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ABSTRACT

DAMAGE PROGRESSION IN LAMINATES UNDER IN-PLANE AND 

EDGE MOMENT LOADS 

Publication N o ._______________

Hung-Yi Lu, M.S.

The University o f Texas at Arlington, 1992 

Supervising Professor: Shiv P. Joshi

Damage progression in laminates with in-plane loads and edge moments is investigated 

herein analytically. Simple-supported laminated composite columns subjected to off-center 

compressive loads are analyzed. They undergo large displacement while strains remain small 

when subjected to off-center compressive load. The damage initiates before the column 

buckles. The stress gradients appear along the length of the column because of the large 

displacement. Wolfe used these columns in experimental study of damage progression in a 

gradient stress field. The same composite laminate column geometry and lay-ups are analyzed 

using the finite element method which incorporates the two phases continuum damage model. 

The geometric nonlinearity due to large displacements is implemented in an approximate way 

in the finite element procedure. The damage initiation load predictions compare favourably 

with the experimental results. The prediction of plies and the planer location with in the ply 

where damage initiates also matches with the experimental observations.
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CHAPTER 1 

INTRODUCTION

Light weight, high stiffness and strength properties of composites have made them 

superior to the conventional isotropic materials in aerospace industry. These light weight 

materials can carry loads in preferred directions because of the orthotropic properties of the 

composite materials. Also the light weight makes them an attractive material to replace some 

metals in structures. Though composite materials have many advantages compared to 

traditional isotropic materials, however their full potential is not utilized in current structural 

design. This is because of complexity involved in designing and analyzing structures 

composed of composite materials.

Structural components used for aerospace applications are often subjected to 

compressive loads. As a result, the phenomenon of buckling must be understood. The 

buckling and postbuckling behavior of composite plates and panels has been studied 

extensively. Predictions of incipient buckling loads and of postbuckling behavior are 

complicated by boundary conditions, material coupling, and damage. Models of buckling 

behavior work relatively well up to the occurrence of damage. However, once damage occurs, 

the symmetry of the specimen is usually destroyed. As a result, predictions become difficult to 

make.

The rapidly increasing use of high-strength, high-modulus composite materials in 

advanced engineering structures has generated a research interest in the damage tolerance and 

reliability of such materials. The emerging interest in understanding and modeling the process 

of damage accumulation has gained momentum in recent years. Although significant effort has 

been spent in this area, this research is still in its infancy.

1
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Advanced composite materials suffer from initiation and growth of microcracks even at 

low loads. Such growth affects substantially the overall behavior of composite materials under 

subsequent complex loadings. It is important to understand the behavior of materials 

containing an acceptable level of damage in order to predicting the remaining life.

The objective of this study is to verify the damage prediction capability of the finite 

element procedure which incorporates two phases continuum damage constitutive relations. 

Damage progression in laminates with in-plane loads and edge moments is investigated herein 

analytically. Simple-supported laminated composite columns subjected to off-center 

compressive loads are analyzed. They undergo large displacement while strains remain small 

when subjected to off-center compressive load. The damage initiates before the column 

buckles. The stress gradients appear along the length of the column because of the large 

displacement. Wolfe[l] used these columns in experimental study of damage progression in a 

gradient stress field. The same composite laminate column geometry and lay-ups are analyzed 

using the finite element method which incorporates the two phases continuum damage model. 

The geometric nonlinearity due to large displacements is implemented in an approximate way 

in the finite element procedure. The damage initiation load predictions compare favorably -with 

the experimental results. The prediction of plies and the planer location with in the ply where 

damage initiates also matches with the experimental observations.

Chapter 2 contains a summary of previous work about buckling and post bucking study 

and the continuum damage approach. A short discussion about different approaches is 

included. In chapter 3 the two phases continuum damage evolution theory is discussed briefly. 

Material constants necessary in implementing the continuum damage model are derived for 

AS4/3501-6 in chapter 4. The finite element model for damage evolution and load 

modification are discussed in chapter 5. In chapter 6, the theoretical predictions are compared 

with the experimental results. Damage histories in specimens are also compared. Conclusion 

and recommendation for further study are also presented in the same chapter.
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CHAPTER 2 

HISTORICAL APPROACH SUMMARY

Damage evolution behavior has been an important issue in composite laminates. A 

symmetric evolution of damage in even symmetric laminates subjected to in-plane shear or 

flexural loads makes the behavior of damaged components complicated. It becomes more 

complicated to understand the behavior when the damage progression occurs. It is a fact that 

composite plates still have a good ability to carry loads after the micro structure damage in 

layers. Therefore, it is important to investigate the whole damage evolution in order to make 

use of the plate even after an acceptable amount of damage occurs.

Leissa[2] collected 400 references about buckling and post buckling in laminates. He 

found that composite plates buckles at lower loads when coupling between in-plane loads and 

bending is involved. Also the damage induced unsymmetry produces more elastic coupling 

which complicates the process. Mingust, Dugundji and Lagace[3] used rectangular flat 

laminate plates as a model which the coupling terms, transverse shear, nonlinear strain are 

included. They employed a Reissner-Mindlin plate theory with Rayleigh-Ritz method to obtain 

the deformation. This model gives good results compared with the experimental results.

lensen and Lagace[4] use anisotropic plates with uniaxial compression load under 

several boundary conditions. They find that coupling complicates the plates behavior and 

reduces the buckling loads. Also the lateral displacement occurs as bending coupling is 

produced.

Although by means of the model and some experimental results from the authors 

mensioned above, satisfactory results can be obtained for a buckling problem, however, a 

study of the damage evolution during the loading is still in its infancy.

3
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The first application of continuum mechanics to treat microstructure damage is 

attributed to Kachanov[5], In this method it is recognized that the exact analysis of a multiply 

connected domain with numerous microcracks is hopelessly complex. Therefore, the effects of 

these microcracks on macrophysical response are reflected via one or more internal state 

variable [6] called damage parameters.

Wolfe[l] employed two dimensional, plane stress eight node finite elements to model 

composite columns. Damage evolutions was accounted for by setting appropriate element 

stiffness to zero for in-plane modes. Delamination was modelled by effectively disconnecting 

affected elements.

Goode[7] implemented the damage growth theory which continually updates the 

stiffness matrices of individual elements of the finite element method as loads are 

incrementally applied. The finite element analysis of the structure has the capability to 

determine local, highly stressed regions of the component where damage accumulation would 

be expected to be greatest.

A large body of information is available on experimental characterization of damage in 

advanced composite materials[8,9]. Experimental evidence shows the complexity o f damage 

modes in composite materials. Many investigator have considered the effect of damage 

development in composite material modeling. Tsai [10] considered various schemes to 

discount ply properties in the presence of damage. Schapery [11] utilized fracture mechanics 

concepts for life prediction. The theory has been employed for predicting the behavior of 

quasi-isotropic random particulate composites such as solid propellant. Laws et al.[12] 

obtained analytical solutions for effective moduli of elastic composites with distributed cracks. 

The cracks were aligned in predetermined directions, and the overall crack surface area had a 

first order effect on the stiffness. Talreja[13] employed vector fields where the direction and 

magnitude of each vector provided a characterization of damage. Allen et al.[14,15] 

characterized damage by a set of second order tensor valued internal variables representing
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locally averaged measures of specific damage mode. Frantziskonis[16] considered material 

behavior as composed of two fractions, damaged and undamaged. Joshi and 

Frantziskonis[17,18] presented further developments and addressed some important issues on 

the approach introduced in reference[16].
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CHAPTER 3

DAMAGE EVOLUTION THEORY 

This model includes three parts, a two phases continuum model, the constitutive model 

for two phases and the damage evolution law.

3.1 Two Phases Continuum Model 

Let us consider a small volume element (AV) in the material. AVd represents the 

homogeneously distributed damaged phase of the material. Define o" and o* as volume

averaged stress tensors of the damaged and undamaged parts o f the material. The volume 

averaged strain tensor o f the damaged part and the undamaged part are equal when the effect 

of diffusion between the two phases is not considered.

where s!],s“],£̂ ] are damaged strain tensors in the volume element, undamaged part, and 

damaged part.

Also the volume averaged stress tensor in the macroscopic volume can be written 

through the stress tensor in constituent phases according to the theory of mixtures.

<rv = {l-r)(% + ro*  (3.2)

where r = — -
AV

6
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3. 2 Two Phases Constitutive Model 

The undamaged phase can be considered as linear and elastic.

7

— (J -3)

where C“w is the constitutive tensor. Taking the transversely isotropic material with plane 

stress into account, we can get

Ou's i l l OuS il2 0 £ l l

02 2 = OuSil2 Ou=£■22 0 £ 22
0 0 OuSi66_ . S 33.

where the subscript 1 and 2 indicate the principal material direction. The coefficient of 0 “ can 

be derived from material constants EU,E 22, v12,and G12.

Also the damaged phase is linearly and elastic. The constitutive model in damage phase

is

°fj — C?jklEkl (3.5)

where CfIkl =
Qii Qdn 0
Qn Qti o
o o Oi6

The spherical part of cf™ which is the stress tensor of the matrix in the damaged part 

can be related to the strain tensor by

°kk (3.6)

where A is the bulk modulus of the matrix in the damaged phase.
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With the assumptions indicated before, materials constants of the damaged part can be 

derived as follows.

Efi = V f E{j

! J V f +2vfVmf  | ym | 2 V ^ l + v f ) { l - 2 v f )
£ /, Vf E f  A Vf E f  (3.7)

<  = v f V f + L Vm

G?2 = 0

where Vf  and Vm are fiber and matrix volume fraction. The superscript /  indicates the fiber. 

All these constants are substituted in the transversely isotropic, plane stress constitutive 

relation to obtain relations for the damaged phase.

Combining equations(3.2) and equation(3.5), and rewriting the total derivative of the 

equation, then

(3-8)

where

Egki ~ r)C,jki + rC‘jy (3 9)

and

r ,= r(o ;-o j) (3.io)

3.3 Damage Evolution Model 

In order to relate to the irreversible nature of the damage, only the positive load 

incremental rate will be considered.

The damage parameter is a function of strain as follows.
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The critical value of r can be found through the quadratic function of strain.

rcr=a(sfJ  + a\ef11ef22\ + b{sr22)2 +c{s{2)2 (3.12)

The equation above is also applicable at pre-failure strain states, the following 

expressions are obtained for coefficients A, B  and C.

A = 2asn +a1sign\sue22\e22
B  = 2be22 + CjSignlfi^Js,, (3.13)
C = 2c s 12

The constants a, b, c and a; are obtained from test data, The damage phase growth is 

only a function of strain and strain rates. Equations are represented in principal material 

directions. The function sign gives 1 or -1 according to the sign of the argument.

3.4 Laminate Constitutive Behavior 

The constitutive tensors O , Cd also can be transformed to any arbitrary fiber direction.

C u — TrCuT_  1 C 1 (3.14)
C d = F C dT

where T is singular transform matrix.

The laminate constitutive equations are derived from the classical lamination theory.
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\&m si?]
where [tf] = f

[M] = [Mx,M y, M ^

and ABD matrix is as follows.

Jt=i
N

= 4 z { ( ' - > i f e l c u e )*=/

a =4i{u-'i)[si+'-.[S'LKv  -*,./)
-> t=;

The mid plane strains and curvatures are as follows.

(317)
[ir] = [irx>iry,jc9,]

When rk =0, ABD matrix will simplify to the classical form. The strains and curvatures 

are more accurately when damage parameter in the material involved in classical lamination 

theory.

3.5 Pre-Ply Failure

Ply failure occurs when the damage parameter r reaches the critical value r^. The rate of 

damage growth in each ply is different depending on the stacking sequence and fiber 

orientation. Since different materials properties are assigned in tension and compression cases, 

the strains in each ply must be known so that the corresponding parameters can be used in
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evaluating damage growth. This is achieved by performing an analysis with rk=Q for all the 

plies. The parameters obtained in this way are applicable up to a ply failure. As mentioned 

above, the loading is gradually increased (in small increments). At each load increment, the 

strain field in each ply is obtained from constitutive relations (equation(3.16)). These strains 

determine the damage parameter r (equation(3.11)), which in turn modifies the constitutive 

relations used to obtain the strain. Therefore, strains and the damage parameter are iteratively 

obtained at each load increment. The k  th ply fails when rk for that ply reaches the critical 

value.

3.6 Post-Ply Failure

After a ply has failed (rk = rcr\  that ply is considered to be consisting o f a new material 

as a result of critical degradation of material properties. Both O  and Cd are modified to 

represent the critically failed ply. The elements of the O  and Cd matrices are redefined 

according to the identified damage modes at failure. The damage mode identified by 

comparing the strains in the material directions of the failed ply with respect to failure strains 

in respective material directions. The failure strains are defined for the same ply without any 

restrains from the adjacent plies ( experimentally obtained failure strains for the orthotropic 

ply). Two simple failure modes are identified and implemented. The first failure mode implies 

complete degradation of the matrix but not the complete fiber fracture. In this case, The 

stiffness (in both u- and d- parts) in the transverse direction and shear stiffness are assigned 

zero values. Also, the Poisson's ratio ( vI2 ) is assumed to be zero. The value of r keeps 

increasing beyond rcr for that ply until fiber fracture occurs.
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The complete fiber fracture occurs when r reached twice the rcr value. Note that the new 

evolution law for r is described as

This law depends only on the strain in fiber direction and estimates final failure when the 

strain in fiber direction reaches failure strain for that direction. The other damage mode 

implies fiber fracture but partial matrix degradation. All the elements of the O  and Cd 

matrices are assigned to zeros values except Q , and C22. This implies zero stiffness in fiber 

directions, no resistance in shear and no Poisson's effect. However, the stiffness decreases 

continuously in the transverse direction. Again, the value of r keeps increasing beyond rcr for 

the failed ply until it reaches twice the rcr value, which implies complete matrix degradation. 

The damage evolution law for the ply failed in this mode is redefined as

The stresses are redistributed when a ply fails. As an increment in the damage state, the 

other layers will establish a new equilibrium state in order to maintain the unstable damage 

situation. After each ply fails in at least one mode of failures, the laminates are completely 

failure.

(3.18)

where a2 =

(3.19)

where b2 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4 

MATERIAL PROPERTIES DETERMINATION 

Hercules AS4/3501-6 is used in experiments by Wolfe [1]. The same material is used in 

the numerical simulation. Table 4.1 presents elastic and strength properties of HERCULES 

AS4/3501-6 graphite epoxy tape [7], Three different lay-ups are chosen for numerical 

simulation. They are same as the one used in Reference [1]. The plies with the same 

orientation adjacent to each other are group together and treated as a single effective ply with 

the nominal material constants. Two laminates \±45° /  0° /  90°4~\4s and

[(45j /  -45°2 /  0°), /  90j]^ are chosen in which the initial damage appears in the 90° tension

plies. Also [-/5j /  -45°4 /  (0° /  90°) 4 is chosen in which the initial damage comes from the

45° plies in tension side.

The damage parameter r and other damage growth constants ac, at,bc,bt and c are 

determined from uniaxial tension, compression and shear tests. All the constants above can be 

derived from the stress and strain at the failure point.

The critical values (rcr) for damage parameter and c are derived from simple shear 

tests[16]. The constitutive relation at failure is

t f = { l - r cr)G';2sfu (4.1)

From the equation(4.1), the damage parameter can be determined with all the shear 

moduli prior to damage and the shear stress at the failure point, the value of c will be 

determined by taking the value of r into equation(3.11).

13
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Table 4.1

Material Constants for As-4/3501-6 Graphite Epoxy

E\ = 155.13 GPa erf, = 2.17 GPa $  = 0,014 

E f = 120.3 GPa = 1.4 GPa $  = 0.012 

E ' = 9.65 GPa = 53.8GPa $  = 0.0067 

E c2 = 12.96GPa af2 =258.8GPa $  = 0,023 

G!2 = 5.86 GPa </I2 = 80.7 MPa $  = 0.02 

u?I2 = 0.3 LfI2 = 0.3

v?2 = 0.3 v% = 0.3

The value of ac, at,bcandbt are derived from failure stress-strain data with uniaxial 

tension and compression [16], Four damage growth equations are expressed to solve the rest 

material constants ac,a t, bc and bt. All the equations need all the failure strain in fiber direction 

and transverse direction. The failure strain with an overbar represents failure value in 

transverse direction. With an iteration method to converge by moving the last term to the left- 

hand side, all the damage growth constants come from the equations (4.2).

Table 4.2 summaries the material constants derived from AS4/3501-6 graphite epoxy 

tape experiments.
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rCr = « c ( 4 ) 2 +b, ( 4 ) '  + Jafi,s& 72  

fcr = *c(sf; ) 2 +*, ( 4 )2 +

^ = « , ( 4 ) 2 +*c ( 4 ) 2 +

^  = ae(?»)2 + 6* ( 4 ) 2 + > S ^ 4

Table 4.2

As4/3501-6 Damage Growth Constants

ac = 1048.34 bc = 555.826 

at = 1171.46 bt = 6919.9 

rcr = 0.3115 c = 778.75

(4.2)
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CHAPTER 5 

FINITE ELEMENT METHOD MODEL

A nine node, non-conforming isoparametric plate finite element is employed for the

damage theory implementation. The elements are based on Mindlin[19] deformation theory.

Transverse shear deformations are allowed for in the formulation of this element. The motion 

o f points not located on the mid-surface are governed by the rotations 6X and 6y of lines that

were perpendicular to the mid-plane o f the undeformed element. Note that the present damage 

formulation does not modify the transverse stiffness of the elements.

5.1 FEM Formulation

The specimen was considered as an x-y plane model with the displacement in z direction. 

The thickness in z direction was so small for variation that we can ignore the effect. The plate 

constitutive law in equation(3.2) are used to shape the stiffness matrix for plane finite element 

model. The plate displacements include transverse deflection w and rotation angle 9X and 6y.

The displacements components o f the laminated plate are assumed to be of the form[20],

u{x,y,z)= «°(x,.y) +z<t>x{x,y)
v(x,y,z)=v°{x,y)+z<j)y(x,y) (5.1)

w{x,y,z)=w°(x,y)=  w(x,j)

where u°, v° and w° are the mid plane displacement components in the x, y  ,z directions, 

respectively; and (j)x and <j>y are the rotations of cross-sections perpendicular to the x and y

axises, respectively. We have assumed that u and v vary linearly in the thickness directions, 

while w is constant through the thickness.

16
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The strain components for a point in the Ath ply of the laminated plate z distance away 

from the mid plane can be computed as

£k„ = £?.+ZKr
( i 2 )yy y y

and shear strains are expressed as

. dw dv dw ,
Yy:~ d y + dz~ dy + ^y~ ryZ  ̂ ^

. d w d u d w

where

du°
K  =

Ky=-

dx
dv° 
dy
du° dv°

^ = • ^ 7 -  (5-4)

v  dy dx 

are the in-plane strain components of the mid plane 

The rotation gradients are as follows.

d<f>xK =—Ljl
x dx 

_ 2<t>y 
dx
d+x d<t>y 
dy dx

+

(5.5)
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Since w, <f>x, and </>y are independent of z, it follows that the transverse shear strains are

constant through the thickness o f the plate.

The element displacement [w] is derived from the multiplication of the shape function 

[<J>] with the nodal displacement [A].

[w] = [<D][A] (5.6)

Figure 5.1 illustrates the shape functions in natural coordinate.

n=i 3

Figure 5.1 Nine Node Isoparametric Element

The shape functions for all nodes are as follows 

for comer nodes ( £,=± l,r\=± 1)

s, =  ( 7X 7 +  £ ) U +  » 7 .X £  +  7o ~ 7)

for nodes at £= 0  and ri= ± 1

- ? ) U  + rf) (5.8)

for nodes at ± 1  and r\= 1

+ (5.9)

(5.7)
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for the center node

S i = { l - £ r ) { l - r f )

In the shape functions above, E, and t] are local coordinates.

19

(5.10)

£  = ££ Vo = m (5-ii)

where £  and 77, are natural coordinates of node /

Using the shape functions list above, the plate displacements are obtained by

(512)

where [w] is the displacement vector, [O] is the matrix containing all shape functions, and [A] 

is a nodal displacement vector.

The mid plane strains and curvatures can be written in terms of the nodal displacements 

by performing the differentiation on equation(5.12).

{*} = [•*][«] (5-13)

where [B ]= d  [O], [m] is the element displacement.

Equations of motion of a laminated plate are obtained using a standard finite element 

procedure:

[ « ] { i W f ] [ l )  = { f}  (5.14)

where [ M  ] is the mass matrix, [ K  ] is the stiffness matrix, and { F  } is the nodal force vector.

5.2 The FEM model

Wolfe [1] in his experiment chosen a simple-supported column as a specimen. In such a

configuration, the stress state varies along the length when subjected to loads close to the

buckling load. A gradient stress field in which maximum stress occur in the middle of the
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specimen exists when columns lateral displacement is large. The specimen ends are fitted into 

slotted steel blocks; again a tight fit is ensured with brass and steel shims. The slots are made 

25 mm deep, so the test section of the specimen between the end pieces is 37.5 mm by 150 

mm. The total length of the column including the end pieces is 224 mm. These end pieces

have a groove on the opposite surface into which the knife edge fit. The knife edges consist of 

blocks o f4041 steel, harden to 36 Rockwell, with one end machined down to a wedge with a 

rounded edge. A radius of 1.59 mm was chosen for the knife edge and the grooves in the end 

pieces. The blocks were then placed in the grips of the test machine[l]. After considering the 

effect of the interlaminar stress zone at the free edge and the effects of the thickness and the 

length on the column buckling load, a specimen of 200 mm in length and 37.5 mm in width is 

chosen. Laminates used in the experimental program resulted in thicknesses of approximately

7.5 to 8 .6  mm.

A test jig was used with which to load the column with simply-supported boundary in 

his experiment. Friction problems with this jig were overcome by designing in an eccentricity 

to the load introduction points. The jig design in Wolfe experiment is illustrated in Figure 5.2.

The specimen geometry described above is modeled for the finite element analysis. 

Because of the number of plies in the specimens is too large, the coupling between twist and 

bending is neglectable. Therefore, a quarter part of the specimen is modeled. The FEM mesh 

for the quarter model is shown in Figure 5.3. 112 elements are used to model the quarter of 

the specimen. Finer mesh is generated near the centerline in x coordinate in order to get the 

precise result o f strains and deflections. Boundary conditions for the FEM model are as 

follows. The nodes on centerline are allowed to move in y, z and 6y coordinates. The nodes

on the boundary(x= 1 1 2  mm) on which the loads are applied, are allowed to move in x, y, 

$x and 6 coordinates. The nodes on the x axis are allowed to move in x, z and 0X 

coordinates. All other nodes have x, y, z, 6X, and dy degrees of freedom.
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End support 
(depth: 48 nun)
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Shims

Neoprene
rubber
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Figure 5.2 Configuration of Test Jig [1].
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The compressive in-plane load and moment corresponding to the eccentricity of the load 

used by Wolfe[l] are applied at the edge(x=112 mm). The consistent nodal loads and 

moments are calculated corresponding to the actual experimental loads.

A y

--------------------------------------- 112mm -----------------------------------------------

1 8 . 7  5mm

Fig 5.3 Mesh Generation in Laminate

5.3 FEM Procedure for Large Displacement 

In structural mechanics, a problem is nonlinear if the stiffness matrix or the load vector 

depends on the structural deformation. The problem of structures with damage evolution are 

non-linear because the stiffness matrix is dependent on deformations. A column under 

eccentric compressive load results in a large lateral displacement. This makes the problem 

geometrically nonlinear because of large displacements. This section describes implementation 

o f load vector modification due to large displacements in the finite element procedure.

Figure 5.4 shows equilibrium of a small element of a column under compressive in-plane 

load and moment for a small displacement and a large displacement configurations.
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Figure 5.4 Equilibrium of a Small Element o f a Column 

under Compressive in-plane Load and Moment

An approximate approach to implement the load vector modification due to large 

displacement is incorporated in the finite element procedure. The nodal moments are modified 

but the nodal loads are kept same as initial loads in the load vector. The equilibrium state o f an 

element under the approximate approach implementation is shown in Figure 5.5.
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M,—M, + Rco
CO = co 4 -

Figure 5.5 An Approximate Approach in Load Modification due to 

Large Displacement

The nodal moments are modified at every load increment step. In addition, they are also 

modified during iterations within a loading step utilized for the damage convergence. At the 

first step, lateral displacement of nodes is zero and the initial load vector consists of in-plane 

compressive load and moment at the edge nodes ( applied load ) and the remaining nodal 

loads are identically zero. Nodal degrees of freedom (displacements and rotations) are 

obtained using the load vector and the current stiffness matrix. The difference in the lateral 

displacements of the successive nodes in the loading direction, obtained in the previous 

iteration, multiplied by the compressive edge nodal load is applied at successive nodes in the 

loading direction. These are moments applied to nodes by the deformed elements, (see 

Figures. 6 )
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Figure 5.6 Relationship between Lateral Displacement, in-plane Load and Moment

on Successive Nodes

It should be noted that the element equilibrium is approximately satisfied because nodal 

load and moment modification due to element rotation is not implemented in the numerical 

procedure.

Equation(3.15) depends on the damage parameter r in the formulation of the stiffness 

matrix. However, r itself is a function of the strain state, which in turn depends upon the 

stiffness matrix. Thus an iterative technique is required to evaluate the effect of damage 

growth on the stiffness of the structure.
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Initially, the material is assumed to consist wholly of undamaged material with tensile 

properties. A fraction of the external load is applied to the model and solved. This step 

determines the sense of the strains, either tensiie or compression, a given ply carries. A per ply 

examination of the sense of the strains is performed, which reassigns the material properties of 

a given layer based upon the sense of the most critical principal strain component. This 

procedure is necessary due to the different damage growth behavior under tension and 

compression.

Once the material properties have been assigned, the applied loads are incremented in

small steps. The number of increments is an input to the program. The FEM is solved for the

initial load increment. The strain is stored, and equation(3.11) is employed to calculate an

initial value o f r for the current strains. This value of r is substituted back into equation(3.15) 

to form a modified stiffness matrix. Note that the value of r is stored, and renamed r , and is

employed later for convergence comparison. The FEM is again solved for the applied loads, 

but now with the updated stiffness matrix, which reflects the current values of r for each 

element on a ply-by-ply basis. The element strains again are used in equation(3.11) to 

calculate new value of r for the elements. The difference between the current value of r and 

rprev for individual element plies is compared with a defined tolerance. The iterative process

continues until all element plies in the model have converged to their particular values of r for 

the given load increment.

Once the values of r have converged, a comparison is made to evaluate whether rcr has 

been attained. If so, the damage growth law and material properties o f the pertinent ply are 

modified to reflect the dominant mode of the damage. Equation(3.18) or (3.19) describe either 

matrix degradation or fiber fracture damage growth. Additionally, a check is performed to 

examine whether the failure criteria of all the plies of an element attaining at least rcr has been 

fulfilled.
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This program code was run on a CRAY Y-MP8/864 system. Figure 5.7 shows the 

flowchart of the logic to implement the damage theory and load modification numerically into 

finite element.
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CHAPTER 6 

NUMERICAL SIMULATIONS

The experimental response of laminated composite columns under eccentric compressive 

load is numerically simulated. Wolfe[l] used classical lamination plate theory and the 

maximum stress failure criterion to choose two laminates such that initial damage would occur 

in the 90 plies and one such that damage would initially occur in the 45 plies, all on the tension 

side. As mentioned in the previous chapter, the first two lay-ups are [±45° /0°  /  and

[(45j /  -45% ' 0°)2 /  90j]2 . The last lay-up is [45° /  -45° /  (0° /  90°) 4^  .

The nominal length of specimens with end pieces (see Figure 5.2) is 224 mm. The 

effective length of specimens free to bend is 150 mm. The numerical simulation considered the 

total length of the specimens free to bend. This assumption in the numerical simulations results 

in more deformation than the experimental constrained specimens deformation.

Table 6.1 compares maximum load, first ply damage and subsequent damage from 

experimental and numerical results. In the [45°4 /-4 5 °  /(0° /90°)4^  specimen, the model

prediction of maximum load (14400 N) is above the experimental range (10278-12343 N). 

The numerical prediction of the ply in which first critical damage occurs is same as 

experimental result that the damage initiates in ±45 outermost tension side group of plies. The 

center deflection obtained from the numerical analysis is almost the same as the experimentally 

observed deflection, however, the damage initiation load from the analysis (11640 N) is higher 

than the experimental result by 5%. The prediction of the ply in which the subsequent damage 

occurs is exactly the same as the damage initiation layers in the experiment. The subsequent 

load prediction by analysis (13200 N) is lower than the experimental result (14185 N) and the 

corresponding center deflection (14.5 mm) is higher than the experimental result (13.3 mm).

29
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In the [±45° /  0° /  90°]4s specimen, the model prediction of maximum load (8400 N) is 

above the experimental range (6170-7624 N). The numerical prediction of the ply in which 

first critical damage occurs is same as experimental result that the damage initiates in 90 

outermost tension side group of plies. The center deflection obtained from the numerical 

analysis is the same as the experimentally observed deflection, however, the damage initiation 

load from the analysis (7710 N) is higher than the experimental result by 8%. The prediction 

of the ply in which the subsequent damage occurs is exactly the same as the damage initiation 

layers in the experiment. The subsequent load prediction by analysis (8200 N) is lower than 

the experimental result (8754 N) and the corresponding center deflection (13.5 mm) is also 

lower than the experimental result (19.6 mm).

In the [(-£5j /  -45°2 /  0°), /  90}^ specimen, the model prediction of maximum load

(10200 N) is above the experimental range (7455-9497 N). The numerical prediction of the 

ply in which first critical damage occurs is same as experimental result that the damage 

initiates in 90 outermost tension side group of plies. The center deflection obtained from the 

numerical analysis is the same as the experimentally observed deflection, however, the damage 

initiation load from the analysis (8820 N) is higher than the experimental result by 8%. The 

prediction of the ply in which the subsequent damage occurs is exactly the same as the 

damage initiation layers in the experiment. The subsequent load prediction by analysis (9800 

N) is lower than the experimental result (10671 N) and the corresponding center deflection

(15.2 mm) is also lower than the experimental result (15.7 mm).

Figure 6.1 shows center deflection as a function of applied compressive load for 

[45° /  -45° /  (0° /  90°)4]2 laminated composite columns. The experimental curve is for a

typical specimen. The numerical results are with in experimental bounds. Both curves are 

plotted up to the first critical failure in respective cases. The strain on surface at the center of
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the specimen are plotted in Figure 6.2. The model predicts higher strains up to the first critical

failure. This is consistent with higher displacement predictions as shown in the Figure 6.1.

The consistent higher displacement and strain predications may be primarily attributed to

neglecting constraint on bending due to the end caps which cover 37 mm of the specimen on 

both ends. The total specimen length is 212 mm. Similar plots for \±45° /  0° /  90°4}4s and

[(45j /  -45% -'O0) , / are shown in Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6 

respectively.

Figure 6.7 (a)shows first damage along the longitudinal cross section of a typical 

[45° /  -45° /  (0° 9 0 ° ) specimen. The first damage occurs in the outermost ±45 group on

the tension side. It should be noted that the position of the matrix crack in a longitudinal 

section depends on where the crack originates along the width direction. This is because the 

crack extends in 45 direction. The density plot of damage parameter in all the plies at the same 

longitudinal cross section is shown in Figure 6.7 (b). The density plot o f the damage 

parameter is shown at the load level where first critical damage occurs in the ±45 group. The 

darker gray scale represents higher level of damage. It is clearly seen that the tension side 

show more damage than the compressive side. The damage in the outermost \_~454 /  454~\ ply

group is shown in Figure 6.7 (c). The gray scale for the density plot is normalized in narrow 

range to shown damage variation with in the plies. Similar comparison of experimental 

observations of damage in the laminate when damage occurs in inner \-454 /  -Z5,] ply group is

shown in Figure (6.10). It is interesting to note that the cracks appears in groups at locations 

which can be identified as high damage locations from Figure 6.10 (c).
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Table 6.1 Experimental Damage Initiation Loads and Model Predictions

i

specimen maximum load * occurance o f the first ply damage occurance o f the subsequent damage
experim en t m odel experim ent m odel

experiment
(N)

model
(N)

ply
No.

angle
load
(N)

center
deflection

(mm)

ply
No.

angle
load
(N)

center
deflection

(mm)

ply
No.

angle
load
(N)

center
deflection

(mm)

ply
No.

angle
load
(N)

center
deflection

(mm)

1
Max: 12343 
Min: 10278 
A v .: 11372

14400 1-8
±45

11065 9.83 1-8
±45

11640 9.8 17-24
±45

14185 13.3 17-24
±45

13200 14.5

2
Max: 7624 
Min: 6170 
Av. :7085

8400 4-7
90

7132 11.6 4-7
90

7710 11.6 11-14
90

8754 19.6 Ii-14
90

8200 13.5

3
Max: 9497 
Min: 7455 
Av. :8431

10200 11-15
90

8115 9.84 11-15
90

8820 9.8 11-15
90

10671 15.7 11-15
90

9800 15.2

Remark

1. * Experimental results are for a typical specimen.

2. specimen 1 layup :[4J;/-45;/(fl-/5W),];i

3. specimen 2 layup :[±45'/0"/S>0;]u

4. specimen 3 layup :[(■/%/ -M; / o-); / po;]̂

UJK)
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Fig 6.1 Experimental and Predicted Load versus Center Deflection for 

[*£% /  —45° /  (0° /  9 0 ° ) ^  prior to Damage
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Fig 6.2 Experimental and Predicted Load versus Centerline Strain for 

[-/5; /  -4 5 °! {0° /  90°) J  prior to Damage
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Fig 6.3 Experimental and Predicted Load versus Center Deflection for 

[±-/5° /  0° /  90°]^ prior to Damage
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Fig 6.4 Experimental and Predicted Load versus Centerline Strain for 

[±-/5° /  0° /  90°]js prior to Damage
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Fig 6.5 Experimental and Predicted Load versus Center Deflection for 

/  -45° /  0°)? /  90;]^ prior to Damage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

8000--

6000--

4000"

model
experiment

-1 0 0 0 0 -8000 -6000 -4000 - 2 0 0 0

stra in

Fig 6.6 Experimental and Predicted Load versus Centerline Strain for 

[(-/5j /  -45° /  0°)2 /  prior to Damage
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Figure 6.8 (a)shows first damage along the longitudinal cross section of a typical 

[±-/5° /  0°. 90°]4s specimen. The first damage occurs in the outermost 90 group on the

tension side. It should be noted that the position of the matrix crack in a longitudinal section 

depends on where the crack originates along the width direction. This is because the crack 

extends in 90 direction. The density plot of damage parameter in all the plies at the same 

longitudinal cross section is shown in Figure 6.8 (b). The density plot of the damage 

parameter is shown at the load level where first critical damage occurs in the 90 group. The 

darker gray scale represents higher level of damage. It is clearly seen that the tension side 

show more damage than the compressive side. The damage in the outermost 90 ply group is 

shown in Figure 6.8 (c). The gray scale for the density plot is normalized in narrow range to 

shown damage variation with in the plies. Similar comparison of experimental observations of 

damage in the laminate when damage occurs in inner 90 ply group is shown in Figure 6.11. It 

is interesting to note that the cracks appears in groups at locations which can be identified as 

high damage locations from Figure 6.11 (c).

Figure 6.9 (a)shows first damage along the longitudinal cross section of a typical

/' -45; / 0°), /  9 0 specimen. The first damage occurs in the outermost 90 group on

the tension side. It should be noted that the position of the matrix crack in a longitudinal 

section depends on where the crack originates along the width direction. This is because the 

crack extends in 90 direction. The density plot of damage parameter in all the plies at the same 

longitudinal cross section is shown in Figure 6.9 (b). The density plot of the damage 

parameter is shown at the load level where first critical damage occurs in the 90 group. The 

darker gray scale represents higher level of damage. It is clearly seen that the tension side 

show more damage than the compressive side. The damage in the outermost 90 ply group is 

shown in Figure 6.9 (c). The gray scale for the density plot is normalized in narrow range to 

shown damage variation with in the plies.
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Figure 6.7 First Critical Damage in 4̂5°4 /  -45°4 /  (0° /  90°)^]^ Lay-up.
(a)Experimental Observed Matrix in Cross-section, y=17.25 mm, x=30 mm to 100 mm,
at 11065 N Load. (b)Density Plot of Damage Parameter in the Same Cross-Section.
(c) Enlarged Damage Parameter Density Plot in the -45,45 Layers.
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Figure 6.8 First Critical Damage in [±-/5° /  0° /  90$]^ Lay-up. 
(a)Experimental Observed Matrix in Cross-section, y=17.25 mm, x=30 mm to 100 mm,
at 7132 N Load. (b)Density Plot of Damage Parameter in the Same Cross-Section.
(c) Enlarged Damage Parameter Density Plot in the 90 Layers.
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Figure 6.9 First Critical Damage in [(45j /  -45% /  0°)2 /  90j j Lay-up.
(a)Experimental Observed Matrix in Cross-section, y=17.25 mm, x=30 mm to 100 mm,
at 8115 N Load. (b)Density Plot of Damage Parameter in the Same Cross-Section.
(c) Enlarged Damage Parameter Density Plot in the 90 Layers.
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Figure 6.10 Subsequent Critical Damage in [45° /  -45; /  (0° /  90°)4]2j Lay-up.
(a)Experimental Observed Matrix in Cross-section, y= 17.25 mm, x=30 mm to 100 mm, 
at 14185 N Load. (b)Density Plot of Damage Parameter in the Same Cross-Section.
(c) Enlarged Damage Parameter Density Plot in the 45 Layers.
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Figure 6.11 Subsequent Critical Damage in [±45° /  0° /  90;]^ Lay-up. 
(a)Experimental Observed Matrix in Cross-section, y=17.25 mm, x=30 mm to 100 mm, 
at 8754 N Load. (b)Density Plot of Damage Parameter in the Same Cross-Section.
(c) Enlarged Damage Parameter Density Plot in the 90 Layers.
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CHAPTER 7

SUMMARY AND RECOMMENDATIONS

The two phases continuum damage theory is incorporated in a plate finite element 

procedure. The finite element program is capable of capturing damage evolution in each layer 

of every finite element. The FEM program is utilized to study the damage evolution in 

laminated composite plates. The gradient stress field in the plate is created with the application 

of in-plane compressive loads and moments. The out-of-plane displacement caused by the 

combination of compressive loads and edge moments produces in-plane shear gradients as 

well as through-the-thickness shear gradients.

The modeling of the experimental conditions[l] is not accurate, the end caps on 

specimens are ignored in the numerical analysis. The load modification due to the large 

displacement is approximately implemented. The nonlinear behavior of the specimens is 

primarily due to the large displacements. The critical damage in plies occurs with in 10% of 

the buckling load. In spite of the approximate implementation of the experimental conditions, 

the damage evolution predictions are close to the experimental observations.

The following recommendation are made on the basis of the limitation of the present 

FEM procedure and the two phase continuum damage theory.

(1) The FEM code should be optimized to fully take advantage of vector processing

capabilities of the computer CRAY Y-MP8/864 system. The code is currently running 

CRAY Y-MP8/864 system and typically takes 45 minutes of C.P.U. time.

(2) The two phase continuum damage model should be improved to take into account ffee- 

edge stress and delamination.

45
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(3) The geometric nonlinearity due to large deflections should be implemented accurately in

the model.

(4) The two phase continuum damage model should also be improved to incorporate the

effect of transverse shear in damage progression.
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