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ABSTRACT

DEEP REPRESENTATION LEARNING FOR CLUSTERING AND DOMAIN

ADAPTATION

Mohsen Kheirandishfard, Ph.D.

The University of Texas at Arlington, 2019

Representation learning is a fundamental task in the area of machine learning which

can significantly influence the performance of the algorithms used in various applications.

The main goal of this task is to capture the relationships between the input data and learn

feature representations that contain the most useful information of the original data. Such

representations can be further leveraged in many machine learning applications such as

clustering, natural language processing, recommender systems, etc. In this dissertation, we

first present a theoretical framework for solving a broad class of non-convex optimization

problems. The proposed method is applicable to various tasks involving representation

learning such as discriminative dimensionality reduction and graph matching. We perform

experiments on benchmark graph matching datasets to verify the effectiveness of our pro-

posed approach in finding a near-optimal match between two given graphs. Besides that,

we practically corroborate the capability of deep models in extracting complex underlying

relationships between the data samples in two fundamental problems: subspace clustering

and domain adaptation. Toward this goal, we propose two novel deep architectures for

learning informative and high-quality representations that are able to considerably boost

the performance of the existing algorithms. Our experiments demonstrate the potential of

our proposed architectures in achieving state-of-the-art results on well-known benchmark
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datasets. In the following, we give brief explanations about three different projects included

in this dissertation.

Convex Relaxation of Bilinear Matrix Inequalities: Many interesting machine learning

problems are inherently non-convex and computationally hard to solve. We study the ap-

plicability of convex relaxation techniques on finding solutions to these problems. We

develop a novel and computationally efficient convexification technique that relies on con-

vex quadratic constraints to transform a class of non-convex problems, known as bilinear

matrix inequality (BMI), into convex surrogates. Then, the solution of the surrogates can be

efficiently obtained using standard convex optimization approaches. We study the theoret-

ical aspects of the proposed convexification algorithm and investigate the conditions under

which the algorithm is guaranteed to produce feasible solutions for the BMI problem. As

the BMI formulation encompasses a wide range of non-convex problems, the proposed al-

gorithm is generally applicable to many machine learning problems such as dimensionality

reduction, minimum volume ellipsoid, graph matching, and matrix completion, etc. To

evaluate the effectiveness of the proposed procedure, we use the idea of sequential relax-

ation to find the solution of the graph matching problem. To this end, we first propose a

novel convex formulation for the problem and then develop a numerical algorithm based

on the alternating direction method of multipliers to solve the convexified formulation. The

results of our experiments on two benchmark datasets for graph matching demonstrate the

potential of the proposed algorithm in finding high-quality solutions.

Multi-Level Representation Learning for Deep Subspace Clustering: Subspace clustering

is an unsupervised learning task with a variety of machine learning applications such as

motion segmentation, face clustering, etc. The primary goal of this task is to partition a set

of data samples, drawn from a union of low-dimensional subspaces, into disjoint clusters

such that the samples within each cluster belong to the same subspace. This project pro-

poses a novel deep subspace clustering approach which uses convolutional autoencoders
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to transform input images into new representations lying on a union of linear subspaces.

The first contribution of our method is to insert multiple fully-connected linear layers be-

tween the encoder layers and their corresponding decoder layers to promote learning more

favorable representations for subspace clustering. These connection layers facilitate the

feature learning procedure by combining low-level and high-level information for generat-

ing multiple sets of self-expressive and informative representations at different levels of the

encoder. Moreover, we introduce a novel loss minimization model which leverages an ini-

tial clustering of the samples to effectively fuse the multi-level representations and recover

the underlying subspaces more accurately. The loss function is then minimized through

an iterative scheme which alternatively updates the network parameters and produces a

new clustering of the samples until the convergence is obtained. Our experiments on four

real-world datasets demonstrate that the proposed approach exhibits superior performance

compared to the state-of-the-art methods on most of the subspace clustering problems.

Class Conditional Alignment for Partial Domain Adaptation: Adversarial adaptation mod-

els have demonstrated significant progress towards transferring knowledge from a labeled

source dataset to an unlabeled target dataset. Partial domain adaptation (PDA) investigates

the scenarios in which the source domain is large and diverse, and the target label space is a

subset of the source label space. The main purpose of PDA is to identify the shared classes

between the domains and promote learning transferable knowledge from these classes. In

this project, we propose a multi-class adversarial architecture for PDA. The proposed ap-

proach jointly aligns the marginal and class-conditional distributions in the shared label

space by minimaxing a novel multi-class adversarial loss function. Furthermore, we in-

corporate effective regularization terms to encourage selecting the most relevant subset of

source domain classes. In the absence of target labels, the proposed approach is able to

effectively learn domain-invariant feature representations, which in turn can enhance the

classification performance in the target domain. Our comprehensive experiments on two
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benchmark datasets Office-31 and Office-Home corroborate the effectiveness of the pro-

posed approach in addressing different partial transfer learning tasks.
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CHAPTER 1

Introduction

Many problems arising in real-world can be cast as optimization problems involving

various variables and constraints. Generally, an optimization problem aims to minimize a

cost function, called objective function, over a set of points that satisfy certain constraints.

Such problem can be formulated as

minimize
x∈Rn

f(x) (1.1a)

subject to x ∈ C, (1.1b)

where x ∈ Rn is the vector of variables, f : Rn → R denotes the objective function, and

C shows the set of points satisfying all constraints, named feasible set. The hardness of

solving (1.1a) – (1.1b) depends on the properties of function f and set C (e.g. convexity or

non-convexity).

This dissertation explores a wide range of optimization problems that frequently arise

in different areas of machine learning. The first project provides a theoretical framework

for studying a general class of non-convex optimization problems and proposes a practical

algorithm to solve them in an efficient manner. We further demonstrate the applicability

of the proposed algorithm in some real-world applications. The second project is related

to the subspace clustering problem which is a fundamental problem in the area of machine

learning. In this project, we use deep learning architectures to transform input samples into

the feature representations that lie on a union of linear subspaces and then apply the spec-

tral clustering technique to recover the clusters. The third project investigates the domain

adaptation and transfer leaning problems. This project aims to transfer knowledge from a
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large and diverse dataset into a small one by leveraging deep models for learning feature

representations that are domain-invariant. In what follows, we briefly review each of these

projects separately.

1.1 Convex Relaxation of Bilinear Matrix Inequalities

Optimization problems involving matrix inequality constraints widely arise in both

theoretical and practical aspects of machine learning problems [6, 7, 8, 9, 10]. The well-

known linear matrix inequality (LMI) problem is regarded as a popular and special case of

these problems which can be efficiently solved by means of classical convex optimization

methods. As an important generalization of LMIs, bilinear matrix inequalities (BMIs) have

diverse applications, but are computationally non-convex and computationally prohibitive

to solve [11, 12]. A general BMI problem can be expressed as the following optimization

problem

minimize
x∈Rn

f(x) (1.2a)

subject to F0 +
n∑
k=1

xkKk +
n∑
i=1

n∑
j=1

xixjLij � 0, (1.2b)

where � denotes the negative semidefinite symbol and F0, {Kk}nk=1, and {Lij}ni,j=1 are

given symmetric matrices of size m×m. Various approaches are presented in the literature

to find the solution of problem (1.2a) – (1.2b). One simple and commonly-used technique

is alternating method (AM) which partitions the non-convex problem into two (or more)

convex sub-problems and then alternatively solves the sub-problems until the convergence

is obtained. Although the AM-based approaches enjoy low per-iteration complexity and

work well in practice, they mostly offer no convergence guarantees to a feasible point of

the original non-convex problem.

One promising direction is to use relaxation techniques which are well-studied in

many areas such as machine learning [13, 14], polynomial optimization [15, 16], etc. The
2



basic idea of these techniques is to first relax the non-convex problems into convex surro-

gates whose solution approximate the solution of the original non-convex problems. Then,

the solution of the convexified problems can be efficiently obtained in polynomial time

using standard convex optimization methods such as alternating direction method of mul-

tipliers (ADMM) [17], interior-point method [18, 19, 20] (see [21] for a detailed survey).

This dissertation proposes a novel and general relaxation technique which only relies

on convex quadratic constraints to find the solution of problems involving BMI constraints.

To ensure the relaxation provides feasible solutions for the original problem, we use an ini-

tial point to design a penalty term which is incorporated into the objective function of the

relaxation. We theoretically prove that if the initial point is feasible for the BMI problem,

the penalized relaxation is guaranteed to maintain the feasibility of the solutions. In the

case where the initial point is not feasible, we introduce certain conditions under which the

solution of the convexified problem is guaranteed to be feasible. To further improve the

quality of the solution, we extend the proposed relaxation to a sequential scheme which

starts from an initial point and aims to recover feasible and near-globally optimal solutions

of the original non-convex problem. The proposed scheme can be widely used in the area

of machine learning as many problems can be seen as special cases of BMI problems. We

investigate the applicability of the proposed scheme on some fundamental problems such

as dimensionality reduction, minimum volume ellipsoid, and graph matching. To see how

the idea performs in real-world applications, we introduce a convexified formulation of the

graph matching problem and develop a sequential numerical scheme based on alternating

direction method of multipliers to find the solution of the convexified problem. Experi-

ments on two benchmark datasets for the graph matching problem verify the effectiveness

of our proposed approach in solving the graph matching problem.
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1.2 Multi-Level Representation Learning for Deep Subspace Clustering

High-dimensional data are becoming increasingly common and available in many

real-world machine learning applications and researchers constantly endeavor to develop

efficient and fast algorithms to process this huge amount of data in a short period of time.

It is widely believed that the high-dimensional data points are not uniformly distributed in

the ambient space and they mostly lie on or close to low-dimensional structures. Therefore,

this is of great importance to recover such low-dimensional structures as it can significantly

reduce the computational complexity and the memory usage of the algorithms. Moreover,

it allows learning new representations of the points that are more robust to noise than the

original high-dimensional points and hence can improve the performance of the existing

machine learning algorithms.

Subspace clustering is an unsupervised learning task with a variety of machine learn-

ing applications such as, motion segmentation [22, 23], face clustering [24, 25], and movie

recommendation [26, 27]. The main purpose of subspace clustering is to partition a bunch

of given samples, drawn from a union of low-dimensional subspaces, into disjoint clusters

such that the samples within each cluster belong to the same subspace [28, 29]. In this

sense, subspace clustering differs from the standard clustering problems as it assumes the

samples are arbitrarily distributed on the subspaces, not only around some certain centroids.

To find the solution of subspace clustering problem, various approaches are proposed

in the literature such as algebraic methods, iterative methods, and spectral clustering-based

methods [30, 31, 32, 33, 34]. This dissertation mainly focuses on the spectral clustering-

based approaches. The basic idea behind these methods is to first use the entire input

samples to learn an affinity matrix and then apply spectral clustering technique on the

matrix to infer the underlying subspaces and cluster the samples. One well-established

method of this kind is sparse subspace clustering (SSC) [34] which relies on the concept

of self-expressiveness property. This property states that each sample point in a union of
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subspaces is efficiently expressible in terms of a linear (or affine) combination of other

points in the subspaces [34]. Ideally, it is expected that the nonzero coefficients in the

linear representation of each sample correspond to the points of the same subspace as the

given sample. Towards this goal, SSC algorithm introduces an `1-regularized model to

select only a small subset of points belonging to the same subspace for reconstructing each

data point. Define matrixX = [x1|x2| . . . |xn] ∈ Rd×n where {xi}ni=1 are n sample points

drawn from a union of linear subspaces. The SSC algorithm proposes to solve the following

optimization problem to find the coefficient vector ci ∈ Rn for reconstruction of sample

point xi based on the other points

minimize
ci∈Rn

‖ci‖1 (1.3a)

subject to xi = Xci, cii = 0, (1.3b)

where constraint cii = 0 ensures that xi is not reconstructed by itself. By considering a

more general case in which the samples are contaminated by noiseX = XC+E, we can

formulate the following optimization problem for the entire samples

minimize
C∈Rn×n,E∈Rd×n

‖E‖F + ‖C‖1 (1.4a)

subject to X = XC +E, diag(C) = 0. (1.4b)

Once optimal matrix C is obtained, a symmetric affinity matrix can be obtained via

W = |C|+|C>|
2

. Applying spectral clustering technique on matrix W allows to cluster the

samples into their respective clusters and recover the underlying subspaces.

Despite the key role that the self-expressiveness plays in spectral clustering-based

methods, it may not be satisfied in a wide range of applications in which samples lie on non-

linear subspaces, e.g. face images taken under non-uniform illumination and at different

poses [35]. A common practice technique to handle these cases is to leverage well-known

kernel trick to implicitly map the samples into a higher dimensional space so that they
5



better conform to linear subspaces [36, 37, 38, 39]. Despite the empirical success obtained

by this strategy, it is not widely applicable to various applications, mainly because it is

quite difficult to identify an appropriate kernel function for a given set of data points [40].

Recently, deep neural networks have exhibited exceptional ability in capturing com-

plex underlying structures of the input data and learning discriminative features for clus-

tering. Inspired by that, the researchers have established a new line of research to bridge

deep learning and subspace clustering for developing deep subspace clustering approaches

[35, 41, 42, 43]. Variational Autoencoders (VAE) [44, 45] and Generative Adversarial Net-

work (GAN) [46] are among the most popular deep architectures adopted by these meth-

ods to produce feature representations suitable for subspace clustering [45]. Compared

to the conventional subspace clustering approaches, deep methods can better exploit the

non-linear relationships between the sample points and consequently they achieve higher

performance, especially in those applications in which the samples do not necessarily sat-

isfy the self-expressiveness property [35].

This dissertation proposes a novel spectral clustering-based approach which uses

stacked convolutional autoencoders to tackle the problem of subspace clustering. Inspired

by the idea of residual networks, our first contribution is to add multiple fully-connected

linear layers between the corresponding layers of the encoder and decoder to infer multi-

level representations from the output of every encoder layer. These connection layers en-

able to produce representations which are enforced to satisfy self-expressiveness property

and hence well-suited to subspace clustering. We model each connection layer as a self-

expression matrix created from the summation of a coefficient matrix shared between all

layers and a layer-specific matrix that captures the unique knowledge of each individual

layer. Moreover, we introduce a novel loss function that utilizes an initial clustering of

the samples and efficiently aggregates the information at different levels to infer the coef-

ficient matrix and the layer-specific matrices more accurately. This loss function is further
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minimized in an iterative scheme which alternatively updates the network parameters for

learning better subspace clustering representations and produces a new clustering of the

samples. We perform extensive experiments on four benchmark datasets for subspace clus-

tering, including two face image and two object image datasets, to evaluate the efficacy

of the proposed method. The experiments demonstrate that our approach can efficiently

handle clustering the data from non-linear subspaces and it performs better than the state-

of-the-art methods on most of the subspace clustering problems.

1.3 Class Conditional Alignment for Partial Domain Adaptation

With the impressive power of learning representations, deep neural networks have

shown superior performance in a wide variety of machine learning tasks such as classifi-

cation [47, 48, 49], semantic segmentation [50, 51, 52], object detection [53, 49, 54], etc.

These notable achievements heavily depend on the availability of large amounts of labeled

training data. However, in many applications, collecting sufficient labeled data is either

difficult or time-consuming. One potential solution to reduce the labeling consumption is

to build an effective predictive model using readily-available labeled data from a different

but related source domain. Such a learning paradigm generally suffers from the distribution

shift between the source and target domains, which in turn poses significant difficulties in

adapting the predictive model to the target domain tasks.

In the absence of target labels, unsupervised domain adaptation (UDA) seeks to en-

hance the generalization capability of the predictive model by learning feature representa-

tions that are discriminative and domain-invariant [55, 56, 57]. Various approaches have

been proposed in the literature to tackle the UDA problem by embedding domain adapta-

tion modules in a deep architectures [58, 59, 60, 61, 62, 63] (see [64] for a comprehensive

survey on deep domain adaptation methods). One well-established UDA approach is de-
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Figure 1.1: Partial domain adaptation scenario in which target label space (‘tape dispenser’,
‘mug’) is a subset of source label space (‘tape dispenser’, ‘backpack’, ‘mug’) [1]. The main
difficulty in Partial domain adaptation scenario is to identify and reject the source domain
classes that do not appear in the target domain (‘backpack’), mainly because they may exert
negative impacts on the overall transfer performance.

veloped in [46] which uses generative adversarial networks to adversarially learn domain-

invariant feature representations that are indistinguishable for a discriminative domain clas-

sifier [65, 66, 67, 68, 69]. By adopting such a strategy, the marginal disparities between the

source and target domains can be efficiently reduced, which results in significant improve-

ment in the overall classification performance.

Despite the efficacy of the existing UDA methods, their superior performance is

mostly limited to the scenarios in which the source and target domains share the same label

space. With the goal of considering more realistic cases, [1] introduced partial domain

adaptation (PDA) as a new adaptation scenario in which the target label space is a subset of

the source label space. This scenario is clearly illustrated in Figure 1.1. The main challenge

in PDA is to identify and reject the source domain classes that do not appear in the target

domain, known as outlier classes, mainly because they may exert negative impacts on the

overall transfer performance [4, 70]. Addressing this challenge enables the PDA methods
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to transfer models trained on large and diverse labeled datasets (e.g. ImageNet) to small-

scale datasets from different but related domains.

In this project, we propose a novel adversarial approach for partial domain adaptation

which seeks to automatically reject the outlier source classes and improve the classification

confidence on irrelevant samples, i.e. the samples that are highly dissimilar across the

domains. The existing PDA methods often align the marginal distributions between the

domains in the shared label space. Different from these methods, we propose a novel

adversarial architecture that matches class-conditional feature distributions by minimaxing

a multi-class adversarial loss function. Moreover, we propose to boost the target domain

classification performance by incorporating two novel regularization functions. The first

regularizer is a row-sparsity term on the output of the classifier to promote the selection of

a small subset of classes that are in common between the source and target domains. The

second one is a minimum entropy term which increases the classifier confidence level in

predicting the labels of irrelevant samples from both domains. We empirically observe that

our proposed approach considerably improves the state-of-the-art performance for various

partial domain adaptation tasks on two commonly-used benchmark datasets Office-31 and

Office-Home.

9



CHAPTER 2

Convex Relaxation of Bilinear Matrix Inequalities

In this chapter, we are concerned with the problem of minimizing a linear objec-

tive function subject to a bilinear matrix inequality (BMI) constraint. We first consider a

family of convex relaxations which transform BMI optimization problems into polynomial-

time solvable surrogates. As an alternative to the state-of-the-art semidefinite programming

(SDP) and second-order cone programming (SOCP) relaxations, a computationally effi-

cient parabolic relaxation is developed, which only relies on convex quadratic constraints.

Then, we develop a family of penalty terms, that can be incorporated into the objective

of SDP, SOCP, and parabolic relaxations to facilitate the recovery of feasible points for

the original non-convex BMI optimization. Penalty terms can be constructed using any

arbitrary initial point. We prove that the penalized relaxations are guaranteed to produce

feasible points for the BMI problem if the initial point is sufficiently close to the feasible set

of BMI. To further improve the quality of solutions, we generalize the penalized relaxation

to a sequential scheme which starts from an arbitrary initial point (feasible or infeasible)

and solves a sequence of penalized convex relaxations in order to find feasible and near-

optimal solutions for the BMI optimization problems. We show that many non-convex

machine learning problems can be cast as BMIs and consequently the proposed sequential

algorithm is applicable to find the solution of these problems.

2.1 Introduction

A wide range of real-world problems in the different areas can be cast as optimiza-

tion problems with matrix inequality constraints [6, 7, 71]. As a special case, the class of
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problems with linear matrix inequalities (LMIs) can be solved efficiently up to any desired

accuracy via interior-point based methods [20, 72]. However, despite various applications,

optimization in the presence of bilinear matrix inequalities (BMIs) is computationally pro-

hibitive and NP-hard in general. Significant efforts have been devoted to the develop-

ment of algorithms for solving BMI problems [73, 74, 75], including software packages

[76, 77, 78]. In [79, 80], alternating minimization (AM)-based algorithms are proposed

which divide variables into two blocks that can be alternately optimized until convergence.

Although AM-based methods enjoy simple implementation and perform satisfactorily in

many cases, they offer no convergence guarantees to a feasible solution.

Another approach is to solve a sequence of convex relaxations until a satisfactory

solution is obtained [81, 82, 83, 84, 85]. In [86, 82], BMI optimization problems are

tackled by forming a sequence of semidefinite programming (SDP) relaxations. In [87],

a sequential method is developed based on difference-of-convex programming with con-

vergence guarantees to (sub)-optimal solutions. In [83, 84, 88] rank-constrained formula-

tions with nuclear norm penalties are investigated along with bound-tightening methods for

solving general BMI optimization problems. In [89, 90, 91, 92], branch-and-bound (BB)

methods are developed with convergence guarantees to global optimality. The main short-

coming associated with BB methods is that they are often computationally prohibitive and

thus their applicability is limited to moderate-sized problems. A novel global optimiza-

tion method has been recently presented in [93] which tackles BMI problems using hybrid

multi-objective optimization methods.

From a different viewpoint, BMIs can be categorized as a special case of polynomial

matrix inequalities. Therefore, methods for solving general polynomial matrix inequalities

are applicable to BMIs as well [94, 95]. Despite computational complexity for real-world

applications, the most notable example is Lasserre’s hierarchy of LMI relaxations [96],

based on which several software packages have been developed [97, 98, 99].
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The main contribution of this work is to introduce a novel and general convex relax-

ation, regarded as parabolic relaxation, for solving optimization problems with BMI con-

straints. The proposed convex relaxation relies on convex quadratic constraints as opposed

to the SDP and SOCP relaxations that rely on computationally expensive conic constraints.

Our second contribution is concerned with finding feasible and near-globally optimal solu-

tions for BMI optimization problems. To this end, we incorporate a penalty term into the

objective function of convex relaxations. The proposed penalty term is compatible with

SDP, SOCP, and parabolic relaxations, and can be customized using any available initial

point. We prove that If the initial point is feasible for the original problem, then the out-

come of penalized relaxation is guaranteed to be feasible as well. Moreover, any infeasible

initial point which is close to the feasible set is guaranteed to produce a feasible point. Built

upon the above theoretical results, we offer a sequential penalized relaxation which is able

to find feasible and near-globally optimal solutions for BMI optimization.

We show that many machine learning problems can be considered as special cases

of BMI problems and hence the proposed algorithm can be utilized to find the solution of

these problems.

2.1.1 Notation

Throughout the paper, the scalars, vectors, and matrices are respectively shown by

italic letters, lower-case bold letters, and upper-case bold letters. Symbols R, Rn, and Rn×m

respectively denote the set of real scalars, real vectors of size n, and real matrices of size

n × m. The set of real n × n symmetric matrices and positive semidefinite matrices are

shown with Sn and S+
n , respectively. For given vector a and matrix A, symbols ai and

Aij respectively indicate the ith element of a and (i, j)th element of A. Notations [a]i∈I

and [A]ij∈I respectively shows the sub-vector and sub-matrix corresponding to the set of

indices I. Notation A � 0 means A is positive-semidefinite (A � 0 indicates positive
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definite) andA � 0 meansA is negative-semidefinite (A ≺ 0 indicates negative definite).

For two given matrices A and B of the same size, symbol 〈A,B〉 = tr{A>B} shows the

inner product between the matrices where tr{.} and (.)> respectively denote the trace and

transpose operators. Notation ‖.‖p refers to either matrix norm or vector norm depending

on the context and |.| indicates the absolute value. Symbols I , ei, and 0 denote the iden-

tity matrix, standard basis vector, and zero matrix of appropriate dimensions, respectively.

Letters N andM are shorthand for sets {1, . . . , n} and {1, . . . ,m}, respectively.

2.2 Problem Formulation

This paper is concerned with the following class of optimization problems with linear

objective and a bilinear matrix inequality (BMI) constraint:

minimize
x∈Rn

c>x (2.1a)

subject to p(x,xx>) � 0, (2.1b)

where c ∈ Rn is the cost vector, and p :Rn × Sn→ Sm is a linear matrix-valued function,

which is regarded as matrix pencil. In general, p can be formulated as:

p(x,X) , F0 +
∑
k∈N

xkKk +
∑
i∈N

∑
j∈N

XijLij. (2.2)

where F0, {Kk}k∈N , and {Lij}i,j∈N are m × m real symmetric matrices. With no loss of

generality, we can assume that Lij = Lji for all i, j∈N , sinceX is a symmetric matrix.

Problem (2.1a) – (2.1b) is non-convex and NP-hard in general, due to the presence of

the BMI constraint (2.1b). To tackle this problem, it is common practice to solve convex

surrogates that produce lower bounds on the globally-optimal cost of the original non-

convex problem (2.1a) – (2.1b). To this end, an auxiliary matrix variable X is introduced
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to account for xx>. This leads to the following lifted reformulation of the problem (2.1a) –

(2.1b):

minimize
x∈Rn,X∈Sn

c>x (2.3a)

subject to p(x,X) � 0, (2.3b)

X = xx>, (2.3c)

where constraint (2.3c) is imposed to preserve the equivalency. Lifting casts the problem

into a higher dimensional space in which the BMI constraint (2.1b) is transformed into

a linear matrix inequality and the entire non-convexity is captured by the new constraint

(2.3c). In what follows, we will substitute (2.3c) with convex alternatives and revise the

objective function in order to obtain feasible and near-globally optimal points for the orig-

inal problem (2.1a) – (2.1b).

2.3 Preliminaries

In order to further analyze the BMI constraint (2.1b), the next definition introduces

the notion of pencil norm.

Definition 2.1 (Pencil Norm). For every q ≥ 1, the q-norm of the matrix pencil in equation

(2.2) is defined as

‖p‖q, max
{∥∥[u>Liju]

i,j∈N 2

∥∥
q

∣∣∣∀u ∈ Rm, ‖u‖2 =1
}
. (2.4)

The next definition provides a measure of the distance between any arbitrary point in

Rn and the feasible set of optimization problem (2.1a) – (2.1b).

Definition 2.2 (Feasiblity Distance). For every x ∈ Rn, define the feasibility distance

dF : Rn → R as

dF(x) , inf{‖x− a‖2

∣∣ a ∈ F}, (2.5)
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where F ⊆ Rn denotes the feasible set of the BMI problem (2.1a) – (2.1b). Observe that

the feasibility distance is equal to 0 if x ∈ F .

We use the Mangasarian-Fromovitz constraint qualification (MFCQ) condition from

[100] in order to characterize well-behaved feasible points of problem (2.1a) – (2.1b).

Definition 2.3 (MFCQ Condition). A feasible point x ∈ F of problem (2.1a) – (2.1b) is

said to satisfy the MFCQ condition if there exists b ∈ Rn such that

p(x,xx>) +
∑
k∈N

bk(Kk+δk(x)) ≺ 0, (2.6)

where for every k ∈ N , the matrix function δk : Rn → Sm is defined as

δk(x) , 2
∑
i∈N

xiLki, (2.7)

representing the derivative of bilinear terms of pencil p with respect to xk.

In the following definition, we introduce a generalization of the MFCQ condition to

cover infeasible points as well.

Definition 2.4 (G-MFCQ Condition). An arbitrary point x ∈ Rn is said to satisfy the Gen-

eralized Mangasarian-Fromovitz constraint qualification (G-MFCQ) condition for prob-

lem (2.1a) – (2.1b), if there exists b ∈ Rn where

∑
k∈N

bk(Kk+δk(x)) ≺ 0. (2.8)

Moreover, define the G-MFCQ function s : Rn → R as

s(x) , max
{

¯
λ
(
−
∑
k∈N

bk(Kk+δk(x)
))∣∣∣‖b‖2 =1

}
, (2.9)

where the operator
¯
λ(.) returns the minimum eigenvalue of its input argument.
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2.4 Convex Relaxation

This section aims at introducing a family of convex relaxations for the lifted problem

(2.3a) – (2.3c). Consider the following formulation:

minimize
x∈Rn,X∈Sn

c>x (2.10a)

subject to p(x,X) � 0, (2.10b)

X − xx>∈ C, (2.10c)

in which C ⊆ Sn. Observe that the problems (2.10a) – (2.10c) and (2.3a) – (2.3c) are equiv-

alent if C = {0}. We consider different choices for C, which make the constraint (2.10c)

convex. First, the standard semidefinite programming (SDP) and second-order cone pro-

gramming (SOCP) relaxations are discussed and then, we introduce a novel parabolic re-

laxation, which transforms the constraint (2.3c) into a set of convex quadratic inequalities.

The optimal cost for each of the above convex relaxation can serve as a lower bound for

the global cost of the original problem (2.1a) – (2.1b). If the optimal solution of a relaxed

problem satisfies (2.3c), the relaxation is regarded as exact.

2.4.1 Semidefinite Programming Relaxation

The following choice for C leads to the SDP relaxation of the problem (2.10a) –

(2.10c):

C1 ={H ∈ Sn |H � 0}. (2.11)

If C = C1 the optimization problem (2.10a) – (2.10c) boils down to a semidefinite program,

which can be efficiently solved in polynomial time up to any desired accuracy using the

existing methods.
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2.4.2 Second-Order Cone Programming Relaxation

Semidefinite programming can be computationally demanding and its application is

limited to small-scale problems. A popular alternative is the SOCP relaxation which can

be deduced from the following choice for C:

C2 ={H ∈ Sn | Hii ≥0, HiiHjj ≥ H2
ij, ∀i,j∈ N}. (2.12)

It is straightforward to show that C1 is a subset of C2, which implies that the lower bounds

from SDP relaxation are guaranteed to be tighter than or equal to the lower bounds obtained

by SOCP relaxation.

2.4.3 Parabolic Relaxation

In this subsection, the parabolic relaxation is introduced as a computationally effi-

cient alternative to SDP and SOCP relaxations. Parabolic relaxation transforms the non-

convex constraint (2.3c) to a number of convex quadratic inequalities. To formulate the

parabolic relaxation of the problem (2.10a) – (2.10c), the following choice for C should be

employed:

C3 ={H ∈ Sn |Hii≥0, Hii+Hjj≥2 |Hij|, ∀i,j∈ N}. (2.13)

It can be easily observed that if C = C3, then the constraint (2.10c) is equivalent to the

following quadratic inequalities:

Xii +Xjj − 2Xij ≥ (xi − xj)2 ∀i,j∈ N , (2.14a)

Xii +Xjj + 2Xij ≥ (xi + xj)
2 ∀i,j∈ N , (2.14b)

which means that the parabolic relaxation is computationally cheaper than the SDP and

SOCP relaxations.
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Note that the presented relaxations are not necessarily exact. In the next section, the

objective function (2.10a) is revised to facilitate the recovery of feasible points for the

original non-convex problem (2.1a) – (2.1b).

2.5 Penalized Convex Relaxation

The penalized convex relaxation of the BMI optimization (2.1a) – (2.1b) is given as

minimize
x∈Rn,X∈Sn

c>x+ η (tr{X} − 2 x̌>x+ x̌>x̌) (2.15a)

subject to p(x,X) � 0, (2.15b)

X − xx>∈ C, (2.15c)

where x̌ ∈ Rn is an initial guess for the unknown solution (either feasible or infeasible),

η > 0 is a regularization parameter, which offers a trade-off between the original objective

function and the penalty term, and C ∈ {C1, C2, C3}.

The next theorem states that if the initial point x̌ is feasible and satisfies MFCQ, then

the penalized convex relaxation preserves the feasibility of x̌ and produces a solution with

improved objective value.

Theorem 2.1. Assume that x̌ ∈ F is a feasible point for problem (2.1a) – (2.1b) that sat-

isfies the MFCQ condition. If C ∈ {C1, C2, C3} and η is sufficiently large, then the penalized

convex relaxation problem (2.15a) – (2.15c) has a unique solution (
∗
x,

∗
X), which satisfies

∗
X =

∗
x
∗
x> and c> ∗x ≤ c>x̌.

Proof. See Proof section for the proof.

According to Theorem 2.1, the proposed penalized relaxation preserves the feasibil-

ity of the initial point. In what follows, we show that if the initial point is not feasible for
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(2.1a) – (2.1b), but sufficiently close to its feasible set, then the penalized convex relaxation

problem (2.15a) – (2.15c) is guaranteed to produce a feasible solution as well.

Theorem 2.2. Assume that k ∈ {1, 2, 3} and C = Ck. Consider an arbitrary point x̌ ∈ Rn,

which satisfies the G-MFCQ condition for problem (2.1a) – (2.1b), and let

dF(x̌)

s(x̌)
≤ ωk
‖p‖2

(2.16)

where ω1 = 4−1, ω2 = (2n)−1, and ω3 = (2 + 2
√
n)−1. If η is sufficiently large, then the

penalized convex relaxation problem (2.15a) – (2.15c) has a unique solution (
∗
x,

∗
X), which

satisfies
∗
X =

∗
x
∗
x>.

Proof. See Proof section for the proof.

Given the results of Theorems 2.1 and 2.2, there is a possibility to further improve the

quality of the solution. Towards this end, we propose a sequential scheme which starts from

an initial point and solves a sequence of penalized relaxations of form (2.15a) – (2.15c) to

achieve feasible and near-globally optimal points for the BMI problem (2.1a) – (2.1b).

2.6 Sequential Penalized Relaxation

Theorems 2.1 and 2.2 give the conclusion that the proposed penalized convex relax-

ation is guaranteed to maintain the feasibility of Mangasarian-Fromovitz regular starting

points. This property is held for infeasible points as well if they are sufficiently close to the

BMI feasible set. Inspired by that, we propose a sequential scheme which can start from an

arbitrary starting point and solves a sequence of penalized relaxations to recover a feasible

point. If the feasibility is obtained, the sequential algorithm is guaranteed to maintain the

feasibility and improve the objective value in each round of the algorithm. Algorithm 1

depicts the details of this procedure.
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Algorithm 1 Sequential Penalized Relaxation
Input: x̌ ∈ Rn, η > 0,maxRound ∈ N,k = 0

Output: ∗
x

1: x0← x̌

2: repeat
3: k ← k + 1

4: xk ← Solve penalized relaxation (2.15a) – (2.15c)

5: x̌← xk
6: until k ≤ maxRound

7:
∗
x← xmaxRound

The proposed algorithm proceeds until the stopping criteria is met. Notice that using

the Nesterov’s acceleration method can greatly enhance the convergence behavior of Al-

gorithm 1. However, in this case, the resulting algorithm may not necessarily preserve the

feasibility of the solutions.

2.7 Applications in Machine Learning

This section presents multiple machine learning problems that can be solved using

the idea presented in this project.

2.7.1 Discriminative Dimensionality Reduction

Given a set of sample points from c different classes, the discriminative dimensional-

ity reduction problem aims to infer a low-dimensional subspace on which the sample points

of different classes are projected as far as possible. To find such a subspace, a max-min dis-

tance analysis (MMDA) method is presented in [14] that seeks to maximize the minimum
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distance between all pairs of classes. This problem can be formulated as the following

non-convex and non-smooth optimization problem

maximize
P∈Rn×m

min
1≤i<j≤c

〈Aij,PP>〉 (2.17a)

subject to P>P = Im, (2.17b)

where Aij ∈ Sn is a given weighted distance matrix between the ith and jth classes, P

shows the projection matrix, andm denotes the dimension of the desired subspace. Observe

that this problem is computationally hard to solve due to (possibly) non-convex objective

function and orthogonality constraint. The solution of (2.17a) – (2.17b) can be obtained

using the idea of penalized relaxation presented in this project. More details about the

algorithm used to solve this problem are presented in [101].

2.7.2 Robust Minimum Volume Ellipsoid

Minimum volume ellipsoid (MVE) aims to find the smallest ellipsoid that covers a

bunch of given sample points. This problem is regarded as a fundamental and well-studied

problem in the area of machine learning. In the presence of outliers, [102] introduced

robust minimum volume ellipsoid (RMVE) as a variant of MVE that allows a portion of

the samples to lie outside the ellipsoid. This problem can be formulated as the following

optimization problem

minimize
γ∈Rn,M∈Sd

−log(M)+η l(γ) (2.18a)

subject to y>iMyi ≤ 1+γi, i=1, . . . , n (2.18b)

M � 0, γ ≥ 0, (2.18c)

where M � 0 indicates the positive-definiteness of matrix M , {yi ∈Rd}ni=1 denotes the

sample points, function l : Rn→R is a regularization used to encourage a fraction of the

samples to lie outside the ellipsoid, identify as outliers, η > 0 is regularization parameter
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to control the relative weight between the objective function and the regularization, and

M ∈ Sd is a matrix which determines the ellipsoid. Observe that (2.18a) – (2.18c) can

be cast as an LMI program, a special case of a BMI program in which the problem lacks

the bilinear terms and is a convex conic problem, except if regularization function l(.)

introduces non-convexity into the problem. For many non-convex choices of regularization

term l(.) (e.g. non-convex quadratic function), the proposed relaxation technique can be

utilized to convexify the problem.

2.7.3 Graph Matching

The graph matching (GM) problem has been widely employed in a variety of applica-

tions such as shape matching [103], object categorization [104, 105, 106], feature tracking

[107], and kernelized sorting [108]. This problem seeks to find the best correspondence

between the vertices of two graphs based on a given affinity matrix. The GM problem can

be conveniently cast as a quadratic assignment problem (QAP) [109] which is generally

computationally NP-hard to solve due to the (possibly) non-convex objective function and

combinatorial constraints. Various frameworks have been developed to approximate the

solution of this combinatorial problem using a convex program [110, 111, 112, 113].

One popular approach is to first relax the discrete constraints to obtain a continuous

formulation [114, 115, 116] and then solve the resulting problem followed by a discretiza-

tion step to recover feasible points for the QAP [110, 117]. This strategy may lead to poor

quality points since the discretization step is performed independently from solving the

continuous problem [118]. To address this issue, [111, 118] proposed to impose sparseness

on the solution of the continuous problem to promote the discreteness.

Another common strategy is to convert the QAP into solving a series of problems

whose solutions gradually converge to a feasible point of the QAP [119, 112, 3]. [119]

proposed an iterative algorithm which starts from an initial point, either discrete or contin-
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uous, and iteratively utilizes a linear approximation of the QAP to find high quality discrete

points. [112] proposed to decompose the QAP as a convex-concave problem and [120] de-

veloped a path-following method which starts from the solution of the convex program

and searches along a path of solutions to find the optimal solution of the concave problem.

Based on this idea, [121, 113] proposed to factorize a large-scale affinity matrix into a set

of smaller ones and introduced a convex-concave relaxation based on the factorized matri-

ces. Later in [122], a strategy is introduced to improve the performance of path-following

methods by first detecting the singular points and then branching at these points to improve

the quality of paths.

This chapter proposes a path-following method for solving QAPs in a computation-

ally tractable manner. To this end, we first convert the problem into a continuous one

and then incorporate a regularization term to convexify the problem and promote the dis-

creteness of the solutions. We investigate the theoretical conditions under which obtaining

discrete solutions is guaranteed. Additionally, we propose a numerical algorithm based

on the alternating direction method of multipliers (ADMM), which decomposes the reg-

ularized problem into two sub-problems with closed-form solutions and iteratively solves

them until convergence is achieved. Since the solution of the regularized problem may

not satisfy the discrete constraints, we propose to solve the problem in a sequential frame-

work to recover feasible and near-optimal solutions. Numerical results demonstrate that

the sequential algorithm not only eliminates the necessity of discretization and rounding

steps but also exhibits comparable performance on two well-known datasets: CMU house

dataset and Car-Motorbike dataset [2].

Consider graphs G = (V , E) and Ḡ = (V̄ , Ē) where sets V and V̄ denote the vertices

with the corresponding edge sets E and Ē , respectively. Let |V| = n and |V̄| = m and

assume n ≥ m. The GM problem aims to find the best matching between the vertices
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of the graphs G and Ḡ in terms of a pre-defined similarity measure. This problem can be

formulated as the following quadratic assignment problem

maximize
X∈Rn×m

vec(X)>W vec(X) (2.19a)

subject to X ∈ Π, (2.19b)

where operator vec(·) stacks the columns of its input matrix to form a column vector, Π

is the set of (sub)-permutation matrices, defined as Π , {X ∈ Rn×m|X1 ≤ 1,X>1 =

1,X◦X−X=0}, ◦ shows the Hadamard product, and W ∈ Sn×m is a global pair-wise

affinity matrix that encodes the vertex and edge affinity matrices of G and Ḡ [3]. Observe

that (2.19a) – (2.19b) is a non-convex optimization problem due to the non-convex objective

function and the discrete constraints imposed onX .

Define the set of (sub)-doubly stochastic matrices D , {X ∈ Rn×m|X ≥ 0,X1 ≤

1,X>1 = 1} as the relaxation of set Π. By replacing Π with D and incorporating a

quadratic regularization term, (2.19a) – (2.19b) can be reduced into the following optimiza-

tion problem

minimize
X∈Rn×m

vec(X)>W̄ vec(X) + η‖X − X̌‖2

F
(2.20a)

subject to X ∈ D, (2.20b)

where W̄ , −W , matrix X̌ ∈ Rn×m is an initial guess for the optimal solution of

(2.19a) – (2.19b) and η > 0 is a fixed parameter that controls the trade-off between the

objective function and the regularization term. Notice that although (2.20b) is a convex

constraint, (2.20a) – (2.20b) can be a non-convex problem due to the indefiniteness of the

matrix W̄ . It can be simply verified that for sufficiently large η (η > |
¯
λ(W̄ )|, where

¯
λ(W̄ ) indicates the smallest eigenvalue of matrix W̄ ), problem (2.20a) – (2.20b) turns into

a convex problem whose solution approximates the optimal solution of (2.19a) – (2.19b).

In this case, (2.20a) – (2.20b) is efficiently solvable in polynomial time, but its solution
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may not necessarily lead to a meaningful correspondence between the graphs G and Ḡ. In

what follows, we establish theoretical conditions for obtaining feasible points for (2.19a) –

(2.19b).

Theorem 2.3. Let X̌ ∈ Rn×m satisfies the generalized linear independence constraint

qualification condition for (2.19a) – (2.19b) [123]. Define J(X̌) as the Jacobian of all

quasi-binding constraints in (2.19b). The optimal solution of (2.20a) – (2.20b) is a feasible

point for (2.19a) – (2.19b) if η is sufficiently large and the following inequality holds true

dΠ(X̌) ≤ ¯
σ(J(X̌))

4
, (2.21)

where
¯
σ(.) returns the smallest singular value of its input, function dΠ : Rn×m→ R, defined

as dΠ(X) , inf{‖C −X‖
F
| C ∈ Π}, gives the minimum distance between every point

X ∈ Rn×m and set Π.

Proof. Proof can be derived from Theorem 2 of [101] and Theorem 3.4 of [123].

To find the optimal solution convex problem (2.20a) – (2.20b), we propose an effi-

cient ADMM-based numerical algorithm [17]. To obtain an ADMM formulation for the

problem, we introduce slack variable s∈Rn and auxiliary variables Z∈Rn×m, u∈Rn and

rewrite problem (2.20a) – (2.20b) as the following form

minimize
X,Z∈Rn×m
s,u ∈Rn

vec(X)>W̄ vec(X) + η‖X − X̌‖2

F
+
µ

2
‖X −Z‖2

F
+
µ

2
‖s− u‖2

2
(2.22a)

subject to Z ≥ 0, u ≥ 0, (2.22b)

X1m + s = 1n, X
>1n = 1m, (2.22c)

X = Z, s = u, (2.22d)

where µ > 0 is a given parameter. It is noteworthy to mention that (2.22a) – (2.22d) and

(2.20a) – (2.20b) are equivalent as the additional terms in the objective function (2.22a)

vanish for any feasible point. The solution of (2.22a) – (2.22d) can be obtained by simply
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alternatingly solving some sub-problems with closed-form solutions. To serve this purpose,

define function L̂(X,Z, s,u,Λ,λ) as

L̂(X,Z, s,u,Λ,λ) , vec(X)>W̄ vec(X)+η‖X−X̌‖2

F
+
µ

2

∥∥X−Z+
Λ

µ

∥∥2

F
+
µ

2

∥∥s−u+
λ

µ

∥∥2

2
,

where Λ∈Rn×m and λ∈Rn denote the Lagrange multipliers associated with the equality

constraints (2.22d). Starting from random initialization for variables Z, u, Λ, and λ, the

proposed algorithm updates them for the next iteration as

(Xk+1, sk+1) := argmin
X, s

L̂(X,Zk, s,uk,Λk,λk) subject to (2.22c), (2.23a)

(Zk+1,uk+1) := argmin
Z,u

L̂(Xk+1,Z, sk+1,u,Λk,λk) subject to (2.22b), (2.23b)

Λk+1 := Λk + µ (Xk+1−Zk+1), (2.23c)

λk+1 := λk + µ ( sk+1 − uk+1). (2.23d)

It is straightforward to verify that sub-problems (2.23a) and (2.23b) possess closed-form

solutions. The optimal solution of (2.23a) is obtained by solving a system of linear equa-

tions and (2.23b) is a simple Euclidean projection onto the nonnegative orthant. Note

that the solution of (2.22a) – (2.22d) may not necessarily lead to a valid matching between

the graphs G and Ḡ. To circumvent this issue, we propose to start from an arbitrary point

X̌ = X0 ∈ Rn×m and sequentially solve (2.22a) – (2.22d) to recover feasible and near-

optimal points for (2.19a) – (2.19b). Due to the discrete nature of the QAP problem, the

idea of stochastic hill-climbing may work well in practice to boost the performance of the

sequential method and avoid getting stuck in poor local minima of (2.19a) – (2.19b).

We evaluated the proposed sequential scheme, termed SDC, on two benchmark datasets

for graph matching: Car-Motorbike [2] and the CMU house datasets. In the first experi-

ment, we conduct an experiment on image pairs selected from the Car-Motorbike dataset

to evaluate the SDC on feature matching task. Following the experimental setting used in
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Figure 2.1: Examples of image matching on the the car and motorbike dataset [2]. Top:
SDC, bottom: FGM-D [3]. Yellow lines and red lines, respectively, indicate the correct
and indicate incorrect matches.

Figure 1: Some examples of image matching on the the car and motorbike dataset Leordeanu et al.
(2012). Top: SDC, bottom: FGM-D Zhou & De la Torre (2013). Yellow lines and red lines,
respectively, indicate the correct and indicate incorrect matches.
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Figure 2: Comparison results of several graph matching algorithms on the CMU house dataset using
(a) 30 nodes, (b) 25 nodes.

5 NUMERICAL RESULTS

This section evaluates the performance of our sequential scheme, termed SDC, for solving the GM
problem on the Car-Motorbike (Leordeanu et al., 2012) and the CMU house datasets. First, we
conduct an experiment on image pairs selected from the Car-Motorbike dataset to evaluate the SDC
on feature matching task. Following the experimental setting used in (Zhou & De la Torre, 2012),
we create the global pair-wise affinity matrix W̄ based on the orientation of each node’s normal
vector to the contour where the node was sampled. Figure 1 compares the performance of SDC
against FGM-D (Zhou & De la Torre, 2013) on three example image pairs.

In the second experiment, we compare our results with some prior works on the GM problem:
FGM-D (Zhou & De la Torre, 2013), FGM-U (Zhou & De la Torre, 2012), RRWM (Cho et al.,
2010), IPFP-D (Leordeanu et al., 2009), PM (Zass & Shashua, 2008), SMAC (Cour et al., 2007),
and SM (Leordeanu & Hebert, 2005). Figure 2 demonstrates the performance of all methods on
the CMU house dataset which consists of 111 images where each one is manually labeled with 30
landmarks. Through this experiment, we set η =

¯
λ(W̄ ) + 10 and use the same affinity matrix W̄

as (Zhou & De la Torre, 2013). The results indicate that SDC performs well on both datasets and
achieves on par results compared to the earlier works.

In the extended version of this work, we aim to investigate the scalablility of SDC and compare its
performance against more recent and state-of-the-art algorithms.

6 CONCLUSIONS

This work presented a computationally tractable algorithm to solve the graph matching problem,
which can be cast as a quadratic assignment problem (QAP). We relaxed the QAP into a convex
program, whose solution approximates the best matching between two given graphs, and estab-
lished a theoretical condition under which discrete solutions are guaranteed to obtain. To ensure
the approximated solution leads to a meaningful correspondence between the graphs, we developed
a sequential framework which is capable of generating a sequence of points converging to a feasi-
ble point for the QAP. Numerical results on the synthetic and real datasets demonstrated that the
sequential framework achieves competitive performance.

4

Figure 2.2: Comparison results of several graph matching algorithms on the CMU house
dataset using (a) 30 nodes, (b) 25 nodes.

[121], we create the global pair-wise affinity matrix W̄ based on the orientation of each

node’s normal vector to the contour where the node was sampled. Figure 2.1 compares the

performance of SDC against FGM-D [3] on three example image pairs.

In the second experiment, we compare our results with some prior works on the

GM problem: FGM-D [3], FGM-U [121], RRWM [117], IPFP-D [119], PM [124], SMAC

[115], and SM [110]. Figure 2.2 demonstrates the performance of all methods on the

CMU house dataset which consists of 111 images where each one is manually labeled with

30 landmarks. Through this experiment, we set η =
¯
λ(W̄ ) + 10 and use the same affinity

matrix W̄ as [3]. The results indicate that SDC performs well on both datasets and achieves

on par results compared to the earlier works.
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2.8 Conclusions

In this chapter, a variety of convex relaxation methods are introduced for solving the

class of optimization problems with bilinear matrix inequality (BMI) constraints. First, the

well-known SDP and SOCP relaxations are discussed, and then a novel parabolic relaxation

is introduced as a low-complexity alternative to conic relaxations. We propose a penaliza-

tion method which is compatible with SDP, SOCP, and parabolic relaxations, and is able

to produce feasible solutions for the original non-convex BMI optimization problem. Also,

we generalized the proposed penalized relaxation to a sequential scheme which can start

from an arbitrary initial point to recover feasible and near-optimal solutions of BMI prob-

lems. We show the applicability of the proposed sequential scheme on some fundamental

machine learning problems. Based on that, we develop a convexification technique to solve

the problem of graph matching and evaluate the method on two benchmark datasets. Exper-

iments demonstrate the potential of the proposed approach in finding high quality solutions

of the graph matching problem.

2.9 Proofs

In order to prove Theorems 2.1 and 2.2, we need to consider the following non-

convex optimization problem

minimize
x∈Rn

c>x+ η‖x− x̌‖2
2 (2.24a)

subject to p(x,xx>) � 0, (2.24b)

where x̌ ∈ Rn is the initial point. Observe that problems (2.1a) – (2.1b) and (2.24a) –

(2.24b) have the same feasible set, which is denoted by F . Assume that F is nonempty

with an arbitrary member x′. We define

A,
{
x∈Rn

∣∣∣c>x+ η‖x−x̌‖2
2 ≤ c

>x′+ η‖x′−x̌‖2
2

}
. (2.25)
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Due to the compactness of the set A ∩ F , it is straightforward to verify that the optimal

solution of the problem (2.24a) – (2.24b) is attainable if η > 0.

Lemma 2.1. Given an arbitrary ε > 0, every optimal solution ∗
x of problem (2.24a) –

(2.24b) satisfies

0 ≤ ‖ ∗x− x̌‖2 − dF(x̌) ≤ ε, (2.26)

if η is sufficiently large.

Proof. Consider an optimal solution ∗
x. Due to the Definition 2.2, the distance between x̌

and every member of F is greater than or equal to dF(x̌). Hence, the following inequality

holds:

0 ≤ ‖ ∗x− x̌‖2 − dF(x̌). (2.27)

Let xh be an arbitrary member of {x ∈ F|‖x− x̌‖2 = dF(x̌)}. Due to the optimality of ∗x,

we have:

c>
∗
x+ η‖ ∗x− x̌‖2

2 ≤ c
>xh + η‖xh − x̌‖2

2, (2.28)

which implies that ∥∥∥(
∗
x− x̌) +

c

2η

∥∥∥
2
≤
∥∥∥(xh − x̌) +

c

2η

∥∥∥
2
. (2.29)

Using the triangle inequality, we have

‖ ∗x− x̌‖2 −
1

2η
‖c‖2 ≤ ‖xh−x̌‖2 +

1

2η
‖c‖2, (2.30)

which leads to the following upper-bound:

‖ ∗x− x̌‖2 − dF(x̌) ≤ 1

η
‖c‖2. (2.31)

Hence, if η ≥ ‖c‖2
ε

, the combination of (2.27) and (2.31) completes the proof.
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In what follows, we obtain sufficient conditions to ensure that every solution of

(2.24a) – (2.24b) satisfy the MFCQ condition.

Lemma 2.2. Assume that x̌ ∈ Rn is a feasible point for (2.24a) – (2.24b) that satisfies the

MFCQ condition. If η is sufficiently large, every optimal solution ∗
x of (2.24a) – (2.24b),

satisfies the MFCQ condition as well.

Proof. Consider an optimal solution ∗
x. Since the MFCQ condition holds for x̌, there exists

b̌ ∈ Rn for which the conic inequality p(x̌, x̌x̌>) +
∑

k∈N b̌k(Kk+δk(x̌)) ≺ 0 is satisfied.

Hence, due to the continuity of the matrix pencil p, if ε is sufficiently small in Lemma 2.1,

we have

p(
∗
x,

∗
x
∗
x>) +

∑
k∈N

∗
bk(Kk+δk(

∗
x)) ≺ 0 (2.32)

which concludes the MFCQ condition holds for ∗x.

Definition 2.5. Given an arbitrary symmetric matrix Λ ∈ Sm, define the matrix function

α : Sm → Sn as,

α(Λ) ,
[
〈Lij,Λ〉

]
ij∈N 2

. (2.33)

It is straightforward to verify that

2α(Λ)x =
∑
k∈N

〈δk(x),Λ〉ek, (2.34)

for every x ∈ Rn. This property will be used later in this section.

Lemma 2.3. Assume that x̌ ∈ Rn satisfies

s(x̌) > 2‖p‖2dF(x̌). (2.35)

Given an arbitrary ε > 0, every optimal solution ∗
x of the problem (2.24a) – (2.24b) satisfies

the inequality

s(x̌)− s( ∗x) ≤ 2‖p‖2dF(x̌) + ε, (2.36)
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as well as the MFCQ condition, if η is sufficiently large.

Proof. Due to the definition of s, there exists b̌ ∈ Rn such that ‖b̌‖2 = 1 and

s(x̌) =
¯
λ
(
−
∑
k∈N

b̌k(Kk+δk(x̌))
)
. (2.37)

As a result,

s(
∗
x) ≥

¯
λ
(
−
∑
k∈N

b̌k(Kk+δk(
∗
x))
)

(2.38a)

=
¯
λ
(
−
∑
k∈N

b̌k(Kk+δk(x̌))−
∑
k∈N

b̌kδk(
∗
x−x̌)

)
(2.38b)

≥ s(x̌)−
∥∥∥∑

k∈N

b̌kδk(
∗
x− x̌)

∥∥∥
2
. (2.38c)

Let u be the eigenvector corresponding to the largest eigenvalue of −
∑

k∈N b̌kδk(
∗
x − x̌).

Then,

s(x̌)− s( ∗x) ≤
∥∥∥∑

k∈N

b̌kδk(
∗
x− x̌)

∥∥∥
2

(2.39a)

=
∣∣∣u>(∑

k∈N

b̌kδk(
∗
x− x̌)

)
u
∣∣∣ (2.39b)

=
∣∣∣∑
k∈N

b̌k〈δk(
∗
x− x̌),uu>〉

∣∣∣ (2.39c)

=
∣∣b̌>[〈δk(

∗
x− x̌),uu>〉]k∈N

∣∣ (2.39d)

≤
∥∥[〈δk(

∗
x− x̌),uu>〉]k∈N

∥∥
2
. (2.39e)

On the other hand, according to the equation (2.34), we have

[〈δk(
∗
x− x̌),uu>〉]k∈N = 2α(uu>)(

∗
x− x̌), (2.40)

which implies that

s(x̌)− s( ∗x) ≤ 2‖α(uu>)‖2‖
∗
x− x̌‖2 (2.41a)

≤ 2‖p‖2‖
∗
x− x̌‖2. (2.41b)
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Therefore, according to Lemma 2.1, we have

s(x̌)− s( ∗x) ≤ 2‖p‖2‖
∗
x− x̌‖2 ≤ 2‖p‖2dF(x̌) + ε,

if η is sufficiently large.

Additionally, for sufficiently small choices of ε, we have s( ∗x) > 0. Hence, there

exists
∗
b ∈ Rn such that

∑
k∈N

∗
bk(Kk+δk(

∗
x)) ≺ 0 and due to the feasibility of ∗x, we have:

p(
∗
x,

∗
x
∗
x>) +

∑
k∈N

∗
bk(Kk+δk(

∗
x)) ≺ 0, (2.42)

which concludes the MFCQ condition for ∗x.

The following lemma ensures the existence of a dual certificate matrix, if the optimal

solution of (2.24a) – (2.24b) satisfies the MFCQ condition.

Lemma 2.4. For every optimal solution ∗
x of (2.24a) – (2.24b) which meets the MFCQ

condition, there exists a dual matrix
∗
Λ � 0 such that the point (

∗
x,

∗
Λ) satisfies the following

Karush-Kuhn-Tucker (KKT) equations:

c+ 2η(
∗
x− x̌) +

∑
k∈N

〈Kk,
∗
Λ〉ek + 2α(

∗
Λ)

∗
x = 0, (2.43a)

∗
Λp(

∗
x,

∗
x
∗
x
>

) = 0. (2.43b)

Proof. Since the optimal solution ∗
x satisfies the MFCQ condition, there exists a dual matrix

∗
Λ � 0 such that the point (

∗
x,

∗
Λ) satisfies the following conditions:

∇xLp(
∗
x,

∗
Λ) = 0, (2.44a)

∗
Λp(

∗
x,

∗
x
∗
x
>

) = 0, (2.44b)

where ∇x represents the gradients with respect to x and Lp(x,Λ) denotes the Lagrangian

function of (2.24a) – (2.24b):

Lp(x,Λ) = c>x+ η‖x− x̌‖2
2 + 〈p(x,xx>),Λ〉. (2.45)
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Observe that (2.43a) – (2.43b) and (2.44a) – (2.44b) are equivalent. Therefore, the point

(
∗
x,

∗
Λ) satisfies the KKT conditions (2.43a) – (2.43b).

In following two lemmas bound the value of tr{
∗
Λ}
η

for both cases where x̌ is feasible

and infeasible.

Lemma 2.5. Consider an arbitrary ε > 0 and assume that x̌ ∈ F is a feasible point

for (2.24a) – (2.24b) that satisfies the MFCQ condition. If η is sufficiently large, for every

optimal solution ∗
x of (2.24a) – (2.24b), there exists a dual matrix

∗
Λ � 0 that satisfies the

inequality
tr{

∗
Λ}
η
≤ ε, (2.46)

as well as the equations (2.43a) – (2.43b).

Proof. According to Lemma 2.2, if η is large enough, ∗x satisfies the MFCQ condition.

Hence, there exists
∗
b ∈ Rn such that

−p( ∗x, ∗x ∗x>)−
∑
k∈N

∗
bk(Kk + δk(

∗
x)) � 0. (2.47)

In addition, according to Lemma 2.4 there exists
∗
Λ � 0 such that the pair (

∗
x,

∗
Λ) satis-

fies the KKT equations (2.43a) – (2.43b). Therefore, pre-multiplying
∗
b> to both sides of

(2.43a) yields:
∗
b>(c+2η(

∗
x−x̌))+〈

∑
k∈N

∗
bk(Kk+δk(

∗
x)),

∗
Λ〉=0. (2.48)

Due to the matrix inequality (2.47) and since
∗
Λ � 0, we have:

〈−p( ∗x, ∗x ∗x>)−
∑
k∈N

∗
bk(Kk + δk(

∗
x)),

∗
Λ〉 ≥ 0. (2.49)

33



Hence, according to the complementary slackness (2.43b), we have:

tr{
∗
Λ}s( ∗x) ≤ 〈−p( ∗x, ∗x ∗x>)−

∑
k∈N

∗
bk(Kk + δk(

∗
x)),

∗
Λ〉 (2.50a)

= 〈−
∑
k∈N

∗
bk(Kk + δk(

∗
x)),

∗
Λ〉 (2.50b)

= 〈
∗
b, c+ 2η(

∗
x− x̌)〉 (2.50c)

= 〈
∗
b, c〉+ 2η〈

∗
b, (

∗
x− x̌)〉 (2.50d)

≤ ‖
∗
b‖2‖c‖2 + 2η‖

∗
b‖2‖

∗
x− x̌‖2 (2.50e)

= ‖c‖2 + 2η‖ ∗x− x̌‖2, (2.50f)

and therefore:

tr{
∗
Λ}
η
≤ ‖c‖2

ηs(
∗
x)

+
2‖ ∗x− x̌‖2

s(
∗
x)

. (2.51)

According to Lemma 2.1, if η is large, ‖ ∗x− x̌‖2 is arbitrarily small. Due to the continuity

of s, we can argue that |s( ∗x)− s(x̌)| is arbitrarily small as well. Now, since s(x̌) > 0, the

right side of the inequality (2.51) is not greater than ε, if η is sufficiently large.

Lemma 2.6. Consider an arbitrary ε > 0 and assume that x̌ ∈ Rn satisfies the inequality

(2.35). If η is sufficiently large, for every optimal solution ∗
x of (2.24a) – (2.24b), there

exists a dual matrix
∗
Λ � 0 that satisfies the inequality

tr{
∗
Λ}
η
≤ 2dF(x̌)

s(x̌)− 2‖p‖2dF(x̌)
+ ε, (2.52)

as well as the equations (2.43a) – (2.43b).

Proof. According to the Lemma 2.3, ∗
x satisfies the MFCQ condition. In addition, the

Lemma 2.4 implies that there exists
∗
Λ � 0 such that point (

∗
x,

∗
Λ) satisfies the KKT equa-
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tions (2.43a) – (2.43b). Since s( ∗x) > 0, we can similarly argue that the inequality (2.51)

holds true:

tr{
∗
Λ}
η
≤ ‖c‖2

ηs(
∗
x)

+
2‖ ∗x− x̌‖2

s(
∗
x)

≤ ‖c‖2 + 2η‖ ∗x− x̌‖2

η[s(x̌)−2‖p‖2dF(x̌)]
. (2.53)

Now, according to Lemma 2.1, if η is large, the above inequality concludes (2.52).

The next lemma presents sufficient conditions under which the optimal solution of

(2.24a) – (2.24b) can be obtained by solving penalized convex relaxation.

Lemma 2.7. Consider an optimal solution ∗
x ∈ F for the problem (2.24a) – (2.24b), and

a matrix
∗
Λ � 0 such that point (

∗
x,

∗
Λ) satisfies the conditions (2.43a) – (2.43b). Then,

the pair (
∗
x,

∗
x
∗
x
>

) is the unique primal solution to the penalized convex relaxation problem

(2.15a) – (2.15c), if the following conic inequality holds true:

ηI + α(
∗
Λ) �C∗k 0, (2.54)

where k ∈ {1, 2, 3}, C∗
k

denotes the dual cone of Ck, and the matrices
∗
Λ and ηI+α(

∗
Λ) are

the dual optimal Lagrange multipliers associated with the constraints (2.15b) and (2.15c),

respectively.

Proof. The Lagrangian of the penalized relaxation problem (2.15a) – (2.15c) can be formed

as follows,

Lr(x,X,Λ) = c>x+ η〈X − 2xx̌>, I〉+ 〈p(x,X),Λ〉

− 〈ηI + α(
∗
Λ),X − xx>〉, (2.55)
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where ηI + α(
∗
Λ) ∈ C∗

k
is the dual variable associated with (2.15c). Due to the convexity

of the penalized relaxation problem, if a pair
(
(
∗
x,

∗
X),

∗
Λ
)

satisfies the KKT conditions

c− 2ηx̌+
∑
k∈N

〈Kk,
∗
Λ〉ek + 2(ηI + α(

∗
Λ))

∗
x = 0, (2.56a)

〈p( ∗x,
∗
X),

∗
Λ〉 = 0, (2.56b)

p(
∗
x,

∗
X) � 0, (2.56c)

ηI + α(
∗
Λ) ∈ C∗

k
, (2.56d)

then it is an optimal primal-dual solution for (2.15a) – (2.15c).

It can be easily verified that the KKT conditions (2.56a) – (2.56d) are satisfied for(
(
∗
x,

∗
x
∗
x>),

∗
Λ
)

as a direct consequence of (2.43a) – (2.43b), (2.54) and (2.24b). Moreover,

(
∗
x,

∗
x
∗
x>) is the unique solution of the primal problem since ηI + α(

∗
Λ) belongs to the

interior of C∗
k
.

Lemma 2.8. Consider an optimal solution ∗
x ∈ F for problem (2.24a) – (2.24b), and a

matrix
∗
Λ � 0 such that point (

∗
x,

∗
Λ) satisfies the KKT equations (2.43a) – (2.43b). The

pair (
∗
x,

∗
x
∗
x
>

) is the unique primal solution to the penalized convex relaxation problem

(2.15a) – (2.15c), if the following inequality holds true:

tr{
∗
Λ}
η
≤ ζk
‖p‖2

(2.57)

where k ∈ {1, 2, 3}, ζ1 = 1, ζ2 = (n− 1)−1, and ζ3 = n−
1
2 .
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Proof. According to Lemma 2.5, it suffices to verify (2.54) in order to prove that (
∗
x,

∗
x
∗
x
>

)

is the unique optimal solution. Denote the eigenvalues and eigenvectors of
∗
Λ by {

∗
λl}l∈M

and { ∗ul}l∈M, respectively. Hence:

∥∥α(
∗
Λ)
∥∥
q

=
∥∥∑

l∈M

∗
λl[〈Lij,

∗
ul
∗
u>l 〉]ij

∥∥
q

(2.58a)

≤
∑
l∈M

∗
λl
∥∥[〈Lij,

∗
ul
∗
u>l 〉]ij

∥∥
q

(2.58b)

≤
∑
l∈M

∗
λl
∥∥α(

∗
ul
∗
u>l )
∥∥
q

= ‖p‖qtr{
∗
Λ}, (2.58c)

1. SDP relaxation: The cone of positive semidefinite matrices is self-dual i.e., C∗
1

= C1.

Therefore, in order to prove (2.54), it suffices to show that

η −
∥∥α(

∗
Λ)
∥∥

2
≥ 0. (2.59)

Hence, according to the bound provided in (2.58), (
∗
x,

∗
x
∗
x
>

) is the unique solution

for the penalized SDP relaxation, if

tr{
∗
Λ}
η
≤ 1

‖p‖2

. (2.60)

2. SOCP relaxation: The dual cone C∗
2

can be expressed as:

C∗
2
,
{∑

i,j∈N

[ei,ej]Hij[ei,ej]
>
∣∣∣Hij∈S+

2 , ∀i,j∈N
}
. (2.61)

Consider the following decomposition:

ηI + α(
∗
Λ) =

∑
i,j∈N
i 6=j

[ei,ej]Aij [ei,ej]
>, (2.62)

where for every (i, j) ∈ N 2 we have

Aij,

 η−[α(
∗
Λ)]ii

n−1 −[α(
∗
Λ)]ij

−[α(
∗
Λ)]ji

η−[α(
∗
Λ)]jj

n−1

�( η

n−1
−‖α(

∗
Λ)‖2

)
I2
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Therefore, the inequality (2.54) is satisfied for C∗
2

if η
n−1
≥ ‖α(

∗
Λ)‖2. Now, accord-

ing to the bound provided in (2.58), (
∗
x,

∗
x
∗
x
>

) is the unique optimal solution for the

penalized SOCP relaxation if

tr{
∗
Λ}
η
≤ 1

(n− 1)‖p‖2

. (2.63)

3. Parabolic relaxation: The dual cone of C3 is the set of n × n symmetric diagonally

dominant matrices defined as:

C∗
3

=
{
H ∈ Sn

∣∣∣ |Hii| ≥
∑
j∈N\{i}

|Hij|, ∀i∈N
}
. (2.64)

Therefore, in order to prove (2.54), it suffices to show that

η −
∥∥α(

∗
Λ)
∥∥

1
≥ 0. (2.65)

Once again, the bound presented in (2.58) implies that (
∗
x,

∗
x
∗
x
>

) is the unique solution

for the penalized parabolic relaxation if tr{
∗
Λ}
η
≤ 1
‖p‖1

. This is a direct consequence of

tr{
∗
Λ}
η
≤ n−

1
2

‖p‖2

(2.66)

since ‖p‖1 ≤ n
1
2‖p‖2.

Theorem 2.1. Consider an arbitrary optimal solution ∗
x for the problem (2.24a) – (2.24b).

According to Lemma 2.4, if η is large enough, there exists a dual matrix
∗
Λ � 0 such that

point (
∗
x,

∗
Λ) satisfies the KKT equations (2.43a) – (2.43b), as well as the inequality (2.46)

for ε = min{ζ1,ζ2,ζ3}
2‖p‖2 . Therefore, according to the Lemma 2.8, the pair (

∗
x,

∗
x
∗
x>) is the unique

primal solution to the penalized convex relaxation problem (2.15a) – (2.15c).
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Theorem 2.2. Consider an arbitrary optimal solution ∗
x for the problem (2.24a) – (2.24b).

According to the Lemma 2.4, if η is sufficiently large, there exists a dual matrix
∗
Λ � 0 such

that point (
∗
x,

∗
Λ) satisfies the KKT equations (2.43a) – (2.43b), as well as the inequality

(2.52) for any arbitrarily ε. It is straightforward to verify that

dF(x̌)

s(x̌)
<

ωk
‖p‖2

⇒ 2dF(x̌)

s(x̌)− 2‖p‖2dF(x̌)
<

ζk
‖p‖2

, (2.67)

for all k ∈ {1, 2, 3}. Therefore, according to Lemma 2.8, the pair (
∗
x,

∗
x
∗
x
>

) is the unique

primal solution to the penalized convex relaxation problem (2.15a) – (2.15c).
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CHAPTER 3

Multi-Level Representation Learning for Deep Subspace Clustering

This chapter proposes a novel deep subspace clustering approach which uses convo-

lutional autoencoders to transform input images into new representations lying on a union

of linear subspaces. The first contribution of our work is to insert multiple fully-connected

linear layers between the encoder layers and their corresponding decoder layers to pro-

mote learning more favorable representations for subspace clustering. These connection

layers facilitate the feature learning procedure by combining low-level and high-level in-

formation for generating multiple sets of self-expressive and informative representations at

different levels of the encoder. Moreover, we introduce a novel loss minimization prob-

lem which leverages an initial clustering of the samples to effectively fuse the multi-level

representations and recover the underlying subspaces more accurately. The loss function

is then minimized through an iterative scheme which alternatively updates the network pa-

rameters and produces new clusterings of the samples until the convergence is obtained.

Experiments on four real-world datasets demonstrate that our approach exhibits superior

performance compared to the state-of-the-art methods on most of the subspace clustering

problems.

3.1 Introduction

Subspace clustering is an unsupervised learning task with a variety of machine learn-

ing applications such as motion segmentation [22, 23], face clustering [24, 25], and movie

recommendation [26, 27], etc. The primary goal of this task is to partition a set of data sam-

ples, drawn from a union of low-dimensional subspaces, into disjoint clusters such that the
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samples within each cluster belong to the same subspace [28, 29]. A large body of subspace

clustering literature relies on the concept of self-expressiveness which states that each sam-

ple point in a union of subspaces is efficiently expressible in terms of a linear (or affine)

combination of other points in the subspaces [34]. Given that, it is expected that the nonzero

coefficients in the linear representation of each sample correspond to the points of the same

subspace as the given sample. In order to successfully infer such underlying relationships

among the samples and to partition them into their respective subspaces, a common practice

approach is to first learn an affinity matrix from the input data and then apply the spectral

clustering technique [125] to recover the clusters. Recently, these spectral clustering-based

approaches have shown a special interest in utilizing sparse or low-rank representations of

the samples to create more accurate affinity matrices [34, 126, 127, 128, 129]. A well-

established instance is sparse subspace clustering (SSC) [34] which uses an `1-regularized

model to select only a small subset of points belonging to the same subspace for recon-

structing each data point. More theoretical and practical aspects of the SSC algorithm are

investigated and studied in detail in [130, 131, 132, 133].

Despite the key role that the self-expressiveness plays in the literature, it may not be

satisfied in a wide range of applications in which samples lie on non-linear subspaces, e.g.

face images taken under non-uniform illumination and at different poses [35]. A common

practice technique to handle these cases is to leverage well-known kernel trick to implicitly

map the samples into a higher dimensional space so that they better conform to linear

subspaces [36, 37, 38, 39]. Although this strategy has demonstrated empirical success, it

is not widely applicable to various applications, mainly because identifying an appropriate

kernel function for a given set of data points is a quite difficult task [40].

Recently, deep neural networks have exhibited exceptional ability in capturing com-

plex underlying structures of data and learning discriminative features for clustering [134,

135, 136, 137]. Inspired by that, a new line of research has been established to bridge
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(a) (b)

Figure 3.1: Illustration of representation learning for subspace clustering. (a) Sample points
may come from a union of nonlinear subspaces; (b) Deep subspace clustering approaches
aim to transform the samples into a latent space so that they lie in a union of linear sub-
spaces.

deep learning and subspace clustering for developing deep subspace clustering approaches

[35, 41, 42, 43]. Variational Autoencoders (VAE) [44, 45] and Generative Adversarial Net-

work (GAN) [46] are among the most popular deep architectures adopted by these methods

to produce feature representations suitable for subspace clustering [45]. Compared to the

conventional approaches, deep subspace clustering approaches are able to better exploit the

non-linear relationships between the sample points and consequently they achieve higher

performance, especially in complex applications in which the samples do not necessarily

satisfy the self-expressiveness property [35].

In this chapter, we propose a novel spectral clustering-based approach which utilizes

stacked convolutional autoencoders to tackle the problem of subspace clustering. Inspired

by the idea of residual networks, our first contribution is to add multiple fully-connected

linear layers between the corresponding layers of the encoder and decoder to infer multi-

level representations from the output of every encoder layer. These connection layers en-

able to produce representations which are enforced to satisfy self-expressiveness property

and hence well-suited to subspace clustering. We model each connection layer as a self-
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expression matrix created from the summation of a coefficient matrix shared between all

layers and a layer-specific matrix that captures the unique knowledge of each individual

layer. Moreover, we introduce a novel loss function that utilizes an initial clustering of

the samples and efficiently aggregates the information at different levels to infer the coef-

ficient matrix and the layer-specific matrices more accurately. This loss function is further

minimized in an iterative scheme which alternatively updates the network parameters for

learning better subspace clustering representations and produces a new clustering of the

samples. We perform extensive experiments on four benchmark datasets for subspace clus-

tering, including two face image and two object image datasets, to evaluate the efficacy

of the proposed method. The experiments demonstrate that our approach can efficiently

handle clustering the data from non-linear subspaces and it performs better than the state-

of-the-art methods on most of the subspace clustering problems.

3.2 Related Works

Conventional subspace clustering approaches aim to learn a weighted graph whose

edge weights represent the relationships between the samples of input data. Then, spectral

clustering [125] (or its variants [138]) can be employed to partition the graph into a set of

disjoint sub-graphs corresponding to different clusters [139, 140, 34, 126, 141, 142, 127,

143, 144]. A commonly-used formulation to obtain such a weighted graph is written as

minimize
C∈Rn×n

1

2
‖X −XC‖2

F + λ g(C) (3.1a)

subject to diag(C) = 0, (3.1b)

where ‖.‖F indicates Frobenius norm, X ∈ Rd×n is a data matrix with its columns repre-

senting the samples {xi ∈ Rd}ni=1, C is a self-expression matrix with its (i, j)th element

denoting the contribution of sample xj in reconstructing xi, g : Rn×n → R is a certain

regularization function, and λ > 0 is a hyperparameter to balance the importance of the
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terms. Equality constraint (3.1b) is imposed to eliminate the trivial solution C = In that

represents a point as a linear combination of itself. Once the optimal solution
∗
C of (3.1a) –

(3.1b) is obtained, symmetric matrix 1
2
(|
∗
C| + |

∗
C|>) can serve as the affinity matrix of the

desired graph where |.| shows the element-wise absolute value operator. Different variants

of (3.1a) – (3.1b) have been well-studied in the literature where they utilize various choices

of the regularization function g(.) such as ‖C‖0 [145, 132], ‖C‖1 [34], ‖C‖∗ [128, 129],

‖C‖F [130], etc, to impose desired structures on the graph.

Deep generative architectures, most notably GANs and VAEs, have been widely used

in the recent literature to facilitate the clustering task [146], especially when the samples

come from complex and irregular distributions [45, 137]. These architectures improve

upon the conventional feature extractions by learning more informative and discriminative

representations that are highly suitable for clustering [147, 148, 41]. To promote inferring

clusters with higher quality, some deep approaches propose to jointly learn the representa-

tions and perform clustering in a unified framework [146, 149, 150, 43]. One successful

deep approach to the subspace clustering problem is presented in [35], known as Deep Sub-

space Clustering (DSC), which employs a deep convolutional auto-encoder to learn latent

representations and uses a novel self-expressive layer to enforce them to lie on a union of

linear subspaces. The DSC model is further adopted by Deep Adversarial Subspace Clus-

tering (DASC) method [43] to develop an adversarial architecture, consisting of a generator

to produce subspaces and a discriminator to supervise the generator by evaluating the qual-

ity of the subspaces. More recently, [150] introduced an end-to-end trainable framework,

named Self-Supervised Convolutional Subspace Clustering Network (S2ConvSCN), which

aims to jointly learn feature representations, self-expression coefficients, and the clustering

results to produce more accurate clusters.

Our approach can be seen as a generalization of the DSC algorithm [35] to the case

that low-level and high-level information of the input data is utilized to produce more in-
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formative and discriminative subspace clustering representations. Moreover, we introduce

a loss minimization problem that employs an initial clustering of the samples to effectively

aggregate the knowledge gained from multi-level representations and to promote learn-

ing more accurate subspaces. Notice that although our work is close to DASC [43] and

S2ConvSCN [150] in the sense that it leverages a clustering of the samples to improve

the feature learning procedure, we adopt a completely different strategy to incorporate the

pseudo-label information into the problem.

It is noteworthy to emphasize that our approach may seem similar to the multi-view

subspace clustering approaches [151, 128, 152, 153] as it aggregates information obtained

from multiple modalities of the data to recover the clusters more precisely. However, it

differs from them in the sense that our method leverages some connection layers to si-

multaneously learn multi-level deep representations and effectively fuse them to boost the

clustering performance.

3.3 Problem Formulation

Let {xi ∈ Rd}ni=1 be a set of n sample points drawn from a union of K different

subspaces in Rd that are not necessarily linear. An effective approach to cluster the sam-

ples is to transform them into a set of new representations that have linear relationships and

satisfy the self-expressiveness property. Then, spectral clustering can be applied to recover

the underlying clusters. To this end, the DSC algorithm [35] introduced a deep architecture

consisting of a convolutional autoencoder with L layers to generate latent representations

and a fully-connected linear layer inserted between the encoder and decoder to ensure the

self-expressiveness property is preserved. Let E and D, parameterized by Θe and Θd, de-

note the encoder and the decoder networks, respectively. Given that, the DSC algorithm
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proposed to solve the following optimization problem to learn desired representations and

infer self-expression matrix C

minimize
Θ

‖X − X̂Θ‖2
F +λ‖ZΘe−ZΘeC‖

2
F +γ‖C‖p (3.2a)

subject to diag(C) = 0, (3.2b)

where λ, γ > 0 are fixed hyperparameters to control the importance of different terms and

Θ = {Θe,C,Θd} shows the network parameters. Matrix ZΘe ∈ Rd̄×n indicates the latent

representations where d̄ is the dimension of the representations and ZΘe = E(X; Θe), and

matrix X̂Θ ∈ Rd×n denotes the reconstructed samples where X̂Θ = D(E(X; Θe)C; Θd).

The main goal of problem (3.2a) – (3.2b) is to compute the network parameters such that

equality ZΘe = ZΘeC holds and the reconstructed matrix X̂ can well approximate the

input dataX . [35] used the backpropagation technique followed by the spectral clustering

algorithm to find the solution of the minimization problem (3.2a) – (3.2b) and determine

the cluster memberships of the samples.

In what follows, we propose a new deep architecture that leverages information from

different levels of the encoder to learn more informative representations and improve the

subspace clustering performance.

3.4 Proposed Method

This section presents a detailed explanation of our proposed approach. As it can be

seen from the problem (3.2a) – (3.2b), the DSC algorithm only relies on the latent variables

ZΘe to perform clustering. Due to the fact that different layers of the encoder construct

increasingly complex representations of the input data, it may be quite difficult to learn

suitable subspace clustering representations from the output of the last layer of the encoder.

This provides a strong motivation to incorporate information from the early layers of the

encoder to boost the clustering performance. Towards this goal, our approach uses a new
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Figure 3.2: Architecture of the proposed multi-level representation learning model for
L = 3. Observe that the representations learned at different levels of the encoder are fed
into fully-connected linear layers to be used in the reconstruction procedure. Such strategy
enables to combine low-level information from the early layers with high-level information
from the deeper layers to produce more informative and robust subspace clustering repre-
sentations. Each fully-connected layer is associated with a self-expression matrix formed
from the summation of a coefficient matrix C shared between all layers and a distinctive
matrixDl, l ∈ {1, . . . , L}, which captures the unique information of each individual layer.

architecture which jointly benefits from low-level and high-level information to learn more

informative subspace clustering representations. The approach adds fully-connected linear

layers between the symmetrical layers of the encoder and the decoder to provide multiple

paths of information flow through the network. These connection layers can not only con-

siderably improve the ability of the network in extracting more complex and informative

features but also promote learning self-expressive representations from the output of every

encoder layer. Figure 4.2 illustrates the proposed architecture in detail. Observe that the

multi-level representations learned at different layers of the encoder, denoted as {Z l
Θe
}Ll=1,

are input to the fully-connected linear layers and the outputs of these layers are fed into

the decoder layers. This strategy allows the decoder to reuse the low-level information for

producing more accurate reconstructions of the input data which in turn can improve the

overall clustering performance.
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We assume each fully-connected layer is associated with a self-expression matrix in

the form of the summation of two matrices, where the first one is shared between the entire

layers and the second one is a layer-specific matrix. Considering the encoder as a mapping

function from the input space to the representation space, it aims to preserve the relations

between the data samples at different levels of representations. Moreover, some samples

may have stronger (or weaker) relations in different levels of the encoder. DefineC ∈ Rn×n

as the consistency matrix to capture the relational information shared between the encoder

layers and {Dl}Ll=1 ∈ Rn×n as distinctive matrices to produce the unique information of

the individual layers. Given that, we incorporate the following loss function to promote

learning self-expressive representations

Lexp =
L∑
l=1

‖Z l
Θe
−Z l

Θe
(C +Dl)‖2

F. (3.3)

The above formulation is able to simultaneously model the shared information across

different levels while considering the unique knowledge gained from each individual layer.

This property allows to effectively leverage the information from the representations learned

at multiple levels of the encoder and therefore is also particularly well-suited to the problem

of multi-view subspace clustering [128].

The self-expression loss Lexp is employed to promote learning self-expressive feature

representations at different levels of the encoder. To better accomplish this purpose, it is

beneficial to adopt certain matrix norms for imposing desired structures on the elements of

the distinctive matrices {Dl}Ll=1 and the consistency matrixC. For the distinctive matrices,

we use Frobenius norm to ensure the connectivity of the affinity graph associated with each

fully-connected layer. For the consistency matrix C, we employ `1-norm to learn sparse

representations of the data. Ideally, it is desired to infer matrixC such that each sample xi

is only expressed by a linear combination of the samples belonging to the same subspace as
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xi. To ensure the consistency matrix and the distinctive matrices obey the aforementioned

desired structures, we propose to incorporate the following regularization terms

LC = ‖Q>|C|‖1, LD =
L∑
l=1

‖Dl‖2
F, (3.4)

where ‖.‖1 computes the sum of absolute values of a matrix, Q ∈ Rn×K is a membership

matrix with its columns are one-hot vectors denoting the pseudo-labels assigned to the

samples. The regularization term LC is adopted to incorporate the information gained from

the pseudo-labels into the model. Unlike the commonly used regularization ‖C‖1 which

imposes sparsity on the entire elements of matrix C, our regularization promotes sparsity

on the cluster memberships of the samples. In other words, it encourages to assign each

sample into a single subspace and only use the samples of the subspace to reconstruct

the given sample. Moreover, the regularization term LD promotes the elements of the

distinctive matrices to be similar in value, which in turn can enhance the connectivity of

the affinity graph associated with each fully-connected layer.

Combining the loss function (3.3) and the regularization terms LC and LD together

with the reconstruction loss ‖X − X̂‖2
F leads to the following optimization problem that

needs to be solved for training our proposed model

minimize
Θ∪{Dl}Ll=1

‖X − X̂Θ‖2
F +λ1

L∑
l=1

‖Z l
Θe
−Z l

Θe
(C +Dl)‖2

F

λ2‖Q>|C|‖1 +λ3

L∑
l=1

‖Dl‖2
F (3.5a)

subject to diag(C +Dl) = 0, l ∈ {1, . . . , L}, (3.5b)

where λ1, λ2, λ3 > 0 are hyperparameters to balance the contribution of different losses.

We adopt the standard backpropagation technique to obtain the solution of problem (3.5a) –
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(3.5b). Once the solution matrices
∗
C and {

∗
Dl}Ll=1 are obtained, we can create symmetric

affinity matrixW ∈ Sn of the following form

W =

∣∣ ∗C + 1
L

∑L
l=1

∗
Dl
∣∣

2
+

∣∣ ∗C>+ 1
L

∑L
l=1

∗
Dl
>∣∣

2
.

(3.6)

Then, the spectral clustering algorithm can be applied on matrix W to recover the under-

lying subspaces and cluster the samples to their respective subspaces.

Note that the pseudo-labels generated by the spectral clustering method can be lever-

aged to retrain the model and provide a more precise estimation of the subspaces. Moti-

vated by that, we develop an iterative scheme which starts from a membership matrixQ (or

equivalently an initial clustering of the input data) and alternatively runs the model for T

epochs to train the network parameters Θ∪{Dl}Ll=1 and then updates the membership ma-

trix. This training procedure is then repeated until the convergence is obtained. Different

steps of our proposed scheme are described and depicted in detail in Algorithm 2.

Algorithm 2 Proposed Subspace Clustering Approach
Input: X ,Q, T , k = 1

1: repeat
2: Update network parameters Θ ∪ {Dl}Ll=1

3: if k mod T = 0 then

4: Create affinity matrixW
5: Apply spectral clustering to updateQ

6: end if
7: k ← k + 1

8: until k ≤ maxIter

Output: Q

It can be seen that given the input, Algorithm 2 is able to train the network parameters

Θ ∪ {Dl}Ll=1 from scratch. However, several aspects of the algorithm such as convergence
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behavior and accuracy can be considerably improved by employing pre-trained models

and using fine-tuning techniques to obtain initial values for the encoder and the decoder

networks [35].

In the next section, we perform extensive experiments to corroborate the effective-

ness of our approach. Also, we present a detailed explanation about the parameter settings,

the pre-trained models, and the fine-tuning procedures used in our experiments.

3.5 Experiments

This section evaluates the clustering performance of our proposed method, termed

MLRDSC, on four standard benchmark datasets for subspace clustering including two face

image datasets (ORL and Extended Yale B) and two object image datasets (COIL20 and

COIL100). Sample images from each of the datasets are illustrated in Figure 4.3. We

perform multiple subspace clustering experiments on the datasets and compare the results

against some baseline algorithms, including Low Rank Representation (LRR) [127], Low

Rank Subspace Clustering (LRSC) [129], Sparse Subspace Clustering (SSC) [34], SSC

with the pre-trained convolutional auto-encoder features (AE+SSC), Kernel Sparse Sub-

space Clustering (KSSC) [37], SSC by Orthogonal Matching Pursuit (SSC-OMP) [132],

Efficient Dense Subspace Clustering (EDSC) [154], EDSC with the pre-trained convo-

lutional auto-encoder features (AE+EDSC), Deep Subspace Clustering (DSC) [35], and

Deep Adversarial Subspace Clustering (DASC) [43], Self-Supervised Convolutional Sub-

space Clustering Network (S2ConvSCN) [150]. For the competitor methods, we directly

collect the scores from the corresponding papers and some existing literature [35, 150].

Note that the subspace clustering problem is regarded as a specific clustering scenario

which seeks to cluster a set of given unlabeled samples into a union of low-dimensional sub-

spaces that best represent the sample data. In this sense, the subspace clustering approaches
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(a) Extended Yale B (b) ORL (c) COIL20 and COIL100

Figure 3.3: Example images of Extended Yale B, ORL, COIL20, and COIL100 datasets.
The main challenges in the face image datasets, Extended Yale B and ORL, are illumination
changes, pose variations and facial expression variations. The main challenges in the object
image datasets, COIL20 and COIL100, are the variations in the view-point and scale.

are basically different from the standard clustering methods that aim to group the samples

around some cluster centers. Most of the subspace clustering literature revolves around us-

ing the spectral clustering technique to recover underlying subspaces from an affinity graph

created over the entire samples. This can considerably increase the computational cost of

these methods in comparison to the standard clustering approaches. As a consequence of

this limitation, the benchmark datasets used for subspace clustering are generally smaller

than that for the clustering task. In this work, we perform experiments on the aforemen-

tioned four datasets which are frequently used in the recent literature [34, 35, 150, 43] to

evaluate the performance of the subspace clustering approaches.

In what follows, we first describe the training procedure used in our experiments.

Then, we provide more details for each individual dataset and present the final clustering

results of different methods.

3.5.1 Training Procedure

Following the literature [35, 43], for the convolutional layers, we use kernel filters

with stride 2 in both dimensions and adopt Rectified Linear Unit (ReLU) activation func-

tion. For the fully-connected layers, we use linear weights without considering bias or
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Table 3.1: Clustering error (%) of different methods on Extended Yale B dataset. The best
results are in bold.

Measure LRR LRSC SSC AE+SSC KSSC EDSC AE+EDSC DSC S2ConvSCN MLRDSC

10 subjects
Mean 22.22 30.95 10.22 17.06 14.49 5.64 5.46 1.59 1.18 1.10
Median 23.49 29.38 11.09 17.75 15.78 5.47 6.09 1.25 1.09 0.94
15 subjects
Mean 23.22 31.47 13.13 18.65 16.22 7.63 6.70 1.69 1.12 0.91
Median 23.49 31.64 13.40 17.76 17.34 6.41 5.52 1.72 1.14 0.99
20 subjects
Mean 30.23 28.76 19.75 18.23 16.55 9.30 7.67 1.73 1.30 0.99
Median 29.30 28.91 21.17 16.80 17.34 10.31 6.56 1.80 1.25 1.02
25 subjects
Mean 27.92 27.81 26.22 18.72 18.56 10.67 10.27 1.75 1.29 1.13
Median 28.13 26.81 26.66 17.88 18.03 10.84 10.22 1.81 1.28 1.12
30 subjects
Mean 37.98 30.64 28.76 19.99 20.49 11.24 11.56 2.07 1.67 1.78
Median 36.82 30.31 28.59 20.00 20.94 11.09 10.36 2.19 1.72 1.41
35 subjects
Mean 41.85 31.35 28.55 22.13 26.07 13.10 13.28 2.65 1.62 1.44
Median 41.81 31.74 29.04 21.74 25.92 13.10 13.21 2.64 1.60 1.47
38 subjects
Mean 34.87 29.89 27.51 25.33 27.75 11.64 12.66 2.67 1.52 1.36
Median 34.87 29.89 27.51 25.33 27.75 11.64 12.66 2.67 1.52 1.36

non-linear activation function. In order to train the model and obtain the affinity matrix,

we follow the literature [35, 150, 43] and pass the entire samples into the model as a single

batch. The Adam optimizer [155] with β1 = 0.9, β2 = 0.999, and learning rate 0.001 is

used to train the network parameters. All experiments are implemented in PyTorch.

As it is noted in [35], it is computationally very expensive to train the model from

scratch since the samples are fed into the network in a single batch. Therefore, we follow

[35] to produce a pre-trained model by learning a model obtained from shortcutting the

connection layers and ignoring the self-expression loss term Lexp. The resulting model is

trained on the entire sample points and it can be further utilized to initialize the encoder

and the decoder parameters of our proposed architecture. Moreover, through the entire

experiments on the datasets, we initialize the membership matrixQ with a zero matrix and

set each of the individual matrices C and {Dl}Ll=1 to a matrix with all elements 0.0001.
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3.5.2 Results

The results of all experiments are reported based on the clustering error which is

defined to be the percentage of the misclustered samples to the entire sample points.

Extended Yale B: This dataset is used as a popular benchmark for the subspace

clustering problem. It consists of 2432 frontal face images of size 192× 168 captured from

38 different human subjects. Each subject has 64 images taken under different illumination

conditions and poses. For computational purposes and following the literature [34, 35,

150], we downsample the entire images from their original size to 48× 42.

We perform multiple experiments for a different number of human subjects K ∈

{10, 15, 20, 25, 30, 35, 38} of this dataset to evaluate the sensitivity of MLRDSC with re-

spect to increasing the number of clusters. By numbering the subjects from 1 to 38, we

perform experiments on all possible K consecutive subjects and present the mean and

median clustering errors of each 39−K trials. Such experiments have been frequently per-

formed in the literature [34, 35, 43, 150]. Through these experiments, we have employed

an autoencoder model consisting of three stacked convolutional encoder layers with 10, 20,

and 30 filters with sizes 5 × 5, 3 × 3, and 3 × 3, respectively. The parameters used in the

experiments on this dataset are as follows: λ1 = 1 × 10
K
10
−1, λ2 = 40, λ3 = 10, and we

update the membership matrix Q in every T = 100 consecutive epochs. For the entire

choices of K, we set the maximum number of epochs to 900.

The clustering results on this dataset are reported in Table 3.1. Observe that ML-

RDSC achieves smaller errors than the competitor methods in all experiments, except for

the mean of clustering error in case K = 30.

ORL: This dataset consists of 400 face images of size 112 × 92 from 40 different human

subjects where each subject has 10 images taken under diverse variation of poses, lighting

conditions, and facial expressions. Following the literature, we downsample the images

from their original size to 32× 32. This dataset is challenging for subspace clustering due
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Table 3.2: Clustering error (%) of different methods on ORL, COIL20, and COIL100
datasets. The best results are in bold.

Dataset LRR LRSC SSC AE+SSC KSSC EDSC AE+EDSC DSC DASC S2ConvSCN Ours

ORL 33.50 32.50 29.50 26.75 34.25 27.25 26.25 14.00 11.75 10.50 11.25

COIL20 30.21 31.25 14.83 22.08 24.65 14.86 14.79 5.42 3.61 2.14 2.08

COIL100 53.18 50.67 44.90 43.93 47.18 38.13 38.88 30.96 − 26.67 23.28

to the large variation in the appearance of facial expressions (shown in Figure 4.3) and

since the number of images per each subject is quite small.

Through the experiment on ORL, we have adopted a network architecture consisting

of three convolutional encoder layers with 3, 3, and 5 filters, all of size 3 × 3. Moreover,

the parameter settings used in the experiment are as follows: λ1 = 5, λ2 = 0.5, λ3 = 1,

T = 10, and the maximum number of epochs is set to 420.

The results of this experiment are presented in Table 3.2. It can be seen that ML-

RDSC outperforms all the competitor methods, except S2ConvSCN which attains the small-

est clustering error rate on ORL.

COIL20/COIL100: These two datasets are widely used for different types of clustering.

COIL20 contains 1440 images captured from 20 various objects and COIL100 has 7200

images of 100 objects. Each object in either of the datasets has 72 images with black

background taken at pose intervals of 5 degrees. The large viewpoint changes can pose

serious challenges for the subspace clustering problem on these two datasets (Shown in in

Figure 4.3).

For COIL20 and COIL100 datasets, the literature methods [35, 150, 43] mostly adopt

one layer convolutional autoencoders to learn feature representations. This setting admits

no connection layer and hence is not well-suited to our approach. To better demonstrate

the advantages of MLRDSC, we use a two-layer convolutional autoencoder model with 5

and 10 filters for performing experiment on COIL20 and adopt the same architecture with

20 and 30 filters for COIL100. The entire filters used in both experiments are of size 3× 3.
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Table 3.3: Ablation study of our method in terms of clustering error (%) on Extended Yale
B. The best results are in bold.

Measure DSC-L2 DSC-L1 MLRDSC (‖C‖1) MLRDSC

10 subjects
Mean 1.59 2.23 1.09 1.10
Median 1.25 2.03 1.08 0.94
15 subjects
Mean 1.69 2.17 0.98 0.91
Median 1.72 2.03 0.99 0.99
20 subjects
Mean 1.73 2.17 0.94 0.99
Median 1.80 2.11 0.94 1.02
25 subjects
Mean 1.75 2.53 1.13 1.13
Median 1.81 2.19 1.12 1.12
30 subjects
Mean 2.07 2.63 1.84 1.78
Median 2.19 2.81 1.35 1.41
35 subjects
Mean 2.65 3.09 1.49 1.44
Median 2.64 3.10 1.49 1.47
38 subjects
Mean 2.67 3.33 1.40 1.36
Median 2.67 3.33 1.40 1.36

Moreover, the parameter settings for the datasets are as follows: 1) COIL20: λ1 = 20,

λ2 = 20, λ3 = 5, T = 5, and the maximum number of epochs is set to 50; 2) COIL100:

λ1 = 20, λ2 = 40, λ3 = 10, T = 50, and the maximum number of epochs is set to 350.

The results on COIL20 and COIL100 datasets are shown in Table 3.2. Observe that

our approach achieves better subspace clustering results on both datasets compared to the

existing state-of-the-art methods.

According to the (3.1) – (3.2), the deep subspace clustering methods, such as DSC,

S2ConvSCN, and MLRDSC, perform considerably well compared to the classical subspace

clustering approaches on the benchmark datasets. This success can be attributed to the fact

that deep models are able to efficiently capture the non-linear relationships between the

samples and recover the underlying subspaces. Moreover, the results indicate that ML-

RDSC outperforms the DSC algorithm by a notable margin. This improvement result from
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the incorporation of a modified regularization term and the insertion of connection layers

between the corresponding layers of the encoder and decoder. These layers enable to com-

bine the information of different levels of the encoder to learn more favorable subspace

clustering representations. It is noteworthy to mention that although our approach achieves

better clustering results than the DSC method, it has more parameters to train, which in

turn increases the computational burden of the model.

Ablation Study: To highlight the benefits brought by different components of our pro-

posed model, we carry out an ablation study by evaluating a variant of our approach, named

MLRDSC(‖C‖1), which replaces the regularization term ‖Q|C|‖1 with term ‖C‖1. In this

sense, MLRDSC(‖C‖1) can be seen as a generalization of DSC-L1 (a variant of the DSC

algorithm that utilizes regularization term ‖C‖1 [35]) to a case that leverages multiple

connection layers to learn multi-level subspace clustering representations. We perform ex-

periments for different number of subjects K on the Extended Yale B dataset and present

the clustering results in Table 3.3. As the table indicates, inserting the connection lay-

ers between the symmetrical layers of the encoder and decoder can considerably improve

the clustering performance of DSC-L1 algorithm. Moreover, comparing the results of ML-

RDSC and MLRDSC(‖C‖1) confirms the positive effect of incorporating the regularization

term ‖Q|C|‖1.

3.6 Conclusions

This chapter presented a novel spectral clustering-based approach which uses a deep

neural network architecture to address the subspace clustering problem. The proposed

method improves upon the existing deep approaches by leveraging information exploited

from different levels of the networks to transform input samples into multi-level repre-

sentations lying on a union of linear subspace. Moreover, it is able to use pseudo-labels
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generated by the spectral clustering technique to effectively supervise the representation

learning procedure and boost the final clustering performance. Experiments on benchmark

datasets demonstrate that the proposed approach is able to efficiently handle clustering

from the non-linear subspaces and it achieves better results compared to the state-of-the-art

methods.
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CHAPTER 4

Class Conditional Alignment for Partial Domain Adaptation

Adversarial adaptation models have demonstrated significant progress towards trans-

ferring knowledge from a labeled source dataset to an unlabeled target dataset. Partial

domain adaptation (PDA) investigates the scenarios in which the source domain is large

and diverse, and the target label space is a subset of the source label space. The main

purpose of PDA is to identify the shared classes between the domains and promote learn-

ing transferable knowledge from these classes. In this paper, we propose a multi-class

adversarial architecture for PDA. The proposed approach jointly aligns the marginal and

class-conditional distributions in the shared label space by minimaxing a novel multi-class

adversarial loss function. Furthermore, we incorporate effective regularization terms to

encourage selecting the most relevant subset of source domain classes. In the absence of

target labels, the proposed approach is able to effectively learn domain-invariant feature

representations, which in turn can enhance the classification performance in the target do-

main. Comprehensive experiments on two benchmark datasets Office-31 and Office-Home

corroborate the effectiveness of the proposed approach in addressing different partial trans-

fer learning tasks.

4.1 Introduction

With the impressive power of learning representations, deep neural networks have

shown superior performance in a wide variety of machine learning tasks such as classi-

fication [47, 48, 49], semantic segmentation [50, 51, 52], object detection [53, 49, 54],

etc. These notable achievements heavily depend on the availability of large amounts of
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Outlier Class

Source Domain
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Shared Space

Figure 4.1: Illustration of partial domain adaptation task. The objective is to transfer
knowledge between the shared classes in the source and target domains. To this end, it
is desired to identify and reject the outlier source classes and align both marginal and class-
conditional distributions across the shared label space. Best viewed in color.

labeled training data. However, in many applications, collecting sufficient labeled data is

either difficult or time-consuming. One potential solution to reduce the labeling consump-

tion is to build an effective predictive model using readily-available labeled data from a

different but related source domain. Such a learning paradigm generally suffers from the

distribution shift between the source and target domains, which in turn poses a significant

difficulty in adapting the predictive model to the target domain tasks. In the absence of

target labels, unsupervised domain adaptation (UDA) seeks to enhance the generalization

capability of the predictive model by learning feature representations that are discrimi-

native and domain-invariant [55, 56, 57]. Various approaches have been proposed in the

literature to tackle UDA problems by embedding domain adaptation modules in deep ar-

chitectures [58, 59, 60, 61, 62, 63] (see [64] for a comprehensive survey on deep domain

adaptation methods). A line of research is developed to align the marginal distributions

of the source and target domains through minimizing discrepancy measures such as maxi-
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mum mean discrepancy [156, 60], central moment discrepancy [157], correlation distance

[158, 159], etc. In this way, they can map both domains into the same latent space, which

results in learning domain-invariant feature representations. Another strand of research

is focused on designing specific distribution normalization layers which facilitates learn-

ing separate statistics for the source and target domains [160, 161]. More recently, some

research studies have been carried out based on the generative adversarial networks [46]

that aim to alleviate the marginal disparities across the domains by adversarially learning

domain-invariant feature representations which are indistinguishable for a discriminative

domain classifier [65, 66, 67].

Despite the efficacy of the existing UDA methods, their superior performance is

mostly limited to the scenarios in which the source and target domains share the same set of

labels. With the goal of considering more realistic and practical cases, [1] introduced partial

domain adaptation (PDA) as a new adaptation scenario in which the target label space is a

subset of the source label space. The main challenge in PDA is to identify and reject the

source domain classes that do not appear in the target domain, known as outlier classes,

mainly because they may exert negative impacts on the overall transfer performance [70, 4].

Addressing this challenge enables the PDA methods to transfer models trained on large and

diverse labeled datasets (e.g. ImageNet) to small-scale unlabeled datasets from different but

related domains.

In this paper, we propose a novel adversarial approach for partial domain adaptation

which seeks to automatically reject the outlier source classes and improve the classification

confidence on irrelevant samples, i.e. the samples that are highly dissimilar across the

domains. The existing PDA methods often align the marginal distributions between the

domains in the shared label space. Different from these methods, we propose a novel

adversarial architecture that matches class-conditional feature distributions by minimaxing

a multi-class adversarial loss function. Moreover, we propose to boost the target domain
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classification performance by incorporating two novel regularization functions. The first

regularizer is a row-sparsity term on the output of the classifier to promote the selection of

a small subset of classes that are in common between the source and target domains. The

second one is a minimum entropy term which increases the classifier confidence level in

predicting the labels of irrelevant samples from both domains. We empirically observe that

our proposed approach considerably improves the state-of-the-art performance for various

partial domain adaptation tasks on two commonly-used benchmark datasets Office-31 and

Office-Home.

4.2 Related Work

To date, various unsupervised domain adaptation (UDA) methods have been devel-

oped to learn domain-invariant feature representations in the absence of target labels. Some

studies have proposed to minimize the maximum mean discrepancy between the features

extracted from the source and target samples [162, 60, 163, 164, 63]. In [165], a cor-

relation alignment (CORAL) method is developed that utilizes a linear transformation to

match the second-order statistics between the domains. [159] presented an extension of the

CORAL method that learns a non-linear transformation to align the correlations of layer

activations in deep networks. Despite the practical success of the aforementioned methods

in domain alignment, it is shown that they are unable to completely eliminate the domain

shift [59, 58]. Another line of work has proposed to reduce the discrepancy by learning

separate normalization statistics for the source and target domains [160, 161]. [160] adopts

different batch normalization layers for each domain to align the marginal distributions.

[161] embeds domain alignment layers at different levels of a deep architecture to align the

domain feature distributions to a canonical one.
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More recently, adversarial adaptation methods have been extensively investigated to

boost the performance of UDA methods [68, 166, 167, 69, 65]. The basic idea behind

these methods is to train a discriminative domain classifier for predicting domain labels

and a deep network for learning feature representations that are indistinguishable by the

discriminator. By doing so, the marginal disparities between the source and target domains

can be efficiently reduced, which results in significant improvement in the overall classi-

fication performance [68, 69, 66]. Transferable attention for domain adaptation [67] pro-

posed an adversarial attention-based mechanism for UDA, which effectively highlights the

transferable regions or images. [168] introduced an incremental adversarial scheme which

gradually reduces the gap between the domain distributions by iteratively selecting high

confidence pseudo-labeled target samples to enlarge the training set. While the existing

UDA models have shown tremendous progress towards reducing domain discrepancy, they

mostly rely on the assumption of fully shared label space and generally align the marginal

feature distributions between the source and target domains. This assumption is not neces-

sarily valid in partial domain adaptation (PDA) which assumes the target label space is a

subset of the source label space.

Great studies have been conducted towards the task of PDA to simultaneously pro-

mote positive transfer from the common classes between the domains and alleviate the

negative transfer from the outlier classes [4, 1, 169]. Importance weighted adversarial

nets [169] develops a two-domain classifier strategy to estimate the relative importance of

the source domain samples. Selective adversarial network (SAN) [4] trains different do-

main discriminators for each source class separately to align the distributions of the source

and target domains across the shared label space. Partial adversarial domain adaptation

(PADA) [1] adopts a single adversarial network and incorporates class-level weights to

both source classifier and domain discriminator for down-weighing the samples of outlier

source classes. Example Transfer Network (ETN) [5] improves upon the PADA approach
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by introducing an auxiliary domain discriminator to quantify the transferability of each

source sample.

Despite the efficacy of the existing PDA approaches in various tasks, they often align

the marginal distributions of the shared classes between the domains without considering

the conditional distributions [1, 168, 5]. This may degenerate the performance of the model

due to the negative transfer of irrelevant knowledge. To circumvent this issue, we utilize

pseudo-labels for the target domain samples and develop a multi-class adversarial architec-

ture to jointly align the marginal and class-conditional distributions (see Figure 4.1 for more

clarification). Inspired by [170], we propose to align labeled source centroid and pseudo-

labeled target centroid to mitigate the adverse effect of the noisy pseudo-labels. Similar to

[1], we incorporate class-level weights into our cost function to down-weight the contribu-

tions of the source samples belonging to the outlier classes. Furthermore, we introduce two

novel regularization functions to promote the selection of a small subset of classes that are

in common between the source and target domains and enhance the classifier confidence in

predicting the labels of irrelevant samples from both domains.

4.3 Problem Formulation

Let {(xis,yis)}
ns
i=1 be a set of ns sample images collected i.i.d from the source domain

Ds, where xis denotes the ith source image with label yis. Similarly, let {xit}nti=1 be a set of

nt sample images drawn i.i.d from the target domain Dt, where xit indicates the ith target

image. To clarify the notation, let X = Xs∪Xt be the set of entire images captured from

both domains, where Xs={xis}nsi=1 and Xt={xit}nti=1. The UDA methods assume the source

and target domains possess the same set of labels, denoted as Cs and Ct, respectively. In

the absence of target labels, the primary goal of the UDA methods is to learn transferable

features that can reduce the shift between the marginal distributions of both domains. One
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Figure 4.2: Overview of the proposed adversarial network for partial transfer learning. The
network consists of a feature extractor, a classifier, and a domain discriminator, denoted
by Gf , Gy, and G̃d, respectively. The blue arrows show the source flow and the green ones
depict the target flow. Loss functions Ly, L̃d, Lc, Le, and L∞ denote the classification loss,
the discriminative loss, the centroid alignment loss, the entropy loss, and the selection loss,
respectively. Best viewed in color.

promising direction towards this goal is to train a domain adversarial network [61, 68]

consisting of a discriminator Gd for predicting the domain labels, a feature extractor Gf

to learn domain-invariant feature representations for deceiving the discriminator, and a

classifier Gy that classifies the source domain samples. Training such adversarial network

is equivalent to solving the following optimization problem

max
θd

min
θy ,θf

1

ns

∑
xi∈Xs

Ly(Gy(Gf(x
i;θf);θy),y

i
s)

− λ

n

∑
xi∈X

Ld(Gd(Gf(x
i;θf);θd), d

i),

(4.1)

where n=ns+ nt denotes the total number of images, λ> 0 is a regularization parameter,

yis is a one-hot vector denoting the class label of image xi, and d i ∈ {0, 1} indicates its

domain label. Ly and Ld are cross-entropy loss functions corresponding to the classifier

Gy and the domain discriminator Gd, respectively. Moreover, variables θf , θy, and θd are

the network parameters associated with Gf , Gy, and Gd, respectively. For the brevity of

notation, we drop the reference to the network parameters in the subsequent formulations.
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As noted earlier, standard domain adaptation approaches assume that the source and

target domains possess the same label space, i.e. Cs = Ct. This assumption may not be

fulfilled in a wide range of practical applications in which Cs is large and diverse (e.g.,

ImageNet) and Ct only contains a small subset of the source classes (e.g., Office-31), i.e.

Ct⊂Cs. In such scenarios, it is hard to identify the shared label space between the domains

since target labels and target label space Ct are unknown during the training procedure.

Under this condition, matching the marginal distributions may not necessarily facilitate the

classification task in the target domain and a classifier with adaptation may perform worse

than a standard classifier trained on the source samples. This is attributed to the adverse ef-

fect of transferring information from the outlier classes Cs\Ct [4, 1]. Hence, the primary goal

in partial domain adaptation is to identify and reject the outlier classes and simultaneously

align the conditional distributions of the source and target domains across the shared label

space. One of the well-established works toward this goal is Partial Adversarial Domain

Adaptation (PADA) [1] which highlights the shared classes and reduces the importance of

the outlier classes via the following weighting procedure

γ =
1

nt

nt∑
i=1

ŷit, (4.2)

where ŷit = Gy(Gf (x
i
t)) denotes the output of the classifier Gy to the target sample xit and

it can be considered as a probability distribution over the source label space Cs. The weight

vector γ is further normalized as γ ← γ\max(γ) to demonstrate the relative importance

of the classes. The weights associated with the outlier classes are expected to be much

smaller than that of the shared classes, mainly because the target samples are significantly

dissimilar to the samples belonging to the outlier classes. Ideally, γ is expected to be a vec-

tor whose elements are non-zero except those corresponding to the outlier classes. Given

that, PADA proposed to down-weigh the contributions of the source samples belonging to

the outlier classes Cs\Ct by adding the class-level weight vector γ to both source classifier
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Gy and domain discriminator Gd. Therefore, the objective of PADA can be formulated as

follows
max
θd

min
θy ,θf

1

ns

∑
xi∈Xs

γci Ly(Gy(Gf(x
i)),yi)

− λ

ns

∑
xi∈Xs

γci Ld(Gd(Gf(x
i)), d i)

− λ
nt

∑
xi∈Xt

Ld(Gd(Gf(x
i)), d i),

(4.3)

where scalar γci denotes the class weight of sample xi and ci = argmaxj y
i
j indicates the

index of the largest element in vector yi.

4.4 Proposed Method

Although the weighting scheme (4.2) is able to effectively match the marginal dis-

tributions of the source and target domains in the shared label space, there is no guarantee

that the corresponding class-conditional distributions can also be drawn close. This may

significantly degenerate the performance of the model due to the negative transfer of irrel-

evant knowledge. To circumvent this issue, we introduce a novel adversarial architecture

to jointly align the marginal and class-conditional distributions in the shared label space.

The proposed model adopts a multi-class discriminator G̃d, parameterized by θ̃d, to clas-

sify the feature representations Gf (xi) into 2 × |Cs| categories, where the first and the last

|Cs| categories respectively correspond to the probability distribution over the source label

space Cs and target label space Ct (Ct⊂Cs). We propose to train the discriminator G̃d with

the following objective function

L̃d(θf , θ̃d)=− 1

ns

∑
xi∈Xs

γciLd(G̃d(Gf (x
i)), d̃ i)

− 1

nt

∑
xi∈Xt

Ld(G̃d(Gf (x
i)), d̃ i),
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where vector d̃ i ∈ R2×|Cs| is defined as the domain-class label of sample point xi. Due to

the lack of class labels for the target samples, we set d̃ i to [yis,0] if xi∈Xs and use [0, ỹit]

if xi∈Xt, where ỹit corresponds to the pseudo-label generated by classifier Gy and is given

by

ỹit = argmaxc e
>
cGy(Gf (x

i
t)),

where {ec}
|Cs|
c=1 denotes the standard unit basis in R|Cs|. Moreover, the negative transfer can

be efficiently alleviated by incorporating the weight vector γ into the loss L̃d which re-

sults in selecting out the source samples belonging to the outlier label space Cs \Ct. It is

noteworthy to mention that the direct use of pseudo-labels may degrade the classification

performance as the pseudo-labels are predicted by the classifier and hence they may be

noisy and inaccurate. Many literature methods leverage the theory of domain adaptation

[171] to present error analysis and derive certain bounds on the error introduced by incor-

porating the pseudo-labels [172, 170]. These analysis are not generally applicable to the

problem of partial domain adaptation as they mainly rely on the assumption that the source

and target domains possess the same set of labels.

With the proposed multi-class adversarial loss L̃d, the key challenge is how to tackle

the uncertainty in pseudo-labels. One promising approach to mitigate the adverse effect

of falsely-pseudo-labeled target samples is to align labeled source centroids and pseudo-

labeled target centroids in the feature space [170]. However, this approach hardly fits the

partial domain adaptation scenario in which the target label space is a subset of source

label space. We propose to modify the aforementioned approach by incorporating weight

vector γ to highlight the mismatch between the centroids of the shared classes. Hence, the

weighted centroid alignment loss function can be formulated as

Lc(θf , θy) =

|Cs|∑
i=1

γi ‖M i
s −M i

t ‖
2

2,
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where M i
s and M i

t respectively denote the feature centroids for the ith class in the source

and target domains. These vectors are computed via the following formulas

M i
s =

1

|Oi|
∑
xi∈Oi

Gf (x
i), M i

t =
1

|Õi|

∑
xi∈Õi

Gf (x
i),

where Oi is the set of source samples belonging to the ith class and Õi denotes the set of

target samples assigned to the ith class.

In what follows, we propose two novel regularization functions to derive more dis-

criminative class weights and to increase the confidence level of the classifier in predicting

the labels of the irrelevant samples across both domains.

Motivated by the assumption that the target samples are dissimilar to the samples of

the outlier classes, we propose a row-sparsity regularization term that promotes the selec-

tion of a small subset of source domain classes that appear in the target domain. This, in

turn, encourages the weight vector γ to be a vector of all zeros except for the elements

corresponding to the shared classes. This selection regularization can be formulated as

follows

L∞(θf ,θy) =
1

|Cs|
∥∥Gy(Gf(x

1

t)), . . . ,Gy(Gf(x
|Xt|
t ))

∥∥
1,∞
,

where |.| denotes the cardinality of its input set and ‖.‖1,∞ computes the sum of the in-

finity norms of the rows of an input matrix. To illustrate, for an arbitrary matrix A =

[a1|a2| . . . |an]> ∈ Rn×m, scalar ‖ai‖∞ denotes the maximum absolute value of ith row.

Therefore, regularization term ‖A‖1,∞ =
∑n

i=1‖ai‖∞ promotes sparsity on the maximum

absolute value of each row which in turn leads to some zero rows in matrixA.

The regularization term L∞ takes into consideration the relation between the entire

target samples and encourages the classifier to generate a sparse output vector with its non-

zero entries located at certain indices correspond to the classes shared between the domains.

Notice that this regularization term does not directly enforce a specific number of classes

to be chosen but rather promotes the network to select a subset of source domain classes.
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Besides the outlier classes, the irrelevant samples are inherently less transferable and

they may significantly degrade the target classification performance in different PDA tasks.

To reduce the negative effect of irrelevant samples in the training procedure, we propose to

leverage the following entropy minimization term

Le(θf ,θy)=
1

ns

∑
xi∈Xs

γciL
e
y(Gy(Gf (x

i)))

+
1

nt

∑
xi∈Xt

Ley(Gy(Gf (x
i)),

where Ley is the entropy loss function corresponding to the classifierGy. Generally, regular-

ization Le encourages the classifier to produce vectors with one dominant element denoting

the label (or pseudo-label) of samples. This, in turn, enhances the performance of the fea-

ture extractor and helps to learn more transferable features for classification. Moreover,

weight vector γ is incorporated to highlight the importance of samples belonging to the

shared classes.

By combining the aforementioned loss functions, training our proposed model is

equivalent to solving the following minimax saddle point optimization problem

max
θ̃d

min
θy ,θf

1

ns

∑
xi∈Xs

γci Ly(Gy(Gf (x
i)),yi)

+ λ L̃d (θf , θ̃d) + Lc(θf ,θy)

+ µL∞(θf ,θy) + ζ Le(θf ,θy),

(4.4)

where λ, µ, and ζ are positive hyperparameters to control the contribution of each loss

component.

4.5 Experiments

This section evaluates the efficacy of our approach, named CCPDA, through con-

ducting empirical experiments on two widely used benchmark datasets for partial domain
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Figure 4.3: Sample images from the Office-Home dataset.

Table 4.1: Classification accuracy of partial domain adaptation tasks on Office-31.

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet 75.59 96.27 98.09 83.44 83.92 84.97 87.05
DANN 73.56 96.27 98.73 81.53 82.78 86.12 86.50
ADDA 75.67 95.38 99.85 83.41 83.62 84.25 87.03
MADA 90.00 97.40 99.60 87.80 70.30 66.40 85.20
RTN 78.98 93.22 85.35 77.07 89.25 89.46 85.56
IWAN 89.15 99.32 99.36 90.45 95.62 94.26 94.69
SAN 93.90 99.32 99.36 94.27 94.15 88.73 94.96
PADA 86.54 99.32 100.0 82.17 92.69 95.41 92.69
ETN 94.52 100.0 100.0 95.03 96.21 94.64 96.73

CCPDA 99.66 100.0 100.0 97.45 95.72 95.71 98.09

adaptation (PDA) problem. The experiments are performed on different PDA tasks in an

unsupervised setting where neither the target labels nor the target label space is available.

In what follows, we give more explanations about the datasets, the PDA tasks, and the

network hyperparameters used in our experiments.

4.5.1 Setup

Dataset: We evaluate the performance of CCPDA on two commonly used datasets for

the task of partial domain adaptation: Office-31 [173] and Office-Home [174]. Office-31
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Table 4.2: Classification accuracy of partial domain adaptation tasks on Office-Home.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
DANN 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72
ADDA 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82
RTN 49.31 57.70 80.07 63.54 63.47 73.38 65.11 41.73 75.32 63.18 43.57 80.50 63.07
IWAN 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56
SAN 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
PADA 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
ETN 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45

CCPDA 55.31 80.11 88.07 73.28 71.21 77.63 71.89 52.97 81.41 81.81 56.21 85.15 72.92

object dataset consists of 4, 652 images from 31 classes, where the images are collected

from three different domains: Amazon (A), Webcam (W), and DSLR (D). We follow the

procedure presented in the literature [1, 5] to transfer knowledge from a source domain

with 31 classes to a target domain with 10 classes. The results are reported as the average

classification accuracy of the target domain over five independent experiments across six

different PDA tasks: A→W, W→ A, D→W, W→ D, A→ D, and D→ A.

Office-Home is a more challenging dataset that contains 15, 500 images collected

from four distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw),

where each domain has 65 classes. Example images from this dataset are provided in

Figure 4.3. Following the procedure presented in [1, 5], we aim to transfer information

from a source domain containing 65 classes to a target domain with 25 classes. The results

on this dataset are also reported as the average classification accuracy of the target domain

over five independent experiments across twelve pairs of source-target adaptation tasks: Ar

→ Cl, Ar → Pr, Ar → Rw, Cl → Ar, Cl → Pr, Cl → Rw, Pr → Ar, Pr → Cl, Pr →

Rw, Rw→ Ar, Rw→ Cl, and Rw→ Pr.

We follow the standard evaluation protocols for partial domain adaptation [4, 1] and

compare the performance of CCPDA against several deep transfer learning methods: Do-

main Adversarial Neural Network (DANN) [68], Residual Transfer Networks (RTN) [163],

Adversarial Discriminative Domain Adaptation (ADDA) [69], Importance Weighted Ad-
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versarial Nets (IWAN) [169], Multi-Adversarial Domain Adaptation (MADA) [66] , Selec-

tive Adversarial Network (SAN) [4], Partial Adversarial Domain Adaptation (PADA) [1],

and Example Transfer Network (ETN) [5]. Moreover, in order to demonstrate the efficacy

brought by different components of the proposed PDA model, we conduct an ablation study

by evaluating three variants of CCPDA: CCPDA∞ is a variant of CCPDA without incorpo-

rating the selection regularization term L∞, CCPDAe denotes a variant without considering

Le, and CCPDAd,c [175] is a variant with a binary discriminator and without considering

the weighted centroids alignment term Lc.

Parameter: We use PyTorch [176] to implement CCPDA and adopt ResNet-50 [177]

model pre-trained on ImageNet [178], as the backbone for the network Gf . We fine-tune

the entire feature layers and apply back-propagation to train the domain discriminator G̃d

and the classifier Gy. Since parameters θy and θ̃d are trained from scratch, their learn-

ing rates are set to be 10 times greater than that of θf . To solve the minimax problem

(4.3), we use mini-batch stochastic gradient descent (SGD) with a momentum of 0.95 and

the learning rate is adjusted during SGD by: η =
η0

(1+α×ρ)β
where η0 = 10-2, α = 10,

β = 0.75, and ρ, denoting the training progress, linearly changes from 0 to 1 [68, 1]. We

use a batch size b = 72 with 36 samples for each domain. Parameter µ is set to 0.1 for

both Office-31 and Office-Home datasets. Notice that since the classifier is not appropri-

ately trained in the first few epochs, the value of µ can be gradually increased from 0 to

0.1. Other hyper-parameters are tuned by importance weighted cross validation [179] on

labeled source samples and unlabeled target samples.

As we use mini-batch SGD for optimizing our model, categorical information in each

batch is usually inadequate for obtaining an accurate estimation of the source and target

centroids. This, in turn, may adversely affect the alignment performance. To mitigate this

issue, we align the moving average centroids of the source and target classes in the feature
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Figure 4.4: The t-SNE visualization of SAN [4], PADA [1], ETN [5], and CCPDA on
partial domain adaptation task A→W with class information (samples are colored w.r.t.
their classes). Best viewed in color.
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Figure 4.5: Empirical analysis of the target domain error through the training process. Best
viewed in color.

space (with coefficient 0.7) rather than aligning the inaccurate centroids obtained in each

iteration.

4.5.2 Results

The target domain classification accuracy for various methods on six PDA tasks of

Office-31 dataset and twelve PDA tasks of Office-Home dataset are reported in Tables 4.1

and 4.2. The entire results are reported based on the ResNet-50 and the scores of the

competitor methods are directly collected from [5].

Observe that unsupervised domain adaptation methods such as ADDA, DANN, and

MADA have exhibited worse performance than the standard ResNet-50 on some PDA tasks
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in both datasets. This can be attributed to the fact that these methods aim to align the

marginal distributions across the domains and hence are prone to the negative transfer in-

troduced by the outlier classes. On the other hand, the partial domain adaptation methods,

such as PADA, SAN, IWAN, ETN, and CCPDA, achieve promising results on most of the

PDA tasks since they leverage different mechanisms to highlight a subset of samples that

are more transferable across both domains.

Among the competing partial domain adaptation approaches in Tables 4.1 and 4.2,

SAN is the only approach that seeks to directly align the conditional distributions of the

source and target domains. However, unlike CCPDA, SAN uses a different architecture

with |Cs| class-wise domain discriminators to identify the domain-class label of each sam-

ple. As reported in Tables 4.1 and 4.2, CCPDA outperforms SAN with a large margin in all

PDA tasks on both Office-31 and Office-Home datasets. Moreover, CCPDA requires fewer

parameters compared to SAN. This in turn demonstrates the efficiency and efficacy of the

proposed class-conditional model.

The results in Table 4.1 indicate that CCPDA outperforms the competing methods

on most of the PDA tasks from Office-31 dataset. In particular, CCPDA achieves consid-

erable improvement on A→W and A→ D tasks. It also increases the average accuracy

of all tasks by almost 1.36%. Moreover, Table 4.2 shows that CCPDA outperforms other

PDA approaches with a large margin on five pairs of source-target adaptation tasks: Ar→

Pr, Ar → Rw, Cl → Ar, Cl → Pr, and Rw → Ar. The numerical results provided in

Tables 4.1 and 4.2 corroborate CCPDA can effectively align the class-conditional distribu-

tion, mitigate transferring knowledge from the outlier source classes, and promote positive

transfer between the domains in the shared label space.

Furthermore, we perform an ablation study to evaluate the efficacy brought by dif-

ferent components of the proposed PDA model. We consider PADA as a baseline variant

of CCPDA with binary domain discriminator Gd and without regularization terms Lc, L∞,
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Table 4.3: Classification accuracy of CCPDA and its variants for Partial Domain Adapta-
tion tasks on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg

PADA 86.54 99.32 100.0 82.17 92.69 95.41 92.69
CCPDA∞ 95.12 99.32 100.0 93.21 96.03 95.19 96.48
CCPDAe 97.45 96.64 100.0 96.47 94.92 93.86 96.56
CCPDAd,c 93.42 97.62 100.0 90.43 93.45 95.53 95.07

CCPDA 99.66 100.0 100.0 97.45 95.72 95.71 98.09

and Le. The results are reported in Table 4.3 and they reveal interesting observations.

CCPDAd,c outperforms PADA in most of the tasks, which highlights the importance of

the incorporated regularization terms L∞ and Le in rejecting the outlier source samples.

Moreover, we can see that both variants CCPDA∞ and CCPDAe improved the accuracy of

the original baseline, which corroborate the efficacy of our class-conditional domain dis-

criminator G̃d. Overall, observe that different components of the proposed method bring

complementary information into the model and have contributions in achieving the state-

of-the-art classification results.

Visualization: To better demonstrate the ability of the proposed method in aligning the

feature distributions in the shared label space, we visualize the bottleneck representations

learned by SAN, PADA, ETN, and CCPDA on task A (31 classes)→W (10 classes) us-

ing t-SNE embedding [180] (Shown in Figure 4.4). It is desired to embed the source and

target sample points of the same class close together while keeping embeddings from dif-

ferent classes far apart. Observe that CCPDA is able to effectively discriminate the classes

shared between the domains while minimizing the distance between the same classes in

both domains.

Convergence Performance: To highlight other advantages of our approach, we compare

the test error rate obtained by CCPDA against various methods SAN, PADA, and ETN

on partial domain adaptation task A (31 classes) → W (10 classes), from Office dataset.
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Figure 4.5 illustrates the convergence behavior of the test errors in 15, 000 iterations. Each

curve is obtained by averaging over 5 independent runs for the entire test samples. Observe

that comparing to the competitor methods, CCPDA not only converges very quickly but

also achieves a lower error rate.

4.6 Conclusion

This work presented a novel adversarial architecture for the task of partial domain

adaptation. The proposed model adopts a multi-class adversarial loss function to jointly

align the marginal and class-conditional distributions across the shared classes between

the source and target domains. Furthermore, it leverages two regularization functions to

reduce the adverse effects of the outlier classes and the irrelevant samples in transferring

information. Several experiments performed on the standard benchmark datasets for partial

domain adaptation have demonstrated that our method can outperform the state-of-the-art

methods on multiple adaptation tasks in terms of the classification performance.
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CHAPTER 5

Conclusion

In this dissertation, we first introduced a general convex relaxation framework to

solve a class of non-convex optimization problems, called bilinear matrix inequalities (BMI).

We developed a novel computationally cheap relaxation technique that only relies on quadratic

convex constraints to transform the BMIs into polynomial-time solvable programs. The

proposed relaxation is then generalized to a sequential convexification scheme which can

start from an arbitrary initial point to recover feasible and near-optimal solutions of BMIs.

Moreover, we presented a theoretical analysis of our scheme and investigated the condi-

tions under which the convexification method is guaranteed to produce feasible points. The

proposed framework is readily applicable to a variety of machine learning problems such as

discriminative dimensionality reduction and graph matching. We performed experiments

on the benchmark datasets for graph matching to demonstrate the potential of the proposed

method in finding solutions with high quality in polynomial-time.

Second, we presented a novel spectral clustering-based approach which uses a deep

architecture to address the subspace clustering problem. The proposed method improves

upon the existing deep approaches by leveraging information exploited from different lev-

els of the networks to transform input samples into multi-level representations lying on a

union of linear subspace. Moreover, it is able to use pseudo-labels generated by the spec-

tral clustering technique to effectively supervise the representation learning procedure and

boost the final clustering performance. Experiments on benchmark datasets demonstrate

that the proposed approach is able to efficiently handle clustering from the non-linear sub-

spaces and it achieves better results compared to the state-of-the-art methods.
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Third, we developed a novel adversarial architecture for the task of partial domain

adaptation. The proposed model adopts a multi-class adversarial loss function to jointly

align the marginal and class-conditional distributions across the shared classes between

the source and target domains. Furthermore, it leverages two regularization functions to

reduce the adverse effects of the outlier classes and the irrelevant samples in transferring

information. Several experiments performed on the standard benchmark datasets for partial

domain adaptation have demonstrated that our method can outperform the state-of-the-art

methods on multiple adaptation tasks in terms of the classification performance.

79



REFERENCES

[1] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial adversarial domain adaptation,” in

ECCV, 2018.

[2] M. Leordeanu, R. Sukthankar, and M. Hebert, “Unsupervised learning for graph

matching,” Int. J. Comput. Vis, vol. 96, no. 1, pp. 28–45, 2012.

[3] F. Zhou and F. De la Torre, “Deformable graph matching,” in CVPR, 2013.

[4] Z. Cao, M. Long, J. Wang, and M. I. Jordan, “Partial transfer learning with selective

adversarial networks,” in CVPR, 2018.

[5] Z. Cao, K. You, M. Long, J. Wang, and Q. Yang, “Learning to transfer examples for

partial domain adaptation,” in CVPR, 2019.

[6] L. El Ghaoui and S.-l. Niculescu, Advances in linear matrix inequality methods in

control. SIAM, 2000.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in

system and control theory. SIAM, 1994.

[8] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, “Learning

the kernel matrix with semidefinite programming,” J. Mach. Learn. Res., vol. 5, no.

Jan, pp. 27–72, 2004.

[9] E. A. Yildirim, “On the minimum volume covering ellipsoid of ellipsoids,” SIAM

Journal on Optimization, vol. 17, no. 3, pp. 621–641, 2006.

[10] Y. Zheng, Y. Fu, A. Lam, I. Sato, and Y. Sato, “Separating fluorescent and reflective

components by using a single hyperspectral image,” in ICCV, 2015.

80



[11] O. Toker and H. Ozbay, “On the NP-hardness of solving bilinear matrix inequalities

and simultaneous stabilization with static output feedback,” in ACC, vol. 4, 1995,

pp. 2525–2526.

[12] V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design prob-

lems,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2118–2127, 1997.

[13] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal matrix

completion,” IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2053–2080, 2010.

[14] W. Bian and D. Tao, “Max-min distance analysis by using sequential SDP relaxation

for dimension reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp.

1037–1050, 2011.

[15] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”

Math. Program., vol. 96, no. 2, pp. 293–320, 2003.

[16] A. A. Ahmadi and A. Majumdar, “Dsos and sdsos optimization: more tractable

alternatives to sum of squares and semidefinite optimization,” arXiv preprint

arXiv:1706.02586, 2017.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Founda-

tions and Trends in Machine Learning, 2011.

[18] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential uncon-

strained minimization techniques. SIAM, 1990, vol. 4.

[19] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, “On pro-

jected newton barrier methods for linear programming and an equivalence to kar-

markars projective method,” Math. Program., vol. 36, no. 2, pp. 183–209, 1986.

[20] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex

programming. SIAM, 1994.

81



[21] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press,

2004.
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