
AUTOMATED TESTING OF A COMMERCIAL CYBER-PHYSICAL
SYSTEM DEVELOPMENT TOOL CHAIN

by

SHAFIUL AZAM CHOWDHURY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at

The University of Texas at Arlington
December, 2019

Arlington, Texas

Supervising Committeee:

Christoph Csallner, Supervising Professor
Leonidas Fegaras
Bahram Khalili
Jeff Lei

To my beloved Tonni

ACKNOWLEDGMENTS

First and foremost, I would take this opportunity to express my sincere gratitude to my

supervising Professor Dr. Christoph Csallner. This dissertation would not happen without

his constant support. I am deeply grateful not only for the enlightening directions I have

received but also for his sincere accommodations, which made this research collaboration

meaningful and enjoyable. I know that very few are fortunate enough to have such a men-

tor and cannot thank him enough for the invaluable guidance I have received from him

throughout my entire doctoral studies timeline and especially during my difficult times.

Without his patience and encouragement none of the works included in this dissertation

would have happened.

Besides my supervisor I am grateful to the rest of my PhD committee: Dr. Leonidas

Fegaras, Dr. Bahram Khalili, and Dr. Jeff Lei for their encouragement and valuable feed-

back throughout my entire doctoral studies timeline. I am very much thankful to Dr. Taylor

T. Johnson for his continual support, encouraging ideas and vital feedback which helped

shaping the direction of this work.

Besides my advisers and collaborators from the academia I am very much thankful

to my mentors at MathWorks: Divya Bhat, Stephen Van Kooten, Jing Shen, Dr. Akshay

Rajhans, and Dr. Pieter J. Mosterman for valuable technical discussions and feedback on a

significant portion of the work completed during my doctoral studies.

Lastly, I am deeply grateful to my family. I thank my beloved wife Sadia Ahmed

(Tonni) for her encouragements, trust, and countless sacrifices. I am forever grateful to my

parents for their love and faith.

iii

ABSTRACT

Automated Testing of a Commercial Cyber-Physical System Development Tool Chain

Shafiul Azam Chowdhury

The University of Texas at Arlington

Supervising Professor: Christoph Csallner

Rigorous validation of commercial cyber-physical system (CPS) tool chains (e.g., MAT-

LAB/Simulink) through automated testing is of utmost importance since tool-chain gen-

erated artifacts are often deployed in safety-critical embedded hardware. Although au-

tomated differential testing through random program generation and equivalence modulo

input (EMI)-based mutation has been well studied for procedural compiler testing, apply-

ing these techniques for Simulink, the widely used commercial CPS development tool pose

unique challenges, which we explore in this series of work for the very first time. To better

understand real-world CPS modeling and to automatically generate Simulink models sim-

ilar to those crafted by engineers and researchers, we present the largest study of Simulink

models to date. Using insights from this corpus we have built the very first publicly known

random Simulink model generator and differential testing framework, which has found

previously unknown compiler bugs in Simulink. To further improve the automated com-

piler testing framework we have then explored novel EMI-based mutation techniques for

Simulink models, which deal with CPS language features that are not found in procedu-

ral programs, including an explicit notion of time and zombie code which combines the

properties of both dead and live code. Our resulting open source tools have discovered

21 unique Simulink bugs in various production versions to date confirmed by MathWorks

Support proving bug finding capabilities of these tools. 16 of these bugs were unknown to

MathWorks Support.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Abstract . iv

Chapter 1: Introduction . 1

Author Contributions . 6

Chapter 2: CyFuzz: A Differential Testing Framework for Cyber-Physical Sys-

tems Development Environments . 10

Chapter 3: Automatically Finding Bugs in a Commercial Cyber-Physical Sys-

tem Development Tool Chain With SLforge 29

Chapter 4: A Curated Corpus of Simulink Models for Model-based Empirical

Studies . 57

Chapter 5: SLEMI: Equivalence Modulo Input (EMI) Based Mutation of CPS

Models for Finding Compiler Bugs in Simulink 69

Chapter 6: Conclusions . 100

v

Bibliography . 103

vi

CHAPTER 1

INTRODUCTION

Model-based design of cyber-physical systems (CPS) using complex development tool

chain (e.g., MathWork’s Simulink) is the de-facto engineering practice in many safety-

critical domains: automotive, aerospace and health care to name a few [99, 90]. Using

these tool chains engineers typically design abstraction of some CPS using graphical block-

diagram models to simulate their behavior and then automatically generate code and de-

ployable executables [9, 68, 38].

Since CPS tool chain-generated artifacts are often deployed in safety-critical embedded

hardware including cars and planes, quality assurance of various tool chain components

(e.g., compilers, simulation solvers and code generators) through eliminating bugs is of

utmost importance as tool chain defects may introduce further subtle bugs in automatically

generated CPS artifacts [11].

While it would be ideal to formally verify that an entire CPS development tool chain

is bug-free, unfortunately, this is practically infeasible. Moreover, it is often not possible

to get a full, up-to-date, formal specification of a commercial CPS tool chain [82, 39, 8].

In contrast differential testing, a major contributor to software quality does not entail full

formal specifications of the compiler system under test as it compares the results of two or

more executions (e.g., simulations of CPS models) of the same program that are supposed

to produce the same results [59].

First coined by McKeeman, randomized differential testing of compiler systems utilizes

(typically automatically generated) random programs by executing and observing their out-

puts using two or more comparable compiler implementations or configurations [59]. If the

outputs of the same program do not match then one of the compiler system implementations

likely have bug(s).

As a concrete example randomized differential testing of Simulink [90], the widely

1

used CPS development tool may involve a random Simulink model generator. The random

generator automatically creates valid Simulink models which are inputs to the Simulink

compiler tool chain — our compiler system under test. Next, we take one such automati-

cally generated Simulink model to compile, execute and observe its outputs using different

Simulink compiler optimization settings, e.g.. If for such a generated Simulink model we

observe output divergence when executing it using different compiler optimization settings,

we may confidently assert the existence of compiler bug(s) since a Simulink model’s out-

puts should not diverge due to compiler optimization level differences.

Differential testing through random program generation has been effective in recent

compiler testing projects collectively finding hundreds of bugs in commercial compiler im-

plementations (such as GCC1 and LLVM) that are part of CPS development tool chains [98,

75, 41, 29]. Our initial study of publicly available Simulink bug-reports also suggests dif-

ferential testing as a good candidate for finding commercial CPS tool chain bugs.

While compiler testing is promising, when testing a commercial CPS tool chain like

Simulink we face additional challenges beyond what is covered by testing compilers of

traditional programming languages (such as Csmith creating C programs [98]), since CPS

modeling languages differ significantly from traditional programming languages. More-

over, random generation of CPS models to test CPS development tool chains has to address

a combination of programming paradigms (e.g., both graphical, data-flow language and

textual imperative programming language in the same model) which is rare in traditional

compiler testing.

Automated testing of textual programming language compiler tools is well studied,

however, to the best of our knowledge no work targeted automated randomized differential

testing of commercial CPS tool chains. Existing testing and verification research in the

CPS domain [52, 46, 4, 34, 78, 3, 102, 10, 57] have targeted analyzing and testing the

CPS models unlike this dissertation which explores finding compiler bugs by automatically

testing a commercial CPS tool, namely Simulink from MathWorks [90].

Since existing approaches are not sufficient for ensuring the reliability of commercial

CPS tool chains, this dissertation first proposes CYFUZZ — the first known conceptual

1GNU Compiler Collection

2

differential testing framework for testing a commercial CPS development tool and a pro-

totype implementation to test Simulink [16] (Chapter 2). CyFuzz has a random generator,

which automatically creates valid Simulink models. Its differential testing component then

detects dissimilarity (if it exists) in the results obtained by executing (aka simulating) a

generated Simulink model varying components of the Simulink tool chain.

CyFuzz pioneered differential testing of commercial CPS tool chains by addressing

problems unique to CPS tool chain testing and presenting a prototype implementation to

automatically test Simulink which rediscovered one previously known Simulink bug. How-

ever, one key CyFuzz limitation is that it cannot generate Simulink models rich in language

features partly as it does not leverage any Simulink specifications. Although complete

and updated formal specifications for Simulink are not available, one could still leverage

the specifications made available through Simulink’s official web-based documentations

expressed in a semi-formal structure to generate valid Simulink models rich in language

features.

Prior studies attributed generating programs rich in language feature to the success of

randomized differential testing schemes [85]. Not leveraging any of the available specifi-

cations has perhaps significantly crippled CyFuzz’s bug finding capabilities. Indeed, in the

experiment period CyFuzz did not find any new Simulink bug.

Another key CyFuzz limitation is that it did not explore metrics to estimate how close a

generated model is to those designed by CPS engineers and researchers. To the best of our

knowledge no large-scale study of Simulink modeling practices is available, although large

repositories of publicly available programs in major textual programming languages (e.g.,

Java) exist [101, 19, 37]. A large-scale corpus of publicly available Simulink models could

guide a random generator to create models which tool chain developers are more likely to

care about.

To address these shortcomings, next we present the first large-scale collection of pub-

lic Simulink models and use the collected models’ properties to guide random Simulink

model generation (Chapter 3). To guide model generation we systematically collected

semi-formal Simulink specifications from official documentations designing easy-to-craft

parsing tools. In our experiments on several hundred models, the resulting SLFORGE gen-

3

erator was more effective and efficient than its predecessor and the most relevant competi-

tor CyFuzz [17]. SLforge also found 11 unique bugs (9 of which new) in various Simulink

production versions confirmed by MathWorks Support, which is the currently the state-of-

the-art valid Simulink model generator.

In subsequent work we further extended the corpus of Simulink models, which contains

about 1,000 publicly available Simulink models and is currently the largest such corpus of

CPS models (Chapter 4). Besides directly enabling evaluation of random Simulink model

generators, our publicly available corpus can also benefit all future Simulink model-based

studies and tool development efforts.

While random program generation for compiler testing can potentially discover many

unknown bugs initially, it usually requires years of engineering efforts to design well-

formed program generators [23, 48]. In contrast, using relatively less engineering effort

Equivalence Modulo Input (EMI)-based compiler validation, a recent variation of random-

ized differential testing has found over a thousand of bugs in major GCC and LLVM ver-

sions which were missed by random program generation (aka fuzzing) alone [48, 49, 85,

83].

EMI-based scheme mutates existing C code (aka seed) collected from real-world corpus

or random generators to create one or more valid programs (aka mutants) functionally

equivalent to the original program, modulo some input common to both the seed and its

mutants. Using differential testing it can then automatically detect output discrepancies in

the generated mutants which is a potential compiler bug indicator [59, 51].

Besides, compared to random program generators EMI-based approaches stress the

optimizers and code generators well, which are generally attributed to the most vulnerable

compiler components [48, 17, 82, 16]. This, along with its effectiveness in compiler bug

finding motivated us to explore its applicability in CPS tool chain testing. The only related

work we are aware of is SLforge, which primarily focused on random Simulink model

generation and only examined a restricted mutation technique based on statically finding

and then removing all components in a model, finding one EMI-bug [17].

Although EMI-based mutation via dynamically detecting and pruning dead program

components and introducing modifications in live program paths have been proven effective

4

for procedural compiler testing [48, 85, 85], to the best of our knowledge, no study has yet

explored such techniques in the context of CPS tool chain testing. This is perhaps because

large-scale real-world CPS model corpus [18] and random valid CPS model generators

are only recently been made available, which are pre-requisites to effective EMI-based

validation schemes [17, 48, 14].

EMI for CPS tool chain also introduces previously unexplored challenges in the context

of EMI-based testing. For instance, CPS model components’ (e.g., Simulink blocks) data-

types can be inferred by the tool chain, which poses additional challenges compared to

EMI-based mutation of C programs. Besides, EMI-based mutation of CPS programs have

to deal with zombie code that combines properties of both live and dead code. Unlike

prior EMI-based mutation of C and OpenCL programs, this dissertation explores EMI for

zombie code for the very first time [48, 85, 49]. Also, in contrast to procedural programs,

CPS models have an explicit notion of simulation and output sampling time which makes

EMI-based mutation complicated. Lastly, the resultant mutants should satisfy all of the tool

chain specifications so that it compiles and qualifies for effective differential testing [41].

This dissertation explores challenges in EMI-based Simulink model mutation in depth

for the very first time and presents a general-purpose EMI-based automated testing frame-

work. The resultant SLEMI tool, the very first implementation of dynamic EMI-based au-

tomated testing of Simulink models outperforms the existing and only known EMI-based

scheme for Simulink, SLforge [17]. Finally, we empirically evaluate its effectiveness for

testing Simulink: in our experiments SLforge found two unique bugs whereas using simi-

lar computing resource SLEMI has found 9 unique bugs confirmed by MathWorks Support

in Simulink versions R2017a and R2018a. Many of the bugs found by SLEMI are out of

reach of plain differential testing.

To summarize, this dissertation makes the following novel contributions for automated

testing of Simulink, the widely used CPS development tool:

• To automatically test a commercial CPS development tool Simulink, we present the

first known randomized differential testing framework for Simulink exploring chal-

lenges in automated generation of valid Simulink models. We analyze the feasibility

of applying differential testing in finding CPS development tool bugs and present Cy-

5

Fuzz, the first known open source Simulink model generator and differential testing

framework (Chapter 2).

• To find new compiler bugs in Simulink, we identify and address limitations of the

CyFuzz tool and propose a new approach to generate valid Simulink models by con-

struction. The resulting SLforge tool leverages official Simulink specifications and

generates feature-rich Simulink models. SLforge is not only efficient compared to

CyFuzz in terms of runtime but is also effective in finding new compiler bugs (Chap-

ter 3).

• To better understand how engineers and researchers use Simulink to model CPS we

conducted the largest study of publicly available Simulink models to date. Besides

guiding a random Simulink model generator (e.g., SLforge) to generate realistic mod-

els, our publicly available corpus and open source tools can benefit all model-based

research and tool development efforts (Chapter 4).

• Lastly, we explore a recent variation of differential testing, namely Equivalent Mod-

ulo Input (EMI)-based testing to find Simulink bugs. EMI-based mutation of Simulink

models require addressing previously unexplored challenges which include handling

zombie regions, an explicit notion of time and advanced modeling features (e.g., au-

tomated data-type and sample-time inference). SLEMI, our approach to EMI-based

testing of Simulink is efficient compared to SLforge as it consumes relative less com-

puting resources. Besides, many of the bugs found by SLEMI cannot be found by

plain differential testing alone (Chapter 5).

All of our tools are open source, which to date have collectively found 21 unique

Simulink bugs confirmed by MathWorks Support in various Simulink versions, 16 of which

are previously unknown to the commercial CPS development tool vendor.

Author Contributions

The chapters in this dissertation are accepted (and submitted) publications. This section

introduces the chapters along with the co-author contributions:

6

• Chapter 2: CyFuzz: A Differential Testing Framework for Cyber-Physical Systems

Development Environments [16]

Proceeding 6th Workshop on Design, Modeling and Evaluation of Cyber Physical

Systems (CyPhy), pages 46-60. 2016

Authors Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner.

Dr. Johnson and Dr. Csallner supervised the entire project shaping the research

direction, reviewing the research questions and experimentation setup and sig-

nificantly improving the paper. I was responsible for conducting the investiga-

tions, designing and analyzing the experiments, and implementing the CyFuzz

tool for automated testing of the Simulink compiler.

• Chapter 3: Automatically Finding Bugs in a Commercial Cyber-Physical System

Development Tool Chain With SLforge [17]

Proceeding 40th ACM/IEEE International Conference on Software Engineering (ICSE),

pages 981-992. 2018

Authors Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,

Taylor T. Johnson, and Christoph Csallner.

Dr. Johnson and Dr. Csallner supervised the overall research direction, pro-

vided constant feedback on prioritizing experiments and analyses, and signifi-

cantly strengthened our paper. Siddhant Gawsane was responsible for collecting

and reviewing a significant portion of the corpus of Simulink models included in

this work. Sidharth Mehra contributed in developing many components of the

tool to collect properties of Simulink programs. Soumik Mohian was respon-

sible for timely implementation of analyzing many Simulink model properties.

I was responsible for designing and conducting the initial investigations, con-

ducting and analyzing the experiments, and implementing core functionalities

of the SLforge tool including generation of random Simulink programs.

• Chapter 4: A Curated Corpus of Simulink Models for Model-based Empirical Stud-

ies [18]

7

Proceeding 4th International Workshop on Software Engineering for Smart Cyber-

Physical Systems (SEsCPS), pages 45-48. 2018

Authors Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T.

Johnson and Christoph Csallner

Dr. Johnson and Dr. Csallner supervised the entire project from designing the

Simulink model corpus to collecting and analyzing the Simulink model proper-

ties providing constant feedback and also significantly strengthened the paper.

Lina Sera Varghese collected and reviewed a significant portion of the corpus.

Soumik Mohian helped analyzing some model properties. I was responsible

for designing the corpus, identifying the relevant metrics and developing the

framework to automatically collect and analyze the metrics.

• Chapter 5: Equivalence Modulo Input (EMI)-based Cyber-Physical System Devel-

opment Tool Chain Testing With SLEMI (paper submitted for review)

Authors Shafiul Azam Chowdhury, Sohil L. Shrestha, Taylor T. Johnson and Christoph

Csallner

Dr. Johnson and Dr. Csallner supervised the entire project. Dr. Csallner helped

identifying the crucial problems to address in this paper, reviewed the research

questions, supervised the experimental analysis and significantly strengthened

the paper. Sohil Lal Shrestha provided valuable feedback throughout the project

and helped analyzing one of the research questions. I was responsible for for-

mulating and analyzing the research questions, implementing the EMI-based

mutation framework for Simulink, and conducting and analyzing the various

EMI-baed mutation experiments.

Other Publications and Demonstration

• ICSE Student Research Competition Poster: Automatically Finding Bugs in Com-

mercial Cyber-physical System Development Tool Chains [13]

Proceeding 40th International Conference on Software Engineering (ICSE): Com-

panion Proceedings, pages 506-508. 2018

8

Author Shafiul Azam Chowdhury

Award 3rd Prize (Bronze Medal) at ACM/Microsoft Student Research Competition

at ICSE 2018

• ICSE Doctoral Symposium Poster: Understanding and Improving Cyber-physical

System Models and Development Tools [14]

Proceeding Proceedings of the 40th International Conference on Software Engi-

neering: Companion Proceedings, pages 452-453. 2018

Author Shafiul Azam Chowdhury

9

CHAPTER 2

CYFUZZ: A DIFFERENTIAL TESTING FRAMEWORK FOR CYBER-PHYSICAL

SYSTEMS DEVELOPMENT ENVIRONMENTS 1

Shafiul Azam Chowdhury

Taylor T. Johnson

Christoph Csallner

Shafiul Azam Chowdhury, Taylor T. Johnson, Christoph Csallner. CyFuzz: A Differential

Testing Framework for Cyber-Physical Systems Development Environments. In: Christian

Berger, Mohammad Reza Mousavi, Rafael Wisniewski (eds) Cyber Physical Systems. De-

sign, Modeling, and Evaluation. CyPhy 2016. Lecture Notes in Computer Science, vol

10107, pages 46-60. 2017. Springer, Cham.

DOI: 10.1007/978-3-319-51738-4 4

1Used with permission of the publisher, 2016

10

Abstract. Designing complex systems using graphical models in sophisticated develop-

ment environments is becoming de-facto engineering practice in the cyber-physical system

(CPS) domain. Development environments thrive to eliminate bugs or undefined behaviors

in themselves. Formal techniques, while promising, do not yet scale to verifying entire

industrial CPS tool chains. A practical alternative, automated random testing, has recently

found bugs in CPS tool chain components. In this work we identify problematic compo-

nents in the Simulink modeling environment, by studying publicly available bug reports.

Our main contribution is CyFuzz, the first differential testing framework to find bugs in ar-

bitrary CPS development environments. Our automated model generator does not require

a formal specification of the modeling language. We present prototype implementation for

testing Simulink, which found interesting issues and reproduced one bug which MathWorks

fixed in subsequent product releases. We are working on implementing a full-fledged gen-

erator with sophisticated model-creation capabilities.

2.1 Introduction

Widely used cyber-physical system (CPS) development tool chains are complex software

systems that typically consist of millions of lines of code [82]. For example, the popular

MathWorks Simulink tool chain contains model-based design tools (in which models in

various expressive modeling languages are used to describe the overall system under con-

trol [50]), simulators, compilers, and automated code generators. Like any complex piece

of code, CPS tool chains may contain bugs and such bugs may lead to severe CPS defects.

The vast majority of resources in the CPS design and development phases are devoted to

ensure that systems meet their specifications [7, 97]. In spite of having sophisticated design

validation and verification approaches (model checking, automated test case generation,

hardware-in-the-loop and software-in-the-loop testing etc.), we see frequent safety recalls

of products and systems among industries, due to CPS bugs [95, 96, 2].

Since many CPSs operate in safety-critical environments and have strict correctness and

reliability requirements [44], it would be ideal for CPS development tools to not have bugs

or unintended behaviors. However, this is not generally true as demonstrated by recent

random testing projects finding bugs in a static analysis tool (Frama-C) [24] and in popular

11

C compilers (GCC and LLVM) [98], which are widely used in CPS model-based design.

It would be extremely expensive or possibly even practically infeasible to formally

verify entire CPS tool chains. In addition to their sheer size in terms of lines of code, a

maybe more significant hurdle is the lack of a complete and up to date formal specification

of the CPS tool chain semantics, which may be due to their complexity and rapid release

cycles [82, 29].

Instead of formally verifying the absence of bugs in all CPS tool chain execution paths,

we revert to showing the presence of bugs on individual paths (aka testing), which can still

be a major contributor to software quality [59]. Differential testing or fuzzing, a form of

random testing, mechanically generates random test inputs and presents them to compa-

rable variations of a software [59]. The results are then compared and any variation from

the majority (if one exists) likely indicates a bug [51]. This scheme has been effective at

finding bugs in compilers and interpreters of traditional programming languages. As an

example, various fuzzing schemes have collectively found over 1,000 bugs in widely used

compilation tools such as GCC [98, 29, 41].

While compiler testing is promising, when testing CPS tool chains we face additional

challenges beyond what is covered by testing compilers of traditional programming lan-

guages (such as Csmith creating C programs), since CPS modeling languages differ sig-

nificantly from traditional programming languages. A key difference is that the complete

semantics of widely used commercial modeling languages (e.g., MathWorks Simulink and

Stateflow [90]) are not publicly available [82, 39, 8]. Moreover, modeling language seman-

tics often depend on subtle details, such as two-dimensional layout information, internal

model component settings, and the particular interpretation algorithm of simulators [82].

Finally, random generation of test cases for CPS development environments has to address

a combination of programming paradigms (e.g., both graphical, data-flow language and

textual imperative programming language in the same model), which is rare in traditional

compiler testing.

Since existing testing and verification techniques are not sufficient for ensuring the re-

liability of CPS tool chains, we propose CyFuzz: a novel conceptual differential testing

framework for testing arbitrary CPS development environments. We use the term system

12

under test (SUT) to refer to the CPS tool chain being tested. CyFuzz has a random model

generator which automatically generates random CPS models the SUT may simulate or

compile to embedded native code. CyFuzz’s comparison framework component then de-

tects dissimilarity (if it exists) in the results obtained by executing (or, simulating) the

generated model, by varying components of the SUT.

We also present an implementation for testing the Simulink environment, which is

widely used in CPS industries for model-based design of dynamic and embedded sys-

tems [58, 79]. Although our current prototype implementation targets Simulink, the de-

scribed conceptual framework is not tool specific and should thus be applicable to related

CPS tool chains, such as NI’s LabVIEW [63].

To the best of our knowledge, CyFuzz is the first differential testing framework for

fuzzing CPS tool chains. To address the problem of missing formal semantics during model

generation, we follow a simple, feedback-driven model generation approach that iteratively

fixes generated models according to the SUT’s error descriptions. To summarize, this paper

makes the following contributions:

• To understand the types of Simulink bugs that affect users, we first analyze a subset

of the publicly available Simulink bug reports (Section 2.3).

• We present CyFuzz, a conceptual framework for (1) generating random but valid

models for a CPS modeling language, (2) simulating the generated models on al-

ternative CPS tool chain configurations, and (3) comparing the simulation results

(Section 2.4). We then describe interesting implementation details and challenges of

our prototype implementation for Simulink (Section 2.5).

• We report on our experience of running our prototype tool on various Simulink con-

figurations (Section 2.6), identifying comparison errors and semi-independently re-

producing a confirmed bug in Simulink’s Rapid Accelerator mode.

2.2 Background: Model-based CPS Design and Simulink

This section provides necessary background information on model-based development. We

define the terms used for explaining a conceptual differential testing framework and subse-

13

quently relate them with Simulink.

2.2.1 CPS Model Elements

The following concepts and terms are applicable to many CPS modeling languages (includ-

ing Simulink). A model, also known as a block-diagram, is a mathematical representation

of some CPS [58]. Designing a diagram starts with choosing elementary elements called

blocks. Each block represents a component of the CPS and may have input and output

ports. An input port accepts data on which the block performs some operation. An output

port passes data to other input ports using connections. An output port can be connected

to more than one input port while the opposite is not true in general. A Block may have

parameters, which are configurable values that influence the block’s behavior. Somewhat

similar to a programming language’s standard libraries, a CPS tool chain typically provides

block libraries, where each library consists of a set of predefined blocks.

Since hierarchical models are commonly found in industry, CyFuzz supports generating

such models as well. This can be achieved by grouping some blocks of a model together

and replacing them by a new block which We call a child, whereas the original model is

called parent.

When simulating, the SUT numerically solves the mathematical formulas represented

by the model [58]. Simulation is usually time bound and at each step of the simulation, a

solver calculates the blocks’ outputs. We use the term signal to mean output of a block’s

port at a particular simulation step.

The very first phase of the simulation process is compiling the model. This stage also

looks for incorrectly generated models and raises failures for syntactical model errors, such

as data type mismatches between connected output and input ports. If an error is found in

the compilation phase, the SUT does not attempt simulating the model. After successful

simulation, code generators can generate native code, which may be deployed in target

hardware [82].

14

2.2.2 Example CPS Development Environment: Simulink

While our conceptual framework uses the above terms, they also apply directly in the con-

text of Simulink [93]. Besides having a wide selection of built-in blocks, Simulink allows

integrating native code (e.g., Matlab or C code) in a model via Simulink’s S-function inter-

face, which lets users create custom blocks for use in their models. Simulink’s Subsystem

and Model referencing features enable hierarchical models.

Simulink has three simulation modes. In Normal mode, Simulink does not generate

code for blocks, whereas it generates native code for certain blocks in the Accelerator

mode. Unlike in these two modes, the Rapid Accelerator mode further creates for the

model a standalone executable. To capture simulation results we use Simulink’s Signal

Logging functionality as we found implementing it quite feasible. However, for cases

where the approach is not applicable (see [93]), we use Simulink’s sim api to record simu-

lation data.

2.3 Study of Existing Bugs: Incorrect Code Generation

To understand the types of bugs Simulink users have found and care about, we performed

a study on the publicly available bug reports from the MathWorks website2. We identified

commonalities in bug reports, which we call classification factors. We limited our study

to bug reports found via the search query incorrect code generation, as earlier studies have

identified code generation as vulnerable [82, 71].

We investigated bug reports affecting Matlab/Simulink version 2015a as we were using

it in our experiments. As of February 17, 2016, there were 50 such bug reports, among

which 47 have been fixed in subsequent releases of the products. Table 2.1 summarizes the

findings. Our complete study data are available at: http://bit.ly/simstudy

Table 2.1 shows only those classification factors that affect at least 20% of all the bug

reports that we have studied. We use insights obtained from the study in our CyFuzz

prototype implementation. For example, many of the bug reports (54%) are related to

simulation result and generated code execution output mismatch. Thus, differential testing

2Available: http://www.mathworks.com/support/bugreports/

15

http://bit.ly/simstudy
http://www.mathworks.com/support/bugreports/

Table 2.1: Study of publicly available Simulink bug reports. The right column denotes the
percentage of bug reports affected by a the given classification factor. Each bug report may
be classified under multiple factors.

Classification factor Bugs [%]
Reproducing the bug requires a code generator to generate
code 60

Reproducing the bug requires specific block parameter val-
ues and/or port or function argument values and data-types 56

Reproducing the bug requires comparing simulation-result
and generated code’s output 54

Reproducing the bug requires connecting the blocks in a
particular way 36

Reproducing the bug requires specific model configuration
settings 32

Reproducing the bug requires hierarchical models 24
Reproducing the bug requires built-in Matlab functions 20

Figure 2.1: Overview of the differential testing framework. The first three phases corre-
spond to the random model generator, while the rest belongs to the comparison framework.

(e.g., by comparing simulation and code execution) seems like a good fit for finding bugs

in CPS tool chains. Further insight that is reflected in our tool is that it is worth exploring

the large space of possible block connections (36% of bug reports) e.g., via random block

and connection generation. Other insights we want to use in the future are to incorporate

random block parameter values and port data-types (56%) and model configurations (32%).

2.4 Differential Testing of CPS Development Tool Chains

At a high level we can break our objective into two sub goals: creating a random model

generator and defining a comparison framework. We first present a theory applicable to

a conceptual CPS framework in this section. Fig. 2.1 provides a schematic overview of

16

CyFuzz’s processing phases. The first three phases belong to the random model generator,

and the remaining two constitute the comparison framework. The first two phases create a

random model (which may violate Simulink’s model construction rules). The third phase

fixes many of these errors, such that the model passes the SUT’s type checkers and the

SUT can simulate it. If it succeeds it passes the model to the fourth phase to simulate the

model in various SUT configurations and to record results. The final phase detects any

dissimilarities in the collected data, which we call comparison error bugs.

2.4.1 Conceptual Random Model Generator

Following are details on the generator’s three phases.

Listing 2.1: Select Blocks phase of the conceptual random model generator.

method select blocks (n, block libraries):

/∗ Choose n blocks from the given block libraries, place the blocks

in a new model, configure the blocks, and return the model. ∗/

m = create empty model() // New, empty model

blocks = choose blocks(n, block libraries) // N from block libraries

for each block b in blocks:

place block in model(m, b)

configure block(b, n, block libraries)

return m

Select Blocks.

Listing 2.1 summarizes this phase, which selects, places, and configures the model’s blocks.

The generator has a list of block libraries and for each library a predetermined weight.

Using the weights, the choose blocks method selects n random blocks. The value n can

be fixed or randomly selected from a range. On a newly created model the generator next

places each of these blocks using the place block in model method. For creating inputs,

CyFuzz selects various kinds of blocks, to, for example, provide random inputs to the

model.

17

The configure block method selects block parameter values and satisfies some block

constraints (e.g., by choosing blocks required for placing a certain block). For creating

hierarchical models, a child model is considered as a regular block in the parent model and

is passed as a parameter to configure block, which calls select blocks to create a new

child model. Here n is equal to the parent model, but block libraries may not be the same

(e.g., certain blocks are not allowed in some Simulink child models).

Connect Ports.

The second phase follows a simple approach to maximize the number of ports connected.

CyFuzz arbitrarily chooses an output and an input port from the model’s blocks, prioritizing

unconnected ports. It then connects them and continues the process until all input ports are

connected. Consequently, some output ports may be left unconnected.

Listing 2.2: fix errors tries to fix the model errors that the simulate method raises; p is

a SUT configuration; t denotes a timeout value.

method fix errors (m, p, attempt limit, t):

for i = 1 to attempt limit:

< rpstatus, r
p
data, errors > = simulate(m, p, t)

if rpstatus is error:

if fix model(m, errors) is false:

return < rpstatus, r
p
data, errors >

else:

return < rpstatus, r
p
data, errors >

return simulate(m, p, t)

Fix Errors.

Because of their simplicity, CyFuzz’s first two phases may generate invalid models that

cannot be simulated successfully. The third phase tries to fix these errors. Listing 2.2

outlines the approach. It uses method simulate to simulate model m up to time t ∈ IR+

(in milliseconds) using SUT configuration p.

18

The simulate output is a 3-tuple, where rpstatus is one of success, error, or timed−out.

Note that first step of simulation is compiling the model (see Section 2.2). If m has errors,

simulate will abort compilation, storing error-related diagnostic information in errors.

rpdata contains simulation results (time series data of the model’s blocks’ outputs) if rpstatus =

success.

At this point we assume that the error messages are informative enough to drive the

generator. For example, Simulink satisfies this assumption. Using errors, fix model

tries to fix the errors by changing the model. As it changes the model this phase may

introduce new errors. We try to address such secondary errors in subsequent loop iterations

in Listing 2.2, up to a configurable number attempt limit. While this approach is clearly

an imperfect heuristic, it has worked relatively well in our preliminary experience (as, e.g.,

is indicated by the low error rate in Table 2.2).

2.4.2 Conceptual Comparison Framework

Here we explore simulating a randomly generated model varying SUT-specific configura-

tion options of a CPS tool chain, and thus testing it in two phases.

Log Signals.

If simulation was successful in the Fix Errors phase, CyFuzz simulates the model vary-

ing configurations of the SUT in this phase; let P be such a set of configurations. Us-

ing the simulate method introduced in Section 2.4.1, for each p ∈ P we calculate <

rpstatus, r
p
data, errors >= simulate(m, p, t) for a model m and add rpdata to a set d only if

rpstatus = success. We pass d to next phase of the framework. rpdata should contain time

series data of the output ports of the model’s blocks at all available simulation steps. In the

next phase, however, we use only the values recorded at the last simulation step; we leave

comparing signal values at other simulation steps as future task.

Compare.

In its last phase, CyFuzz compares the recorded simulation results d obtained in the previ-

ous phase using method compare (Listing 2.4). It uses method retrieve, which returns the

19

signal value of a particular block’s particular port at a given time instance. If the value is

not available (e.g., blocks that do not have output ports do not participate in signal logging),

it returns the special value Nil. compare also uses method latest time which returns the

time of the last simulation step for a given block’s particular port. If no data is available, it

returns Nil.

Listing 2.3: Determining equivalence via tolerance limit ε.

method equiv (p, q):

if p and q are Nil: // Missing both data points

return true

if p or q is Nil: // Missing one data point

return false

return |p− q| < ε

Listing 2.4: This method compares two execution results (of model m) taken as first two

arguments and throws errors if it finds a dissimilarity.

method compare (rpdata, r
q
data, m):

for each block b of the model m:

for each output port y of the block b:

tp = latest time(rpdata, b, y)

tq = latest time(rqdata, b, y)

if equiv(tp, tq) is false:

throw ‘‘Time Mismatch’’ error

else if tp 6= Nil:

if equiv(retrieve(rpdata, b, y, tp), retrieve(r
q
data, b, y, tq)) is false:

throw ‘‘Data Mismatch’’ error

Now, taking two elements from d at a time we form all possible pairs (rpdata, r
q
data) where

p 6= q and apply method compare on them. As comparing floating-point numbers using

straight equality checking is problematic [82, 35], eqiv (Listing 2.3) method uses a toler-

ance limit to determine floating-point equivalence. If compare reports an error, we mark

20

m as a comparison error for p, q and submit it to manual inspection.

2.5 CyFuzz Prototype Implementation for Simulink

We have developed a prototype implementation of CyFuzz mostly in Matlab. The tool

continuously generates one Simulink model at a time and then passes it to the comparison

framework. Source code, implementation and usage details, sample generated models, and

detailed experiment results are available at: https://github.com/verivital/slsf randgen.

Selecting and Configuring Blocks. Simulink itself has over 15 built-in libraries. Math-

Works also offers toolboxes, which add to Simulink additional libraries. To date we have

included in our experiments blocks from only four of these libraries, Sources, Sinks, Dis-

crete, and Continuous. We use default parameter values for configuring most blocks.

However, some Simulink blocks do not allow placing multiple instances of the same block

with the same default value in a model. For these blocks we randomly choose parameter

values.

Generating Hierarchical Models. Since hierarchical models are very popular among

Simulink users, our prototype can generate them. Currently, the generator uses Model ref-

erencing and For each subsystems blocks to create hierarchical models. CyFuzz generates

model hierarchies up to a configurable depth. In doing so it places and configures related

blocks. For example, CyFuzz automatically puts input (output) related blocks in a new

child model which are used to accept (return) data from (to) the parent model. The num-

ber of blocks for the top-level and child models are chosen randomly from user-provided

ranges.

Fix Errors Phase. We utilize Matlab’s exception handling mechanism to learn what pre-

vented successful compilation of the model. Some information (e.g., the error type) can be

directly collected from the exception. Collecting other important information, such as the

actual problematic block, can be nontrivial. For example, for algebraic loop errors some-

times CyFuzz has to identify other blocks (e.g., a parent block) to fix the problem. As

21

https://github.com/verivital/slsf_randgen

another example, the current CyFuzz version does not attempt to know the data types of

the ports in the Connect Ports phase. Rather, it collects such information when compiling

the model using diagnostic information returned by the SUT.

Models with Random Native Code. To facilitate blocks with custom behavior, Simulink

allows placing native code (C, Matlab etc.) directly in models. To generate such blocks we

leverage Csmith, which generates random C programs [98]. We designed simple Simulink

blocks using Matlab’s S-function interface that use random code generated by a customized

version of Csmith. Our customized version is capable of generating many different C

functions that can be called from various simulation steps. We looked for both crash errors

and “wrong code errors” (similar to our comparison error). However, this is not fully

integrated with CyFuzz yet.

The Comparison Framework. CyFuzz starts with varying simulation modes (see Sec-

tion 2.2.2). and compiler optimization levels. For instance, “Normal mode”, “Accelerator

mode; optimization on”, and “Rapid Accelerator; optimization off” are options to vary.

Varying compilers, code generators, solver-specific settings, and other possible SUT con-

figuration options are future work.

2.6 Experience with CyFuzz

Here we analyze our prototype implementation based on experimental results.

2.6.1 Research Questions (RQ), Experimental Setup, and Results

Throughout this work we explore the following research questions.

RQ1 Is the random model generator effective? Which portion of the generated models can

the SUT compile and simulate within a given time bound?

RQ2 Using the generated models, can the comparison framework effectively find bugs

(comparison errors or crashes) in the SUT ?

22

Table 2.2: Each row represents a separate experiment. Columns 3–6 is the percentage of
blocks selected per library (e.g., experiment A chose 80% of the blocks from the Discrete
library). Error denotes the number of models that failed to simulate. Timed-out denotes the
models that did not complete simulation within the time bound.

Exp. Total Discrete Continuous Source Sink error timed-out Confirmed
Label Models [%] [%] [%] [%] [%] [%] Bugs [%]
A 1172 80 0 10 10 9.73 0.60 0
B 1095 43 37 10 10 1.74 7.03 0
C 1449 0 80 10 10 12.01 8.63 0

Table 2.3: More information on experiments from Table 2.2. Columns 3-7 denotes the time
taken by the five phases of CyFuzz. Runtime denotes the average time CyFuzz spent for a
model.

Exp. Blocks/ Select Connect Fix Log Compare Runtime
Label Model Blocks [%] ports [%] Errors [%] Signals [%] [%] [sec]
A 35.00 7.85 0.64 16.00 74.55 0.96 40.37
B 34.96 6.06 0.39 16.06 76.86 0.63 51.87
C 35.05 8.09 0.51 11.02 79.58 0.80 42.51

RQ3 What is the runtime of each of CyFuzz’s stages? Does the generator scale with the

generated model’s number of blocks?

To answer these questions we conducted experiments using Matlab 2015a on Ubuntu

14.10 and varied simulation mode (Normal vs. Accelerator) and optimizer (on vs. off)

for the later mode. For the fix errors method (Listing 2.2) we chose attempt limit 10

and timeout 12. For choosing blocks we used a traditional O(n) implementation of the

fitness proportion selection algorithm [36]. We have not included in these experiments

hierarchical models or custom blocks.

Effectively Creating Random Models (RQ 1). As the experimental results in Table 2.2

suggest, our tool can generate many models that Simulink can successfully simulate. For

each row in the table we have a low error and timed-out rate. This high success rate is

crucial for the framework as it only uses such valid models in the tool’s later compari-

son framework phases. We also observed that the number of errors and timed-out models

varied with the selected block libraries, but we have not yet analyzed the reasons of these

23

variations.

Effectiveness of Comparison Framework (RQ 2). We have not found new bugs yet,

however, our framework reproduced an existing bug3 and found interesting cases (see Sec-

tion 2.6.2).

Runtime Analysis (RQ 3). The Select Blocks algorithm of Listing 2.1 has runtimeO(n),

n being the number of blocks in the model and using an O(1) block selection algorithm.

The random model generator scales linearly with the number of blocks. But as the number

of blocks grows, the number of timed-out models and errors also grow. A preliminary

analysis suggests that there are relatively few distinct error causes. We group errors by

their causes and fixing one cause dramatically increased the overall number of successfully

executed models.

Table 2.3 indicates that the Log Signals phase uses most of the runtime. This result is

not surprising, as in this phase the SUT simulates the model, generates and executes code,

and logs the data, all of which are time consuming tasks.

Using Native Code/Custom Blocks.

In separate experiments we used a fixed Simulink model with a custom block created using

S-Function. We repeatedly generated random C code using a customized version of Csmith

and plugged this code in the S-function, which effectively ran the code once we simulated

the model. We used different optimizer settings for GCC when compiling and were able

to reproduce crash and “wrong code” bugs of GCC 4.4.3. This shows that incorporating

Csmith in our framework is promising. However, more work is needed to fully utilize

Csmith-generated programs and create sophisticated Simulink blocks using them. One

limitation is that floating-point support in Csmith is currently still basic and can only be

used for detecting crash-bugs.

3MathWorks has fixed this bug in a future release.

24

Figure 2.2: Screen-shot of generated top-level Simulink model which reproduced a bug

2.6.2 Interesting Comparison Framework Findings

Following are two interesting findings of our experiments, including one independently

rediscovered confirmed Simulink bug.

Comparison Error for Models with Algebraic Loops.

In our experiments we noticed comparison errors for some models where Simulink solved

algebraic loops. Investigating further we noticed that when Simulink solves an algebraic

loop it is not confident of its correctness [93]. For this, we did not classify this case as a bug.

CyFuzz now eliminates algebraic loops altogether rather than relying on Simulink to solve

them. We note that one can use our tool to opportunistically discover such inaccuracies for

models with algebraic loops and decide whether to accept Simulink’s solution for solving

the loops.

Bug in Simulink’s Rapid Accelerator Mode.

In separate experiments with hierarchical models, we noticed that for a model (see Fig. 2.2)

values of a Simulink Outport block are significantly different in Normal and Rapid Ac-

celerator mode. This was detected automatically by our comparison framework. After

submitting a bug report MathWorks confirmed that the case was already identified as a bug

and they fixed it for later versions.

25

2.7 Future Work and Discussion

Our ultimate goal is to provide a full-fledged fuzz-testing framework for Simulink. Our

work on CyFuzz and our prototype implementation for Simulink are thus both ongoing.

Following is a sample of the opportunities for improvement.

The current prototype implementation has several limitations. Currently, the tool chooses

blocks from only four built-in libraries. Incorporating additional libraries will increase the

expressiveness of generated models and thus its potential for finding bugs. Also, we plan on

integrating custom blocks developed using native code and perform experiments we were

not able to conduct yet.

The comparison framework implementation is also not free from shortcomings. So far,

we have only used various simulation modes and compiler optimization levels. However,

we are interested in adding more variations (e.g. those listed in Section 2.5). Finally, Cy-

Fuzz should compare signals in multiple simulation steps, since it was also found effective

in previous work [65].

2.8 Related Work

The following focuses on the most closely related work not covered by the introduction

section. Existing approaches for CPS testing mostly aim at generating test cases for existing

models (e.g., [34, 58]) and do not target testing of CPS tool chains. Code generator testing

([82, 81]) only target a relatively small component of the CPS tool chain but not an entire

CPS tool chain.

Most of the compiler fuzzers perform random walks over a context-free grammar, thus

mainly focusing on generating syntactically valid [41] and well typed programs in im-

perative languages [22, 98, 29, 42]. None of the works target data-flow languages like

Simulink. We find Csmith most related to our work, which is state-of-the-art C compiler

fuzzer. Csmith leverages the well-published C99 standard and can be used to test only a

component of entire CPS tool chain [98]. Our test generation and comparison techniques

differ fundamentally from Csmith. Conceptually, CPS tool chain fuzzing is a super-set of

the schemes presented in Csmith. CPS tool chains typically contain a C compiler; thus

26

CyFuzz leverages Csmith as a component.

Earlier work includes a differential testing based runtime verification framework, lever-

aging a random hybrid automata generator [64, 65]. Other works attack code generators

used in CPS tool chain. Stürmer et al. generate model taking specification of a code genera-

tor’s optimization rules in graph grammar [82]. But such specifications for code generators

might not be available and white-box testing in parts is undesirable [76]. Sampath et al. pro-

pose testing model-processing tools taking semantic meta-model of Stateflow (a Simulink

component) [76]. But the approach does not scale and the complete specifications it needs

are not available. In contrast, we propose the first fuzz-testing framework to test arbitrary

CPS tool chains based on feasible model generation.

Many CPS model verification and safety checking approaches have been proposed [44,

61]. Recent work verifies existing SL/Stateflow (SL/SF) models by generating test inputs

for these models [58, 79]. Alur et al. analyze generated symbolic traces of a SL/SF model,

and combine simulation and symbolic analysis for improving coverage of given SL/SF

models [46]. The Simulink Code Inspector compares generated code for a given model

based on structural equivalence and traceability [93]. However none of these approaches

describe random generation of Simulink models for fuzzing the CPS tool chain.

2.9 Conclusions

This work addresses the CPS tool chain quality problem using a differential testing scheme.

Existing work either does not test CPS development tool chains or only tests small subsets.

As CPS tool chains are actively developed and released, formal specification based test gen-

eration schemes are not suitable for fuzzing CPS tool chains. Rather, our approach follows

a simple model generation strategy applicable to arbitrary CPS modeling languages. Start-

ing with a random and possibly erroneous model, our generator fixes various errors in the

model using diagnostic information returned by the system under test. In our experiments

a high portion of the generated models could thus be executed without errors.

We also define techniques to find bugs in CPS tool chains based on simulation result

comparison. The approach is effective as our prototype implementation for Simulink found

interesting cases and one bug. Although our model generator is scalable and fully auto-

27

matic, more work is needed to systematically search the huge space of possible data-flow

models and generate those models that are likely to find bugs in modern CPS development

environments.

28

CHAPTER 3

AUTOMATICALLY FINDING BUGS IN A COMMERCIAL CYBER-PHYSICAL

SYSTEM DEVELOPMENT TOOL CHAIN WITH SLFORGE1

Shafiul Azam Chowdhury

Soumik Mohian

Sidharth Mehra

Siddhant Gawsane

Taylor T. Johnson

Christoph Csallner

Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane, Taylor

T. Johnson, and Christoph Csallner. Automatically Finding Bugs in a Commercial Cyber-

physical System Development Tool Chain with SLforge. In Proc. 40th International Con-

ference on Software Engineering (ICSE ‘18), pages 981-992. 2018

DOI: 10.1145/3180155.3180231

1Used with permission of the publisher, 2018

29

Abstract. Cyber-physical system (CPS) development tool chains are widely used in the de-

sign, simulation, and verification of CPS data-flow models. Commercial CPS tool chains

such as MathWorks’ Simulink generate artifacts such as code binaries that are widely de-

ployed in embedded systems. Hardening such tool chains by testing is crucial since for-

mally verifying them is currently infeasible. Existing differential testing frameworks such

as CyFuzz can not generate models rich in language features, partly because these tool

chains do not leverage the available informal Simulink specifications. Furthermore, no

study of existing Simulink models is available, which could guide CyFuzz to generate re-

alistic models.

To address these shortcomings, we created the first large collection of public Simulink

models and used the collected models’ properties to guide random model generation. To

further guide model generation we systematically collected semi-formal Simulink speci-

fications. In our experiments on several hundred models, the resulting SLforge generator

was more effective and efficient than the state-of-the-art tool CyFuzz. SLforge also found

9 new bugs confirmed by MathWorks Support in Simulink versions R2015a and R2017a.

3.1 Introduction

Cyber-physical system developers rely heavily on complex development environments or

tool chains, which they use to design graphical models (i.e., block-diagrams) of cyber-

physical systems. Such models enable engineers to do rapid prototyping of their systems

through simulation and code generation [38]. Since automatically generated native code

from these data-flow models are often deployed in safety-critical environments, it is crucial

to eliminate bugs from cyber-physical system tool chains [9, 68].

Ideally, one should formally verify such tool chains, since a tool chain bug may com-

promise the fidelity of simulation results or introduce subtle bugs in generated code [11].

However, a commercial cyber-physical system (CPS) development tool chain consists of

millions of lines of code, so formal verification does not (yet) scale to such tool chains.

While compilers and other CPS tool chain components remain mostly unverified, we con-

tinue to observe frequent safety recalls in various industries [95, 96, 2]. The recalls are

attributed to hidden bugs in the deployed CPS artifacts themselves, in spite of spending

30

significant efforts in their design validation and verification [7, 97].

Testing, on the other hand, is a proven approach to effectively discover defects in com-

plex software tool chains [59]. Especially randomized differential testing has recently

found over a thousand bugs in popular production-grade compilers (e.g., GCC and LLVM)

that are part of CPS development tool chains [29, 98, 48, 75, 41]. The technique elim-

inates the need of a test-oracle and can hammer the system under test in the absence of

a complete formal specification of the system under test—a phenomenon we commonly

observe in commercial CPS tool chain testing [82, 39, 8]. Differential testing seems suit-

able for black-box testing of the entire CPS tool chain, and its most susceptible parts (e.g.,

code generators) in particular [82, 71]. CyFuzz is the first (and only) known randomized

differential testing tool for CPS data-flow languages [16].

While CyFuzz initiated the work for testing CPS tool chains, more work is necessary to

evaluate the scheme’s capabilities, e.g., for finding bugs in Simulink that developers care

about. For instance, a random model generator should generate tests with properties similar

to the models people typically use, since they are more likely to get fixed by the system

under test (SUT) developers. While large repositories of publicly available programs of

various procedural and object-oriented programming languages exist [101, 19, 37], we are

not aware of such a collection of CPS models. The existing CPS studies rely on a handful

of public [69] or proprietary [78] Simulink models.

Among other shortcomings, the models CyFuzz generates are small and lack many

syntactic constructs. Recent studies identified expressive test-input generation as a success-

factor for compiler validation ([98, 48]). Perhaps due to its inability to generate large tests

with rich language features, CyFuzz has not found previously unknown bugs. Furthermore,

CyFuzz essentially generates invalid models and iteratively fixes them until the SUT can

compile and simulate them without error or exception. However, this heuristic approach

required several time-consuming iterations and did not use Simulink specifications, which

are available publicly in natural language.

To address these shortcomings, we have conducted the first study of a large number of

public Simulink models. The size of many of these models is larger than the average size of

models used in industry. From the collected models we obtain properties that are useful for

31

targeting a random Simulink model generator. Our model collection is publicly available

and may eliminate the nontrivial overhead of artifact-collection in future studies.

Next, extending CyFuzz, we present SLFORGE, a tool for automatically generating

models with advanced Simulink language features. The goal is that the SLforge-generated

models are similar to the collected public models. Improving on CyFuzz’s undirected ran-

dom model generation approach, SLforge can generate models more efficiently, by con-

sulting available (informal) Simulink specifications.

Finally, we provide the first approach to Equivalent modulo input (EMI) testing in CPS

development tool testing [48]. SLforge creates EMI variants from the random models it

generates and uses them in the differential testing setup. During an approximately five

months long testing time, we found and reported 13 bugs overall, MathWorks Support

confirmed 11 of them, of which 9 were previously unknown. To summarize, the paper

makes the following major contributions.

• To better target a random CPS model generator, we conduct the first large-scale study

of publicly available Simulink models. A significant portion of these models are of

size and complexity that are comparable to models used in industry.

• We identify problems in the existing CPS random model generator CyFuzz and de-

sign solutions that directly led to the discovery of new bugs in the Simulink tool

chain.

• Finally, by comparing it with CyFuzz, we evaluate SLforge’s efficiency and bug-

finding capability.

3.2 Background

This section provides necessary background information on CPS dataflow models, the ma-

jor commercial CPS tool-chain Simulink, the state-of-the-art differential CPS tool-chain

testing tool CyFuzz, and EMI-based differential testing.

32

Figure 3.1: Example hierarchical CPS model: Rounded rectangle = model; shaded = block;
oval = I/O; solid arrow = dataflow; dashed arrow = hierarchy.

3.2.1 CPS Data-flow Models And Simulink

While in-depth descriptions are available elsewhere [93], the following are the key con-

cepts. In a CPS development tool (e.g., Simulink), a user designs a CPS as a set of dataflow

models. A model contains blocks. A block accepts data through its input ports, typically

performs on the data some operation, and may pass output through its output ports to other

blocks, along connection lines. Simulink specifies which port (of a block) supports which

data-types.

In a connection, we name the block sending output source and the block receiving data

a target. Output ports are numbered starting with 1. Input port numbering starts with 0,

where 0 denotes a special port (e.g., the Action port of the If Action block). In addition to

such explicit connections, using From and Goto blocks, one can define implicit (hidden)

connections [73, 68].

Commercial CPS tool chains offer many libraries of built-in blocks. Besides creating

a CPS from built-in blocks, one can add custom blocks and define their functionality via

custom “native” code (e.g., in Matlab or C, using Simulink’s S-function feature). Most

blocks have user-configurable parameters.

More formally, block b ∈ B and connection c ∈ C may be part of model m ∈M . Then

a flat (non-hierarchical) model is a tuple 〈B,C〉 where m.B and m.C denote the model’s

blocks and connections. Each connection is a tuple 〈bs, ps, bt, pt〉 of source block bs, source

output port ps, target block bt, and target input port pt. While a Simulink connection may

have multiple targets, we break such a multi-target connection into multiple (single-target)

33

connection tuples, without losing expressiveness.

For hierarchical models we list a model mi at hierarchy level i with its n direct child

models as mi[mi+1
k , . . . ,mi+1

k+n−1]. The Figure 3.1 example m1
1[m

2
2,m

2
3] has m1

1 as its top-

level model. m2
2 and m2

3 are m1
1’s child models at hierarchy level 2. The dashed arrow

starting at b2 indicates that in the m1
1 model b2 is a placeholder for the m2

2 model. Block b1

sends data to m2
2, where b6 receives it. Block b8 sends data back to b4 in m1

1.

Example placeholders are the subsystem and model reference blocks. A child model

m’s semantics are influenced by m’s hierarchy-type property Th, which depends on m’s

configuration, the presence of specific blocks in m, and on m’s placeholder block-type.

After designing a model in Simulink, users typically compile and simulate it. In sim-

ulation, Simulink numerically solves the model’s mathematical relationships established

by the blocks and their connections and calculates various non-dead (Section 3.4.3) block’s

outputs according to user-requested sample-times and inferred context-dependent time steps,

using built-in solvers [58]. Simulink offers different simulation modes. While in Normal

mode Simulink “only” simulates blocks, it also emits some code for blocks in Accelerator

mode, and a standalone executable in Rapid Accelerator mode.

An input port p of block b is Direct Feed-through if b’s output depends on values re-

ceived from p. The parent to child model relation is acyclic. But within a model Simulink

permits feedback loops (circular data flow). During compilation Simulink may reject a

model if it fails to numerically solve feedback loops (aka algebraic loops). Simulink also

supports explicit control-flow, e.g., via If blocks. An If (“driver”) block connects to two If

Action subsystem blocks, one for each branch, via the If Action block’s Action port.

3.2.2 Testing Simulink With CyFuzz

CyFuzz is the first known differential testing framework for CPS tool chains [16]. The

framework has five phases. The first three phases create a random model and the last two

phases use the model to automatically test a SUT.

Specifically, starting from an empty model, (1) the Select Blocks phase chooses random

blocks and places them in the model. (2) The Connect Ports phase connects the blocks’

ports arbitrarily, yielding a model the SUT may reject, e.g., due to a type error. For exam-

34

ple, an output port’s data type may be incompatible with the data type of the input port it

connects to. (3) CyFuzz iteratively fixes such bugs in the Fix Errors phase, by respond-

ing to the SUT’s error messages with corresponding repair actions. This “feedback-driven

model generation” approach, despite being an imperfect heuristic, can fix many such model

errors.

Once the SUT can compile a randomly generated model, (4) CyFuzz’s Log Signals

phase simulates the model under varying SUT options. The key idea of differential testing

is that each such simulation is expected to produce the same results. This phase records

the output data (aka signals) of each block at various time-steps. CyFuzz uses different

Simulink simulation modes, partly to exercise various code generators in the tool chain.

Finally, in addition to SUT crashes, (5) the Compare phase looks for signals that differ

between two simulation setups, which also indicate a bug.

CyFuzz categorizes its generated models into three groups: (1) success: models without

any compile-time and runtime errors, (2) error: models with such errors, and (3) timed-out:

models whose simulation did not complete within a configured time-out value. Although

CyFuzz pioneered the differential testing of Simulink using randomly generated models, it

did not find new bugs, perhaps since the generated models are small and simple (using only

four built-in libraries and lacking advanced modeling features). Also, CyFuzz does not use

Simulink specifications and solely relies on iterative model correction.

3.2.3 EMI-based Compiler Testing

Equivalent modulo input (EMI) testing is a recent advancement in differential testing of

compilers for procedural languages [48]. Complementing plain differential testing, EMI

found over one hundred bugs in GCC and LLVM [11]. The idea is to systematically mutate

a source program as long as its semantics remain equivalent under the given input data.

Engineering basic mutators is relatively easy and the overall scheme can effectively find

bugs, when combined with a powerful random generator that can create expressive test

inputs (e.g., Csmith [98]).

In its original implementation, EMI mainly leverages Csmith, which generates random

C programs that do not take user inputs. A given compiler in a given configuration can then

35

be expected to produce programs that yield the same result on all EMI-mutants of a given

source program. The initial implementation proved very effective and found 147 bugs in

production-grade C compilers such as GCC and LLVM.

3.3 Public Simulink Model Collection

To understand the properties of CPS data-flow models designed by both researchers and en-

gineers, we conducted the first large study of Simulink models. The largest earlier Simulink

model collection we are aware of contains some 100k blocks [26]. However, these models

are company-internal and thus not available for third-party studies. In contrast, our collec-

tion consists of some 145k blocks, which are all publicly available (some require a standard

Simulink license as they are shipped with Simulink).

For context, earlier work reports that at Delphi, a large industrial Simulink user, an av-

erage Simulink model consists of several hundred blocks [52]. Of the models we collected,

35 consist of more than 1,000 blocks, which is larger than an average model at Delphi.

3.3.1 Model Collection and Classification

For this study, we used the Simulink configuration our organization has licensed, which

includes the base Simulink tool chain and a large set of libraries. This configuration in-

cludes the latest Simulink version; the project web page lists the detailed configuration [5].

However, with this configuration, we could directly compile only just over half of the col-

lected models, as the remaining ones required additional libraries that were not part of our

configuration [5].

Tutorial

This group consists of official Simulink tutorial models from MathWorks2. We manually

reviewed the models and their descriptions in the Automotive, Aerospace, Industrial Au-

tomation, General Applications, and Modeling Features categories and excluded what we

considered toy examples. We also included here the Simulink-provided domain-specific

2Available: https://www.mathworks.com/help/simulink/examples.html

36

https://www.mathworks.com/help/simulink/examples.html

library we had access to, i.e., Aerospace. An example model from this group is NASA HL-

20 (1,665 blocks), which models “the airframe of a NASA HL-20 lifting body, a low-cost

complement to the Space Shuttle orbiter” [89].

Simple and Advanced

We collected models from both major open source project hosting services for Simulink,

GitHub and Matlab Central. (1) We used the GitHub search page for keyword search

(“Simulink”) and file extension search (Simulink extensions .mdl and .slx). (2) On Matlab

Central3 we filtered results by “content type: model” and considered only those repositories

with the highest average ratings (27 projects) or “most downloads” count in the last 30 days

(27 projects).

To distinguish toy examples from more realistic models, we labeled the GitHub projects

no user has forked or marked a favorite as Simple and the rest as Advanced. For the

Matlab Central projects, we manually explored their descriptions and labeled those that

demonstrate some blocks’ features or are academic assignments as Simple and the rest as

Advanced.

As an example, a model from the Grid-Connected PV Array project is “a detailed model

of a 100-kW array connected to a 25-kV grid via a DC-DC boost converter” created by a

senior engineer at Hydro-Quebec Research Institute (IREQ) [70]. It has 1,320 blocks. We

classified it as Advanced.

Other

This group consists of models we obtained from academic papers (5 models), the academic

research of colleagues (7 models), and Google searches (16 models). An example is the

Benchmarks for Model Transformations and Conformance Checking released by engineers

at Toyota Technical Center California [43]. It has 208 blocks.

3Available: https://www.mathworks.com/matlabcentral/fileexchange

37

https://www.mathworks.com/matlabcentral/fileexchange

Table 3.1: Overview of collected public models: Total number of models (M); models we
could readily compile without extra effort (C); hierarchical models (H); total number of
blocks and connections.

Group M C H Blocks Connect.
t Tutorial 41 40 40 10,926 11,541
s Simple 156 99 136 7,187 7,121
a Advanced 167 66 165 118,632 116,608
o Other 28 14 21 8,317 9,577

Total 391 219 362 145,062 144,847

3.3.2 Model Metrics

In this study, we focus on those model properties that are relevant for constraining a random

model generator to models that are representative of realistic CPS models. Our Matlab-

based tool we used to collect the following metrics is freely available on the project site [5].

The collected metric values are shown as box-plots with min-max whiskers.

Number of Blocks and Connections

Blocks and connections are the main elements of Simulink models and are counted widely [67,

52]. We have included the contents of masked blocks [93] in the parent model’s count.

Next, we count the total number of blocks and connections at a particular hierarchy level

up to hierarchy level 7.

Our connection-count metric does not include hidden connections. For connections

with multiple target ports, we count the connections’ target ports. Perhaps not surprisingly,

Simple models are smaller (and Advanced models are larger) than models of the other

groups (Figures 3.2a and 3.2b), since we manually reviewed and classified them in this

class.

Hierarchy Depth

Since industrial models are frequently organized as a hierarchy, we measured how deep

these hierarchies are. We treated both subsystems and model reference blocks as adding a

hierarchy level. Most of the collected models are indeed hierarchical (i.e., 362/391 models).

38

But the median maximum hierarchy depth did not extend five across all model groups.

More surprising were the distribution of blocks and connections across hierarchy levels

(Figures 3.3a and 3.3b). These numbers were rather similar across hierarchy levels. Over-

all, the number of blocks and connections in each hierarchy level were small, as denoted

by the small median value.

Library Participation

This metric identifies the library each model block comes from. For example, do models

mostly consist of built-in blocks or do they instead contain mostly custom blocks? If we

cannot resolve a block’s library (i.e., due to Matlab API limitations), we record the block’s

library as other.

Fig. 3.4 suggests that only a small portion of the blocks are custom (“User Defin”).

Across all four groups, Ports & Subsystems and Math Operations were the two li-

braries used most frequently. SLforge thus supports these libraries (among others, see

Section 3.4.1), and automatic custom block generation. We also noted a high contribution

from the Signal Routing library using From and Goto blocks, which enables establishing

hidden data-flow relationship (Section 3.2.1).

Requested Simulation Duration

This metric captures the total simulation time requested by a given model (not the actual

CPU time spent in simulating it). Most of the models (except those from the Other group)

used the default simulation duration value of 10 seconds (Fig. 3.2d). Consequently, we ran

simulations using this default value in our experiments, and have not experimented with

other possible values yet.

3.4 SLforge

To address the shortcomings in the state-of-the-art differential testing framework for CPS

tool chains, this section describes the design of SLforge. Fig. 5.2 gives an overview of the

SLforge’s seven main phases.

39

t s a o
10

0

10
1

10
2

10
3

10
4

B
lo

c
k
s

(a)

t s a o
10

0

10
1

10
2

10
3

10
4

C
o

n
n

e
c
ti
o

n
s

(b)

t s a o

2

4

6

8

10

12

H
ie

ra
rc

h
y
 d

e
p

th

(c)

t s a o

100

105

S
im

u
la

ti
o

n
 d

u
ra

ti
o

n
 (

s
e

c
)

(d)

Figure 3.2: Collected public models: Total blocks (a), connections (b), maximum hierarchy
depth (c), and requested simulation duration (d).

1 2 3 4 5 6 7
10

0

10
2

B
lo

c
k
s

(a)

1 2 3 4 5 6 7
10

0

10
2

C
o

n
n

e
c
ti
o

n
s

(b)

Figure 3.3: Collected public models: Blocks (a) and connections (b) by hierarchy-level,
grouped by model group (t, s, a, and o).

3.4.1 Gathering Semi-Formal Specifications

CyFuzz heavily relies on its Fix Errors phase to repeatedly compile and simulate a model

and iteratively repair errors based on the content of Simulink-provided error messages.

Instead of this time-consuming iterative process, SLforge aims at generating a valid model

40

Additio Continu Discont Discret LogicAn LookupT MathOpe Others Ports_S SignalA SignalR Sinks Sources User_De
0

20

40

60

80

100

B
lo

c
k
s
 (

%
)

Figure 3.4: Collected public models: Distribution of blocks across libraries (shortened to
the first 7 letters), each from left to right: Tutorial, Simple, Advanced, and Other.

Figure 3.5: Overview of SLforge’s main phases. For space, we merged CyFuzz’s last two
phases into the single Comparison phase.

in the first place, if given the language specifications. Of course, the challenge (which

motivated CyFuzz’s iterative process) is that there exists no complete, up to date, formal

Simulink specification.

Design Choice

Simulink specifications are available as informal and semi-formal descriptions of Simulink

behavior, mainly from the various Simulink web sites. From our experiments with Cy-

Fuzz, we hypothesized that many of the iterations in the Fix Errors phase are due to block

data-type inconsistency and fixing algebraic loops. Besides, in our CyFuzz experiment

(Section 3.5.1) the most frequent error was block sample time inconsistency. We collected

specifications to both address these issues and to enable creating large hierarchical models

(as Simulink users prefer this modeling choice).

So far, we have collected data-type support and block-parameter specifications for all

built-in libraries. Other language specifications (Section 3.4.2) are often block and li-

brary specific. Since collecting the entire Simulink language specification would be over-

whelming, we collected specifications for blocks from the most-used libraries. Concretely,

SLforge supports blocks from Math Operations, Ports and Subsystems, Discrete, Con-

tinuous, Logic and Bit Operations, Sinks and Sources libraries. This list also covers the

41

CyFuzz-supported libraries and thus helps ease evaluating SLforge.

Collection Process

Using little engineering effort, SLforge’s regular expression based parser parsed block data-

type and parameter specifications for all built-in blocks. However, due to the limitation of

the parser and Simulink’s free-form specification style, SLforge can only collect parts of

some specification. E.g., for three different ports of the Variable Time Delay, Discrete

Filter and Delay blocks, the Direct Feed-through property (Section 3.2.1) is described as

“Yes, of the time delay (second) input”, “Only when the leading numerator coefficient does

not equal zero” and “Yes, when you clear Prevent direct feedthrough” respectively [93].

3.4.2 Use of Semi-Formal Specifications

Since complete and updated formal specifications for Simulink are not publicly available,

existing work relies on a subset of Simulink operational specifications, which are manually

crafted and possibly outdated [39, 8]. Unlike these approaches, we explored collecting

specifications directly from official Simulink documentations automatically, using easy-to-

engineer parsers. Such parsers can automatically update the collected specifications when

new versions of the SUT are released, given the structure of the specifications go under

minor or no change. From our experience with recent versions of Simulink specifications

(R2015a-R2017a), the specifications SLforge collects indeed had minor structural changes.

Although SLforge parses specifications automatically and stores them using internal

data-structure, for the aid of discussion, we introduce a few notions in this section. Ex-

tending the notation of Section 3.2.1, function Tb returns a block’s Simulink block-type.

For example, for each Simulink If block, Tb returns If . Next, the valid predicate indi-

cates if the Simulink type checker and runtime system accept a given model as legitimate,

i.e., when there are no compile or run-time exceptions. Now we can express (part of) the

Simulink specification as a formula or specification rule. Given such a rule δ ∈ ∆, we

denote with m � δ that model m satisfies (i.e., complies with) the rule. We observe that a

valid model satisfies all (collected) specification rules (∀δ ∈ ∆ : valid(m)→ m � δ).

42

Select Blocks Phase

To support built-in libraries, SLforge uses specifications in this phase. Specifically, SLforge-

generated models satisfy the following rules by construction. For example, using usual set

cardinality notation, Equation 3.1 ensures that for each If block, the model has two IfAc-

tion subsystem blocks (one each for the if and else branch).

2 ∗ | { b1 ∈ m.B : Tb (b1) = If } |

= | { b2 ∈ m.B : Tb (b2) = IfAction } |
(3.1)

By parsing Simulink documentation, SLforge obtains a set S of blocks from the Sinks

and Source libraries that are only valid in the top-level model, as enforced by Equation 3.2.

Similarly, Equation 3.3 restricts using illegitimate blocks in non-top-level models, depend-

ing on the hierarchy-type property of the model (Section 3.2.1), using predicate supports.

The predicate holds only when model mi’s hierarchy-type (first argument) allows block b

in mi, based on b’s block-type (second argument).

∀b ∈ mi.B: (i > 1)→ (Tb (b) /∈ S) (3.2)

∀b ∈ mi.B: (i > 1)→ supports(Th (mi), Tb (b)) (3.3)

∀b ∈ m.B: ((Th (m) ∈ W) ∧ stime(b) = stime(driver(m)))

∨ (Th (m) /∈ W ∧ st(Tb (b), b)) (3.4)

Equation 3.4 configures each block’s sample time property stime. When used in hi-

erarchical model m of a W -listed hierarchy-type, block b’s sample time should match the

sample time of the model’s driver (Section 3.2.1). In all other cases, we use predicate st,

which holds only when the sample time property of block b is properly configured accord-

ing to its block-type. To enforce such rules, SLforge propagates information from parent

to child models.

43

Pre-connection and Connect Ports Phases

While CyFuzz uses a random search to connect unconnected ports and relies on later phases

to recover from illegal connections, SLforge adds connections correctly by construction, by

satisfying the following rules.

∀c ∈ m.C: (Tb (c.bt) = IfAction) ∧ (c.pt = 0)→ (Tb (c.bs) = If) (3.5)

∀c ∈ m.C: (Tb (c.bs) = If)→ (Tb (c.bt) = IfAction) ∧ (c.pt = 0)

∧ | { c2 ∈ m.C : c2.bs = c.bs ∧ c2.ps = c.ps } | = 1 (3.6)

Equation 3.5 and Equation 3.6 together specify the control-flow from an If block to its

If Action blocks. Specifically, each If block output port is connected to a single (Equa-

tion 3.6) If Action block Action port.

Analyze Model Phase

On the current model state, SLforge now removes algebraic loops and assigns data-types.

Instead of querying a disjoint-set data structure every time SLforge connects two blocks to

detect whether connecting them will create a cycle, we detect them later in this phase using

a single graph traversal remove algebraic loops (Listing 3.1) on each of the child models

and on the top-level model. In contrast, CyFuzz relies on Simulink built-in functions to fix

algebraic loops; SLforge discovered a previously unknown Simulink bug in these features

(Section 3.5.3). Specifically, SLforge identifies back-edges and interrupts them with Delay

blocks [21]. Since this process changes m, SLforge ensures that the model remains valid.

For example, to ensure that the model satisfies the rules in Equation 3.5 and Equation 3.6,

instead of placing a Delay block between an If and an If Action block, Listing 3.1 places

it before the If block.

44

Listing 3.1: Removing possible algebraic loops from a model. color(b) denotes a block’s

visit-status via do dfs method: white=unvisited; gray and black: visited.

method remove algebraic loops (m):

F = new set /∗ stores problematic blocks ∗/

for each block b ∈ m.B: set WHITE as color(b)

for each block b ∈ m.B:

if color(b) = WHITE: do dfs(m, b, F)

for each block b in F :

s := get affected source block for b

get and remove affected connection between s and b

d′ := add new Delay block in m

connect from s to d′ and from d′ to b

method do dfs(m, b, F):

set GRAY as color(b)

for each connection c ∈ m.C where c.bs = b:

if color(c.bt) = WHITE: do dfs(m, c.bt, F)

else if color(c.bt) = GRAY:

if c.pt = 0: add b in F else: add c.bt in F

set BLACK as color(b)

After removing possible algebraic loops, SLforge propagates data-type information, to

eliminate data-type mismatches. While CyFuzz compiled a model with Simulink repeat-

edly in the Fix Errors phase to identify data-type inconsistencies between connected blocks,

SLforge fixes such errors in linear time using a single graph traversal.

Specifically, SLforge places every block whose output data-type is initially known

(Non-Direct Feed-through and blocks from Source library) in a set and starting from them,

runs a depth-first search on the graph-representation of the model. Data-type information is

then propagated to other blocks along the connections from blocks with known output data

types, using forward propagation. E.g., consider connection c ∈ m.C and say we are cur-

45

rently visiting block c.bs in the depth-first search. If the data-type at c.ps is not supported

by c.pt as per specification, we add a Data-type Conversion block between the ports.

3.4.3 EMI-testing

As recent work suggests that EMI-testing is promising for compiler testing [48], we ex-

plored this direction for Simulink. EMI-testing for Simulink could take many forms. For

example, one could extend a model with blocks and connections that remain dead under the

existing inputs. As another example, one could statically remove some of the dead blocks.

In this work we infer an EMI-variant from a given randomly generated model, by re-

moving all blocks that are dead. We approximate the set of dead blocks statically, using

Simulink’s block reduction feature [93]. This approach differs from the original EMI im-

plementation ([48]) in the sense that we collect the dead-block information statically, while

[48] dynamically collected code coverage information. We chose the static approach as it

required minimal engineering effort.

In our experiments, we noted that CyFuzz connects all output ports to certain Sink

blocks. The goal was to guarantee all blocks’ participation during simulation, which al-

lowed to use Simulink’s Signal Logging feature to record every block’s outputs. Conse-

quently, CyFuzz-generated models do not have many statically dead blocks. To let EMI-

testing remove larger parts of the generated model, SLforge leaves random output ports

unconnected.

3.4.4 Classification of Bugs

SLforge automatically detects Simulink crash or unresponsiveness (which we categorize as

Hang/Crash Error) and only reports if it is reproducible using the same model. Besides

crash, we discuss the types of bugs in following two directions:

Compile Time vs. Runtime

SLforge discovers some bugs during (or before) compiling the model; we categorize these

as Compile Time bugs. In the event of compilation error, SLforge reports a bug if the er-

ror is not expected. For example, SLforge expects no data-type inconsistency error when

46

generating type-safe models. SLforge detects some specification-mismatch bugs even be-

fore compiling, since we call various Simulink APIs to construct a model before compiling

it. During this process, SLforge reports a bug when Simulink prevents it from setting a

valid block parameter (according to the specification). Lastly, SLforge detects bugs when

simulating the model — which we categorize as Runtime bugs.

Essential Feature

Here we discuss bugs based on the essential generator/differential testing feature that helped

discovering them. We attribute Hierarchy to a bug if SLforge can reproduce the bug only

by creating hierarchical models. Next, intuitively, SLforge attributes Specification to a bug

when it identifies Simulink specification mismatches. Finally, like CyFuzz, SLforge iden-

tifies Comparison bugs by simulating a model varying SUT options (Section 3.2.2). As a

special case, SLforge attributes EMI to a bug if some EMI-variant of a successfully simu-

lated model does not compile, or results in comparison error when after-simulation signal

data of the EMI-variant is compared with the original model or with other EMI-variants.

3.5 Evaluation

In this section we pose and explore the following relevant research questions.

RQ1 Can SLforge generate models systematically and efficiently in contrast to CyFuzz?

RQ2 Can SLforge generate feature-rich, hierarchical models in contrast to CyFuzz?

RQ3 Can SLforge effectively test Simulink to find bugs in the popular development tool

chain?

To answer these research questions, we implemented SLforge on top of the open-source

CyFuzz implementation. In the evaluation, we ran SLforge on 64-bit Ubuntu 16.04 virtual

machines (VM), of 4 GB RAM and 4 processor cores each. We have used two identical host

machines (Intel i74790 CPU (8 cores) at 3.60 GHz; 32 GB RAM each). When measuring

runtime and other performance metrics (RQ1), we ran SLforge on each of the otherwise

47

0 500 1000
0

500

1000

R
u
n
ti
m

e
 (

s
e
c
.)

(a)
0 500 1000

0

10

20

N
u
m

.
It
e
r

(b)

Figure 3.6: Runtime on valid models by model size given in blocks: (a) Average runtime
of model generation; (b) Average number of required iterative fixes. Solid = SLforge;
dashed = SLforge without specification usage and analyses; dotted = CyFuzz.

idle host machines (one VM per host). To find bugs (RQ3) we ran up to five VMs on each

of these two hosts.

3.5.1 SLforge Generates Models More Systematically and Efficiently (RQ1)

To compare SLforge’s new phases with CyFuzz in terms of efficiency and bug-finding

capabilities, we conducted three experiments, each generating 160 models. To compare

with CyFuzz, the experiments used blocks from four of the CyFuzz-supported libraries (i.e.

Sources, Sinks, Discrete, and Constant). In the first two experiments we used SLforge:

(1) enabling specification usage and analyses in Exp.S+ and (2) disabling them in Exp.S-,

and (3) in the third experiment Exp.CF we used CyFuzz. Across these three experiments

we kept the other generator configuration parameters constant. As time-out we chose 1,200

seconds.

We compared the average time taken to generate a valid model (i.e., from Select Blocks

to Fix Errors, inclusively). We also measured the number of iterative model-correction

steps (Num. Iter.) in the Fix Errors phase. However this metric was not available in

Exp.CF. In each of these experiments we started with generating 100 blocks (on average)

per model, and gradually increased the average number of blocks (by 100 in each step,

using 20 models in each step), up to 800 blocks/model on average. To approximate the

bug-finding capability of these three setups, we counted the total number of unique bugs

found in each of these experiments. Data in Both SLforge versions had a lower average

runtime than CyFuzz (Fig. 3.6a).

As the number of blocks increases, Exp.S- needs more time than Exp.S+ to generate

48

success models. When we configured CyFuzz to generate models having 700 (or more)

blocks on average, it failed to generate any valid models.

Similarly, SLforge needs fewer iterations in the Fix Errors phase (Fig. 3.6b) in Exp.S+.

Moreover, this value remains almost constant in Exp.S+. However, perhaps not surpris-

ingly, the number increases with the number of blocks in Exp.S-. This result indicates that

SLforge generates models more systematically as it reduces the dynamic error-correction

steps significantly.

Next, we examine how the changes in SLforge affect the tool’s bug-finding capability.

The total number of unique bugs found in Exp.S+, Exp.S- and Exp.CF are 4, 1, and 0,

respectively. Exp.S+ found the same bug discovered in Exp.S-, and found 3 more bugs.

While investigating, we observed that having specifications enabled SLforge finding those

bugs, since without the specifications, SLforge could not determine whether it should report

a bug given an error message returned by Simulink. As an example, consider compiling a

model with Simulink which results in a data-type inconsistency error between two blocks

in the model. Leveraging the data-type support specifications of the two blocks, SLforge

can report a bug when it does not expect any data-type inconsistency between the blocks.

Finally, a crucial step to efficiently generate large hierarchical models is to eliminate the

algebraic loops from them. Simulink also rejects simulating some models in Accelerator

mode in the presence of algebraic loops, which prevents differential testing using those

model. As discussed before, CyFuzz depends on Simulink’s buggy APIs to remove such

loops, whereas SLforge eliminates the loops in the Analyze Model phase.

3.5.2 SLforge Generates Large, Feature-rich Models (RQ2)

In this experiment we compare various properties of the SLforge-generated models to the

models used in our study of public models (excluding the Simple models), and to CyFuzz-

generated models. First, to compare SLforge with CyFuzz, we configured SLforge and

CyFuzz to generate models with hierarchy depth 7, as this value is slightly larger than

the median values for all model classes. For time-out parameter we chose 800 seconds

and generated 100 models using each of the tools. CyFuzz’s success (of generating valid

models) rate dropped to 2%. We hypothesize that CyFuzz is not capable of generating such

49

large hierarchical models and reduced the maximum hierarchy depth to 3. After generating

100 models in this configuration, CyFuzz achieved a 12% success rate. In contrast, SLforge

achieved a 90% success-rate with 7 depth.

In this experiment, SLforge generated models with an average of 2,152 blocks (me-

dian: 1,776), an average of 2,544 connections (median: 2,107), and an average hierarchy

depth of 7 (median: 7). Both the average and median values of these properties are larger

than (but still within the same order of magnitude as) the values we observed in the col-

lected public models. SLforge-generated models are in this sense similar to the collected

public models.

3.5.3 SLforge Found New Bugs in Simulink (RQ3)

To answer RQ3, SLforge continuously generated models and tested Simulink for approxi-

mately five months. Throughout the experiments, configuration options for SLforge varied

and became applicable once we implemented a particular feature. In all of these exper-

iments we used the Normal and Accelerator simulation modes in the comparison frame-

work.

We have reported almost all of the SLforge-suspected bugs to MathWorks except two cases

where we had associated the bug to an implementation error. For each of the reported cases,

MathWorks has indicated if it considers the case a bug. For this work we mark a report as a

false positive if MathWorks considers the case a non-bug. Our rate of false-positive is low:

2/13 reports.

Table 5.1 summarizes all the bugs we have reported. MathWorks Support has confirmed

11 of our reported issues as unique bugs, of which 9 are new bugs4. Following are details

of a representative subset of the confirmed bugs, including SLforge-generated models we

manually reduced to fit the space and aid bug-reporting. Automated test-case reduction is

part of future work. These models are freely available [5].

4MathWorks has fixed one of the bugs (TSC 02515280) in a future release.

50

Table 3.2: SLforge-discovered issues and confirmed Simulink bugs: TSC = Technical Sup-
port Case number from MathWorks; St = status of bug report (NB = new bug, KB = known
bug, FP = false positive); P = discovery point (C = Compile Time, R = Runtime); F = bug
type based on Essential Feature (A = Hang/Crash Error, S = Specification, C = Compari-
son, H = Hierarchy, E = EMI, ? = not further investigated); Ver = Latest Simulink version
affected.

TSC Summary St P F Ver
02382544 Simulink Block parameter specification mis-

match (Constant)
NB C S 2015a

02382873 Internal rule cannot choose data-type (Add) FP C ? 2015a
02386732 Data-type support specification mismatch (PID

Controller (2DOF))
NB C S 2015a

02472993 Automated rate transition failure (First-order
hold)

NB R S, H 2017a

02476742 Block-reduction optimization does not work
(Accelerator mode)

NB R E, H 2017a

02513701 Simulink hangs for large models with hierarchy NB C A, H 2015a
02515280 Inconsistent result and ambiguous specification

(SubSystemCount metric)
NB C S, H 2017a

02539150 Ambiguous results (selecting connection with
multiple destinations)

NB C S 2017a

02565622 Limited support in Accelerator mode (First-
order hold)

KB R C, H 2015a

02568029 timer does not execute callback as expected FP R ? 2015a
02614088 Undocumented specification (Variable Integer

Delay)
KB C S 2017a

02705290 Incorrect data-type inheritance (multiple blocks) NB C S 2017a
02869856 Incorrect specification for the Combinatorial

Logic block
NB C S 2017a

Hang/Crash Error bug

When generating large hierarchical models, we noticed that Matlab’s getAlgebraicLoops

API hangs and makes the entire tool chain unresponsive (TSC-02513701).

Specification bug

After incorporating Simulink specifications into various SLforge phases, SLforge started

to identify bugs caused by specification violation. For example, bug TSC-02472993 of

Fig. 3.7 manifests when Simulink fails to handle blocks operating at different sample times,

51

Figure 3.7: Bug TSC-02472993: The Model block (top) refers to the child model (bottom).
Simulink fails to handle rate transition automatically, leading to a runtime failure.

Figure 3.8: Bug TSC-02386732: While specified to only accept double inputs, Simulink
does not raise a type error for this PID Controller (2DOF) accepting a uint16.

Figure 3.9: Bug TSC-02614088: In spite of supporting double data-type in its d port, block
VID issued a data-type consistency as it prefers integer type.

Figure 3.10: Bug TSC-02515280: For the child model (top right) Simulink’s Verification
and Validation toolbox API calculates inconsistent SubSystemCount values. MathWorks
ruled the API specification ambiguous, as it did not properly define the API’s scope.

Figure 3.11: Issue TSC-02382873: When using the internal rule to detect the Add block’s
output data-type, the rule fails to choose a correct data-type for the second input port (e.g.
double) and throws a compilation error.

52

Figure 3.12: EMI bug TSC-02476742: The Top Model’s (in bottom right corner) Model
block is a placeholder for the child model (top and left), where all blocks except bl11 and
bl12 are dead.

leading to runtime failure which is not expected as per specification. The bug only occurs

for the First-Order Hold block and when SLforge generates hierarchical models. As an-

other example, Fig. 3.8 depicts Simulink’s PID Controller (2DOF) block accepting data

of type unsigned int, whereas the specification states that the block only accepts data of

type double (TSC-02386732).

In another case we noted that in spite of supporting type double in port d, block Variable

Integer Delay (block VID in Fig. 3.9) resulted in type-mismatch error. After reporting

the issue, MathWorks suggested that the port “prefers” integer types and thus issued a

type mismatch error when it was given a double type. This specification is not publicly

available. Lastly, the Fig. 3.10 issue (TSC-02515280) MathWorks classified as expected

behavior, where Simulink’s count of the number of Subsystems did not match our count.

However, part of Simulink’s results are inconsistent and the specification has been found

ambiguous, resulting in a new confirmed bug.

Comparison bug

In issue TSC-02565622, one Simulink instance could simulate the SLforge-generated hi-

erarchical model in Normal mode but returned an error in Accelerator mode, due to incon-

sistent block sample rates. MathWorks confirmed this as a known issue that does not have

a public bug report.

53

EMI bug

Fig. 3.12 illustrates Simulink bug TSC-02476742. Notice how only block bl11 is connected

to an Outport block bl12, hence all remaining child blocks are dead and can be removed

in EMI-testing. While EMI-testing in Normal mode removed all dead child nodes, EMI-

testing in Accelerator mode failed to do so, which MathWorks classified as a Simulink

bug.

3.6 Discussion

This paper performed the first large-scale study on publicly available Simulink models, to

collect and observe various properties from them, which can be utilized to generate random

models and serve as a collection of curated artifacts. However, some of the models are quite

simple. We endeavored to classify such models in the Simple category manually, however,

our approach may be imperfect and may suffer from human error. Opportunistically, we

found complex and large models in our study and consequently, our collection of artifacts

should be suitable for other empirical studies.

3.7 Related Work

Empirical studies of widely used programs date back at least to the 1970s [47] and have

gained increasing interest due to the wide availability of open source programs [87]. For

example, earlier work computed properties from Java programs [37, 19, 101] and used the

properties to guide a random Java program generator [42].

Tempero et al. presented the qualitas corpus—a curated collection of Java programs [87].

Although similar work has been performed in other domains [12, 60, 84], we are not aware

of related work in the CPS domain, which differs significantly from procedural or object-

oriented languages.

Recent studies introduced measures for Simulink model modularity [25] and complex-

ity [67], but only evaluated them on a limited number of models. In contrast we created a

larger collection of 391 Simulink models. Similar to [87], our model collection may serve

as a corpus for Simulink-model based empirical studies.

54

Recent work has found many compiler bugs using differential testing. To generate pro-

grams that are syntactically correct, many of the test generators harness the language’s

context-free grammar and a pre-determined probability table from which the generator

chooses grammar elements [29, 41]. To generate programs that are also well-typed, Mc-

Keeman imposes the type information directly onto the stochastic grammar the generator

uses [59].

Csmith, on the other hand, uses various analysis and runtime checks to generate pro-

grams with no undefined behavior [98]. Other techniques generate well-typed programs us-

ing knowledge of the type-system of the underlying language (e.g., JCrasher for Java [22])

and using constraint-logic programming (such as the Rust typechecker fuzzer [29]).

Whereas earlier approaches target compilers of textual languages (including procedu-

ral, object-oriented, and functional ones), they do not address the challenges inherent in

testing CPS tool chains [16]. CyFuzz pioneered differential testing of CPS tool chains, but

the prototype for Simulink was ineffective in finding new bugs. This work addresses Cy-

Fuzz’s limitations by incorporating informal Simulink specifications in the random model

generation process and generating larger models with rich language features, which led to

finding new bugs.

Recent work complements randomized differential testing via EMI-testing. For exam-

ple, Le et al. hammer C language compilers [48]. We harness the technique to create

EMI-variants of Simulink models for the first time. Other work discusses the effective-

ness of randomized differential testing and EMI for OpenCL compilers and performs a

comprehensive empirical compiler testing evaluation [51, 11].

Among other works, Nguyen et al. present a runtime verification framework for CPS

model analysis tools leveraging random hybrid automata generation [65, 44]. In contrast,

our generator does not rely on model transformations [6], which may limit the efficiency

of existing work [65]. Other testing schemes target parts of the CPS tool chain utilizing

graph grammars [82, 81]. However, complete and updated formal specifications for most

commercial CPS development tools are unavailable and such white-box testing in parts was

found undesirable [76].

Sampath et al. discuss testing CPS model-processing tools using semantic Stateflow

55

meta-models [76]. Unfortunately, the approach does not scale and updated specifications

are unavailable, due to the rapid release cycles of commercial CPS tools [81, 29]. Fehér et

al. model the data-type inferencing logic of Simulink blocks for reasoning and experimen-

tal purposes [32]. While these works focus on a small part of the entire CPS tool chain, we

differentially-test the entire CPS tool chain harnessing the available informal (but updated)

specifications.

SLforge is loosely related to test case generators for existing Simulink models [30, 9,

61, 34, 58, 79, 33] and verification and formal analysis of CPS models [78, 3, 102, 52, 46,

4]. But they do not aim at finding bugs in the Simulink tool chain.

3.8 Conclusions

This paper described the first large collection of public Simulink models and used the col-

lected models’ properties to guide random model generation. To further guide model gener-

ation we systematically collected semi-formal Simulink specifications. In our experiments

on several hundred models, the resulting random Simulink model generator SLforge was

more effective and efficient than the state-of-the-art tool CyFuzz. SLforge also found 9

new confirmed bugs in Simulink.

56

CHAPTER 4

A CURATED CORPUS OF SIMULINK MODELS FOR MODEL-BASED EMPIRICAL

STUDIES1

Shafiul Azam Chowdhury

Lina Sera Varghese

Soumik Mohian

Taylor T. Johnson

Christoph Csallner

Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T. Johnson, and

Christoph Csallner. A Curated Corpus of Simulink Models for Model-based Empirical

Studies. In Proc. 4th International Workshop on Software Engineering for Smart Cyber-

Physical Systems (SEsCPS ‘18), pages 45-48. 2018

DOI: 10.1145/3196478.3196484
1Used with permission of the publisher, 2018

57

Abstract. Recent years have seen many empirical studies of model-based cyber-physical

systems and commercial CPS development tool chains such as Matlab/Simulink. To benefit

such research, this paper presents the by-far largest corpus of freely available Simulink

models to date, containing over 1,000 models.

Surprising findings based on this corpus include that (a) tool support for metric col-

lection is not adequate and (b) users do not reuse model components as they would in

object-oriented programs. The paper both confirms and contradicts earlier findings that are

based on significantly fewer models, suggesting the utility of the corpus for future research.

While others have not yet leveraged this model corpus, we hope that our freely available

corpus and infrastructure will benefit future model-based empirical research and tool de-

velopment efforts, by reducing the model-collection overhead and thus easing evaluation.

4.1 Introduction

In model-based design of cyber-physical systems (CPS), engineers rapidly prototype their

systems using graphical models in sophisticated development environments (e.g., Mat-

lab/Simulink) [93]. Increased usage of such models across various industries (e.g., au-

tomotive, aerospace, and industrial automation) has elicited interest in understanding the

model properties (e.g., size measures) and how they relate to quality attributes (e.g., com-

plexity and comprehensibility) [67]. Many of these studies investigate structural model

properties and propose new metrics based on the properties.

When evaluating various proposed metrics, most of the model-based studies only use a

handful of models, which could adversely affect the evaluation. Besides, different studies

compute measures using different sets of Simulink models, which makes their compari-

son problematic. Furthermore, studies often use proprietary models that are not publicly

available, which makes reproducing results difficult.

A collection of publicly available models would facilitate evaluation and comparison

of many model-based empirical studies. Besides, tools that operate on models (e.g., static

analysis, refactoring, and clone detection tools) often require models of sufficiently large

size and structural complexity, partly to evaluate scalability [27].

Building a sufficiently large collection of freely available Simulink models is thus vital

58

and incurs non-trivial overhead. However, arbitrarily adding any model in such a collec-

tion may be undesirable. For example, studies may only be interested in complex models

or in CPS domain-specific (e.g., automotive) models. Similar as for the corpus of Java

programs [87], we investigate the various challenges in developing a curated collection of

models (aka corpus).

Since such a model corpus is currently unavailable, insights into modeling practices

are also unknown. This inspired the SLforge project to build the only-known large-scale

collection of public Simulink models [17]. However, the main focus of this earlier work

was testing the Simulink tool pipeline automatically.

SLforge collected 391 Simulink models and published their sources, but it did not fo-

cus on crafting a corpus. In contrast, we discuss the design challenges for creating a corpus

and publish a much larger collection of 1,030 models, along with useful meta information,

which would significantly reduce model-collection-overhead in future studies. Models in

our corpus are large: 93 models have over 1k blocks, which is greater than the average

number of blocks in the models used at Delphi, a large industrial Simulink user [52]. Fur-

thermore, SLforge only studied the model metrics relevant to testing Simulink whereas we

investigate interesting modeling practices as well as Simulink model complexity metrics.

The corpus and the tools are freely available [5].

4.2 Background

This section provides necessary background information on model-based design using

Simulink and next, the most related work.

4.2.1 CPS Data-flow Models and Simulink

Here, we briefly discuss modeling abstractions in Simulink. A graphical model (of a CPS)

consists of blocks, which perform operations on their inputs and pass outputs to other

blocks through connection lines. Simulink offers a variety of built-in blocks, organized

in libraries and allows establishing implicit or hidden connections using From and Goto

blocks [68]. To facilitate custom block-behavior Simulink avails placing native code (e.g.,

59

Figure 4.1: Example CPS model: Rounded rectangle = model; shaded = block; oval = I/O;
solid arrow = dataflow; dashed arrow = hierarchy [17].

C) using the S-function interface. Besides flat models, Simulink offers hierarchical model

creation using Subsystem and Model Reference features, which we collectively call child-

representing blocks.

Fig. 4.1 contains an example hierarchical CPS model [17]. The parent to child model

relation is acyclic. But within a model Simulink permits feedback loops (circular data

flow). During compilation Simulink may reject a model if it fails to numerically solve

feedback loops (aka algebraic loops) using solvers. Simulink offers different simulation

modes. While in Normal mode Simulink “only” simulates blocks, it also emits some code

for blocks in Accelerator mode. In-depth descriptions of Simulink modeling features are

available [93].

4.2.2 SLforge

Crafting a curated collection of open-source programs is common in most programming do-

mains [87]. However, the only large-scale study of public Simulink models we are aware

of is the SLforge project [17]. While SLforge compiles a list of 391 publicly available

Simulink models, its main focus is developing Simulink testing techniques. Whereas, we

discuss corpus design challenges and publish the redistributable models in a single instal-

lation file, to ease replication and comparison of model-based empirical studies. Besides

the (redistributable) models, our corpus includes meta information which empirical studies

may find useful.

Next, unlike SLforge, we study model metrics relevant to analyzing complexity and

modeling practices in general, based on the largest collection of 1,030 publicly available

60

models. While SLforge investigated metrics (i.e., the number of blocks and connections

and maximum hierarchy depth in a model and library-usage information) relevant to au-

tomated testing, we define and investigate metrics mostly to explore model complexity.

Based on our metrics data, we further perform a lightweight comparison with other em-

pirical studies and discuss interesting findings. Furthermore, we extend SLforge’s tools to

support the new metrics.

4.3 Corpus Design Choices

To identify the corpus contents we have used the following criteria, which we expect to be

useful for many model-based studies.

CPS Domain

To support various domain-specific studies, we identified the qualitative attribute CPS

domain (e.g., Automotive or Avionics) whenever possible for each project, from author-

provided descriptions and “tags”.

Trivial Models

Some studies filter out example, toy Simulink models and examine them separately [17].

We included the manually-identified “trivial” models in the Simple group (Section 4.4.1).

Choice of Projects

Extending SLforge’s model collection [17], we included 96 additional projects (each con-

taining one or more models) from the Matlab Central repository, filtering by highest down-

load count, and 12 projects from the SourceForge public repository.

Content Type

We only include a project in the corpus if it releases models in the mdl or slx formats since

these formats are most widely accepted by both engineers and analysis tools. Additionally,

61

when projects distribute code and generated executables we include them as well since

studies may choose to analyze them.

Test Harnesses and Libraries

Many projects come with test harnesses and custom libraries, which may themselves be

Simulink models. Since studies may choose to analyze them separately, we identified and

published their list.

Toolbox Requirements

We extract and include the (mandatory and optional) toolbox requirements information

whenever available from the project websites.

4.4 A Study of Model Metrics

Here, we define interesting model metrics and utilizing the corpus, investigate metrics re-

lated to complexity and modeling practices. We discuss findings and compare with earlier

work.

4.4.1 Model Groups

Similar to SLforge [17], we group models into four groups: (1) Tutorial (t)—the Simulink

proprietary models ; (2) Simple (s)—the models we manually filtered out as toy-example

ones; (3) Advanced (a)—the non-trivial models; (4) Other (o)—the models we were not

able to manually study for time reasons.

4.4.2 Model Metrics

Mostly using min-max whisker box-plots, we discuss the following model metrics. We

have not considered the custom library files (Section 4.3) as CPS models in this study.

62

Ta
bl

e
4.

1:
O

ve
rv

ie
w

of
th

e
co

lle
ct

ed
m

od
el

s:
To

ta
l

nu
m

be
r

of
m

od
el

s
(M

),
m

od
el

s
w

e
co

ul
d

co
m

pi
le

re
ad

ily
—

w
ith

ou
t

in
st

al
lin

g
ad

di
tio

na
lt

oo
lb

ox
es

(C
m

),
hi

er
ar

ch
ic

al
m

od
el

s
(H

),
nu

m
be

r
of

bl
oc

ks
(B

),
no

n-
hi

dd
en

co
nn

ec
tio

ns
(C

),
an

d
al

lc
on

ne
ct

io
ns

(C
h)

.
W

e
co

ul
d

no
t

co
m

pu
te

so
lv

er
(F

ix
ed

-s
te

p
(F

xd
)

an
d

V
ar

ia
bl

e-
st

ep
(V

ar
))

an
d

si
m

ul
at

io
n

m
od

e
(N

or
m

al
(N

),
E

xt
er

na
l

(E
),

PI
L

(P
),

an
d

A
cc

el
er

at
or

(A
))

in
fo

rm
at

io
n

fo
ra

ll
of

th
e

m
od

el
s.

SL
fo

rg
e

O
ur

C
or

pu
s

G
ro

up
M

C
m

H
B

C
M

C
m

H
B

C
C

h
So

lv
er

Si
m

ul
at

io
n

M
od

e
Fx

d
V

ar
N

E
P

A
t

Tu
to

ri
al

41
40

40
10

,9
26

11
,5

41
41

40
40

10
,9

26
11

,5
41

11
,8

28
13

28
41

0
0

0
s

Si
m

pl
e

15
6

99
13

6
7,

18
7

7,
12

1
44

2
20

8
32

5
14

,2
03

14
,0

13
14

,2
61

21
0

19
8

38
9

18
1

0
a

A
dv

an
ce

d
16

7
66

16
5

11
8,

63
2

11
6,

60
8

45
2

14
7

34
7

40
6,

18
5

40
3,

50
3

42
9,

03
3

12
2

22
7

34
4

0
0

5
o

O
th

er
28

14
21

8,
31

7
9,

57
7

13
6

29
12

4
13

,1
17

14
,3

79
14

,6
00

11
1

24
80

53
0

2
To

ta
l

39
1

21
9

36
2

14
5,

06
2

14
4,

84
7

1,
07

1
42

4
83

6
44

4,
43

1
44

3,
43

6
46

9,
72

2
45

6
47

7
85

4
71

1
7

63

t s a o
10

0

10
1

10
2

10
3

10
4

B
lo

c
k
s

(a)

t s a o

0

10

20

30

40

50

60

70

U
n
iq

u
e
 B

lo
c
k
s

(b)

t s a o
10

0

10
1

10
2

10
3

10
4

C
o
n
n
e
c
ti
o
n
s

(c)

t s a o
10

0

10
1

10
2

10
3

10
4

C
o
n
n
e
c
ti
o
n
s
 W

it
h
 H

id
d
e
n

(d)

Figure 4.2: Model metrics: Total blocks (a), unique blocks (b), connections excluding
hidden (c), and including hidden (d).

t s a o
10

0

10
1

10
2

10
3

C
h
il
d
-m

o
d
e
l
B

lo
c
k
s

(a)

t s a o
100

101

102

103

S
u
b
S

y
s
te

m
s

(b)

t s a o
10

-1

10
0

10
1

10
2

S
C

C

(c)

t s a o

100

102

104

C
y
c
lo

m
a
ti
c
 C

o
m

p
le

x
it
y

(d)

Figure 4.3: Metric results: Number of (a) child-representing blocks, (b) contained subsys-
tems, and (c) strongly-connected components; (d) cyclomatic complexity.

Table 4.2: Most frequently used blocks (besides the top-3 Inport, Outports, and SubSys-
tem), in descending order.

Blocks

t Product, Constant, Sum, Gain, From, Selector, Mux, Demux, Terminator, Goto, UnitCon-
version, BusSelector, Fcn, Integrator, Math, Trigonom.

s Constant, Gain, S Fun, Terminator, Sum, DataTypeConv., Demux, Mux, Scope, PMIOPort,
From, Product, RelationalOp., Goto, Ground, Integr.

a Constant, From, PMIOPort, Sum, Gain, Goto, Product, Mux, Demux, RelationalOp.,
Switch, Fcn, SimscapeMulti., PMComp., Ground, Terminator

o Constant, Gain, Sum, Product, Termin., Mux, S Fun, Delay, RelationalOp., Demux, From,
ZeroOrderHold, DataTypeConv., Integr., Saturate

64

Blocks and Connections

The current CPS literature heavily uses the number of blocks and connections, but many

studies do not specify if they include “hidden” blocks (those in Masked subsystems) and

implicit (aka hidden) connections. We include hidden blocks and give counts for both

hidden and regular connections (Fig. 4.2). A related source of confusion is that two publicly

available tools (sldiagnostics and the tool in [88]) report different block counts (e.g. 5,700

vs. 10,953) for the same model, as the second tool multiplies the number of blocks in

a referenced model by the number of time that model is re-used [88]. The second tool

captures the “net functionality” represented by a model, so we use it for our counts.

Simulation Complexity

We investigated whether the number of strongly-connected components in the graph repre-

sentation of a model captures its complexity in terms of numerically simulating it (Fig. 4.3c).

While algebraic loops also incur simulation complexity, we found that only 18 models have

such loops.

Child-model Representing Blocks

We count child-representing blocks (Fig. 4.3a) and the number of contained subsystems

(NCS) (i.e., the number of blocks in that subsystem) (Fig. 4.3b), as earlier work relates the

latter to model complexity [67]. Interestingly, the distribution of the two metrics is almost

identical, implying that model-referencing, which is considered as good modeling practice

in general, is not widely used in the corpus-models [93].

Hierarchical Modeling

We found that the median number of blocks in a particular hierarchy level does not ex-

ceed 17—an observation similar to the “small class phenomenon” in object-oriented (OO)

programs [101], where some 57% of the studied Java classes are smaller than 65 LOC on

average. One drawback of the small class phenomenon in OO is that much of the concep-

tual complexity of understanding an OO program (vs. traditional procedural ones) is now

65

in the inter-procedural call and override relationships (vs. the traditional intra-procedural

control and data flow within each large method body). In Simulink, we note that most of

the hierarchies are incurred by the subsystems, which are not reused or “subclassed”. Con-

sequently, this drawback of the small-class phenomenon in OO may not apply to Simulink.

Child-model Reuse

Simulink allows reusing some Referenced Model in multiple places in the same model,

which in OO may be similar to multiple instantiations of a class. However, our study

found only one model using this feature, in the Tutorial group. So, at least from our model

sample, it appears as if this feature is not as widely used as multiple object instantiation in

OO languages. To reuse functionality, do Simulink users instead reuse S-functions? We

found very low (< 0.5% median value) S-function reuse rate across all model groups.

MathWorks Cyclomatic Complexity

MathWorks defines an object’s cyclomatic complexity (e.g., of a block) as
∑n

i=1(oi − 1),

where n is the number of the object’s decision points and oi is the number of possible

outcomes at the ith decision point [93]. We adopt the definition as it is widely used [67]

(Fig. 4.3d), further noting that the MathWorks tool cannot compute cyclomatic complexity

for non-compilable models. Consequently, we could not use the tool for a large portion of

the models in the corpus.

Most-used Blocks

In Table 4.2, we examine the most frequently used 15 blocks, noting that Advanced models

more frequently use blocks from the Simscape toolbox (e.g., PMIO and SimscapeBlock),

which enables rapid creation of complex physical systems [93].

Simulation Configuration

Although these metrics do not relate to complexity, we explore the usage of solvers and

simulation modes in Table 4.1 as these are major configuration options [17].

66

Others

We compute the number of unique blocks (distinct block-types) in a model and compilation

time, primarily to explore whether these metrics correlate with cyclomatic complexity.

4.4.3 Replicating Earlier Model-based Studies

To compare with the findings of a recent model-based study by Olszewska et al., we con-

duct a pairwise correlation analysis on the metrics, namely cyclomatic complexity, com-

pilation time, number of blocks and connections, number of child-representing blocks and

NCS, number of strongly connected components and maximum hierarchy depth [67]. We

compute pairwise Kendall’s τ mainly to compare with the other study. All the metrics are

positively correlated to each other (0.05 significance level).

From our observation, cyclomatic complexity is mostly correlated with the maximum

hierarchy depth in a model (0.5509) and the NCS metric (0.5297). In contrast, Olszewska

et al. identified NCS as mostly correlated, however, they do not compute correlation with

hierarchy depth count and used a single Simulink model in their study whereas we used our

full model collection (minus those for which we could not collect all metrics and Simple

models) models (listed in [5]).

Other observations diverge from earlier work. For example, earlier work found Matlab

Central models to have ten times fewer blocks than industrial models (the latter had some

752 blocks on average) [52]. However, our current collection contains much larger Matlab

Central models.

4.5 Conclusions

In this work, we present the largest corpus of freely available Simulink models to date.

Using the corpus, we explore interesting modeling and complexity metrics. Previously un-

known findings in modeling practices and a lightweight evaluation of earlier model com-

plexity study suggest the utility of the corpus in future model-based studies, by reducing

the model-collection overhead and supporting evaluation and comparison of such studies.

We will endeavor to grow the corpus and investigate metrics to capture model complexity

67

utilizing our infrastructure.

68

CHAPTER 5

SLEMI: EQUIVALENCE MODULO INPUT (EMI) BASED MUTATION OF CPS

MODELS FOR FINDING COMPILER BUGS IN SIMULINK

Shafiul Azam Chowdhury

Sohil Lal Shrestha

Taylor T. Johnson

Christoph Csallner

69

Abstract. Finding bugs in commercial cyber-physical system development tools such as

MathWorks Simulink is important in practice, as these tools are widely used to generate

embedded code that gets deployed in safety-critical applications such as cars and planes.

Equivalence Modulo Input (EMI) based mutation is a new twist on differential testing that

promises lower use of computational resources and has already been successful at finding

bugs in compilers for procedural languages. To provide EMI-based mutation for differen-

tial testing of cyber-physical system development tools, this paper develops several novel

mutation techniques. These techniques deal with CPS language features that are not found

in procedural languages, such as an explicit notion of execution time and zombie code,

which combines properties of live and dead procedural code. In our experiments the most

closely related work SLforge found two bugs in the Simulink tool versions R2017a and

R2018a. In comparison, SLEMI found a super-set of issues, including 10 confirmed as

unique bugs by MathWorks Support.

5.1 Introduction

Commercial cyber-physical system (CPS) development tools are complex software systems

that may contain bugs. Finding such bugs is hard as the CPS development tools do not have

complete formal specifications [82, 29, 39, 8] and the tools’ source code is not available

either. While state-of-the-art CPS tool bug-finding approaches such as SLforge [17] have

had some initial success, they also have two key limitations, i.e., they are (a) fundamentally

slow and (b) limited to synthetic CPS models.

Finding bugs in commercial cyber-physical system development tools efficiently is im-

portant however, as the correctness of CPS development tools is crucial in practice. For ex-

ample, the CPS development tool MathWorks Simulink [90] is a de-facto industry standard

in several safety-critical domains, including automotive, aerospace, and health care [99].

Engineers widely use Simulink to generate embedded code from CPS models and deploy

the generated code in safety-critical applications [9, 68, 38]. So a Simulink tool bug may

lead to compile errors or inject subtle unexpected behaviors into safety-critical applications,

e.g., in cars or planes [11].

To side-step the lack of CPS tool specifications, state-of-the-art CPS tool bug-finding

70

approaches such as SLforge perform differential testing [59, 77, 98] on the CPS tool. By

invoking two configurations of the same CPS tool on the same generated model, SLforge

may trigger a CPS tool bug if the two configurations yield different results. But generating

a valid synthetic CPS model is computationally expensive. For example, due to incom-

plete CPS language rules SLforge may require several “feedback-directed” iterations to

automatically fix remaining Simulink compile errors.

A recent differential testing twist promises to address these limitations. Mutating a

given program in a way that preserves its execution semantics on the given inputs has

proven effective in finding bugs in C compilers [48]. These Equivalence Modulo Input

(EMI) based mutation schemes perform a small program modification, which may be com-

putationally cheaper than generating a program from scratch. Besides speeding up pro-

gram generation and enabling the use of existing models, EMI-based mutation also enables

finding compiler bugs by comparing two identically configured compiler executions (on

equivalent input programs).

Recent work has laid the groundwork for evaluating CPS mutation approaches. Eval-

uating such approaches requires input CPS models and traditionally such models were

not easy to obtain in sufficient numbers. For example, in the case of Simulink, random

Simulink model generators and a corpus of public Simulink models only became available

recently [17, 18, 16].

While prior work has reported promising results on EMI-based mutation for finding

bugs in C compilers [48, 49, 85], it is not straight-forward to apply the existing EMI-based

mutation schemes to CPS tools. As a case in point, the only existing approach described

as EMI-based mutation for CPS models (SLforge) does not really follow the equivalence

modulo input paradigm. Instead of preserving behavior for a single given input, SLforge

performs a static mutation that preserves equivalence for all possible inputs (by using the

Simulink compiler to remove all dead code). While the resulting mutation is also EMI

(since maintaining equivalence on all inputs implies maintaining equivalence on the given

input), it is a severely restricted approach and in the case of SLforge only yields one mutant

per input model.

Specifically, SLforge does not leverage model runtime data, does not delete or modify

71

any code the compiler does not remove, and does not insert any code. Given these limi-

tations, it is perhaps not surprising that SLforge’s “EMI” component has only found one

bug.

The core challenge of EMI-based mutation of CPS models is that CPS languages are

quite different from procedural languages, e.g., CPS languages have an explicit notion of

execution time. CPS languages also have a different notion of when code is dead, which

gives raise to zombie blocks (Section 5.2.2) in CPS models that do not exist in procedural

code.

To address these challenges, this paper reviews several key differences between CPS

models and procedural code. Specifically, we describe novel techniques for mutating CPS

models that use an explicit notion of execution time and zombie code, i.e., code that has

properties of both dead and live procedural code. We implement these techniques in the new

SLEMI tool and empirically evaluate their effectiveness for finding bugs in the Simulink

tool. SLforge, the state-of-the-art approach for finding bugs in the Simulink tool via EMI

has found one bug. In contrast, SLEMI has to date found 10 unique issues confirmed as

bugs by MathWorks Support in Simulink versions R2017a and R2018a. To summarize,

this paper makes the following major contributions.

• The paper describes novel techniques for EMI-based mutation of CPS models, in-

cluding techniques for dealing with language features that do not exist in procedural

languages.

• Via the novel SLEMI tool, these techniques found 10 confirmed bugs in the widely

used CPS development tool Simulink.

• Within set time and computational resources, SLEMI found more Simulink bugs than

its closest competitor SLforge.

• All SLEMI code and evaluation data are open source1.

1Currently anonymous for double-blind review: https://github.com/icse2020-emi/slemi

72

https://github.com/icse2020-emi/slemi

5.2 Background

This section contains necessary background information on key features of CPS model-

ing languages, how their data propagation, control flow, and “dead code” notions differ

from procedural programming, our resulting notion of zombie code, and state-of-the-art

approaches for finding bugs via EMI-based mutation and differential testing.

5.2.1 Block Diagrams and CPS Tool Chains

While in-depth descriptions of CPS languages are available elsewhere [62, 72, 93, 68, 17],

following are the key concepts. In a cyber-physical system (CPS) development tool (e.g.,

Simulink), a user designs a CPS as a diagram or model m that consists of blocks and their

connections. A block accepts data through its input ports, typically performs on the data

some operation defined by a discrete or continuous function, and may pass output through

its output ports to other blocks, along (directed) connection edges. More formally, each

connection c ∈ m.C is a tuple 〈bs, ps, bt, pt〉 of source block bs, its out-port ps, target block

bt, and its in-port pt [17].

Since a typical CPS tool supports a wide range of modelling styles we do not further

detail the connection semantics here. For example, in a tool’s dataflow semantics a connec-

tion c1 takes its source block’s output data d1 and eventually delivers d1 to c1’s target block.

However a CPS tool may at the same time support other semantics, in which, for example,

a source block may overwrite data d2 on a connection c2 before c2’s target block can read

d2.

A model m typically acquires its inputs from sensors, whose values it samples at a

user-defined frequency (e.g., 10 times per second). Each sample yields a new input vector i

(containing one value per sensor) that the model processes in the execution order defined

by the model’s connection edges [62]. To affect its environment, a model typically has a

set of output blocks (or sinks) mout such as Fig. 5.1’s Out1 and Out2 blocks, which can

emit model output values to a display, another model, or a hardware actuator.

Commercial CPS tools specify the datatypes each port of each block supports (e.g.,

“either double or uint32”). If the user does not explicitly configure a port’s datatype, then

73

Figure 5.1: Example valid Simulink model: While Action1 is on a false-branch when b1
receives non-zero positive input,Action1’s values can still affect the outside world, making
Action1 a zombie block.

the CPS tool infers and assigns a concrete datatype (e.g., “double”). If the user has under-

constrained the blocks’ datatypes, the tool may heuristically break “best datatype match”

ties. We define the Tdt(b, p) function to retrieve the resulting datatype of a given block b’s

port p.

When creating a model, users can re-use and customize standard blocks from built-in

libraries supplied by the tool chain. Most blocks have user-configured parameters that may

affect the block’s output values. The user may also create blocks from scratch via segments

of procedural code (e.g., in C or MATLAB).

Commercial CPS tool chains such as Simulink and LabVIEW do not have a specifi-

cation that is complete, formal, and up to date. Besides partial informal descriptions, tool

chain semantics are only defined via their code base [82]. Let validL(m) indicate if tool

chain L accepts model m, i.e., compiles m without error. As an example, for a model to

be valid, Simulink must be able to infer consistent datatypes for each port left unspecified

by the user. Simulink uses several heuristic rules to infer and propagate datatypes, e.g.,

forward, backward, and block-internal propagation [32, 91].

After compilation users simulate models, where the tool chain uses configurable solvers

to iteratively solve the model’s network of mathematical relations via numerical methods,

yielding for each output block a sequence of outputs. Commercial tool chains typically

offer different simulation modes. For example, Simulink Normal mode “only” simulates

blocks, Accelerator mode speeds up simulation by emitting native code, and Rapid Accel-

74

erator mode produces a standalone executable.

Besides flat models, CPS development tools offer hierarchical models (e.g., via Simulink’s

Subsystem and Model Referencing), where the parent to child model relation is acyclic.

A tool chain may permit a loop in the model’s connection relation (aka a feedback loop) if

it can numerically solve it.

5.2.2 Zombies: Output Data From a False Branch

How to best deal with conditional execution in block diagrams has been an open research

question for decades, e.g., in the dataflow literature [45]. While well-understood in pro-

cedural programming, conditional execution differs significantly in block diagrams, which

complicates the dead vs. live code distinction and therefore EMI.

For example, while impossible in procedural code, the (valid) Simulink model of Fig. 5.1

simultaneously returns values from both its true and false if-then-else branches. Assume

that in the current model execution the user provides via block b1 a constant value of 5 as

input to the model and thus to the control-flow conditional If . Given this input, in all sim-

ulation steps of this execution the conditional will thus select Action1 as the false-branch.

Unlike in procedural programming, this false-branch still has a user-configured (here zero)

output value. The subsequent increment causesOut1 to constantly emit 1, which can affect

the outside world.

In a procedural setting Action1 would be dynamically dead code and we could delete

it for this execution trace. But in our block diagram setting Action1 is not dead. Instead,

a block b is dead and can be removed if there is no path from b to any output block (and

neither b nor its successor blocks can produce other side-effects). Simulink has built-in

tools to remove such dead blocks. Unlike in procedural programming, this “no path ex-

ists” notion does not depend on runtime data, so for block diagrams we do not distinguish

between statically and dynamically dead.

A block may never be activated, e.g., because it is on an always-false branch such as

Action1. We call such a block a zombie (as in live-dead hybrid), as it has properties of both

procedural live code (it has program values) and procedural dead code (no computations

take place). A static zombie is a zombie in all possible model executions. A dynamic

75

zombie is a zombie in the current model execution (e.g., Action1). Neither Simulink nor

external tools we are aware of detect or minimize dynamic zombie blocks.

Action1 is a top-level zombie, its (default) value can reach the outside world. In con-

trast, a nested zombie such as Fig. 5.1’s Gain1 block is nested inside a top-level zombie.

A nested zombie cannot influence the outside world, as its top-level zombie never pro-

cesses the nested zombie’s (default) value. A nested zombie is thus conceptually similar to

procedural dead code.

Finally, a block is live if it has both a path to an output block (or another side-effect)

and gets activated. A dynamically live block is live in the current model execution. It may

be a zombie (but not dead) during other executions. A statically live block is live in all

possible executions.

5.2.3 Differential Testing, EMI, And SLforge

Differential compiler (or CPS tool chain) testing compares two execution traces that com-

pile and execute a program (or model). By design these two traces are supposed to be

equivalent, i.e., produce the same result values. If the results differ we have likely found

a compiler bug. More formally, for programs m and n, and program parameters p and

q, based on our understanding of the programming language semantics J·K, we expect

equal execution results, i.e., Jm(p)K = Jn(q)K. We expect to have found a bug if two

compiler configurations C and D for this language instead produce different results, i.e.,

C(m)(p) 6= D(n)(q).

One way to instantiate this framework is to fix a program plus parameter combina-

tion (m = n, p = q) and only differ the tool configuration (C 6= D). Indeed, well-

known differential testing approaches such as Csmith have found many compiler bugs

by running randomly2 generated programs under varying compiler configurations (i.e.,

C(m)(p) 6= D(m)(p)). In the CPS world, existing approaches for Simulink similarly

have varied compiler optimization levels, numerical solvers, simulation modes, and code

generators [20, 16, 17].

Equivalence modulo input (EMI)-based differential testing, on the other hand, has typ-

2As common in the literature, in this paper by “random” we mean “pseudo-random”.

76

ically instantiated this framework by fixing a tool configuration plus program parameter

combination (C = D, p = q). In other words, EMI-based approaches use a program m

and one of its mutants n that is expected to be functionally equivalent to m on the given

input p, i.e., m 6= n and Jm(p)K = Jn(p)K. Again, different results suggest a compiler

bug (i.e., C(m)(p) 6= C(n)(p)). While there has been recent interest in EMI for testing

C compilers [48, 49, 85, 83], besides SLforge we are not aware of EMI-based testing work

for block diagram or CPS model languages.

Random program generators have significantly improved the bug-finding capability of

both types of differential testing instantiations [48, 11, 98]. Existing random Simulink

model generators include CyFuzz [16] and its successor SLforge [17]. Besides comparing

traces of different tool configurations, SLforge also performs a very restricted form of EMI-

based mutation and is thus the approach most closely related to SLEMI. Specifically, after

generating a random valid Simulink model, SLforge optionally runs Simulink’s static block

reduction tool to delete all dead blocks.

5.3 SLEMI: CPS Tool Chain Testing via EMI

Existing EMI-based compiler testing approaches focus on procedural programs [48, 49,

85]. CPS models are different in several ways, e.g., they may emit output from several

parts of the model at the same time. They are also typically simulated over a finite number

of simulation steps, where at each step s the model consumes a separate input vector i,

amounting to a sequence I of input vectors.

We adapt the framework of Section 5.2.3 to CPS models. To keep our definition simple,

we represent block b of model m at simulation step s (after m has processed s input vectors

from input vector sequence I) as m(I)s.b. Since commercial CPS tool chains support

floating-point datatypes, we compare block outputs via a tolerance.

In other words, we consider x and y equivalent (i.e., x ≈ y) if |x − y| < ε, where

ε is configurable (10−16 by default) [16]. We thus consider two CPS models m and n (n

obtained by mutating m, i.e., n = m′) equivalent modulo a common sequence I of input

vectors, i.e., m ≡I nI , if both models are valid, have the same output blocks, and the CPS

tool chain semantics J·K at all time steps s prescribes equivalent values for all blocks b that

77

}
Sto

re

se
e

d
 m

o
d

e
l

SLfo
rge

3
rd

 P
arty

B
ase

 M
u

tatio
n

s &
C

o
lle

ct C
o

ve
rage

C
ach

e

EM
I M

u
tatio

n
D

ea
d

, live,
zo

m
b

ie reg
io

n
s

D
iffe

re
n

tial Te
stin

g
If n

o
t (m

 ≡
I m

’):
B

u
g

 ca
n

d
id

a
te

m
, I

m
’

s, I
s, I

m
, I

m
, I

c
c

To
o

l C
h

ain

V
e

n
d

o
r

b
u

g

m
’

feed
b

a
ck

Figure
5.2:

O
verview

:
SL

E
M

I
first

obtains
seed

m
odel

s
w

ith
input

vector
I

from
a

real-w
orld

corpus
or

a
random

generator
(e.g.,

SL
forge),perform

s
one-tim

e
base

m
utations

to
yield

m
odel

m
,and

collects
m

’s
coverage

c
(on

I).A
n

E
M

I-based
m

utation
then

yields
a

valid
equivalent(on

I)m
odel

m
′forfinding

toolchain
bugs

via
differentialtesting.

78

are common to both models, as follows.

m ≡I nI ⇐⇒ valid(m) ∧ valid(n) ∧ (mout = nout)∧

∀〈b ∈ (m ∩ n), s〉 : Jm(I)s.bK ≈ Jn(I)s.bK

Fig. 5.2 outlines our approach. SLEMI takes as input real-world and randomly gener-

ated CPS models together with their input values. We first filter out invalid models (as they

are not suitable for differential testing) and then execute each seed model on its inputs to

collect block-level coverage information (on all model hierarchy levels, via Simulink Cov-

erage [48, 92]). Then SLEMI performs several one-time base mutations (Listing 5.1) and

stores data in a persistent cache. We then mutate a model by removing and adding blocks.

Given the lack of a full formal specification of Simulink, we had to revert to an iterative

approach for developing mutation operations that maintain equivalence modulo input. In

other words, we expect that each of our mutations converts a model m into m′ such that

m ≡I m
′I holds. If via differential testing SLEMI determines that m ≡I m

′I did not hold,

we report the issue to MathWorks. MathWorks confirming a bug increases our confidence

in the mutation’s EMI property. A feedback of “false positive” tells us our mutation was

not EMI, gives us a better understanding of the tool’s (otherwise undocumented) semantics,

and we have to adapt (or abandon) the mutation operation accordingly.

Compared to model simplifications performed by optimizing compilers (including profile-

guided optimizers, trace compilers, etc.) our below model mutation strategies are more

general. Optimizing compilers rewrite programs toward a concrete goal (such as increas-

ing execution speed or minimizing power consumption). For example, while optimizing

compilers would not consider adding complex extra execution logic into live or dead code,

we are interested in all EMI mutations, in our bid to find additional CPS tool-chain bugs.

5.3.1 Base Mutations: Annotate Seed Models

SLEMI’s base mutations deal with two challenges that did not occur in earlier work on

EMI-based differential testing [48, 49, 85], i.e., datatype inference and sample time infer-

79

(a) (b)

Figure 5.3: Example seed model excerpt without explicit type specifications (a) where
Simulink propagates double via b2. Replacing nested zombie b2 with a Convert Data
Type Conversion block (b) may yield different type inference results.

ence.

Annotating Seed Models With Port Datatypes

The first challenge is introduced due to datatype inference. Instead of enforcing datatypes

to be fully specified on every single port on each block, which can get cumbersome on

large-scale models, Simulink infers unspecified datatypes based on data dependencies and

optional partial specifications. For models with under-constrained datatypes, even a small

SLEMI-induced mutation that may intuitively seem like it should be EMI can trigger vastly

different inferred datatypes, which could create false warnings during differential testing.

Good examples of this problem are model regions that are dynamically zombie. Simulink’s

datatype propagation rules may rely on these zombie regions and mutating them may

severely affect the datatypes Simulink infers in the surrounding regions. To give SLEMI

more EMI mutation choices, we therefore first want to annotate the seed model with the

datatypes Simulink infers. The seed’s types thus remain available for compilation even

after extensive mutations that may otherwise alter Simulink’s datatype inference results.

As a concrete instance of this challenge, in the Fig. 5.3a child model excerpt of a larger

seed model (omitted for brevity) Simulink propagates type double from block b2 to blocks

b3, and b1. When we replace the nested zombie b2 with a TypeCast block (Data Type

Conversion in Simulink) yielding Fig. 5.3b, then Simulink counter-intuitively propagates

int to b3 and b1, which is not compatible with b1, yielding a compile error.

Listing 5.1: Base mutations to preprocess seed m using set(b, p, t), which fixes out-port

p’s datatype to t. Besides changing to a fixed-step solver (Section 5.3.1), base mutations

are EMI.

80

preprocess(m, I) // returns m

change to fixed−step solver // not EMI

execute m using input I

for each block b ∈ m : // collect inferred properties

collect execution coverage

collect inferred datatype and sample time

annotate sample time if b is a Source block

for each connection c ∈ m : // add types

set(c.bs, c.ps, Tdt(c.bs, c.ps)) // source out−port

d := new TypeCast block // for target in−port

set(d, 0, Tdt(c.bt, c.pt)) // d’s only out−port (0)

connect c.bs → d and d→ c.bt // rewire

Inferring the datatypes of all seed model blocks and explicitly specifying these types

in the model is an EMI mutation, as it does not change the outcome of model compilation

or subsequent simulation. Simulink offers two options for specifying types and SLEMI

uses both. First, some (but not all3) blocks have a parameter that sets the block’s out-port

types. Second, TypeCast blocks (such as Data Type Conversion) have a defined output

type. Placing one of them before a block b lets one define b’s in-port type.

The lower half of the Listing 5.1 pseudo code summarizes these type annotation steps.

First, for each block bs that has this option, SLEMI sets the block’s output type to the

Simulink inferred type. Second, SLEMI adds a fresh TypeCast block d before each block

bt, to annotate bt’s input type.

Even combining both annotation strategies does not fully specify all types, as the out-

port parameters do not cover all blocks and TypeCast leaves its in-port unspecified. How-

ever, this combination has been sufficient and did not create any false warnings in our

experiments.

3For example, Simulink’s Discrete Transfer Function block does not support specifying double datatype
at its out-port via block parameters. One can achieve this effect only by controlling the block’s in-port
datatype.

81

Dealing With Sample Time Inference

The second challenge not found in earlier EMI-based testing for procedural languages is

that in a CPS model each block has a sample time. At a high level, this challenge is similar

to the previous datatype inference issue. As a concrete example, commercial CPS tool

Simulink encourages the user to specify the sample time only for a subset of the blocks

and then let the tool infer the sample time for the remaining blocks (using forward and

backward propagation [55]). Again, a small mutation that at first glance seems like it may

be EMI can trigger the CPS tool to infer vastly different sampling times for large portions

of the model, which in turn yields different model outputs, yielding a false bug warning.

As an extreme example, some blocks directly expose their block-specific sampling fre-

quency, such as Counter Free-Running, which plainly returns the number of times it has

been sampled as its output [93]. The tool chain inferring different sample times for such a

block in a seed and a mutant model yields different results.

Similar to datatype inference, before we mutate the seed model we want to preserve the

sample time inference results from the seed model, to give SLEMI more options for EMI

mutations. However, different from the datatype issue, attempting to annotate each block

proved to be a dead end. The Simulink documentation encourages users to only annotate

either the source blocks or the sink blocks [56] and our initial bug reports that contained

blanket sample time annotations for all blocks were rejected for that reason. Based on

this feedback, SLEMI now only adds inferred sample time annotations to the seed model’s

source blocks.

A key feature of CPS development tools is their support for simulation of continuous-

time models via variable-step numerical integration [54]. In other words, at each simulation

step the tool’s output includes the next simulation step’s length (aka the next simulated

execution time point). By varying time steps, the tool may thereby improve simulation

precision. From SLEMI’s perspective, this again may cause a seemingly small mutation to

trigger non-EMI model changes.

To side-step this and related continuous-time issue, SLEMI currently performs one base

mutation that is not EMI. In the Listing 5.1 pseudo code this mutation appears as the first

82

step of switching the seed model from a variable-step to a fixed-step solver, the latter being

widely used in practice [54, 18]. For such models SLEMI also disables the related zero-

crossing detection feature. While it restricts SLEMI’s bug search space, this non-EMI base

mutation does not impact the correctness of the overall workflow, since for differential

testing SLEMI only uses preprocessed models.

5.3.2 Mutating Nested Zombie Regions

At a high level this mutation is similar to mutating dead code regions in procedural lan-

guages [48]. Since a top-level zombie ignores any values (including defaults) coming from

its nested zombie region, this mutation can change the nested zombie region freely, without

being observable from the outside world.

Due to preprocessing, this mutation is easy to implement, as during preprocessing

SLEMI has added extensive TypeCast nodes throughout the model. This means that even

removing a random block within a nested zombie region only has a relatively small chance

of introducing a compile error. This contrasts with procedural languages, where, for ex-

ample, removing a local variable definition likely causes a compile error in subsequent

variable use. So while existing EMI tools tend to remove an entire dead region, SLEMI

removes individual blocks from nested zombie regions.

With the per-block coverage from preprocessing SLEMI identifies nested dynamic

zombies. For example, in Fig. 5.1 block Gain1 is a nested zombie, as it is nested inside

the top-level zombie Action1. After deleting a nested zombie block, SLEMI randomly

reconnects its predecessor blocks to its successor blocks (top of Listing 5.2). This may

leave some of the deleted zombie’s predecessor blocks unconnected, when the number of

incoming connections (from predecessors) to the deleted zombie block is greater than the

number of outgoing connections (to successors). By default SLEMI ensures that such un-

connected predecessor blocks do not get treated as dead code, as Simulink may otherwise

remove them.

Listing 5.2: Create EMI mutant from preprocessed m.

mutate(m, I)

83

if randomly chosen block b ∈ m is nested zombie:

delete b

randomly wire all of b’s successors to b’s predecessors

else if b is top−level zombie:

replace b by d such that d mimicks b’s output

ensure d has b’s sample time

else: mutate live hierarchy or fork new connection

5.3.3 Mutating Zombie And Live Regions

Since prior work has found mutating live code more effective than mutating dead code [85],

we adapt live mutations to CPS models and generalize them to also cover top-level zombie

blocks. Compared to the earlier work’s mutation based on program synthesis [49, 85],

SLEMI currently focuses on the mutations of the lower part of Listing 5.2.

First, SLEMI’s live-hierarchy extraction mutation extracts a live region and promotes

it to its own child model (Section 5.2.1). SLEMI then applies standard Simulink con-

structs (Model Reference) to reference the new model from the original model [93]. While

Simulink does not propagate datatypes and other block attributes across such model-reference

boundaries, SLEMI again leverages its datatype inference and annotation database from

preprocessing.

Second, SLEMI’s live fork mutation forks an existing live connection, to feed the same

data to a new signal path. The new path is live as it terminates in a new sink. However, this

path is generated to be not observable, as the sink is an assertion block that is designed to be

always true. Concretely, before the new assertion block SLEMI currently adds a sequence

of Simulink Math Operations blocks. These additions are EMI and have no effect on the

produced traces.

Finally, SLEMI’s live-path mutation currently focuses on the special case of replacing

a top-level zombie block within a live path with another block that is expected to constantly

produce the top-level zombie’s default value. For example, in the Fig. 5.4a example model4,

4For brevity Fig. 5.4 and subsequent figures omit the TypeCast blocks added by preprocessing.

84

(a) (b) = (a)’

Figure 5.4: Example live-path mutation (b) that replaces a top-level zombie block (Action)
in the b1 to b2 live path with a live Saturation block that mimics the default behavior of
the replaced top-level zombie block.

SLEMI replaces the top-level zombie Action block with a live Saturation block, yielding

Fig. 5.4b. The Saturation block constantly feeds the replaced block’s default value to its

live successor block b2.

5.3.4 Keeping Mutations EMI-preserving

Beyond designing individual mutation operations to preserve EMI, SLEMI applies addi-

tional rules across mutations. Besides mutations maintaining standard type rules, the fol-

lowing focuses on rules specific to CPS models.

Avoid Algebraic Loops

A SLEMI mutation should not introduce an algebraic loop, i.e., a circular data dependence

path on which all blocks are direct feed-through [53]. On such a loop Simulink would

need a block b’s output value to compute b’s input value. While Simulink can solve some

algebraic loops, doing so is computationally expensive, so SLEMI avoids algebraic loops.

Specifically, SLEMI avoids replacing blocks that are not direct feed-through with direct

feed-through blocks, to not turn a benign data dependence loop into an algebraic loop. For

example, the Fig. 5.5a model contains a benign loop between Add and Delay, where the

latter delays returning its input as an output to the next sample time. Since Delay is not

direct feed-through, SLEMI will not replace it with a direct feed-through block such as

another Add.

Avoid Invalid Execution Order Priority

During compilation, CPS tool chains determine the order in which to compute block out-

puts according to the model’s data-dependencies, optional user-requested block execution

85

(a) (b) (c) = (b)’

Figure 5.5: Example benign data dependence loop (a). Adding b4 to (b) yields an invalid
execution order priority in (c).

priorities, and language semantics. For example, Simulink orders all block output compu-

tations within one block priority level before the blocks of the next level. A Simulink rule

we found out via initial feedback on a bug report is that an If block’s action subsystems

(branches) currently receive the same exclusive priority.

This rule disallows placing a block in a path between If block’s action subsystems.

In the valid Fig. 5.5b example model, the b2 and b3 action subsystems receive the same

priority. Simulink thus first computes b2 then b3. But adding the b4 block outside these

subsystems in Fig. 5.5c yields a compile error, as Simulink assigns b4 a different priority.

So the b4 computation would happen either before or after both of b2 and b3, while the data

dependencies call for b4 being computed between b2 and b3.

5.4 Evaluation

To evaluate our EMI-based mutation strategies in terms of their runtime and bug-finding

capabilities, we explore the following research questions.

RQ1 How does SLEMI’s runtime compare to SLforge?

RQ2 Can SLEMI find new CPS tool chain bugs?

RQ3 Does SLEMI find bugs that SLforge misses?

86

5.4.1 Seed Models and Their Input Values

The first source of seed models is a large corpus of some 1k user-created, publicly avail-

able Simulink models [18]. Of these 1k models, given our toolbox licenses, we could run

545 models with our Simulink installation. 18 of these models are interactive (i.e., they

halt to wait for user input through a terminal or GUI) and thus we discarded them. If a

(non-interactive) corpus model accepts inputs we used default 0 values.

Other corpus models have a long simulation duration (including infinity), which is also

not desirable, so we limited their simulation duration to 10 seconds (since most of the

models have this default duration [18]). Only 16 of the corpus models we were able to run

had top-level zombie or nested zombie blocks.

SLforge-generated models had more top-level zombie and nested zombie blocks. SLforge

generates model plus corresponding inputs, which can be readily used together. In a sample

of some 150 models that is representative of the SLforge-generated models we used in our

experiments, each model (except three) had at least one top-level zombie or nested zombie

block (median value: 26.4% of the blocks in a model are such blocks). Besides enabling a

variety of SLEMI mutations, SLforge-generated models are attractive for differential test-

ing, as they have deterministic outputs by construction.

5.4.2 Evaluation Setup

The SLEMI prototype tool for finding bugs in Simulink is implemented in MATLAB on

top of the Parallel Computing Toolbox. While in production mode the model mutation

(and caching) jobs run in parallel, for debugging one can also configure SLEMI to mutate

models sequentially in an interactive mode—pausing after desired mutation operations and

highlighting the changes. SLEMI and all experimentation data are open source and freely

available at GitHub (currently anonymously to support double-blind paper review) [5].

For our experiments we used the latest SLforge version (in its default configuration) and

MATLAB releases R2017a, R2018a, and R2018b [15]. To evaluate SLforge and SLEMI

side-by-side, we ran them separately in two otherwise idle machines (each with four Intel

i74790 CPUs at 3.60 GHz, 64-bit Ubuntu 16.04, and 12 GB RAM).

87

To isolate EMI’s impact from differential testing, for SLEMI we only compared mu-

tant with seed on a single configuration (Normal mode with Optimization off). In contrast,

since SLforge emphasizes differential testing, for SLforge we used all four of its differ-

ential testing configurations on each model (Normal + Optimization off, Accelerator +

Optimization off, Normal + Optimization on, Accelerator + Optimization on).

5.4.3 Mutating is Faster than Generating (RQ1)

To explore SLEMI’s runtime characteristics, we measured both how SLEMI’s runtime

scales with model size (measured as number of model blocks [67]) and how long each

SLEMI phase takes. For this experiment, we used our 150 valid representative generated

seed models of various sizes (from 100 to some 3k blocks, average 989). Based on earlier

work these 150 models are similar to the non-toy models in the largest public corpus of

open source Simulink models [17].

From these seed models we then generated 500 mutants by sampling uniformly from

the seeds, creating some 3.5 mutants per seed on average. When reporting mutant creation

results, we report the mean of all mutants generated for a seed.

During initial experiments we realized that individual Simulink tool chain phases may

produce conflicting results. For example, a model that failed Simulink compilation when

collecting block attributes successfully compiled for simulation. One such issue led to

a confirmed bug report (Case 03213776). To catch such bugs the SLEMI implementation

performs several tasks separately that could conceptually be combined into one phase, such

as compilation to infer datatypes and execution for coverage collection.

Fig. 5.6 shows the number of mutation operations per model which is a (user con-

figurable) fraction of the number of model blocks available for mutation (less blocks not

mutated to keep the mutant EMI-preserving) along with SLEMI phases’ runtime. The av-

erage phase runtimes (in seconds) were running the seed (51.7), collecting coverage (93.2),

addressing datatype and sample time inference (94.5), generating (on average) 3.5 mutants

(19.7), average mutant runtime (26.4), and average differential testing the seed with one of

its mutants (169.7).

Overall, differential testing was the longest-running phase (average 41% of total run-

88

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
9
0
0

2
4
0
0

0

2
0
0

4
0
0

6
0
0

Runtime (sec)

02
0
0

4
0
0

Mutations (mean)

R
u
n
 S

e
e
d

C
o
v
e
ra

g
e

D
a
ta

T
y
p
e

M
u
ta

n
t
G

e
n

R
u
n
 M

u
ta

n
t

D
if
f.
 T

e
s
t

A
v
g
.
M

u
ta

ti
o
n

Fi
gu

re
5.

6:
C

um
ul

at
iv

e
ru

nt
im

e
of

SL
E

M
I’

s
th

re
e

se
ed

pr
ep

ro
ce

ss
in

g
an

d
th

re
e

pe
r-

m
ut

an
t

ph
as

es
;

da
ta

po
in

t
=

si
ng

le
se

ed
an

d
its

m
ut

an
ts

;
*

=
av

er
ag

e
m

ut
at

io
n

op
er

at
io

ns
th

at
le

d
to

a
se

ed
’s

m
ut

an
ts

;
X

-a
xi

s
=

bl
oc

ks
pe

r
se

ed
m

od
el

;
da

ta
po

in
ts

/b
ar

s
or

de
re

d
by

x-
va

lu
e

an
d

in
to

co
rr

ec
t1

00
-b

lo
ck

se
ed

bi
n,

bu
tb

ey
on

d
th

at
no

ts
ho

w
n

on
pr

ec
is

e
X

-a
xi

s
lo

ca
tio

n
to

im
pr

ov
e

re
ad

ab
ili

ty
;s

ta
ck

ed
ba

r
sh

ow
s

SL
E

M
Ip

ha
se

s
fr

om
ru

nn
in

g
se

ed
(b

ot
to

m
)t

o
di

ff
er

en
tia

lt
es

tin
g

(t
op

).

89

time) in each experiment, while mutant generation on average consumed only 2.4%. While

the last three phases (mutant generation to differential testing) run once per mutant, all mu-

tants of a seed share the first three phases (up to inferring the seed’s datatypes and sample

times).

In contrast, the state-of-the-art random Simulink model generator SLforge on average

took about 470 seconds just to generate a single valid model. For this experiment, SLforge

generated 167 models that were very similar to the models used as seeds in the SLEMI

experiment. In other words, mutating an existing model in SLEMI was much faster than

generating a fresh model with SLforge.

5.4.4 SLEMI Found New Bugs in Simulink (RQ2)

To date we have reported 14 unique issues to MathWorks Support, who confirmed 10 as

a bug, of which 3 were already known to MathWorks (we re-discovered them indepen-

dently)5. Two are still under investigation. Table 5.1 summarizes our reports. Following

are details of some reports.

Case 03580171: Live-hierarchy extraction→Compile Error (New Bug) After mutat-

ing a seed by moving one of its blocks to a separate model file and then referencing the new

model from the seed, Simulink inherited a different sample time for the block, resulting in

an error. However, this is not expected since the block supports sample time inheritance for

model referencing per documentation.

Case 03568445: Live Mutation → Block Output Mismatch (Known Bug) Having

independently re-discovered a known issue in the Simulink Unary Minus block (where

its output diverges for very small floating point inputs between Normal and Accelerator

mode), we implemented mutation by adding such math operation blocks in live signal paths

followed by assertion logic, to validate the added blocks’ characteristics. This EMI-based

mutation also reproduced the bug without entailing differential testing varying tool chain

configurations (i.e., simulation modes). R2019a fixes this bug.

5MathWorks has fixed one of the bugs (TSC 03568445) in a future release.

90

0
5

1
0

T
im

e
 S

te
p
 (

S
e
c
o
n
d
s
)

05

1
0

1
5

Output

O
ri
g
in

a
l

M
u
ta

n
t

Fi
gu

re
5.

7:
#0

34
04

63
3

(c
on

de
ns

ed
):

In
a

liv
e

re
gi

on
,I

n
te

gr
at

or
’s

(t
op

m
os

tfi
gu

re
)

ui
nt

32
ou

tp
ut

di
ff

er
s

fr
om

th
e

ex
pl

ic
itl

y
co

nv
er

te
d

(v
ia

C
on

ve
rt

4,
fig

ur
e

at
th

e
bo

tto
m

)
ou

tp
ut

,a
s

sh
ow

n
in

th
e

m
id

dl
e

fig
ur

e.
T

he
m

ut
an

th
as

D
at

a
T

y
p

e
C

on
ve

rs
io

n
s

ad
de

d
af

te
r

ev
er

y
bl

oc
k

in
th

e
se

ed
.

In
te

gr
at

or
in

bo
th

ve
rs

io
ns

re
ce

iv
ed

sa
m

e
in

pu
t,

he
nc

e
se

le
ct

in
g

di
ff

er
en

tt
yp

es
fo

r
in

te
rn

al
ca

lc
ul

at
io

n
is

th
e

lik
el

y
ro

ot
ca

us
e.

91

Table 5.1: SLEMI-discovered issues: TSC = Technical Support Case number from Math-
Works; MW = feedback from MathWorks on bug report (N = new confirmed bug,
K = known bug, F = false positive, ? = under investigation); C = bug reported when com-
piling mutant; R = bug reported at mutant runtime; EMI = EMI independently discovers,
T = differential testing independently discovers, S = missing or hard to find specification
(e.g., if only specified in a block-configuration GUI wizard). All bugs exist in R2018a
except 03210493 (R2017a).

TSC Summary MW Kind
03205823 Incorrect type inference after replacing block with

type-compatible Ground block
N EMI, T, C

03210493 After mutation Simulink does not eliminate dead Ac-
tion Subsystem

K EMI, C

03213776 Valid model stops compiling when collecting in-
ferred properties

N EMI, T, C

03259942 Invalid data-dependency loop for Action subsystem
after mutation; undocumented specification

? EMI, S, C

03404633 Wrong output for a Discrete Integrator block due to
using different datatype at the mutant

? EMI, R

03416784 Output discrepancy for Sin block after zero-crossing
detection

F EMI, R

03475044 Datatype inconsistency after enabling signal logging,
due to complex type inference heuristics

N EMI, T, C

03486057 When annotating sample time getSampleTime API
does not return correct sample time

N EMI, C

03486114 During type annotation Discrete Transfer Function
does not accept a valid type. Only way to specify
type is through controlling its input signal. The rule
is specified in a GUI wizard.

F EMI, S, C

03489578 Block does not respect sample time inference diag-
nostic command InheritedTsInSrcMsg

K EMI, C

03489586 Signal Editor block errors-out due to unrelated con-
figuration when specifying sample time

N EMI, C

03568445 Behavior difference for Unary Minus operator when
feeding small floating-point number

K EMI, T, R

03580171 Incorrect sample time inference after live mutation
by moving blocks via model-referencing

N EMI, C

03785381 Incorrect block output range during live mutation N EMI, C

Case 03404633: Adding Data Type Conversion→ Block Output Mismatch (Pending)

In the (condensed) seed in Fig. 5.7, Simulink infers an uint32 type for the discrete inte-

grator block Integrator since its successor expects this input type. Inserting Data Type

Conversion Convert4 between these two blocks (during pre-processing) yields the mutant.

92

However, these two models differ in Integrator’s output values. Fig. 5.7 shows how they

start diverging at simulation time step 5.

We think these values should not diverge. When manually minimizing the seed and

mutant model, the two minimized models only differ in who is performing the type con-

version, the discrete integrator itself (seed) or an added explicit type converter (mutant).

We suspect that since in the mutant Integrator used a double type for both its input and

output, it preserved its output in “full precision” whereas in the original model it lost pre-

cision due to converting from double (input) to uint32 (output), which could have been

prevented by storing the data temporarily using double types and only converting to uint32

when emitting output.

Figure 5.8: Case #03205823 (condensed) removes dead blocks Inport and Transfer1 in the
seed model (top) and replaces them with the type-compatible (double) Ground (bottom)
where Simulink failed to infer correct datatypes for all of the blocks, i.e., it inferred uint32
at Delay’s input and propagated it back to the out-port of StateSpace which does not accept
it.

Case 03205823: Nested Zombie Mutation→Compile Error (Likely New Bug) Fig. 5.8

shows condensed versions of the seed model (left) and the mutant model (right). This mu-

tation replaced the nested zombie blocks Inport and Transfer1 with a Ground block that

supports the output datatype double. However after adding it Simulink back-propagated

uint32 to its predecessor, a DiscreteStateSpace block that does not accept this type, con-

sequently yielding a compile error. MathWorks considers addressing this issue in a future

release.

Case 03210493: Disconnecting block→Compile Error (Known Bug) In this mutation

we disconnected a nested zombie Action Subsystem from its predecessors, successors, and

93

its driving If block. Simulink did not remove the block, resulting in a compilation error

in version R2017a. This error was unexpected since (1) no If block was connected to the

subsystem meaning the block would never get executed and (2) the block was also dead so

the Dead Block Reduction optimizer should have eliminated the subsystem.

Upon further investigation, MathWorks Support identified not explicitly specifying the

block datatypes of the blocks in the Action subsystem as the root cause and suggested

explicitly specifying the types as a workaround for the datatype inference limitations. Ac-

cordingly, to minimize datatype inference we now preprocess the models and annotate

datatypes for all of the blocks in a seed (Section 5.3.1). We independently re-discovered

this bug. Simulink R2018a fixed it.

Figure 5.9: Case #03213776 (condensed): Simulink infers different output types for FIR
FIlter across different tool chain settings: double in Normal mode vs. uint32 when com-
piling to collect the inferred block properties.

Case 03213776: Nested Zombie Mutation→Mismatch in Different Tool Chain Con-

figurations (Likely New Bug) The excerpted model in Fig. 5.9 compiled and ran with-

out errors using Simulink’s Normal mode. But it produced a compilation error when we

attempted collecting block properties after nested zombie block mutation, which is unex-

pected as models that simulate without errors should not raise errors when compiling for

collecting these properties. MathWorks Support confirmed that these two different work-

flows use two different heuristics for datatype propagation and would consider making the

results consistent in future releases.

5.4.5 SLEMI Finds Bugs Missed by SLforge (RQ3)

To compare the EMI-based mutation in SLEMI to plain differential testing in SLforge on

bug finding efficiency, we also ran SLforge with similar resources. Specifically, while our

94

SLEMI experiments used under 200 CPU hours, we gave SLforge’s default configuration

over 300 CPU hours to find bugs. Of these, SLforge spent 80% on model generation and

20% on differential testing.

Compared to SLEMI’s 10 unique bugs, in this experiment SLforge found two unique

new bugs, which are a subset of the bugs SLEMI found with fewer resources. In addition

to the two bugs SLforge found, upon manual inspection we observed that SLforge could

have hypothetically found an additional two bugs we initially identified via EMI.

5.4.6 Threats to Validity

Both SLforge and SLEMI are prototype tools that only support a subset of the Simulink

language and libraries. From a bug-finding perspective it is encouraging that these tools

were still able to find several confirmed bugs in a widely used (and tested) commercial

CPS tool chain.

A key threat to the validity of our tool comparisons is that the results just represent a

particular implementation of the underlying bug-finding techniques for one particular CPS

language, evaluated with models produced by a single seed model generator. Different

implementation and evaluation choices could influence the tools’ bug-finding abilities sig-

nificantly. So without more tool implementations and experiments it would be premature

to rule one tool chain testing technique superior to the other. In any case, the common best

practice in software validation applies also to finding CPS tool chain bugs, i.e., to use all

available bug-finding tools.

Since complete specifications for commercial CPS tools are not publicly available

and our experiments only involved SLforge-generated models that cover a subset of the

Simulink functionalities, the EMI approaches may not generalize to other CPS models. Al-

though our approach has already found bugs covering widely-used Simulink libraries(from

[17]), we consider experimenting with other libraries, user-created models and other CPS

tools future work.

95

5.5 Related Work

Following is related work on mutating CPS models, EMI-based mutation for finding bugs

in compilers for procedural languages (i.e., C and OpenCL), finding CPS development tool

bugs without using model mutation, and finding bugs in CPS models.

Mutating CPS Models As discussed throughout the paper, the most closely related work

is SLforge. While it mostly focuses on how to create random valid Simulink models for

differential testing, SLforge also contains a very restricted version of Simulink model mu-

tation. Specifically, for a given seed model, SLforge performs a single mutation operation,

which (statically) deletes all dead blocks. In contrast, SLEMI takes into account model

profiling data and performs several novel EMI-based mutation techniques that address CPS

modeling challenges not found in procedural code, including zombie regions and sample

time inference. Overall SLEMI’s was more effective and efficient than SLforge.

Besides SLforge we are not aware of other work performing EMI-based mutation in

CPS. However, the more restricted class of static equivalence-maintaining mutation has

been of interest for several CPS-related tasks. For example, partial evaluation tries to min-

imize model size or simulation runtime while maintaining the model’s execution behav-

ior [66].

While partial evaluation produces a class of EMI-mutants, we consider them less promis-

ing for finding bugs in CPS tool chains, since modern tool chains likely already perform

some forms of partial evaluation and thus resulting bugs are likely already known to the

tool chain developers. A concrete example is MathWorks’s Simulink Design Verifier [57],

which, among others, has an option to detect and remove “dead logic”, aka static nested

zombie blocks.

Static equivalence-maintaining mutation is further interesting for model refactoring.

For example, Tran et al. present an approach for composing elementary Simulink mutation

operators into larger refactorings [94]. Users have to take care to ensure that a composed

refactoring preserves model behavior. Also available are more specialized tools that are

designed to preserve model behavior while improving a model’s layout. For example, the

96

Auto Layout Tool can flatten a hierarchical model, by “inlining” a child model directly into

its parent [68]. Other recent work transforms Simulink models [28] with the goal that the

mutant approximates the seed model’s behavior. These mutations are often more restrictive

as they are done statically and they have not yet been applied for differential testing or

finding tool bugs.

Model clones can have the same (or different) behavior as their seed. A recent taxon-

omy of Simulink model mutations for evaluating clone detection techniques was found to

capture the manual edits performed on three Simulink projects [80].

Mutation testing aims at introducing small semantic changes to check if an existing test

suite can detect the mutant’s different execution behavior. In some sense mutation testing

is the inverse of EMI-based mutation. For example, Zhan and Clark trace all paths from

a change to outputs, to ensure that a change can be observed [100]. To select mutants

efficiently, He et al. define an equivalence relation on models [40]. This equivalence notion

is much coarser than ours, as it will consider equivalent two mutants whose execution

behaviors differ widely, as long as both mutants are killed (detected) by the same test case.

EMI-based Mutation for Finding Bugs in Compilers for Procedural Languages To

complement existing schemes for differential compiler testing, recent work has developed

EMI-based mutation for C programs [48, 49, 85, 86] and OpenCL programs [51]. Over-

all these approaches have found in production-level compilers hundreds of previously un-

known bugs, many of which the compiler developers have already fixed [83]. While early

EMI-based mutation work focused on mutating dynamically dead program regions through

both dead element removal [48] and addition [49], recent work also mutates live program

paths [85].

These previous approaches have in common that their mutations target procedural lan-

guages (C and OpenCL) that have a complete specification. In contrast, this paper targets

a flexible block diagram language that is widely used in CPS development, which (a) does

not have a good specification and (b) has several key features not found in C or OpenCL,

such as explicit notions of time, datatype inference, and zombie code.

97

Finding CPS Development Tool Bugs Without Model Mutation Earlier work has ex-

plored several avenues for finding bugs in CPS development tools. Most closely related is

random model generation with “plain” differential testing (without EMI-based mutation),

as implemented in CyFuzz [16] and SLforge [17]. Closely related to SLforge is a random

model and differential testing tool by Nguyen et al. [65]. The tool first generates random

hybrid automaton models and then HyST [6] translates the automaton models to a variety

of CPS modeling languages including Simulink.

Other testing [82, 81, 76, 32] and analysis [32] schemes target select parts of a CPS

development tool. For example, Stürmer et al. test optimization rules of code generators

utilizing graph grammars [82, 81]. Fehér et al. model the data-type inferencing logic of

Simulink blocks [32].

Analyzing and Finding Bugs in CPS Models Finally, while this paper looks for com-

piler bugs in CPS tools, a complimentary line of work analyzes and looks for bugs in CPS

models [52, 46, 4, 34, 78, 3, 102, 10, 57]. For example, MathWorks’s Simulink Design

Verifier [57] uses static analysis to identify design errors in Simulink models, such as ar-

ray access violations, division by zero static, integer overflow, and static nested zombie

blocks. Similarly, DSVerifier [10] applies symbolic model checking based on SAT and

SMT solvers to find design errors in digital systems.

Related work generates or evaluates the quality of test cases for CPS models [30, 9, 58,

79, 33], e.g., via mutation testing of Simulink models [9]. Other related work synthesizes

controllers that are correct by design [74, 1]. While these directions are important, they are

distinct from our work, which focuses on finding compiler bugs in CPS development tools

rather than analyzing and testing the CPS models.

5.6 Conclusions

Finding bugs in commercial cyber-physical system development tools such as MathWorks

Simulink is important in practice, as these tools are widely used to generate embedded code

that gets deployed in safety-critical applications such as cars and planes. Equivalence Mod-

ulo Input (EMI) based mutation is a new twist on differential testing that promises lower

98

use of computational resources and has already been successful at finding bugs in com-

pilers for procedural languages. To provide EMI-based mutation for differential testing of

cyber-physical system development tools, this paper has developed several novel mutation

techniques. These techniques deal with CPS language features that are not found in pro-

cedural languages, such as an explicit notion of execution time and zombie code, which

combines properties of live and dead procedural code. In our experiments the most closely

related work SLforge found two bugs in the Simulink tool. In comparison, SLEMI found a

super-set of issues, including 9 confirmed as bugs by MathWorks Support.

Future work includes adopting SLEMI to the closely related CPS modelling languages,

including Simulink Stateflow [39] and the Simulink/Stateflow subset TargetLink [31].

99

CHAPTER 6

CONCLUSIONS

In this dissertation we explored novel techniques to automatically test a widely used com-

mercial cyber-physical system (CPS) development tool, Simulink. Using such CPS devel-

opment tools engineers and researchers design CPS using graphical block diagram models,

simulate and even generate code and executables which are often deployed in safety-critical

embedded hardware including cars and planes. Since CPS tool chain bugs may propagate

to the automatically generated artifacts, it is crucial to eliminate bugs from development

tools like Simulink. While formal verification of an entire CPS development tool would

be ideal, unfortunately, such verification is inhibited by the scale of the development tool

and also by the unavailability of complete and updated formal specifications of the CPS

development tool. Randomized differential testing, on the other hand, does not require

complete, updated specifications of the compiler system under test and has been effective

in finding previously unknown bugs in major production compilers like GCC and LLVM,

which motivated us to explore these techniques in the commercial CPS tool chain testing

domain.

Verification and validation efforts in the CPS domain have targeted the CPS models

whereas in this dissertation we are keen to develop techniques to find compiler bugs in

commercial CPS development tools like Simulink. Existing compiler testing through ran-

dom program generation works have targeted textual programming language (e.g. C and

Java) compilers. Since graphical CPS modeling language like Simulink differs significantly

than textual languages like C, we first examine the feasibility of applying randomized dif-

ferential testing for CPS development tools and present CyFuzz, the first known differential

testing framework to test Simulink. Although CyFuzz addressed many of the unique chal-

lenges in randomized generation of valid Simulink programs, it was not powerful enough

to generate rich Simulink models to opportunistically find new compiler bugs.

100

To evaluate the effectiveness of a random Simulink model generator and even use in-

sights to guide such a generator to create models similar to those designed by engineers

and researchers, we have crafted the largest corpus of publicly available Simulink models

to date. While similar corpus building efforts exist for other programming languages (e.g.

Java), to the best of our knowledge no such corpus existed for Simulink models. Using

insights from this corpus we next present the state of the art random, valid Simulink model

generator SLforge which addresses several key CyFuzz limitations.

While complete and updated formal specifications for commercial CPS development

tools like Simulink are not available, a random model generator could still utilize the semi-

formal Simulink specifications made available through web-based documentations. Instead

of leveraging such specifications, however, CyFuzz utilized heuristics to iterate over invalid

Simulink models hoping to fix modeling errors to eventually get these accepted by the

Simulink compiler as valid models. While this relatively simple feedback-driven approach

helped creating valid Simulink models, the generated models are not expressive enough

to find new Simulink bugs. Leveraging the semi-formal specifications SLforge now not

only generates models rich in language elements but has also found new compiler bugs in

various Simulink releases, proving its bug-finding capability.

Lastly, we explored a recent variation of differential testing, namely equivalence mod-

ulo input (EMI)-based compiler testing. EMI-based testing has been effective in finding

compiler bugs missed by plain differential testing alone in recent C and OpenCL com-

piler testing projects. EMI-based mutation of Simulink models requires addressing zombie

code which has properties of both live and dead code. Furthermore, unlike existing works

EMI-based mutation of Simulink models has to deal with an explicit notion of time and

CPS development tool features like data-type inference which we address in this work for

the very first time. Our state-of-the-art EMI-based Simulink model mutator is more effi-

cient than SLforge as it consumes less computing resource to mutate a model compared to

generate an entire random model using SLforge and is also more effective in finding new

compiler bugs which SLforge cannot find. The tools developed in this research are open

source and have collectively found 18 unique bugs to date in various production versions

of Simulink, the widely used commercial CPS development tool.

101

Although Simulink is the most widely used CPS development tool, future research in

the commercial CPS tool chain testing direction may target other CPS development tools

or extend the coverage of Simulink features supported by our random model generator

and mutator tools. Exploring more EMI-based mutation techniques which are effective

in finding compiler bugs is another exciting and promising line of future work. Lastly,

continuously extending the large-scale corpus of Simulink models presented in this work

would benefit the entire CPS research and tool development community.

102

BIBLIOGRAPHY

[1] Alessandro Abate, Iury Bessa, Dario Cattaruzza, Lennon C. Chaves, Lucas C.
Cordeiro, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen.
DSSynth: An automated digital controller synthesis tool for physical plants. In
Proc. 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 919–924, November 2017.

[2] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of safety-critical
computer failures in medical devices. IEEE Security Privacy, 11(4):14–26, July
2013.

[3] Rajeev Alur. Formal verification of hybrid systems. In Proc. 11th International
Conference on Embedded Software, (EMSOFT) 2011, pages 273–278. ACM, Octo-
ber 2011.

[4] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic analysis
for improving simulation coverage of Simulink/Stateflow models. In Proc. 8th ACM
& IEEE International Conference on Embedded Software (EMSOFT), pages 89–98.
ACM, October 2008.

[5] Anonymous. Emi-based validation of commercial cps tool chains. https://github.
com/cyemi/slsf randgen/wiki, 2019. Accessed Jan. 2019.

[6] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source transforma-
tion and translation tool for hybrid automaton models. In Proc. 18th International
Conference on Hybrid Systems: Computation and Control (HSCC), pages 128–133.
ACM, 2015.

[7] Boris Beizer. Software testing techniques. Van Nostrand Reinhold, second edition,
June 1990.

[8] Olivier Bouissou and Alexandre Chapoutot. An operational semantics for Simulink’s
simulation engine. In Proc. 13th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded Systems (LCTES), pages
129–138. ACM, June 2012.

[9] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Puran-
dare, Philipp Rümmer, and Georg Weissenbacher. Mutation-based test case gener-
ation for Simulink models. In Frank S. de Boer, Marcello M. Bonsangue, Stefan
Hallerstede, and Michael Leuschel, editors, Formal Methods for Components and
Objects: 8th International Symposium, FMCO 2009, Eindhoven, The Netherlands,
November 4-6, 2009. Revised Selected Papers, pages 208–227. Springer, 2010.

[10] Lennon C. Chaves, Iury Bessa, Lucas C. Cordeiro, Daniel Kroening, and Ed-
die Batista de Lima Filho. Verifying digital systems with MATLAB. In Proc. 26th

103

https://github.com/cyemi/slsf_randgen/wiki
https://github.com/cyemi/slsf_randgen/wiki

ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
pages 388–391, July 2017.

[11] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and
Bing Xie. An empirical comparison of compiler testing techniques. In Proc. 38th
International Conference on Software Engineering (ICSE), pages 180–190. ACM,
2016.

[12] R. J. Chevance and T. Heidet. Static profile and dynamic behavior of Cobol pro-
grams. SIGPLAN Not., 13(4):44–57, April 1978.

[13] Shafiul Azam Chowdhury. Automatically finding bugs in commercial cyber-physical
system development tool chains. In Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceedings, ICSE ’18, pages 506–508.
ACM, 2018.

[14] Shafiul Azam Chowdhury. Understanding and improving cyber-physical system
models and development tools. In Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceedings, ICSE ’18, pages 452–453.
ACM, 2018.

[15] Shafiul Azam Chowdhury et al. Slforge web site. https://github.com/verivital/
slsf randgen/wiki. Accessed Jan. 2019.

[16] Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner. CyFuzz:
A differential testing framework for cyber-physical systems development environ-
ments. In Proc. 6th Workshop on Design, Modeling and Evaluation of Cyber Physi-
cal Systems (CyPhy). Springer, October 2016.

[17] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. Automatically finding bugs in a com-
mercial cyber-physical system development tool chain with SLforge. In Proc. 40th
ACM/IEEE International Conference on Software Engineering (ICSE), pages 981–
992. ACM, May 2018.

[18] Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T. Johnson,
and Christoph Csallner. A curated corpus of Simulink models for model-based em-
pirical studies. In Proc. 4th International Workshop on Software Engineering for
Smart Cyber-Physical Systems (SEsCPS), pages 45–48. ACM, May 2018.

[19] Christian S. Collberg, Ginger Myles, and Michael Stepp. An empirical study of Java
bytecode programs. Softw., Pract. Exper., 37(6):581–641, 2007.

[20] Mirko Conrad. Testing-based translation validation of generated code in the context
of IEC 61508. Formal Methods in System Design, 35(3):389–401, December 2009.

[21] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms.
MIT electrical engineering and computer science series. MIT Press, 2001.

104

https://github.com/verivital/slsf_randgen/wiki
https://github.com/verivital/slsf_randgen/wiki

[22] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software—Practice & Experience, 34(11):1025–1050, September
2004.

[23] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Compiler
fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2018, pages 95–105,
New York, NY, USA, 2018. ACM.

[24] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. Testing static analyzers with randomly generated
programs. In Proc. 4th NASA Formal Methods Symposium (NFM), pages 120–125.
Springer, April 2012.

[25] Yanja Dajsuren, Mark G.J. van den Brand, Alexander Serebrenik, and Serguei
Roubtsov. Simulink models are also software: Modularity assessment. In Proc.
9th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA), pages 99–106. ACM, 2013.

[26] Florian Deissenboeck, Benjamin Hummel, Elmar Juergens, Michael Pfaehler, and
Bernhard Schaetz. Model clone detection in practice. In Proc. 4th International
Workshop on Software Clones (IWSC), pages 57–64. ACM, 2010.

[27] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard Schätz, Stefan
Wagner, Jean-François Girard, and Stefan Teuchert. Clone detection in automotive
model-based development. In Proc. of the 30th International Conference on Soft-
ware Engineering (ICSE), pages 603–612. ACM, 2008.

[28] Joachim Denil, Pieter J. Mosterman, and Hans Vangheluwe. Rule-based model
transformation for, and in Simulink. In Proc. Symposium on Theory of Modeling
and Simulation (TMS), pages 314–321. ACM, April 2014.

[29] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Fuzzing the Rust typechecker using
CLP (T). In Proc. 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 482–493. IEEE, 2015.

[30] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7):1165–1178, July 2008.

[31] dSPACE Inc. Targetlink. https://www.dspace.com/en/inc/home/products/sw/
pcgs/targetli.cfm, 2019. Accessed Jan. 2019.

[32] P. Fehér, T. Mészáros, L. Lengyel, and P. J. Mosterman. Data type propagation in
Simulink models with graph transformation. In Proc. 3rd Eastern European Re-
gional Conference on the Engineering of Computer Based Systems, pages 127–137.
IEEE, August 2013.

105

https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

[33] K. Ghani, J. A. Clark, and Y. Zhan. Comparing algorithms for search-based test data
generation of MATLAB Simulink models. In 2009 IEEE Congress on Evolutionary
Computation, pages 2940–2947, May 2009.

[34] Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate simulation re-
lations for hybrid systems. Discrete Event Dynamic Systems, 18(2):163–179, 2008.

[35] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[36] David E. Goldberg. Genetic algorithms in search, optimization and machine learn-
ing. Addison-Wesley, first edition, 1989.

[37] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Stefano Crespi,
Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi. An empirical investiga-
tion into a large-scale Java open source code repository. In Proc. ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 11:1–11:10. ACM, 2010.

[38] C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller.
Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, 9(1):49–58, March 2001.

[39] Grégoire Hamon and John Rushby. An operational semantics for Stateflow. Inter-
national Journal on Software Tools for Technology Transfer, 9(5):447–456, 2007.

[40] Nannan He, Philipp Rümmer, and Daniel Kroening. Test-case generation for em-
bedded Simulink via formal concept analysis. In Proc. 48th Design Automation
Conference (DAC), pages 224–229. ACM, June 2011.

[41] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments.
In Proc. 21th USENIX Security Symposium, pages 445–458. USENIX Association,
August 2012.

[42] Ishtiaque Hussain, Christoph Csallner, Mark Grechanik, Qing Xie, Sangmin Park,
Kunal Taneja, and B.M. Mainul Hossain. Rugrat: Evaluating program analysis and
testing tools and compilers with large generated random benchmark applications.
Software—Practice & Experience, 46(3):405–431, March 2016.

[43] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken
Butts. Benchmarks for model transformations and conformance checking. https:
//cps-vo.org/node/12108, 2017. Accessed Jan. 2019.

[44] Taylor T. Johnson, Stanley Bak, and Steven Drager. Cyber-physical specification
mismatch identification with dynamic analysis. In Proc. ACM/IEEE Sixth Interna-
tional Conference on Cyber-Physical Systems (ICCPS), pages 208–217. ACM, April
2015.

106

https://cps-vo.org/node/12108
https://cps-vo.org/node/12108

[45] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow
programming languages. ACM Computing Surveys, 36(1):1–34, March 2004.

[46] Aditya Kanade, Rajeev Alur, Franjo Ivancic, S. Ramesh, Sriram Sankaranarayanan,
and K. C. Shashidhar. Generating and analyzing symbolic traces of Simulink/State-
flow models. In Proc. 21st International Conference on Computer Aided Verification
(CAV), pages 430–445. Springer, June 2009.

[47] Donald E. Knuth. An empirical study of FORTRAN programs. Softw., Pract. Exper.,
1(2):105–133, 1971.

[48] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 216–226. ACM, June 2014.

[49] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via guided
stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, pages 386–399, New York, NY, USA, 2015. ACM.

[50] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A Cyber-
physical Systems Approach. http://LeeSeshia.org, first edition, 2011.

[51] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
Many-core compiler fuzzing. In Proc. 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 65–76. ACM, June
2015.

[52] B. Liu, Lucia, S. Nejati, and L. C. Briand. Improving fault localization for Simulink
models using search-based testing and prediction models. In Proc. 24th IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering, Feb 2017.

[53] MathWorks Inc . Algebraic loop concepts — MATLAB & simulink. https://
www.mathworks.com/help/simulink/ug/algebraic-loops.html, 2019. Accessed
Jan. 2019.

[54] MathWorks Inc. . Choose a solver — MATLAB & simulink. https://www.
mathworks.com/help/simulink/ug/types-of-solvers.html, 2019. Accessed Jan.
2019.

[55] MathWorks Inc. . Sample time — MATLAB & simulink. https://www.mathworks.
com/help/simulink/sample-time.html, 2019. Accessed Jan. 2019.

[56] MathWorks Inc. Blocks for which sample time is not recommended — MATLAB &
simulink. https://www.mathworks.com/help/simulink/ug/sampletimehiding.
html, 2019. Accessed Jan. 2019.

[57] MathWorks Inc. Simulink design verifier — MATLAB & simulink. https://www.
mathworks.com/products/sldesignverifier.html, 2019. Accessed Jan. 2019.

107

http://LeeSeshia.org
https://www.mathworks.com/help/simulink/ug/algebraic-loops.html
https://www.mathworks.com/help/simulink/ug/algebraic-loops.html
https://www.mathworks.com/help/simulink/ug/types-of-solvers.html
https://www.mathworks.com/help/simulink/ug/types-of-solvers.html
https://www.mathworks.com/help/simulink/sample-time.html
https://www.mathworks.com/help/simulink/sample-time.html
https://www.mathworks.com/help/simulink/ug/sampletimehiding.html
https://www.mathworks.com/help/simulink/ug/sampletimehiding.html
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/sldesignverifier.html

[58] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. Sim-
CoTest: A test suite generation tool for Simulink/Stateflow controllers. In Proc.
38th International Conference on Software Engineering, (ICSE), pages 585–588.
ACM, May 2016.

[59] William M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[60] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the relia-
bility of Unix utilities. Commun. ACM, 33(12):32–44, December 1990.

[61] M. Mohaqeqi and M. R. Mousavi. Sound test-suites for cyber-physical systems.
In 10th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pages 42–48, July 2016.

[62] Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla. Towards
computational hybrid system semantics for time-based block diagrams. In Proc. 3rd
IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), pages 376–
385. Elsevier, September 2009.

[63] National Instruments. Labview system design software. http://www.ni.com/
labview/, 2019.

[64] Luan Viet Nguyen, Christian Schilling, Sergiy Bogomolov, and Taylor T. Johnson.
HyRG: A random generation tool for affine hybrid automata. In Proc. 18th Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC), pages
289–290. ACM, April 2015.

[65] Luan Viet Nguyen, Christian Schilling, Sergiy Bogomolov, and Taylor T. Johnson.
Runtime verification of model-based development environments. In Proc. 15th In-
ternational Conference on Runtime Verification (RV), September 2015.

[66] Bentley James Oakes. Optimizing Simulink models. Technical Report SOCS-TR-
2014.5, McGill University, 2014.

[67] Marta Olszewska, Yanja Dajsuren, Harald Altinger, Alexander Serebrenik, Ma-
rina A. Waldén, and Mark G. J. van den Brand. Tailoring complexity metrics for
Simulink models. In Proccedings of the 10th European Conference on Software
Architecture Workshops, November 28 - December 2, 2016, page 5, 2016.

[68] Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett Mackenzie,
Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and Alan Wassyng.
Software engineering practices and Simulink: Bridging the gap. International Jour-
nal on Software Tools for Technology Transfer (STTT), 20(1):95–117, February
2017.

[69] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Com-
plete and accurate clone detection in graph-based models. In Proc. 31st IEEE Inter-
national Conference on Software Engineering (ICSE), pages 276–286, May 2009.

108

http://www.ni.com/labview/
http://www.ni.com/labview/

[70] Pierre Giroux. Grid-connected pv array - file exchange - MATLAB
central. http://www.mathworks.com/matlabcentral/fileexchange/
34752-grid-connected-pv-array, August 2017.

[71] A. C. Rajeev, Prahladavaradan Sampath, K. C. Shashidhar, and S. Ramesh. Co-
GenTe: A tool for code generator testing. In Proc. 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 349–350. ACM,
September 2010.

[72] Akshay Rajhans, Srinath Avadhanula, Alongkrit Chutinan, Pieter J. Mosterman, and
Fu Zhang. Graphical modeling of hybrid dynamics with simulink and stateflow. In
Proc. 21st International Conference on Hybrid Systems: Computation and Control
(HSCC).

[73] Steven Rasmussen, Jason Mitchell, Chris Schulz, Corey Schumacher, and Phillip
Chandler. A multiple UAV simulation for researchers. In AIAA Modeling and Sim-
ulation Technologies Conference and Exhibit, page 5684.

[74] Pritam Roy, Paulo Tabuada, and Rupak Majumdar. Pessoa 2.0: A controller synthe-
sis tool for cyber-physical systems. In Proc. 14th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC), pages 315–316, April 2011.

[75] Jesse Ruderman. Introducing jsfunfuzz. https://www.squarefree.com/2007/08/
02/introducing-jsfunfuzz/, 2007.

[76] Prahladavaradan Sampath, A. C. Rajeev, S. Ramesh, and K. C. Shashidhar. Testing
model-processing tools for embedded systems. In Proc. 13th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 203–214. IEEE, April
2007.

[77] Flash Sheridan. Practical testing of a C99 compiler using output comparison. Soft-
ware: Practice & Experience (SPE), 37(14):1475–1488, November 2007.

[78] S. Sims, R. Cleaveland, K. Butts, and S. Ranville. Automated validation of software
models. In Proc. 16th Annual International Conference on Automated Software
Engineering (ASE), pages 91–96, Nov 2001.

[79] A. Sridhar, D. Srinivasulu, and D. P. Mohapatra. Model-based test-case genera-
tion for Simulink/Stateflow using dependency graph approach. In Proc. 3rd IEEE
International Advance Computing Conference (IACC), pages 1414–1419, February
2013.

[80] Matthew Stephan, Manar H. Alalfi, and James R. Cordy. Towards a taxonomy for
Simulink model mutations. In Proc. 7th IEEE International Conference on Software
Testing, Verification and Validation (ICST) Workshops, pages 206–215. IEEE, March
2014.

109

http://www.mathworks.com/matlabcentral/fileexchange/34752-grid-connected-pv-array
http://www.mathworks.com/matlabcentral/fileexchange/34752-grid-connected-pv-array
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

[81] Ingo Stürmer and Mirko Conrad. Test suite design for code generation tools. In Proc.
18th IEEE International Conference on Automated Software Engineering (ASE),
pages 286–290, October 2003.

[82] Ingo Stürmer, Mirko Conrad, Heiko Dörr, and Peter Pepper. Systematic testing of
model-based code generators. IEEE Transactions on Software Engineering (TSE),
33(9):622–634, September 2007.

[83] Zhendong Su and Chengnian Sun. EMI compiler validation project. http://web.cs.
ucdavis.edu/∼su/emi-project/, 2019. Accessed Jan. 2019.

[84] Giancarlo Succi, Witold Pedrycz, Snezana Djokic, Paolo Zuliani, and Barbara
Russo. An empirical exploration of the distributions of the Chidamber and Kemerer
object-oriented metrics suite. Empirical Software Engineering, 10(1):81–104, 2005.

[85] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code
mutation. SIGPLAN Not., 51(10):849–863, October 2016.

[86] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. An automatic testing ap-
proach for compiler based on metamorphic testing technique. In Proceedings of the
2010 Asia Pacific Software Engineering Conference, APSEC ’10, pages 270–279,
Washington, DC, USA, 2010. IEEE Computer Society.

[87] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. No-
ble. The qualitas corpus: A curated collection of Java code for empirical studies. In
2010 Asia Pacific Software Engineering Conference, pages 336–345, Nov 2010.

[88] The MathWorks Inc. How many blocks are in that model? math-
works blog. https://blogs.mathworks.com/simulink/2009/08/11/
how-many-blocks-are-in-that-model/. Accessed Jan. 2019.

[89] The MathWorks Inc. Nasa hl-20 lifting body airframe - MATLAB & Simulink.
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.
html, 2017. Accessed Jan. 2019.

[90] The MathWorks Inc. Products and services. http://www.mathworks.com/
products/, 2018.

[91] The MathWorks Inc. About data types in Simulink. https://www.mathworks.com/
help/simulink/ug/working-with-data-types.html, 2019. Accessed Jan. 2019.

[92] The MathWorks Inc. Simulink coverage. https://www.mathworks.com/help/
slcoverage/, 2019. Accessed Jan. 2019.

[93] The MathWorks Inc. Simulink documentation. http://www.mathworks.com/
help/simulink/, 2019. Accessed Jan. 2019.

110

http://web.cs.ucdavis.edu/~su/emi-project/
http://web.cs.ucdavis.edu/~su/emi-project/
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model/
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model/
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html
http://www.mathworks.com/products/
http://www.mathworks.com/products/
https://www.mathworks.com/help/simulink/ug/working-with-data-types.html
https://www.mathworks.com/help/simulink/ug/working-with-data-types.html
https://www.mathworks.com/help/slcoverage/
https://www.mathworks.com/help/slcoverage/
http://www.mathworks.com/help/simulink/
http://www.mathworks.com/help/simulink/

[94] Quang Minh Tran, Benjamin Wilmes, and Christian Dziobek. Refactoring of
Simulink diagrams via composition of transformation steps. In Proc. 8th Inter-
national Conference on Software Engineering Advances (ICSEA), pages 140–145.
IARIA, October 2013.

[95] U.S. Consumer Product Safety Commission (CPSC). Recall 11-702:
Fire alarm control panels recalled by fire-lite alarms due to alert fail-
ure. http://www.cpsc.gov/en/Recalls/2011/Fire-Alarm-Control-Panels-Recalled-by-
Fire-Lite-Alarms-Due-to-Alert-Failure, October 2010.

[96] U.S. National Highway Traffic Safety Administration (NHTSA). Defect Information
Report 14V-053. http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/
UCM450071/RCDNN-14V053-0945.pdf, February 2014.

[97] U.S. National Institute of Standards and Technology (NIST). The economic impacts
of inadequate infrastructure for software testing: Planning report 02-3, May 2002.

[98] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Proc. 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 283–294. ACM, June 2011.

[99] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. Model-based testing
for embedded systems. CRC Press, first edition, 2011.

[100] Yuan Zhan and John A. Clark. Search-based mutation testing for Simulink models.
In Proc. Genetic and Evolutionary Computation Conference (GECCO), pages 1061–
1068. ACM, June 2005.

[101] Hongyu Zhang and Hee Beng Kuan Tan. An empirical study of class sizes for large
Java systems. In Proc. 14th Asia-Pacific Software Engineering Conference (APSEC),
pages 230–237, December 2007.

[102] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Fränzle. Formal verification of
Simulink/stateflow diagrams. In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang,
editors, Proc. 13th International Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA), pages 464–481. Springer, October 2015.

111

http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM450071/RCDNN-14V053-0945.pdf
http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM450071/RCDNN-14V053-0945.pdf

	Acknowledgments
	Abstract
	Introduction
	CyFuzz: A Differential Testing Framework for Cyber-Physical Systems Development Environments
	Automatically Finding Bugs in a Commercial Cyber-Physical System Development Tool Chain With SLforge
	A Curated Corpus of Simulink Models for Model-based Empirical Studies
	SLEMI: Equivalence Modulo Input (EMI) Based Mutation of CPS Models for Finding Compiler Bugs in Simulink
	Conclusions
	Bibliography

