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ABSTRACT

ENERGY EFFICIENT FRAMEWORKS FOR PARTICIPATORY URBAN

SENSING

Adnan Rahath Khan, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professors: Sajal K. Das and Matthew Wright

Participatory sensing is a powerful paradigm in which users participate in the

sensing campaign by collecting and crowdsourcing fine-grained information and opin-

ions about events of interest (such as weather or environment monitoring, traffic

conditions or accidents, crime scenes, emergency response, healthcare and wellness

management), thus leading to actionable inferences and decisions. Because of the high

density of smartphone users in urban population, participatory sensing paradigm can

be effectively applied to continuous monitoring of various phenomena in urban sce-

narios (e.g., fine-grained temperature monitoring, noise or air pollution), leading to

what is called urban sensing—the subject of study in this dissertation.

However, for creating a fine-grained and real-time map of the monitored area,

the data samples need to be collected continuously (at a high frequency) which poses

several research challenges. First, how to ensure coverage of the collected data that

reflects how well the targeted area is monitored? Second, how to localize the smart-

phones since continuous usage of the location sensor (e.g., GPS) can drain the battery

in few hours? Third, how to provide energy efficiency in the data collection process by
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collecting minimum number of data samples in each data collection round? Finally,

how to store and backup the huge amount of collected data resulting from continuous

monitoring?

In this dissertation, we first propose a novel framework called PLUS to address

three major issues in real-time participatory urban monitoring applications, namely,

ensuring coverage of the collected data, localization of the participating smartphones,

and overall energy efficiency of the data collection process. Specifically the PLUS

framework can guarantee a specified requirement of partial data coverage of the mon-

itored area in an energy efficient manner. Additionally we devised a Markov-Predictor

based energy efficient outdoor localization scheme for the mobile devices to partic-

ipate in the data collection process. Simulation studies and real life experiments

exhibit that PLUS can significantly reduce energy consumption of the mobile devices

for urban monitoring applications as compared to traditional approaches. We extend

the idea of PLUS and further propose another framework called STREET that can

ensure k-coverage of the collected data from an urban street network. By simulating

an urban monitoring application on a street network, we demonstrate that STREET

can achieve k-coverage of the collected data while consuming significantly less amount

of energy especially in busy urban area. Next, we propose PeerVault - a reliable online

storage and backup service for the collected data based on a peer to peer (P2P) archi-

tecture. PeerVault is built on a graph theoretic approach to exploit long term online

availability and unused resources of computing devices, and a distributed monitor-

ing algorithm to form an online backup service. Experimental results on real traces

confirm that PeerVault can be served as a cheap alternative for online data backup

service with high availability and long term reliability.
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CHAPTER 1

INTRODUCTION

1.1 Mobile Sensing and Participatory Sensing

Over the last decade, we have witnessed tremendous advancement in the smart-

phone technology. Mobile phone has evolved from basic communication device to

a powerful sensing platform with a rich set of built in sensors. Examples include

microphone for capturing audio, camera for capturing video, RGB light sensor for

measuring intensity of light, gesture sensor for detecting hand movement, Global Po-

sitioning System (GPS) for retrieving location, barometer for measuring atmospheric

pressure, accelerometer for measuring acceleration, gyro sensor for determining ro-

tation state of the device, fingerprint sensor for identifying user fingerprint, pulse

sensor for monitoring heart rate, and so on. Moreover, modern smartphones provide

convenient interfaces (e.g., Bluetooth, WiFi, NFC, etc.) to connect with external

sensors and devices, hence giving birth to a host of wearable gears such as Apple

Watch [1], Samsung Gear [2], iHealth Edge [3], etc., which stay connected with the

smartphones while monitoring various phenomena surrounding the user. As a result,

a new paradigm of applications exploiting the sensing platform of the mobile devices

emerged in the last decade and gained significant attention both in the industry and

research community.

Due to the ubiquitous nature of smartphone and its extremely large user base

[4], it has been leveraged to design applications in different domains of our life. For

example, applications were designed where the smartphone sensors are used for as-

sisting and monitoring individuals, such as activity [5, 6], sleep [7, 8], and overall
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health and well-being monitoring [9, 10]. By taking it a step further, data collected

from individuals can be compiled by healthcare providers or government agencies

and associated with environmental factors to analyze not only individual but also

community-wide activity, habit and exposure [11]. Another important class of ap-

plications aims to monitor different environmental and urban scenarios by collecting

data from the smartphone sensors. Similar to monitoring environmental or urban

scenarios with Wireless Sensor Networks (WSNs), a network of smartphones can be

conceived for such tasks where a smartphone is treated as a location-aware multi-

modal sensor node, and participates in the data collection process by sampling the

required sensor. The notion of sensory data collection through the participation of

a group of smartphone users to create knowledge or to monitor different scenarios is

known as participatory sensing [12, 13, 14, 15] in general.

Depending on the use case, there are several design choices for a participatory

sensing application. For example, based on the feature to monitor, it can be designed

for monitoring urban/environmental feature or personal (smartphone user’s) scenario.

Based on user involvement for data collection, an application may notify the user each

time to collect data sample, whereas, an application can be designed to automatically

collect data samples as required once authorized by the user. Some application can

be designed for monitoring only indoor events, while some other may target outdoor

scenarios. Based on the activity or motion state of the smartphone user, there can

be variations too—some application can be designed to collect data samples from

pedestrians, while some other may collect data from smartphone user moving in

a vehicle. Finally, based on the update frequency requirement of the underlying

monitored phenomenon, an application could be designed to collect data continuously

or at a much lower frequency. Adopting each of these design choices poses its own
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research challenges that must be solved for successful deployment of a participatory

sensing application.

1.2 Monitoring Urban area with Real-time Participatory Sensing

In this dissertation, we primarily focus our discussion on participatory sensing

applications designed for monitoring different urban scenarios automatically and con-

tinuously, also referred as real-time participatory urban monitoring application. The

reasons we are interested in this type of applications are as follows:

• Urban sensing or monitoring of different urban scenarios has received signifi-

cant interest by the research community. A growing number of environmental

and/or urban scenarios, such as, air quality, pollution level, quality of streets,

noise level, pedestrian or traffic density, can be monitored to extract useful in-

formation for different government and municipal agencies, business institutions

including real estates, and even by ordinary residents [16, 17, 18, 19, 20]. Due

to the rapid changing nature of some of the monitored scenarios, and also to

create a fine-grained spatio-temporal map, it is often required to monitor the

target area continuously.

• While urban sensing has been traditionally aided by Wireless Sensor Networks

(WSNs), a large number of sensor nodes are often required to effectively monitor

even a small part of the urban area. For example, the CitySee project deployed

100 sensor nodes and 1096 relay nodes for CO2 monitoring in an urban area

of around 1 km2 [16]. Therefore, it is obvious that the cost of deployment and

maintenance of the sensor nodes can grow significantly if a large area needs to

be monitored. Since the density of smartphone users is very high in urban pop-

ulation, we can assume that the point of interests in urban area are covered by

numerous mobile sensor nodes (i.e., smartphones) and hence monitoring them
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without the overhead of fixed sensor deployment and infrastructural support is

possible.

1.3 Major Challenges in Participatory Sensing

For effective monitoring with the help of a participatory sensing application,

there are several challenges that need to be addressed as described below.

• Data Coverage: Coverage represents how well the collected data samples

represent the monitored area. In traditional WSNs, this issue has been studied

quite thoroughly. Different notions of coverage have been proposed in WSNs

including partial coverage (i.e., a portion of the monitored area is covered)

[21, 22], full coverage (i.e., the entire monitored area is covered) [23, 24, 25],

k-coverage (i.e., any point in the monitored area is covered by k sensors) [26,

27], etc. In WSNs, the sensors are either static or mobile with predefined

trajectories. However, in participatory sensing, data samples are collected by

people carrying smartphones, and their mobility is uncontrolled. Therefore,

traditional methods for data collection in WSNs may not be directly applicable

to participatory sensing applications.

• Localization: Another important issue to consider in such applications is the

localization of the participating mobile devices. In most data collection applica-

tion for urban sensing, some sort of location information is required in the data

collection process. Some of the applications follow the approach of collecting

location information along with the data sample from all participants [28, 29],

whereas some other applications try to get the location first, and then select a

subset of the participants to collect data samples [30, 31]. In either case, if the

data collection frequency is high (i.e., for continuous monitoring), it requires
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frequent usage of the location sensor (e.g., GPS) which can deplete the battery

fast.

• Energy efficiency: As smartphones are powered by small batteries, the ad-

ditional sensing task accompanied with the usage of location sensor of such an

application may put a major toll on the battery life of the smartphones. Short

battery life is one of the main concerns of smartphone users. Hence, minimiz-

ing energy consumption is of extreme importance while designing any mobile

sensing application, especially applications that perform the sensing task con-

tinuously. Because of this, extensive research has been carried out in the field

of energy efficiency in mobile sensing [32] applications in general, and also for

participatory sensing [33] applications.

• Privacy: As a user carries smartphone almost all the time, it contains a sig-

nificant amount of personal and vulnerable information. Therefore, it needs

to be ensured that any personal or vulnerable data is not compromised while

participating in the data collection process. Some of the works address the is-

sue of participant’s privacy [34], while some other even address the issue of the

bystander’s privacy [35]. A brief survey on the privacy issue in participatory

sensing can be found in [36].

• Participant Recruitment & Incentive: The success of the data collection

application depends largely on the authenticity of the participants. Therefore,

recruiting participants [37] and providing them some sort of incentive [38] are

important issues in participatory sensing applications.

• Scheduling Data Collection and Storage: Most participatory sensing ap-

plications require a server where collected data is stored for further analysis.

In some cases, the server also runs some coordination algorithm to schedule

data collection [30, 31]. However, frequent server connection requires signifi-
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cant amount of energy, and therefore, needs to be considered while designing a

participatory sensing application.

1.4 Contributions of the Dissertation

In this dissertation, we address some of the important challenges in partici-

patory urban sensing applications. The major contributions of this dissertation are

outlined as follows:

• We first discuss the coverage and localization issue for participatory sensing ap-

plications deployed in the busy urban area (such as university campus, public

park, etc.) for continuous monitoring of environmental and/or urban scenario

(fine-grained temperature, noise, Wi-Fi, etc). We present our novel framework

called Energy Efficient Framework for Localization and Coverage in Participa-

tory Urban Sensing (PLUS) [39], where the server does not need to know the

location of the participating mobile devices. PLUS divides the monitored area

into smaller blocks and can guarantee a specified partial coverage requirement

of the collected data for each block. PLUS uses desired sensing coverage [40]

as a metric for partial data coverage. A participating mobile device executes

a novel energy efficient localization scheme sLoc to determine the block level

location (i.e., the block where the participant currently is) of the user. The

sLoc scheme maintains individual mobility history and uses a Markov Predictor

Model to predict future block transitions (i.e., the block where the participant is

likely to move from the current block) of the participant. Moreover, to activate

the GPS effectively to determine a block transition, sLoc learns from previous

behavior of the user in each block. After determining the block level location,

a mobile device probabilistically performs the sensing task and sends the col-

lected data to the server to ensure the DSC requirement. Experimental results
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on real users as well as simulation studies confirm that our scheme can reduce

the energy consumption of the mobile devices significantly.

• We extend the concept of PLUS for street networks and present our framework

STREET [41] that enables energy efficient data collection ensuring full coverage

and k-coverage from urban streets participating in an urban monitoring appli-

cation. STREET exploits a simple localization scheme that estimates walking

speed of a participant from previous spatio-temporal mobility history and uses

that for data collection in an energy efficient manner. By simulating an ur-

ban monitoring application on a street network, we demonstrate that STREET

can also significantly reduce energy consumption of the mobile devices while

ensuring full coverage and k-coverage of the collected data.

• We further present our work in the field of online storage and backup service for

the huge amount of data resulting from continuous monitoring applications, and

propose a peer to peer (P2P) storage service based on the unused resources of

computing devices. In particular, we present PeerVault, a platform that exploits

long-term availability of computing devices, as well as their idle resources, in

order to realize a distributed online backup service. By simulating computer

devices based on the real traces collected by the SETI@home project [42], we

show that the proposed storage and backup service is effective in terms of long-

term availability.

• Finally, as a motivating example, we describe the design and implementation

of a novel participatory sensing application for campus security. Through the

app, the students and staffs can report suspicious activities or incidents on the

campus by using their smartphones. The application uses different smartphone

sensors to accurately capture an incident and share with others in a participa-

tory fashion.
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1.5 Organization of the Dissertation

In chapter 2, we present literature review in the field of energy efficient data

collection, coverage, and localization in participatory sensing, as well as peer to peer

online backup service. We introduce our energy efficient framework PLUS for data

collection in real-time urban monitoring application in chapter 3, while chapter 4

discusses the STREET framework designed for real-time monitoring of urban streets.

In chapter 5, we discuss PeerVault where the unused resources of computing devices

are utilized to form an online storage and backup service. Chapter 6 presents a

motivating example of participatory sensing application to monitor university campus

for criminal activities. Finally, chapter 7 summarizes the finding and discusses the

opportunities for further research in the future.
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CHAPTER 2

RELATED WORK

In this chapter, we will first summarize the related work from the literature on

participatory sensing and mobile sensing in general. Then we will discuss the online

storage and backup service that are relevant to our work.

2.1 Mobile Sensing and Participatory Sensing

In the recent years, a plethora of applications in the field of mobile sensing and

participatory sensing have been proposed. Detail surveys on these types of applica-

tions can be found in [43, 44]. Both mobile sensing applications and participatory

sensing applications undergo several common research challenges, e.g., duty cycle of

different sensor, energy efficient GPS usage. Additionally, participatory sensing ap-

plications experience some extra challenges because of the collaborative nature of

monitoring task. In the following, we will categorize and summarize the work that

are relevant to the research challenges we intend to solve (coverage, localization and

energy efficiency in data collection).

2.1.1 Continuous Mobile Sensing

To design different mobile sensing application, collecting sensory data contin-

uously is often required which may deplete battery fast, and hence requiring careful

attention. For example, the Jigsaw continuous sensing engine [45] proposed a plat-

form for continuous monitoring of user context and activities in an energy efficient way

by balancing the performance needs of the underlying application and the resource
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demands for sensing. JigSaw pipeline can robustly detect five common physical ac-

tivities, stationary, walking, cycling, running, and in a vehicle (i.e., car, bus). In [46],

Yan et.al proposed a method for continuous locomotive activity recognition based on

accelerometer. To reduce energy consumption of continuous sensor sampling, they ap-

plied an activity-sensitive strategy to control the sensor sampling in real time, based

on user activities. In [47], Nath presented Acquisitional Context Engine (ACE) that

uses the inherent structure of the context inference problem for continuous context

sensing. The main idea behind ACE is to use associative rules among contexts to infer

one context from another, sometimes without using any sensor. For example, “if a

user is at home now, he cannot be in the office in the next ten minutes. Recognizing

the significant power consumption by GPS, Paek et. al. [48] proposed an energy

efficient service for continuous location retrieval which can be used by other mobile

sensing application. They maintain spatio-temporal history of user walking speed to

intelligently duty cycle GPS to minimize energy consumption. Most of the above

methods try to duty cycle the usage of sensors and stop sensor usage unnecessarily

when the monitored scenario is not changing. But still the CPU of the smartphone

get awake too often which may bottleneck the power savings. For that, researchers

proposed the idea of using a separate CPU to assist the sensing task. For example,

the Little Rock project [49] developed hardware support for continuous sensing where

the primary CPU frequently sleeps, and digital signal processors (DSPs) support the

duty cycle management, sensor sampling, and signal processing. DSP.Ear [50] also

uses a co-processor for continuous sensing of audio signal to identify emotions from

voice, estimate the number of people in a room, identify the speaker, etc. and detects

commonly found ambient sounds.
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2.1.2 Delay Tolerant Mobile Crowdsourcing

As mentioned before, a participatory sensing application not only collects data

samples, but also sends them to the server. However, repeatedly waking up the

smartphone from sleep node for sending the collected data to the server using the

radio modem can bottleneck energy savings. Also, there are some scenarios where

the collected data is not time-sensitive, and can be delivered at a later period than

the time of collection. Therefore, some applications choose to upload the collected

data only when the smartphone is connected to an access point/Wi-Fi/PC following

a delay tolerant crowdsourcing approach. MetroSense [51] was proposed where data

is delivered opportunistically whenever a data collection unit comes in the communi-

cation range. By including mobile elements for data collection, they attained a better

data coverage over the monitored area. They also recognized that the fidelity of

data decreases with the increasing distance between the data collection point and the

sink, as well as with time difference. However, the authors traded off the real-time

fidelity for improved cost and coverage, enabling sparse sensing across large urban

area. The BikeNet project [52] was designed to monitor the cycling experience of cy-

clists by collecting different sensory data attached to the bicycle. They support data

offloading both opportunistically, as well as real time for visualization. The CenseMe

project [53] intends to identify different contexts of the smartphone user and shares

the collected information opportunistically. A system proposed in [54] called Wiffler

uses a prediction based model for future Wi-Fi connection availability. If a Wi-Fi

connectivity is likely to be found within the delay constraint, Wiffler does not use

radio modem (3G) for data offloading. Similar idea of seamless switching between

3G and Wi-Fi was also investigated in [55]. These approaches can be integrated to

delay tolerant crowdsourcing applications.
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2.1.3 Piggyback supported Mobile Crowdsourcing

A variant of the delay tolerant data collection application intends to collect

data not only when a user comes in contact to the Wi-Fi/PC, but also when he

makes/receives a call, uses an app, etc., following a piggyBack supported mobile crowd-

sourcing (PCS) approach. In [56], the authors showed that the PCS approach can

collect data samples using significantly less energy (up to 90%) by exploiting pre-

diction models on the app usage pattern of the user. However, they also recognized

that, being opportunistic in nature their approach may result in less accurate data.

Also they did not provide any delay constraint within which data can be collected.

CrowdRecruiter [57] proposes an energy efficient participant recruitment framework

that achieves probabilistic coverage constraint while minimizing the number of re-

quired participants. However, the authors used cell tower ID as the coverage metric

which is not granular enough for many scenarios where creating a high resolution city

map is required. In [58], the authors proposed a similar framework with a focus on

minimizing the number of task assignment in each sensing cycle.

2.1.4 Aggregation based Mobile Crowdsourcing

While it has been shown that the opportunistic and piggyback supported data

offloading approaches are effective in reducing cellular/energy costs in some scenar-

ios, there are still other scenarios where they do not apply. For example, open Wi-Fi

networks are rare, and connecting to a Wi-Fi network may not be practical for highly

mobile users (e.g., users in vehicle), making opportunistic data offloading ineffective.

Some applications may require data collection while phone is not in use (e.g., up-

loading traffic information while driving), hence making piggybacking inapplicable.

In these cases, data samples need to be uploaded using mobile networks which is

expensive. In that case, it is possible to aggregate data samples using opportunistic

12



contacts before uploading, resulting in less data usage. Some of the recent works

[59, 60, 61] showed that it is possible to save energy following this approach.

2.1.5 Real-time Mobile Crowdsourcing

A lot of applications are designed in such a way that raw data samples are up-

loaded to the server immediately after sensing. Based on the involvement of the server

to track the location of the participants, these applications follow two approaches.

In the first approach, the participating mobile devices collect data samples at a pre-

defined frequency and upload to the server. For example, an application eGS was

implemented in [28] to monitor Carbon Monoxide in urban area by external sensor

attached to the mobile device and to display the information on a map. VibN [29]

application collects audio data samples from its users to create a real time event map

of the urban areas. MobGeoSen [62] was proposed to monitor human exposure to en-

vironmental pollution by mobile devices with attached sensors. The major challenge

faced by applications following this approach is that, a significant amount of energy

can be consumed when data collection frequency is high as each participant performs

the sensing task in every data collection round. As a consequence, redundant data

samples can be collected.

In the second approach, the server knows the location of all participating devices

and selects only the required ones for data collection. Some applications following

this approach also guarantee coverage ensured data collection to make sure that the

collected data samples represent the monitored area and avoid unnecessary sample

collection. For example, the authors in [30] introduced automated mapping of urban

areas that provides a virtual sensor abstraction to achieve full coverage of the collected

data. In [31], the authors proposed a framework that also aims at achieving full

coverage of the collected data. They select only the mobile devices that minimize
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the energy required for sensing. However, the major limitation of their framework is

that the position fix by location sensor and sending location update to the server can

introduce significant energy overhead on the mobile devices, especially when the data

collection frequency is high. Identifying this issue, a participatory sensing system

PSense [63] was proposed that aims at reducing unnecessary position fixes by GPS to

save energy. Although PSense saves energy to some extent by duty cycling the GPS

adaptively, mobile devices are still required to send location updates to the server.

Our framework PLUS is somewhat close to the first category of applications, as

the server does not receive any location update from the participating mobile devices.

But it does not collect data samples from all participating mobile devices. Rather

it collects data samples from necessary mobile devices automatically (without user

intervention), to meet the given value of DSC - a metric of partial sensing coverage.

The monitored area is divided into smaller blocks, and to participate, a mobile device

only needs to know its block level location. A mobile device is required to use a

localization scheme sLoc, that provides block level location of the user continuously

in an energy efficient way. Hence, PLUS can be used for continuous monitoring of

different scenarios (with high data collection frequency) without using location sensors

frequently. Similarly, our proposed framework STREET can be applied for real-time

data collection ensuring k-coverage from urban street networks in an energy efficient

manner.

2.2 Storage Service

Now we will summarize relevant literature on P2P backup service. The P2P

networking paradigm has been exploited in the context of distributed file systems [64,

65, 66]. However, none of the proposed approaches exploits the availability pattern

and the idle resources of the computer users. In some existing works, P2P networks
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were used to provide an enhanced online storage service in addition to dedicated

servers. FS2You [67] and Amazing Store [68] are examples of such hybrid P2P systems

explicitly designed to improve the availability of stored data with efficient bandwidth

utilization. Among pure P2P backup services, Symform [69] offers up to 200 GB

of free storage space. In return, users are required to be online at least 80% of

the time and provide at least 1.5 times the storage they receive from the system.

Unfortunately, the details on the system design are not publicly available. Wuala [70]

is another commercial P2P backup system that relies on a symmetric service between

users and exploits a hybrid architecture. A peer-assisted backup service was also

proposed in [71], wherein it was shown that a performance comparable to traditional

client-server architecture can be achieved by temporarily using storage space from

cloud providers. However, all the above solutions still rely on the presence of special

servers or data centers. FriendStore [72] is a backup system where users store data

by exploiting their social connection with other peers. Specifically, personal data are

backed up on “friend” peers. Thus, availability and reliability depend on the number

of friends, which can be rather low in realistic scenarios. In [73], a pricing mechanism

for the offered resources in a P2P backup system is investigated. However, the work

does not define any specific architecture as for the storage mechanism.

To ensure the availability of the peers, P2P networks use different monitoring

scheme. A generic monitoring system based on the principles of autonomic computing

was presented in [74]. Such a mechanism assumes that the P2P network is structured

(i.e., has a logical overlay), thus, it is not directly applicable to storage system.

Existing P2P backup services use monitoring approaches which assign the monitoring

responsibility to either a centralized server [69] or the peer that originated the backup

request [70, 75]. On the other hand, our approach is distributed, since a peer is
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randomly monitored by some other peers, and assigns minimal responsibility to the

tracker.

2.3 Summary

In this chapter, we first summarized the participatory sensing applications that

are relevant to our data collection framework. We also categorized them into several

groups based on the nature of the data offloading. Then in the second section, we

summarized the works that are relevant to our proposed P2P backup service. In the

next chapter, we will present our data collection framework in detail.
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CHAPTER 3

ENERGY EFFICIENT FRAMEWORK FOR URBAN MONITORING

In this chapter, we present out novel framework, Energy Efficient Framework

for Localization and Coverage in Participatory Urban Sensing (PLUS) [39], where a

mobile device is not required to send its location information to the server. PLUS

divides the monitored area into smaller blocks, and uses a metric called desired sensing

coverage (DSC) [40], to ensure partial coverage of the collected data associated with

each block. A participating mobile device executes a novel energy efficient localization

scheme to determine the block level location (i.e., the block where a user currently is)

of the user. The sLoc scheme maintains individual mobility history and uses a Markov

Predictor Model to predict his future block transitions (i.e., the block where the user

is likely to move from the current block). Moreover, to activate the GPS effectively to

determine a block transition, sLoc learns from previous behavior of the user in each

block. After determining the block level location, a mobile device probabilistically

performs the sensing task and sends the collected data to the server to ensure the

DSC requirement. The major contributions in this chapter can be summarized as

follows.

• We introduce PLUS, a framework for participatory urban sensing applications.

PLUS is able to achieve partial coverage of the collected data in an energy

efficient manner without requiring a server to track the participating mobile

devices. Specifically, PLUS can be exploited for designing energy efficient real-

time urban monitoring applications.
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• We formally define the block transition detection problem to continuously deter-

mine the block level location of a participant while minimizing the usage of the

location sensor (GPS). Then we propose our localization scheme sLoc to solve

it.

• Through real world experiments, we show that sLoc can reduce GPS usage as

much as 85% when a mobile user follows his regular routes, as compared to a

method that continuously uses GPS.

• We emulated a participatory sensing application to continuously monitor Wi-

Fi signal strength in our university campus using the PLUS framework for

different DSC (a partial coverage metric) requirements. Experimental results

demonstrate that our framework can significantly reduce energy consumption

as compared to the traditional approaches.

The rest of the chapter is organized as follows. Section 4.1 proposes the PLUS frame-

work, and describes the coverage metric and the localization scheme used by the

framework. Results from simulation and real world experiments are presented in

Section 4.2. Finally, contributions are summarized in Section 4.3 with direction for

future research.

3.1 Description of PLUS Framework

In the proposed PLUS framework, there is a server (or cluster of servers), of-

fering web services to receive data samples from participating mobile devices. A par-

ticipant is required to install a software package developed for PLUS on his mobile

device that includes a sensory data sampling component shown in Figure 3.1. This

component takes help from sample requirement calculator and localization scheme

that are described later in this section. Each participating mobile device has one

or more built-in sensors to perform the sensing task, as required by the application.
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Figure 3.1: Block diagram of PLUS

Note that, PLUS is used for continuous monitoring scenarios at outdoor locations

in densely populated urban areas (university campus, downtown areas, etc.). There-

fore, sensory data samples are collected by a mobile device only when the user walks

around the monitored area.

A mobile device may perform the sensing task only once in a predefined time

interval, known as the data reporting round. We assume that each mobile device has

uniform sensing range of r and can sense a circular area with radius r. The monitored

area Q is divided into multiple equal sized blocks denoted by a unique ID Bi, where

1 ≤ i ≤ N , and N is the total number of blocks (e.g., 100× 100m2 or 150× 150m2).

In each data reporting round, a mobile device detects its block level location, i.e., the

block number where the user currently is, and with a certain probability, performs

the sensing task and uploads the data to the server.
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As battery life is a critical issue for mobile devices, PLUS has several principles

to reduce energy consumption. First, a mobile device does not need to know its

exact location, as continuously using location sensor can take significant amount of

battery life. Second, the server is not required to know the location of the mobile

devices, as sending the location updates to the server also consumes a lot of energy.

Finally, PLUS does not intend to collect data samples from all participants invariably.

Rather it collects data samples from necessary mobile devices to meet the given value

of DSC which is a metric for partial sensing coverage described in the next subsection.

The sample requirement calculator and the localization scheme ensure that, all these

principles are followed.

To give an insight how PLUS ensures energy efficiency, let us consider a sim-

ple example with n participants in a block where a partial coverage of c is required.

In traditional approaches, all n participants send their locations to the server that

selects the necessary number of mobile devices (say m) to ensure the given coverage

requirement implying a total of n + m server communications. On the other hand,

in our approach a mobile device does not send its location to the server. Rather it

determines which block the participant is at any instant (with the help of our local-

ization scheme) and performs the sensing task with a certain probability. Suppose, to

ensure the partial coverage c, a total of m′ data samples are required from the block

in our approach. Hence a participant collects data sample with m′/n probability and

sends the data to the server implying only m′ server communications. For decent

participant density, m′ is much smaller than n+m, thus saving significant amount of

energy. In the next two subsections, we will describe how the required data samples

are collected, and the block level location is determined, respectively.
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3.1.1 Sample Requirement Calculator

The primary job of the sample Requirement Calculator is to ensure that the

participating mobile devices upload necessary data samples to satisfy the coverage

requirement. PLUS uses desired sensing coverage (DSC), which is a partial sensing

coverage metric of the collected data for a block. The application is allowed to specify

its required DSC, and PLUS decides the number of data samples (k) required for each

block accordingly.

Definition 1 (Desired Sensing Coverage). [40] Given the block partition of an area,

Desired Sensing Coverage (DSC) is the probability of any point in a block Bi to be

covered by the circular sensing area of at least one of the k mobile devices residing in

Bi that are selected during a data reporting round. We denote DSC with λ.

Now we briefly show the relationship between the λ and k as presented in [40].

Let us consider a square shaped block Bi with sides of length D. We assume that,

at a given time instant a mobile device can be located at any point in the block

with uniform probability. Based on its position in the block, a mobile device can

sense any point from an extended area A = D2 + 4Dr + πr2 that we refer to as

the possible covered area of the block as depicted in Figure 3.2. Let α represent the

area corresponding to the block Bk covered by a randomly selected mobile device.

Therefore, the expected value of α can be written as E[α] = πr2D
2

A
.

The probability that a point (x, y) in the block Bi is not covered by k mobile

devices selected independently and at random can be derived as

Pk(x, y) =

(
D2 − E[α]

D2

)k
(3.1)

With the help of Equation 3.1, the desired sensing coverage λ can be written as

λ = 1−
(
D2 − E[α]

D2

)k
(3.2)
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Figure 3.2: Area covered by mobile users in a block

From this relationship, the smallest value of k that satisfies the DSC is obtained

as [40],

k =
log(1− λ)

log
(

D2+4Dr
D2+4Dr+πr2

) (3.3)

Next, we apply a simple observation, that is, some parts of the monitored

area may have more participants than other parts. Moreover, the number of the

participants can vary with time. For example, in a university campus, most of the

areas (especially where the academic activities are performed) may have a significantly

higher mobile user density in the daytime as compared to the evening. On the other

hand, in the evening the user density might be quite high in selective places (e.g.,

students activity center or housings). Such mobile user density information is often

readily available from commercial vendors [76, 77], or can be derived from mobile
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phone data collected from cell-towers [76], and is out of scope of our work. Based

on the participant density and the value of k (from Equation 3.3), each block is

associated with different probabilities for different time periods. The server delivers

this probability values to the mobile devices only once during the program setup. In

each data collection round, a participating mobile device detects the current block

using the localization scheme (described in the next subsection), performs sensing

task according to the probability associated to this block, and uploads the sensed

data to the server. As a result, the server is expected to receive the minimum number

of data samples for each block.

3.1.2 Localization Scheme sLoc

In this subsection, we present sLoc, a localization scheme used on the mobile

device of each participant. The sLoc scheme is designed to provide block level location

continuously while the user walks around the monitored area. It uses the GPS as

location sensor (since PLUS is designed to monitor outdoor scenarios). A naive

approach would be continuously using the GPS to determine location. But that

would drain the battery very quickly. One possible way to save energy is to turn

off the GPS once the current block is detected, and after a suitable time interval,

activate it so that the entrance to the next block is also detected. Our scheme sLoc

uses this technique intelligently to reduce energy consumption. Specifically, it derives

an efficient schedule to activate and deactivate the GPS to detect the block transitions

of the user.

Now we discuss technical components of sLoc. At its core, sLoc is based on

a simple observation that, a user often follows similar routes. Moreover, a user is

likely to spend similar amount of time in a block while following the same route.

This spatial consistency is exploited by the sLoc scheme to predict not only the next
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block in which the user is likely to move to, but also the amount of time the user is

expected to spend in the current block.

GPS
 Scheduler

Block Trans. 
Data

Hardware Interface

WiFiGPS

sLoc

Application

Network

Duration 
Estimator

Block 
Predictor

Figure 3.3: Block diagram of sLoc

Figure 3.3 shows the block diagram of the sLoc scheme. As the user moves

around the monitored area, block transition data are produced. The Block Predictor

unit uses the historical block transition data to predict the next block the user is

likely to move from the current block. Considering the possible block transitions, the

Duration Estimator unit determines the amount of time the user is likely to stay in

the current block. Finally, once the user is detected to be in the current block, the

GPS Scheduler keeps the GPS in sleep mode as long as the user is likely to stay in

this block, and activates it as necessary to capture new block transition data. As

a result, sLoc simultaneously perform learning and prediction to avoid the usage of

GPS as much as possible with robust block level location detection. The key problem
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in block transition detection is choosing optimal interval to activate the GPS defined

as follows.

Definition 2 (Block Transition Detection Problem). Given a mobile user is moving

through the block sequence B1, B2, B3, . . ., with a block transition probability function

F : i×j → R where i and j are the current and next block index, the Block Transition

Detection Problem is to determine time intervals ∆t1,∆t2,∆t3, . . . to activate the

GPS that maximizes
∑∞

k=1R(∆tk) while detecting the block transitions. Here R is a

function of the block transition detection accuracy and the energy required to activate

the GPS at a given schedule.

Now we will introduce two metrics, namely accuracy payoff and energy payoff,

that would be used to define the function R. To determine a block transition, if sLoc

receives the location at time tsense after scheduling the GPS according to an interval

∆tk, the accuracy payoff is defined as

A(∆tk) =


tactual
tsense

, if tsense > tactual.

1, otherwise.

(3.4)

And the energy payoff is defined as

E(∆tk) =


tsense

tactual
, if tsense < tactual.

1, otherwise.

(3.5)

Here, tactual is the time instant when the user leaves the current block. However,

measuring tactual is not possible when tsense > tactual. In that case, we estimate the

accuracy payoff as follows. Suppose, the user location is detected at point A in the

current block (as shown in Figure 3.4) and after that sLoc puts the GPS in sleep

mode for time interval ∆tk. Upon next activation, the GPS detects the user location
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at point B. Then, A(∆tk) is measured as d(C,A)
d(B,A)

, where d(X, Y ) is the Euclidean

distance between the points X and Y . Finally, R is defined as follows:

R(∆tk) = A(∆tk)γ + E(∆tk)(1− γ) (3.6)

where γ is a constant. Now we will describe the components of the sLoc scheme and

how it solves the block transition detection problem.

A

B

C

D

d(B, A)

d(C, A)

Figure 3.4: Location retrieval at different point in a block

3.1.2.1 Block Prediction Unit

The goal of the sLoc scheme is to determine an effective schedule to activate and

deactivate GPS periodically to solve the Block transition Detection Problem. And
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for that, it is important to determine the next block a user is likely to move from the

current block. However, a user may move to different blocks from the current block

with different probabilities. The role of the block prediction unit is to determine the

transition probabilities of the user moving into next blocks. That means, given the

current block, the block predictor outputs a list of block ID and probability pairs.

Mobility prediction for the mobile phone users is a fairly well studied area.

While there are some methods that track the mobile user from the server [78], some

other methods run locally on the mobile devices [79]. As we desire to keep the

localization task at the user end, we are interested in using local predictors. The

performance of a number of predictors were presented in [79] using Wi-Fi data where

it was shown that the simple Markov predictor (specifically order-2 Markov predictor)

outperforms most of the predictors. Therefore, we choose Markov predictor model

and applied that in our block transition detection problem to predict the future

block(s) where the user is likely to move. Now we will briefly describe how the

Markov predictor is used for future block prediction.

Let us assume, X is a random variable that represents the block ID of the

user. After making (n − 1) transitions, the current block of the user is represented

by Xn. For example, if the user is currently in block Bk after making (n − 1) block

transitions, then Xn = Bk. Let, X(i, j) represents a sequence of random variates

Xi, Xi+1, . . . , Xj. The order-k Markov predictor assumes that the future block of

the user can be predicted from the user’s current context that is the sequence of k
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most recent blocks (i.e., X(n− k + 1, n) = Xn−k+1, Xn−k+2, . . . , Xn). Then the block

transition probability can be expressed as

Pr(Xn+1 = Bk′|X(1, n))

= Pr(Xn+1 = Bk′ |X(n− k + 1, n))

=
N(X(n− k + 1, n+ 1))

N(X(n− k + 1, n))

where N(a) denotes the number of times the block sequence a occurs in the block

transition history. With this estimation of transition probability, the O(k) Markov

predictor predicts the future block as Xn+1 = argmax
Bi

P̂ (Xn+1 = Bi|H).

Note, the Markov predictor chooses the block that has highest transition prob-

ability from the current state as the future block. However, we extract all the blocks

with non-zero probability from the current block and provide the future blocks with

top-κ probabilities to the sensor scheduler unit to determine an effective GPS acti-

vation schedule. As the user moves with time, more block transitions are detected

and the block transition probabilities are updated accordingly. In Section 4.2 we

evaluate the performance of Markov predictors with different orders and discuss the

applicability in our context.

3.1.2.2 Block Duration Estimator

The Block Prediction unit discussed above provides a list of future <block,

probability> pairs. However, it does not provide information on how long the user is

likely to stay in the current block. Consequently, it does not answer the question what

would be the most suitable time to activate the GPS again to detect the transition

from current block. A simple approach is to use a predefined velocity (say 1.5m/s or

2m/s) for the user and associate that with the block dimensions to predict the du-

ration. But such an approach is not dynamic enough to incorporate varying human
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mobility behavior. Different users may have different velocities. Another approach

could be using the accelerometer and/or gyroscope to estimate the velocity and direc-

tion to predict the amount of time the user will spend in the current block. Such an

approach may experience some challenges. First, accelerometer consumes significant

amount of energy and needs to be duty cycled carefully [48]. Second, GPS takes

different amount of time in different places. Figure 3.5 shows the amount of time

GPS takes to retrieve location in different parts on our campus by different mobile

phones. Therefore, this factor also needs to be considered while scheduling the GPS

to keep the activation period as short as possible.

A user may spend different amounts of time in different blocks which depend on

his walking speed, remaining distance to reach to the next block, and other conditions

(e.g., time to retrieve location, smartphone model). So we consider two factors in

determining the remaining time in the current block, x1 - that corresponds to the

perpendicular distance to the previous block already traveled by the user in the

current block, and x2 - that corresponds to the total time required to cross the block

and time to retrieve location by GPS in the current block. Thus, the remaining time

in the current block can be written as, tr = f(x1, x2). To explain this, let us consider

a simplified example where a user has entered block B1 from B0 and moving towards

B2. He takes a total time T1 to cross B1 and reach to B2. Suppose his average linear

walking speed in B1 is v, and he has already traveled a linear distance of D in B1.

Therefore, the time after which GPS needs to be activated is tr = T1−(delay for

location retrieval) - D/v implying tr = w1.x1 + w2.x2.

The values of w1 and w2 can vary in different blocks for different users. More-

over, it can change over time if the walking pattern of the user changes in the same

block. Therefore, we take help of associative reinforcement learning (ARL) system

[80] to adjust the values of w1 and w2 and estimate the time duration after which
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the GPS needs to be activated to detect the transition from the current block. In

an associative reinforcement learning task, the learning system and its environment

interact in a closed loop. The learning system takes a context vector as input and

produces output for that. The environment provides a reward to the learning system

by evaluating the output. As a consequence, the learning system is updated. In

particular, we exploit an ARL system where the output can be real numbers [81].

For such cases, the interaction between the learning system and the environment can

be described as follows. At iteration t, the environment provides the learning system

with some pattern vector xn(t) from X = Rn where R is the set of real numbers.

The learning system then produces a random output y(t) selected over some interval

Y ⊆ R. The environment evaluates y(t) and sends the learning system a reward

signal r(t) ∈ R = [0, 1], where r(t) = 1 denotes the maximum reward.

In our case, the input of the ARL system as x = [x1, x2] where x1 is the

perpendicular distance from the current location to previous block, and x2 is the total

time taken to cross the block (measured initially), and the output (y) is the duration

value after which the location sensor would be activated (∆Tk). The functionR (from

equation 3.6) is used as the reward for the ARL system. The value of the constant

γ in R was set to 0.5. Note, the function R can achieve highest value of 1, and it

happens for a ∆Tk that results in the location retrieval exactly on the point of block

transition. Thus, once the ARL system converges, the output values will lead to the

activation of GPS close to the point of block transition. For solving the ARL task,

an approach called Stochastic Real Valued (SRV) learning algorithm was proposed

in [81, 82] that we used. For the sake of space, we will just give the basic idea of

their approach. Their proposed algorithm maintains a Gaussian distribution N to

generate the output value (y) for a given context. It computes the mean value µ of the

distribution as θTnxn, where θ corresponds to [w1, w2] in our case. The other required
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parameter of the distribution σ is generated as, σn = {1/n1/3}. The parameter vector

θ is updated as follows:

θn+1 = θn + σn(r(yn,xn)− r(µn,xn))(yn − µn)xn. (3.7)

Finally, the output value is generated as yn ∼ N (µ, σ2).

3.1.2.3 Sensor Scheduler

The primary responsibility of the sensor scheduler unit is to activate the GPS

when required, and put it in the sleep mode, otherwise. Recall that, we use Markov

predictor to predict the next block. And depending on the order of the Markov

predictor, sLoc may consider the current block and the previous block(s) of the user

to make a prediction on the future block transition. For the convenience of discussion,

we will use the term state that comprises of the block ID(s) used in underlying Markov

state. For example, if a user followed this block sequence B1, B2, B3, we can also say

the user moved from state (< B1, B2 >) to state (< B2, B3 >) when using order-

2 Markov predictor. The sensor scheduler unit maintains an ARL system for each

(current-state, next-state) pair that computes the duration in the current-state before

moving to the next-state. As soon as the sensor scheduler senses that the user is in

the current state, it looks up the possible next states and the corresponding ARL

systems. Then it receives the duration values from each of the ARL systems and

schedules the GPS for activation.

Algorithm 1 describes how the sensor scheduler manages the activation of the

GPS. Note, the two variables s and T are maintained as global variables representing

the current state of the user, and the list of activation times in increasing order for the

current state, respectively. Once activated, the GPS periodically (every tf seconds)

receives the location for a predefined time period (τ) unless the user moves into a
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Figure 3.5: Location retrieval time from GPS for different mobile phones in our
campus

new state. If the user does not move to a new state in the meantime, the GPS is

switched off and scheduled to be activated on the next activation time from the list

T . If the list is exhausted, the GPS keeps on receiving the location with the same

frequency (once every tf seconds) until the user moves to another state. Once the

user moves to the new state s′, it updates the ARL system associated with (s, s′).

Then it looks up the ARL systems for the new state, retrieves the activation time

from each of the ARL systems, and sorts those in increasing order. Finally, it selects

the smallest activation time from the list for GPS activation.

32



Algorithm 1: OnActivation()

1 s: last known state;

2 T : list of activation schedules for s;

Input: index

3 timel ← Now();

4 while true do

5 if (Now()− timel) ≥ τ & index < T.size then

6 break;

7 s′ ← GetCurState();

8 if s 6= s′ then

9 break;

10 Sleep(tf );

11 if s′ = s then

12 index← index+ 1;

13 Schedule(T, index);

14 else

15 Updatelearner(s, s′);

16 s← s′;

17 T ← GetDurationValues(s);

18 Sort(T );

19 Schedule(T, 0);
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Table 3.1: Number of participants with different mobile phones

Mobile device Number of participants
Galaxy S4 2
Galaxy S3 2
Galaxy S2 1

Google Nexus 4 2
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Figure 3.6: Route length distribution of the collected trace

3.2 Performance Evaluation

In this section, we evaluate the performance of the proposed participatory sens-

ing framework. First, we evaluate the performance of sLoc (namely, GPS usage and

block detection accuracy) implemented on Android based smartphones with the help

of real experiments. Then we discuss the effectiveness of the data collection process

by our framework. However, this would need access to many test subjects which was

difficult for us. Therefore, we simulate the PLUS framework for a sample monitor-
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ing application and discuss its performance in terms of energy consumption by the

participating mobile devices.

3.2.1 Performance of sLoc

Initially, we collected real traces of location data with the help of GPS for 4

weeks from seven participants who live nearby UTA campus and walk to the campus

for classes and other activities. With the help of these trace data, we have extracted

necessary parameters (block size, number of block transitions to be considered) as

required by the sLoc scheme. Then we used these parameters in the sLoc implemen-

tation for Android devices to measure its performance.

For the trace collection, the participants used different smartphones as shown

in table 3.1. Each user started the trace collection program to log only when they

walks to the campus. From the collected data, we omitted the traces when users

were at indoor locations. Thus the resulting traces represent different routes taken

by the users nearby their residence and the campus (e.g., home to class, class to

library, class to gym, etc.). In total, there are more than 430 routes (with repetition)

in the traces. The route length distribution is shown in figure 3.6. The monitored

area of our university campus (including student housing) is around 2.5 km2 which

we divide into equal sized smaller blocks. We consider three different block sizes,

namely, 50× 50, 100× 100, and 150× 150 m2 to see the performance of the predictor

model. We split the collected traces into two sets, the training set and the evaluation

set. The training set is used to initially compute the block transition probabilities

and then the evaluation set is used to measure the performance of the block predictor

unit. As the model is expected to simultaneously learn and predict, test data from

the evaluation set is also added to update the block transition probability after it is

used to measure performance.
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Figure 3.7: Predictor availability for block size 50× 50
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Figure 3.8: Predictor availability for block size 100× 100
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Figure 3.9: Predictor availability for block size 150× 150
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Figure 3.10: Future block prediction accuracy for different values of κ for block size
50× 50
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Figure 3.11: Future block prediction accuracy for different values of κ for block size
100× 100
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Figure 3.12: Future block prediction accuracy for different values of κ for block size
150× 150
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First, we measure predictor availability, i.e., the percentage of cases when a

state transition with non zero probability is found from the current state of the user.

We show the results for three different block sizes in Figure 3.7, 3.8 and 3.9. If a

state transition is not found for the current state of the user, GPS is periodically

used (as mentioned in Algorithm 1) to include this transition information to update

the block transition probability. For each of the cases, training sets with different size

were used. In these figures, we report the performance of order-1, order-2 and order-3

Markov predictors in terms of predictor availability. There are several observations

from this results. First, for all the considered block sizes, the predictor availability

increases significantly after one week of training data. However, with two weeks of

training, the predictor availability does not increase noticeably. This is because of

the fundamental limitation of the Markov predictor used in our model as it cannot

make a prediction from a state if it was not visited before by the user. However, for

higher order Markov predictor (e.g., order-3), the predictor availability increase to

some extent using more training data.

Another observation from the plots is, the predictor availability increases with

block size. Note, a user may not always follow the exact same block sequences even

when he follows the same route. For example, a user may take different sidewalks on

the same road on different days. Thus deviating few meters is not uncommon when

the user follows a previously followed route. This deviation can generate different

state sequences especially when the block size is too small. On the other hand,

making the block size too large cannot represent routes with shorter length. We

further notice from the figures that predictor availability is lower for higher order

Markov model using same amount of training data. As a state consists of multiple

blocks in higher order Markov model, the state space becomes larger. As a result,

the training examples cannot always represent all possible state transitions.
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Figure 3.13: Predictor availability from other users’ mobility history for prob. thresh-
old 0.5
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Figure 3.14: Predictor availability from other users’ mobility history for prob. thresh-
old 0.7
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Figure 3.15: Predictor availability from other users’ mobility history for prob. thresh-
old 0.95
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Figure 3.16: Predictor accuracy from other users’ mobility history for prob. threshold
0.5
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Figure 3.17: Predictor accuracy from other users’ mobility history for prob. threshold
0.7
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Figure 3.18: Predictor accuracy from other users’ mobility history for prob. threshold
0.95
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Next, we measure the future block prediction accuracy by the predictor model

built with one week of training data. Note, a state may contain non zero transition

probabilities to multiple states. Rather than considering the transition with the

highest probability, we desire to see the impact of considering different number of

transitions (κ) from the current state. Let us assume the total number of block

predictions made on the evaluation set is n, and the number of cases when a user

actually moved to any of the states with top-κ probabilities is m(κ). We define the

block prediction accuracy considering κ state transition as m(κ)
n

. Figure 3.10, 3.11,

and 3.12 show the block prediction accuracy for different block sizes. For each case,

we varied the value of κ between 1 and 4. We observe that, in general, the block

prediction accuracy increases for increasing values of κ. However, making κ larger

than 3 does not bring any noticeable improvement.

Another observation is, the block prediction accuracy is quite low for small block

(50m×50m). But it is fairly high for blocks with size 100m×100m and 150m×150m.

Considering both block prediction availability and prediction accuracy, we conclude

that blocks with size 100m × 100m can be a reasonable choice, as choosing larger

block size may not yield necessary block transition sequences required by the predictor

models especially for shorter routes. We further notice that block prediction accuracy

significantly increases for order-2 Markov predictor compared to order-1. However,

the accuracy does not increase significantly by choosing order-3 over order-2 predictor.

Since the state space in order-3 Markov predictor is significantly larger than order-2,

we conclude that the order-2 Markov predictor would be appropriate in our context.

From the above discussion, it is clear that it requires some time to build the

mobility history and increase predictor availability. However, using a single user’s

mobility data may not cover all possible states very quickly as a user is likely to visit

new states over time. Therefore, we investigate the possibility of using other users’
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mobility data for enhancing predictor availability and reducing training period. To

this end, for each user we apply all other users’ mobility history and observe the

impact in terms of predictor availability and prediction accuracy. However, we apply

some constraints in choosing the predictors as the combined mobility of all other

user may cause a lot of incorrect predictions. Therefore, we choose only a single

state prediction from the current state which has the highest probability as well as

larger than a given threshold. Figure 3.13, 3.14, 3.15 show predictor availability and

figure 3.16, 3.17, 3.18 show predictor accuracy from other users’ mobility history

for block size 100m × 100m and three different probability threshold i.e., 0.5, 0.7,

and 0.95, respectively. From the figures, we observe that smaller choice of threshold

probability may result in higher prediction availabilities but quite low prediction

accuracy. However, choosing very high value of threshold probability can result in

high prediction accuracy.
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Figure 3.19: GPS usage and block detection accuracy together
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Now we measure the performance of the sLoc scheme for the above choice of

block size and κ from two different aspects, the block detection accuracy and the GPS

usage. We performed the experiments for six different routes by three participants.

This time, the participating users were required to carry two smartphones together,

one running sLoc, and the other running GPS with a periodicity of two seconds. The

parameters tf and τ in Algorithm 1 were set to 2s and 10s respectively. We define the

block detection accuracy as
∑n

1 T
s
i /
∑n

1 T
m
i , where T si is the amount of time spent in

block Bi, as detected by the smartphone running sLoc. Tmi is the actual amount of

time spent in block Bi, as detected by the smartphone running GPS with 2s frequency,

and n is the total number of blocks in the considered routes. Note, the block detection

accuracy is different than the block prediction accuracy described above. Even if there

is no prediction for a state transition, the block detection accuracy does not have to

be low. In that case, it will use the GPS periodically to detect a new state transition

and use that information to update the block transition probabilities. The GPS usage

(in percentage) is defined as the fraction of the amount of time GPS was used by the

smartphone running sLoc and the total amount of time GPS was used by the second

smartphone, summed over all of the routes.

Figure 3.19 shows the GPS usage and block detection accuracy for 15 itera-

tions. Initially, the accuracy is very high (close to 100%) and GPS usage is also very

high (almost 100%) as the block transition probabilities are not available yet. This

indicates that sLoc can provide block level location with very high accuracy for an

unknown route, however it cannot save any energy consumed by GPS. After that,

the accuracy sharply reduces for several iterations. This happens because after the

first few iterations, the block prediction unit of sLoc starts to make prediction on

future block transitions. However, the block duration estimator unit needs several

iterations to make accurate estimation on the duration values in the current block. As
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the ARL systems used in the block duration estimator unit converge, the estimated

duration values become close to the actual duration values, and consequently GPS

usage decreases.

3.2.2 Performance of PLUS Framework

Now we will discuss the performance of the PLUS framework by considering

an outdoor Wi-Fi signal strength monitoring application across our campus. A block

size was considered as 100m× 100m. Inside a block, we assumed a mobile device can

be at any point with a sensing radius of 25m. The data reporting cycle is once in 15

seconds. A mobile phone runs sLoc in the background for localization. If it decides

to contribute data in a particular data collection round, it performs a Wi-Fi scan

and sends the data (scan result) to the server using 3G communication. We assume

that size of the data file is 1KB on average. For energy consumption by different

sensors, we used the model proposed in [83]. According to that model, a Wi-Fi scan

takes 545mJ, GPS takes 1425mJ. For 3G communication, energy consumption ranges

between 6000mJ and 12000mJ for 3B and 16KB of data respectively.

We compare the performance of our PLUS framework with two other methods,

namely, the naive method and the Minimum Device for Coverage (MDC). In the

naive method, each mobile device sends the collected data to the server. In the MDC

method, the server needs to know the current location of each mobile device. Based

on the coverage requirement, it then selects the minimum number of mobile devices

to collect data samples. Note, MDC works as the optimal method to achieve partial

data coverage when server knows the location of the mobile devices. For both PLUS

and MDC methods, we considered two different coverage requirements, namely 70%

and 90%. We simulated the considered monitoring application for 10 minutes.

46



10 20 30 40 50 60 70 80 90 100

mobile users

0

10

20

30

40

50

to
ta

l 
e
n
e
rg

y
(k

J)

Naive

MDC(cov 70%)

PLUS(cov 70%)

MDC(cov 90%)

PLUS(cov 90%)

Figure 3.20: Total energy consumed by all the mobile devices

Figure 3.20 shows the total energy consumption across the number of mobile

devices for a single block. The naive method consumes more energy than all other

methods for most of the cases. This is expected because the naive method collects

data from all the devices invariably. The naive method only consumes marginally less

energy than the MDC method for 90% coverage when the number of mobile devices is

less than 20. To explain the reason, we consider an example where the total number

of mobile devices in the block is Nt, and the number of mobile devices selected by

the MDC method to collect data is Ns, for a certain coverage requirement. For the

MDC method, each of the Nt devices needs to send its location to the server at first.

Then only the Ns devices send the collected data to the server. Note, sending the

collected data to the server consumes more energy than sending only the location.

In the naive method, all the devices need to send data to the server. Therefore,

for the MDC method, when Nt is significantly larger than Ns, the total consumed

energy is reasonably lower than the naive method. Only when Nt and Ns are same
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or very close, the MDC method takes more energy than the naive method. On the

other hand, in our framework PLUS, a mobile device does not send its location to the

server, thus saves significant amount of communication energy. Therefore, for both

the considered coverage requirements, PLUS consumes significantly less energy than

the MDC method.

3.3 Summary

In this chapter, we described our PLUS framework in detail. Using PLUS, a

continuous monitoring application can specify a desired partial coverage requirement

of data. The framework performs data collection intelligently to achieve the required

coverage while minimizing the energy consumption for localization and communica-

tion with the server. We also presented a localization scheme called sLoc to determine

the block level location of the user in an energy efficient way. Real world experiments

showed that sLoc can save significant amount of energy when a user follows his reg-

ular routes. Finally, by emulating a continuous monitoring application, we showed

that PLUS can save a good amount of energy of the mobile devices compared to

traditional methods.

Although the proposed framework is novel and energy efficient, it still has scope

for further improvements. For example, currently sLoc is not designed to work while

the user is indoor or traveling outdoor by vehicles. In the future, we are interested to

adapt our framework to collect data in those scenarios in an energy efficient manner.

Another assumption of sLoc is that the GPS is deactivated by default. However, if

GPS is currently used by another application and location data is not stale, sLoc

could make use of it instead of activating GPS again which can save more energy. In

the future, we also plan to investigate this issue.
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CHAPTER 4

DATA COLLECTION FROM URBAN STREET

In this chapter, we present our framework STREET for real-time participatory

monitoring application for urban streets [41]. STREET shares same design principle

with PLUS in terms of server communication. However, unlike PLUS, STREET can

ensure not only a given partial coverage, but also full coverage, and k-coverage of the

collected data from the monitored streets. Similar to the PLUS framework, STREET

does not require a participating mobile device to send its location to the server. Thus

it can save a good amount of energy in continuous monitoring applications. Moreover,

it uses a simple localization scheme to minimize the usage of location sensor. By

emulating a continuous monitoring application using STREET framework, we show

that it can save significant amount of energy as compared to traditional approaches.

The rest of the chapter is organized as follows. Section 4.1 introduces the

STREET framework, describes the design goals, and explains the data collection

process and localization scheme in details. Results from simulation experiments are

presented in Section 4.2. Finally, contributions are summarized in Section 4.3 with

direction for future research.

4.1 Description of STREET Framework

In this section, we describe the data collection process of the proposed STREET

framework. The architecture of our framework is shown in Figure 4.3. The monitored

area Q under consideration consists of multiple street segments in a busy part of the

city (an example is shown in Figure 4.1). There is a server that offers web services
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for receiving data samples. When pedestrians walk on the streets of the monitored

area, data samples are automatically collected by their mobile devices and sent to the

server. The collected data samples are then aggregated and analyzed in the server as

required. Note here that we intend to collect data samples only from the streets of the

monitored area. Therefore, if the collected data samples cover the streets, we assume

that the entire monitored area is covered. Also, we assume that the mobile device

(i.e., smartphone) of a participant is equipped with necessary sensors to perform the

sensing task (i.e., collect data sample and send to the server). We further assume

that the involved sensor performing the sensing task has a uniform sensing radius of

r.

Figure 4.1: Example of monitored area

Initially a participant is required to install a client software on his mobile device

that asks for permission to access necessary sensors and collect samples automatically

when required. The client software contains a data sampling unit and a localization

unit. A mobile device is considered for data collection once in a predefined time

interval, known as the data reporting window. The localization unit can provide the

necessary location information of the user at any instant, and based on that the data
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sampling unit decides if the mobile device is required to perform the sensing task. In

the next two subsections, we describe how both of these units work.

Street Segment

Figure 4.2: Street segment

4.1.1 Data Sampling Unit

The data sampling unit is responsible for collecting samples from the street

segments and uploading these to the server. The principle of this unit is similar to the

PLUS framework (previous chapter). However, unlike ensuring only partial coverage,

we ensure partial coverage, full coverage and k-coverage for a street network composed

of multiple street segments in the urban area. We have already introduced the notion

of desired sensing coverage (DSC) in previous chapter as a metric of partial coverage.

Here we will use the same metric for street networks. In the following, we will discuss

how data samples are collected in STREET framework.
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Figure 4.3: Architecture of STREET framework

4.1.1.1 Partial coverage

We adapt the concept of DSC for street segments and derive the necessary num-

ber of data samples to ensure a given value of DSC following the approach presented

in [40, 25].

We consider a street segment Si of length L. We assume that the width of the

street is smaller than the sensing radius of the considered sensor (this is a common

assumption as used in [30, 84]). As a result, covering the street segment only length-

wise is adequate. Pedestrians carrying mobile devices (i.e., participants) walk in the

street segment. We assume that a participant can be located at any point in Si in a

data reporting window with uniform probability.

Based on its position in Si, a mobile device can sense any point from an extended

covered street segment with length LE = L + 2r (see Figure 4.4). Let L̄ represents

the portion of street segment from Si covered by a randomly selected mobile device.

Therefore, the expected value of L̄ can be written as E[L̄] = L
LE

= L
L+2r

.
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Si

L+2r
r L

Figure 4.4: Covered portion by two mobile devices in a street segment

The probability that a point in the street segment Si is not covered by N mobile

devices selected independently and at random can be derived as follows

Pk =

(
L− L̄
L

)N
(4.1)

Therefore, the desired sensing coverage λ can be written as

λ = 1−
(
L− L̄
L

)N
(4.2)

Therefore, the smallest value of k that satisfies the DSC can be obtained as,

N =
log(1− λ)

log
(

L
L+2r

) (4.3)

With the help of Equation (4.3), we can find the minimum number of required data

samples to be collected to ensure a given partial coverage requirement for a street

segment. As the monitored area consists of multiple street segments, our goal is

to ensure partial coverage for each street segment individually. Now, based on the

minimum number of required samples and participant density, each street segment is

associated with different probabilities for different time periods. The server delivers

such probability values to the mobile devices during initial program setup. In each

data collection window, at first a participating mobile device detects the current street

segment using the localization scheme (described in Section 4.1.2). Then it decides if
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a data sample needs to be collected for this street segment according to the associated

probability, and depending on the decision, it collects a data sample and sends to the

server.

4.1.1.2 Full coverage and k-coverage

Let us now discuss how STREET framework ensures full coverage, and k-

coverage of collected data from the monitored area. Before proceeding further, we

define full coverage in our context.

Definition 3 (full coverage). A street segment Si is called fully covered, if data

samples are collected in such a way that each point in Si is covered at least once in a

data reporting window.

Depending on the nature of the application, sometimes it is helpful to monitor

each point in a street segment by more than 1 mobile devices (e.g., with k devices),

which is known as k-coverage. Formally,

Definition 4 (k-coverage). A street segment Si is called k-covered, if data samples

are collected in such a way that each point in Si is covered by at least k mobile devices

in a data reporting window.

d2

Si

2-covered
d1

1-covered

M1M1 M2

Figure 4.5: Different covered portion in a street segment
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Figure 4.5 shows an example where different parts of a street segment are

covered differently. Specifically, the portion of the street d1 is fully covered (or 1-

covered) whereas d2 is 2-covered since this portion is covered by 2 different mobile

devices. Note, when a street segment is 1-covered (k = 1), it is also fully covered.

For convenience of discussion, we will use the terms full coverage and 1-coverage

interchangeably.

Therefore, our goal is to design a method to ensure k-coverage for each road

segment in the monitored area. Note here that using the approach described in

Section 4.1.1.1, we cannot attain full coverage. An alternate option is to collect data

samples to cover an entire street segment by a single mobile device. However, that

may put burden on the battery of the mobile device. Therefore, we virtually divide

a street segment into equal sized smaller parts (say 40m, 50m, etc.) that we refer as

street fragments (as shown in Figure 4.6. Instead of collecting data samples for the

entire street segment, a mobile device collects data samples to cover a street fragment

at a time, and sends to the server (that we refer as fragment sensing task for the

convenience of discussion). Suppose a street segment Si is divided into M fragments.

Therefore to ensure k-coverage, our goal is to cover each of the M fragments at least

k times in a given time window T .

Frag MFrag 1 Frag 2

L

Figure 4.6: A street segment divided into M fragments
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When a participant enters a street segment, the mobile device first decides if it

needs to perform the sensing task based on a probability. If so, the device randomly

chooses a street fragment and performs the sensing task only for that fragment (i.e.,

assuming that it knows the location the device collects data samples when he walks

through the chosen fragment). In other words, it collects data samples to cover one

of the M fragments in Si uniformly at random. Let us assume, a total of Nk such

fragment sensing tasks are required to cover the street segment k times in this fashion.

To determine the value of Nk, we apply the famous Dixie Cup Problem (also known

as the Generalized Coupon Collector Problem) [85]. This problem can be described as

follows. Suppose there are n distinct types of coupons in a bin. Each type of coupon

can be selected from the bin with uniform probability. Determine the total number of

coupons that need to be selected from the bin to collect k sets of all distinct coupons.

In our case, a street segment has M different fragments and each one can be selected

with uniform probability by a mobile device. According to the solution provided by

Newman and Shepp [85], the minimum number of fragment sensing tasks (Nk) to

select each of the M fragments at least k times is as follows.

Nk = M logM + (k − 1)M log logM +M.Ck + o(M) (4.4)

where Ck is a constant depending on k and can be derived using the bound due to

Erdos and Renyi [86] as follows.

P (Nk < M logM+(k − 1)M log logM + cM)→

exp

(
− e−c

(k − 1)!

) (4.5)

In Equation 4.5, the constant value c can be adjusted in such a way that Nk

is adequate to select each of the M fragments k times with high probability. Fig-

ure 4.7 plots the probability of Nk to be within the given bound (i.e., M logM +
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(k − 1)M log logM + cM) for different values of k and c. Here we see that when k

is larger, small values of c can result in very high probability. Note, for full coverage

(k = 1), the Dixie Cup problem reduces to the original Coupon Collector problem,

and the number of required fragment sensing task becomes Nk = N1 = M logM .

Using Nk and the participant density information, the probability values to perform

the fragment sensing task is computed and delivered to the mobile devices.
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Figure 4.7: Probability values for varying c and k in Equation (4.5)

4.1.2 Localization Scheme

The previous subsections presented how the data sampling unit executes the

sensing task in two different cases, namely, partial coverage and k-coverage (as well

as full coverage). In each case, a mobile device requires location information to

participate. In particular, for partial coverage, a mobile device needs to know which

street segment the participant is walking through. For k-coverage, a device requires

to identify a fragment in a street segment to execute the sensing task. As we desire to
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support continuous data collection, the location information is expected to be readily

available at any instant. In this section, we present a localization scheme, called

StreetLoc, used by the mobile devices to participate in the STREET framework. It

is designed to provide location information at any instant as required by each of the

above cases.

StreetLoc shares same idea as in sLoc for localization, that is, once an entrance

to a street segment is detected, the GPS can be deactivated for the time duration the

pedestrian is likely to take to reach the end of the street segment. Moreover a street

segment is several hundred feet in length in most city centers [87]. Therefore, we

can assume that the walking speed of a participant stays uniform in a street segment

[31]. As a result, instead of retrieving location continuously, if we can detect the

entrance and exit from a street segment, the location for the intermediate points

of the segment can be derived with the help of the walking speed of a participant.

Second, the walking speed of a participant shows spatial and temporal consistency,

i.e., a pedestrian maintains similar speed in the same street segment in similar hours

of the day. Thus, by exploiting history of mobility behavior, the walking speed of a

participant in a street segment can be easily estimated. Once the transition from the

current segment(say Scur) to the next segment (say Snext) is detected, the location

sensor can be deactivated for the amount of time the user is likely to spend in Snext.

Therefore, the key problem in our localization scheme turns out to be the detection

of the street segment transitions of a participant. In other words, using the mobility

history H of a participant, we need to schedule the location sensor (e.g., GPS) to

activate only during the street segment transitions. Formally we can define the Street

Segment Transition Detection Problem (STDP) as follows.

Definition 5 (STDP). Given a mobile user is walking through the street segments

S1, S2, S3, . . ., and his previous mobility history H, the Street Segment Transition
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Detection Problem is to determine time intervals ∆t1,∆t2,∆t3, . . ., to activate the

location sensor that detects the transitions and minimizes
∑∞

j=1 |tactj − tsenj |. Here tactj

is the time when the participant leaves the j-th street segment and tsenj is the time

when location is received after activating the location sensor to detect the exit from

j-th segment.

Walking 
speed estim.

GPS activ. 
delay estim.

GPS 
scheduler

Personal 
mobility data

Figure 4.8: StreetLoc workflow

Now we discuss how the StreetLoc scheme solves the STDP problem by ex-

ploiting individual mobility history. StreetLoc runs in the background to provide

necessary location information whenever a participant walks around the monitored

area. Note here that we could use any location sensor as long as it is able to provide

location during the street segment transitions. In our case, we use GPS to retrieve

the location. Figure 4.8 shows the basic components of the StreetLoc scheme. The

GPS activation delay estimator keeps track if there is any delay associated with the

GPS usage. The walking speed estimator maintains the walking speed of the user in

different street segments. With the help of these two components, the GPS scheduler

decides when to activate GPS to detect the street transitions. Consequently, personal

59



mobility data is produced and used to estimate walking speed and GPS activation

delay. We describe each of the components in the following.

4.1.2.1 GPS activation delay estimator

The time required to retrieve location after activating GPS varies and depends

on several factors. First, it depends on the chip used in the mobile device. Therefore,

different mobile devices can take different time to retrieve location. Second, it depends

on the location where the device is used. While in the indoor locations, it may not

work at all; whereas in different outdoor locations, it can take a few seconds to tens

of seconds (as shown in the previous chapter) Therefore, the activation delay can play

an important role to determine an efficient schedule. To this end, StreetLoc keeps

track of the previous activation delays in each street segment, i.e., the most recent 3

delay values. When requested, the activation delay for a street segment is estimated

as the maximum of the existing delay values.

4.1.2.2 Walking speed estimator

StreetLoc maintains individual walking speed information as it can vary from

person to person [88, 89]. Besides this, StreetLoc also considers spatial and temporal

influence [90] to estimate the walking speed. To this end, it maintains last 3 ob-

servations of a participant’s walking speed for both peak and off-peak hours. Note

here that the GPS will be scheduled to activate when the participant approaches the

end of a street segment and deactivated upon his entrance to a new segment. Thus,

StreetLoc records instants of both the entrance and departure from a segment. Using

the time difference and the distance traveled by the participant in a street segment,

his walking speed is calculated and stored for future use. The speed of a participant

in a segment is estimated as the average of these recent values.
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4.1.2.3 GPS scheduler

The GPS scheduler takes help from the above two components and is responsible

for activating and deactivating the GPS as required. When a participant enters in

a street segment Si, it looks up the corresponding GPS activation delay. Suppose

the activation delay for Si is τ di . Moreover, based on the stored walking speeds, it

determines how much time the participant is likely to take to reach at the end of Si .

Suppose, in a peak hour, the participant is at point P in Si (as detected by StreetLoc

when he entered here from previous street segment), and the maximum speed value

stored for Si (for peak hours) is vmax. Therefore, the participant is likely to take

minimum τ ri = D/vmax amount of time to reach to the end of Si. Finally, the GPS

is scheduled to activate after time interval τ ri − τ di . It remains activated until the

participant enters to the next street segment.

D

P
Figure 4.9: Position of a participant in a street segment

4.2 Performance Evaluation

In this section, we discuss the performance of our proposed framework. We sim-

ulate a continuous Wi-Fi signal strength monitoring application where participating

mobile devices perform Wi-Fi scans and send the scan results to a server using 3G
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communication. The sensing radius of the participating mobile devices is assumed as

8m. We used the model proposed in [83] for energy consumption by different sensors,

according to which a Wi-Fi scan takes 545mJ, GPS takes 1425mJ, and 3G commu-

nication starts at 6000mJ for sending 3KB data or less and goes up to 12000mJ for

sending 16KB of data. We assume that a Wi-Fi scan can generate 5KB of data.

Figure 4.10: Monitored area

The monitored area consists of 3 × 3 square shaped city blocks as shown in

Figure 4.10, with a total of 24 street segments, each of which is 120m long. To generate

the moving trajectories of the participants, we used a mobility model similar to the

Manhattan mobility model [91]. Specifically, a participant walks along a street with a

randomly picked speed in the range {1.2, 3}m/s. At an intersection, the participant

can go straight with 0.5 probability, turn left with 0.25 probability, or turn right

with 0.25 probability. Also, at an intersection, he can wait for a randomly picked

amount of time between 2s and 10s with 0.3 probability. Different street segments
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are associated with different GPS activation delays which can take a random value

between 1s and 6s.
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Figure 4.11: GPS usage by StreetLoc

At first we show the performance of our localization scheme StreetLoc used by

the mobile devices of the participants. Figure 4.11 shows the percentage of time GPS

was activated by 10 random participants to detect the street segment transitions for

different iterations. When a participant walks on a street segment for the first time

(first iteration), StreetLoc keeps the GPS activated all the time to record the entrance

and exit instants. After that, StreetLoc keeps the GPS on only for a small fraction

of time when the participant is close to the street intersections. From the figure, we

observe that on average GPS was activated only 11-14% amount of time. We also

notice from the error bars that occasionally GPS can be activated for larger portion

of time. This happens because a participant may wait for a while in some of the

intersections before moving to the next segment due to traffic signals or so. And in

such cases, StreetLoc has to keep the GPS activated for larger period of time. One
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possibility to reduce the GPS usage more is to use an accelerometer to detect the

motion state of the participant at the intersections. We leave that as a future work.

Next, we discuss the performance of the STREET framework assuming a par-

ticipating device uses our localization scheme in the background to retrieve location

information. We compare the performance in terms of energy consumption of our

framework with two other methods. First one is the naive method, where each par-

ticipant retrieves location from the GPS, collects data sample and sends those to the

server. The second one is called the server based optimal method (SOM) which has a

server that knows the location of the participating devices. And based on that, the

server coordinates the data collection by requesting the minimum number of devices

to collect data samples. For the SOM method, we assume that a participating device

retrieves location information only at the intersections and sends those to the server.

Also the walking speed information can be estimated at no extra cost from the loca-

tions and the distance traveled. This aligns with the principle of the optimal method

used in [31]. For fair comparison, we assume that a mobile device in the SOM method

takes same energy for localization as StreetLoc, since both of these methods activate

the location sensor only at the street intersections.

First we evaluate the performance of our framework to achieve varying values

of partial coverage. Figure 4.12 shows the number of data samples required by our

STREET framework and compare it with the SOM method for different partial cov-

erage values. From the plot, we observe that, to achieve a given partial coverage of

data, our method needs to collect more data samples than the optimal SOM method.

This is expected as the SOM method knows the trajectory of the participants and

can choose necessary mobile devices to collect data samples at favorable locations to

cover the given portion of a street segment.
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Figure 4.12: Number of data samples required for different partial coverage
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Figure 4.13: Energy consumption by different methods
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Figure 4.13 shows the energy consumed in a data reporting window by our

framework and compare it with the naive method and the SOM method. We con-

sider two variations of our framework, namely, STREET (cov. 60%) and STREET

(cov. 80%), to cover 60% and 80% of a street segment, and compare these with the

corresponding SOM variants, i.e., SOM (cov 60%) and SOM (cov 80%). From the

plot we observe that both variants of the SOM method consumes less energy than the

naive method except when the number of participant is very low. This happens be-

cause, SOM method saves energy by collecting data samples from the mobile devices

selectively. In other words, it avoids collecting data samples from the participants

whose data samples would be redundant (after satisfying the coverage requirement).

However, if there is no such redundant participant, SOM has to collect data samples

from each of them. And in such a case, the mobile devices spend some extra energy

by communicating with the server to inform their location information before send-

ing the sensed data. On the other hand, each variant of the STREET framework

outperforms the corresponding SOM method (and also the naive method in terms of

energy consumption.

Now we evaluate the performance of our framework to achieve k-coverage. In

this case, instead of collecting a single data sample, a mobile device collects data

samples to cover a fragment (for both STREET and SOM method). We divide a

street segment into 4 equal sized fragments. Figure 4.14 shows the number of fragment

sensing tasks required by our framework for different values of k, and compares those

with the optimal SOM method. As expected, our framework has to perform some

extra fragment sensing tasks than the SOM method. However we notice that, for

increasing values of k with (k > 2), the ratio of this extra fragment sensing tasks

decreases. Figure 4.15 presents the energy consumed by 3 variants of our STREET

framework, namely full or 1-coverage, 2-coverage and 4-coverage, and compares those
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with the corresponding SOM variants. In the plot, we observe that each variant of

our framework consumes less energy than the corresponding SOM method for large

number of participants.
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Figure 4.14: Number of fragment sensing tasks for different coverage req.

4.3 Summary

In this chapter, we presented STREET, an energy efficient framework for data

collection using participatory sensing from urban streets. The framework can ensure

partial coverage, full coverage and k-coverage of collected data. We also presented a

simple localization scheme for scheduling GPS of the mobile devices to participate in

the data collection process. Finally, by emulating a continuous monitoring applica-

tion, we showed that our proposed framework STREET can save a good amount of

energy of the mobile devices compared to traditional methods.
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Figure 4.15: Energy consumption by SOM and STREET for varying k

Although the proposed framework can collect data in an energy efficient manner,

it still has scope for further improvements. For example, the localization scheme

StreetLoc used by the participating mobile devices currently keeps the GPS activated

when a user makes transition from one street segment to another. However, the time

to make the transition can be large in the presence of traffic and/or signal. In such

case, we could investigate if a duty cycled accelerometer can assist and reduce the

energy consumption. Another interesting research direction could be to include the

remaining battery life of the mobile devices in the data collection process. Currently

in our STREET framework, all mobile devices on a street segment perform the sensing

task with equal probability. But it will be interesting to investigate how coverage is

achieved when mobile devices perform sensing task with varying probabilities, i.e.,

with a function of remaining battery life.
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CHAPTER 5

ONLINE STORAGE AND BACKUP SERVICE

In this chapter, we introduce PeerVault [92], a platform that exploits the long-

term availability of online computing devices, as well as their idle resources, in order

to realize a distributed online backup service based on a P2P infrastructure. In this

approach, participating users advertise their unused storage and network resources

based on which PeerVault decides how to store the data by ensuring their long-

term availability. To receive the backup service, users are not explicitly required to

contribute any resources. Even though the backup service can be supported by an

appropriate revenue model [93], in this work we focus on the architectural aspects of

the system. The major contributions of this chapter are as follows.

• We design a novel distributed storage system based on erasure coding which

realizes a seamless online backup service on top of idle peers connected over the

Internet.

• We propose the concept of peer path to derive an efficient solution for distribut-

ing data to the peers. Peer paths encapsulate individual peer availabilities to

offer a seamless backup service over a given time interval.

• We devise a distributed monitoring scheme to detect peer churn. The proposed

algorithm is shown to monitor all the involved peers with high probability, while

incurring a nominal bandwidth.

• Through extensive simulations based on the traces of the SETI@home project

[42], we show that the proposed approach is effective in terms of long-term

service availability.
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The remainder of the chapter is organized as follows. Section 5.1 details the

proposed PeerVault architecture with focus on the feasibility of the offered service.

Section 5.2 introduces a randomized scheme to monitor peer churn in our system.

Section 5.3 presents the details of the simulation setup and the obtained results.

finally, Sect. 4.3 summarizes with directions for future research.

5.1 Description of PeerVault Architecture

The proposed PeerVault architecture is based on the three basic components

illustrated in Fig. 6.1. The source peers are the end-users of the system and are

willing to store data (namely, files) in exchange for a high reliability. On the other

hand, the storage peers provide their bandwidth and storage resources to realize the

distributed backup service. Finally, the tracker supervises the resources offered by

the storage peers as well as the mapping between files and peers. Source peers can

request a certain amount of remote storage space for a particular period of time,

with a minimum bandwidth desired for uploading or retrieving the data. Similarly,

a storage peer can choose the amount of space it is willing to share, the minimum

upload and download bandwidth, and its availability periods.

Throughout our discussion, the availability of a storage peer will refer to its

compliance with the advertised resources. We will refer to service availability of

PeerVault at a given time instant as the accessibility of the stored files at that partic-

ular instant. Moreover, we will refer to service reliability as the long-term availability

(i.e., in a sufficiently large time period) of the offered service. Since PeerVault is

based on a P2P infrastructure, intermittent deviation from the advertised resources

and also permanent departure of the storage peers are possible. The service avail-

ability of PeerVault relies on the group availability of the storage peers instead of the

individual availabilities. Thus, service availability can be ensured, even when storage
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peers have some deviation from their advertised resources. Moreover, in Sect. 5.2 we

explicitly provide a mechanism to detect and adjust with the deviations to ensure

service reliability.

5.1.1 Distributed Storage Scheme

In PeerVault, a file is distributed by a source peer to a set of storage peers in the

form of chunks. We exploit erasure coding to create these chunks from a given file.

The basic idea behind this approach is to encode data by adding some redundancy.

As a result, the original data can be obtained from the encoded data even when part

of them is not available. Erasure coding operates on individual chunks of a file, where

each chunk is of fixed size λ. In the following, we will assume that the source data

(i.e., a file) is split into k chunks, and then encoded into n = ηk chunks, where η is

the replication factor (see Fig. 6.1). Erasure coding guarantees that the original file

can be reconstructed from any k distinct encoded chunks among the n encoded ones.

A suitable value of η is obtained through a preliminary negotiation phase be-

tween the source peer and the tracker, based on the resources available in the system.

After that, the source peer applies erasure coding on the given file to produce n

different chunks. The tracker derives a mapping between an encoded chunk and a

set of storage peers, known as a peer path. The storage peers in the mapping are

selected based on their advertised resources. Thus, for the entire file (i.e., the n en-

coded chunks), the tracker finds n peer paths and provides the related mapping to

the source peer. The tracker also ensures that no storage peer receives more than

k − 1 chunks of a given file. As a consequence, no storage peer can reconstruct or

access the given file.
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Figure 5.1: System Architecture of PeerVault

5.1.2 Characterization of Storage Peers

Different storage peers provide their resources during different time intervals.

On the other hand, a source peer may need to store or retrieve a file at any time

instant. In the following, we will build our storage scheme based on the availability

of the storage peers so that the requirements of the source peers are successfully

satisfied.

First, we denote the i-th storage peer by means of its unique identifier, pi. We

assume that the availability of storage peers is periodic over a time frame, defined

as service time frame. Specifically, the availability of storage peers is characterized

in terms of the considered service time frame. For instance, a given peer could be

available from Monday to Friday between 12 AM to 8 PM when the service time

frame is equal to one week. Within a service time frame, a peer can be available

during multiple contiguous time intervals, referred to as the availability periods. We

represent the j-th availability period of pi as pij. In detail, we define as arrival time

and departure time the instants corresponding to the beginning and the end of a

single (contiguous) availability period, respectively.
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Figure 5.2: Availability periods of different storage peers as a function of time
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For a given availability period pij, we denote the corresponding arrival time

as a(pij) and the departure time as d(pij). Each availability period pij is associated

with its offered bandwidth b(pij), which is the minimum between the upload and

download bandwidths of the storage peer during the availability period. Moreover,

each availability period has an associated cost per unit storage, represented by c(pij).

The duration of an availability period is denoted by A(pij) = (a(pij), d(pij)). The

overlapping time between two availability periods pij and pkl is finally defined as

T (pij, pkl) = min{d(pij), d(pkl)} − max{a(pij), a(pkl)} if d(pkl) > a(pij) and d(pij) >

a(pkl), otherwise T (pij, pkl) = 0.
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Let us consider the example scenario represented in Fig. 5.2. For clarity, we

assume that each storage peer has a single availability period, denoted by a single

subscript corresponding to the peer identifier (i.e., pi represents the only availability

period of the i-th peer). The durations of the availability periods p1 and p2 are

A(p1) = (t0, t3) and A(p2) = (t1, t4), respectively. Note here that the availability

period p0 overlaps with both p1 and p2. Specifically, the overlapping time between p0

and p1 is T (p0, p1) = t2 − t0, while that between p0 and p2 is T (p0, p2) = t2 − t1.

5.1.3 Managing Storage Requests

The backup service is requested by a source peer (for an individual file) in

terms of the following parameters: the target availability interval (δs, δe); the desired

minimum download bandwidth µ; and the requested storage space ρ. We assume that

the chunk size for the given file is λ and that the target availability interval requested

by the source peer is equal to the service time frame.

We use interval graphs [94] to model the considered scenario. An undirected

graph G = (V,E) is called an interval graph if a one-to-one mapping between the

vertices V and a set of intervals I can be established, such that two vertices are

connected by an edge in G if and only if there is an intersection between the corre-

sponding intervals. In our case, V = {pij} and I = {Iij} = A(pij) = {(a(pij), d(pij))}

for 0 ≤ i < m and 0 ≤ j < ni, where m is the number of storage peers and ni is the

number of availability periods of pi.

We construct a constrained interval graph, Gc, for the given storage request

according to the availability period of the storage peers. Let us assume, for an avail-

ability period pij, the offered bandwidth and the cost are denoted by b(pij) and c(pij),

respectively. Now we restrict the nodes in the graph Gc to those with offered band-

width higher than µ
k
. Furthermore, we restrict the edges between any two nodes pij
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and pkl so that their overlapping time is longer than the minimum overlapping time

τ , where τ = (min{b(pij), b(pkl)})−1 · λ. Note that a chunk stored in a peer can be

transferred to the next peer along the associated peer path in the minimum over-

lapping time. Finally, we define the weight of an edge between nodes pij and pkl as

w(pij, pkl) =
c(pij)+c(pkl)

2
.

On the basis of the target availability interval (δs, δe), we add two dummy

availability periods ps and pt, so that a storage request can be mapped to a path

between a single source and a single destination in Gc. The duration of the availability

periods associated to the dummy nodes are set to A(ps) = (δs, δs + τ) and A(pt) =

(δe − τ, δe + τ), respectively. We also set b(ps) = b(pt) = µ
k

and c(ps) = c(pt) = 0.

As a consequence, a peer path can be referred by a path between ps and pt in Gc.

Formally, a peer path associated with the interval (δs, δe) is the set of m availability

periods P(δs, δe) = {pi1j1 , pi2j2 , . . . , pimjm} such that T
(
pixjy , pix+1jy+1

)
> τ , ∀i ∈

[1,m], a(pi1j1) ≤ δs and d(pimjm) ≥ δe. For instance, P(t0, t6) = {ps, p0, p2, p3, pt}

is a peer path in Fig. 5.3. Note that the parameters assigned to the dummy nodes

ensure the inclusion of the peers with the required amount of overlapping time in a

peer path.

For a storage request with n encoded chunks, our system associates a distinct

peer path Pr(δs, δe), with 0 ≤ r < n, to each of the chunks in the source file. For a

storage request, we intend to assign at most one chunk to a single availability period so

that any interruption during this availability period has minimal impact. Moreover, a

storage peer is not allowed to receive more than k−1 chunks of the file, even though it

may have multiple availability periods. Otherwise, it would be possible for a storage

peer to obtain k or more chunks and reconstruct the file. As a consequence, at most

k − 1 availability periods of a storage peer are allowed to belong to a single storage

request. To this end, for each storage peer pi, we sort the availability periods based on
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the weight ψ(pij)A(pij), for 0 ≤ j < ni in decreasing order, where ψ(pij) represents

the probability of pi being online during pij as explained in Sect. 5.1.5. Thus, we

further restrict Gc by taking the top k − 1 availability periods from the sorted list.

Finally, to serve the storage request, PeerVault selects the set of peer paths

X =
{
∪n−1j=0Pj(δs, δe)

}
so that Pi ∩ Pj = {ps, pt}, ∀i 6= j and the total cost of the

availability periods in the selected peer paths is minimized. Note that this problem

can be mapped to the minimum weight n-node disjoint path problem in an undirected

graph [95] which is well studied in the literature, and can be solved in polynomial

time [96].
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Figure 5.4: Dissemination of file chunks

5.1.4 Data Dissemination and Retrieval

According to the definition of peer path, at any time instant, a storage peer can

be found online. When a source peer intends to backup a file, it creates n encoded

chunks and sends a storage request to the tracker. The tracker selects a set of n peer

paths and sends it back to the source peer. Now the source peer uploads each chunk
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to the currently available storage peer from each peer path. After all the chunks are

uploaded, the source peer can leave the system. Once a storage peer of a peer path

receives a chunk, it transfers the chunk to the next storage peer of the peer path. Thus

the chunk is propagated to all the storage peers of the peer path. This dissemination

process for a file consisting of two encoded chunks is illustrated in Fig. 5.4 for the

scenario already introduced in Fig. 5.2. In this example, the tracker reports two peer

paths to the source peer, namely P1 = {p0, p2, p3} and P2 = {p1, p4, p5}. If the source

peer is online at t0, it can upload chunk 1 to p0 and chunk 2 to p1, and may leave the

system.

When the source peer decides to retrieve the stored file, it selects k distinct

peer paths and proceeds to download the chunks from the currently available storage

peer of each peer path. Once k chunks are successfully downloaded, the source peer

reconstructs the original file.

5.1.5 Estimating Available Resources

As the offered backup service is largely dependent on the long-term availability

of the storage peers, it is essential to know the relevant parameters of a storage peer

– namely, availability periods, bandwidth, and storage space – before it is actually

allowed to participate in the system. Unlike some existing approaches [69], we do

not rely on the user to define the expected operating parameters. Instead, PeerVault

observes the users for a training period denoted by σ.

We use the bit vector method similar to [97] to predict the long-term availability

of the storage peers. Consistent with that solution, we consider the service time frame

of one week, wherein each hour of the week is represented by a bit. For each hour, the

corresponding bit is set to 1 if a storage peer is available for more than 55 minutes.

The peer is observed for each hour in the entire training period. Let us assume that
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there are y weeks in σ, and a bit is set for x weeks. Then the training probability

of the corresponding hour is defined by x
y
. We consider an hour to include in an

availability period if the training probability exceeds a threshold αb. Finally, the

availability periods are obtained by merging the contiguous available hours. The

training probability of the availability period is denoted by ψ(·) and computed by

taking the average of the probabilities of the constituent hours. A storage peer is

considered as eligible if it has at least one availability period with training probability

greater than αb. At the end of the training period, an eligible peer is requested to

approve its estimated availability periods and specify the information of the free disk

space, bandwidth, and cost it can offer to PeerVault. Subsequently, the associated cost

per unit storage, c(·) is derived through a revenue model. These set of parameters are

referred as the advertised resources of the storage peer for the considered availability

period. Specific choice of the revenue model is out of the scope of this chapter.

5.2 A Distributed Peer Monitoring Scheme

To ensure the long-term availability of the stored data, peer churns must be de-

tected and the corresponding peers need to be replaced accordingly. In this section,

we introduce a distributed algorithm to monitor storage peers and detect churn. In

our approach, each storage peer sends a ping message to a set of other peers to mon-

itor whether or not they are maintaining their advertised resources. Our algorithm,

called DistMonitor has the following properties: (i) the absence of a storage peer

is reported to the tracker with high probability; (ii) the overhead of the monitoring

effort is proportional to the number of stored chunk and, hence, is fairly distributed;

(iii) newly joined peers can easily be included in the monitoring process, thus mak-

ing the solution scalable; (iv) most of the monitoring overhead is assigned to the
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peers themselves, while only limited interactions with the tracker are needed; and (v)

overall, the required bandwidth for the monitoring scheme is nominal.

For convenience of discussion, let γk denotes a particular availability period.

Let h(·) be a one-to-one function that maps an ordered pair of integers < i, j > to a

single integer k. Thus, γk represents a unique availability period pij.

Definition 6 (Simultaneous Availability Period List). Let n chunks of a file be stored

among a set of peers with availability periods P = {γ1, γ2, . . . , γm}. The simultaneous

availability period list (SAPL) for a given availability period γi ∈ P is the set Si ⊆ P

such that T (γi, γj) > tmax, for all γj ∈ Si \ {γi} and tmax is a predefined timeout

period greater than zero.

Definition 7 (Potential Availability Period List). The potential availability period

list (PAPL) Ni of a given availability period γi is a randomly selected proper subset

of Si.

After finding the peer paths for a given file, the tracker computes the PAPL for

each of the availability periods. Basically, when a storage peer participates in storing

a file (by holding a chunk during a particular availability period), it is also assigned

with the PAPL.

Once a storage peer pk obtains the PAPL for a particular availability period

γi, it executes the function DistMonitor illustrated in Algorithm 2. Specifically, the

storage peer selects q random availability periods from the PAPL of γi and assigns

it to a set B (line 1). For each member of B, there is a counter (count) initialized

with a value l (line 2). For each of the availability periods γj from B, the peer pk

selects a random time in the overlapping time T (γi, γj) and sends a ping message at

that particular time to the storage peer associated with γj, namely, g(γj) (line 11).

Note that g(·) is a function that returns the identifier of a peer corresponding to a

given availability period. After sending the ping message, pk waits for the reply for
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Algorithm 2: DistMonitor(γi,Ni, q, l)

output: R // list of reported peers

1 R ← ∅; B ← q randomly chosen elements from Ni;

2 foreach γj ∈ B do count[γj]← l ;

3 while B 6= ∅ do

4 foreach γj ∈ B do

5 if count[γj] = 0 then R ← R∪ g(γj) ; B ← B \ γj;

6 else

7 t′ ← [tnow,∞] ; tol ← T (γi, γj) ∩ t′;

8 if tol = 0 then B ← B \ γj;

9 else

10 t[γj]← randomly selected value from tol;

11 schedule a message for g(γj) at t[γj] ;

12 schedule a thread waiting for γj from t[γj];

13 foreach γj ∈ B do

14 if a reply is received within T [γj] + tmax then B ← B \ γj;

15 else count[γj]← count[γj]− 1;

16 report R to the tracker;

a predefined timeout period tmax. If the reply is received within that period, γj is

removed from the list B, and it is assumed that the corresponding peer is conforming

to its commitment. Otherwise, the value of the corresponding count is decremented

by 1 (lines 14–15). Note that pk may try to send at most l messages to a particular

peer associated with an availability period. If the value of count is 0 for a particular
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availability period γj, then pk adds the corresponding peer g(γj) to the set R, (line 5),

whereR denotes the set of peers that have not responded to the ping messages. Before

γi ends, pk sends R to the tracker as negative feedback.

5.2.1 Analysis of DistMonitor

The performance of the monitoring algorithm is measured in terms of two met-

rics, namely, percentage of peers that were monitored and the associated message

overhead. Let the chunks of a particular file is stored among a group of peer avail-

abilities. We denote γji as the i-th availability period in the peer path j (holding

the j-th chunk of the file). Let |S| and |N | denote the average size of SAPL and

PAPL of the involved availability periods. The following theorem characterizes q (the

number of selected availability periods from the PAPL) and |N | to ensure the desired

performance of the DistMonitor algorithm.

Theorem 1. For a stored file, each storage peer is monitored in its availability period

by DistMonitor with high probability, for a proper choice of q and |N |, i.e., q = |N | =

log |S|.

Proof 1. Let us assume that a file has n encoded chunks and C = {γx1i1 , γ
x2
i2
, . . . , γxmim }

is the group of availability periods for a particular chunk. Let γji ∈ C be an availability

period such that all other members in C are in the SAPL of γji (excluding itself).

Without loss of generality, let us assume that the size of the SAPLs and PAPLs of

all the availability periods in C are |S| and |N |, respectively. We aim at finding the

probability of a peer pk corresponding to γji being monitored, that is, the probability of

receiving at least one message from any of the peers corresponding to the availability

periods of C. Essentially, all the corresponding peers of C (except for pk) contain pk

in their SAPL, so each of these peers has a probability to send a ping message to pk.
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Let us introduce the following notation first. Let Dk be the event that pk receives

at least one message from any of the peers, and G be the event that pk receives a

message from pl. By recalling that a peer sends out ping messages to q randomly

selected peers from its PAPL N (for a particular availability period), let us also define

M as the event that pk is in the PAPL of pl, and Y as the event that pk is sent a

message by pl. Hence, P (G) = P (M)P (Y |M). Now,

P (M) = 1−

(
1− 1

|S|

)|N |
and P (Y |M) = q · (|N |)−1. Therefore,

P (G) =
q

|N |

(
1−

(
1− 1

|S|

)|N |)
=

q

|N |

(
1− e−

|N|
|S|

)
So P

(
Dk

)
= (1− P (G))|S| = f

(
|N |, q

)
, for a fixed value of |S|. Thus P (Dk) =

1− f
(
|N |, q

)
. Thus, the probability of a peer being monitored depends on f(·) which,

in turn, depends on q and |N | for a specific file. For an instance, if we choose both

q and |N | as 1, a peer is monitored with a constant probability of around 63% by

other storage peers. In the specific case where log |S| is chosen for both |N | and

q, f(·) becomes 0 with high probability asymptotically with increasing values of |S|.

Therefore, a peer is guaranteed to be monitored with high probability in its availability

period for storing a single file chunk when q = |N | = log |S|.

Now, we consider the bandwidth requirements for the monitoring scheme. In an

availability period, a peer sends/receives a total of O(ξlog |S|) ping messages, where ξ

represents the number of file chunks it holds. Lemma 5.2.1 follows from the following

arguments. During an availability period, for each file, a storage peer sends out O(q)

ping messages. It can be shown that the expected number of ping messages received

by a storage peer is also O(q). In addition, a peer has to send (and receive) O(q)

reply messages. In our application, a storage peer can send/receive at most l log |S|
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ping messages for a single file. Therefore, in total, a peer can send/receive at most

lξ log |S| ping messages. Similarly, a peer can send/receive at most lξlog |S| reply

messages.

If the average size of the ping and reply messages is α, and the availability period

is A, a peer incurs an average download/upload bandwidth of 4·lαξlog |S|
A

. When l = 2,

as in our application, a peer with an availability period of 20 hours contributing

100 GB storage space may incur an average upload/download bandwidth of less than

0.75 KBps. This assumes the average size of ping/reply message as 100 bytes, and

the average chunk size as 10 MB.

5.2.1.1 Replacement strategy

The tracker maintains a negative feedback counter for each availability period.

If it receives negative feedback for more than 10 times about an availability period

in a particular week, it verifies whether the peer is unavailable by sending periodic

ping messages for the next 4 weeks. Based on the response, the tracker computes

the probability of the associated peer to be available using the bit vector method

(recall from Sect. 5.1.5). If the probability is less than 0.2, the tracker picks a new

availability period with similar or longer availability duration and similar or higher

bandwidth offering the minimum cost.

5.3 Performance Evaluation

We simulated the PeerVault system based on the user availability traces of

the SETI@home project [42]. SETI@home is a scientific experiment that uses the

idle resources of the Internet-connected computers, in the Search for Extraterrestrial

Intelligence (SETI).
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5.3.1 Simulation Setup

In the following, we will present the details about the traces, the parameters,

and the methodology used in the performance evaluation.

5.3.1.1 SETI@home Traces

In our experiments, we used the traces corresponding to the CPU availability of

the SETI@home project as collected by the Failure Trace Archive [42]. We consider

each unique host in the trace as a storage peer. The data reported in the trace spans

over a period of a year and nine months that we call the trace duration. All the hosts

of the trace data are not available for the entire trace duration. Some hosts start

contributing after the trace duration starts, while some others leave permanently

before the trace duration ends. Thus, each host (or storage peer) has trace data over

an interval that we call host duration. If the host duration of a storage peer is (t1, t2),

we define the prediction interval as (t1 + σ, t2) if t1 + σ < t2, and 0 otherwise (in

which case, we ignore that particular host). Recall from Sect. 5.1.5 that σ refers to

the training period.

5.3.1.2 Simulation Details and Relevant Metrics

We carried out the experiments through a custom simulator written in Java to

validate the availability and reliability of the backup service as well as the performance

of the monitoring scheme, DistMonitor. In order to serve the storage requests, we

implemented the minimum weight n-node disjoint path algorithm proposed in [96].

The availability periods were derived by using the method described in Sect. 5.1.5,

with a training period σ of 4 weeks. We considered three different datasets of storage

peers for the experiments. For each dataset, we picked a random sample of 10, 000
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hosts, from which we extracted storage peers with training probability equal to or

greater than 0.6, 0.75, and 0.9. Throughout this section, they will be referred to as

datasets A, B and C, respectively. Table 5.1 shows the percentage of hosts with the

desired training probability and the number of availability periods per host which are

considered in the simulation. We performed independent experiments for each of the

datasets. In each experiment, 1,000 files are requested and the file sizes were generated

from a lognormal distribution with a mean and standard deviation of 100 MB and

20 MB, respectively [98].

Table 5.1: Availability periods obtained from traces

Training probabil-
ity threshold (αb)

Hosts selected
from sampled ones
(%)

Average number
of availability
periods per host

Average length
of availability
periods (hours)

0.6 71 3.38 31.28
0.75 70 3.4 29.75
0.9 53 3.32 26.84
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Figure 5.5: Effective redundancy against the original redundancy of the files for
storage peers with different training probability thresholds
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We considered the following performance metrics:

• Observed redundancy : the ratio of the number of available encoded chunks (n∗)

to the minimum number of encoded chunks (k), for a given file.

• Percentage of available files : the ratio of the files with greater than or equal to

k chunks available to the total number of files initially stored.

5.3.2 Experimental Results

Figure 5.5 shows the observed redundancy, averaged over all stored files, against

the applied redundancy. In all datasets, the observed redundancy for a single service

time frame (i.e., the first week) is summarized in a single plot to assess the availability

of the offered service in a short time frame.

Figure 5.6: Available files during 1 year for the different datasets A (αb = 0.6)

The figure clearly shows that the observed redundancy increases with the thresh-

old for increasing training probability of the hosts. Therefore, a higher threshold for

training probability (e.g., higher than or equal to 90%) can be used to achieve a bet-
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ter performance. The line marked as ideal represents the case wherein all peers are

available.

Figure 5.7: Available files during 1 year for the different datasets C (αb = 0.9)

Figure 5.7 shows the availability of the stored files over a long time period to

assess the reliability of the offered service. Specifically, it shows the percentage of

accessible files (with η = 2.5) over a period of 52 weeks for datasets A and1 C. The

figures show that the availability of the files gradually decreases for all datasets. Even

though dataset C shows a much higher availability over time than others (i.e., after 1

year, around 90% files are still accessible), there is no guarantee that all files can be

accessed throughout the entire simulated period when no monitoring and replacement

are used. This result, in addition to Fig. 5.5, suggests that file availability is improved

and retained over time when the training probability is high. However, some peers

permanently leave the system over time and, thus, the data stored by them become

unavailable. The monitoring algorithm and the replacement policy can guarantee

1Results for dataset B are similar to those for dataset A, so we did not report them here due to

lack of space.
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that the files are available over the entire simulated period. The results also suggest

that the availability of files can be improved by reducing the chunk size. Since the

peer paths increase when the chunk size λ decreases, the probability of getting the

minimum number of chunks for a file increases as well. On the other hand, very small

file chunks result in a higher overhead for both the tracker and the storage peers.

After considering all the above-mentioned aspects, 5 MB appears to be a suitable

choice for the chunk size.

5.3.3 Summary

In this chapter, we described PeerVault, an online data storage and backup

service suitable using unutilized resources of computing devices. PeerVault exploits

group availability of participating peers to ensure long-term availability of the stored

data. Moreover, to address peer churns, we proposed a distributed monitoring scheme

that detects peers deviating from the desired availability pattern. Simulation results

based on the traces of the SETI@home computing project demonstrated that the

proposed approach efficiently utilizes the available resources and can obtain high

service reliability. In the future, we intend to investigate the issue of incentivizing the

participants who provide their resources to form the storage service.

In the next chapter, we present a motivating example of participatory sensing

application designed for enhancing campus security.
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CHAPTER 6

A PARTICIPATORY SENSING APPLICATION FOR CRIMINAL ACTIVITY

MITIGATION

Criminal activity in the campus area is a serious concern for most educational

institutions. Nearly fifty thousand crime incidents including murder, gunshots, bur-

glary and arson are reported every year in different postsecondary educational in-

stitutions in the United States [99]. Most of the cases, there is considerable delay

between the actual occurrence of the incident and its reporting. Furthermore, the

Law Enforcement Agency (LEA) has to depend on the witness of the incident for

required information (e.g., description, location and exact time of occurrence of the

incident) that can introduce significant inaccuracy of information. In fact, the LEA

finds it difficult to effectively deliver necessary alerts in a timely manner and also

different cautionary messages to the campus community which could have otherwise

potentially mitigated the severity of the crime.

According to [100], more than 60% college students now use smartphones. As

a result, smartphone based applications are very popular among the student com-

munity. Modern smartphones are equipped with a host of sensors which can be

used to capture heterogeneous information in different contexts. In this chapter, we

present Campus Connect, a novel solution that exploits modern off-the-shelf smart-

phone sensors and participatory sensing (in terms of user participation) to mitigate

crime incidents in a campus environment. Through Campus Connect, smartphone

users can report a suspicious event or criminal activity with relevant information to

89



the associated LEA without introducing any delay. Moreover, the LEA can deliver

necessary alerts to the smartphone users (i.e., campus community) in real time.

Database

        

Law Enforcement Agency (LEA)

          LDAP Server

 Server

HTTPS HTTPS

                 

                   Incidents & Alerts

Authentication API

Application Server

Smartphone Application User (SAU)

Figure 6.1: Architecture of Campus Connect

6.1 Overview

The basic architecture of the proposed Campus Connect application is shown

in Figure 6.1. The students and the staffs of the campus are the smartphone appli-

cation users (SAUs) having an Android application through which they can report

an incident to the server. The report usually contains relevant information such as

photographs, location, and/or a short description of the incident. Moreover, the iden-

tity and contact information of the associated SAU are sent with the incident. The

Law Enforcement Agency (LEA) are the campus police who use a web application
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to monitor the received incidents and send necessary alerts. The server hosts the

web application to dispatch the reported incidents and deliver the alerts among the

SAUs. It also communicates with a database for storing incidents and alerts and an

Lightweight Directory Access Protocol (LDAP) server for the authentication of the

SAUs.

Figure 6.2: Show alerts in the map view

6.2 The Smartphone Application

In the following, we briefly discuss the main features of the Campus Connect

smartphone application.
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Figure 6.3: Show alerts in the list view

6.2.1 User Authentication

As the university community uses the smartphone application, we use existing

campus NetID and password for authentication. When a SAU runs the application

for the first time, it prompts for his NetID and password. The application stores

this information and sends with each request to the application server which in turn

communicates with a LDAP server hosted by the university to authenticate the corre-

sponding SAU. To communicate with the LDAP server, we use a free library Unboun-

dID LDAP SDK [101], written in JAVA. All communication between the smartphone

application and the application server are encrypted (using SSL) to ensure security

of personal data. Note here that, the authentication mechanisms we use is generic

enough to extend to other campus environments with minimal changes as LDAP is a

standard way of storing personal and organizational information.
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Figure 6.4: Message description

6.2.2 Receiving Campus Alerts

Currently our Campus Connect application receives four types of alerts/messages

sent by the LEA, namely crime alert, parking alert, weather alert and general alert.

New alert notifications are pushed to the smartphone using Google Cloud Messaging

service [102]. The alerts contain a title, detailed description and necessary instruc-

tion, and the location information where applicable. Each message is associated with

a validity period specified by the LEA. Thus, only the active alerts are available to

the user from the smartphone application.

There are two interfaces for viewing the active alerts. Clicking on the Notifica-

tion As List button opens up a list view shown in Figure 6.3 with all active messages.

Depending on the associated message type, an appropriate icon is attached with each

items in the list. Clicking on a specific list item shows the detail description of the

93



message. If the message contains any valid location information, those are displayed

on a Google Map.

Clicking on the Notification in map button opens up a combined view of all the

active messages with valid locations as shown in Figure 6.2. In this view, each icon

corresponds to a message. When a user taps on an icon, the corresponding message

details are displayed as shown in Figure 6.4.

6.2.3 Report an Incident

To report an incident to the LEA, the user clicks on the Report incident button

which brings up a view shown in Figure 6.5. Whenever this view is opened, the

GPS starts to run in background to retrieve the current location. This view has

interface for entering a textual description of the incident. Moreover, the user can

take snapshots of the incident to be reported by clicking on the Add image button.

There is also an option to view or delete the captured images. Finally, when the user

selects the Send report button, the report with all the available information (i.e., text,

images, location, phone number) are sent to the application server in JSON format.

The application server collects the detailed contact information of the user from the

LDAP server and stores these along with the report in the database. The images

with the reported incidents are stored in a file server.

6.3 Web Application

The web application is a J2EE Application running on the Apache Tomcat

server. It communicates with a MySQL database for storing and retrieving incidents

and alerts. The LEA uses the application through any standard web browser. In the

following, the main features of the web application are briefly described.
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Figure 6.5: Report an incident

6.3.1 Monitor Incidents

There is a web page for displaying the reported incidents sorted by their re-

porting time. Whenever a new incident report arrives, it generates an alarm to notify

the LEA. An incident report contains a location information, that basically indicates

the current location of the corresponding reporter. For convenience, this location is

displayed on a Google Map. Moreover, there is an interface to view all the reported

images in the web page.
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6.3.2 Sending Campus Alerts

There is a web page through which the LEA can post an alert for the community

members. A validity period for the alert has to be be selected. The LEA can also

specify the exact location associated with the alert from a embedded Google Map

interface. The alerts also contain the detail description and necessary instructions

for the students and staffs. Whenever an alert is posted, it notifies the SAU through

push notification.

6.4 Summary

In this chapter, we have presented the design and implementation of Campus

Connect, a smartphone based safety application in the campus environment. Through

our application, the campus community can receive necessary alerts in a timely man-

ner. They can also participate to mitigate crime by providing accurate information of

crime incidents with minimal effort. There are several research directions to extend

our work as follows:

• How to send alerts in a targeted fashion so that only the relevant users are

informed? There can be many low priority alerts generated by the collected

incident reports or other sources. And all alerts may not be relevant for each

user.

• How to automatically detect a crime incident and contact the LEA? An incident

detection method may generate many false alarms, thus overwhelming the LEA.

In that case how to reduce the false alarms?
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The concept of crowdsourcing is becoming increasingly popular to solve prob-

lems in different domains of our life. Participatory sensing is a novel sensing paradigm

that exploits the notion of crowdsourcing and smartphone sensors to perform personal

to massive scale sensing tasks. Real-time monitoring of environmental and/or urban

scenarios, also known as urban sensing, is an emerging application of the participa-

tory sensing paradigm. Although it has a lot of potentials, there are several research

challenges that need to be carefully addressed for successful deployment of such a mon-

itoring application. Among those, energy efficiency is perhaps the most important

challenge to ensure that the additional sensing task does not dissuade smartphone

users to participate in such applications by depleting the battery fast. To ensure

energy efficiency, the smartphone should not collect redundant data samples. On the

other hand, adequate number of data samples need to be collected to ensure that the

monitored area is covered. Therefore, how data samples are collected needs to be

researched carefully, especially in busy urban areas. As location information is also

a requirement by such sensing application, the location sensor should be used intel-

ligently to minimize energy consumption. Also, real-time monitoring can generate

significant amount of data that need to be stored and backed up properly for further

analysis. Besides these, there are also other issues, such as, privacy, incentive, trust

management, etc. In this dissertation, we have discussed some of the important chal-

lenges in real-time participatory urban monitoring applications, such as, coverage,
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localization, energy efficient data collection and storage and backup of collected data.

From our work, we present the following insights:

• The paradigm of participatory sensing can be successfully applied for coverage-

ensured data collection to continuously monitor different urban and/or environ-

mental scenarios. Our frameworks PLUS and STREET can be used for such

monitoring applications with guarantee of partial data coverage and k-coverage

respectively.

• Collecting data samples from all participants is not only redundant but also

energy inefficient. Hence, selecting the necessary number of participants is a

crucial step towards energy efficiency, especially when participant density of

the monitored area is high, as in the busy part of urban area. Both PLUS and

STREET frameworks provide effective methods for selecting necessary number

of participants using a probabilistic approach.

• Tracking participants by a server for a real-time participatory sensing appli-

cation imposes a high communication overhead on the participating mobile

devices, resulting in a fast rate of battery depletion. Therefore, reducing this

communication overhead is of huge importance for a longer battery life of the

participating smartphones. Both PLUS and STREET frameworks eliminate

this communication overhead.

• Participation in applications to continuously monitor outdoor scenarios requires

continuous location information. However, using location sensor continuously

can drain the battery fast. Our framework provides an effective scheme to

minimize the usage of location sensor.

• The continuous monitoring applications can generate huge amount of data which

needs to be stored and backup up properly. Unlike traditional online storage

service, computing devices’ unused resources can be used to create an online
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storage service in a peer-to-peer fashion. Our framework PeerVault demon-

strates that creating such an online storage and backup service is possible and

data can be stored with a guarantee of long term availability.

In this dissertation we presented frameworks that are novel and can be of great

use for the deployment of participatory urban monitoring applications. There are

several directions to extend our work.

• Both PLUS and STREET frameworks consider data collection by pedestrians.

One could think of collecting data samples from users riding bike or moving in

other vehicles. That would require the localization scheme to change accord-

ingly.

• Both PLUS and STREET frameworks do not require fine-grained location in-

formation, rather they use block level location and street segment level location,

respectively. Moreover, a central server does not need to know the location of a

participant. Therefore, by design it has some potential to obfuscate location in-

formation of the participants. One could investigate more into location privacy

issue involved in our framework.

• One possibility to extend our work is to consider existing battery life of the

participating smartphones and based on that limit the participation in the data

collection process.

• Another interesting possibility is to create fine-grained map of indoor scenarios.

For example, how to ensure coverage for a multi-storied building.

• An assumption of our localization scheme sLoc is that the GPS remains unused

by default. However, if the GPS is currently used by another application and

location data is not stale, sLoc could make use of that instead of activating GPS

again which has the potential to save even more energy.
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• The localization scheme StreetLoc used by the participants on a street network

currently keeps the GPS activated when the participant makes transition from

one street segment to another. However, the time to make the transition can be

large in the presence of traffic and/or signal. In such case, we could investigate

if a duty cycled accelerometer can assist and reduce the energy consumption

• Another possibility is to support creation of near real-time map generation for

slowly changing scenarios. In that case, a possibility is to use a partial piggyback

supported and/or compression based data offloading approach while ensuring

coverage requirement to make the applications more energy efficient.
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