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ABSTRACT

BACKSTEPPING APPROACH FOR DESIGN OF CASCADED PID CONTROLLER

WITH GUARANTEED TRAJECTORY TRACKING PERFORMANCE FOR

MICRO-AIR UAV

YUSUF KARTAL, M.S.

The University of Texas at Arlington, 2019

Academic Advisors: Dr. Frank Lewis, Dr. Atilla Dogan

Flight controllers for micro-air UAVs are generally designed using Proportional-

Integral-Derivative (PID) methods, where the tuning of gains is difficult and time-consuming,

and performance is not guaranteed. In this thesis, we develop a rigorous method based on

the sliding mode analysis and nonlinear backstepping to design a PID controller with guar-

anteed performance. This technique provides the structure and gains for the PID controller,

such that a robust and fast response of the UAV for trajectory tracking is achieved. First, the

second-order sliding variable errors are used in a rigorous nonlinear backstepping design to

obtain guaranteed performance for the nonlinear UAV dynamics. Then, using a small an-

gle approximation and rigorous geometric manipulations, this nonlinear design is converted

into a PID controller whose structure is naturally determined through the backstepping pro-

cedure. PID gains that guarantee robust UAV performance are finally computed from the

sliding mode gains and from stabilizing gains for tracking error dynamics. We prove that

the desired Euler angles of the inner attitude controller loop are related to the dynamics

of the outer backstepping tracker loop by inverse kinematics, which provides a seamless
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connection with existing built-in UAV attitude controllers. We implement the proposed

method on actual UAV, and experimental flight tests prove the validity of these algorithms.

It is seen that our PID design procedure yields tighter UAV performance than an existing

popular PID control technique.

The publication resulted from this thesis is listed below:

Kartal, Y., Kolaric, P., Lopez, V. et al. Control Theory Technol. (2019). https://doi.org/10.1007/s11768-

020-9145-y
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Quadrotors and other unmanned aerial vehicles (UAVs) have drawn great attention

over the last decade because of their high mobility, simplicity of dynamics and capability

to perform certain tasks like transportation [1], reconnaissance and monitoring [2]. The

fact that quadrotors can be described as a simplified form of the helicopter dynamics [3],

leads to similar control design challenges such as under-actuation, strong coupling and

unmodelled disturbances. One of the most important challenges of designing a quadro-

tor controller is providing robust capabilities that provide the ability to follow prescribed

trajectories in a stable and reliable manner.

Flight controllers for small micro-air UAVs are normally implemented using PID

control, since a PID outer position tracking loop interfaces seamlessly with existing built-

in attitude control systems in commercial UAVs. However, the structure and gains of these

PID tracking controllers are designed ad hoc, require lengthy flight tests for tuning, and

have no performance or robustness guarantees.

On the other hand, a great amount of research has been conducted to design robust

control for quadrotors that primarily deals with a linearized model of the quadrotor around

a hover condition, which is stable when the small angle approximation is valid for the

pitch and roll angles [3–5]. Several works [3, 6–12] deal with nonlinear modeling of the

quadrotor, which is preferred to overcome the limitations of the linear model. The Six

Degree-of-Freedom (6-DOF) dynamics of a quadrotor result in the typical translational

and rotational kinematics equations as in [13] and [14]. The fact that the number of DOF
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are less than the number of input commands, which are thrust commands for each of four

rotors in our case, rises the problem of the under-actuation [15–17].

Popular controller design methods for quadrotors include linear quadratic regulator

(LQR), H-infinity state-space design, model predictive control (MPC), sliding mode tech-

niques [3,8,9] and backstepping [3,8,11,18]. The LQR method is a common technique for

controlling aircrafts as it decouples the dynamics and works well with linearized models

of the aircraft [4, 5, 19]. In [7, 12, 20], H-infinity controllers are used to perform a robust

controller design. In particular, [20] demonstrates that the H-infinity method can be used

as a robust attitude controller to handle parameter uncertainties with respect to their nom-

inal values. [1] proposes MPC as a good strategy to handle the effects of the atmospheric

turbulence, modeling them as additive disturbances. [21] shows how to use a self-tuning

fuzzy PID controller to decrease the tracking error by using AR.Drone 2.0; the authors,

however, do not consider the fact that the desired Euler angles of the inner controller loop

are related to the dynamics of the outer tracker loop by inverse kinematics, affecting the

tracking performance. Sliding variable design in [3, 8] has been used to address this issue

by establishing convergence relations between position and velocity errors.

A differential flatness approach is used to design linear output feedback control for

quadrotor controllers in [22–24]. The authors deal with estimation of the input-output

system model nonlinearities and the unmeasured phase variables to accomplish the trajec-

tory following task by treating the quadrotor as a differentially flat system. [10] proposes

an adaptive dynamic controller which improves navigation performance to control UAVs

when accomplishing trajectory tracking tasks whereas [9] adopts a super twisting sliding

mode control algorithm to study the same task. Uncertainty of the system parameters is

examined in [25]. The authors find an adaptive technique based on feedback linearization

to prove asymptotic convergence of the tracking errors.
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Moreover, the last decade has witnessed rapid progress in swarm of micro-UAVs,

that are smaller than 1 meter in scale and 1 kilogram or less in mass [26]. Authors of [27]

propose visual relative localization technique for steering swarms of UAVs. In addition,

a range of image-based visual servo control algorithms for regulation of the position of

UAV is examined in [28]. Also, in [29], authors use the method of visual feedback with

multiple cameras using image-processing to solve the positioning problem. In our swarm

of UAVs implementation, we use industrial motion capture system that provides the po-

sition of multi-agent quadrotor swarm. To achieve the goal of swarming UAVs, we use

predetermined trajectories for each agent of the swarm.

Formation is a type of swarm that relies on relative motion of agents [32]. In the liter-

ature, numerous researches carried out to establish formation control behavior for swarm-

ing systems. Therefore, these formation behaviors are categorized. Three of these sub-

categories are behavior-based [33], virtual structure-based [34] and leader-follower-based

categories [35]. In the behavior-based approaches, each agent of the formation acts accord-

ing to predetermined scenario. This approach is behaviorally inflexible since the motion

is predefined. Alternately, in virtual structure-based approaches, cooperative control of the

swarm is ensured by establishing a virtual leader agent. However, since the virtual leader

is not exposed to any type of disturbance in the environment, there is a high chance that the

followers break formation in the event of unexpected environmental disturbances. On the

other hand, the leader-follower approach is based on the real structure in the group, hence

all agents of the multi-agent system react the same to any environmental change.

Numerous work deals with linear dynamics of swarm systems [36–40]. One of

them, [37] reveals some of the necessary and sufficient conditions to achieve predefined

time-varying formation control with switching interaction topologies based on the algebraic

Riccati equation. The authors of [40] propose a distributed adaptive control technique that

uses adaptive gain scheduling to tune the coupling weights between the individuals of the

3



swarming group. Furthermore, [41] uses the similar technique to satisfy prescribed H-∞

like performance and to manage the side effects of uncertainties in the system dynamics.

Practical controllers for quadrotors are invariably implemented using PID controllers

that interface with the existing built-in UAV attitude controller. PID gains are generally

manually tuned.

In this thesis we develop a rigorous nonlinear backstepping method based on the

second-order sliding variable to design a PID controller for micro-air UAVs with guaran-

teed performance. This technique provides the structure for the PID controller, as well as

deriving PID gains that result in desired damping ratio and natural frequency, and hence ro-

bust and fast response of the UAV for trajectory tracking. It is shown how to select the PID

gains to obtain desired transient responses. This PID structure is naturally implemented

using the built-in attitude controllers available in commercial UAVs. We propose a novel

approach that shows how the desired Euler angles of the inner control loop are related to

the dynamics of the outer position tracking loop. Instead of solving the nonlinear inverse

kinematic problem, which can cause singularity issues in the controller, we use full non-

linear backstepping design, followed by a small angle approximation to find a controller

structure in the form of proportional, integral and derivative terms of outer loop tracking

errors. This approach addresses the challenge of choosing proper tracker PID gains in the

outer loop of the backstepping controller, and results in a PID controller with guaranteed

performance. In flight tests on a real UAV, our PID tracking control loop is seen to exhibit

performance similar to the full nonlinear backstepping controller, yet with a far simpler

structure.
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1.2 Thesis Outline

A brief overview of chapters is given below.

In Chapter 2, we develop a dynamic model based on Newtonian dynamics of the quadrotor.

In Chapter 3, we show analysis of the control structures proposed, which involves the

classical nonlinear backstepping and PID position control loop from backstepping control

methods for the task of trajectory tracking. In addition, we illustrate the attitude controller

design procedure for the quadrotors and then we reveal the stability analysis of the proposed

control algorithms. In Chapter 4, we show model design and simulation results whereas

Chapter 5 and 6 shows the flight tests on a real UAV, where we compare the trajectories

followed by AR.Drone 2.0 quadrotor with a full nonlinear backstepping controller and PID

controller design with a guaranteed performance.
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CHAPTER 2

MATHEMATICAL MODEL

In this section we introduce the standard nonlinear model of the quadrotor dynamics.

To localize the quadrotor position, we use the fixed Earth frame. The origin of the three-

dimensional (3D) axis system of the Body frame is assumed to be at the center of mass of

the quadrotor.

The kinematics of Euler rates can be expressed as

wB =


p

q

r

 =


1 0 −sθ

0 cϕ cθsϕ

0 −sϕ cθcϕ

 η̇ (2.1)

where wB is the vector of the Euler rates and η is the Euler Angle vector in ϕ (phi), θ

(theta) and ψ (yaw) order.

Figure 2.1. Coordinate systems of the quadrotor.
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The rotational dynamics are given by

IBẇB = S (wB) IBwB + τB (2.2)

where S (wB) is the skew-symmetric matrix [16], τB is the torque vector and IB is the

inertia matrix defined in Body frame. Then we express the translational dynamics of the

quadrotor in the Body frame as

mU̇ =


0

0

µ

−RF g (2.3)

where U = [u v w]T is the velocity vector defined in the Body frame, µ is the input total

thrust produced by rotors in the Body frame zB-axis, F g = [0 0 mg]T is the gravitational

force vector and R is the rotation matrix from the Earth frame to the Body frame. We

obtain this rotation matrix using the yaw-pitch-roll (3-2-1) sequence such that [30]

• Right-handed rotation about the zB-axis, or positive ψ (compass heading).

• Right-handed rotation about the new yB-axis, or positive θ (pitch).

• Right-handed rotation about the new xB-axis, or positive ϕ (roll).

Then, it is given by

R =


cθcψ cθsψ −sθ

−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ

sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ

 (2.4)

where c and s refers to cosine and sine respectively. Notice that R is a Special Orthogonal

matrix with rank 3, or SO(3), whose determinant is equal to 1 [16].
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The translational dynamics of the quadrotor in the Earth frame is formulated as

mξ̈ = F − F g (2.5)

where ξ denotes the position vector in the Earth frame and F is the input force vector. Then

(2.3) and (2.5) gives the relation F = RT [0 0 µ]T such that,

F =


fx

fy

fz

 =


µ(sϕsψ + cϕsθcψ)

µ(−sϕcψ + cϕsθsψ)

µ(cϕcθ)

 (2.6)
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CHAPTER 3

CONTROLLER DESIGN

3.1 Outer position backstepping controller

This section explains the full nonlinear backstepping control design for the quadrotor.

The backstepping control structure derived here is shown in 3.1. Standard backstepping is

then modified in Section 3.2 to generate inner loop attitude and altitude commands that are

commensurate with existing built-in UAV controllers. Then in Section 3.3. we design an

inner attitute controller to complete the overall control structure. Moreover, Section 3.4

reveals rigorous stability analysis of the proposed control algorithm.

3.1.1 Exact nonlinear backstepping tracker

To apply the classical backstepping control method to the system defined in (2.5),

we begin by adding and removing Fd, ideal virtual force input, and obtain the Newtonian

model in terms of the desired forces

mξ̈ = F d − F g + F̃ d (3.1)

where F̃ d = F − F d. F d is now selected to get ξ→ξd, where ξd = [xd yd zd]
T is

the given desired position vector in the Earth frame. Then, τB in (2.2) is designed using

desired Euler angle information matrix ηd = [ϕd θd ψd]
T and the time rate of change of

desired vertical speed information, ẇd, as explained in Section 3.3.

Define the position error

e = ξd − ξ (3.2)

9



Figure 3.1. Tracker design of backstepping controller using sliding variable.

and express the sliding variable in terms of weighted sum of the position and velocity

errors [31]

r = ė+ λe (3.3)

where λ is a diagonal matrix constructed from positive elements. The error dynamics can

be obtained as

mṙ = më+mλė

= mξ̈d −mξ̈ +mλ (r − λe)

= mξ̈d − F d + F g − F̃ d +mλ(r − λe). (3.4)

Then we select the desired force vector F d as

F d = mξ̈d + F g +mλr −mλ2e+Krr +Ki

∫
rdt (3.5)

where Kr and Ki are diagonal matrices constructed from positive elements. Then the

closed loop error dynamics become

mṙ= −Krr −Ki

∫
rdt+ F̃ d (3.6)
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F̃ d must be kept at zero by the attitude controller proposed in Section 3.3, making (3.6)

stable for allKr>0 andKi>0.

3.1.2 Gain design for desired transient response

Herein we show how to select gainsKr andKi to achieve desired transient response

and error magnitude. It can be shown that e is bounded if the sliding variable r is bounded

[7] such that

||e|| ≤ ||r||
σmin (λ)

, | |ė| | ≤ | |r| | (3.7)

After differentiating (3.6) and normalizing with respect to the highest order coefficient, we

can write

r̈ +
Kr

m
ṙ +

Ki

m
r = 03×1. (3.8)

We define Kr and Ki in the form of diagonal matrices with krj and kij diagonal entries,

respectively.

Recognizing that the general form of the second-order characteristic polynomial of

(3.8) is in the form of s2 + 2ζωns + ωn
2, the desired performance of closed loop error

dynamics can be achieved by setting

kij = ωn
2m, krj = 2mζωn (3.9)

where ωn is the natural frequency and ζ is the damping ratio of the quadrotor’s transfer

function.

3.1.3 Desired Euler angles

We show here how to complete the position tracker desired force (3.5) to the desired

Euler angles in the rotational dynamics. We couple the position tracker loop in Fig. 2 to the
11



rotation dynamics (2.2) by selecting prescribed attitude angles that yield the desired force

vector (3.5). This is accomplished by using the inverse kinematics approach.

Then by the mathematical model of the quadrotor given in (2.3) and (2.5), and the

relation (2.6), it can be deduced that F d = RT [0 0 µd]
T =

[
fxd fyd fzd

]T . Then ud, ϕd

and θd can be expressed in terms of known quantities fxd, fyd and fzd as


fxd

fyd

fzd

=


µd(sϕdsψd + cϕdsθdcψd)

µd(−sϕdcψd + cϕdsθdsψd)

µd(cϕdcθd)

 (3.10)

which implies

tanθd =
fxdcosψd + fydsinψd

fzd

θd = tan−1
fxdcosψd + fydsinψd

fzd
(3.11)

tanϕd =
cosθd (fxdsinψd−fydcosψd)

fzd

ϕd = tan−1
cosθd (fxdsinψd−fydcosψd)

fzd
(3.12)

µd =
fzd

cosϕd cosθd
. (3.13)

Notice that ψd can be arbitrarily prescribed, and only the variables θd, ϕd and µd must be

found. Fig. 3.1 shows the outer control loop design of the backstepping controller.

The inner loop control design of the backstepping method requires the time rate of

change of the desired vertical speed information, ẇd, calculated by using (2.3) such that

ẇd =
µd
m
− gcosϕd cosθd (3.14)

12



3.2 PID position control loop from backstepping controller

This section shows that, with a proper formulation, a suitably designed PID con-

troller can in fact be rigorously developed from the backstepping controller in Fig. 2. We

show how the method analyzed in Section 3.1 can be used to design a PID controller with

guaranteed performance and transient responses. The PID controller structure developed

here is shown in Fig. 3. Selection of the final PID gains in equations (3.31)-(3.32) de-

pends on Kr and Ki in (3.8) through (34)-(36). As such these PID gains can guarantee

the prescribed damping ratio and the natural frequency.

The procedure for solving (3.10)-(3.13) to obtain θd, ϕd and µd can be simplified

by adopting a small angle approximation on (3.10) with respect to θd and ϕd to obtain

following 
fxd

fyd

fzd

=


µd(ϕdsψd+θdcψd)

µd(−ϕdcψd+θdsψd)

µd

 (3.15)

Figure 3.2. Tracker design of backstepping controller using PID control method.
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which leads to

θd =
fxdcosψd+fydsinψd

fzd
(3.16)

ϕd =
fxdsinψd−fydcosψd

fzd
(3.17)

µd = fzd (3.18)

ẇd =
µd
m
−g (3.19)

The trackers for quadrotors are often designed as a PID controller. Tracking is

achieved by setting desired pitch angle to control position in x-axis, setting desired roll

angle and vertical speed to control position in y-axis and z-axis respectively. Moreover, we

set the desired yaw angle as zero not to be exposed of considerable drag force. Controlling

height separately means that the change in pitch and roll angles is assumed to affect only

the motion in the x-y plane.

Equation (3.15) shows that the z-axis is naturally decoupled from x-y plane motion.

As a result of this decoupling, the UAV needs to hover in z-axis, which is guaranteed by

equating fzd to mg, in (3.1). This implies that in the backstepping controller with PID

position control loop (3.15), we equate µd to mg. Then

θd =
fxd
mg

(3.20)

ϕd =
−fyd
mg

(3.21)

µd=mg (3.22)

Furthermore, by (3.19), ẇd becomes zero as the quadrotor keeps its altitude at a certain

level or the x-y plane is decoupled from z-axis, also we use (3.5) and (3.20)-(3.22) to

obtain the following

θd = [1 0 0][
ξ̈d
g

+
Krλ+Ki

mg
e+

mλ+Kr

mg
ė+
Kiλ

mg

∫
edt] (3.23)
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ϕd = −[0 1 0][
ξ̈d
g

+
Krλ+Ki

mg
e+

mλ+Kr

mg
ė+
Kiλ

mg

∫
edt] (3.24)

In (3.23) and (3.24), Krλ+Ki

mg
stands for the proportional gain term, Kiλ

mg
stands for the

integral gain term, and mλ+ Kr

mg
is the derivative gain term of the PID controller.

Note that these gains are given naturally in terms of the gains used in the backstepping

controller, which are easy to find for good performance as given in (3.8). The term ξ̈d in

(3.23) and (3.24) is a feed-forward term of the controller, which improves its performance

in terms of decreasing tracking error, particularly in high accelerations. Furthermore, ψd

and ẇd can be set to zero.

To get the quadrotor to follow predetermined trajectory at a certain altitude, we de-

signed a finite state machine (FSM) whose details are given in Chapter 5. Keeping in mind

that natural frequency and zeta values for pitch and roll angles are very close to each other

from the assumption of symmetric quadrotor, we can write λ, Kr and Ki in the form of

cj ∗ I where cj , j = 1, 2, 3, are positive constants and I is a 3 × 3 identity matrix, (3.23)

and (3.24) can be further simplified such that the position error can be evaluated in Body

frame. Define the position error in Body frame eB as

eB=Re (3.25)

Let the position error in x-axis of the Body frame and y-axis of the Body frame be eBx and

eBy respectively, such that

eBx= [1 0 0]eB (3.26)

eBy= [0 1 0]eB (3.27)
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and we write the assumptions for λ,Kr andKi matrices

λ=c1I (3.28)

Kr=c2I (3.29)

Ki=c3I (3.30)

Substituting (3.26)-(3.30) in (3.23) and (3.24) yields the following PID controller equations

θd =
¨xBd
g

+
c2c1+c3

mg
eBx +

mc1+c2
mg

˙eBx+
c1c3
mg

∫
eBxdt (3.31)

ϕd = − ¨yBd
g
−c2c1+c3

mg
eBy−

mc1+c2
mg

˙eBy−
c1c3
mg

∫
eBydt (3.32)

which is simplified solution of F d. Fig. 3.2 shows the simplified design of the PID position

control loop of the backstepping controller.

Selection of the final PID gains in equations (3.31)-(3.32) depends on Kr and Ki

in (3.8) through (3.8)-(3.30). As such these PID gains can guarantee prescribed damping

ratio and natural frequency.

3.3 Inner attitude controller

In this section, we explain the second step of the backstepping method for the quadro-

tor, which is attitude control.

It is beneficial to develop a motor model to analyze a quadrotor’s ability to produce

linear and angular velocities from a nominal state. To establish the relation between thrust

produced by the rotors and angular velocity of the rotor, it is reasonable to assume that

fi = tΩ2
i ∀i = 1, 4 where fi is the thrust produced by each rotor.

16



The attitude controller is generally built in to the UAV and cannot be modified. Con-

sequently, the interface between the outer-loop PID controller just designed and the attitude

controller must be properly crafted.

This attitude controller must take the desired values of ϕd, θd and ψd (3.23)-(3.24)

as inputs and produce the torque vector τB in (2.2) to stabilize the rotational dynamics ac-

cording to the expression

τB=


τϕ

τθ

τψ

=


lt(Ω4

2−Ω2
2)

lt(Ω3
2−Ω1

2)

d(Ω1
2+Ω3

2−Ω2
2−Ω4

2)


(3.33)

where l is the lever length, t is the thrust factor, Ωi, i = 1, 2, 3, 4, is the angular velocity of

the rotor and d is the drag factor. The direction of angular velocities for each rotor is given

in Fig.4 as while first and fourth rotor turn anti-clockwise, the other two turn clockwise.

This is because of canceling the yawing moments generated while quadrotor is at nominal

condition (hover). The total thrust, µd, is equal to the sum of thrusts generated by each

rotor, that is

µd=t(Ω1
2+Ω2

2+Ω3
2+Ω4

2) (3.34)

Then the attitude controller to generate changes in angular velocities using PID control is

designed as 
∆Ωϕ

∆Ωθ

∆Ωψ

=


Pϕ (ϕd−ϕ) +Dϕ (pd−p) +Iϕ

∫
(ϕd−ϕ)

Pθ (θd−θ) +Dθ (qd−q) +Iθ
∫

(θd−θ)

Pψ (ψd−ψ) +Dψ (rd−r) +Iψ
∫

(ψd−ψ)

 (3.35)

where pd, qd and rd are calculated using kinematics of the Euler rates (2.1) and desired
17



Figure 3.3. Quadrotor configuration frame.

values of Euler angles, such that


pd

qd

rd

=


1 0 −sθd

0 cϕd cϕdsϕd

0 −sϕd cθdcϕd



ϕ̇d

θ̇d

ψ̇d

 (3.36)

and the values of p, q and r are obtained from (2.1).

Finally, we obtain the desired angular velocity of each rotor as



Ω1d

Ω2d

Ω3d

Ω4d


=



1 0 −1 1

1 −1 0 −1

1 0 1 1

1 1 0 −1





Ωh+∆Ωnet

∆Ωϕ

∆Ωθ

∆Ωψ


(3.37)

where ∆Ωϕ, ∆Ωθ and ∆Ωψ are computed in (3.35), Ωh is the rotor speed required to hover

such that

Ωh=

√
mg

4t
(3.38)
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and ∆Ωnet is the outcome of desired vertical speed, wd, in the form of

∆Ωnet=
m

8tΩh

ẇd (3.39)

substituting (3.37) in (3.33) yields the desired torque vector.

3.4 Stability analysis

This section reveals the stability analysis of the backstepping control method in

Chapter 2, based on Lyapunov analysis. The assumptions are:

Assumption 1 The quadrotor is a rigid body.

Assumption 2 The disturbance and aerodynamic forces that interferes with the fuse-

lage terms are negligible.

Assumption 3 In Section 3.1, we assume pitch and roll angles of the quadrotor do not

exceed -π/2 and π/2 bounds whereas in Section 3.2, we accept they do not exceed -π/6 and

π/6 bounds.

Assumption 4 Inertial Frame (Earth Frame) is fixed in the 3D space.

The next theorem shows stability of the error dynamics (3.6). It combines the analy-

sis in [6] with our novel design in terms of gainsKr andKi in (3.6), and the performance

of the inner attitude controller in Section 3.3.

Theorem 1. Given the force (3.5), desired Euler angles in (3.11),(3.12) and thrust (3.13).

Assume the inner attitude controller (3.33), tracks the Euler angles (3.11),(3.12) and verti-

cal speed (3.14). Then the error dynamics (3.6) are asymptotically stable.
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Proof. The candidate Lyapunov function is

L =
1

2
rTP1r +

1

2

[∫ t

0

rTdt

]
P2

[∫ t

0

rdt

]
(3.40)

where P1 and P2 are positive definite matrices. By using the Leibniz Integral Rule, the

derivative of L becomes

L̇ = rTP1ṙ +

[∫ t

0

rTdt

]
P2r. (3.41)

and substituting (3.6) in (3.41) results in the following

L̇ = −rT P1Kr

m
r − rT P1Ki

m

[∫ t

0

rdt

]
(3.42)

+rTP1
F̃d
m
−
[∫ t

0

rTdt

]
P2r.

Select P2 and note that it is positive definite and diagonal

P2 =
P1Ki

m
. (3.43)

Then (3.42) becomes

L̇ = −rT P1Kr

m
r + rTP1

F̃d
m
. (3.44)

Notice that tracking the desired Euler angles in (3.11),(3.12) and vertical velocity (3.14) by

the attitude controller in Section 3.3, guarantees µd in (3.13) is the same as µd in (3.34).

This means the force generated in the Earth Frame is actually in the form of the desired

force Fd, given in (3.5) by the relation F d = RT [0 0 µd]
T , hence F → Fd and F̃d → 0.

Then (3.44) becomes

20



L̇ = −rT P1Kr

m
r (3.45)

which is negative definite. Therefore, the closed-loop error dynamics given in (3.6) is

asymptotically stable.
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CHAPTER 4

MODEL DESIGN & SIMULATION RESULTS

In this chapter, we share the simulation model design of the AR.Drone 2.0 for both

theoretical and identified model. Both of the simulation models are created using MATLAB-

Simulink environment.

4.1 Theoretical Model

Herein we show the simulation model based on the mathematical model of the quadro-

tor helicopter defined in Chapter 2. Figure 4.1 shows the Simulink design of the mathemat-

ical model.

Figure 4.1. Theoretical Model.
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4.2 Identified Model

Herein we show the identified model based on the data collected through the flight

tests. The identified model is created using System identification toolbox of MATLAB.

Figure 4.3 shows the Simulink design of the identified model. In the background of the

identifying model process, this toolbox uses recursive least squares method. Graphical

User Interface of System Identification Tool is given in the Fig 4.2.

Figure 4.2. GUI of System Identification Tool.
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Figure 4.3. Identified Model.

4.3 Simulation Results

This section reveals the simulation results obtained with different trajectories and

scenarios. We first show the trajectories followed using the theoretical model. Then we

share the graphical results when the identified model is used.

4.3.1 Theoretical Model Results

In this section, we give the show the desired and followed trajectories of the UAV

using the theoretical model. For the backstepping-PID controller proposed in Fig. 3.2, Fig.

following figures show the desired path and the path tracked by the UAV respectively when

both circular and 8-figure are desired trajectories.

24



-1.5

-1

-0.5

0

0.5

1

1.5

x-axis (m)-1.5

-1

-0.5

0

0.5

1

1.5

y-axis (m)

0

0.5

1

1.5

z
-a

x
is

 (
m

)

Start

Followed Path

Desired Path

Finish

Figure 4.4. Theoretical model eight-figure desired trajectory implementation..
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Figure 4.5. Theoretical model circular-figure desired trajectory implementation.

4.3.2 Identified Model Results

In this section, we show the desired and followed trajectories of the UAV using the

model. For the backstepping-PID controller proposed in Fig. 3.2, Fig. 4.6 and Fig. 4.7
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-1.5
-1

-0.5
0

0.5
1

1.5

x-axis (m)

-1

0

1

y-axis (m)

0

0.5

1

1.5

z
-a

x
is

 (
m

)

Start

Followed Path

Desired Path

Finish

Figure 4.7. Identified model circular-figure desired trajectory implementation..

show the desired path and the path tracked by the UAV respectively when both circular and

8-figure are desired trajectories.
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CHAPTER 5

EXPERIMENT DESIGN AND FLIGHT TEST DETAILS

This section addresses the crucial elements of our experiments, which are the lab

equipment, the trajectory generation and the flight controller design. We also give details

of the problems encountered and solved through implementation of proposed control algo-

rithms.

5.1 Lab environment

Here we illustrate the lab equipment and their specifications. Fig. 5.1 shows the

entire system designed at UTA Research Institute for testing the backstepping control ap-

proaches on UAVs. Basic three elements are the Vicon, the Parrot AR.Drone 2.0, and the

master computer. Vicon is a motion capture system that provides the position of the UAV by

sending infrared waves to the markers that are sensitive to these waves. In the application

procedure, these markers are placed on the UAV and Vicon is started. In the experiments,

we use eight Vicon camera system.

The communication between master computer and Vicon is provided via User Data-

gram Protocol (UDP). The frequency of the UDP Packets taken from Vicon motion capture

system is 100 Hz, meaning that in every 10 milliseconds, the master computers gets the

position information of the AR.Drone 2.0.

The AR.Drone 2.0 shown in Fig. 5.2 is a well-known Parrot produced quadrotor

that has a built-in gyroscope and the Inertial Measurement Unit (IMU) sensor suite. In the

experiments introduced in Chapter 5, we use the cover of AR. Drone 2.0 shown in Fig.
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Figure 5.1. Autonomous systems lab experiment.

5.2 regarding safety. The desired pitch, roll and yaw angles and time rate of the vertical

velocity commands are sent to the AR.Drone to track the desired position.

Euler angle information of the UAV is obtained via IMU that is embedded in the

AR.Drone. In practical applications many quadrotors are designed with a built-in attitude

controller and AR.Drone has its own attitude controller. This controller takes the desired

values of ϕd, θd and ψd as inputs. The Parrot quadrotor also has a built-in altitude hold

controller, that takes the desired vertical velocity command as input. The communication

between the master computer and the AR.Drone is done via UDP. The frequency of UDP

packages is determined by the wifi rate, which is the network communication parameter of

the AR.Drone and it is not allowed for developer to change this parameter.

MATLAB-Simulink is used to create UDP nodes that are communicating with the

AR.Drone 2.0 and Vicon software. The receiver and the sender UDP nodes are inserted to

the Simulink model in the form of S-functions. The controller and the trajectory genera-

tion algorithms with the FSM design are implemented in the Simulink model. Simulink-

Desktop Real Time Add-on is used to send the real time commands to the AR.Drone, whose

details given at Chapter 5. The UDP nodes created are tolerable up to %10 packet loss rate,
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Figure 5.2. The Parrot AR.Drone 2.0.

which is necessary to handle communication channel noise created by the lab environment.

5.2 Trajectory generation

In this section, we recall how to generate a suitable trajectory for the quadrotor sys-

tems. To begin with, let ζ(t):R→R3 be a desired path to follow in analytical form and

ζd= (t, x, y, z)∈R4 be a representation of a desired path ζ(t) in a form of a dense collec-

tion of vectors. Notice that ζ(t) can be constructed even for the sets of points that do not

conform to a specific analytical function.

We construct the heuristic function that interpolates ζ(t) into a set of way-points

(ξi, ti)→(R3,R1) based on the local curvature. Each segment (ti, ti+1) is a third order

polynomial with unspecified parameters, which must be determined. One approach to find

them includes the use of parametric constraints such that

ξ(ti) =ξti

ξ(ti+T ) =ξti+1
(ti+1) (5.1)

ξ̇(ti) =ξ̇ti

ξ̇(ti+T ) =ξ̇ti+1
(ti+1)
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This 4th order system of equations is solved to determine the coefficients of the polynomial

for each segment 

1 t t2 t3

1 2t 3t2

2 6t

6





a

b

c

d


=



ξti

ξti+1

ξ̇ti

ξ̇ti+1


(5.2)

5.3 Flight controller design

The flight controller is a high-level decision-making mechanism that activates dif-

ferent modes of the operation depending on the state of UAV. We recognize three modes

of the operation in our MATLAB-Simulink implementation, which are IDLE, HOVER and

TRACK PATH modes as shown in Fig. 5.3. The quadrotor enters the IDLE mode, when

either we turn-on the AR.Drone 2.0 manually or it is landed by receiving Land command.

As we turn the quadrotor on, it directly calibrates itself, which requires its initial

attitude to be parallel with respect to the ground. While the UAV is in IDLE mode, it

is actively receiving data packets via UDP and is ready to get TakeOff command. If the

TakeOff command is sent to the quadrotor, the value of vertical velocity command of the

AR.Drone 2.0 is incrementally increased until the desired height value is achieved. This

command is to generate the sufficient thrust to take the AR.Drone 2.0 off the ground and to

get the quadrotor in hover at a certain altitude.

It is critical that the thrust is balanced over the propellers to ensure that the take-off

is vertical. When UAV reaches the desired height, zd, the flight controller switches to the

HOVER mode. The physical shape of the UAV as well as aerodynamical effects make it

hard to generate the balanced thrust vector summed over all four propellers. That results

in curved take-off trajectory until hover altitude is reached. Notice that AR.Drone 2.0 is

not a physically symmetric on its x-y plane To amend for the offset in the initial position,
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Figure 5.3. The flight controller FSM design.

we generate position command (0,0,0.75) as soon as possible, thus securing the hovering

precisely above the origin. This motion is represented clearly in the figures of Chapter 6.

In the HOVER mode, the UAV is at the nominal condition, and controller’s task is to

keep the attitude parallel to ground. If the Track command is received in the HOVER mode,

the flight controller switches to the PATH TRACK mode. In this mode, the AR.Drone 2.0

tracks the predetermined trajectory. We record both the desired and the followed position

data by the quadrotor in MATLAB workspace in the real-time flight tests.

Each iteration of the PATH TRACK mode first reads the IMU sensor buffers and

then Vicon buffer to construct the close loop error dynamics. Since we have two different

backstepping control design we choose one of them at this point. If the control algorithm

suggested in Chapter 3.1 is used, functions (3.10)-(3.13) is called. Else if the proposed

control algorithms in Chapter 3.2 used, functions (3.30), (3.31) used. Notice herein the

desired yaw angle and time rate of vertical speed command is set to zero.

To land the quadrotor on the ground, we use either EmergencyLand or SafeLand

commands. The difference is the timing of stopping propeller movements. If we send the

SafeLand command to the AR.Drone, it reduces the propeller speed till its height is at the

range of 0-0.1 meter and shuts down the propellers. Else if we send the EmergencyLand

to the quadrotor, it directly stops the propellers and lands on the ground. The appropriate
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structure for implementing the flight controller is the finite state machine (FSM) since the

mode switching event is driven as shown in Fig. 5.3.
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CHAPTER 6

FLIGHT TEST IMPLEMENTATION RESULTS

This section reveals the flight test implementation results obtained with different

trajectories and scenarios. In Section 6.1, it is seen the backstepping-based PID controller

in Fig. 3.2 gives the trajectory tracking performance as good as the exact backstepping

controller in Fig. 3.1 during movement of the quadrotor.

Moreover, in Section 6.3 we compare our PID design in Fig. 3.2 with a standard

existing PID controller in the literature. We show that the performance of the backstepping-

designed PID controller is better in terms of decreasing both of the path following error and

positional overshoot that occurs especially when the sudden position command is received.

Therefore, the performance of proposed PID controller in Fig. 3.2 is verified.

6.1 Densely sampled trajectories

In this section, we compare the performance of the full nonlinear backstepping con-

troller in Fig. 3.1 and the PID controller in Fig. 3.2 derived from it by using different

desired trajectories. We measure the performance of these algorithms using the desired tra-

jectories that have the sampling rate of 500 Hz. This means the goal point of the trajectory

is generated every 2 milliseconds and desired trajectories are constructed smoothly. We

present the desired path of the quadrotor and path followed by the quadrotor in following

figures.

To model the system dynamics and observe system parameters offline, we use the

system identification toolbox of MATLAB, which uses the recursive least squares esti-

mation method as a base algorithm. Then, we get the ωn as 1.26-1.22 rad/sec and ζ as
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Figure 6.1. The path tracked by the UAV with backstepping controller and backstepping
controller with PID tracker using 8-figure trajectory.

0.92-0.96 to control the quadrotor’s pitch and roll angles respectively. These values are

substituted in (3.9) and (3.28)-(3.30) to calculate the PID gains. Notice that these values

highly depend on the firmware version of the AR.Drone, external disturbances and the sam-

pling rate used while identifying the quadrotor system.

For the backstepping controller proposed in Fig. 3.1, Fig. 6.1 and Fig. 6.2 show the

desired path and the path tracked by the UAV respectively when both circular and 8-figure

are desired trajectories. The performance of proposed PID controller in Fig. 3.2 is seen to

be almost the same as the full nonlinear backstepping controller for the outer loop. Notice

that the tracking error is maintained inside acceptable bounds. On the other hand, for the

backstepping controller with PID position control loop given in Fig. 3.2, these figures

reveal the tracking performance of the UAV. Again, the results show that the proposed PID

controller performs well in the practical implementation.
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Figure 6.2. The path tracked by the UAV with backstepping controller and backstepping
controller with PID tracker using circular trajectory.

To test the limits of the control algorithms, we determine the time of completing the

eight-figure and circular trajectory as 4π or 12.6 seconds. Table 1 represents the percentage

of error, which is calculated byErr% = ||ξd−ξ||
|ξd|

×100 with respect to different trajectories.

In these experiments, the quadrotor enters the PATH TRACK mode after hovering

at the position (0,0,0.75). And when UAV enters this mode, the flight time is exactly

10 seconds meaning that the UAV starts to track the desired path 10 seconds after the

communication between Master computer, Vicon and AR.Drone 2.0 is established. And

since the period is set as 4π seconds, the Err% is calculated from 10 seconds to 4π+10

seconds. Moreover, the data for tracked path are shifted to overlap on the desired path

during calculation of the percentage of error.

Fig. 6.3 and 6.4 indicates the comparison of the proposed algorithms in Fig. 3.1 and

3.2 in terms of positional errors. Here, we illustrate the desired trajectories and experimen-
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tal values of x-y-z axis positions. Results justify the validity of small angle approximation

for the pitch and roll angles in the inverse kinematics case.

6.2 Behavior with sparsely sampled trajectory

Herein we show how backstepping controller derived PID position control loop elim-

inates positional overshoot while AR.Drone 2.0 making waypoint navigation. We get the

UAV to the goal points, which are 1.4 meter and 2.8 meter away from each other. The

first step is getting the quadrotor to the desired point in 3D space. Then, we examine the

positional overshoot of the quadrotor.

Table 6.1. The four test cases used to generate the experimental results

Percent of Error 8-figure Circle

Classical backstepping controller 2.3356 1.8655
Backstepping controller with PID tracker 2.33357 1.8654

Fig. 6.5 shows the start, goal, finish points and the trajectory of the quadrotor.

Quadrotor hovers at the first goal point (0, 0, 0.75), then we set the desired position as

(-1, -1, 0.75), which is the second target position. The last goal point is commanded as (1,

1, 0.75). As can be seen from the Fig. 12, the positional overshoot is small, which proves

that the backstepping derived PID position control loop handles the overshoot well.

6.3 Comparison with existing PID controller

In this section, we compare the backstepping controller with PID position control

loop performance with the work presented in [21], which proposes self-tuning fuzzy PID

controller. The robustness of the proposed PID controller in Fig. 3.2 is verified. In this
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scenario, it is desired for the quadrotor to follow a square trajectory constructed with goal

points, which are 0.5 meters apart from each other. This is expected to result in aggressive

movement of the quadrotor since the trajectory is infrequently sampled. According to

results of [21], maximum error of the fuzzy logic PID controller is 0.18 meters. This upper

bound of the error is highly convincing for a flight control system designer.

The infrequent sampled trajectory is simply the low rates of commands updating

given in [10]. We conduct this experiment case to measure the navigational performance

of our control methods under the effect of low rates of command updating. We notice with

this effect, the quadrotor should have quick reactions, high stability and maneuverability

capabilities to follow the desired trajectory.
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Figure 6.3. Comparison of proposed algorithms in Fig.2 and Fig. 3 with 8-figure desired
trajectory.
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Figure 6.4. Comparison of proposed algorithms in Fig.2 and Fig. 3 with circular desired
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Fig. 6.6 shows the path tracked by UAV with the goal points placed 0.5 meters

away, which creates the square trajectory. In our case, the max error is 0.10 meters, which

occurred while quadrotor is passing through the corner of square trajectory.

This test case basically proves that the PID controller derived from nonlinear back-

stepping design has a guaranteed performance even with infrequent sampled desired tra-

jectory.

Finally, we record a video of the experiments described, interested reader can use

the link ‘https://www.youtube.com/watch?v=i4qpmmnqFso’ to have visual understanding

of this section. Notice that we also shot the formation control of three quadrotors using

backstepping approach. These UAVs interact to make a very strong wind effect. Neverthe-

less, the formation control is effective and accurate. This proves the robustness of proposed

control method.
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6.4 Swarm Behavior

The aim of this section is to demonstrate robustness of the PID-backstepping control

method as the wind produced by quadrotors affecting flight performance of each agent of

the swarm. In following figure, we share the trajectories followed for multiple AR.Drone

2.0 swarm, while each of them is supposed to follow the circular trajectories. Interested

reader can use ‘https://www.youtube.com/watch?v=BmDtooVMc0M’ to understand the

swarm behavior visually.
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Figure 6.7. Behavior of the swarm of multiple UAVs.
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CHAPTER 7

CONCLUSION

In this thesis, a method of backstepping control based on the second-order sliding

variable is discussed. The proposed algorithms are validated by using Vicon Tracker,

AR.Drone 2.0 and a master computer. Through rigorous experimentation, we showed that

backstepping control with a PID outer position control loop provides a guaranteed per-

formance in terms tracking error. We compare the trajectories followed by AR.Drone 2.0

quadrotor with a full nonlinear backstepping controller and our guaranteed PID controller

design. Our PID tracking control loop is seen to exhibit performance similar to the full

nonlinear backstepping controller, yet with a far simpler structure that is compatible with

the built-in UAV attitude inner loop controller. Furthermore, the PID tracking control loop

is proved to eliminate the positional overshoot problem when sudden desired position com-

mand received. Further research can be conducted to investigate how the aerodynamic state

dependent disturbances affect the proposed controller algorithm in this paper.
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APPENDIX A

NOMENCLATURE
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ξ : position vector in Earth frame

U : velocity vector in Body frame

ξd : desired position vector in Earth frame

xd : desired position in x-axis in Earth frame

yd : desired position in y-axis in Earth frame

zd : desired position in z-axis in Earth frame

x : current position in x-axis in Earth frame

y : current position in y-axis in Earth frame

z : current position in z-axis in Earth frame

xB : desired position in x-axis in Body frame

yB : desired position in y-axis in Body frame

zB : desired position in D-axis in Body frame

R : rotation matrix from Earth to Body frame

F : force vector in the Earth frame

F d : desired force vector in Earth frame

F g : gravitational force vector in Earth frame

g : gravitational acceleration

µ : thrust produced in Body frame z-axis

µd : desired total thrust in Body frame z-axis

wB : angular velocity matrix in Body frame

u : forward velocity in Body frame

v : sideward velocity in Body frame

w : vertical velocity in Body frame

p : roll rate

q : pitch rate

r : yaw rate
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e : error term

ϕ : roll angle

θ : pitch angle

ψ : yaw angle

ϕd : desired roll angle

θd : desired pitch angle

ψd : desired yaw angle

IB : inertia matrix

m : mass of the quadrotor

l : lever length

t : thrust factor

τB : torque vector

Ω : angular velocity of rotor
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