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Abstract 

CONSTRUCTION OF WEIGHTED 

 UPWIND COMPACT SCHEME 

 

 

 

Zhengjie Wang, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Chaoqun Liu 

Enormous endeavor has been devoted in spatial high order high resolution 

schemes in more than twenty five years previously, like total variation diminishing (TVD),  

essentially non-oscillatory scheme, weighted essentially non-oscillatory scheme for finite 

difference, and Discontinuous Galerkin methods for finite element and the finite volume. 

In this dissertation, a high order finite difference Weighted Upwind Compact  

Scheme has been constructed by dissipation and dispersion analysis. Secondly, a new 

method to construct global weights has been tested. Thirdly, a methodology to 

compromise dissipation and dispersion in constructing Weighted Upwind Compact 

Scheme has been derived. Finally, several numerical test cases have been shown.  
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Chapter 1  

Introduction 

Along with computer’s hardware capabilities and parallel algorithm developing, 

extensively applying numerical scheme is becoming a more appreciable trend. Nowadays, 

not only Computational Fluid Dynamics but also more and more other fields such as 

Computational Aero-acoustics [1], Seismic Imaging [2], Reservoir Engineering, Financial 

Engineering [3], Image Processing, and so on are relying on high order numerical 

schemes to obtain high accuracy derivatives. The developments in Computational Fluid 

Dynamics include mesh generation improvements, solver efficiency enhancement, 

parallel algorithm efficiency enhancement, and visualization improvements. Especially, 

the applications of CFD has been more extensive, more complicated, and more 

applicable to realities’ problem than ever before, such as aerodynamics, hydrodynamics, 

meteorology, ship engineering, offshore engineering, subsea engineering, water, 

chemical engineering, construction, machinery, automobile industry, ocean engineering, 

sports, environmental engineering, medical and health. 

Also in Computational Fluid Dynamics, there have been more and more 

challenges emerging with all application profits. Simulation of complex flow is one of the 

challenges. The complex flow can be caused by complex geometry, flow instability, high 

temperature, multi-phase, and unsteady multi-scale flow structure. In this dissertation, 

multi-scale complex flow with shock is the major application field of a newly studied 

higher order numerical scheme. 

Numerical scheme is the numerical method of calculating approximations of 

derivatives of a given data. Lewis Fry Richardson, an English Mathematician, who is also 

a meteorologist, used central difference scheme for numerical weather forecasting in 

1910 [4]. This is considered as the idea of CFD origin [5]. Later, three German 
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mathematicians, Richard Courant, Kurt Otto Friedrichs and Hans Lewy analyzed the 

stability of numerical scheme in 1928 [6]. Very famous and widely used CFL stability 

condition for numerical computation is based on their analysis work [7]. John Von 

Neumann and R. D. Richtmyer introduced additional artificial viscosity term in the 

equation of hydrodynamics to capture shocks [8].  A first-order accurate upwind finite 

difference scheme was developed for solving the nonlinear hyperbolic equations by 

Courant, Isaacson and Rees in 1952 [9]. Their method was based on the normal or 

characteristic form of the quasi-linear first order hyperbolic system. With the idea in mind 

of preserving the domain of dependence, the spatial derivative in each direction of the 

characteristic form was approximated by either a first-order forward or backward finite 

difference quotient depending upon whether the local eigenvalue (characteristic speed) is 

negative or positive [10]. The notion of eigenvalue splitting was introduced to provide the 

automatic switching for constructing uniform upwind finite difference schemes. Lax [11] 

and Friedirchs [12] developed a first order central finite difference scheme for linear 

convection equations [13]. After that, scientists developed a lot of first order scheme. 

Until 1959, Godunov published an upwind scheme with his name, which gave a new path 

for constructing CFD scheme [14]. This new path is through numerical approximation of 

Riemann Problem’s solution, which is still important to todays’ CFD research. 

From Lax milestone work [15] in 1957, more and more scientists like Wendroff, 

Richtmyer and Morton enriched numerical scheme. The Lax-Wendroff scheme [16] is like 

the prototype of modern CFD, and the development from Lax-Wendroff scheme became 

the cornerstone of modern CFD [17]. The Lax–Wendroff scheme, named after Peter Lax 

and Burton Wendroff, is a numerical scheme for the solution of hyperbolic partial 

differential equations, based on finite differences. It is second-order accurate in both 

space and time. This method is an example of explicit time integration where the function 
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that defines governing equation is evaluated at the current time. The most famous 

development of Lax-Wendroff scheme is MacCormack method [18, 19], which is simpler 

than Lax-Wendroff scheme. This two-step second-order finite difference method was 

introduced by Robert W. MacCormack in 1969. The MacCormack method is elegant and 

easy to understand and program. MacCormack method became the leading role of two-

dimensional steady flow simulation in last century’s 70s. But these second-order 

schemes might have non-physics oscillation around discontinuities, like pressure and 

density numerical oscillation around shock wave. This short-coming limited the 

application of these second-order schemes in shock problems [17]. 

Bram van Leer created MUSCL (monotone upstream-centered schemes for 

conservation laws) method in 1979 [20]. The MUSCL scheme is a finite volume method 

that can provide highly accurate numerical solutions for a given system, even in cases 

where the solutions exhibit shocks, discontinuities, or large gradients. The MUSCL used 

the idea that replacing the piecewise constant approximation of Godunov's scheme by 

reconstructed states, derived from cell-averaged states obtained from the previous time-

step. For each cell, slope limited, reconstructed left and right states are obtained and 

used to calculate fluxes at the cell boundaries (edges). These fluxes can, in turn, be used 

as input to a Riemann solver, following which the solutions are averaged and used to 

advance the solution in time [21]. 

Ami Harten brought up total variation non-increasing and monotonicity preserving 

concepts for finite-difference scheme in 1983 [22]. Ami Harten started TVD (total variation 

diminishing) scheme which is a second order scheme with high resolution and can damp 

non-physics oscillation around shock. Following Ami Harten, many scientists created 

many different kinds of TVD schemes, since TVD scheme has properties of high 

resolution and shock-capturing with non-oscillation properties. Ami Harten, Bjorn 



4 

Engquist, Stanley Osher, and Sukumar R. Chakravarthy continued the construction and 

analysis of essentially non-oscillartory shock capturing methods for the approximation of 

hyperbolic conservation laws, and proposed uniformly high order accurate essentially 

non-oscillatory schemes which keeps high order accuracy around shocks [23]. Xu-Dong 

Liu, Stanley Osher, and Tony Chan introduced a new version of ENO (essentially non-

oscillatory) shock-capturing schemes which called weighted ENO [24]. The main idea is 

that, instead of choosing the “smoothest” stencil to pick one interpolating polynomial for 

the ENO reconstruction, using a convex combination of all candidates’ stencils to achieve 

the essentially non-oscillatory property, while additionally obtaining one order of 

improvement in accuracy. The resulting WENO (weighted ENO) schemes are based on 

cell averages and a TVD Runge-Kutta time discretization [17]. 

Sanjiva K. Lele deeply and thoroughly studied compact finite difference scheme 

by Fourier analysis of dissipation and dispersion [25]. This analysis testified that compact 

scheme has high order accuracy and high resolution. Then compact scheme has been 

widely applied in Direct Numerical Analysis, Large Eddy Simulation and Computational 

Acoustics. But directly using compact scheme to solve flow with shocks will cause non-

physical oscillation. Many efforts have been devoted into giving artificial dissipation for 

compact scheme to damping non-physical oscillations. Some other efforts were combine 

and switch compact scheme with ENO/WENO. This combination and switch method will 

create spurious oscillation around switch point, and this oscillation will contaminate 

smooth area solution finally [17]. The Fourier analysis dissipation and dispersion is the 

base tool for studying Weighted Upwind Compact Scheme in this dissertation.  

 Central finite difference scheme needs artificial viscosity terms to give high 

frequency damping to restrain non-physics oscillation around shocks and stagnation 

points. Even though, the artificial viscosity terms have two issues. First, calculating 
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artificial viscosity increased computation hours; second, the high frequency damping from 

artificial viscosity term might not be adaptive for all kinds of problems [17].  

 The construction of upwind scheme represents fluid mechanics equations’ 

fundamental physics properties, like propagation direction of wave, flux. For representing 

different physics properties, different upwind schemes have been constructed. So far, 

there are two ways for upwind scheme to present physics properties. The first way is by 

using eigenvalue’s sign to construct upwind scheme. This kind upwind scheme’s flux 

splitting and directional discretization are based on propagation velocity’s sign; backward 

difference for positive propagation velocity; forward difference for negative propagation 

velocity. The second way is by calculating a sequence of local Riemann problems’ 

solution, or approximating a sequence of local Riemann problem’s solution. The first way 

of flux splitting is used for Weighted Upwind Compact Scheme in this dissertation. 

Computational Fluid Dynamics is developing rapidly, and has very wide variety of 

numerical schemes. Traditionally, numerical schemes can be categorized into three 

groups by spatial discretization method. One is based on interpolation; second is flux 

computation; third is mixture of interpolation and flux computation, like TVD scheme. 

It is crucial for a numerical scheme to find derivative value as accurate as 

possible with limited available computational resources, especially when dealing 

discontinuities with small scale problems. In Computational Fluid Dynamics, shock wave 

interacting with turbulent flow is this kind of sensitive and difficult problem. Reproducing 

turbulence structure as much as possible will require the numerical scheme only having 

small quantity dissipation. Otherwise, small length turbulence detail would be smeared. 

High order scheme would be an optimistic option for small scale problems, since high 

order scheme has high resolution to present small scale details. On the other hand, 
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capturing shock might cause non-physical oscillation for non-dissipation or very low 

dissipation high order scheme. 

In this dissertation, an effort is spent in study a methodology of constructing 

weighted upwind compact scheme. The target scheme of this construction need avoid 

negative dissipation in left stencil for shock-capturing stability; also need utilize non-

oscillatory weights to choose the best stencil or to pick up the optimized share from each 

stencil. Also as part of this target scheme of this construction, need an optimized 

dispersion in left stencil for shock-capturing stability. Another effort is spend in study a 

new method of creating global weights for this weighted upwind compact scheme. 

The structure of this dissertation is, Chapter 2, Construction Methodology of 

WUCS; Chapter 3, Order, Dissipation and Dispersion Analysis; Chapter 4, 1D and 2D 

cases for WUCS; Chapter 5, New Method of Creating Global Weights for WUCS, 

Chapter 6 Construction Methodology Application, and Chapter 7 includes conclusion and 

discussion of WUCS. 
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Chapter 2  

Construction Methodology of WUCS 

This Chapter will start with scalar conservation equation as basic understanding 

of finite difference scheme, then seventh-order parametric weighted upwind compact 

scheme and eighth-order weighted central compact scheme will be introduced. Fourier 

analysis will be introduced as forging tool for constructing Weighted Upwind Compact 

Scheme. Finally WUCS will be forged by seventh-order parametric weighted upwind 

compact scheme and  eighth-order weighted central compact scheme. 

2.1 Numerical Formulation 

The scalar conservation equation may be an example to start the study 

framework of finite difference numerical scheme.  

                                         𝑞𝑡(𝑥, 𝑡) + 𝐹𝑥(𝑞(𝑥, 𝑡)) = 0          (2.1) 

Discretizing the domain, grid points (cell interface) are defined as 

 𝑎 = 𝑥1
2
< 𝑥3

2
< ⋯ < 𝑥

𝑁−
1
2
< 𝑥

𝑁+
1
2
= 𝑏 (2.2) 

The cell centers and cell sizes are defined, respectively, as 

𝑥𝑗 ≡
1

2
(𝑥
𝑗−

1

2

+ 𝑥
𝑗+

1

2

) ℎ𝑗 ≡ 𝑥𝑗+1
2

− 𝑥
𝑗−

1

2

 𝑗 = 1,2, … , 𝑁 

Figure 2-1 Grid for one-dimensional case 

 

A semi-discrete conservative form of (2.1) reads as   

𝑑𝑞𝑗

𝑑𝑡
= −(�̂�

𝑗+
1
2

− �̂�
𝑗−

1
2

)/ℎ𝑗     (2.3) 

𝑥
𝑗−
7
2
 𝑥

𝑗−
5
2

 𝑥
𝑗−
3
2

 𝑥
𝑗−
1
2

 𝑥
𝑗+
1
2

 𝑥
𝑗+
3
2

 𝑥
𝑗+
5
2

 

𝑥𝑗−3 𝑥𝑗−2 𝑥𝑗−1 𝑥𝑗  𝑥𝑗+1 𝑥𝑗+2 
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where �̂� is the numerical flux associated to the original function 𝐹, defined 

implicitly by 𝐹𝑗 = 𝐹(𝑞(𝑥𝑗 , 𝑡)) ≡ ∫ �̂�(𝜉)𝑑𝜉/ℎ𝑗
𝑥
𝑗+
1
2

𝑥
𝑗−
1
2

. With the given implicit definition of the 

numerical flux �̂�, Eq. (2.3) constitutes as an exact expression of Eq. (2.1). 

We denote 𝐻 the primitive function of �̂�(𝜉), which can be calculated by 

 𝐻
𝑗+

1
2

= 𝐻 (𝑥
𝑗+

1
2

) = ∫ �̂�(𝜉)𝑑𝜉
𝑥
𝑗+
1
2

−∞
= ∑ ∫ �̂�(𝜉)𝑑𝜉

𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

= ∑ 𝐹𝑖
𝑗
𝑖=−∞

𝑗
𝑖=−∞ ℎ𝑖  (2.4) 

So the primitive function 𝐻 is calculated from the discrete data set of the original 

function 𝐹. The derivative of the primitive function at the cell interfaces coincides with the 

numerical flux, i.e.  

𝐻′
𝑗+
1
2
= �̂�

𝑗+
1
2
 

From the above definitions, it is clear that  

 𝐹′(𝑥𝑗) = 𝐹′𝑗 = (�̂�𝑗+1
2
− �̂�

𝑗−
1
2
)/ℎ𝑗 = (𝐻′𝑗+1

2
−𝐻′

𝑗−
1
2
)/ℎ𝑗 (2.5) 

In the described procedure 𝐹 → 𝐻 → �̂� → 𝐹′, introduced by [31], the only 

approximation involved is the calculation of the derivative of the primitive function 𝐻′ , 

whereas all other calculations are exact. 

2.2 Fifth-Order Weighted Essentially Non-Oscillatory Scheme 

This section is taking 5th Order WENO as an initial example for expanding and 

forging compact scheme, upwind scheme, and weighted scheme in later section. The 

basic idea of the WENO scheme is to obtain a high-order approximation to the numerical 

flux by a weighted average (convex combination) of multiple lower-order candidate 

approximations, according to the “smoothness” of the original function on each of the 

candidates [27]. For obtaining a 5
th
 order WENO, three second-order approximations of 
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the numerical fluxes at �̂�
𝑗−

1
2

and �̂�
𝑗+

1
2

  are obtained from the three candidate stencils 

(Figure 2-1):    𝐸𝑊𝐸𝑁𝑂
0 = {𝐹𝑗−2, 𝐹𝑗−1, 𝐹𝑗} 

𝐸𝑊𝐸𝑁𝑂
1 = {𝐹𝑗−1, 𝐹𝑗 , 𝐹𝑗+1} 

𝐸𝑊𝐸𝑁𝑂
2 = {𝐹𝑗, 𝐹𝑗+1, 𝐹𝑗+2} 

Choosing the Lagrange polynomial for the third order approximation of �̂�
𝑗+

1
2

, we 

obtain, for the first stencil  𝐸𝑊𝐸𝑁𝑂
0 : 

�̂�
𝑗+
1
2

𝐸𝑊𝐸𝑁𝑂
0

≈
1

3
𝐹𝑗−2 −

7

6
𝐹𝑗−1 +

11

6
𝐹𝑗 

And similarly for the other two stencils  𝐸𝑊𝐸𝑁𝑂
1 and 𝐸𝑊𝐸𝑁𝑂

2 :  

�̂�
𝑗+
1
2

𝐸𝑊𝐸𝑁𝑂
1

≈ −
1

6
𝐹𝑗−1 +

5

6
𝐹𝑗 +

1

3
𝐹𝑗+1 

�̂�
𝑗+
1
2

𝐸𝑊𝐸𝑁𝑂
2

≈
1

3
𝐹𝑗 +

5

6
𝐹𝑗+1 −

1

6
𝐹𝑗+2 

If we take the weighted average of the three low-order approximations above, 

with the constant optimal weights [24] as below 

𝐶𝑊𝐸𝑁𝑂
0 =

1

10
          𝐶𝑊𝐸𝑁𝑂

1 =
6

10
          𝐶𝑊𝐸𝑁𝑂

2 =
3

10
 (2.6) 

we obtain 

 �̂�
𝑗+

1
2

≈ ∑ 𝐶𝑊𝐸𝑁𝑂
𝑖 �̂�

𝑗+
1
2

𝐸𝑊𝐸𝑁𝑂
𝑖

2
𝑖=0  

=
1

30
𝐹𝑗−2 −

13

60
𝐹𝑗−1 +

47

60
𝐹𝑗 +

9

20
𝐹𝑗+1 −

1

20
𝐹𝑗+2 

Note that the constant weights in (2.6) sum up to 1 for consistency, i.e. 

∑ 𝐶𝑊𝐸𝑁𝑂
𝑖 = 12

𝑖=0 . After the expression of the approximation for �̂�
𝑗−

1
2

= �̂�
(𝑗+

1
2
)−1

 is obtained 

in analogous fashion as above, we can calculate the discrete approximation to the 

derivative of the original function 𝐹 as (see the semi-discrete equation (2.3))   
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𝐹′𝑗 = (�̂�𝑗+1
2
− �̂�

𝑗−
1
2
)/ℎ𝑗 ≈ (−

1

30
𝐹𝑗−3 +

1

4
𝐹𝑗−2 − 𝐹𝑗−1 +

1

3
𝐹𝑗 +

1

2
𝐹𝑗+1 −

1

20
𝐹𝑗+2)/ℎ𝑗 (2.7) 

It is easy to verify by a Taylor series expansion that Eq. (2.7) is a 5
th 

order 

approximation to the discrete derivative 𝐹′𝑗 [26].  

Instead of using the constant weights (2.6), the WENO scheme adaptively 

selects the weights in relation to the “smoothness” of the stencils. The non-linear weights 

𝜔𝑊𝐸𝑁𝑂
𝑖,𝑗±

1

2 are introduced as   

𝜔𝑊𝐸𝑁𝑂
𝑖,𝑗±

1
2 =

𝛾𝑊𝐸𝑁𝑂
𝑖,𝑗±

1
2

∑ 𝛾𝑊𝐸𝑁𝑂
𝑘,𝑗±

1
22

𝑘=0

 𝛾𝑊𝐸𝑁𝑂
𝑖,𝑗±

1
2 =

𝐶𝑊𝐸𝑁𝑂
𝑖

(𝜀 + 𝐼𝑆
𝑖,𝑗±

1
2
)𝑝

 𝑖 = 0,1,2 (2.8) 

 

Where  is a small parameter which prevents the division by zero, p is an integer 

(set equal to 2 in [27]), 𝐶𝑊𝐸𝑁𝑂
𝑖 are those given in (2.6), and 𝐼𝑆

𝑖,𝑗±
1

2

 are the “smoothness” 

indicators given in [27]. In general, 𝐼𝑆
𝑘,𝑗−

1

2

≠ 𝐼𝑆
𝑘,𝑗+

1

2

 with 𝑘 = 0,1,2, implying that also 

𝜔𝑊𝐸𝑁𝑂
𝑘,𝑗−

1

2 ≠ 𝜔𝑊𝐸𝑁𝑂
𝑘,𝑗+

1

2   with 𝑘 = 0,1,2. Note that the non-linear weights need to satisfy 

∑ 𝜔𝑊𝐸𝑁𝑂
𝑘,𝑗±

1

2  2
𝑘=0 = 1  for consistency of the scheme. 

 

2.3 Seventh-Order Parametric Weighted Upwind Compact Scheme 

Similar as 5
th
 Order WENO, the intuitive drive of a Parametric Weighted Upwind 

Compact Scheme is to obtain seventh order approximation to the numerical flux by a 

weighted average of multiple lower-order compact candidate approximations, according 

to the “smoothness” of the original function on each of the candidates. For obtaining a 7
th
 

order Parametric Weighted Upwind Compact Scheme, three third-order approximations 
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of the linear compact combination of numerical fluxes at �̂�
𝑗−

3
2

, �̂�
𝑗−

1
2

, �̂�
𝑗+

1
2

, �̂�
𝑗+

3
2

and �̂�
𝑗+

5
2

  

are obtained from the three candidate stencils (Figure 2-1): 

𝐸0 = {𝐹𝑗−2, 𝐹𝑗−1, 𝐹𝑗} 

𝐸1 = {𝐹𝑗−1, 𝐹𝑗, 𝐹𝑗+1} 

𝐸2 = {𝐹𝑗 , 𝐹𝑗+1, 𝐹𝑗+2} 

Choosing the Lagrange polynomial for the third order approximation of 𝑡0�̂�𝑗−3
2

+

𝑡1�̂�𝑗−1
2

+ �̂�
𝑗+

1
2

 , we obtain, for the first stencil 𝐸0 : 

𝑡0�̂�𝑗−3
2

+ 𝑡1�̂�𝑗−1
2

+ �̂�
𝑗+

1
2

≈ (𝑡2𝐹𝑗−2 + 𝑡3𝐹𝑗−1 + 𝑡4𝐹𝑗)/ℎ  (2.9) 

𝑡2 = (2 + 2𝑡0 − 𝑡1)/6 

𝑡3 = (−7 + 5𝑡0 + 5𝑡1)/6 

𝑡4 = (11 − 𝑡0 + 2𝑡1)/6 

And similarly for the other two stencils  𝐸1 and 𝐸2 :  

 𝑠0�̂�𝑗−1
2

+ �̂�
𝑗+

1
2

+ 𝑠1�̂�𝑗+3
2

≈ (𝑠2𝐹𝑗−1 + 𝑠3𝐹𝑗 + 𝑠4𝐹𝑗+1)/ℎ  (2.10) 

𝑠2 = (−1 + 2𝑠0 + 2𝑠1)/6 

𝑠3 = (5 + 5𝑠0 − 7𝑠1)/6 

𝑠4 = (2 − 𝑠0 + 11𝑠1)/6 

�̂�
𝑗+

1
2

+ 𝑟0�̂�𝑗+3
2

+ 𝑟1�̂�𝑗+5
2

≈ (𝑟2𝐹𝑗 + 𝑟3𝐹𝑗+1 + 𝑟4𝐹𝑗+2)/ℎ  (2.11) 

𝑟2 = (2 − 𝑟0 + 2𝑟1)/6 

𝑟3 = (5 + 5𝑟0 − 7𝑟1)/6 

𝑟4 = (−1 + 2𝑟0 + 11𝑟1)/6 

 

For obtaining 7th order of 𝐶0𝐸0 + 𝐶1𝐸1 + 𝐶2𝐸2,  𝑡0, 𝑡1,  𝑠0, 𝑠1,  𝑟0, 𝑟1, 𝐶
0, 𝐶1, and 

𝐶2 need satisfy 
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𝑡0 =
𝐶0 + 𝐶1 + 11𝐶2 − 20𝐶2𝑟0 + 107𝐶

2𝑟1
3𝐶0

 

(2.12) 

𝑡1 =
61

24
+
13𝐶1

24𝐶0
+
137𝐶2

24𝐶0
−
31𝐶2r0
3𝐶0

 

𝑠0 = −
25𝐶0 − 23𝐶1 − 139𝐶2 + 232𝐶2𝑟0 − 1132𝐶

2𝑟1
24𝐶1

 

𝑠1 =
𝐶0 + 𝐶1 − 19𝐶2 + 28𝐶2𝑟0 − 124𝐶

2𝑟1
12𝐶1

 

 

Like WENO, this 7
th
 order parametric weighted upwind compact scheme will use 

non-linear weights 𝜔𝑖  instead 𝐶𝑖  

𝜔
𝑖,𝑗±

1
2 =

𝛾
𝑖,𝑗±

1
2

∑ 𝛾
𝑘,𝑗±

1
22

𝑘=0

 𝛾
𝑖,𝑗±

1
2 =

𝐶𝑖

(𝜀 + 𝐼𝑆
𝑖,𝑗±

1
2
)𝑝

 𝑖 = 0,1,2 (2.13) 

And 𝜔0𝐸0 + 𝜔1𝐸1 + 𝜔2𝐸2 is defined as 7th parametric weighted upwind compact 

scheme. In the following section, using Fourier Analysis for dissipation and dispersion 

study to choose 𝑟0, 𝑟1,  𝐶
0, 𝐶1, and 𝐶2 will be discussed.  𝐶0, 𝐶1, and 𝐶2 are the 

parametric weights for this seventh-order parametric weighted upwind compact scheme. 

2.4 Eighth-Order Weighted Central Compact Scheme 

Similarly as section 2.3, Seventh-Order Parametric Weighted Central Compact 

Scheme, three third-order approximations of the linear compact combination of numerical 

fluxes at �̂�
𝑗−

3
2

, �̂�
𝑗−

1
2

, �̂�
𝑗+

1
2

, �̂�
𝑗+

3
2

 and �̂�
𝑗+

5
2

  are obtained from the three candidate stencils 

(Figure 2-1): 

𝐸𝑊𝐶𝐶𝑆
0 = {𝐹𝑗−2, 𝐹𝑗−1, 𝐹𝑗} 

𝐸𝑊𝐶𝐶𝑆
1 = {𝐹𝑗−1, 𝐹𝑗, 𝐹𝑗+1} 

𝐸𝑊𝐶𝐶𝑆
2 = {𝐹𝑗 , 𝐹𝑗+1, 𝐹𝑗+2} 
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Choosing the Lagrange polynomial for the third order approximation of linear 

combination of �̂�
𝑗−

3
2

, �̂�
𝑗−

1
2

, and �̂�
𝑗+

1
2

, we obtain, for the first stencil 𝐸𝑊𝐶𝐶𝑆
0 : 

3

10
�̂�
𝑗−
3
2
+
13

5
�̂�
𝑗−
1
2
+ �̂�

𝑗+
1
2
≈ (

5

4
𝐹𝑗−1 +

53

20
𝐹𝑗)/ℎ (2.14) 

And similarly for the other two stencils  𝐸𝑊𝐶𝐶𝑆
1 and 𝐸𝑊𝐶𝐶𝑆

2 :  

1

4
�̂�
𝑗−
1
2
+ �̂�

𝑗+
1
2
+
1

4
�̂�
𝑗+
3
2
≈ (

3

4
𝐹𝑗 +

3

4
𝐹𝑗+1)/ℎ (2.15) 

�̂�
𝑗+
1
2
+
13

5
�̂�
𝑗+
3
2
+
3

10
�̂�
𝑗+
5
2

≈ (
53

20
𝐹𝑗+1 +

5

4
𝐹𝑗+2)/ℎ (2.16) 

And  

𝐶𝑊𝐶𝐶𝑆
0 =

5

54
 𝐶𝑊𝐶𝐶𝑆

1 =
44

54
 𝐶𝑊𝐶𝐶𝑆

2 =
5

54
 

will keep  

𝐶𝑊𝐶𝐶𝑆
0 𝐸𝑊𝐶𝐶𝑆

0 + 𝐶𝑊𝐶𝐶𝑆
1 𝐸𝑊𝐶𝐶𝑆

1 + 𝐶𝑊𝐶𝐶𝑆
2 𝐸𝑊𝐶𝐶𝑆

2  8
th
 order accuracy.  

Then 𝜔𝑊𝐶𝐶𝑆
0 𝐸𝑊𝐶𝐶𝑆

0 + 𝜔𝑊𝐶𝐶𝑆
1 𝐸𝑊𝐶𝐶𝑆

1 + 𝜔𝑊𝐶𝐶𝑆
2 𝐸𝑊𝐶𝐶𝑆

2  is defined as 8
th
 order Weighted Central 

Scheme with  

𝜔𝑊𝐶𝐶𝑆
𝑖,𝑗±

1
2 =

𝛾𝑊𝐶𝐶𝑆
𝑖,𝑗±

1
2

∑ 𝛾𝑊𝐶𝐶𝑆
𝑘,𝑗±

1
22

𝑘=0

 𝛾𝑊𝐶𝐶𝑆
𝑖,𝑗±

1
2 =

𝐶𝑊𝐶𝐶𝑆
𝑖

(𝜀 + 𝐼𝑆
𝑖,𝑗±

1
2
)𝑝

 𝑖 = 0,1,2 

   Acturally, this 8th Order Weighted Central Compact Scheme is a special case of 

7th Order Parametric Weighted Upwind Compact Scheme. In next section, another 

special case of 7th Order Parametric Weighted Upwind Compact Scheme will be found 

as part of final WUCS. 

2.5 Fourier Analysis of Truncation Error 

Sanjiva K. Lele used Fourier analysis for compact scheme’s dissipation and 

dispersion study in 1991 [25]. The use of Fourier analysis to characterize the errors of 

difference approximations is described extensively in [28]. It is a classical technique for 
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comparing differencing schemes. Fourier analysis of the standard Pad scheme was 

presented in [29] and comparisons were made with the second- and fourth-order central 

differences [25]. The Fourier analysis provides an effective way to quantify the resolution 

characteristics of the differencing approximations. This quantification will be used in later 

sections for constructing Weighted Upwind Compact Scheme. In the following section the 

differencing errors are analyzed in terms of dispersion and dissipation.  

For the purposes of Fourier analysis the dependent variables are assumed to be 

periodic over the domain [0, 𝐿] of the independent variable, i.e., 𝑓1 = 𝑓𝑁+1 and ℎ = 𝐿/𝑁. 

The dependent variables may be decomposed into their Fourier coefficients 

𝑓(𝑥) =  ∑ 𝑓�̂�Exp (
2𝜋𝑖𝑘𝑥

𝐿

𝑁
2

𝑘=−
𝑁
2

) (2.17) 

where 𝑖 = √−1. Since the dependent variables are real-values, the Fourier 

coefficients satisfy 𝑓𝑘 = 𝑓−𝑘 for 1 ≤ 𝑘 ≤
𝑁

2
 and 𝑓0̂ = 𝑓0̂

̅  , where   ̅ denotes the complex 

conjugate [25]. 

It is convenient to introduce a scaled wave number 𝑤 =
2𝜋𝑘ℎ

𝐿
=

2𝜋𝑘

𝑁
 and a scaled 

coordinate 𝑠 =
𝑥

ℎ
 . The Fourier modes in terms of these are simply Exp (𝑖𝑤𝑠). The domain 

of the scaled wavenumber 𝑤 is [ 0, 𝜋]. The exact first derivative of (2.17) (with respect 

to 𝑠) generates a function with Fourier coefficients  𝑓′𝑘 = 𝑖𝑤 𝑓�̂�. The differencing error of 

the first derivative scheme may be assessed by comparing the Fourier coefficients of the 

derivative obtained from the differencing scheme  (𝑓′𝑘)𝑓𝑑 with the exact Fourier 

coefficients 𝑓′𝑘. Each finite difference scheme corresponds to a particular function 𝑤′(𝑤). 

Exact differentiation corresponds to the straight line 𝑤′ = 𝑤. The range of wavenumbers 

The modified wavenumber [ 2π/N,𝑤𝑓] over which the modified wavenumber 𝑤′(𝑤)  
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approximates the exact differentiation 𝑤′(𝑤) = 𝑤 within a specified error tolerance 

defines the set of well-resolved waves. 𝑤′ corresponding to is in general complex. The 

real part of  𝑤′, indicated by  𝑤′𝑟 is associated with the dispersive error (when different 

from w) and the imaginary part, 𝑤′𝑖, is associated with the dissipative error [25]. 

2.5.1 Left Stencil 

𝐸0 is represented by (2.9). This section 𝐸0 ’s dispersion and dissipation will be 

listed. 

𝑤′𝑟  =  

(
(10 + 4𝑡0

2 + 2𝑡0(−5 + 𝑡1) + 𝑡1(−1 + 4𝑡1) − (9 + 𝑡0 + (−8 + 𝑡1)𝑡1
−2𝑡0(7 + 2𝑡1))Cos(𝑤) + (2 + 2𝑡0 − 𝑡1)Cos(2𝑤))Sin(𝑤)

)

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
  

𝑤′𝑖  = −
4(−1 + 𝑡0

2 − (−4 + 𝑡1)𝑡1 + (4 + 4𝑡0 − 2𝑡1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
 

2.5.2 Center Stencil 

𝐸1 is represented by (2.10). This section 𝐸1 ’s dispersion and dissipation will be 

listed. 

𝑤′𝑟  =  

(
(−4 + 𝑠1 − 2(𝑠0 + 2𝑠0

2 − 5𝑠0𝑠1 + 5𝑠1) + (1 + 𝑠0
2 − 2𝑠0(2 + 7𝑠1)

+𝑠1(−8 + 9𝑠1))Cos(𝑤) + (1 − 2𝑠0 − 2𝑠1)𝑠1Cos(2𝑤))Sin(𝑤)
)

−3(1 + 𝑠0
2 + 𝑠1

2 + 2(𝑠0 + 𝑠1)Cos(𝑤) + 2𝑠0𝑠1Cos(2𝑤))
  

𝑤′𝑖  = −
4(−1 + 𝑠0

2 − (−4 + 𝑠1)𝑠1 + 2𝑠1(−1 + 2𝑠0 + 2𝑠1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑠0
2 + 𝑠1

2 + 2(𝑠0 + 𝑠1)Cos(𝑤) + 2𝑠0𝑠1Cos(2𝑤))
 

2.5.3 Right Stencil 

𝐸2 is represented by (2.11). This section 𝐸2 ’s dispersion and dissipation will be 

listed.  

𝑤′𝑟  =

(
(−2(2 + 𝑟0 + 2𝑟0

2) + (10 + 𝑟0)𝑟1 − 10𝑟1
2 + (1 + 𝑟0

2 − 4𝑟0(1 + 2𝑟1)

+𝑟1(−14 + 9𝑟1))Cos(𝑤) + (−2 + 𝑟0 − 2𝑟1)𝑟1Cos(2𝑤))Sin(𝑤)
)

−3(1 + 𝑟0
2 + 𝑟1

2 + 2𝑟0(1 + 𝑟1)Cos(𝑤) + 2𝑟1Cos(2𝑤))
  

𝑤′𝑖  =
4(−1 + 𝑟0

2 − 4𝑟0𝑟1 + 𝑟1
2 + 2𝑟1(𝑟0 − 2(1 + 𝑟1))Cos(𝑤))Sin(

𝑤
2
)4

3(1 + 𝑟0
2 + 𝑟1

2 + 2𝑟0(1 + 𝑟1)Cos(𝑤) + 2𝑟1Cos(2𝑤))
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2.6 Combination Methodology 

Switching 𝐶0, 𝐶1and 𝐶2 with  𝜔0, 𝜔1, and 𝜔2, weighted combination is formed as   

𝜔0𝐸0 + 𝜔1𝐸1 + 𝜔2𝐸2. For seventh-order weighted upwind compact scheme, left stencil 

𝐸0 or center stencil 𝐸1 will be used at where shock is developing. And right stencil 𝐸2 will 

be dropped at shock. Because left stencil 𝐸0 or center stencil 𝐸1 is at upwind position, 

right stencil 𝐸2 is at downwind position. For keeping seventh-order weighted upwind 

compact scheme stable, making left stencil 𝐸0 and center stencil 𝐸1 both have positive 

dissipation is necessary. The other necessary condition is that both left stencil 𝐸0 and 

center stencil 𝐸1 dispersive error cannot be too large, otherwise numerical oscillation in 

solution will be obvious. 

2.6.1 Combination Requirements for Left Stencil 

Based on 2.5.1, a positive dissipation condition is enforced as below. For = 𝜋 , a 

lower bond of dissipation is given. And a upper bond of dissipation is given for 𝑤 = 3. A 

dispersion upper bound at 𝑤 = 2.96 is also listed below.  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

−
4(−1 + 𝑡0

2 − (−4 + 𝑡1)𝑡1 + (4 + 4𝑡0 − 2𝑡1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
|

𝑤=
3𝜋
4

> 0

−
4(−1 + 𝑡0

2 − (−4 + 𝑡1)𝑡1 + (4 + 4𝑡0 − 2𝑡1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
|

𝑤=𝜋

> 6

−
4(−1 + 𝑡0

2 − (−4 + 𝑡1)𝑡1 + (4 + 4𝑡0 − 2𝑡1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
|

𝑤=3

< 12

(
(10 + 4𝑡0

2 + 2𝑡0(−5 + 𝑡1) + 𝑡1(−1 + 4𝑡1) − (9 + 𝑡0 + (−8 + 𝑡1)𝑡1
−2𝑡0(7 + 2𝑡1))Cos(𝑤) + (2 + 2𝑡0 − 𝑡1)Cos(2𝑤))Sin(𝑤)

)

3(1 + 𝑡0
2 + 𝑡1

2 + 2(1 + 𝑡0)𝑡1Cos(𝑤) + 2𝑡0Cos(2𝑤))
||

𝑤=2.96

< 8

 

2.6.2 Combination Requirements for Center Stencil 

Comparing with 2.6.1 Left Stencil, a lower positive dissipation bond is given for 

Center Stencil, and more restrict dispersion requirement is enforced as below. 
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{
 
 
 
 
 

 
 
 
 
 
−
4(−1 + 𝑠0

2 − (−4 + 𝑠1)𝑠1 + 2𝑠1(−1 + 2𝑠0 + 2𝑠1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑠0
2 + 𝑠1

2 + 2(𝑠0 + 𝑠1)Cos(𝑤) + 2𝑠0𝑠1Cos(2𝑤))
|

𝑤=2.1

> 0

−
4(−1 + 𝑠0

2 − (−4 + 𝑠1)𝑠1 + 2𝑠1(−1 + 2𝑠0 + 2𝑠1)Cos(𝑤))Sin(
𝑤
2
)4

3(1 + 𝑠0
2 + 𝑠1

2 + 2(𝑠0 + 𝑠1)Cos(𝑤) + 2𝑠0𝑠1Cos(2𝑤))
|

𝑤=3.1

> 0.4

(
(−4 + 𝑠1 − 2(𝑠0 + 2𝑠0

2 − 5𝑠0𝑠1 + 5𝑠1) + (1 + 𝑠0
2 − 2𝑠0(2 + 7𝑠1)

+𝑠1(−8 + 9𝑠1))Cos(𝑤) + (1 − 2𝑠0 − 2𝑠1)𝑠1Cos(2𝑤))Sin(𝑤)
)

−3(1 + 𝑠0
2 + 𝑠1

2 + 2(𝑠0 + 𝑠1)Cos(𝑤) + 2𝑠0𝑠1Cos(2𝑤))
||

𝑤=1.8

< 1.85

 

 

2.6.3 Combination Results 

Combining 2.4.1 and 2.4.2 with (2.12) , 𝐶0, 𝐶1, 𝐶2, 𝑟0, and 𝑟1 can be chose as 

𝐶0 =
1

20
 𝐶1 =

11

20
 𝐶2 =

2

5
 𝑟0 =

53

80
 𝑟1 =

−1

100
 (2.18) 

From this section, PWUCS will be used to identify a Parametric Weighted Upwind Compact 

Scheme with fixed parameters as (2.9), (2.10), (2.11), (2.12), (2.13) and (2.18). 

 

2.7 Construction of WUCS by 7
th
 PWUCS and 8

th
 WCCS 

As mentioned in Chapter 1, a fixed share or a fixed ratio of two different scheme 

for combination is more stable than a dynamic ratio of two different scheme. The other 

concern for combination is that using as more 8
th
 WCCS as possible will benefit final 

WUCS for higher accuracy. The last and the most important combination condition, is 

that combined scheme should always keep positive dissipation for left stencil and center 

stencil. 

Easy to see that, 8th Order WCCS can be derived from 7th order Parametric 

Weighted Upwind Compact Scheme by choosing specific parameters. Such as in (2.12), 
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Figure 2-2 Im(w ’) for Left Stencil Combination 

Making 

𝐶0 =
5

54
, 𝐶1 =

22

27
, 𝐶2 =

5

54
, 𝑟0 =

13

5
, 𝑟1 =

3

10
 

Then 

𝑡0 =
3

10
, 𝑡1 =

13

5
, 𝑠0 =

1

4
, 𝑠1 =

1

4
 

and 𝐸𝑊𝐶𝐶𝑆
𝑖 = 𝐸𝑊𝐶𝐶𝑆

𝑖   ( i =1,2,3).  

After several combination have been tested, a final combination of 58.5% 7
th
 

PWUCS and 41.5% 8
th
 WCCS is a good compromise for keeping positive dissipation for 

left stencil and utilizing more 8
th
 WCCS as possible. That is 

0.585 ∗ (𝜔0𝐸0 + 𝜔1𝐸1 + 𝜔2𝐸2) + 0.415 ∗ (𝜔𝑊𝐶𝐶𝑆
0 𝐸𝑊𝐶𝐶𝑆

0 + 𝜔𝑊𝐶𝐶𝑆
1 𝐸𝑊𝐶𝐶𝑆

1 + 𝜔𝑊𝐶𝐶𝑆
2 𝐸𝑊𝐶𝐶𝑆

2 ) 

The major reason to have 58.5% PWUCS is trying keep positive dissipation for  Left 

Stencil when there is a shock, and the combined WUCS utilizing Left Stencil mostly. 

0.7PWUCS 0.3WCCS

0.64PWUCS 0.36WCCS

0.585PWUCS 0.415WCCS

0.53PWUCS 0.47WCCS

0.5PWUCS 0.5WCCS

0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

0.2

0.2

0.4

Modified Wave Number
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From Figure 2-2, a negative dissipation will emerge when WUCS utilize a little bit less 

percentage of PWUCS.   

And combination details will be elaborated in next Chapter.  
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Chapter 3  

Order, Dissipation and Dispersion Analysis 

In  this  Chapter,  a  detailed  analysis  of  the  local  truncation  errors,  the  

dissipation  and dispersion terms is done for the Weighted Upwind Compact Scheme. A 

Fourier analysis and an investigation near shocks and in smooth area are performed. 

3.1 Local Truncation Error of 7
th
 Order PWUCS 

From (2.9), (2,10), (2.11) and 2.4.3,  𝐶0𝐸0 + 𝐶1𝐸1 + 𝐶2𝐸2 ‘s truncation error is 

𝐶0(𝑡0�̂�𝑗−3/2 + 𝑡1�̂�𝑗−1/2 + �̂�𝑗+1/2 − (𝑡2𝐹𝑗−2 + 𝑡3𝐹𝑗−1 + 𝑡4𝐹𝑗)/ℎ) + 𝐶
1(𝑠0�̂�𝑗−1/2 + �̂�𝑗+1/2

+ 𝑠1�̂�𝑗+3/2 − (𝑠2𝐹𝑗−1 + 𝑠3𝐹𝑗 + 𝑠4𝐹𝑗+1)/ℎ) + 𝐶
2(�̂�𝑗+1/2 + 𝑟0�̂�𝑗+3/2 + 𝑟1�̂�𝑗+5/2

− (𝑟2𝐹𝑗 + 𝑟3𝐹𝑗+1 + 𝑟4𝐹𝑗+2)/ℎ) 

=
1

24
(
123

500
+
11

10
(−1 + 𝑠0 + 3𝑠1) +

1

10
(3 + 𝑡0 − 𝑡1))ℎ

3
𝜕4𝐹𝑗

𝜕𝑥4
 

+
1

120
(−

43

500
−
11

10
(−2 + 3𝑠0 + 3𝑠1) +

1

10
(−18 − 8𝑡0 + 7𝑡1))ℎ

4
𝜕5𝐹𝑗

𝜕𝑥5
 

+
1

720
(−

69

125
+
11

10
(−5 + 8𝑠0 + 12𝑠1) +

1

10
(75 + 41𝑡0 − 32𝑡1))ℎ

5
𝜕6𝐹𝑗

𝜕𝑥6
 

+
−
601
250

−
11
5
(−5 + 9𝑠0 + 9𝑠1) +

1
5
(−135 − 86𝑡0 + 61𝑡1)

5040
ℎ6
𝜕7𝐹𝑗

𝜕𝑥7
 

+
−
3051
500

+
33
10
(−7 + 13𝑠0 + 15𝑠1) +

3
10
(301 + 215𝑡0 − 141𝑡1)

40320
ℎ7
𝜕8𝐹𝑗

𝜕𝑥8
 

+
−
7401
500

−
33
10
(−14 + 27𝑠0 + 27𝑠1) −

3
10
(966 + 752𝑡0 − 463𝑡1)

362880
ℎ8
𝜕9𝐹𝑗

𝜕𝑥9
+ O(ℎ9) 

Combining (2.9), above formula become (2.19) as below 

𝐶0(𝑡0�̂�𝑗−3/2 + 𝑡1�̂�𝑗−1/2 + �̂�𝑗+1/2 − (𝑡2𝐹𝑗−2 + 𝑡3𝐹𝑗−1 + 𝑡4𝐹𝑗)/ℎ) + 𝐶
1(𝑠0�̂�𝑗−1/2 + �̂�𝑗+1/2

+ 𝑠1�̂�𝑗+3/2 − (𝑠2𝐹𝑗−1 + 𝑠3𝐹𝑗 + 𝑠4𝐹𝑗+1)/ℎ) + 𝐶
2(�̂�𝑗+1/2 + 𝑟0�̂�𝑗+3/2 + 𝑟1�̂�𝑗+5/2

− (𝑟2𝐹𝑗 + 𝑟3𝐹𝑗+1 + 𝑟4𝐹𝑗+2)/ℎ) 
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= −
23

30000
ℎ7
𝜕8𝐹𝑗

𝜕𝑥8
+

13

37800
ℎ8
𝜕9𝐹𝑗

𝜕𝑥9
+ O(ℎ9) 

The dissipation error and the dispersion error can be extracted from (2.19), which are  

respectively the even derivative terms and the odd derivative terms of (2.19) 

Dissipation error: 

𝐸7𝑡ℎ 𝑃𝑊𝑈𝐶𝑆,𝑑𝑖𝑠𝑠𝑖𝑝 = −
23

30000
ℎ7
𝜕8𝐹𝑗

𝜕𝑥8
+⋯ 

Dispersion error: 

𝐸7𝑡ℎ 𝑃𝑊𝑈𝐶𝑆,𝑑𝑖𝑠𝑝𝑒𝑟 =
13

37800
ℎ8
𝜕9𝐹𝑗

𝜕𝑥9
+⋯ 

3.2 Local Truncation Error of 8
th
 Order WCCS 

From (2.14), (2.15), and (2.16), 𝐶𝑊𝐶𝐶𝑆
0 𝐸𝑊𝐶𝐶𝑆

0 + 𝐶𝑊𝐶𝐶𝑆
1 𝐸𝑊𝐶𝐶𝑆

1 + 𝐶𝑊𝐶𝐶𝑆
2 𝐸𝑊𝐶𝐶𝑆

2 ‘s truncation error 

is  

1

420
ℎ8
𝜕9𝐹𝑗

𝜕𝑥9
+ 𝑂(ℎ10) 

Dissipation error: 

𝐸8𝑡ℎ 𝑊𝐶𝐶𝑆,𝑑𝑖𝑠𝑠𝑖𝑝 = 0 

Dispersion error: 

𝐸8𝑡ℎ 𝑊𝐶𝐶𝑆,𝑑𝑖𝑠𝑝𝑒𝑟 =
1

420
ℎ8
𝜕9𝐹𝑗

𝜕𝑥9
+⋯ 

 

3.3 Dissipation of Left Stencil 

The dissipation error is associated with imaginary part of modified wave number 𝑤′. 

 For 8
th
 Order WCCS Left Stencil, 

𝑤′𝑖 = −
91Sin(𝑤)4

25(
157
20

+
169Cos(𝑤)

25
+
3
5
Cos(2𝑤))

 

For 7
th
 Order PWUCS Left Stencil,  
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𝑤′𝑖 = −
4(−

8347
375

−
136Cos(𝑤)

25
)Sin(

𝑤
2
)4

3(
277997
5625

+
216172Cos(𝑤)

5625
−
728
75

Cos(2𝑤))
 

 

 
Figure 3-1 Im(w ’) of Left Stencil 

 

For 5
th
 Order WENO Left Stencil,  

𝑤′𝑖 =
4

3
(1 − 4Cos(𝑤))Sin(

𝑤
2
)
4

 

 

 
3.4 Dispersion of Left Stencil 

The dispersion error is associated with the real part of the modified wave number. 

For 8
th
 Order WCCS Left Stencil, 

𝑤′𝑟 =
(
834
25

+
1227Cos(𝑤)

100
)Sin(𝑤)

3(
157
20

+
169Cos(𝑤)

25
+
3
5
Cos(2𝑤))

 

WCCS

PWUCS

WENO

0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

2

2

4

6

8

Modified Wave Number
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Figure 3-2 Re(w ’) of Left Stencil 

 
For 7

th
 Order PWUCS Left Stencil,  

𝑤′𝑟 = −
4(−

8347
375

−
136Cos(𝑤)

25
)Sin(

𝑤
2
)4

3(
277997
5625

+
216172Cos(𝑤)

5625
−
728
75

Cos(2𝑤))
 

 
For 5

th
 Order WENO Left Stencil,  

𝑤′𝑟 =
4

3
(1 − 4Cos(𝑤))Sin(

𝑤
2
)
4

 

 
Figure 3-1 and Figure 3-2 are very appreciable, if some scheme can have 

modified wave number between red line and red dash line, that would be a good 

compromise for both dissipation and dispersion. Actually, WUCS can make this 

compromise dynamically which will be introduced in 3.11.  

WCCS

PWUCS

WENO

0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

2

4

6

8

Modified Wave Number
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3.5 Dissipation of Center Stencil 

 
 

Figure 3-3 Im(w ’) of Center Stencil 

Since 8
th
 Order WCCS Center Stencil is a central compact scheme, 

𝑤′𝑖 = 0  

 

For 7
th
 Order PWUCS Center Stencil,  

𝑤′𝑖 = −
4(−

27737
60500

−
108088Cos(𝑤)

680625
)Sin(

𝑤
2
)4

3(
2790317
2722500

+
353Cos(𝑤)

825
+
14198Cos(2𝑤)

680625
)
 

 

For 5
th
 Order WENO Center Stencil,  

𝑤′𝑖 =
4

3
Sin(

𝑤
2
)
4

 

 

 

WCCS

PWUCS

WENO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Modified Wave Number
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3.6 Dispersion of Center Stencil 

For 8
th
 Order WCCS Center Stencil, 

𝑤′𝑟 = −
(−
9
2
−
9Cos(𝑤)

4
)Sin(𝑤)

3(
9
8
+ Cos(𝑤) +

1
8
Cos(2𝑤))

 

For 7
th
 Order PWUCS Center Stencil,  

𝑤′𝑟 = −
(−
2805826
680625

−
1028899Cos(𝑤)

2722500
+
54044Cos(2𝑤)

680625
)Sin(𝑤)

3(
2790317
2722500

+
353Cos(𝑤)

825
+
14198Cos(2𝑤)

680625
)

 

For 5
th
 Order WENO Center Stencil,  

𝑤′𝑟 = −
1

3
(−4 + Cos(𝑤))Sin(𝑤) 

 

 
Figure 3-4 Re(w ’) of Center Stencil 

 
3.7 Dissipation of Right Stencil 

For 8
th
 Order WCCS Right Stencil, 

WCCS

PWUCS

WENO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

0.5

1.0

1.5

2.0

2.5

3.0

Modified Wave Number
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𝑤′𝑖 =
91Sin(

𝑤
2
)4

25(
157
20

+
169Cos(𝑤)

25
+
3
5
Cos(𝑤))

 

 
For 7

th
 Order PWUCS Right Stencil,  

𝑤′𝑖 =
4(−

85519
160000

+
527Cos(𝑤)
20000

)Sin(
𝑤
2
)4

3(
230241
160000

+
5247Cos(𝑤)

4000
−
1
50
Cos(2𝑤))

 

 

 
Figure 3-5 Im(w ’) of Right Stencil 

 
For 5

th
 Order WENO Right Stencil,  

𝑤′𝑖 = −
4

3
Sin(

𝑤
2
)
4

 

 

 

WCCS

PWUCS

WENO

0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

6

4

2

2

Modified Wave Number
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3.8 Dispersion of Right Stencil 

For 8
th
 Order WCCS Right Stencil, 

𝑤′𝑟 = −
(−
834
25

−
1227Cos(𝑤)

100
)Sin(𝑤)

3(
157
20

+
169Cos(𝑤)

25
+
3
5
Cos(2𝑤))

 

 
Figure 3-6 Re(w ’) of Right Stencil 

For 7
th
 Order PWUCS Right Stencil,  

𝑤′𝑟 = −
(−
28753
4000

−
162751Cos(𝑤)

160000
+
527Cos(2𝑤)
40000

)Sin(𝑤)

3(
230241
160000

+
5247Cos(𝑤)

4000
−
1
50
Cos(2𝑤))

 

For 5
th
 Order WENO Right Stencil,  

𝑤′𝑟 = −
1

3
(−4 + Cos(𝑤))Sin(𝑤)  

 

 
3.9 Dissipation of Combined Scheme 

For 8
th
 Order WCCS, 

WCCS

PWUCS

WENO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wave Number

1

2

3

4
Modified Wave Number
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𝑤′𝑖 = 0  

For 7
th
 Order PWUCS,  

𝑤′𝑖 = −
32(−

3467
375

+
136Cos(𝑤)

125
)Sin(

𝑤
2
)
8

15(
137101
1125

+
68416Cos(𝑤)

1875
+ 20(−

9927Cos(2𝑤)
3125

−
23062Cos(3𝑤)

28125
+
91Cos(4𝑤)

9375
))

 

 
 

Figure 3-7 Im(w ’) of Combined Scheme 

For 5
th
 Order WENO,  

𝑤′𝑖 = −
4

3
Sin(

𝑤
2
)
4

 

 

 
3.10 Dispersion of Combined Scheme 

For 8
th
 Order WCCS, 

𝑤′𝑟 =

250000Sin(𝑤)
27

+
432500
81

Sin(2𝑤) +
70000
81

Sin(3𝑤) +
3125
81

Sin(4𝑤)

60(
22625
162

+
14800Cos(𝑤)

81
+ 20(

205
81

Cos(2𝑤) +
20
81
Cos(3𝑤) +

5
648

Cos(4𝑤)))
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WENO
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Wave Number
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Figure 3-8 Re(w ’) of Combined Scheme 

 
For 7

th
 Order PWUCS,  

𝑤′𝑟 =

5582384Sin(𝑤)
375

−
485968
375

Sin(2𝑤)−
2759564Sin(3𝑤)

1125
−
6917
125

Sin(4𝑤)+
68
125

Sin(5𝑤)

60(
137101
1125

+
68416Cos(𝑤)

1875
+ 20(−

9927Cos(2𝑤)
3125

−
23062Cos(3𝑤)

28125
+
91Cos(4𝑤)

9375
))

 

For 5
th
 Order WENO,  

𝑤′𝑟 =
1

30
(45Sin(𝑤)− 9Sin(2𝑤)+ Sin(3𝑤)) 

 

 

3.11 Left Stencil of WUCS 

Though WUCS is a combination with 58.5% from PWUCS and 41.5% from 

WCCS, each Stencil is not combined by a constant share. For instance, Left Stencil of 

WUCS is a dynamic combination of 7
th
 order PWUCS’s Left Stencil and 8

th
 order WCCS’s 

Left Stencil. In smooth area, when 𝜔0 = 1/20 for PWUCS’s Left Stencil, 𝜔𝑊𝐶𝐶𝑆
0 = 5/54 for 

WCCS
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WENO
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WCCS’s Left Stencil; around shock, when 𝜔0 = 1 for PWUCS’s Left Stencil, 𝜔𝑊𝐶𝐶𝑆
0 = 1 

for WCCS’s Left Stencil. In some intermediate area between smooth area and shock, 

when 𝜔0 = 1/12 for PWUCS’s Left Stencil,  𝜔𝑊𝐶𝐶𝑆
0 = 5/49 for WCCS’s Left Stencil. The 

different dissipation properties can be shown as below

 

Figure 3-9 Im(w ’) of WUCS’s Left Stencil 

From Figure 3-9, an adaptive dissipation property is very clear for WUCS.  

 

 

 

 

 

 

Around shock

Intermediate area

Smooth Area
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Wave Number

2

1
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2
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Chapter 4  

1D and 2D cases for WUCS 

In this Chapter, several selected one-dimensional and two-dimensional fluid 

dynamics cases will be used to testify previous chapters’ deriving. All the cases’ 

derivative solver is using WUCS. 

 

4.1 Order test by One-Dimensional smooth functions 

Firstly, order test results for PWUCS  are tabulated in Table 4-1 and Table 4-3. It 

can show that PWUCS has expected 7
th
 order accuracy as section 3.1. After that, 

order test results for WUCS is tabulate in Table 4-2 and Table 4-3. It can testify that 

WUCS still keep 7
th
 order accuracy after the combination WCCS with PWUCS. In the 

following order test, p is chosen as 5, and ε is chosen to be 10
-2

 in accordance with 

(2.13). 

4.1.1 PWUCS order test by Sin(πx) 

𝑓(𝑥) = Sin(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Cos(𝜋𝑥) −1 ≤ 𝑥 ≤ 1 

 
Table 4-1 Errors of the numerical derivative of Sin(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 3.10E+00 
 

3.37E+00 
 17 1.25E-01 4.64 1.46E-01 4.54 

33 2.96E-03 5.40 3.66E-03 5.31 

65 4.40E-06 9.39 1.01E-05 8.50 

129 2.55E-08 7.43 1.59E-07 5.99 

257 2.39E-10 6.74 2.03E-09 6.29 

513 2.06E-12 6.86 2.33E-11 6.44 
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4.1.2 PWUCS order test by Sin
2
(πx) 

𝑓(𝑥) = Sin2(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Sin(2𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 

 
Table 4-2 Errors of the numerical derivative of Sin

2
(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 1.04E+01 
 

1.44E+01 
 17 5.96E-01 4.13 6.91E-01 4.38 

33 1.30E-02 5.51 2.04E-02 5.08 

65 5.90E-05 7.79 2.76E-04 6.21 

129 7.93E-07 6.22 5.16E-06 5.74 

257 7.58E-09 6.71 6.86E-08 6.23 

513 6.28E-11 6.92 7.99E-10 6.42 

 
4.1.3 WUCS order test by Sin(πx) 

𝑓(𝑥) = Sin(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Cos(𝜋𝑥) −1 ≤ 𝑥 ≤ 1 

 
Table 4-3 Errors of the numerical derivative of Sin(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 2.01E+00 
 

2.18E+00 
 17 8.21E-02 4.61 9.35E-02 4.54 

33 3.01E-03 4.77 3.44E-03 4.76 

65 4.33E-06 9.44 6.78E-06 8.99 

129 1.05E-08 8.68 6.50E-08 6.70 

257 9.74E-11 6.76 8.26E-10 6.30 

513 9.77E-13 6.64 9.56E-12 6.43 

 

 
4.1.4 WUCS order test by Sin

2
(πx) 

𝑓(𝑥) = Sin2(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Sin(2𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
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Table 4-4 Errors of the numerical derivative of Sin
2
(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 9.71E+00 
 

1.30E+01 
 17 3.03E-01 5.00 4.61E-01 4.82 

33 1.01E-02 4.91 1.45E-02 4.99 

65 2.83E-05 8.48 1.28E-04 6.83 

129 3.39E-07 6.38 2.18E-06 5.87 

257 3.12E-09 6.76 2.82E-08 6.27 

513 2.57E-11 6.92 3.26E-10 6.44 

 
Comparing Table 4-1, Table 4-2 with Table 4-3, Table 4-4, it can be noticed that 

WUCS has even smaller error than PWUCS. The reason is that the 8
th
 order WCCS has 

been combined with PWUCS. 

 
4.2 One-Dimensional Cases 

The one-dimensional Euler equations in vector and conservative form read as 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
= 0 

𝑈 = (𝜌, 𝜌𝑢, 𝐸𝑡)
𝑇 

𝐹 = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸𝑡 + 𝑝))
𝑇 

(4.1) 

Where  𝑝 = (𝛾 − 1)(𝐸 − 𝜌𝑢2/2) with 𝛾 = 1.4 and the grid is uniform with 201 grid 

points for 4.2.1, 4.2.2 and 4.2.3, and another uniform grids with 401 grid points also 

tested for 4.2.2 and 4.2.3. 

In this section, Steger-Warming flux-splitting method will be used for WUCS, and  

a fourth-order Runge-Kutta scheme will be used for time marching. In (4.1), 𝜌 represents 

gas density, 𝑢 represents velocity,  𝐸𝑡 represents energy, and 𝑝 represents pressure. 
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4.2.1 Sod Shock-Tube 

The Sod shock tube problem, named after Gary A. Sod, which is a Riemann 

problem used as a standard one-dimensional case in computational fluid dynamics [32]. 

The initial conditions are very simple:  

(𝜌, 𝑢, 𝑝)𝑇 = {
(1,0,1)

(0.125,0,0.1)
 

𝑡 = 0, −5 ≤ 𝑥 ≤ 0
𝑡 = 0,            0 < 𝑥 ≤ 5

 (4.2) 

The fundamental idea of the shock tube is the following: consider a long 

one-dimensional (1D) tube, closed at its ends and divided into two equal regions by 

a thin diaphragm (see Figure 4-1). Each region is filled with the same gas, but with 

different thermodynamic parameters (pressure, density, and temperature). The 

region with the highest pressure is called the driven section of the tube, while the 

low-pressure part is the working section. The gas being initially at rest, the sudden 

breakdown of the diaphragm generates a high-speed flow, which propagates in the 

working section (this is the place where the model of a free-flying object, such as a 

supersonic aircraft, will be placed). 

 

Figure 4-1 Initial Pressure Distribution of SOD Shock-Tube 

Figures 4-2 and 4-3 report the velocity solution on the whole domain for WUCS 

and WENO schemes at time t = 2, respectively. Velocity solution from WUCS 201 results 

does not have overshooting in the whole domain.  

 

High Pressure Low Pressure 



35 

 

Figure 4-2 Velocity Solution from WUCS 

 

Figure 4-3 Velocity Solution from WENO 
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Figure 4-4 Comparison of velocity solution 

 

Figure 4-5 Enlargement of velocity solution 
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Figure 4-6 Enlargement of velocity solution 

Figures 4-2, 4-3 and 4-4 report the velocity solution on the whole domain for 

WUCS and WENO schemes at time t = 2, respectively. Figures 4-5 and 4-6 show the 

enlargement plots of the solved velocity u, at time t = 2 from both WUCS and WENO. 

The reference solution is regarded as the one obtained by the fifth‐order WENO scheme 

using a mesh of 1601 points, labeled as WENO 1601. The other two simulations are 

carried out on a coarser mesh of 201 points. The solutions using WUCS (labeled as 

WUCS 201) and WENO scheme (labeled as WENO 201) are free from visible oscillations. 

Figure 4-6 reports an enlargement of the downstream shock area, comparing the two 

different schemes. Using WUCS scheme, the discontinuity is captured more sharply and 

is less smeared compared to the fifth‐order WENO. 
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4.2.2 Shu-Osher Problem 

The Shu-Osher problem simulates a normal shock front moving inside a one-

dimensional inviscid flow with artificial density fluctuations. In Shu-Osher problem, the 

computation domain is 𝑥 ∈ [−5, 5]. The downstream flow is assumed to have a sinusoidal 

density fluctuation 𝜌 = 1 + 0.2 ∗ Sin(5𝑥) with a wave length of 2𝜋/5 and an amplitude  of 

1/5. A normal shock front with a Mach number of 3.0 is initially placed at the position 

 𝑥 =  −4.  The initial conditions for the simulation are 

(𝜌, 𝑢, 𝑝)𝑇 = {
(3.857143, 2.629369, 10.33333)

(1 + 0.2 ∗ Sin(5𝑥),0, 1)
 

𝑡 = 0, 𝑥 < −4
𝑡 = 0,         𝑥 ≥ −4

 (4.3) 

 

Figure 4-7 Density Solution of Shu-Osher Problem from WUCS 

The shock-entropy wave interaction problem (Shu and Osher, Efficient 

implementation of essentially non-oscillatory shock-capturing schemes II 1989) is solved 

in order to test the proposed method’s capability on shock-capturing and shock-
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turbulence interaction. The entropy waves are very sensitive to numerical dissipation 

introduced by a numerical scheme, and can be excessively damped. 

 

Figure 4-8 Density Solution of Shu-Osher Problem from WENO 

Figures 4-7 and 4-8 show the result of the solved density distribution at time t = 

1.8 on the whole domain for WUCS, and WENO schemes, respectively. Figure 4-9 show 

the comparison of the Shu-Osher density solution from WUCS and WENO. Same as in 

section 4.2.1, the reference solution is regarded as the one obtained by the fifth‐order 

WENO scheme using a mesh of 1601 points, labeled as WENO 1601. All the other 

calculations are made on a coarser mesh of 201 points. The WUCS scheme (labeled 

WUCS 201) shows higher resolution and sharper shock capturing compared to WENO 

(labeled WENO 201). 
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Figure 4-9 Density solution of Shu-Osher problem 

 

Figure 4-10 Enlargement of density solution of Shu-Osher problem 
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Figure 4-11 Enlargement of density solution of Shu-Osher problem 

 

Figure 4-12 Density Solution of Shu-Osher Problem from WUCS 
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Figure 4-13 Density Solution of Shu-Osher Problem from WENO 

 

Figure 4-14 Enlargement of density solution of Shu-Osher problem 
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Figure 4-15 Enlargement of density solution of Shu-Osher problem 

  

Figure 4-16 Enlargement of density solution of Shu-Osher problem 
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WUCS is capable of capturing the high frequencies waves generated in the 

upstream area of the shock. Figures 4-10, 4-11, 4-15 and 4-16 report detail enlargements 

of discontinuity areas in the upstream shock region, comparing the two different schemes. 

It can be observed that WUCS solution, compared to the fifth-order WENO solution, can 

capture the shock more sharply and has better resolution properties, and is free from 

numerical oscillations. In certain areas, the WUCS appears to be very close to the 

reference solution. 

 

4.2.3 Two-Blast Wave 

This one-dimensional test problem was introduced in [30] to illustrate the strong 

relationship between the accuracy of the overall flow solution and the thinness of 

discontinuities on the grid. It involves multiple interactions of strong shocks and 

rarefactions with each other and with contact discontinuities. This problem is extremely 

difficult to solve on a uniform Eulerian grid, although it poses no particular difficulty for a 

Lagrangian calculation. The initial condition consists of three constant states of a gamma-

law gas, with γ = 1.4, which is at rest between reflecting walls separated by a distance of 

unity. The density is everywhere unity, while in the leftmost tenth of the volume the 

pressure is 1000, in the rightmost tenth it is 100, and in between it is 0.01. Two strong 

blast waves develop and collide, producing a new contact discontinuity. This evolution is 

quite complex [30]. The density solutions at t = 0.038 from both WUCS and WENO with 

same mesh of 201 points are shown in Figure 4-17. The reference density solution is 

from WENO with a finer mesh of 2401 points. Figure 4-18 is showing results from both 

schemes with same mesh of 401 points. It is very clear from Figure 4-17 and 4-18 that 

WUCS depict the density distribution more precisely with sharper shocks. 
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Figure 4-17 WUCS and WENO density solution of Two Blast Wave problem 

 

 Figure 4-18 WUCS and WENO density solution of Two Blast Wave problem 
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4.3 Two-Dimensional Case 

The two-dimensional Euler equations in vector and conservative form read as 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
= 0 

𝑈 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸𝑡)
𝑇 

𝐹 = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, 𝑢(𝐸𝑡 + 𝑝))
𝑇 

𝐺 = (𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, 𝑣(𝐸𝑡 + 𝑝))
𝑇 

(4.4) 

In the following oblique shock reflection numerical case, 𝑥 ∈ (0,2), 𝑦 ∈ (0, 1.1) , and an 

uniform grid of 65×65 points is used. The Lax-Friedrichs flux-splitting is used, and the 

time quadrature is a fourth-order Runge-Kutta scheme.  The test case is an oblique 

shock reflection on an inviscid wall which is showing as bottom in Figure 4-19, with shock 

angle of 35.24° and the mach number is 2. The boundary conditions at the top is inflow  

 

Figure 4-19 Analytic solution for pressure, 13 equally spaced contours 

condition with 𝑢 = 1.8618, 𝑣 =  −0.1957, 𝜌 = 1.2620, 𝑝 = 0.9908. The left side boundary 

is also set as inflow conditions, but with 𝑢 = 2, 𝑣 =  0, 𝜌 = 1, 𝑝 = 5/7 . 
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Figure 4-20 Pressure solution from WUCS 

The right side boundary is set as outflow conditions calculated by extrapolation. 

Initial condition is that the oblique shock already hit the inviscid wall, but not reflects yet. 

 

Figure 4-21 pressure solution from WENO 

Figures 4-19, 4-20, 4-21 show the contour of the pressure p , from the analytical, 

WUCS and WENO solutions  on 65×65 grids respectively. Figure 4-22, 4-23, 4-24 is the 

pressure comparison of analytical, WUCS and WENO solution at y = 11/64. Figure 4-25, 
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4-26, 4-27 is the density comparison of analytical, WUCS and WENO solution at y = 

11/64. Comparing the two schemes, it is observed that the WUCS captures the shock 

more sharply than WENO scheme, and does not present larger numerical oscillations 

than WENO scheme. 

 
Figure 4-22 Pressure solution at y= 11/64 
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Figure 4-23 Enlargement of pressure solution at y= 11/64 

 
 

Figure 4-24 Enlargement of pressure solution at y= 11/64 
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Figure 4-25 Density solution at y= 11/64 

 
Figure 4-26 Enlargement of density solution at y= 11/64 
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Figure 4-27 Enlargement of density solution at y= 11/64 

 

 

Figure 4-28 𝑢(𝑡, 𝑥) with 𝑡 = 2/𝜋 
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4.4 Wave equation with jump initial condition 

In this appedix, a simple numerical case is shown as an supplementation for 

WUCS. The numerical case is wave equation 
𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
= 0 

with initial condition 𝑢(0, 𝑥) = {
1                                     −

1

4
≤ 𝑥 ≤

1

4

0           − 1 ≤ 𝑥 < −
1

4
,
1

4
< 𝑥 ≤ 1

 

The analytical solution is 𝑢(𝑡, 𝑥) = 𝑢(0, 𝑥 − 𝑡) 

The numerical results from WUCS which is shown in Figure 4-28 clearly 

demonstrates that WUCS has strong capability to simulate discontinuities. 
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Chapter 5  

New Method of Creating Global Weights for WUCS 

Global Weights for WENO is firstly proposed in [33]. When applying the 5
th
 Order 

WENO, for example, 2-Dimensional Euler equation problems, computing the weights of 

each stencil at each time step for each variable, which will cost fairly high CPU time. To 

save the CPU cost, computing the weights of some variables, for example, multiplication 

of velocity and pressure or multiplication of velocity and density, only once, and combine 

them to be the global weights before carrying out Runge–Kutta time marching method at 

each time step. Appreciably saving of CPU time can be found when applying this Global 

Weights in numerical scheme for particial differential equation solver. 

An important technical issue for WUCS scheme is the selection of the weights for 

stencil candidates near the shock region. In fluid mechanics, the shock has large gradient  

in density and velocity. The pressure and energy discontinuity are synchronous with 

density and velocity. Therefore, the multiplication of density and velocity are important 

symbols or indication that can interpret rapid flow change. Meanwhile, density and 

velocity could have discontinuity in the contact surface according to the Riemann solution. 

Based on these understandings, choosing ρu, u(Et + p) to calculate global weights for 1D 

problem is a reasonable first try to step out for WUCS. 

The test results showing below are using a computer which has a configuration 

of Intel® Core™ i3-2100 CPU, 16 GB RAM. In section 5.1 and 5.2, serial C codes have 

been used to the tests, and only one core in the CPU will be utilized in computation. In 

section 5.3, a parallel C code has been used, and four cores in the CPU are utilized. The 

difference between Global Weights WUCS and traditional weighted WUCS is only the 

way to calculate weights, and other parts of the codes are same. 
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5.1 SOD problem solved by WUCS with Global Weights 

Same SOD problem as section 4.2.1 is used to test Global Weights WUCS. In 

Table 5-1, a comparison of wall time consumption by two ways for SOD problem is 

tabulated. About 6% wall time has been saved by Global Weights WUCS comparing with 

traditional weighted WUCS. Figure 5-1 shows the result of SOD problem using Global 

Weights WUCS. Comparing with Figure 4-2, a slightly larger over shooting has been 

noticed.  

Table 5-1 Wall time comparison for SOD problem running 

Grid Numbers Global Weights Traditional Weights 

201 61.05 s 65.34 s 

401 236.51 s 251.51 s 

 
Figure 5-1 SOD problem velocity results from Global Weights WUCS 
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5.2 Shu-Osher problem solved by WUCS with Global Weights 

Same Shu-Osher problem as section 4.2.2 is used to test Global Weights WUCS. 

In Table 5-2, a comparison of wall time consumption by two ways for Shu-Osher problem 

is tabulated. About 3~8% wall time has been saved by Global Weights WUCS comparing 

with traditional weighted WUCS. Figure 5-2 shows the result of Shu-Osher problem using 

Global Weights WUCS. Comparing with Figure 4-6, Global Weights WUCS got even 

better results.  

Table 5-2 Wall time comparison for Shu-Osher problem running 

Grid Numbers Global Weights Traditional Weights 

201 53.22 s 58.14 s 

401 460.95 s 476.85 s 

 

 
Figure 5-2 Shu-Osher problem results from Global Weights WUCS 
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5.3 Two Blast Wave problem solved by WUCS with Global Weights 

Same Two Blast Wave problem as section 4.2.3 is used to test Global Weights 

WUCS. In Table 5-2, a comparison of wall time consumption by two ways for Two Blast 

Wave problem is tabulated. About 4.5% wall time has been saved by Global Weights 

WUCS comparing with traditional weighted WUCS. Figure 5-3 shows the result of Two 

Blast Wave problem using Global Weights WUCS. Comparing with Figure 4-15, Global 

Weights WUCS is showing similar results as calculated by traditional weighted WUCS.  

Table 5-3 Wall time comparison for Two Blast Wave problem running 

Grid Numbers Global Weights Traditional Weights 

201 853.69 s 892.02 s 

401 3181.49 s 3344.47 s 

 

 
Figure 5-3 Two Blast Wave problem results from Global Weights WUCS 
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5.4 Summary of Global Weights WUCS 

In this chapter, several numerical cases show that Global Weights WUCS has 

the feasibility and the capability to save CPU time without sacrificing accuracy and shock-

capturing ability.  
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Chapter 6  

Construction Methodology Application 

In previous chapters, a construction methodology of weighted upwind compact 

scheme has been elaborated and justified. In this chapter, using the mentioned 

methodology with Legendre polynomial and different stencils, a new sixth order weighted 

upwind compact scheme (SWUCS) will be built and tested. This application will show the 

flexibility and potential capability of this methodology. 

6.1 Legendre Polynomials 

Legendre polynomials 𝑃𝑛(𝑥) with n = 0, 1,  2, …, are solutions to Legendre’s 

ordinary differential equation:  

𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑

𝑑𝑥
𝑃𝑛(𝑥)] + 𝑛(𝑛 + 1)𝑃𝑛(𝑥) = 0 

They are both named after a French Mathematician, Adrien-Marie Legendre. Legendre 

ODE has regular singular points at 𝑥 = ±1. Each Legendre polynomial 𝑃𝑛(𝑥) is an nth-

degree polynomial. It may be expressed by Rodrigues’ formula:   

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[(𝑥2 − 1)𝑛] n = 0, 1,  2, … 

The first few 𝑃𝑛(𝑥) are listed in Table 6-1. 

Table 6-1 Legendre polynomials 

n 𝑃𝑛(𝑥) 

0 1 

1 x 

2 
1

2
(3𝑥2 − 1) 

3 
1

2
(5𝑥3 − 3𝑥) 

4 
1

8
(35𝑥4 − 30𝑥2 + 3) 

5 
1

8
(63𝑥5 − 70𝑥3 + 15𝑥) 

6 
1

16
(231𝑥6 − 315𝑥4 + 105𝑥2 − 5) 
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Table 6-1  -continued 

 

 
6.2 New Stencils for SWUCS 

Similarly as section 2.3, for obtaining a 6
th
 order weighted upwind compact 

scheme, three third-order approximations of the linear compact combination of numerical 

fluxes at �̂�
𝑗−

3
2

, �̂�
𝑗−

1
2
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𝑗+

1
2

, �̂�
𝑗+

3
2

and �̂�
𝑗+

5
2

  are obtained from the three candidate stencils 

(Fig. 2-1): 

𝐸𝑆𝑊𝑈𝐶𝑆
0 = {𝐹𝑗−2, 𝐹𝑗−1, 𝐹𝑗} 

𝐸𝑆𝑊𝑈𝐶𝑆
1 = {𝐹𝑗−1, 𝐹𝑗 , 𝐹𝑗+1} 

𝐸𝑆𝑊𝑈𝐶𝑆
2 = {𝐹𝑗 , 𝐹𝑗+1, 𝐹𝑗+2} 

Choosing the Legendre polynomial for the third order approximation of 

𝑏0�̂�𝑗−3
2

+ 𝑏1�̂�𝑗−1
2

+ �̂�
𝑗+

1
2

, we obtain, for the first stencil 𝐸𝑆𝑊𝑈𝐶𝑆
0 : 

𝑏0�̂�𝑗−3
2
+ 𝑏1�̂�𝑗−1

2
+ �̂�

𝑗+
1
2
≈ (𝑏2𝐹𝑗−1 + 𝑏3𝐹𝑗)/ℎ (6.1) 

𝑏1 = 2(1 + 𝑏0) 

𝑏2 =
1

2
+
5𝑏0
2

 

𝑏3 =
5

2
+
𝑏0
2

 

And similarly for the other two stencils  𝐸𝑆𝑊𝑈𝐶𝑆
1  and 𝐸𝑆𝑊𝑈𝐶𝑆

2 :  

𝑐0�̂�𝑗−1
2
+ �̂�

𝑗+
1
2
+ 𝑐1�̂�𝑗+3

2
≈ (𝑐2𝐹𝑗 + 𝑐3𝐹𝑗+1)/ℎ (6.2) 

𝑐1 =
1

2
− 𝑐0 

𝑐2 =
1

4
+ 2𝑐0 

𝑐3 =
5

4
− 2𝑐0 

7 
1

16
(429𝑥7 − 693𝑥5 + 315𝑥3 − 35𝑥) 
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�̂�
𝑗+
1
2
+ 𝑑0�̂�𝑗+3

2
+ 𝑑2�̂�𝑗+5

2

≈ (𝑑2𝐹𝑗+1 + 𝑑3𝐹𝑗+2)/ℎ (6.3) 

𝑑1 =
1

2
(−2 + 𝑑0) 

𝑑2 = 2 +
𝑑0
4

 

𝑑3 = −2 +
5𝑑0
4

 

For obtaining 6th order of 𝐶𝑆𝑊𝑈𝐶𝑆
0 𝐸𝑆𝑊𝑈𝐶𝑆

0 + 𝐶𝑆𝑊𝑈𝐶𝑆
1 𝐸𝑆𝑊𝑈𝐶𝑆

1 + 𝐶𝑆𝑊𝑈𝐶𝑆
2 𝐸𝑆𝑊𝑈𝐶𝑆

2 ,  𝑏0, 𝑐0, 

 𝑑0, 𝐶𝑆𝑊𝑈𝐶𝑆
0 , 𝐶𝑆𝑊𝑈𝐶𝑆

1 , and 𝐶𝑆𝑊𝑈𝐶𝑆
2  need satisfy 

𝑏0 = −
−92𝐶𝑆𝑊𝑈𝐶𝑆

0 + 7𝐶𝑆𝑊𝑈𝐶𝑆
1 − 20𝐶𝑆𝑊𝑈𝐶𝑆

2

168𝐶𝑆𝑊𝑈𝐶𝑆
0  

(6.4) 𝑐0 = −
−8𝐶𝑆𝑊𝑈𝐶𝑆

0 − 7𝐶𝑆𝑊𝑈𝐶𝑆
1 + 8𝐶𝑆𝑊𝑈𝐶𝑆

2

28𝐶𝑆𝑊𝑈𝐶𝑆
0  

𝑑0 = −
−20𝐶𝑆𝑊𝑈𝐶𝑆

0 + 7𝐶𝑆𝑊𝑈𝐶𝑆
1 − 260𝐶𝑆𝑊𝑈𝐶𝑆

2

84𝐶𝑆𝑊𝑈𝐶𝑆
0  

Like WENO, this 6
th
 weighted upwind compact scheme will use non-linear 

weights 𝜔𝑆𝑊𝑈𝐶𝑆
𝑖  instead 𝐶𝑆𝑊𝑈𝐶𝑆

𝑖  

𝜔𝑆𝑊𝑈𝐶𝑆
𝑖,𝑗±

1
2 =

𝛾𝑆𝑊𝑈𝐶𝑆
𝑖,𝑗±

1
2

∑ 𝛾𝑆𝑊𝑈𝐶𝑆
𝑘,𝑗±

1
22

𝑘=0

 𝛾𝑆𝑊𝑈𝐶𝑆
𝑖,𝑗±

1
2 =

𝐶𝑆𝑊𝑈𝐶𝑆
𝑖

(𝜀 + 𝐼𝑆
𝑖,𝑗±

1
2
)𝑝

 𝑖 = 0,1,2 (6.5) 

And 𝜔𝑆𝑊𝑈𝐶𝑆
0 𝐸𝑆𝑊𝑈𝐶𝑆

0 + 𝜔𝑆𝑊𝑈𝐶𝑆
1 𝐸𝑆𝑊𝑈𝐶𝑆

1 +𝜔𝑆𝑊𝑈𝐶𝑆
2 𝐸𝑆𝑊𝑈𝐶𝑆

2  is defined as 6th weighted 

upwind compact scheme (SWUCS). 

6.3 Dissipation and Dispersion of SWUCS 

6.3.1 Left Stencil 

𝐸𝑆𝑊𝑈𝐶𝑆
0  is represented by (6.1). This section 𝐸𝑆𝑊𝑈𝐶𝑆

0  ’s dissipation and dispersion 

are listed below. 

𝑤′𝑟  =
(8(1 + 𝑏0 + 𝑏0

2
) + (1 + 𝑏0(10 + 𝑏0))Cos(𝑤))Sin(𝑤)

5 + 𝑏0(8 + 5𝑏0) + 4(1 + 𝑏0)
2
Cos(𝑤) + 2𝑏0Cos(2𝑤)
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𝑤′𝑖  =
4(−1 + 𝑏0

2
)Sin(

𝑤
2
)
4

5+ 𝑏0(8 + 5𝑏0) + 4(1 + 𝑏0)
2
Cos(𝑤) + 2𝑏0Cos(2𝑤)

 

By similar method initiated in section 2.6.1, a simple dissipation error condition is setup 

as 

4(−1 + 𝑏0
2
)Sin(

𝑤
2
)4

5 + 𝑏0(8 + 5𝑏0) + 4(1 + 𝑏0)2Cos(𝑤) + 2𝑏0Cos(2𝑤)
|

𝑤=𝜋

> 0 

That is, 

 𝑏0 < −1 or 𝑏0 > 1     (6.6) 

6.3.2 Center Stencil 

𝐸𝑆𝑊𝑈𝐶𝑆
1  is represented by (6.2). This section 𝐸𝑆𝑊𝑈𝐶𝑆

1 ’s dissipation and dispersion 

are listed below. 

𝑤′𝑟  =
(−8(1 − 2𝑐0 + 4𝑐02) + (−1 + 16𝑐0(−1 + 2𝑐0))Cos(𝑤))Sin(𝑤)

−5 + 4𝑐0 − 8𝑐02 − 4Cos(𝑤) + 4𝑐0(−1 + 2𝑐0)Cos(2𝑤)
 

𝑤′𝑖  =
4(1 − 4𝑐0)Sin(

𝑤
2
)
4

−5+ 4𝑐0 −8𝑐02 − 4Cos(𝑤) + 4𝑐0(−1 + 2𝑐0)Cos(2𝑤)
 

A simple dissipation error condition is setup as  

4(1 − 4𝑐0)Sin(
𝑤
2
)4

−5 + 4𝑐0 − 8𝑐02 − 4Cos(𝑤) + 4𝑐0(−1 + 2𝑐0)Cos(2𝑤)
|

𝑤=𝜋

>
1

10
 

That is, 

 𝑐0 > 1/4     (6.7) 

6.3.3 Combine Methodology Application 

Since upwind scheme will only use left stencil and/or center stencil around shock, only 

(6.6) and (6.7) will be combined with (6.4) for SWUCS coefficients calculation. The 

results of combination of (6.4), (6.6), and (6.7) is 

 𝐶𝑆𝑊𝑈𝐶𝑆
0 > 𝐶𝑆𝑊𝑈𝐶𝑆

2  and  𝐶𝑆𝑊𝑈𝐶𝑆
1 > (260𝐶𝑆𝑊𝑈𝐶𝑆

0 + 20𝐶𝑆𝑊𝑈𝐶𝑆
2 )/7 
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𝐶𝑆𝑊𝑈𝐶𝑆
0 = 1.2, 𝐶𝑆𝑊𝑈𝐶𝑆

1 = 60, and 𝐶𝑆𝑊𝑈𝐶𝑆
2 = 1 have been selected from above range. 

Then by (6.4), 𝑏0 = −181/126  𝑐0 = 527/2100  𝑑0 = −34/21 

6.4 Numerical Test 

 
Order test results for SWUCS is tabulated in Table 6-2 and Table 6-3. It can 

show that SWUCS has expected 6
th
 order accuracy as section 6.2. In the following order 

test, p is chosen as 5, and ε is chosen to be 10
-5

 in accordance with (6.5). 

 
6.4.1 SWUCS order test by Sin(πx) 

𝑓(𝑥) = Sin(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Cos(𝜋𝑥) −1 ≤ 𝑥 ≤ 1 

 
Table 6-2 Errors of the numerical derivative of Sin(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 6.79E-01 
 

9.22E-01 
 17 4.21E-02 4.01 5.05E-02 4.19 

33 6.07E-04 6.12 6.88E-04 6.20 

65 5.51E-07 10.10 9.64E-07 9.48 

129 8.01E-09 6.10 1.39E-08 6.12 

257 7.25E-11 6.79 3.05E-10 5.51 

513 9.27E-13 6.29 8.24E-12 5.21 

 

 
6.4.2 SWUCS order test by Sin

2
(πx) 

𝑓(𝑥) = Sin2(𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 
𝑓′(𝑥) = 𝜋Sin(2𝜋𝑥)  −1 ≤ 𝑥 ≤ 1 

 
Table 6-3 Errors of the numerical derivative of Sin

2
(πx) 

Grid Points Error Infinity-Norm Error Order Error Two-Norm Error Order 

9 1.02E+01 
 

1.08E+01 
 17 4.69E-01 4.44 6.19E-01 4.13 

33 1.31E-03 8.48 3.23E-03 7.58 
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65 2.20E-05 5.90 4.70E-05 6.10 

129 3.66E-07 5.91 8.47E-07 5.79 

257 4.05E-09 6.50 1.42E-08 5.90 

513 4.03E-11 6.65 3.14E-10 5.50 

 
6.4.3 Sod Shock-Tube 

 

Figure 6-1 Velocity Solution from SWUCS for SOD 

Use the same SOD shock-tube problem as section 4.2.1 to test this SWUCS. The 

velocity results with a mesh of 201 points is shown in Figure 6-1. Some oscillation has 

been notice before after shock. A tiny overshooting can be found around shock in 

downstream side. Overall, SWUCS is giving a fine results.  
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Table 6-3  -continued 
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6.4.4 Shu-Osher Problem 

Use the same Shu-Osher problem as section 4.2.2 to test this SWUCS. The 

density results is shown in Figure 6-2. SWUCS is showing a fairly nice results. 

 

Figure 6-2 Density Solution from SWUCS for Shu-Osher problem 
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Chapter 7  

Conclusion and Discussion 

A construction methodology of weighted upwind compact scheme has been 

initially elaborated from dissipation and dispersion perspective. Two different schemes 

have been setup. And several CFD cases have been used to testify these two schemes 

and the construction methodology.  

 The construction methodology can derive a parameter weighted upwind compact 

scheme not only has high order accuracy in smooth area or for smooth function, but also 

the capability of shock-capturing. WUCS is the first scheme derived by this construction 

methodology. WUCS has expected seventh order accuracy in smooth area, also with 

flexibility and strong capability of shock-capturing. SWUCS is another simplified 

application of this construction methodology. SWUCS expands this construction 

methodology into Legendre polynomials and a different stencil structure. This expansion 

can prove that this construction methodology has flexibility for more different applications. 

 The most difficult and sensitive step is to choose a better dissipation error and 

dispersion error condition for left stencil and right stencil. If a large or loose dissipation 

error and dispersion error condition is chosen, the combined inequalities will have a large 

range which is hard to fix the parameters. If choosing by the other way, the combined 

inequalities will has no solution which means no parameter can be found for expected 

accuracy and shock-capturing abilities. 

 Future work may be extended to dissipation and dispersion nonlinear system 

optimization, or possibly quantitatively designated dissipation and dispersion for each 

stencil and also for the combined scheme. 
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