolarization. It triggers the myocytes to 

contract rapidly with a result of increased intraventricular pressure which in turn 

closes the AV valves. Pressure keeps building inside the ventricles until the 

pulmonary and aortic valves open. Ventricular contraction also causes papillary 

muscles to contract with their attached chordae tendineae that prevent the AV valve 

leaflets from bulging back into the atria and becoming leaky. The first heart sound 

“lub” is caused by the closure of the AV valves. This sound is a mixture of two shortly 

apart sounds due to the fact that mitral valve closes slightly before earlier than 

tricuspid valve [81]. 

3) When the ventricular pressure exceeds the thresholds of pulmonary and aortic 

valves, it causes a rapid ejection of blood into the aorta and pulmonary arteries from 

the ventricles. Outflow velocity, aortic, and pulmonary artery pressures are at their 

maximum level early in the ejection phase. 

4) The beginning of ventricular contraction (approximately 200 ms after the QRS 

complex), ventricular repolarization occurs (T-wave of the ECG) which leads to a 
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decline in the rate of ejection. Outward flow continues due to inertial energy of the 

blood even though ventricular pressure falls slightly below outflow tract pressure. 

Continued venous return from the lungs and from the systemic circulation cause 

gradual increase of the left and right atrial pressures respectively [80]. 

5) The aortic and pulmonary valves closes abruptly (aortic precedes pulmonic) at the 

end of phase 4 when the intraventricular pressures fall sufficiently. It starts beginning 

of isovolumetric relaxation along with the second heart sound (S2). A small backflow 

into ventricles generates a characteristic notch (incisura or dicrotic notch) in the aortic 

and pulmonary artery pressure tracings. The aortic and pulmonary artery pressures 

rise slightly (dicrotic wave) after the valve closure followed by a slow decline in aortic 

pressure [80]. 

6) As the ventricles continue to relax, the intraventricular pressures drops below their 

respective atrial pressures at some point. It causes the AV valves to open and start 

ventricular filling. Ongoing ventricular relaxation causes the intraventricular pressure 

to dip in spite of the inflow of blood from the atria. As soon as the ventricles are 

completely relaxed, the ventricular pressure starts rising as blood fills in. Ventricular 

filling doesn’t produce any sound normally. But when a third heart sound (S3) is 

recorded, it may represent tensing of chordae tendineae and AV ring during 

ventricular relaxation and filling. 

7) With the continual filling of ventricles, their compliance reduces and the 

intraventricular pressures rise. Due to the drop in pressure gradient across the AV 

valves, the rate of filling in drops. In a healthy resting hearts, the ventricle is filled 

90% of its’ capacity by the end of this phase. Pulmonary arterial and aortic pressures 

continue to drop during this phase. 
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Heart’s Electrical System 

Each heart beat is initiated with an electrical impulse from a group of cells called 

sinoatrial node (SA) located in the right atrium. Once the electrical signal is generated, it 

passes through special pathways in the right and left atria. This causes the both atria to 

contract and pumps blood into the heart's two lower chambers, the ventricles. In between 

the atria and the ventricles, there’s a group of cells called the atrioventricular (AV) node. 

The electrical signal then travels down to AV node and slows down a little in AV node that 

gives the ventricles enough time to finish engorging with blood. The signal then travels 

through a pathway called the “bundle of His”. The bundle of His divides into two 

branches. The left and the right bundle branches run along the interventricular septum. 

The left branch further divides into the left anterior and the left posterior fascicles. 

Purkinje fiber is a thin filament arisen from these bundles and fascicles. It distributes the 

impulse to the ventricular muscle causing them to contract and pump blood to the lungs 

and the rest of the body. The ventricles then relax, and it starts the whole process again 

in the SA node. The electrical signal travels through the heart from the top to the bottom. 

The heart contracts and pumps blood due to this electrical signal. The normal rate at 

which the heart beats in a healthy adult heart at rest is 60 to 100 beats per minute (bpm). 

It may vary depending on the age, health condition, and activity of an individual. Children 

usually show faster heartbeat that is considered as normal. As we grow older, it gradually 

decreases [82]. 

 

Pulse Pressure 

Pulse pressure (PP) is defined as the difference between systolic and diastolic 

blood pressure (SBP and DBP). It is the pulsatile component of the total blood pressure 

wave. There is a steady component as well that is called the mean blood pressure 



 

106 

(MBP). It is the average of systolic and diastolic blood pressure. PP depends on stiffness 

of the arteries, ventricular ejection, and the timing of wave reflections. Cardiac output and 

peripheral vascular resistance are the major factors of MBP. In recent studies, it shows 

PP plays more important role than MBP determining cardiovascular risk in hypertensive 

patients [76, 83]. An increased pulse pressure is an independent marker for 

cardiovascular (CV) complications, specially myocardial infarction, congestive heart 

failure, and other CV deaths [84-86]. It has been known for a while that CV mortality is 

strongly related to higher systolic pressure [83, 87]. However at any given systolic 

pressure, CV fatality is higher in case of lower diastolic pressure i.e. higher PP [83]. Two 

major physiological mechanisms determine pulse pressure. First, higher SBP affects the 

level of end-systolic stress and enhances the chance of cardiac hypertrophy [78, 85]. 

Second, lower DBP modifies coronary perfusion and therefore, favors myocardial 

ischemia [75, 77, 85, 88]. Both cardiac and arterial factors, including ventricular ejection, 

arterial stiffness, and modifications of the amplitude and timing and site of wave 

reflections are the determinants of a higher PP [88, 89]. Ventricular ejection remains 

normal or even lower in older patients. In such cases, alteration of wave reflection and 

increase of arterial stiffness are the main determinants of higher PP. A 10 mm Hg 

increase in PP indicates higher risk of major cardiovascular complications keeping the 

mean pressure and other covariates controlled. The risk associated with the increased 

PP ranges from 13% for all coronary end points (P=0.02) to nearly 20% for 

cardiovascular mortality (P=0.01) [83]. 
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Methods 

Data Collection 

A fingertip was placed in front of a smart phone camera (Samsung Galaxy S3). 

Video was recorded for approximately 20 s at a sampling rate of 30 frame/s under 

ambient light. A standard tool (Omron BP785 IntelliSense Automatic Blood Pressure 

Monitor) was used to measure and validate the blood pressure and pulse rate readings. 

All the analysis was done assuming the readings from the standard tool were reasonably 

accurate. The hand of the subject was kept at rest on a table top during data recording. 

Subjects were asked to sit and relax for five minutes before every set of data collection. 

Data was taken alternatively with Omron BP785 and smartphone in order to keep the 

conditions as similar as possible. Simultaneous data collection, which would be the ideal 

scenario to calibrate the system accurately, was not possible due to working principle of 

any sphygmomanometer. It alters the pressure wave in the artery in the process of blood 

pressure measurement. In order to avoid this problem and keeping the BP unaltered, 

data was collected separately with Omron BP785 and smartphone but with a minimal gap 

in time. 

 

Feature Extraction 

Once the video was recorded, it was transferred to a standard computer. All the 

frames from the video were extracted using MATLAB. Each frame was converted into a 

grayscale image. Intensity of each pixel of a frame was calculated and averaged to find 

the mean intensity of the frame. Since data was recorded with a specified sampling rate, 

each frame was associated with a point in time. Once mean intensities for all the frames 

were computed, time variation of intensity was plotted. Heart rate and pulse pressure 

were extracted from the intensity plot. 
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Results and Discussion 

Optical Absorption 

When light passes through a medium and incidents on an interface (surface 

between two different media), it changes direction in the second medium. Part of the light 

bounces back to the first medium, called reflected light and the part passed through the 

interface into second medium is called refracted light. Some light will be absorbed while 

travelling through a medium. 

 

Figure 5-3 A simple model of light passing through a lossy medium (medium 2). Medium 

1 is air 

𝑅1 = (
𝑛𝑓−𝑛𝑎

𝑛𝑓+𝑛𝑎
)

2

and 𝑅2 = (
𝑛𝑎−𝑛𝑓

𝑛𝑎+𝑛𝑓
)

2

                                                                     (Equation 5-1) 

na and nf are the refractive indices of air and lossy medium (finger), respectively. 

R1 and R2 are the reflectances of interface 1 and 2, respectively. From Figure 5-3 

𝐼1 = 𝑅1𝐼0 and 𝐼2 = (1 − 𝑅1)𝐼0 
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𝐼2
′ = (1 − 𝑅1)𝐼0exp [− ∫ 𝛼

𝐿

0
(𝑥)𝑑𝑥] and 𝐼3 = 𝑅2(1 − 𝑅1)𝐼0exp [− ∫ 𝛼

𝐿

0
(𝑥)𝑑𝑥] 

𝐼 = (1 − 𝑅1)(1 − 𝑅2)𝐼0exp [− ∫ 𝛼
𝐿

0
(𝑥)𝑑𝑥]                                                       (Equation 5-2) 

I0 and I are the intensities of light before and after passing the lossy medium 

(Medium 2 of Figure 5-3) of L thickness respectively. α(x) is the absorption coefficient at a 

distance x from interface 1. If nf and α(x) are assumed as constant over the thickness (L) 

and R1 = R2 then Equation 5-2 becomes 

𝐼 = (1 − 𝑅1)2𝐼0exp [−𝛼𝐿]                                                                                (Equation 5-3) 

If we assume the R1 is small and thickness of the fingertip is fairly constant, then 

Equation 5-3 becomes 

𝐼𝑑 ≈ 𝐼0 exp[−𝛼𝑑𝐿] for diastolic phase 

𝐼𝑠 ≈ 𝐼0exp [−𝛼𝑠𝐿] for systolic phase 

Where Id and Is are intensity received at the sensor and αd and αs are the 

effective absorption coefficients during diastolic and systolic phase respectively.  

During systolic phase, the heart pumps blood out to the organs. As a result, the 

arteries are engorged with blood in this phase. On the other hand, blood is sucked from 

organs into the heart during a diastolic phase. Figure 5-4 demonstrates how blood flow 

changes in a fingertip during systolic and diastolic phases and how that produces 

intensity variations in the sensor (camera). 

The effective absorption coefficient αs is higher than αd as systolic phase pushes 

the blood to the organs. Consequently Id is higher than Is. That means less amount of 

light is absorbed due to the minimal blood presence in the tip during diastolic phase. As a 

result, it allows more light to go into the camera and a peak in the intensity plot is 

observed. On the contrary, systolic phase pumps more blood into fingertip and more light 

is absorbed. A dip in the light intensity at this point was observed. The recording of the 
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intensity of the transmitted light through the finger showed intensity variation as shown in 

Figure 5-5 similar to pressure variation of a cardiac cycle. 

 

Figure 5-4 Light absorption in fingertip during cardiac cycle 

Every downward peak on the intensity plot corresponded to the systolic phase as 

shown in Figure 5-5. On the rising edge of the intensity dip, there was a point where the 

intensity fell momentarily and then continues to rise again. This point is called the Dicrotic 

notch. It is associated with the sudden increase of the pressure in the aorta due to the 

closure of aortic valve. Diastolic phase starts from Dicrotic notch to the starting of next 

intensity fall. Figure 5-5 explains systolic, diastolic phase of cardiac cycle and Dicrotic 

notch. 
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Figure 5-5 Time variation of light intensity on a fingertip during cardiac cycle 

 
Pulse Rate and Pulse Pressure Measurements 

In order to compare the results, pulse rate of a subject was measured with a 

standard BP measuring tool and with a smartphone. Pulse rate was monitored for the 

same subject and under the same environmental conditions. The results are shown in 

Figure 5-6. The average pulse rate obtained from automatic BP monitor and smartphone 

are 67.67 ± 1.92 and 66 ± 3.22 BPM. Since the two results are very close, it indicates 

that the smartphone method has the potential to be an alternative way of measuring 

pulse rate in a more convenient way. 
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Figure 5-6 Pulse rate measurement using a standard BP monitor and smart phone 

 

Systolic and diastolic pressures were measured using an automatic BP monitor 

and pulse pressure was then calculated. With a variable light source like ambience, the 

smartphone method could only measure pulse pressure, not the absolute systolic and 

diastolic pressure. A comparative picture of pulse pressures is shown in Figure 5-7. The 

average pulse pressure measured by automatic BP monitor and calibrated smartphone 

data are 26.67 ± 2.71 and 26.67 ± 2.29 mm Hg. Since pulse pressure can be used as an 

independent biomarker for cardiovascular diseases and it can be measured with a 

smartphone with reasonable accuracy, the new system offered a much more convenient 

way to prevent cardiovascular complications through frequent monitoring and thereby 

reducing the fatalities due to CV diseases. 
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Figure 5-7 Comparison of blood pressure measurement using a standard monitoring 

device and smartphone 

The major advantage of the developed approach is that it offers an easy and 

convenient way to monitor heart conditions. On top of that, it allows to store this 

information which is ready to be analyzed by professionals if needs be. Smartphones can 

store information to a computer/cloud with simple interfaces and allow the patients to 

share this information to multiple caregivers. If a physician can access the pulse rate and 

BP information continuously, he/she can help to prevent many CV complications like 

myocardial infarction, cardiac arrhythmia, hypertension etc. without seeing the patient 

physically every now and then. Continuous monitoring of BP will also improve the 

prognosis of other diseases like cerebrovascular diseases, diabetes etc. 

 

Challenges and Solutions 

There are a number of sources that can induce noise and fluctuation while 

collecting data. Since the data was collected in the form of light, a little movement could 
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induce fluctuation noise. There are always involuntary muscular movements (e.g. from 

breathing) and these can’t be eliminated completely. Multiple set of data needs to be 

collected from each subject to nullify these effects. Taking average of multiple pulses 

from each set of data can improve the scenario.  

Humans have a wide range of physiological structures depending on the 

ancestry and demographic location they are brought up. Skin complexions, skin 

thickness, tissue thickness, the amount of blood, and the amount of hemoglobin carried 

by each red blood cell are different for each individual. As a result, a single calibration 

doesn’t work well for everybody. In order to solve this problem, a calibration of the system 

has to be incorporated for different groups of population based on gender, age, skin 

complexion, and ethnicity. Once the calibration is done, a database of calibration factors 

will be formed. Each subject will be required to enter these parameters to calibrate the 

system. Once entered, the system will pull up the appropriate calibration factor for that 

particular subjects group. 
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Chapter 6  

Summary 

 Even with the ever increasing research and findings, cancer is still one of the major 

causes of death. A diagnostic tool that can hint the patient a little earlier gives the 

patient a better chance to survive. An aptamer functionalized micropore system was 

developed to provide a mean to differentiate between cancer and healthy cells. The 

number of cancer cells present in a sample can also be counted with this method. 

This estimated number of cancer cells may be a good indicator to determine the next 

level of therapy. The set-up for single cell differentiation helps to provide more 

accurate results. This new method has the potential to improve the diagnosis even 

further. An easily accessible and affordable diagnostic tool can prevent cancers from 

escalating into more lethal stages. It’s vital to have such system within the reach of 

mass populations. 

 Living in an age of internet requires us to keep track of multiple online accounts 

including our emails, banks, and social media. Each one of them needs a password 

to authenticate the identity. The number of accounts need to keep track has been 

significantly grown in the last few years with the increasing connectivity. It requires 

significant amount of efforts and attentions to put strong passwords to each of these 

accounts and store them in a safe place. Speaker recognition system developed here 

may provide a solution to the problem. A unique set of words with the unique voice of 

each speaker may very well replace the traditional authentication system that uses 

text passwords. It would be very difficult for a fraud to access someone’s account if 

it’s protected with the owner’s voice. The same technology can be used to prevent 

fraudulent access to home and automobiles.  
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 Even though speech recognition is a fairly old technology, its therapeutic application 

for children is still at its infancy. There are few applications available on Android and 

iOS platforms that are targeted to help children to learn and speak new languages. 

Target for such applications are almost entirely recreational, not therapeutic. None of 

them has the functionality to estimate how accurately the words are pronounced. The 

analysis of sounds also provides a path to investigate which part of the sound 

producing apparatus is not functioning properly as the location of each fundamental 

sound is already known. Moreover, the current applications don't have feature(s) 

tracking individual word and overall learning progress. The application developed 

here provides a method to track and record all words produced by a child undergoing 

speech therapy and analyzed to determine the appropriate therapy. It can serve as a 

monitoring tool to speech therapist by supplying objective data. It has the potential to 

investigate the source location of the speech disorder noninvasively. The progress of 

each child can be easily quantified and tracked.  

 According to Joint Commission of Accreditation of Healthcare Organizations, 65% of 

hospital death and 55% of medication errors are directly related to faulty 

communication in US [90]. One of the major reasons for faulty communication 

between patients and health professionals is accent which makes it difficult for the 

other party to understand what is spoken. Such miscommunication can be fatal in 

hospitals and healthcare facilities. For example, if a nurse makes a mistake regarding 

the dose of a drug due to faulty communication, it would be very dangerous. Having 

deep accents can be a problem even for the people who are fluent in English. Visual 

accent trainer provides a preventive solution to this problem. Any individual can use it 

to get rid of his/her accent. The application developed provides real-time visual 

feedback on the sound production. It allows a user to try multiple times of a particular 
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word until the target is met. The application can help people who want learn a foreign 

language without accent. Due to the globalization, learning a new language without 

accent can provide an extra edge to any individual. Hearing impaired or deaf people 

can also be benefitted using this as they can’t hear their own sound production. It’s 

difficult for them to adjust any correction in the sound production. By providing visual 

feedback, VAT can close the audio-visual loop for hearing impaired people. The 

application can run on all standard computing platforms while leveraging cloud 

storage. 

 The most prevalent cause of deaths in modern society is cardiovascular diseases. 

Many people still die due to heart related complications each year because there is 

no convenient way of monitoring blood pressure and heart rate on a regular interval 

and tracking them for long time. Many of these deaths can be prevented with a 

reliable and readily accessible heart monitoring tool. Blood pressure and heart rate 

are the two most vital indicators of many cardiovascular diseases. A noninvasive 

method to measure these two vital indicators may improve these scenarios. The 

developed technique has the potential to provide a smartphone application that can 

be used to monitor and track pulse pressure and heart rate. Doctors can access the 

patient data through cloud storage without the requirement of the patient physically 

present in their offices. With the more comprehensive and frequent measurements of 

pulse pressure and heart rate, doctors may be able to anticipate any heart condition 

long before its lethal stage. 
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Future Scope 

 In this work, only one type of cancer cell (hGBM) is studied. But the same 

method can be applied to other type of cancers (lung cancer, bladder cancer, 

pancreatic cancer, etc.). A micropore/nanopore with the comparable size of the 

target entity needs to be fabricated along with the synthesis of an aptamer that 

has specific affinity for the biomarker present on the target cell. 

 As mentioned earlier, the condition of sound producing apparatus is also 

embedded in the speech. One future avenue can be the extraction of features 

from speech that represents the health conditions of vocal cords or laryngeal 

tube. It would be a noninvasive way to monitor the health of sound producing 

apparatus. 

 The speech recognition application for children works with only English sound for 

now, it has the potential to include other languages as well. Incorporating multiple 

language can be an important future avenue to pursue. Another major future 

direction might be forming a database with large number of voice samples 

collected locally. This database would be more useful than the standard 

database as it might be formed with sounds from a very different group of people. 

 The smartphone based heart monitoring system developed here can measure 

only pulse pressure (difference between SBP and DBP). Even though increased 

pulse pressure is a good indicator of many cardiovascular diseases including 

hypertension, it would be very useful if the same method can measure systolic 

and diastolic pressure separately. A reliable noninvasive way to measure blood 

pressure using a cell phone would replace the traditional way of measuring blood 

pressure with bulky tools.  
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Appendix A 

Preparation of Ag/AgCl electrodes 
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First, the Ag wires were cut into appropriate pieces (5-8 cm). The sized wires were 

cleaned with ethanol. Then those were immersed into Clorox for 15 minutes. A light gray color 

emerged on wires that showed the formation of AgCl was done appropriately. Wires were then 

rinsed with DI water before use. Leaving the electrodes dipped in Clorox solution after the 

experiment grew the AgCl coating again. As a result, same pair of electrodes can be used 

multiple times.  
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Appendix B 

Isolation and Culturing of hGBM Cells 
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Human GBM (hGBM) samples were obtained from University of Texas Southwestern 

Medical Center (Dallas,TX). Specimen with average volume of more than 50 mm3 was placed 

into ice-cold HBSS medium immediately after removal from the brain. Red blood cells were 

removed by Lymphocyte-M (Cedarlane Labs). Then the tumor tissue was gently dissociated 

with papain (2%) and dispase (2%), triturated, and labeled with a CD133/2 (293C3)–PE 

antibody (Miltenyi Biotec) and sorted with FACSCalibur machine (BD Biosciences). A serum-

free DMEM/F-12 medium was used as suspension medium for cells consisting of 20 ng/mL of 

mouse EGF (PeproTech), 20 ng/mL of basic fibroblast growth factor (PeproTech), 1X B27 

supplement (Invitrogen), 1X Insulin-Transferrin-Selenium-X (Invitrogen), and 100 units/mL 

penicillin–100 μg/mL streptomycin (HyClone). Then live cells were plated at a density of 3 X 106 

cells/60-mm plate. Both CD133+ and CD133− fractions underwent clonal expansion and formed 

orthotopic tumors. CD133+ fraction was used as hGBM cells throughout our study. Then hGBM 

cells were transduced with a lentivirus expressing m-cherry fluorescent protein. 
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Appendix C 

Fast Fourier Transform 
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FFT stands for fast Fourier transform. It does not refer to a new or different type of 

Fourier transform rather refers to a very efficient algorithm for computing the discrete Fourier 

transform (DFT). The time taken to compute a DFT on a computer depends essentially on the 

number of multiplications involved. N2 multiplications are required to compute DFT of a data 

series with N elements. But FFT requires only Nlog2(N). The mathematical insight which leads 

to this algorithm is the realization that a DFT of a sequence of N points can be written in terms 

of two DFTs of length N/2. If the length of the sequence (N) is a power of two, it is possible to 

apply this mathematical decomposition recursively until there is only a single point to compute 

DFT. Even if N is not a power of 2, it can be made so by appending appropriate number of 

zeros at the end. DFT of a sequence x(n) with length N, 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−
2𝜋𝑗𝑛𝑘

𝑁

𝑁−1

𝑛=0

= ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 

where 𝑊𝑁
𝑛𝑘 = 𝑒−

2𝜋𝑗𝑛𝑘

𝑁 . It is easy to realize that the same values of 𝑊𝑁
𝑛𝑘 are calculated 

many times during the DFT computation. Using the symmetry property the above expression 

can be split into two similar terms. 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−
2𝜋𝑗𝑛𝑘

𝑁

𝑁−1

𝑛=0

 = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0,𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

+ ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0,𝑛 𝑖𝑠 𝑜𝑑𝑑

 

= ∑ 𝑥[2𝑟]𝑊𝑁
2𝑟𝑘

𝑁
2

−1

𝑟=0

+ ∑ 𝑥[2𝑟 + 1]𝑊𝑁
(2𝑟+1)𝑘

𝑁−1

𝑟=0

 = ∑ 𝑥1[𝑟]𝑊𝑁
2

𝑟𝑘

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥2[𝑟]𝑊𝑁

2

𝑟𝑘

𝑁−1

𝑟=0

 

 where 𝑥1[𝑟] = 𝑥[2𝑟]𝑎𝑛𝑑 𝑥2[𝑟] = 𝑥[2𝑟 + 1]. So 𝑋[𝑘] = 𝑋1(𝑘) + 𝑊𝑁
𝑘𝑋2(𝑘). From the 

analysis, it is evident that an N point DFT can be evaluated by computing two N/2 points DFT 

and adding them. This process can be continued until there is one data point left. Due to the 

exponential nature of the algorithm, it enhances the speed of the computation. 
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Appendix D 

Correlation Coefficient 
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Linear correlation coefficient is a measure of the strength and the direction of a linear 

relationship between two variables. The following formula can be used to compute it. 

𝑟 =
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√𝑛(∑ 𝑥2) − (∑ 𝑥)2 √𝑛(∑ 𝑦2) − (∑ 𝑦)2
 

where x and y are two data sets of length n and r is the correlation coefficient between 

them. It can be used to compute matching between two data sets. 
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