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ABSTRACT

PERFORMANCE MODELING AND RESOURCE PROVISIONING

FOR DATA-INTENSIVE APPLICATIONS

Zhongwei Li, Ph.D.

The University of Texas at Arlington, 2019

Supervised by: Dr. Hao Che & Dr. Jeff Lei

Performance evaluation and resource provisioning are two most critical factors to be

considered for designers of distributed systems at modern warehouse data centers. The

ever-increasing volumes of data in recent years have pushed many businesses to move their

computing tasks to the Cloud, which offers many benefits including the low system man-

agement and maintenance costs and better scalability. As a result, most recent prominently

emerging workloads are data-intensive, calling for scaling out the workload to a large num-

ber of servers for parallel processing. Questions can be asked as what factors impact the

system scaling performance, and how to efficiently schedule tasks to the distributed comp-

ing resources. This dissertation introduces a new performance model to address the former

problem and an effective hierarchical job scheduler for the latter.
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The major contribution of this dissertation is to introduce our new performance mod-

eling approach designed for data-intensive applications, which consists of two phases: 1)

In-Proportion and Scale-Out-induced scaling model (IPSO), 2) Unified Scaling model for

Big data Analytics (USBA). The first model we build is based on the traditional perfor-

mance models including both Amdahl’s and Gustafson’s laws. We clearly demonstrate in

this research why these classic models are insufficient and inadequate in today’s parallel

computing environment and how IPSO model may fill the gap. While at the second phase

we extend IPSO for today’s multi-staged workloads, such model can be easily adopted at

modeling data analytic applications running at Spark platform. Both models are supported

by our evaluations on well-known benchmarks and evidences from other publications. To

the best of our knowledge, IPSO is the first variation of the classic Amdahl’s model that can

be directly applied to modern data-intensive applications. A light-weighted tool is also de-

veloped at the end of this research, which can be used for generating IPSO inputs or a Spark

application log analyzer. The tool is developed as an open source project and accessible in

public repository.

The second contribution of this dissertation is the Pigeon job scheduler we propose for

the modern data centers. Pigeon is a distributed, hierarchical job scheduler based on a

two-layer design. It offloads the service pressure in widely adopted centralized data center

scheduler by quickly dispatching the incoming tasks to selected nodes known as masters,

then guarantees the efficiency of task execution by enforcing its unique queuing mechanism

on these masters. Pigeon can minimize the chance of head-of-line blocking for short jobs and

avoid starvation for long jobs, and outperform Sparrow (distributed scheduler) and Eagle

(hybrid scheduler) based on our evaluations. Pigeon is also an open sourced tool that can
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be accessed from public repository.

This dissertation is presented in an article-based format and includes three research

papers. The first chapter is an introduction to all contents in this dissertation. The second

chapter reports our performance evaluation model (IPSO). The third chapter reports IPSO’s

extended model for multi-staged workloads (USBA). The fourth chapter reports our work on

Pigeon scheduler. Finally the fifth concludes all work and the plan for the following research

target.
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Chapter 1

INTRODUCTION

Performance modeling is a major technique for system architecture designer and main-

tainers to understand the behavior of their running system and thus is widely studied by the

scientists. Ever since Gene M. Amdahl published his initial work on the performance model-

ing for parallel computing architectures at 1960’s, along with the evolution of hardware and

software gradually, a variety of descendant models based on the Amdahl’s model have been

brought up by researchers to meet the requirements of the new HPC (High Performance

Computing) environment for each generation. Recent years have witnessed the emergence of

data-intensive applications as the new era of Cloud Computing rises, however the empirical

studies indicate the insufficiency of traditional performance models. The key observation

is how to abstract the modern parallel computing architectures into certain level that the

trivial execution details can be neglected, yet enough accuracy in guiding the resource pro-

visioning at scaling out can still be retained. In this dissertation, we introduce IPSO and

USBA models as our approaches to achieve such goal.

On the other hand, resource provisioning is yet another topic that has received signif-

icant attention in recent decades. In today’s datacenters, one key observation is that job

heterogeneity makes it difficult for schedulers to simultaneously meet latency requirements
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and maintain high resource utilization. And the state-of-the-art datacenter schedulers, in-

cluding centralized, distributed, and hybrid schedulers, fail to ensure low latency for short

jobs in large-scale and highly loaded systems. We identify that the scalability in centralized

schedulers, ineffective and inefficient probing and resource sharing in both distributed and

hybrid schedulers are the key issues. Targeting resolving such problems, we propose Pigeon,

a distributed, hierarchical job scheduler based on a two-layer design. Pigeon is also an open

source project under MIT license, a free distribution of its source code can be obtained

through the linked address to our public repository1.

1.1 Research Overview

IPSO (In-Proportion and Scale-Out-induced scaling model) is our first performance model

that generalizes the existing scaling models in two important aspects. First, it accounts for

the possible in-proportion scaling, i.e., the scaling of the serial portion of the workload in

proportion to the scaling of the parallelizable portion of the workload. Second, it takes into

account the possible scale-out-induced scaling, i.e., the scaling of the collective overhead or

workload induced by scaling out. IPSO exposes scaling properties of data-intensive work-

loads, rendering the existing scaling laws its special cases. In particular, IPSO reveals two

new pathological scaling properties. Namely, the speedup may level off even in the case of

the fixed-time workload underlying Gustafson’s law, and it may peak and then fall as the

system scales out. Extensive MapReduce and Spark-based case studies demonstrate that

IPSO successfully captures diverse scaling properties of data-intensive applications. As a

1Pigeon available at https://github.com/ruby-/pigeon
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result, it can serve as a diagnostic tool to gain insights on or even uncover counter-intuitive

root causes of observed scaling behaviors, especially pathological ones, for data-intensive

applications. Finally, preliminary results also demonstrate the promising prospects of IPSO

to facilitate effective resource provisioning to achieve the best speedup-versus-cost tradeoffs

for data-intensive applications.

Unified Scaling model for Big data Analytics (USBA) is the second model we propose

based on IPSO that addresses two additional features: 1) it accounts for multi-stage work-

loads; 2) it’s also a discretized workload model. USBA allows for flexible workload scaling

unifying the fixed-size and fixed-time workload models underlying Amdahl’s and Gustafson’s

laws, respectively, and flexible system scaling in terms of both number of stages and degree

of parallelism per stage. Moreover, to faithfully characterize the scaling properties for big

data analytics workloads, USBA accounts for variabilities of task response times and barrier

synchronization. Finally, application of USBA to the scaling analysis of four Spark-based

data mining and graph benchmarks demonstrates that USBA is able to adequately char-

acterize the scaling design space and predict the scaling properties of real-world big data

analytics workloads. This makes it possible to use USBA as a useful tool to facilitate job

resource provisioning for big data analytics in datacenters.

An another important contribution of this dissertation is the design and implementation

of Pigeon scheduler. Pigeon divides workers in a distributed computing environment into

groups, each managed by a separate master. In Pigeon, upon a job arrival, a distributed

scheduler directly distribute tasks evenly among masters with minimum job processing over-

head, hence, preserving highest possible scalability. Meanwhile, each master manages and

distributes all the received tasks centrally, oblivious of the job context, allowing for full shar-
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ing of the worker pool at the group level to maximize multiplexing gain. To minimize the

chance of head-of-line blocking for short jobs and avoid starvation for long jobs, two weighted

fair queues are employed in in each master to accommodate tasks from short and long jobs,

separately, and a small portion of the workers are reserved for short jobs. Evaluation via

theoretical analysis, trace-driven simulations, and a prototype implementation shows that

Pigeon significantly outperforms Sparrow, a representative distributed scheduler, and Eagle,

a hybrid scheduler.

1.2 Dissertation organization

This dissertation is presented in an article-based format and includes the essential com-

ponents of three research papers, hence the remainder of this dissertation is organized as

follows. In chapter 2, we present the paper titled, “IPSO: A Scaling Model for Data-Intensive

Applications”, which is published in the 39th International Conference on Distributed Com-

puting Systems (ICDCS’19), in 2019. This paper reports our first performance model for

distributed systems. Note that this paper is titled as a co-authored work which also includes

the following authors besides me: Feng Duan, Minh Nguyen, Hao Che, Yu Lei and Hong

Jiang. I’m the primary author to this paper and take the lead of this project; Hao Che, Yu

Lei and Hong Jiang are the project’s supervisors; and all the rest co-authors contribute to

the creation of this model and constructions of the paper. I also contribute to most of the

experiments study and analysis results.

Chapter 3 presents our paper titled as “A Unified Scaling Model in the Era of Big Data

Analytics”, which is published in the proceedings of the 3rd International Conference on
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High Performance Compilation, Computing and Communications. ACM, 2019. This paper

presents the second phase of our work on performance modeling and our initial attempt

on resource provisioning based on this prediction model. Note that this paper is titled as

a co-authored work which also includes the following authors besides me: Feng Duan and

Hao Che. I’m the primary author and project leader, and contribute most of the data

collection and analysis parts in the paper, all the rest co-authors contribute to the modeling

and writing. I’m also the leader of this open source project and maintain our public code

repository.

Chapter 4 presents a paper titled as “Pigeon: an Effective Distributed, Hierarchical

Datacenter Job Scheduler”, which is published in ACM Symposium on Cloud Computing

2019 (SoCC ’19). This paper presents a new hierarchical scheduler for datacenters, and as an

additional to the original paper, I also provide some design and implementation details of the

Pigeon open source project in this chapter. Note that this paper is titled as a co-authored

work which also includes the following authors besides me: Zhijun Wang, Huiyang Li, Hao

Che, Hong Jiang, Jia Rao and Xiaocui Sun. Zhijun Wang, Hao Che and Hong Jiang lead this

project; Zhijun Wang provides most of the simulation part and analysis results; Huiyang Li

conducts most of our experiments; Jiao Rao contributes to most of the introduction section of

the paper. I am the leader of our Pigeon open source project and contribute to the majority

of implementation code. All the rest co-authors also contribute to the work and help review

the paper.

Finally Chapter 5 concludes and remarks all of our previous works then discusses the

directions to our future research.
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Chapter 2

IPSO MODEL

2.1 Introduction

Predominant applications in today’s datacenters are data-intensive and scale-out by de-

sign, based on, e.g., MapReduce [18], Spark [64], and Dryad [33] programming frameworks.

For such applications, job execution may involve one or multiple rounds of parallel task

processing with massive numbers of tasks and the associated data shards being scaled out

to up to tens of thousands of low-cost commodity servers, followed by a serial (intermediate)

result merging process. Clearly, from both user’s and datacenter provider’s perspective, it

is imperative to gain good understanding of the scaling properties of such applications so

that informed datacenter resource provisioning decisions can be made to achieve the best

speedup-versus-cost tradeoffs. Unfortunately, however, the existing scaling laws that have

worked well for parallel, high-performance computing, such as Amdahl’s law [5], Gustafson’s

law [27], and Sun-Ni’s law [55], are no longer adequate to characterize the scaling properties

of data-intensive workloads for two reasons.

First and foremost, the traditional scaling models underlying these laws are exclusively fo-

cused on the scaling of the parallelizable portion of the workload or external scaling (e.g., the

* Copyright c© 2019 IEEE. Reprinted, with permission, from Li, Zhongwei, Feng Duan, Minh Nguyen, Hao
Che, Yu Lei, and Hong Jiang, IPSO: A Scaling Model for Data-Intensive Applications, In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pp. 238-248. IEEE, 2019.



fixed-size, fixed-time, and memory-bounded external scaling models underlying Amdahl’s,

Gustafson’s, and Sun-Ni’s laws, respectively), leaving the scaling of the serial portion of the

workload or internal scaling a constant. Fig. 2.1 illustrates this, i.e., scaling out to three par-

allel processing units for the Amdahl’s model in Fig. 1(b) and Gustafson’s or Sun-Ni’s model

in Fig. 1(c) from the sequential execution case in Fig. 1(a). While the parallelizable portion

of the workload stays unchanged (i.e., fixed-size) and grows by three times (i.e., fixed-time or

memory-bounded), respectively, the serial portion of the workload remains unchanged. The

rationale behind this assumption is the understanding that the serial portion of a program

mostly occurs in the initialization phase of the program, which is independent of the program

size [27]. This assumption, however, no longer holds true for data-intensive workloads. This

is because as the parallelizable portion of a data-intensive workload increases, so does the

serial portion of the workload in general. In other words, the (intermediate) results to be

merged in each round of the job execution are likely to grow, in proportion to the external

scaling, referred to as in-proportion scaling in this paper.

Second, the existing scaling models do not take the possible scale-out-induced scaling into

account, i.e., the scaling of the collective overhead or workload induced by the external scal-

ing. As being widely recognized (see Section 2 for details), for data-intensive applications,

such workloads cannot be neglected in general and they may be induced for various reasons,

e.g., task dispatching, data broadcasting, reduction operation, or any types of resource con-

tentions among parallel tasks. Both in-proportion scaling and scale-out-induced scaling are

responsible for the scalability challenges facing today’s programming frameworks, such as

Hadoop and Spark [45].

To overcome the above inadequacies of the existing scaling models, in this paper, we put
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Figure 2.1: Speedup models: For data-intensive applications, Sun-Ni’s model coincides with

Gustafson’s model (see Section 2.4 for details).

forward a new scaling model, referred to as In-Proportion and Scale-Out-induced scaling

model (IPSO). IPSO augments the traditional scaling models with the in-proportion scaling

and scale-out-induced scaling, as illustrated in Fig. 1(d) (note that the shard size can be

one, two, or three), rendering the traditional scaling models and their respective scaling laws

its special cases. In particular, IPSO reveals two new pathological scaling properties that

are not captured by the existing scaling laws. Namely, the speedup may level off even in

the case of the fixed-time workload, and it may peak and then fall as the system scales out,

for which Gustafson’s law says that the speedup should be unbounded. While the former

scaling property is due to the in-proportion scaling, the latter may be attributed to either

in-proportion scaling or scale-out-induced scaling. Moreover, the scale-out-induced scaling,

in the worst case, may lead to negative speedups, which cannot be captured by the existing

scaling laws.

Our extensive case studies for both MapReduce and Spark-based applications demon-

strate that while the existing scaling laws fail to capture most of the scaling properties for

these applications, IPSO is able to do so for all the cases studied. As a result, IPSO can serve

as a diagnostic tool that can gain insights or even uncover counter-intuitive root causes of

the observed scaling behaviors, especially, pathological ones, for data-intensive applications.
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Finally, our preliminary results suggest that as long as the three scaling factors, including

the external, internal, and scale-out-induced scaling factors, can be accurately estimated at

small problem sizes, the speedups at large problem sizes may be predicted with high accu-

racy. This sheds light on the possible development of efficient, measurement-based resource

provisioning algorithms to achieve the best speedup-versus-cost tradeoffs for data-intensive

workloads.

The remainder of the paper is organized as follows. Section 2.2 provides the background

information to motivate the current work. Section 2.3 introduces IPSO. Section 2.4 char-

acterizes the IPSO solution space. Section 2.5 presents the application of IPSO to the

MapReduce and Spark-based case studies. Finally, Section 2.6 concludes the paper and

proposes future research.

2.2 Background, Related Work and Motivations

The traditional scaling laws for parallel computing were discovered in the context of high

performance computing. Amdahl’s law [5], Gustafson’s law [27] and Sun-Ni’s law [55] are the

most notable examples of such laws. Recently, extensions of these laws are being proposed,

e.g., in the context of multicore processors [28], multithreaded multicore processors [9], power

consumption [62], and resource scaling in cloud [51]. However, none of these extensions takes

the possible in-proportion scaling or scale-out-induced scaling into account.

Meanwhile, with the advent and proliferation of scale-out, data-intensive applications,

rich scaling properties for such applications continue to reveal themselves, most of which,

however, cannot be adequately characterized by the existing scaling laws. Here are some
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examples. It was found [14] that for a fixed-size iterative computing and broadcast scale-out

Spark-based workload, the job stops scaling at about n = 60, beyond which the speedup

decreases due to linear increase of the broadcast overhead, where n is the number of comput-

ing nodes for parallel processing. TCP-incast overhead was found to be responsible for the

speedup reduction for many big data analytics applications [13]. Centralized job schedulers

used in some popular programming frameworks, such as Hadoop and Spark, were found

to pose performance bottlenecks for job scaling, due to a quadratic increase of the task

scheduling rate as n increases [45]. In fact, a queuing-network-model-based analysis [9] re-

veals that any resource contention among parallel tasks is guaranteed to induce an effective

serial workload, resulting in lower speedup than that predicted by the existing laws.

The scaling analysis of data mining applications [39] reveals that the reduction operations

in each merging phase are induced by external scaling, resulting in much lower speedup than

that predicted by Amdahl’s law. As we shall demonstrate in Section 2.5, even for some

simple MapReduce-based applications, including Sort and TeraSort, their scaling properties

cannot be captured by the existing scaling laws, largely due to the in-proportion scaling. The

Spark-based case studies in Section 2.5 further reveal that parallel scaling in both fixed-time

and fixed-size dimensions, underlying Gustafson’s and Amdahl’s laws, respectively, exhibit

scaling behaviors that significantly deviate from those predicted by these scaling laws.

The above examples clearly demonstrate the inadequacy of the existing scaling laws in

capturing the scaling properties of data-intensive applications. The importance and the

urgency of the ability to do so cannot be overemphasized for two main reasons. First, the

existing scaling laws may lead to overly optimistic prediction of the scaling performance for

data-intensive workloads. They may even make qualitatively incorrect prediction when a
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pathological situation occurs (see Section 2.5 for examples). In our opinion, the lack of a

sound scaling model is largely responsible for the unsettled debate over whether scaling-out is

indeed better than scaling-up or not [40]. Second, as the existing scaling laws are increasingly

being adopted to not only characterize the scaling properties, but also facilitate resource

provisioning for data-intensive workloads [68], it becomes urgent to develop a comprehensive

scaling model that can help pinpoint the exact conditions under which the existing scaling

laws may be applied.

The importance and the urgency to develop a comprehensive scaling model for data-

intensive applications motivate the work presented in this paper.

2.3 IPSO Modeling

First, we must realize that the main goal of scaling analysis for parallel computing is to

capture the scaling properties of the speedup for parallel computing over sequential com-

puting, when the problem size becomes large. A scaling model is considered to be a good

one, as long as it captures in a qualitative fashion (e.g., bounded or unbounded, linear or

non-linear, monotonic or peaked) major scaling properties of the applications in question.

Due to the need to deal with large problem sizes and the tolerability of quantitative impre-

cision, idealized scaling models that overlook much of the system and workload details are

generally adopted, targeting at analytical results that can scale to large problem sizes. The

IPSO model is depicted in Fig. 1, together with the Amdahl’s, Gustafson’s and Sun-Ni’s

models. Scaling modeling generally involves the modeling of both the system and workload.
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System Model: In the same spirit as the existing scaling models, IPSO adopts the same ideal-

ized system model that underlies all three existing scaling laws, i.e., Amdahl’s, Gustafson’s

and Sun-Ni’s laws. This system model, in the context of data-intensive applications, can

be viewed as a homogeneous Split-Merge model with n+ 1 identical processing units [9], as

illustrated in Fig. 2.1, with n = 3. There are n processing units in the split phase, processing

the parallelizable portion of the workload in parallel and one processing unit in the merge

phase, processing the serial portion of the workload sequentially.

Specifically, the Split-Merge model characterizes the execution of a job composed of one

round of parallel task processing with barrier synchronization in the split phase, followed by

sequential result merging in the merge phase. Here n is a measure of the degree of scale-out

and hence, called scale-out degree hereafter. This model can also be applied to the case where

there are multiple rounds of the split and merge phases with the same number of processing

units in each split phase.

Workload Model: The main effort in developing IPSO is the modeling of the workload.

IPSO generalizes and augments the workload models underlying the three speedup laws,

hence making them the special cases of IPSO.

For data-intensive applications, the offered workload at each parallel processing unit is

proportional to the data shard size at that unit. As a result, as n increases, the total

data shard remains to be n (i.e., three as in Fig. 1(b)) and increases by n times (i.e., 9

as in Fig. 1(c)) for the fixed-size and fixed-time/memory-bounded cases, respectively. The

IPSO model allows the fixed-size, fixed-time, or anywhere in between as the scale-out degree

increases, e.g., doubling the total shard size for the example in Fig. 1(d). In general, the
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task processing time for the task mapped to processing unit i in the split phase is a random

variable, denoted as Tp,i(n), serving as a measure of the workload corresponding to task i,

for i = 1, 2, · · · , n. As a result, Tp,i(n) may grow in (linear) proportion to the size of the

data shard mapped to the processing unit i. The processing time for serial result merging

in the merge phase is again a random variable, denoted as Ts(n), which, for data-intensive

applications, may grow in proportion to the size of the total working data set or total shard

size mapped to the split phase, as shown in Fig. 1(d), whereas its counterparts in Fig. 1(b)

and (c) stay unchanged. Now, let Wp(n) and Ws(n) represent the total parallelizable and

serial portions of the job workload, respectively, and define,

Wp(n) = E[
n∑
i=1

Tp,i(n)] (2.1)

Ws(n) = E[Ts(n)] (2.2)

where E[x] represents the mean of random variable x. Here Wp(n) and Ws(n) should be

interpreted as the average amount of time it takes to process the parallelizable and serial

portions of the job workload sequentially using one processing unit1. Further define,

Wp(n) = Wp(1) · EX(n) (2.3)

Ws(n) = Ws(1) · IN(n) (2.4)

where EX(n) and IN(n) are called external and internal scaling factors, corresponding to

the scaling of the parallelizable and serial portions of the workload, respectively. These

scaling factors enable in-proportion scaling. We further define in-proportion scaling ratio,

1Note that by definition, the sequential job execution does not generate scale-out-induced workload, hence

Wo(n) does not appear in the numerator.
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ε(n), as follows,

ε(n) =
EX(n)

IN(n)
(2.5)

As we shall see shortly, a rich set of scaling properties can be uncovered by properly selecting

this ratio.

Now we further introduce the scale-out-induced workload shown in Fig. 1(d) and denote

it as Wo(n). Wo(n) represents the collective overhead induced by the scale-out itself, e.g.,

due to job scheduling, data shard distribution, and the queuing effect for result merging. We

define,

Wo(n) =
Wp(n)

n
q(n) (2.6)

where q(n) is called scale-out-induced scaling factor, which is a non-decreasing function of n

and equals zero at n = 1. It captures the effective workload induced solely by the scale-out

degree n, independent of the task workload size. In contrast, its coefficient, Wp(n)

n
, i.e., the

per-task workload, captures the possible dependency of Wo(n) on the task workload size.

For example, the data shard distribution overhead grows with both n and the task workload

size or data shard size.

Finally, with the barrier synchronization and randomness of parallel task processing

times, the mean job response time with respect to parallel task processing is given by the

slowest task, i.e., E[max{Tp,i(n)}].

With the above scaling model, the speedup, S(n), can then be expressed as follows,

S(n) =
Wp(n) +Ws(n)

E[max{Tp,i(n)}] +Ws(n) +Wo(n)
(2.7)

While the numerator is the average amount of time it takes to process the entire job workload

sequentially using one processing unit, the denominator is the average amount of time it takes
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to process the entire job workload in parallel with n processing units, plus the workload due

to scale-out-induced scaling. Substituting Eqs. (2.1)-(2.6) into Eq. (2.7), we have,

S(n) =
ηEX(n) + (1− η)IN(n)

E[max{Tp,i(n)}]
E[Tp,1(1)]+E[Ts(1)]

+ (1− η)IN(n) + ηEX(n)q(n)
n

(2.8)

where η is the percentage of the parallelizable portion of the job workload at n = 1, i.e.,

η =
Wp(1)

Wp(1) +Ws(1)
≡ E[Tp,1(1)]

E[Tp,1(1)] + E[Ts(1)]
(2.9)

An executable, sequential job execution model must be defined to allow the numerator in

Eq. (2.7) or (2.8) to be measurable in practice. It will be given in Section 2.4, after the

workload types are defined (i.e., Eq. (2.13)).

2.4 IPSO Solution Space Characterization

The IPSO workload model developed above is a statistic model that accounts for the

possible randomness of the task execution times. The statistic modeling is important in

practice if the scaling analysis attempts to capture the scaling properties of an application

both qualitatively and quantitatively. For example, to capture the impact of long-tail effects

of task service time on the speedup performance, e.g., due to stragglers [67] or the possible

task queuing effects [46], the mean job response time for the split phase must be characterized

statistically by E[max{Tp,i(n)}] (see Eq. (2.8)). However, since E[max{Tp,i(n)}] is upper

bounded as the problem size in terms of n becomes large, given that the tail length of

the task response time must be finite in practice, whether to use statistic or deterministic

modeling will not make a difference in terms of capturing the qualitative scaling properties of

an application. The reason that we formulate IPSO as a statistic model is to allow accurate
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scaling prediction that may serve as the basis for future development of a measurement-based

job resource provisioning approach for data-intensive applications. So in the rest of the paper,

we shall focus on the deterministic model only for simplicity and ease of presentation. The

deterministic IPSO refers to a special case where Tp,i(n) = tp(n) ∀ i and Ts(n) = ts(n).

Here tp(n) and ts(n) are deterministic functions of n. In this case, E[max{Tp,i(n)}] = tp(n).

Hence, from Eq. (2.8), we have,

S(n) =
ηEX(n) + (1− η)IN(n)

ηEX(n)
n

(1 + q(n)) + (1− η)IN(n)
(2.10)

where η in Eq. (2.9) can be rewritten as,

η =
tp(1)

tp(1) + ts(1)
(2.11)

Clearly, by viewing Wp(n), Ws(n) and Wo(n) as the sum of the corresponding workloads in

all rounds, the above IPSO model can be applied to the case involving multiple rounds of

the same scale-out degree, n.

Relation to the well-known speedup laws: With the notations defined in this paper,

the three well-known speedup laws can be written as,

S(n) =



1
η
n

+(1−η)
, Amdahl’s law;

ηn+ (1− η) , Gustafson’s law;

ηḡ(n)+(1−η)
ηḡ(n)
n

+(1−η)
, Sun-Ni’s law.

(2.12)

The scaling properties for these laws can be derived from Eq. (2.10), by letting IN(n) = 1

and q(n) = 0, ∀ n, i.e., without considering the possible in-proportion scaling and scale-out-
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induced scaling, and,

EX(n) =


1 , fixed-size: Amdahl’s law;

n , fixed-time: Gustafson’s law;

ḡ(n) , memory-bounded: Sun-Ni’s law.

(2.13)

meaning that the total parallelizable portion of the workload stays unchanged for fixed-size

workload; linearly increases for fixed-time workload; and scales with the memory size for

memory-bounded workload, respectively, as the system scales out or n increases. Here ḡ(n)

is the external scaling factor, constrained by the total memory space, which in turn, is de-

termined by n, assuming that the maximum affordable memory space to accommodate part

of the working data set at each parallel processing unit is a given, e.g., 128 MB [55]. For all

the cases studied in this paper where the working data sets are memory bounded, ḡ(n) ≈ n

with high precision (see Fig. 2.6), i.e., almost the same as that for the fixed-time workload.

For this reason, we assume that the Gustafson’s and Sun-Ni’s models are the same (see Fig.

1(c)) in the context of data-intensive applications, and in what follows, we exclusively focus

on fixed-size and fixed-time workload types only.

A Remark: We observe that in the context of data-intensive workloads, the fixed-size

and fixed-time workload models capture two extreme scenarios, i.e., resource-abundant and

resource-constrained, respectively. By resource-abundant, we mean that the parallelizable

portion of the workload can be processed in its entirety by one processing unit. In this case,

one is interested in characterizing the scaling behaviors when the fraction of the paralleliz-

able workload on each processing unit decreases as the scale-out degree, n, increases, i.e., the

Amdahl’s case. By resource-constrained, we mean that each processing unit can only handle
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a fraction of the total parallelizable portion of the workload, e.g., the case when the memory

allocated to each processing unit is fully occupied by the data shard assigned to it. In this

scenario, the workload linearly grows with n, i.e., the Gustafson’s case. In general, however,

as the system scales out, a data-intensive workload may scale in either way or anywhere in

between. As a result, a comprehensive scaling model should be able to cover both fixed-time

and fixed-size workload types, as is the case for IPSO.

Finally, with the workload types defined in Eq. (2.13), now we are in a position to define

an executable sequential job execution model underlying the numerator in Eq. (2.7) or (2.8).

For fixed-time workload, our sequential job execution model works as follows. It first runs n

tasks in the split phase sequentially using one processing unit. It then merges task results

in the merging phase using another processing unit. Since the merging phase may not start

until all the tasks finish, due to barrier synchronization, this model is equivalent to using

only one processing unit to execute the job sequentially, which agrees with the common un-

derstanding of what a sequential execution model is supposed to be. For fixed-size workload,

the same sequential job execution model applies. The only difference is that now n = 1, i.e.,

only one task is executed in the map phase over the entire working data set that is assumed

to fit into the memory in a single processing unit. This model is in line with the sequential

job execution model, implicitly used by Amdahl to evaluate the numerator in the speedup

formula, i.e., the entire workload is executed as one task using one processing unit.

Analysis of scaling properties of IPSO: We are interested in exploring major scal-

ing properties of IPSO in the entire solution space spanned in three dimensions, including

EX(n), IN(n), and q(n). In other words, the scaling behaviors of IPSO are fully captured
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so long as these factors are known. As explained before, for scaling analysis, one is interested

in the qualitative scaling behaviors of the speedup when n becomes large. In this case, ε(n)

in Eq. (2.5) can be written approximately as (i.e., only the highest order term is kept),

ε(n) ≈ αnδ as n becomes large. (2.14)

where α is a nonnegative coefficient and δ determines the relative order of ”speed” of external

scaling versus internal scaling. Likewise, q(n) can be approximated as follows,

q(n) ≈ βnγ as n becomes large. (2.15)

where β is a nonnegative coefficient and γ ≥ 0. Here γ = 0 corresponds to the case without

scale-out-induced workload, i.e., q(n) = 0.

With Eqs. (2.14), (2.15) and (2.5), Eq. (2.10) can be rewritten as follows,

S(n) ≈ ηαnδ + (1− η)

ηαnδ−1(1 + βnγ) + (1− η)
(2.16)

Note that for the workload without a serial portion, i.e., Ws(n) = 0 or η = 1, Eqs. (2.14)

and (2.5) are undefined. In this case, from Eq. (2.10), we have,

S(n) =
n

1 + βnγ
(2.17)

With these two formulas, we are now ready to explore the entire IPSO solution space. We

consider fixed-time and fixed-size workload types, separately.

Fixed-time workload type (EX(n) = n): In this case, 0 ≤ δ ≤ 1. This is because

in practice, as the parallel portion of the workload scales up linearly fast, IN(n) is unlikely

to scale down or scale up superlinearly fast. From Eqs. (2.16) and (2.17), we identify the

following four distinct types of speedup scaling behaviors, as depicted in Fig. 2.2:
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• It: This type is Gustafson-like, i.e., the speedup linearly grows and degenerates to

Gustafson’s law at α = 1. As shown in Fig. 2.2, it occurs when there is no scale-out-

induced workload (i.e., γ = 0, or equivalently, q(n) = 0) and either δ = 1 (i.e., with no

internal scaling) or in the absence of the serial workload (i.e., η = 1);

• IIt: Speedup grows sublinearly but still unbounded. It occurs when q(n) grows slower

than linear, i.e., γ < 1, and either 0 < δ ≤ 1 or η = 1;

• IIIt : This type is pathological, i.e., the speedup grows monotonically but is upper-

bounded. There are two sub-types here, i.e., IIIt,1 and IIIt,2, with distinct upper

bounds, as depicted in Fig. 2.2, corresponding to sublinear and linear scale-out scalings,

respectively;

• IVt: This type is even more pathological as the speedup peaks and falls, and finally

enters negative speedup region. It occurs when q(n) scales up superlinearly fast, i.e.,

γ > 1, regardless of how the other scaling factors behave.

Fixed-size workload type (EX(n) = 1): In this case, δ = 0. This is because without

scaling the parallel portion of the workload, the serial portion of the workload will not scale,

i.e., IN(n) = 1, and any workload added as n increases should be viewed as part of Wo(n),

i.e., scale-out-induced workload. Again, from Eqs. (2.16) and (2.17), four distinct types of

speedup scaling behaviors are identified, as depicted in Fig. 2.3 (note that although they

look the same as their counterparts in Fig. 2.2, the associated scaling factors are different):

• Is: S(n) = n. it occurs when there is no scale-out-induced workload (i.e., γ = 0) and
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Figure 2.2: Four distinct IPSO scaling behaviors for the fixed-time workload type: It: Gustafson-

like linear scaling; IIt: unbounded sublinear scaling; IIIt: pathological, upper-bounded scaling;

and IVt: pathological, peaked scaling.

η = 1 (i.e. no serial portion of the workload), a very special case;

• IIs: Speedup grows sublinearly and unbounded. It occurs when q(n) grows slower

than linear, i.e., γ < 1 and η = 1, also a special case;

• IIIs : It is Amdahl-like. It grows monotonically and is upper-bounded. Again, it is

composed of two subtypes, i.e., IIIs,1 and IIIs,2, with distinct upper bounds, similar

to IIIt,1 and IIIt,2, as depicted in Fig. 2.3. Clearly, Amdahl’s law is a special case of

IIIs,1 at γ = 0 and α = 1;

• IVs: This type is pathological and behaves similar to IVt given in Fig. 2.2. It occurs

when q(n) scales up superlinearly fast, regardless of how the other scaling factors
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behave.

In summary, both fixed-time and fixed-size workloads may suffer from pathological types

of scaling, i.e., IVt and IVs, respectively, which by all means, should be avoided. The root

cause for both IVt and IVs points to the superlinear scaling of q(n), often seen in the case

related to centralized job scheduling and data shard broadcasting. A case study of such kind

will be given in the following section. The next scaling behavior that is also pathological

and should be avoided is IIIt. This is because It (or Gustafson’s law) and IIt suggest that

unbounded speedup should be achievable for the fixed-time workload type. On the other

hand, upper-bounded speedup or IIIs has long been understood to be inevitable for the

fixed-size workload type, since the discovery of Amdahl’s law. This is because unbounded

speedup, i.e., Is and IIs, for this workload type only occur under very special circumstances.

Nevertheless, the achievable upper bound for IIIs may vary and effort should be made to

attain the highest possible bound.

2.5 Application of IPSO to Scaling Analysis of Data-Intensive Applications

The main focus of this section is to test the ability of IPSO in capturing the scaling

properties, and hence, its suitability in serving as a diagnostic tool for scaling analysis of

data-intensive applications. As a byproduct, the ability of IPSO to predict the scaling

properties for some simple cases is also explored, demonstrating the promising potentials of

IPSO to facilitate effective resource allocation for data-intensive applications. This study

includes a total of nine cases, including four Map-Reduce-based and four Spark-based case

studies, performed on the Amazon EC2 cloud, and one Spark-based case study, extracted
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Figure 2.3: Four distinct IPSO scaling behaviors for the fixed-size workload type: Is: linear

scaling; IIs: unbounded sublinear scaling; IIIs: Amdahl-like upper-bounded scaling; and IVs:

pathological, peaked scaling.

from [14]. This allows a sufficiently wide range of both single-stage (i.e., single-round) and

multi-stage applications with rich scaling properties to be uncovered. These case studies

also reveal the inability of the existing scaling laws in characterizing the scaling properties

of data-intensive applications in general. In fact, out of the nine cases studied, only two

simplest MapReduce cases follow the existing scaling laws. Finally, we note that the data

presented are average results of multiple experimental runs.
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2.5.1 Single-Stage Cases

This section focuses on the cases with only one round of job execution. They are either

fixed-time or fixed-size, which are studied separately.

Fixed-Time Workload: The cases studied include three representative micro benchmarks

from the HiBench suite [31], a widely adopted benchmark suite for Hadoop, i.e., WordCount,

Sort, and TeraSort [42]. The working data sets for WordCount and Sort are randomly gener-

ated text, drawn from a UNIX dictionary that contains 1000 words. TeraSort uses a working

data set derived directly from an embedded TeraGen program. Also included in this study

is a QMC Pi program from Apache Hadoop examples [1]. This program uses Quasi Monte

Carlo method (QMC) to estimate the value of π. These four applications are chosen because

they are among the most widely studied MapReduce-based applications that involve a single

round of parallel processing and merging.

On the hardware side, all of the four experiments were carried out on Amazon EC2 cloud

with EMR (elastic MapReduce) support. An m4.4xlarge virtual machine (VM) instance is
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Figure 2.4: Measured speedups for the four selected intel-HiBench micro benchmarks, together

with the speedups predicted by Gustafson’s law.
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chosen as the master node and m4.large VM instances as processing units. We configure the

resource manager to launch only one container per processing unit. And all the MapReduce

jobs in these experiments are configured as involving a single reducer with synchronization

barrier.

Results: The measured speedups for the four cases are presented in Fig. 2.4, together

with the ones predicted by Gustafson’s law. We make the following observations.

First, the QMC case in Fig. 2.4(a) matches Gustafson’s law well. For this case, there

is no serial workload, i.e., η = 1 and the fact that it matches Gustafson’s law well means

that it must belong to It, as depicted in Fig. 2.2. This further implies that there is little

scale-out-induced workload involved, since γ = 0 for It.

Second, the WordCount case in Fig. 2.4 (b) must be either It or IIt, as it is close to linear

growth as predicted by Gustafson’s law, but more data samples at larger scale-out degree

are needed to be certain which one it belongs to. Nevertheless, at least, we know from It

and IIt that for this case, the scale-out-induced workload is very small and the speedup is

very likely to be unbounded, i.e., a benign case in terms of scaling.

Third, it is clear that the Sort and TeraSort cases in Fig. 2.4 (c) and (d), respectively,

significantly deviate from that predicted by Gustafson’s law and fall into IIIt,1 or IIIt,2, or

somewhere in between. Our detailed scaling factor analysis, as will be given shortly, indicates

that both are more on the IIIt,1 side than the IIIt,2 side, since δ is close to zero and γ is

likely to be small.

The above case studies clearly demonstrate that IPSO can provide significant insights on

the possible root causes of the scaling behaviors for data-intensive applications. However for
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some cases, to exactly pin down the root cause, the exact scaling parameters, e.g., δ and γ,

must be estimated. In what follows, we make a first attempt to estimate these parameters

for the above cases. The aim is twofold: (a) demonstrating the promising potentials of IPSO

to serve as a capable means for scaling prediction and hence, resource allocation; and (b)

exposing the challenges in this pursuit.

Scaling Prediction: Regardless of the implementation details, every MapReduce job exe-

cution time can be roughly broken down into four parts: (a) the execution environment

initialization and job scheduling; (b) the map phase (i.e., the split phase); (c) the commu-

nication between map and reduce phases; and (d) the reduce phase (i.e., the merge phase).

The reduce phase can be further divided into a shuffle stage (the stage during which the

reducer pulls all mappers’ results from DFS), a merge stage (the stage when the reducer

merges specific amount of mapper results to get intermediate results), and a reduce stage

(the last merging process that produces the final results). With reference to this background

information, the following describes how we identify, based on measurement, the scaling be-

haviors of the three workloads, Wo(n), Wp(n), and Ws(n), in terms of three scaling factors,

q(n), EX(n), and IN(n), respectively.

First, by comparing the execution times of individual non-workload processing parts and

stages in the scale-out execution against the corresponding times in the sequential execution,

the scale-out-induced workload, Wo(n), if any, can be identified (i.e., the overheads that grow

with n in the scale-out execution, which are absent from the sequential job execution). Wo(n)

is more likely to come from parts (a) and (c). By detailed measurement, we find that Wo(n),

if any, is negligibly small for all four cases, due to the dominance of parts (b) and (d) and
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also the fact that the workload is the fixed-time one. We then further inspect the shuffle

stage to see if there is any discrepancies between the two, which turns out to be negligible

as well.

The next two steps are to measure EX(n) and IN(n). To this end, we first note that

part (b), i.e., the map phase, is the sole contributor to the parallel processing phase and

the rest can be attributed to the sequential merging phase. With this understanding, we

estimate EX(n) and IN(n) by curve fitting based on the measured data at problem sizes

no greater than n = 16 for WordCount, Sort, and QMC Pi.
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Figure 2.5: The internal-scaling factor of TeraSort demonstrates a step-wise property. As shown

there are two distinct functions: a linearly increasing function IN ′(n) with a slower growth pace

for small problem size, and IN(n) at a faster growing speed when the problem size grows bigger.

For TeraSort, we use the measured data between n = 16 and n = 64. This is because for

TeraSort, the data input size which grows linearly with n exceeds the preconfigured reducer

memory size (∼2GB) at about n = 15, when the disk I/O is involved and the internal

scaling factor is burst by over 30% with its slope increasing from 0.15 to 0.25 (Fig. 2.5).

This phenomenon is reflected in Fig. 2.4(d) where there is a small surge of the speedup
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around n = 15 and then falls back before it grows again. It indicates that for scaling factor

prediction, one must monitor the possible program execution environment changes as the

problem size increases, e.g., memory capacity overflow, surging queuing delay, or onset of

network or I/O bottleneck.

The predicted IN(n) and EX(n), together with the measured ones for the problem

size reaching n = 160 are depicted in Fig. 2.6. As shown in the figure, the parallelizable

workloads are memory bounded (i.e., using maximal block size of 128 MB per processing

unit) and EX(n) closely follows fixed-time workload, i.e., EX(n) ≈ n, as expected. This

confirms our earlier claim that a memory-bounded workload is no different from a fix-time

workload.
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Figure 2.6: EX(n) and IN(n) for the four cases. For all the cases, EX(n) ≈ n, agreeing with

the Gustafson’s assumption on the external scaling (see Eq. (2.13)).

For IN(n) in Fig. 2.6, while WordCount and QMC pi follow the existing workload model,

i.e., IN(n) = 1, both Sort and Terasort do not. For both applications, the predicted IN(n)’s

based on linear regression match the measured data well.

By using both predicted and measured EX(n) and IN(n) above, as well as measured
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E[max{Tp,i(n)}], E[Tp,1(1)] and E[Ts(1)] as input into Eqs. (2.9) and (2.8), one arrives at the

speedups for all four cases, as depicted in Fig. 2.7. As one can see, overall, IPSO predicts

the scaling properties for all four cases very well.
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Figure 2.7: The speedups based on IPSO, measurement, and Gustafson’s law for the four cases

in the case of the fixed-time workloads

With all the scaling factors captured, IPSO can now help characterize the scaling prop-

erties for the above four cases with much higher precision than before. First, it is now clear

that the in-proportion scaling has led to the IIIt,1 pathological scaling or upper bounded
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speedup for Sort and Terasort, which cannot be predicted by the existing scaling laws. For

example, for TeraSort, even though the scaling ratio is high, i.e., ε(n) = 4.3, meaning that

the external scaling is more than 4 times faster than the internal scaling, the speedup for

TeraSort is upper bounded by the value of 3. In other words, even with a relatively small

internal scaling, compared with the external scaling, the speedup becomes quite limited and

upper bounded.

The above examples demonstrate the promising prospects of IPSO for scaling prediction

and hence, resource provisioning. In the meantime, we also realize that to this end, it entails

detailed understanding and analysis of the applications and execution procedures. Clearly,

it is very unlikely that an one-size-fits-all prediction solution exists. Instead, the IPSO pre-

diction solution may need to be developed on a per programming framework and per type

of applications basis.

Fixed-size Workload: Unfortunately, for all the four cases studied so far, in the case

of fixed-size workload, as the scale-out factor n grows beyond 8, the parallel task response

times in the map phase drop to subseconds, which cannot be measured, since in our experi-

ments the precision of measurement is one second. Hence, instead of studying the four cases,

we consider the following one.

Collaborative Filtering: As explained in [14], some iterative MapReduce machine learning

applications in Spark may include significant data broadcasts from the master node to all the

worker nodes per iteration. In particular, [14] describes and provides the experimental data

for a collaborative filtering application (see [14] for detailed description of this application).
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Table 2.1: Measured external and scale-out-induced workloads for Collaborative Filtering

n E[max{Tp,i(n)}] Wo(n)

10 209.0 5.5

30 79.3 17.7

60 43.7 36.0

90 31.1 54.3

In each iteration, there are two feature vectors to be updated alternately, involving two

rounds of broadcast and two Map phases with barrier synchronization. For this application,

each broadcast is induced as a result of the system scale-out, generating scale-out-induced

workload. Moreover, the lack of a reduce phase in each iteration means that there is no

sequential merging phase or Ws(n) = 0. Since the scale-out degrees for both rounds are

the same, IPSO can be applied as aforementioned. Namely, by combining the corresponding

workloads in the two rounds into one, each iteration agrees with our IPSO model, and hence,

experimental data for each iteration in the form of histograms, as given in Fig. 2.3 in [14],

can be leveraged by IPSO for the scaling analysis of this application. We are able to convert

the experimental data in [14] into a table format in Table 2.1 and then the data are plotted

in Fig. 2.8, together with the matched curves based on nonlinear regression.

First, with Wo(n) given in Fig. 2.8(a) and according to Eqs. (2.6) and (2.15) (note that

Wp(n) = Wp(1) = E[Tp,1(1)] is a constant for the fixed-size workload), we have, γ = 2. By

inspecting Fig. 2.3, it becomes clear that the speedup for this case must fall into IVs, the

worst-case scenario, rather than the best-case scenario, i.e., Is, as would be predicted by
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Amdahl’s law (note that η = 1 as there is no serial workload).

To verify that IPSO indeed predicts the scaling property for the current case accurately,

in what follows, we calculate S(n) based on the statistic version of the IPSO model.

First, given Wp(n) = Wp(1) = E[Tp,1(1)], the speedup, S(n), for this application, accord-

ing to Eq. (2.7), can then be written as follows,

S(n) =
E[Tp,i(1)]

E[max{Tp,i(n)}] +Wo(n)
(2.18)

By extrapolating the matched curve for E[max{Tp,i(n)}] in Fig. 2.8(a) to n = 1, we have

E[Tp,1(1)] = 1602.5. Finally, S(n) is evaluated by substituting the matched functions in

Fig. 2.8(a) into Eq. (2.18).

Fig. 2.8(b) depicts the measured speedup and IPSO speedup, along with the speedup

predicted by Amdahl’s law. As one can see, both measured and IPSO speedups confirm that

the scaling behaviors follow IVs, rather than Is, as predicted by Amdahl’s law.

(a) (b)

Figure 2.8: The measured and IPSO speedups, together with that predicted by Amdahl’s law for

Collaborative Filtering.
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The scaling properties, depicted in Fig. 2.8(a), is pathological and disappointing. It

simply states that even in the absence of the serial portion of the workload, the linear

speedup scaling, predicted by Amdahl’s law, is not guaranteed. The dismal speedup of 21

at its peak and continued trending towards zero, as predicted by IPSO, indicates that the

scale-out-induced scaling can pose serious threats to the scalability of scale-out applications.

Collaborative Filtering deals with a fixed problem size, i.e., EX(n) = 1, meaning that scaling

out beyond n = 60 can only do harm to the parallel computing, hence setting a hard scale-out

degree upper bound, beyond which the parallel computing performance deteriorates.

2.5.2 Multi-Stage Cases

In this section, IPSO is applied to the analysis of Spark-based applications, involving

multiple stages/rounds of parallel task processing per job execution, where the scale-out

degree may vary from one stage to another. However, as we mentioned earlier, the IPSO

model can only be directly applied to the multi-stage cases with the same scale-out degree.

Fortunately, in the Spark-based program, two configuration parameters, i.e., the problem

size, N , and parallel degree, m, must be set. Here N is the nominal number of tasks to be

executed in a stage and m the nominal number of executors (i.e., processing units) to run in

parallel in a stage. In general, the actual numbers of tasks and executors in the first stage are

indeed equal to N and m, respectively. In other words, each of the m executors in the first

stage needs to execute N/m tasks sequentially. Although the numbers of tasks and executors

in the subsequent stages may not be equal to their respective nominal counterparts, they are

strong functions of these counterparts. This implies that the three workloads for Spark-based
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applications can be defined in terms of N and m, i.e., Wp = Wp(N,m), Ws = Ws(N,m),

and Wo = Wo(N,m) in general.

To allow IPSO to be applied to the cases with multi-stage without modification, we

simply define the fixed-time and fixed-size cases as when N/m and N are fixed, respectively,

while scaling m, i.e., the scale-out degree, n = m. By doing so, all the above three workloads

become functions of n only for either case, the same as the ones defined in IPSO. Hence, all

the results derived from IPSO apply to the Spark-based multi-stage cases. In what follows,

we perform case studies for four representative Spark benchmarks.

We deployed the Intel HiBench suite on EC2 with the EMR (Elastic MapReduce) ser-

vice and then launched four Spark benchmarks including three machine learning applica-

tions:Bayes Classifier (Bayes), Random Forest (RF), Support Vector Machine (SVM), and

one graph application (NWeight). The hardware configuration is cloned from the previously

stated MapReduce experiment. All the instances are preconfigured with sufficient storage

capacity (100GB per-node) and bandwidth (≥ 450 Mbps). Executor reuse and logging are

enabled for performance metrics collection. All the input data sets are generated by the

respective data generators provided by this benchmark suite. We then extract the execution

latencies for all stages from the application’s Log file to derive the speedup. This is done

by tracing the timestamps for each stage in the Spark Log files, which are available in the

JSON format.

To identify the scaling properties using IPSO, we are interested in the speedups pro-

jected onto two different dimensions, i.e., the fixed-time (with N/m fixed) and fixed-size

(with N fixed) dimensions, while scaling n = m as depicted in Fig. 2.9 and Fig. 2.10 re-

spectively. Along with the data points, we also plotted the projected curves of the matched
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two-dimensional surfaces as functions of N and m based on nonlinear regression for the ease

of identification of trending.

Figure 2.9: Fixed-time dimension

First, one notes that for fixed-time workloads, as depicted in Fig. 2.9, the larger the per

executor load level, N
m

, the higher the speedup is. In other words, the speedup curve at N
m

= 4

is higher than that at 2, which in turn, is higher than that at 1. The detailed analysis of

the code paths indicates that this is due to the increased percentage of the scale-out-induced

workload as the number of tasks per executor decreases. More specifically, the scheduling

and deserialization time (i.e., the communication cost) of the first wave of tasks outweigh

the following waves. Hence, further increasing per-node workload level effectively reduces
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the scale-out induced workload per task. This however, by no means suggests that reducing

the parallel degree always improves speedup performance. In fact, our study shows that the

speedup at N
m

= 8 is lower than that at N
m

= 4. This is because the per-node workload level

is constrained by the available resource at the node level. For example, insufficient RAM

may cause the persistent RDDs to be spilled to the local disk, or even trigger increased task

failure rate, leading to the rollback to the previous stage and hence poor performance. In

other words, the optimal scale-out level, or parallel degree m is determined by both the

workload size and the resource availability at individual executors.

Figure 2.10: Speedups in fixed-size dimension

The scale-out-induced workload is also responsible for the degradation of the speedups

from the ideal Gustafson-like It to at best IIt for large N
m

and IIIt for smaller N
m

. All four
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cases share similar scaling properties.

Second, for the fixed-size workload dimension, as depicted in Fig. 2.10, as the problem

size N becomes large, the speedups for all four cases peak and then fall as n increases,

agreeing with the scaling behavior of IVs, the pathological one. This is in stark contrast

with that predicted by Amdahl’s law, or IIIs. This is due to the strong scale-out induced

overhead, as discussed above. Again, all four cases share similar scaling behaviors.

In summary, the above case studies clearly demonstrate that IPSO can serve as a diag-

nostic tool for the scaling analysis of data-intensive applications. Specifically, the following

diagnostic procedure is recommended:

1. Determine the use case scenario, i.e., the fixed-time or fixed-size workload;

2. For given workload type, measure the speedup as the scale-out degree increases;

3. Plot the speedup data points versus scale-out degree, maybe together with a matched

curve from nonlinear regression as a guide;

4. Compare the trending of the measured speedup with either Fig. 2.2 or Fig. 2.3, de-

pending on the workload type to identify closely matched scaling types;

5. If the matched scaling type is It (Is), IIt (IIs), or IVt (IVs), the root causes of the

scaling behaviors are readily identified and understood based on the analysis in Section

IV. If, however, the matched type is IIIt (IIIs), go to the next step to further identify

which sub-type, IIIt,1 (IIIs,1) or IIIt,2 (IIIs,2) it belongs to;

6. Carry out a detailed analysis and measurement of the scaling parameters, δ and γ, to

pin down the exact sub-type it belongs to, which however, may need to be done case
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by case.

Finally, the source code and executables for all the case studies are publicly available at

our code repository [3].

2.6 Conclusions and Future Work

In this paper, we proposed a new scaling model for scale-out, data-intensive applications,

called In-Proportion and Scale-Out-induced scaling model (IPSO). IPSO sets itself apart

from the existing scaling models in two important aspects. First, it takes the scaling of

the serial portion of a workload into account, referred to as in-proportion scaling. Second,

it accounts for the possible overheads induced by the scale-out, resulting in what we call

scale-out-induced scaling. Both in-proportion and scale-out-induced scalings were observed

in scale-out applications, but had not been formally defined until this work. MapReduce-

and-Spark-based application case studies demonstrate that IPSO can serve as a powerful

diagnostic tool for the scaling analysis of data-intensive applications.

As our future work, we plan to develop measurement-based resource provisioning algo-

rithms for data-intensive workloads based on the prediction ideas behind IPSO. The key is

to find a solution as to how to quickly estimate the two scaling parameters, δ and γ. The

research in this direction is underway.
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Chapter 3

USBA Model

3.1 Introduction

Big data analytics are scale-out by design with a large number of data blocks to be pro-

cessed in parallel. For such applications, a job may involve multiple stages of parallel task

processing and task result exchanges for tasks mapped to up to tens of thousands of com-

modity servers in which the data blocks reside. Notable examples are data mining, machine

learning, and graph processing based on, e.g., MapReduce [18], Spark [64], and/or Dryad [33]

programming frameworks. As big data analytics have emerged as the predominant datacen-

ter workloads and consumed a significant portion of datacenter resources, it is of paramount

importance to gain a sound understanding of the scaling properties of such workloads, e.g.,

for job resource provisioning purpose.

To this end, one must establish good system and workload models for big data analytics

workloads and then, on the basis of these models, predict the scaling behaviors for such

workloads. Unfortunately, to date, no systematic approach of this kind has been developed.

Consequently, the most widely cited scaling law for big data analytics, to date, is still the

traditional, well-known Amdahl’s law [5], which along with a seemingly competing, well-

* Copyright c© Zhongwei Li, Feng Duan, and Hao Che | ACM 2019. This is the author’s version of the
work. It is posted here for personal use, not for redistribution. The definitive Version of Record was
published in HP3C’19 Proceedings of the 3rd International Conference on High Performance Compilation,
http://dx.doi.org/10.1145/3318265.3318268



known scaling law – Gustafson’s law [27], were discovered well before the era of big data

analytics. Since both the system and workload models underlying these scaling laws are too

simplistic, applying these laws to the scaling analysis of big data analytics workloads often

brings more confusion than clarity.

First, the underlying system model shared by Amdahl’s and Gustafson’s laws can be

viewed as a two-stage system with a serial and a parallel execution stage. While the serial

execution stage has one processing unit in it, handling the serial portion of the workload, the

parallel execution stage involves a number of processing units processing the parallelizable

portion of the workload in parallel. The workload models underlying both Amdahl’s and

Gustafson’s laws assume that the size of the serial portion of the workload stays unchanged

as the system scales out, which is justified, according to [27], as the serial portion of the

workload normally corresponds to the program initialization phase that does not change as

the problem size increases. This is in stark contrast to the system and workload structures

for big data analytics, which in addition to the initialization phase, normally involves from

a few to several thousands of parallel execution stages, which must be executed sequentially.

Moreover, as the problem size increases, in general, the number of parallel execution stages

may grow, effectively adding more parallel and serial workloads simultaneously.

Second, the workload models for the parallelizable portion of the workload underlying

both Amdahl’s and Gustafson’s laws are too restrictive, i.e., the fixed-size workload model

for Amdahl’s law and the fixed-time workload model for Gustafson’s law, for which the size

of the parallelizable portion of the workload stays unchanged and scales linearly, respectively,

as the system scales out. In contrast, big data analytics workloads may stay unchanged, scale

linearly or sublinearly, depending on the resource availability with respect to the workload
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size (see Section 2 for more details).

In lieu of the lack of and the importance of gaining a sound and fundamental under-

standing of the scaling properties and to facilitate more effective job resource provisioning

for big data analytics workloads, in this paper, we put forward a Unified Scaling model for

Big data Analytics (USBA) that renders the traditional scaling models its special cases.

It makes the following major contributions. First, USBA is a unified scaling model, from

which the well-known Amdahl’s and Gustafson’s laws, and other useful performance bounds

can be derived as special cases. Second, USBA is a general scaling model that allows for

flexible multi-stage system and workload scalings; variability of task response times; and

barrier synchronization. Hence it can be applied to the scaling analysis of real-world big

data analytics workloads, in the presence of a wide range of system and workload scaling

behaviors and variability of task response times, e.g., task stragglers. Third, in USBA, a

regression model is developed, that can match the measured performance data and predict

the performance scaling within 20% errors for all four benchmarks studied 1. Finally, the

ability to work in a large workload design space allows USBA to capture the true scaling

properties of big data analytics workloads that largely deviate from those predicted by the

Amdahl’s and Gustafson’s laws.

The remainder of the paper is organized as follows. Section 3.2 provides the background

information to motivate the current work. Section 3.3 introduces USBA. Section 3.4 presents

the results for the scaling analysis of USBA, and its application to several Spark henchmarks.

Section 3.5 reviews the related work. Finally, Section 3.6 concludes the paper.

1The prediction errors at this level is considered small for resource provisioning [60].
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3.2 Background and Motivations

In this section, we first analyze in detail the Amdahl’s and Gustafson’s laws and the

corresponding system and workload models. Then we identify, from both system and work-

load modeling points of view, the fallacies of applying these laws to characterize the scaling

properties of big data analytics workloads, which motivate the current work.

To capture the workload models underlying the existing well-known scaling laws and to

be consistent with the USBA scaling model to be defined later, we view the system model

shared by Amdahl’s and Gustafson’s laws as depicted in Figure 3.1. It is composed of a

single processing unit and a set of parallel processing units arranged in a two-stage pipeline,

executing the serial and parallelizable portions of the workload, respectively. In this model,

each black dot represents a base task or workload unit, which cannot be further divided and

parallelized. There is only one base task at the serial stage, representing the serial portion

of the workload. This discretization of the workload leads to discretized versions of the two

laws, as we shall see shortly.

Now let τs and τp denote the execution times for a base task in the serial and parallel

stages, respectively. In the parallel processing stage, the total number of base tasks is

Np = mp × np, called the problem size, where mp is the number of parallel processing units

(also called executors) or degree of parallelism (DOP); and np is the number of base tasks

mapped to and processed sequentially by each executor in the parallel stage, referred to as

per-node workload level hereafter.

Now, the speedup, S(Np,mp), for the above system model can be written as the following,
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mp

Np=mp × np

τs

τp

Figure 3.1: System Model for Amdahl’s and Gustafson’s laws. Each black dot represents a base

task and each white box represents an executor. It has two stages, i.e., a serial and a parallel

execution stage.

S(Np,mp) =
τs +Npτp
τs + npτp

(3.1)

where the numerator is the job response time when all the tasks are executed sequentially

using a single executor and the denominator is the job execution time based on the above

two-stage execution model. By writing down this formula, we implicitly assume that τs and

τp stay the same for both sequential execution model and parallel execution model, which

may not hold true in general, as we shall see. Now, both Amdahl’s and Gustafson’s laws can

be easily derived from this expression, by taking into account of their respective workload

models.

For fixed-sized workload, the problem size, Np is a constant, we have the following dis-

cretized Amdahl’s law,

S =
1

η
mp

+ (1− η)
(3.2)

where,
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η =
Npτp

Npτp + τs
(3.3)

is a constant. It simply states that for the fixed-size workload, the speedup is upper

bounded by 1
1−η , regardless of how many executors, mp, are in use, where mp ≤ Np. This

is a discretized version of the original Amdahl’s law. While the underlying parallelizable

portion of the workload in the original Amdahl’s law is infinitely divisible, the current one

can only be divided into up to Np base tasks, which are processed by up to mp = Np parallel

executors.

For fixed-time workload, i.e., np is a constant, we arrive at the following Gustafson’s law,

S = mpε+ (1− ε) (3.4)

where,

ε =
npτp

npτp + τs
(3.5)

is a constant. It simply states that for the fixed-time workload, the speedup grows

unbounded, as both mp and Np, increase at fixed np = Np
mp

. Again, it is a discretized version

of the original Gustafson’s law, as the parallelizable portion of the workload mapped to

any given executor, is measured in terms of an integer number of base tasks, i.e., the per-

node workload level np. Traditionally, the two scaling laws are considered as two mutually

exclusive views of scaling for parallel computing. Now, we identify the limitations of the

system and workload models underlying the above scaling laws.

First, we observe that in the context of big data analytics workloads, the fixed-size and
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fixed-time workload models represent only two extreme scenarios of the same problem, i.e.,

resource-abundant and resource-constrained scenarios, respectively. By resource-abundant,

we mean that the parallelizable portion of the workload can be processed in its entirety by

just one executor, i.e., mp = 1 and np = Np. In this case, one is interested in characterizing

the scaling properties when the fraction of the parallelizable workload on each executor,

np = Np
mp

, decreases as the number of executors, mp, increases at fixed Np, leading to Amdahl’s

law in Eq. (3.2). By resource-constrained, we mean that each executor can only handle a

fraction of the total parallelizable portion of the workload, np = Np
mp

, e.g., the case when the

memory allocated to each executor is fully occupied by the data block assigned to it. In

this scenario, the workload grows with the number of allocated executors, mp, resulting in

Gustafson’s law (Eq. (3.4)). Clearly, both scenarios may occur in practice, especially in a

consolidated datacenter environment, where the resource availability may vary significantly

from peak hours to off peak hours and the workload size may change dramatically from one

application to another. Moreover, in general, as the system scales out, a big data analytics

workload may scale in terms of both Np and mp, not following any of these two workload

models. Hence, from the job resource provisioning point of view, one would be interested in

finding the maximum speedup trajectory as a function of Np and mp. Clearly, the system

model with workload discretization given in Figure 3.1 allows all possible trajectories to

be characterized, not limited to the fixed-size or fixed-time workloads and hence, is a good

model to allow a large workload design space to be exploited.

Second, we note that the base tasks for both parallel and serial portions of the workload

underlying both Amdahl’s and Gustafson’s laws are fixed, i.e., τp and τs are constants and

does not scale with mp or Np. For big data analytics workloads, however, this is not the case
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in general. As we shall see in Section 3.4, both may scale with Np and/or mp for Spark-based

multi-stage workloads.
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(b) Sequential Scaling

Figure 3.2: The scaling of serial and parallel portion of MapReduce workloads.

Even for some simple MapReduce-based applications, strong scalings for the serial por-

tions of the workloads are found. For example, we do the experiments on Amazon EC2

cloud with EMR (elastic MapReduce) for four representative micro benchmarks from Hi-

Bench suite [31], including WordCount, Sort, TeraSort, and Quasi Monte Carlo (QMC) Pi

program. We purposely configure only a single reducer in the Reduce phase so that the ini-

tialization and reducer phases together can mimic the serial stage in Figure 3.1. We consider

the fixed-time workload by increasing the number of executors, mp, in the Map phase with

a 128 MB data block for every executor added. Figure 3.2(a) and (b) depict the scaling

of rp(mp) = τp(mp)

τp(1)
and rs(mp) = τs(mp)

τs(1)
, assuming that τp = τp(mp) and τs = τs(mp). As

one can see, while none of the four exhibit visible parallel scaling, both Sort and TeraSort
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see strong linear serial scalings with mp. As a result, while WordCount and QMC Pi follow

Gustafson’s law and grow unbounded, Sort and TeraSort are upper bounded, as shown in

Figure 3.3.

The above examples clearly indicate that a good scaling model for big data analytics

workloads should take the possible scalings for both parallel and serial portion of the workload

into account.

Third, as explained in the introduction section, big data analytics may involve many

parallel execution stages in addition to the initialization stage. Also, as the problem size

increases, the number of parallel execution stages may grow. Clearly, the system model in

Figure 3.1 fails to capture these features.

The above fallacies in applying the traditional scaling laws to big data analytics workloads

motivate the work presented in this paper.

3.3 USBA

In this section, we introduce the system and workload models, the speedup, and the

regression model, separately.

3.3.1 System Model with Discretized Workload

Consider a system model with discretized workload, depicted in Figure 3.4. It generalizes

the two-stage system model in Figure 3.1 to a (L + 1)-stage system model with a serial

initialization stage and L parallel task execution stages with (the dotted vertical lines) or

without synchronization barriers. At any given stage, k, there are mk executors working in
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Figure 3.3: The speedups for four MapReduce benchmarks with fixed-time workloads. As shown,

when taking serial scaling effects into account, big data analytics workloads may no longer follow

Gustafson’s law, i.e., the Sort and TeraSort cases.

parallel, each executing nk = Nk
mk

base tasks sequentially, where Nk is the total workload or

total number of base tasks at stage k.

Now, define tk(Nk,mk; i, j) to be the task execution time for the base task at position

j in the ith executor at stage k, which in general is a random variable. As our experiment

shows, it can be a strong function of the workload size, Nk, as well as parallel degree, mk,

at stage k. To limit the exposure, we further assume that all the base tasks at any given

stage k have the same mean task execution time, i.e., E[tk(Nk,mk; i, j)] = E[tk(Nk,mk)], for

i = 1, ...,mk and j = 1, ..., nk.
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First, we note that in the above model, the serial initialization stage k = 0 is modeled

separately from the parallel execution stages, even though it could be treated as special case

of a parallel execution stage with a single base task. As we shall see later, this is because the

initialization stage exhibits totally different scaling properties from the parallel execution

n1

m1 m2 mL

n2

kth

nL

mk

nk

N1=m1 × n1 N2=m2 × n2 NL=mL × nL

Nk=mk × nk

k−th stage:

nk =
Nk

mk

tk (Nk, mk;Np,mp, i, j)

N0=m0=1

Figure 3.4: A system model with discretized workload. Stages are divided by data transformations

that potentially involve large sequential overhead caused by the barrier, normally known as “shuffle”

boundaries. Each white circle represents a driver process in that stage which takes input and

dispatches tasks to its workers. The workers are usually running VM instances on core/task nodes

of the cluster, depicted as white squire boxes in the figure. And each black circle represents a task

being assigned to the worker. Also, when a multi-stage workload contains multiple chains of stages,

the longest chain of stages with dependencies shall drive its performance in terms of execution

latency.
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stages and hence, needs to be modeled and predicted separately from the rest of the stages.

Second, we note that the above model inherits the nice features from the model in Fig-

ure 3.1. In particular, it can accommodate various workload models, including the fixed-size

workload (i.e., increasing mk at fixed Nk for k = 1, ..., L), fixed-time workload (i.e., increasing

Nk at fixed nk = Nk
mk

for k = 1, ..., L), or any combinations of the two in a 2L-multidimensional

space defined by N1,m1, ..., NL,mL. Moreover, it degenerates to the model in Figure 3.1 at

L = 1, meaning that Amdahl’s and Gustafson’s laws can be derived from the above model

as special cases.

Finally, we note that the 2L multidimensional space of the above model can be reduced to

a two dimensional space, greatly simplifying the scaling analysis of the model. As we shall

see later, for Spark-based workload, the workload size in terms of Nk and mk at parallel

execution stage k, for k = 1, ..., L, are strongly correlated with the problem size, Np, defined

as the initial number of parallel base tasks that a job spawns, as well as the degree of

parallelism, mp, i.e., the number of executors configured, where in general, N1 = Np and

m1 = mp. Moreover, the number of stages, L, may also be a function of Np and mp. As we

shall see, this observation lends us an effective means to characterize and predict the scaling

properties of a big data analytics workload, using only two parameters, Np and mp.

3.3.2 Speedup

The speedup for a given problem size must be measured against a baseline solution.

Ideally, a baseline solution should follow a strictly sequential execution model, e.g., the

sequential execution model in the case of Amdahl’s or Gustafson’s law. Unfortunately, for
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big data analytics, a strictly sequential execution model may not be implementable, as the

most probable reason for scale-out processing of a big data workload is that both time and

space complexities to do so sequentially are too high.

An alternative solution, e.g., proposed in [58], is to replace the baseline sequential model

with a baseline scale-out model at the lowest possible DOP (degree of parallelism) that is

implementable. For example, in the context of our USBA model, the speedup, Sr, thus

defined can be written as,

Sr(L, {Nk,mk}) =
E[t0(N1,m

o
1)] + E[T (L, {Nk,m

o
k})]

E[t0(N1,m1)] + E[T (L, {Nk,mk})]
(3.6)

where t0(N1,m1) is the task response time in the initialization stage, which is a function

of the problem size; T (L, {Nk,mk}) is the job response time with respect to the parallel

execution stages; the numerator is the average job response time for the baseline scale-out

configuration at the lowest DOP in terms of mo
k’s and the denominator is the average job

response time for the desired scale-out configuration, where mk > mo
k for k = 1, ..., L.

Although offering a measurable speedup for a scale-out configuration versus a baseline

one, the above definition suffers from a major drawback. As the problem size increases, the

DOP for the baseline, i.e., mo
k’s, must also increase to be implementable. Hence, the speedup

becomes a relative measure depending on the range of problem sizes. This makes it difficult

to identify the true performance bounds as problem size becomes large, as there is no fixed

point of reference.

To address the above issue, USBA adopts the following ideal, easily implementable se-

quential execution model as the baseline. This baseline model simply uses the mean job
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response time measured at the minimum problem size, i.e., Np = 1 and mp = 1 (i.e.,

without scale-out effects), multiplied by Np as the mean job response time, E[To(Np)], at

any given problem size in terms of Np, independent of mp. More specifically, assume that

L = L(Np,mp) in general. At the smallest problem size, i.e., Np = 1, mp = 1 and L = L(1, 1),

define τk to be the average task execution times, i.e., τ0 = E[t0(1, 1)] and τk = E[tk(1, 1)], for

k = 1, ..., L(1, 1). Then, we have,

E[To(Np)] = Np × T (L(1, 1), {1, 1}) = Np

L(1,1)∑
k=1

τk (3.7)

Clearly, this ideal sequential model is free from the scale-out effects, i.e., independent of

mp, and hence, is truly a pure sequential one.

With the above baseline sequential execution model, now we can define speedup, S(L, {Nk,mk}),

as follows,

S(L, {Nk,mk}) =
E[t0(1, 1)] + E[To(Np)]

E[t0(N1,m1)] + E[T (L, {Nk,mk})]
(3.8)

Now, with reference to the model in Figure 3.4, E[T (L, {Nk,mk})] can be written as

follows,

E[T (L, {Nk,mk})] =
L∑
k=1

E[R(k,Nk,mk)] (3.9)

where R(k,Nk,mk) is the job response time with respect to stage k and is given by,
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R(k,Nk,mk) =



maxj∈[1,mk]{
∑Nk/mk

i=1 tk(Nk,mk; i, j)},

with barrier,∑Nk/mk
i=1 tk(Nk,mk; i, 1),

without barrier.

(3.10)

This expression accounts for the case with or without synchronization barrier. For the

case with barrier, R(k,Nk,mk) is determined by the slowest task at stage k. This definition

allows long-tail task execution effects, e.g., due to stragglers [67], to be captured. For the

case without barrier, since the total mean response times for the nk base tasks at different

parallel executors are the same, without loss of generality, R(k,Nk,mk) is expressed as the

response time with respect to the first executor.

Clearly, with the above definition, the speedups for all the execution configurations in

terms of mk’s can be compared, as they are measured against the same baseline. Moreover,

there is an added benefit of this definition. Namely, the speedup in Eq. 3.6 can be derived

from the current speedup as follows,

Sr(L, {Nk,mk}) =
S(L, {Nk,mk})
S(L, {Nk,mo

k})
(3.11)

Finally, we note that USBA is a unified scaling model that renders Amdahl’s and Gustafson’s

scaling models its special cases, i.e., a deterministic version of USBA with L = 1 and fixed-

size workload for the Amdahl’s case and fixed-time workload for the Gustafson’s case.
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3.3.3 Regression Model

In this paper, we focus on Spark-based big data analytics workloads. Spark is well

known for its “In-Memory Computing” and outperform traditional MapReduce framework

(e.g. Hadoop MapReduce) in processing large amount of data. As a result, it has been widely

adopted in business applications in recent years. A Spark-based workload may contain up to

thousands of processing stages, constructed by various parallel or sequential operations on

RDDs (i.e., Resilient Distributed Datasets [66]) and the stages are bounded by data shuffle

dependencies. These shuffle boundaries introduce barriers where a stage must wait for its

previous (parent) stage to finish before it fetches the intermediate results. Each stage is

associated with a certain number of tasks, which are assigned to a number of executors (an

executor is a process on a worker node for computation and data storage) by the driver

program. Therefore, Spark applications are by design multi-stage workloads that well match

with the USBA scaling model.

In what follows, we use a machine learning benchmark from Intel Hibench Suite, i.e.,

Bayes Classifier (Bayes), to guide the discussion. The workload is a simple multi-class clas-

sification algorithm implemented in spark.mllib and uses automatically generated documents

provided by the Hibench Suite as data input.

Figure 3.5 shows a workflow of Bayes as a serial executions of stages, which is typical

for most Spark applications. In this example, Np = 16, mp = 8 and L = 13 with a stage

ID assigned to each stage, as shown in the leftmost column. We first note that the number

of Succeeded/Total tasks in column three (i.e., Nk) at each stage is closely related to either

Np or mp. More specifically, it takes value of Np = 16 (in these stages mk = 8), mp = 8
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Figure 3.5: Workflow in stages for Bayes. The number of tasks (Nk) and executors (mk) within

each stage are closely related to Np and mp.

(mk = 8), (mp − 1) = 7 (mk = 7), or 1 (mk = 1), depending on the actual operators taken

at that stage, as listed in the Description column. Our experiments also indicate that L

changes with Np and mp as well. The existence of Nk, mk, and L dependencies on Np and

mp is the fundamental premise underlying the following regression models.

We define the following two scaling factors,

p (Np,mp) =
E[T (L, {Nk,mk})]∑L(1,1)

k=1 τk
(3.12)

q (Np,mp) =
E[t0(Np,mp)]

τ0

(3.13)

called p-function and q-function, respectively. In general, p(Np,mp) ≥ 1 and q(Np,mp) ≥

1. Note that the above variable deduction is made possible because L, Nk and mk (for

k = 1, ..., L) are implicit functions of Np and mp. As a result, S(L, {Nk,mk}) = S(Np,mp)
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and Eq. (3.8) can be rewritten as follows,

S(Np,mp) =
τ0 +Np

∑L(1,1)
k=1 τk

τ0 × q(Np,mp) + (
∑L(1,1)

k=1 τk)× p(Np,mp)
(3.14)

since τk (for k = 0, 1, ..., L(1, 1)) are easily measurable parameters at the smallest prob-

lem size Np = 1 without scaling out (i.e., mp = 1), the speedup S(Np,mp) is completely

determined by the p-function and q-function. In other words, if one can pin down these

functions, e.g., by regression, based on measured data at small Np’s and mp’s, the scaling

behaviors in terms of speedup can then be predicted at larger Np and mp. To this end, we

propose the following solution.

Without using any structural information from the workflow, we identify the most plau-

sible function format for p-function by searching in a large function space using the 3D

({S(Np,mp), Np,mp }) measured data as input. This approach, if successful, can be gener-

ally applied to any applications and programming frameworks that match the USBA scaling

model, not limited to Spark-based data mining and graph applications under study. To this

end, we resort to an open source online curve (and surface) fitting tool [44]. Using our 3D

data set as input, it compares thousands of templates selected from a wide range of families

(including Polynomial, Logarithmic, Exponential, Miscellaneous, Power, etc.) in parallel.

Taking the results from the top of the list, we then examine the relative magnitudes of the

involved parameters to further trim the function to a meaningful and simple form:

p(Np,mp) = (1− β − γ) + α · log(
Np

mp

) + β ·mp + γ ·Np (3.15)

Although Eq. (3.15) is derived without taking the underlying workflow structure into ac-
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count, it is still plausible to interpret the meanings for each involved terms in this expression.

The term, (α · log(Np
mp

)), indicates that the effective computing time for the workload mapped

to each executor increases fast at small load level, np, but then increases sublinearly fast as

np becomes large. This can be understood by the fact that the initial base task execution

incurs much more overhead than the following base tasks as is evident in the example given

in Figure 3.8. The term, β ·mp, is clearly the overheads induced by the scaling out, e.g., the

communication overheads. The term, γ ·Np, which is a very small negative term, is probably

an artifact induced by the pseudo random nature of the synthetic data set generated by the

HiBench tool itself [31].

The above expression bears some resemblance to the response time model derived from

the workflow structures underlying some Spark-based applications (Equation 1 in [60]). A

major difference lies in the term for per executor workload computing time. In [60], this term

is given as a linear function of nk, whereas ours is a sublinear one in log form. Comparison

study of the two solutions with application to the four Spark benchmarks (not shown here)

indicates that our solution outperforms the other one by a small margin. This suggests that a

workflow-structure-oblivious solution like ours can perform equally well as a more elaborate

workflow-structure-aware solution.

With regard to q-function, we find from the raw data for all four Spark benchmarks that

it is only a function of mp, not Np and it is a strong piecewise function, which can be easily

modeled using the following expression,

q(mp) =


1− ε+ ε ·mp mp ≤ θ

1− ε+ ε · θ o.w.

(3.16)
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It means that the launch overhead increases with mp initially and then reach a threshold

θ, beyond which it becomes a constant. Note that in [60], this term is assumed to be a

constant.

In Table 3.1, we list the parameter values for all the parameters in p-function and q-

function, together with their respective significances, i.e., the p-values, for both performance

modeling and prediction, estimated by Wolfram Mathematica [61]. Generally speaking, p-

value ≤ 0.05 implies the estimated value is significant. The p-values for all the parameters

except γ’s for some benchmarks indicate that they are significant and cannot be omitted.

The estimated small γ values and their relatively large p-values also suggestions that the

impact of the artifacts induced by the pseudo randomness of the synthetic data is minor.

Finally, we need to point out that there are other ways of generating the regression

models that we tested. For instance, RSM (Response Surface Methodology) [22] is a widely

adopted 3D curve fitting technique which is particularly useful in searching for optimal

values. Unfortunately, even though the model is systematic and easy to follow, it fails at

prediction with large percentage errors in our use cases.

3.4 Application of USBA

This section applies USBA to four selected Spark benchmarks from Intel HiBench Suite.

We explain the experiment setup on the EC2 cloud; the measurement procedure; and the

results separately.
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Table 3.1: Parameter estimation for the selected Spark benchmarks’ p-function and q-function.

(a) Performance Modeling

α β γ ε θ

est. p-value est. p-value est. p-value est. p-value est. p-value

Bayes 1.58 3.15E-11 0.051 4.90E-19 -0.006 0.008 0.044 1.58E-27 19.09 1.84E-27

RF 1.938 1.19E-13 0.074 2.89E-24 -0.009 0.000116 0.04389 2.29E-34 18.983 2.71E-34

SVM 0.807 0.006402 0.14 1.28E-33 - - 0.037 1.50E-32 19.905 1.62E-32

NWeight 2.505 8.39E-09 0.106 6.82E-20 -0.022 1.05E-05 0.04 1.82E-29 19.516 1.83E-29

(b) Prediction (Np = 64)

α β γ ε θ

est. p-value est. p-value est. p-value est. p-value est. p-value

Bayes 1.555 4.22E-11 0.031 0.000443 -1.91E-06 0.999713 0.050 2.41E-08 15.367 2.40E-08

RF 2.194 6.61E-09 0.085 1.77E-05 -0.021 0.067175 0.049 7.08E-10 15.612 6.93E-10

SVM 0.886 1.47E-05 0.137 2.08E-13 - - 0.037 4.54E-16 19.783 2.08E-14

NWeight 2.067 1.09E-05 0.09 0.00136 -1.09E-07 0.999995 0.040 1.81E-14 19.044 6.69E-13

Table 3.2: Measurements of terms in numerator and denominator of Eq. (3.14) from Spark Log

files.

Term Log File Identifier Configuration

τ0 stage start time - app launch time (first stage) Np = mp = 1

τk (k ≥ 1) stage end time - stage start time Np = mp = 1

q(mp)× τ0 stage start time - app launch time (first stage) Np ≥ mp > 1

p(Np,mp)× (
∑L(1,1)

k=1 τk) Accumulate {stage end time - stage start time} Np ≥ mp > 1

21



3.4.1 Experiment Setup

We deployed the Intel HiBench suite on EC2 with the EMR (Elastic MapReduce) ser-

vice. The selected benchmarks includes three machine learning applications:Bayes Classi-

fier (Bayes), Random Forest(RF), Support Vector Machine(SVM), and a graph application

(NWeight). On the hardware side, a heterogeneous cluster, composed of one master node

of m4.2xlarge instance type (8 vCPU, 32GB memory) and multiple core nodes of m4.large

instance type (2 vCPU, 8GB memory), is set up. All the instances are pre-configured with

sufficient storage capacity (100GB per-node) and bandwidth (≥ 450 Mbps). On the software

side, dynamic resource allocation (i.e., performance tuning option) is turned off to prevent

possible unpredictable execution behaviors, as executor reuse and logging is enabled for per-

formance metrics collection. All the input data sets are generated by the respective data

generators provided by this benchmark suite. The number of executors (mp) are chosen as

1, 1/2, 1/4 and 1/8 in ratio to Np, or equivalently, nk = 1, 2, 4 and 8.

3.4.2 Measurement

The next step is to extract the execution latencies for all stages from the application’s

Log file to derive the speedup in Eq. 3.14. Table 3.2 summarizes the terms in Eq. 3.14 that

need to be measured. This done by tracing the beginning and ending timestamps for each

execution stage in the Spark Log files, which are available in the format of JSON entries.

Figure 3.6 illustrates these highlighted JSON entries and the ways to extract each timestamp.
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3.4.3 Results and Analysis

Using the regression model introduced in Section 3.4.2, each benchmark’s speedup can be

explicitly evaluated as a function of the problem size (Np) and parallel degree (mp). Partial

results are given in Table 3.3. As one can see, the the regression-model-based speedups are

within 15% errors of the measured ones for the left three data mining benchmarks. For the

graph benchmark on the right, they are within 21% errors. This suggests that the subtle

differences of the underlying workflow structures for different types of applications may play

an important role in modeling data analytics applications.

Figure 3.6: Log analyzer of Spark applications. As marked in the figure, for the kth stage, it

is tagged by the stage tasks:Nk. The stage execution latency is calculated by stage end time -

stage start time, and the application launch overhead is estimated by the stage start time of the

first launched Spark stage subtracted by app launch time. To distinguish the cost, we mark this

phase of execution as the first stage and the rest regular stages afterwards.
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Now Figure 3.7 visualizes the complete results in the 3-D plots. As one can see, the

model-based speedups closely follow the measured ones. Note that the contour in each

plot has a peaked trajectory along which the speedups are maximized for the corresponding

problem size Np and degree of parallelism mp. From job resource provisioning point of view,

a job resource provisioning algorithm can be developed to identify the optimal point on this

trajectory, based on the resource availability and/or monetary budget, which however, is out

of scope of this paper.

Viewing clearly from this solution space, we are particularly interested in the scaling

properties of the workload projected onto mp axis and np = Np
mp

axis, corresponding to the

fixed-time workload underlying Gustafson’s law and fixed-size workload underlying Amdahl’s

law. For the first scenario (i.e. fixed-time), it’s easily to identify from the figure that at given

number of worker nodes or degree of parallelism (DOP),mp, the higher the per-node workload

level, np = Np
mp

, the better the performance is. In other words, the speedup curve at np = 4

is higher than that at np = 2, which in turn, is higher than that at np = 1. This is due

to the increased percentage of scale-out workload as the number of base tasks per executor

decreases. This is evident from Figure 3.8, in which stage 8 with per-node workload level

of 2 (Np
mp

= 2) is given. It clearly shows that the scheduling and deserialization time (i.e.,

the communication cost) of the first round of tasks outweigh the second one. Hence, further

increasing per-node workload level effectively reduces the scale-out induced workload per

base task. On the other hand, for the latter scenario (i.e. fixed-size), one can find out that

except for SVM, all the other applications have their speedups peaks and then fall as DOP

increases. For SVM however, the speedup decreases monotonically (for mp ≥ 3). This, again,

is in stark contrast with that predicted by Amdahl’s law, i.e., the speedup monotonically
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increases with a fixed upper bound as given in Eq. (3.2). This is due to the scale-out

induced overhead, as discussed above. Again, the optimal configuration should be one with

the per-node workload level matching the node-level resource availability.

3.4.4 Prediction

While modeling is important to understand the big data application’s scaling behavior,

speedup prediction on the other hand is useful for the system designers to achieve desired

performance while avoid wasting time and energy on over-allocating most valuable parallel

computing resources.

Typically, using regression analysis or machine learning for prediction, a proper selection

of the training data set is at the core of achieving the desired precision goal. In this study, we

train our regression models introduced in Section 3.3.3 for the selected benchmarks at roughly

10% of total cost in terms of EC2 instance hours. The samples selected in the training set

needs to cover all the scaling factors and hence, a certain threshold of the sample set size

must be reached. Specifically, we use the data set for the problem size no bigger than Np = 64

as the training set. This is because we find that the fourth term in Eq. (3.15) —(γ ·Np) can

only be captured when the problem size exceeds 32, thus the data samples for Np = 64 have

to be included in the training sets for Bayes, RF and NWeight. But for SVM, the training

set that covers only up to Np = 16 is sufficient for accurate prediction. This is because

for SVM, the fourth term in p-function is insignificant, as is evident from Table 3.1. This

phenomenon can be possibly explained by the characteristics of synthetic input data sets.

The contents of these pseudo-randomly generated data blocks inevitably repeat themselves
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(a) Bayes (b) RF

(c) SVM (d) NWeight

Figure 3.7: The 3D unified speedup solution spaces of all four Spark benchmarks. The highlighted

surfaces represent the speedup solutions while the blue dots represents the experiment data collected

(taken as the average values of multiple observations). The gradually-changed color planes from

cold to warm indicate the “backbone” areas where the local performance peaks can be achieved.

(in cycles) as the problem size reaches certain level. This may cause the content-sensitive

analytics programs to exhibit different scaling characteristics when the problem size reaches
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Figure 3.8: Communication and computing costs for a typical Spark applications, the parallel

degree is set as 2 for this workload.

certain threshold, which cannot be predicted with the training samples from the problem

size below this threshold.

Figure 3.9 demonstrates that except for a few outliers, most experimental data points

are closely scattered around the prediction surface. In fact, the average prediction errors

against the measured ones are constantly within 6% to 12% for the Spark machine learning

benchmarks(Bayes, RF and SVM) and 19% for the graph benchmark —NWeight. The

performance difference indicates the workload for NWeight may be more content sensitive

than the rest machine learning benchmarks, and thus requires a wider training set coverage.

Nevertheless, at this error range, the prediction model is sufficient to capture the speedup

trending at large problem sizes. In fact, the performance of our prediction is on par with that

of the workflow-structure-aware prediction model given in [60], which reports 20% prediction

errors for big data analytics workloads.

In summary, USBA can be applied to the evaluation of the scaling properties for today’s

27



big data applications. It can also be used to facilitate the development of efficient job

resource provisioning algorithms.

(a) Bayes (b) RF

(c) SVM (d) NWeight

Figure 3.9: Speedup predictions for selected Spark benchmarks. The surface plots depicts the

unified speedups calculated by prediction models derived from training samples (Np ≤ 64), where

these data collections are colored in blue. The rest samples (points colored in orange) are shown

as the prediction targets.
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3.5 Related Work

In this section, we first review the related work in terms of scaling modeling and then

relevant job resource provisioning mechanisms.

As we have seen in the previous sections, big data analytics workloads cannot be ade-

quately characterized by the existing scaling laws. However, to the best of our knowledge,

to date, no scaling model is available that can adequately characterized such workloads. As

a result, Amdahl’s law is still the most widely cited law for big data analytics, e.g., [50], [58].

The lack of a scaling model does not mean that researchers are unaware of the inadequacy

of the existing scaling models. In fact, as scale-out applications has emerged as the dominant

applications in datacenter, rich scaling properties of such applications reveal themselves,

which are well noted. Here are some examples. It was found [14] that for a fixed-size iterative

computing and broadcast scale-out workload, the job stops scaling at about n = 60, beyond

which the speedup decreases due to linear increase of the broadcast overhead, where n is

the number of computing nodes for parallel processing. TCP-incast overhead was found

to be responsible for the speedup reduction for many big data analytics applications [13].

Centralized job schedulers used in some popular programming frameworks, such as Hadoop

and Spark, were found to pose performance bottlenecks for job scaling, due to a quadratic

increase of the task scheduling rate as n increases [45]. The scaling analysis of data mining

applications [39] reveals that the reduction operations in each merging phase are induced

by external scaling, resulting in much lower speedup than that predicted by Amdahl’s law.

As we demonstrated in Section 2, even for some simple MapReduce-based applications,

including Sort and TeraSort (Hadoop), their scaling properties cannot be captured by the
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existing scaling laws.

Some results on the improvement of the existing scaling laws are available in the context

of using multicore processors for parallel computing, e.g., considering multicore hardware

scaling [29], multithreading and multicore scaling [9], and impact of critical section [9, 23].

However, the system and workload models underlying these scaling models still follow the

ones for the traditional scaling laws, and hence, these scaling models are not suitable for the

big data analytics workloads.

Job resource provisioning solutions can be generally classified into two categories, i.e.,

blackbox and graybox ones. The blackbox solutions generally rely on job profiling data

(e.g., [49])as input to some machine learning or datamining algorithms to predict the re-

source demand of a target job to be scheduled, e.g. [4]. Although applicable to a wide range

of applications, a blackbox solution generally works for recurring jobs only. The graybox

solution makes use of the system and workload information to a certain degree so that some

modeling can be done to narrow down the design space to allow lower cost of profiling/sam-

pling for the prediction, e.g., [60], [6]. No white-box solution is available due to scale and

complexity involved in a job workflow. Although without considering detailed resources,

among other things, USBA by itself serve as a job resource provisioning solution, its system,

workload, and prediction models have the potential to lead to an effective graybox job re-

source provisioning solution. In particular, the ability to capture the performance of different

workload scalings from the resource-abundant, all the way to resource-constrained scenarios

makes the job resource provisioning in the largest design space of practical interests possible.
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3.6 Conclusion

In this paper, we proposed a new scaling model for scale-out datacenter applications,

called Unified Scaling Model for Big data Analytics (USBA). USBA is a unified scaling

model that applies to the modern big data analytics based on multi-stage iterative parallel

programming frameworks and takes the traditional two-stage serial-and-parallel execution

model as its special case. USBA also provides a regression model for the matching and

prediction of the parallel speedup for big data analytics workloads. The case studies based

on four Spark-based data mining and graph benchmarks demonstrated that USBA can cap-

ture the novel scaling properties of big data analytics workloads, which cannot be predicted

by the traditional scaling laws, including Amdahl’s and Gustafson’s laws. These case stud-

ies also demonstrated the promising prospects of USBA to facilitate effective job resource

provisioning for big data analytics workloads in datacenter environments.
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Table 3.3: Measured (partial) USBA speedups for Spark benchmarks in comparison with model

estimations as problem size scaling from 1 to 256.

Bayes RF SVM NWeight

N m exp. USBA RE exp. USBA RE exp. USBA RE exp. USBA RE

1 1 1.0 1.0 0% 1.0 1.0 0% 1.0 1.0 2% 1.0 1.0 1%

8 2 2.2 2.3 4% 1.8 1.9 5% 2.3 2.2 3% 2.1 1.7 20%

8 4 3.3 2.9 12% 2.2 2.5 14% 2.4 2.2 11% 2.7 2.3 16%

8 8 4.2 4.0 4% 2.9 3.3 14% 2.2 2.0 7% 3.3 3.3 2%

64 32 17.0 15.3 10% 12.3 12.0 3% 7.3 7.0 4% 10.0 11.0 10%

64 64 15.8 13.4 15% 10.0 9.9 1% 4.6 4.9 5% 8.7 8.5 3%

96 48 23.3 19.9 15% 16.0 15.2 5% 8.0 8.3 4% 14.2 13.9 2%

96 96 18.1 15.4 15% 11.4 11.2 2% 5.3 5.4 3% 8.6 9.3 9%

128 32 23.6 26.2 11% 21.8 21.0 4% 13.5 13.1 3% 17.2 20.7 21%

128 64 25.1 23.4 7% 18.7 17.7 5% 8.8 9.2 5% 18.3 16.1 12%

128 128 16.7 16.7 0% 12.8 12.0 6% 6.1 5.7 6% 10.3 9.8 4%

192 48 34.0 35.9 6% 28.9 28.4 2% 16.7 15.8 5% 27.2 29.3 8%

192 96 31.6 28.5 10% 22.0 21.2 3% 9.6 10.4 9% 21.5 19.2 11%

192 192 18.4 18.2 1% 13.5 13.0 4% 7.2 6.1 15% 10.5 10.4 1%

256 64 38.8 44.2 14% 33.9 34.7 2% 18.5 17.7 4% 32.6 37.0 14%

256 128 32.1 32.0 0% 21.6 23.6 9% 10.4 11.1 7% 22.7 21.3 6%

256 256 16.8 19.1 14% 14.0 13.5 4% 5.9 6.3 7% 10.0 10.7 8%
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Chapter 4

Pigeon

4.1 Introduction

Workload heterogeneity has been a long-standing challenge in datacenter scheduling. Jobs

that differ in execution time and fanout degree have distinct requirements for scheduling.

Short jobs have stringent latency requirements and are sensitive to scheduling delays; long

jobs, which usually have a large fanout and high resource demands, require high-quality

scheduling, e.g., improving load balance, but can tolerate some scheduling delays. While

short jobs are usually user-facing applications [8,35] and important to user-perceived quality-

of-service, long jobs help improve datacenter resource utilization. Therefore, it is common

practice to collocate short and long jobs in datacenter management, but meeting the diverse

needs of heterogeneous jobs remains a critical challenge.

Early datacenter job schedulers, e.g., Jockey [24], Quincy [34], Tetrished [59], Delay

Scheduling [65], Firmament [26] and Yarn [41] are centralized by design. Centralized sched-

ulers rely on a global view of resource availability to make scheduling decisions. As systems

scale, handling a large number of jobs and collecting runtime status from a large number of

nodes inevitably become a bottleneck and incur a significant scheduling delay for each job.

* Copyright c© Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che, and Hong Jiang |
ACM 2019. This is the author’s version of the work. It is posted here for personal use, not for
redistribution. The definitive Version of Record was published in SoCC’19 Proceedings of the ACM
Symposium on Cloud Computing, http://dx.doi.org/10.1145/3357223.3362728



This is particularly problematic for short jobs with tight deadlines.

To address the scalability issue, recent research, such as Sparrow [43] and Peacock [38],

employs multiple schedulers to dispatch tasks in an independent and distributed manner.

Without requiring a global view of resources, distributed schedulers probe randomly selected

nodes (usually twice as many as the number of tasks to be dispatched) and dispatch tasks

onto the least loaded nodes. The probe based technique has been proved to greatly improve

task queuing time compared to random placement [43]. However, each scheduler still needs

to maintain a fairly large amount of probe related states and incurs non-negligible probe

processing overheads.

Besides the above issues, the collocation of heterogeneous workloads presents unique

challenges to the centralized and distributed schedulers. First, heterogeneous workloads

require an effective mechanism to prioritize short jobs over long jobs. Distributed schedulers

lack coordination among one another, thereby unable to enforce global service differentiation

among jobs. While centralized schedulers can employ priority queues to differentiate task

scheduling for different types of jobs, they are usually work conserving – low priority, long

jobs can utilize the entire cluster to avoid wasting cluster resources. However, by doing

so, a burst of long jobs can inflict the so called head-of-line blocking to short jobs that

arrive immediately after the burst. Even in the presence of centralized priority queues, tasks

from short jobs need to wait for the tasks of long jobs that have already been dispatched

onto workers. Recent work BigC [10] and Karios [20] propose to suspend long jobs’ tasks

via lightweight virtualization to enable preemption on individual workers, but have shown

significant overhead in preempting resource-intensive tasks. Second, high resource utilization

in datacenters that embrace workload consolidation makes randomized load balancing less
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effective. For heterogeneous workloads that contain tasks of various sizes, it is difficult to

identify less loaded nodes. It has also been reported that randomized load balancing is

inefficient and requires multiple rounds of probing to locate idle or less busy nodes if most

nodes are highly loaded [56].

Hybrid approaches, such as Mercury [37], Hawk [21] and Eagle [19], combine centralized

and distributed schedulers, with former handling long jobs and the latter short jobs. How-

ever, long and short jobs are scheduled independently. This makes it difficult to mitigate

the negative impact of long jobs on the performance of short jobs. For example, Eagle [19]

employs two techniques to entirely eliminate the head-of-line blocking, i.e., multiple rounds

of probing for short-job task placement and a reserved worker pool for short jobs. However,

as the cluster load becomes high, most of the short jobs are driven by long jobs to the re-

served pool [20], resulting in rapid performance deterioration for short jobs. Our simulations

based on the Yahoo trace [12] show that the performance of short jobs drastically degrades,

by as many as 70 times at high load compared with the non-resource-constrained case (see

Section 4 for details).

In this paper, we demonstrate that a hierarchical scheduler that employs a divide-and-

conquer approach in task scheduling can effectively overcome the shortcomings of centralized,

distributed and hybrid schedulers, and ensure low latency for short jobs while maintaining

high resource utilization without significantly sacrificing the performance of long jobs. Spe-

cially, we propose Pigeon, a two-layer, hierarchical scheduler for heterogeneous jobs. Pigeon

divides workers in a cluster into groups and delegates task scheduling in each group to a

group master. Upon job submission, Pigeon assigns the tasks of an incoming job to the

masters as evenly as possible. The dispatching of tasks onto masters is intended to be sim-
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ple and does not consider the type of tasks. The master in each group implements more

sophisticated scheduling by maintaining two weighted fair queues, one for tasks from short

jobs and the other for tasks from long jobs, respectively, and partitioning workers in each

group into high and low priority workers. Tasks of short jobs can run on any workers while

tasks of long jobs can only run on low priority workers. Tasks are only dispatched when

there are idle workers from a group and are otherwise queued at a respective priority queue

according to their types.

Pigeon is a hierarchical solution purposely designed for effective task distribution to

combat heterogeneity. Pigeon’s two-layer design is specially useful for heterogeneous jobs.

First, it effectively mitigates head-of-line blocking of short jobs. The simple job-oblivious

task dispatching among masters prevents a burst of tasks from monopolizing all workers and

provides a certain level of isolation between jobs. Unlike in a centralized scheduler, where

tasks of the same type (e.g., short jobs) are usually served in FIFO order, tasks of different

jobs in Pigeon are evenly distributed among masters, allowing tasks that arrive late to start to

execute even before some tasks of an earlier job start to execute (see Section 4.1 for details).

Second, the two-layer design preserves good scalability of distributed schedulers but avoids

the pitfalls of randomized load balancing. The size- and type-oblivious task dispatching

among masters provide sufficient randomness for effective load balancing without global

knowledge and the weighted fair queuing based scheduling within a group is deterministic,

ensuring that idle workers are rapidly located to serve latency-sensitive jobs without starving

the long jobs.

We perform an evaluation of Pigeon through theoretical analysis, simulation, and a pro-

totype implementation on the Amazon EC2 cloud. Analysis results show that Pigeon can
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greatly increase the job-zero-queuing probability compared to Sparrow, a representative dis-

tributed scheduler, for workloads that only contain short jobs. Trace-driven simulations

based on the Yahoo, Cloudera and Google traces demonstrate that Pigeon outperforms Ea-

gle, a state-of-the-art hybrid scheduler, on short job performance by as many as tens of times

in a highly loaded cluster. Experimental results on the Amazon EC2 further confirm the

effectiveness of Pigeon.

4.2 Pigeon Scheduler

This section presents Pigeon. We first give an overview of Pigeon and introduce its task

placement scheme, and then discuss how it handles tasks at the master level.

4.2.1 System model

We consider a datacenter cluster composed of a large number of workers, each of which

can be an independent processing unit, such as a CPU core. The workers can run in parallel

to execute different tasks. A key idea in Pigeon is to divide workers into groups. Each group

is managed by a master which centrally controls all the tasks handled by the group and

places tasks among the workers in the group. Distributed job schedulers directly distribute

the tasks belonging to a job to the masters. After a master receives a task, it either directly

sends the task to an idle worker to be processed immediately or puts it in the corresponding

task queue if there is no idle worker in the group at the time. Figure 4.1 gives a system

overview of Pigeon. The system is composed of multiple distributed job schedulers, masters,

and workers. All job schedulers work independently and do not exchange any task placement
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Figure 4.1: Overview of Pigeon.

information among themselves.

A master works at the task level and is mostly job oblivious except for its awareness

of whether a task is a low or high priority one, based on whether the task is from a short

or a long job. It maintains two weighted fair task queues, where the high priority and low

priority queues store tasks belonging to short and long jobs, respectively. The classification

of a job as a short or long job is handled by schedulers, based on the type of application

the job belongs to. For example, user-facing applications, such as web searching and social

networking, that generally have short task execution times and require stringent tail latency

guarantee, can be classified as short jobs. On the other hand, background batch applications,

such as data backup, that usually have long task execution times and call for loose mean

response time assurance, can be classified as long jobs. In Pigeon, a small number of workers

in the group, called high priority workers, are reserved exclusively for serving high priority

tasks. The other workers, called low priority workers, can serve both low and high priority

tasks. Since all the workers in a group are shared among tasks from short jobs in a work-
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conserving manner, while all the low priority workers are shared by tasks from long jobs,

Pigeon can greatly improve resource efficiency, achieving high multiplexing gain, compared

with the existing job schedulers that distribute tasks directly to individual workers.

A master can run in a worker who needs to be be allocated enough computation resource

to effectively handle group status report and task placement functions. As we shall discuss

in more detail later, in Pigeon a master needs to handle about one incoming task per second

on average, which is modest from computation resource demand point of view.

4.2.2 Task Scheduling

Assume that a system has Ns schedulers and Ng groups (i.e., Ng masters). Each group

has Nw workers in it. For a job with F tasks (i.e., fanout degree, F ), the scheduler that

handles the job will distribute the tasks as follows. It sends S = bF/Ngc task(s) to each

master (here bxc represents the floor of x, i.e., the integer part of x) and the remaining

r = F%Ng to r randomly selected masters. Since the number of workers in each group is

much larger than one (i.e., in the range of 50 to 100), according to the law of large numbers,

the workloads distributed to different groups are expected to be much more balanced than

those distributed directly to individual workers. This helps synchronize the task processing

for tasks belonging to the same job and hence, reduce the job completion time, with respect

to the existing job scheduling solutions.

Two task queues of different scheduling priorities are set in each master to store the

corresponding types of tasks1, i.e., tasks belonging to short and long jobs. More specifically,

1Pigeon can be easily extended to support more than two job types by allocating as many priority queues

as the number of job types with weighted fair queuing.
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the two queues are scheduled based on weighted fair queuing with a single integer weight

to ensure that tasks from the high priority queue are served with higher priority than those

from the low priority queue, without starving the low priority tasks. The queue scheduler

ensures that out of every W tasks to be served, at least one comes from the low priority task

queue if it is not empty. The queue scheduler degenerates to strict priority queuing, when

W is set to infinity. In this case, the low priority tasks can be served only when the high

priority task queue is empty.

A master maintains two idle worker lists, i.e., the high and low priority idle worker lists

that record all high and low priority workers that are currently idle, respectively. A task sent

to a master must include the priority of the task. When a master receives a high priority

task, it first checks whether the low priority idle worker list is empty or not. If the list is not

empty, an idle worker from the list is removed and assigned to handle the task. Otherwise,

the master checks whether the high priority idle worker list is empty or not. If it is not

empty, a worker is removed from the list and assigned to handle the task. If both idle worker

lists are empty, the high priority task is put into the high priority task queue. When a

master gets a low priority task, it only checks the low priority idle worker list. If the list is

not empty, a worker is removed from the list to serve the task. Otherwise, the task is put

into the low priority task queue. Whenever a worker is selected to handle a task, the master

sends the task to the worker, together with the scheduler identifier (ID) for the scheduler

from which the task is received. If a master receives multiple tasks from a job at a time, it

handles these tasks one by one consecutively following the same procedure.

We note that both reserving a given portion of workers in a group for high priority tasks

and setting W to be a finite integer help to avoid head-of-line-blocking of short jobs and
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starvation of long jobs, respectively. The exact values of these two parameters must be

properly selected in practice. For all our real-world-trace-driven case studies (see Section 4),

we found that no more than 10% of workers need to be reserved to achieve high short job

performance, lower than that of Eagle, a state-of-the-art hybrid scheduler. In the meantime,

W can be simply set to infinity to achieve the highest short job performance without signif-

icantly impacting the long job performance. This is because the trace statistics show that

the short job execution time is less than 20% of the overall job execution time and hence,

long jobs have little chance to be starved by short jobs.

When a worker completes a task, it sends the reports/results directly to the corresponding

scheduler and meanwhile, sends an idle notification message to its master. This may further

trigger a task in one of the two queues to be sent to the worker or the worker to be added

to the high priority worker list if it is reserved for high priority jobs, otherwise, to the low

priority worker list.

4.3 Performance Modeling and Analysis

To gain insights on the Pigeon performance, in this section, we conduct simple perfor-

mance modeling and analyses for Pigeon, compared with the analysis of a performance model

for Sparrow [43]. To be mathematically tractable, we consider only one class of jobs and

assume that the job fanout degree (i.e., the number of tasks in a job) is less than the number

of groups and the number of workers in Pigeon and Sparrow, respectively. Hence, only one

task queue is used in each master. In this case, all the workers serve tasks from all jobs.

We focus on short jobs, which are usually more latency sensitive and whose fanout degrees

9



are smaller than long jobs. We assume that the job fanout degrees are no larger than the

number of groups.

Consider a cluster with Ng groups and each group with Nw workers, with a total of

Nc = NgNw workers in the cluster. Assume that jobs arrive following a Poisson arrival

process with average arrival rate λ. All the jobs have fanout degree, F , where F ≤ Ng, and

the task execution time follows an exponential distribution with average execution time, Te.

With the above model, each master can then be approximately modeled as running a

single M/M/Nw task queue [15] with average task arrival rate λt = λF/Ng. The worker

utilization is ρ = λtTe/Nw. Given that F ≤ Ng, the probability, Ptask(0), that a task

experiences zero queuing time in a group is then given as follows [15],

Ptask(0) = 1− 1

1 + (1− ρ)( Nw!
(Nwρ)Nw

)
∑Nw−1

k=0
(Nwρ)k

k!

, (4.1)

and the average queuing time Tq for a task in a master is

Tq =
1− Ptask(0)

Nw/Te − λt
. (4.2)

In this paper, a job is considered to have zero queuing time if the job completion time

(not including the communication time) is equal to its longest task execution time. For

example, assume that a job has 2 tasks with execution time 10s and 100s, respectively. If

the job completion time is 100s, it experiences no queuing delay, even though its task with

10s execution time may have queued for some time, e.g., 50s.

Now we first consider the case that all the tasks in a job have the same execution time.

Then the job-zero-queuing probability in Pigeon, P PI
job(0), can be written as,

P PI
job(0) = (Ptask(0))F . (4.3)
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In this case, the job-zero-queuing probability for Sparrow, P SP
job (0), using 2F probes per

job, is derived in the original paper on Sparrow [43], as follows,

P SP
job (0) =

2F∑
i=F

(1− ρ)iρ2F−iC(2F, i), (4.4)

where C(2F, i) is the combination function.

Figure 4.3 depicts the analytical job-zero-queuing probability for Sparrow (i.e., Eqn.(4.4))

and Pigeon (i.e., Eqn.(4.3)) for two different group sizes, i.e., Nw=100 and 200 and two job

fanout degrees, i.e., F = 50 and 100. As one can see, the job-zero-queuing probability

for Sparrow starts to drop at load 0.4 and quickly drops to near zero at load 0.6, whereas

for Pigeon, similar drops occur in a much higher load region, i.e., 0.6 to 0.8. It means

that Pigeon can work at 20 - 40% higher load than Sparrow, while achieving similar job-

zero-queuing performance as Sparrow, demonstrating the effectiveness of Pigeon for job

scheduling, compared with Sparrow.

We also note that for Pigeon, when Nw increases from 100 to 200, the job-zero-queuing

probability starts to drop at load 0.7, 0.1 higher than the former case. But it quickly

approaches 0 as the load approaches 0.9, similar to the former case. This suggests that a

larger group can improve performance in the medium load region (0.7 to 0.8), but not much

in high load region (>0.9).

The above analyses assume that each task in a job has the same execution time. However,

real trace analyses indicate that the task execution time can vary significantly from one task

to another for a given job. To capture the performance impact of such variability, we consider
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Figure 4.2: Job-zero-queuing probabilities for Sparrow and Pigeon with two different group sizes

(Nw=100 and 200). All tasks in a job have the same execution time. (a) Job fanout F=50; (b)

F=100.

the case where the task execution time for a task in a given job follows an exponential

distribution.

We first calculate the average job queuing time, Tjob. Since the job queuing time is

defined as the queuing time of the slowest task of the job, we need to find the queuing time

for the slowest task of the job. To this end, we observe from Figures 4.3(b)(b) and 4.4(b)

that the average queuing time in Pigeon is much shorter than the average task execution

time (i.e., Te=100 ms) even at a high load (e.g., 90%). This suggests that whichever task

has the largest execution time is likely to be the slowest one, regardless of its queuing time.

This implies that the average queuing time for the slowest task can be simply approximated

as the average queuing time for all tasks, i.e., Tjob ≈ Tq.

Now we calculate the job-zero-queuing probability. Consider two independent exponential
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distribution random variables (t1 and t2) with average value Te, the joint probability density

function f(t1, t2) = 1
T 2
e
e−(t1+t2)/Te . Then the probability of t1 − t2 > Tq under condition

t1 > t2 [53] is

P (t1 − t2 > Tq|t1 > t2) = e−Tq/Te . (4.5)

Let A1 and A2 be the tasks with the longest (t1) and second longest (t2) execution times

in a job, respectively. Now the job-zero-queuing probability P dt
job(0) for a job with different

task execution times can be approximately expressed as the probability of A1 with zero-

queuing time (i.e., Ptask(0)) while t1− t2 > Tq, i.e., the execution time difference between the

longest and the second longest task execution time is greater than the average task queuing

time Tq, namely,

P dt
job(0) ≈ Ptask(0)e−Tq/Te . (4.6)

We verify the analytical approximations for Tjob and P dt
job by simulation. Assume that

Nc=30,000, F = 100, and Te=100 ms. Each task execution time follows an exponential

distribution. The communication time is set at 0.5 ms between any two nodes. We note

that with communication delay, the average job waiting time Tw is no longer equal to the

average queuing time, but rather the average queuing time plus the communication time.

We study the Pigeon performance by changing Nw from 50 to 200 (the total number of

workers Nc in the system is fixed). Figure 4.3(b) depicts the job-zero-queuing probability

and the average job waiting time at two different high loads (i.e., 80% and 90%). We note
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Figure 4.3: Analysis (denoted as AN) vs Simulation (denoted as SM) at different group sizes. (a)

Job-zero-queuing Probabilities (b) Average job wait time.

that the simulation results (denoted as SM) closely match the analytical ones (denoted as

AN), e.g., less than 1% for the job-zero-queuing probability for all Nw’s tested. The largest

difference is about 12% for the average waiting time at Nw=50 and the load of 90%. In

this case, the simulated waiting time (also queuing time) is longer than the analytical one

because the analytical results only consider the waiting time for the task with the longest

execution time. As the job-zero-queuing probability is low (below 60%), the contribution of

other tasks may not be neglected, resulting in larger errors.

The results verify that Eqns. (4.2) and (4.6) can be used to estimate the performance of

Pigeon for handling jobs with fanout degrees less than the number of groups. The results in-

dicate that the job-zero-queuing probability increases and the average waiting time decreases

as the group size increases. It means that a larger group can provide better performance,
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Figure 4.4: Analysis (denoted as AN) vs Simulation (denoted as SM) results with various cluster

loads. (a) Job-zero-queuing probabilities (b) Average job wait time.

particularly from 50 to 100. The performance improves slower as the group size increases

from 100 to 200, particularly for the average waiting time. Further increasing the group size

is expected to offer marginal performance gain. This result provides some insight on how

to set the right group size when a cluster handles jobs with small fanout degree (i.e., the

number of tasks in a job is less than the number of groups in the cluster).

Now we study the performance of Pigeon by varying cluster loads. Two cases with Nw set

at 100 and 200 are studied. The results are given in Figure 4.4. Again, the simulation results

closely match the analytical ones. The results indicate that the job-zero-queuing probability

is close to 1 even at load 80% and reduces to 0.7 at load 90%. This means that most jobs

do not need to be queued even at high load, hence offering high probability of meeting the

tightest job performance requirements at high load. We also note that the average waiting

time is very small (less than 4%) compared to the average task execution time even at very
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Trace Fmax Fmin Favg Tmaxe (s) Tmine (s) T avge (s)

Yahoo 5900 1 39.91 21259.9 1.54E-5 118.78

Cloudera 51834 1 272.93 97941.8 3.89E-5 162.19

Google 49960 1 35.32 774922 1E-6 661.74

Table 4.1: Trace statistics of job fanout and execution time

high load, e.g., 90%. These results clearly demonstrate the effectiveness of Pigeon for job

scheduling.

The following two sections test the efficiency of Pigeon by large-scale simulation and on

a small EC2 cloud cluster, respectively.

4.4 Simulation Testing

To test the scalability and efficiency, we use simulation to evaluate the performance of

Pigeon against Eagle2 in large clusters, using three real-world traces as input, i.e., Yahoo [12],

Cloudera [11], and Google traces [48]. The open source simulation code of Eagle [19] is used

and an event-driven simulator is developed for Pigeon.

Table 4.1 provides the statistics of these traces, including the maximum/minimum/aver-

age job fanout degrees (denoted as Fmax/Fmin/ Favg) and maximum/minimum/average task

2As Eagle outperforms Sparrow and Hawk [21], only Eagle is compared here.
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execution time (denoted as Tmaxe /Tmine /T avge ). We see that the job fanout degree ranges

from 1 to 51834; the execution time varies from microseconds to over 700K seconds; and

the average task execution time ranges from 118.78 seconds to 661.74 seconds. Unlike the

modeled workload in the previous section, these statistics indicate that the job size in terms

of both fanout degree and task execution time vary significantly from job to job in prac-

tice. Such job heterogeneity makes it difficult to meet service requirements for individual

applications, e.g., in terms of providing job completion time or throughput guarantee. For

example, for a cluster with 10K workers and a long job with fanout degree of 50K, each

worker needs to execute 5 tasks for the job on average. The placement of such a job evenly

among all the workers in the cluster can take up all the cluster resources at once, causing

head-of-line blocking to the upcoming short jobs. As aforementioned, to effectively deal with

the job heterogeneity issue, both Pigeon and Eagle [19] reserve a subset of workers to be

used by short jobs only, at the group-level and cluster-level, respectively. In what follows,

we first discuss the parameter settings, in terms of the short-vs-long job thresholds, the re-

served worker pool size, the communication delays, the group size, and the weight value for

weighted fair queuing and then performance evaluation.

4.4.1 Parameter Settings

Short Jobs vs Long Jobs: As mentioned earlier, in practice, a scheduler may rely

on whether a job belongs to a user-facing application to classify it as a short job or not.

However, due to the lack of the application information for the three traces and to fairly

compare against Eagle, for Pigeon, we simply use the same short job cutoff times, defined as
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the average task execution time of a job, as those used in Eagle, i.e., 90.5811, 272.783 and

1129.532 seconds for the Yahoo, Cloudera and Google traces, respectively.

Reserved Worker Pool Size: The actual number of workers reserved for tasks of short

jobs has significant impact on job completion times for both short and long jobs. The more

workers are reserved, the smaller the job completion time for short jobs but the larger the

job completion time for long jobs. We study the performance using the three traces by

varying the worker reservation ratio (due to page limitation, the results are not presented

here). By taking into account of the performance for both short and long jobs, we decide

to set the reservation ratios at 2%, 7% and 9% for the Yahoo, Cloudera and Google traces,

respectively. For Eagle, against which Pigeon is to be compared in the following section, we

set the reservation ratios for the three traces at the same values as those used in [19], i.e.,

2%, 9% and 17%, respectively.

The reservation ratio that gives the best performance tradeoffs for Pigeon is between 2%-

9% for the three traces. We also found that setting this ratio at 5% for all the traces leads to

a maximal performance deviation from the best tradeoffs within 20% for both short and long

jobs. Hence, to address the possible lack of the traces in practice, the ratio can be initially

set at 5% and then adjusted as the trace workload runs long enough to estimate the best ratio.

Weight Value for Fair Queuing: The weight value W is an important parameter for

Pigeon. A smaller (larger) W helps improve the performance of long (short) jobs at the cost

of the other. We study the Pigeon performance by varying W from 5 to 100 and compared

to that with strict priority queuing (i.e. W is set to infinity) (again, the results are not
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presented here due to page limitation). We find that the short job performance becomes

very sensitive to W at high cluster loads when W gets below 20. For example, while the

99th-percentile short job completion time at W = 20 is within 140% of that at W = ∞,

it increases to more than 300% at W = 5, at high cluster loads for all the three traces.

Meanwhile, we find that the long job performance is insensitive to W in a wide range, e.g.,

only 2% difference from W = 10 to ∞ at all cluster loads for all the three traces. In other

words, no long job starvation occurs even at W =∞ for all the three traces. Hence, for all

the cases studied, we set W in the range of 20 to ∞.

Communication Delays: The communication delays are set at 0.5 ms between any two

nodes, i.e., a scheduler and a master, a master and a worker, or a worker and a scheduler.

Group Size: Without knowing the exact processing overhead per task scheduling at each

master, we have not taken this overhead into account in both performance modeling in the

previous section and the simulation in this section. As a result, intuitively, one would expect

that the testing results in both previous and this section will be always in favor of larger

group size, with the group size equal to the cluster size offering the highest performance

(i.e., the case when Pigeon degenerates to a centralized scheduler). While this intuition is

confirmed in the previous section based on the results from an ideal model, much to our

surprise, it turns out to be false as confirmed by the simulation results in this section. More

specifically, we can conclude that Pigeon with the group size in a finite range actually out-

performs its centralized counterpart, even when the centralized scheduler incurs negligible

processing overhead. The implication of this is significant. It means that one can no longer
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assume that so long as it is free from scalability concerns, centralized scheduling is always

the best choice, as it has a global view of the cluster resource availability. In what follows,

we first identify the range and the preferred group size, and then provide an explanation of

why this seemingly counter-intuitive phenomenon can happen.

We compare the Pigeon performance at different group sizes, using the Cloudera trace as

input for the simulation (similar results are obtained for the Yahoo and Google traces and

hence are not given here). We consider the cluster size of 12K and 18K, corresponding to

high (about 93%) and medium (about 62%) cluster loads, respectively. All other parameters

pertaining to Pigeon are the same as those given above. The 50th, 90th and 99th percentiles

of the short and long job completion times are used as performance metrics.
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Figure 4.5: Pigeon performance at different group sizes (Pigeon is normalized to the centralized

scheduler).

From the results depicted in Figure 4.5 (normalized to the centralized one), we can see

that Pigeon performs better than its centralized counterpart for all the three performance

metrics for short jobs, particularly at the high load (Figures 4.5 (a)). At high load, the

short job performance gets better as the group size reduces from 150 to 50 and then becomes
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slightly worse as it further reduces to 25. The largest performance gains for short jobs

are about 17%, 18% and 14% for 50th, 90th and 99th percentile job completion times at

group size 50, compared to the centralized one, respectively. Similar results with smaller

gains are observed at the medium cluster load (Figure 4.5 (c)). For long jobs at high load

(Figure 4.5 (b)), the performance is better (worse) than the centralized one when group

size is above (below) 50. The three percentiles of job completion times decrease when the

group size reduces from 150 to 100, and then increase when the group size further reduces.

In the medium load (Figure 4.5 (d)), the performance for long jobs is worse than that of

the centralized one in the entire group size range studied. All the three percentiles of long

job completion time decrease as the group size increases. The above results indicate that

Pigeon is not only more scalable but also performs better than its centralized counterpart

for handling heterogeneous jobs, particularly at high cluster loads.

Although the optimal group size may be workload dependent (such as the ratio between

the number of short and long jobs, the task execution time distribution, etc.), based on the

above observation, which agree with the observation made for the other two traces, and con-

sistent with the analytical results for jobs at small fanout (i.e., the multiplexing gain is small

when the group size is over 100), we can safely conclude that in general, the performance is

insensitive to the group size in a wide range, i.e., between 50 and 100. Hence it suffices to

set group size anywhere in between 50 and 100 and we set the group size at 100 for all the

cases studied in this section.

Explanations for the Counterintuitive Phenomenon: A key observation we make

is that this phenomenon may occur when both job fanout degree and task execution time
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vary in a wide range, which is the case in practice (see Table 4.1) but not for the model in

the previous section (that explains why we did not observe this phenomenon there). The

best way to see why this is true is by example.

Consider job scheduling for a single type of jobs and a cluster of 4 workers. At time 0,

all the workers are idle and job A with 6 tasks (called as tasks A1, ..., A6) arrives, with task

execution times of 20, 1, 1, 10, 10 and 10 units. Immediately following it are two other jobs

B and C, each having 1 task with execution time of 2 units. We further assume that there

is no processing overhead and the communication time can be neglected. Now we compare

the performance of a Pigeon scheduler and its centralized counterpart.

(a) Parallel Scaling (b) Sequential Scaling

Figure 4.6: Task scheduling example: (a) tasks at time 0; (b) tasks at time 10. X-t at a worker

or a queue: X is the task name, and t is the remaining task execution time.

First consider a Pigeon scheduler, where 4 workers are divided into 2 groups with 2

workers each. Upon the arrival of jobs A, B, and C, in that order, the first 3 tasks from A

(i.e., A1, A2 and A3 with execution times 20, 1 and 1) are sent to group one and the other
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3 tasks from A (i.e., A4, A5 and A6 all with execution time 10) to group two. Then the

task from job B is sent to group one and the task from job C to group two. At time 0, in

group one, two tasks A1 and A2 with execution times 20 and 1 are served by workers 1 and

2, respectively; and in group two, workers 3 and 4 serve tasks A4 and A5, respectively. The

tasks at time 0 in Pigeon are shown in Figure 4.6 (a). At time 1, worker 2 completes the

task A2 and immediately starts serving the task A3. It finishes the task A3 at time 2 and

then serves the task from job B which is completed at time 4. Hence job B is finished at

time 4. At time 10, workers 4 and 5 complete the tasks A4 and A5, and then serve the tasks

A6 and C. The tasks in Pigeon are now given in Figure 4.6 (b). The task from job C is

finished at time 12, so job C is completed at time 12. As tasks A1 and A6 are finished at

time 20, so job A finishes at time 20. The job completion times in Pigeon for the three jobs

are 20, 4 and 12, for a total of 36 units.

Now, consider a centralized scheduler. The first 4 tasks (i.e., A1, A2, A3 and A4) from

job A are sent to workers 1-4 at time 0, respectively, as given in Figure 4.6 (a). At time 1,

workers 2 and 3 complete their tasks and then serve the other two tasks (i.e., A5 and A6)

from job A. At time 10, worker 4 finishes its task and then serves the task from job B which

will be completed at time 12. So job B is completed at time 12. The tasks at time 10 is

given in Figure 4.6 (b). At time 11, workers 2 and 3 complete their tasks, and then worker

2 serves the task from job C which is completed at time 13, and hence job C is completed

at time 13. Task A1 finishes at time 20, and hence job A finishes at time 20. So the job

completion times for the three jobs are 20, 12 and 13, respectively, for a total of 45 units, 9

units or 25% more than the Pigeon scheduler!

From the above example, we see that for centralized scheduling, a job with a large fanout
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degree (i.e., job A) causes head-of-line blocking of the following jobs of the same type, even

when their fanout degrees are low (i.e., jobs B and C). The head-of-line blocking caused by

the same type of jobs may be alleviated by enabling task preemption [3,8], which however,

may incur significant preempting overhead, particularly for resource-intensive tasks.

In contrast, for Pigeon, the tasks for jobs are distributed to different groups. This en-

hances the chance for tasks from later jobs to be served before tasks from the earlier jobs

due to heterogeneous task execution time distribution. This helps reduce the chance of

head-of-line blocking of jobs with small fanout degrees by jobs with large fanout degrees,

hence, resulting in better overall performance. While helping more in alleviating head-of-line

blocking by dispersing the tasks of a job with a large fan-out degree to more groups, using a

smaller group size reduces multiplexing gain. This help explain why Pigeon gives the overall

best performance at the group size in a certain range, i.e., 50 to 100.

Master Workload Estimation: Finally, with the parameters given above, we can now

estimate the offered task load at a master. Assume that the cluster size, Nc=20,000, and

hence, the total number of masters, Ng=200, given the group size, Nw=100. The real trace

statistics in Table 4.1 suggest that the average task execution time is more than 100s (from

118s to 661s, to be exact). It means that a master needs to handle about only 1 task per

second on average (or equivalently, 1 task per 100 seconds per worker), this overhead is

negligible. In the case of a long job with a huge number of tasks, such as a job with 50,000

tasks, each master will see a burst of task arrivals of size 250. This is in stark contrast with

a distributed scheduler, who needs to generate and dispatch 50,000 tasks. This example

clearly indicates that the resource demand on a master is modest and a single worker should
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be sufficient to serve as a master, which consumes only 1% (i.e., 1 out of 100) of the total

worker resources in the cluster. This means that indeed, Pigeon is a highly scalable solution.

In practice, to save the cluster resource, a master may run in a regular worker as long as

the worker has enough resource to act as both a master and a regular worker. An alternative

is to allow a worker to run multiple masters. For example, consider a system with 10,000

workers and each group with 100 workers. We may use 10 workers, each hosting 10 masters,

instead of 100 workers with one master each, hence, cutting the overhead from 1% to 0.1%.
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Figure 4.7: Short job completion time, W = 20.

4.4.2 Performance evaluation

The number of workers in the whole cluster is used as a tunable parameter to adjust the

load level. We use 50th, 90th and 99th percentile job slowdowns with respect to the case of

unlimited resources (i.e., the case with zero communication time and zero task queuing time)
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Figure 4.8: Long job completion time, W = 20.

for both short and long jobs as performance metrics. More specifically, the xth-percentile

short/long job slowdown is defined as the xth-percentile short/long job completion time

divided by the xth-percentile short/long job execution time. Here a job execution time is

defined as the largest task execution time among all the tasks in the job.

Figures 4.7 and 4.8 give the slowdowns of the 50th, 90th and 99th percentiles of short

and long jobs for all the three traces. Here W is set at 20 in Pigeon. First, we note that at

the fixed job arrival rate, as the number of workers in the cluster increases, the slowdowns of

the two schedulers converge and approach 1 for both short and long jobs. This is expected,

because as the cluster size becomes larger, or equivalently, the load becomes lighter, all the

jobs experience smaller queuing delays and hence, smaller job completion times, regardless

what scheduling mechanism is used. Hence, it is more interesting and important to focus

on small cluster sizes or high load regions. As the cluster size reduces, we can see that

remarkable performance gaps between the two emerge.

In the case of the Yahoo trace, at the cluster size of 3K, the slowdowns for short jobs

in Pigeon are about 1.3, 1.5 and 5.3 times which indicates the queuing times are less than
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one job execution time for the 50th and 90th percentiles, and just above 3 job execution

times for the 99th percentile. The results indicate that Pigeon achieves excellent short job

performance even at very high cluster loads (about 95%). In contrast, the slowdowns for

Eagle are above 70 times for all the three percentiles, implying that for Eagle, the queuing

times are more than 70 job execution times for short jobs. Similar results can be found with

the Google and Cloudera traces as shown in Figures 4.7(b)-(c). In what follows, we explain

why Pigeon outperforms Eagle by such big margins.

Eagle improves over Hawk, as detailed in [19], by allowing workers who are handling

long jobs to reject the probes coming from distributed schedulers who handle short jobs.

This allows a distributed job scheduler to issue more rounds of probes to discover workers

that are not handling long jobs, hence alleviating the head-of-line blocking effect for short

jobs. However, most lower priority (i.e., non-reserved) workers can still be blocked by the

long jobs, either at high load or whenever a long job with a large fan-out degree arrives.

In this case, after multiple rounds of random probing, most of the tasks from short jobs

are forced to be served by the high priority (i.e., reserved) workers, which however, may

become the bottlenecks themselves. For example, for the Yahoo trace, consider the case of

a cluster with 3K workers and 60 high priority workers (2% as set in Eagle [19]) for short

jobs. When a long job with 5900 tasks (i.e., the maximum number of tasks in a job for the

Yahoo trace) arrives, each low priority worker has to serve, on average, about 2 tasks of the

job. After the tasks of the long job are placed, all the upcoming short jobs following this

long job are forced to be served by only 60 high priority workers after a number of rounds

of probing. In other words, all the low priority workers are blocked by the long job, hence

resulting in big job completion time for short jobs. The key difficulty is that as a hybrid
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scheduler, Eagle distributes tasks from short and long jobs independently by distributed and

centralized schedulers, respectively.
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Figure 4.9: Short job completion time, W =∞.
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Figure 4.10: Short job completion time, W =∞.

In contrast, Pigeon allows centralized scheduling of tasks coming from both short and

long jobs and full resource sharing at the group level. This makes it possible for Pigeon
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to largely remove head-of-line blocking without starving the long job through weighted fair

queuing and worker reservation. Again, consider the above example where a long job with

5900 tasks arrives at a cluster with 3K workers. Assume that the workers are divided into

30 groups of 100 each with 2 (i.e., 2%) workers reserved for the tasks from short jobs. Now

about 197 (i.e., 5900/30) tasks from the long job are sent to each group. In a given group, the

master dispatches as many tasks out of 197 to the available low priority workers as possible

and the rest to the low priority queue, e.g., with 10 to the available low priority workers at

the load of 90% (i.e., about 90% or 88 out of 98 are currently busy) and 187 queued. The

upcoming tasks of short jobs are either served by an idle reserved worker or queued in the

high priority queue. However, in addition to the 2 high priority workers, whenever a low

priority worker becomes idle, it will first have high chance ( 19/20 at W = 20) to serve a

task from the high priority queue. Unlike Eagle, most of the long tasks (i.e., 187) are not

queued at the low priority workers, but centrally at the master, high priority tasks following

these low priority tasks will not be blocked by the latter from accessing the low priority

workers. Moreover, a task at the head of the high priority queue is likely to find an idle low

priority worker soon, because the probability that one out of 98 busy lower priority workers

will finish its task in the near future is high. This explains why Pigeon can significantly

outperform Eagle in terms of short job performance, especially in the high load region.

The fact that Pigeon performs slightly better than Eagle even for long jobs, despite the

use of the weighted fair queuing for short jobs over long ones, as depicted in Figure 4.8,

can be explained as follows. First, Pigeon generally reserves a smaller number of workers

for short jobs than Eagle (i.e., 9% vs. 17% and 7% vs. 9% in the cases of the Google and

Cloudera traces, respectively and 2% vs. 2% in the case of the Yahoo trace), hence allowing
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more workers to be used by the long jobs. This explains why overall Pigeon outperforms

Eagle in the cases of the Google and Cloudera traces but not as much in the Yahoo trace.

Second, for all the real traces studied, the overall execution time for short jobs constitutes

less than 20% of the total job execution time, implying that the possible negative impact

of giving high priority to short jobs (i.e., letting W=20) on the performance of long jobs is

quite limited.

We also test the effect of W by comparing the setting of W =∞ against that of W=20.

The results are given in Figures 4.9 and 4.10. We can see that only the short job completion

times at very high load are different. For example, when W changes from 20 to ∞, the

slowdowns of the 50th, 90th, and 99th short job completion times for the Yahoo trace are

reduced from 1.3, 1.5 and 5.3 to 1.2, 1.4 and 3.6, respectively, in a cluster with 3K workers.

while the corresponding slowdowns for long jobs are within 2%. The results indicate that

the performance of Pigeon is indeed insensitive to W, in the range of [20, ∞].

The above results clearly demonstrate that Pigeon is a much more effective job scheduler

than Eagle in terms of both design complexity (e.g., without probing phase, without having

to run two different types of schedulers, and no worker involvement of scheduling) and

performance.

4.5 Performance Evaluation on EC2 Cloud

In this study, we compare the performance of Pigeon against both Sparrow [43] and Ea-

gle [19], the state-of-the-art distributed and hybrid job schedulers, respectively, in a small

cluster on the Amazon EC2 cloud. The Pigeon implementation includes two parts: the Pi-
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geon scheduler code and the Spark plug-in. Distributed Pigeon schedulers are concurrently

deployed at the application frontends, exposing services to allow the framework to submit

job scheduling requests using remote procedure calls (RPCs). All RPCs for internal com-

munications between modules of a Pigeon scheduler are defined with Apache Thrift [?]. We

directly run the available open source implementation codes for Sparrow [43] and Eagle [19].

m4.large instances are used to serve as workers, masters and schedulers.

The cluster is composed of 10 schedulers and 120 workers. For Pigeon and Eagle, 10%

of the workers are reserved for short jobs. In Pigeon, the workers are divided into 3 groups

with 40 workers each. One worker in each group is selected as a master and W is set to

infinite (i.e., each master runs two strict priority task queues). A sample job trace including

5000 jobs is extracted from the Google trace. The task execution time is scaled to the range

of 10ms to 100s and the job fanout degree is scaled to the range of 1 to 100. The short job

cutoff time is set at 1s. It turns out that 10% jobs are long jobs, which however, consume

about 88% overall task execution time, in line with the statistics of the original trace.

We use average job arrival rate as a tuning knob to adjust the cluster load. As the

Poisson arrival process has been widely considered a good model for datacenter workload,

we assume that the job arrival process follows the Poisson distribution. The experimental

results are also compared against the simulation results. The simulators for Pigeon and Eagle

are the same as the ones described in the previous section and the open source event-driven

simulator for Sparrow [43] is used.

We find that the short job performance for Sparrow and Eagle are very sensitive to the

number of schedulers in use (by changing the number of schedulers from 1 to 10). This is

because the processing delay in the probe phase becomes non-negligible compared to the
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job execution time for short jobs. In contrast, Pigeon offers almost the same performance,

regardless how many schedulers are used. In all the experiments, we use 10 schedulers to

minimize the impact of the processing delay for Sparrow and Eagle.

Figure 4.11 depicts both measured (on EC2) (denoted as Imp) and simulated (denoted

as Sim) 50th, 90th and 99th short and long job completion times normalized to Pigeon. The

results for Sparrow and Eagle are depicted in Figures 4.11 (a) and (b) and Figures 4.11(c) and

(d), respectively. Clearly, the experiment results are consistent with the simulation results.

The differences between experiment and simulation are within 15% for short jobs and 5%

for long jobs, mainly caused by the unaccounted processing overhead in the simulation.
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Figure 4.11: Experiment vs Simulation. Sparrow (a) short job and (b) long job; Eagle (c) short

job and (d) long job.

As Sparrow does not distinguish between short and long jobs, it incurs up to 200 (10)

times longer short job completion times than Pigeon (Eagle), although it offers up to 15%

better long job completion times than both Pigeon and Eagle. This means that Sparrow is

not effective in supporting short jobs in the presence of heterogeneous workloads. We also
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see that Pigeon provides significant performance gain for short jobs over Eagle. For example,

at 90% load, the 50th, 90th and 99th percentile short job completion times for Eagle reaches

about 25, 30 and 7 times longer than those for Pigeon. Pigeon and Eagle achieve comparable

performance for long jobs at all cluster loads. The experiment results indicate that Pigeon

is highly effective in handling heterogeneous jobs, which agrees with the simulation results

obtained from the previous section.

The Pigeon project information and all the simulation and prototype implementation

source codes can be found at https://github.com/ ruby-/pigeon.

4.6 Practical Considerations

This section discusses some practical implementation issues, i.e., how to handle master

failure and how to deal with heterogeneous workers and task assignment constraints.

4.6.1 Master Failure Recovery

A master plays a key role in a group. If a master fails, all the group information, such as

the queued tasks and idle worker lists, are lost. In a full-fledged implementation of Pigeon,

one may borrow a failure recovery mechanism widely used in the traditional distributed

systems for failure recovery [54]. To allow fast recovery from a master failure, a second

master is selected in a group. The second master can be another worker. A master needs to

periodically update the second master on the group information and task state information.

Whenever a master failure is detected, the second master can immediately take the master

responsibility from the failed master without losing any state information. After a master
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failure happens, the second master sends a notice to each worker in the group and each

scheduler in the cluster to notify them of the changes, so that the subsequent tasks and idle

worker notices are sent to the new master. Now the second master acts as a new primary

master of the group and then a new secondary master should also be chosen for subsequent

backups.

If both masters fail at the same time, the group information is lost. To quickly recover

the group information, any worker in the group that detects such a failure can take the

responsibility as a master. It broadcasts a message into the group to ask worker status.

Each worker sends its response back to the new master with its status (idle or busy, priority,

executing task, etc.). The new master also needs to send a message to each scheduler to

get the task information sent to the group to recover the task queue list in the group. In

case that multiple workers take the responsibility as a new master at the similar time, these

workers can elect one as the new master based on some rules, e.g., the timestamp of master

declaration time, CPU power or storage capacity and so on.

4.6.2 Dealing with Heterogeneous Workers and Tasks with Assignment Con-

straints

In the Pigeon design, we implicitly assumed that the same number of workers are assigned

to each group and all the workers have the same processing power. In practice, however,

the number of workers in a group may not be conveniently set to be the same. Even if the

numbers of workers assigned to different groups are the same, different workers may have

different processing powers. In this case, the schedulers in Pigeon may need to assign tasks
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to different groups in proportion to their relative processing powers to balance the task load

among groups. More specifically, the probability of a task assigned to a group is proportional

to the group’s processing power.

Moreover, in practice, some tasks may have to be assigned to specific workers, as the

needed resources or data are only available at those workers. All these may cause load

imbalance among worker groups and hence have a negative impact on the performance of

Pigeon. One possible solution is to require that all masters report their queue lengths

for all the priority queues periodically to distributed schedulers. This will allow distributed

schedulers to make more informed decision as to how to balance the load among groups. The

well-balanced task assignment will reduce the overall job completion latency and increase

the overall throughput, and hence resulting in high system utilization.

4.7 Related Work

Today’s datacenter job schedulers can be classified into three categories, i.e., centralized,

distributed and hybrid. The earlier job schedulers, e.g., Jockey [24], Quincy [34], Tetrished

[59], Delay Scheduling [65], Firmament [26] and Yarn [41] are centralized by design. A

centralized scheduler can potentially provide high worker utilization, as it has a global view

of the worker status for individual workers. But the scalability and head-of-line blocking are

the major problems concerning centralized scheduling solutions. The scheduling decisions

and status reports can overwhelm a centralized scheduler and cause additional job delay.

Some shared-state schedulers, e.g., Apollo [7], Omega [52], and Mesos [30], use a centralized

resource manager to maintain shared state. The job distributors are distributed but the
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decision making is based on the shared status of the cluster resource availability. The shared

status is updated by the distributed schedulers and/or workers. However, the shared state

may not be always up-to-date and hence may result in job placement conflict and retries.

This approach still requires a central entity for shared status maintenance. Recent work

BigC [10] and Karios [20] propose to deal with job heterogeneity by suspending long jobs’

tasks via lightweight virtualization to enable preemption on individual workers, but have

shown significant overhead in preempting resource-intensive tasks.

Yarn Federation [25] is developed to address the scalability issue of Yarn [41]. In Yarn

Federation, a cluster is split into sub-clusters. Jobs are distributed to sub-clusters, Jobs are

distributed to sub-clusters, each of which in turn performs job scheduling (i.e., distributing

tasks of received jobs). With the coordination between resource managers and nodes from

different sub-clusters, the tasks of a job can span the entire cluster, not limited to the sub-

cluster the job is mapped to. As a result, YARN federation is more of a quasi-centralized

task scheduling solution than a hierarchical one. Hydra [16] leverages the Yarn Federation

architecture, in which a collection of loosely coupled sub-clusters coordinates to provide the

illusion of a single massive cluster. In contrast, Pigeon is indeed a two-level hierarchical

task scheduling solution, in which the tasks from a job spans across multiple groups (or

sub-clusters). First, distributed job schedulers evenly distribute tasks of jobs to all group

masters. Then, in turn, each group master, which is job-agnostic, uses priority queues to

differentiate the scheduling of short and long tasks. Moreover, while YARN federation aims

to address the scalability issue of the resource manager in YARN, Pigeon mainly aims to

address job heterogeneity concerning centralized and hybrid job scheduling solutions.

Sparrow [43], on the other hand, is a fully distributed job scheduler based on random
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batch-based probe and late task binding. Although free from the scalability issues that

plague the centralized job schedulers, the distributed schedulers and workers in Sparrow

need to maintain fairly large amounts of task related state information and incur high com-

munication cost for probing, including probe management, probe queuing, probe processing,

and redundant probe removals. Furthermore, it does not perform well in highly loaded

clusters nor in the presence of heterogeneous workloads. Another probe-based distributed

scheduler, Peacock [38], organizes workers in a ring overlay network and a probe can be

rotated to its neighbors at fixed time intervals to balance the probe queue lengths among

workers. Peacock, however, requires that the workers communicate with each other to form

and maintain a ring topology. Moreover, it inherits much of the drawbacks pertaining to

probe-based solutions in general.

To solve the scalability issue while providing high performance in the presence of het-

erogeneous jobs, Hybrid schedulers [19, 21, 37, 63] are proposed. Hybrid schedulers combine

a centralized scheduler and a set of distributed schedulers. Mercury [37] uses distributed

schedulers to place jobs without latency requirement and a centralized scheduler to place

jobs with guaranteed resource requirement. Hawk [21] uses a centralized scheduler for long

job placement and the distributed schedulers for short job placement. The short job schedul-

ing is similar to the techniques used in Sparrow, i.e., batch probing and late task binding

based. Some workers are reserved to serve short jobs only, as a way to mitigate head-of-line

bocking. Moreover, an idle worker can steal tasks belonging to short jobs from other workers

to improve efficiency. Eagle [19] improves over Hawk by introducing sticky batch probe with

each probe staying on a worker until all the tasks of the job finish. It also allows multiple

rounds of probing to mitigate head-of-line blocking. These hybrid schedulers need a central
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scheduler that can still pose a potential bottleneck. Moreover, short job scheduling is still

probe-based and hence, inheriting its shortcomings.

More complex queuing mechanisms than priority queuing are being used to minimize

the job performance. Queue reordering [19, 32, 52, 59] is used to reduce the job completion

time. More complex queue management techniques [47] such as appropriate queue sizing,

prioritization of task execution via queue reordering, and starvation freedom are also being

used to improve the efficiency of job scheduling.

Some job scheduling solutions [17, 36, 57] are developed to improve the service level ob-

jectives (SLOs) violations. Morpheus [36] is designed to reduce the SLOs violations through

automatically deriving SLOs and job resource models from historical data, relying on recur-

rent reservations and packing algorithms to enforce SLOs, and dynamic reprovisioning to

mitigate inherent execution variance. The tail-cutting techniques [17, 57] can help mitigate

the impact of stragglers on the job tail-latency performance.

Pigeon differs from the existing solutions in two important aspects. First, it is a hierar-

chically distributed solution to avoid head-of-line block in centralized schedulers. Second, it

is free of the probing phase, a technique shared by all the existing distributed and hybrid

solutions.

4.8 Implementation

This subsection briefly describes our Pigeon open source project. The implementation

of Pigeon scheduler consists several modules that are used to evaluate and compare Pigeon,

Sparrow and Eagle’s performance on the AWS (Amazon Web Services) EC2 cluster (with
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over 100 nodes):

• Pigeon Cloud Engine: This is the core module written in Java. It provides all important

features of the Pigeon scheduler described as in the above paper;

• Pigeon Spark Plugin: This module is released with Apache Spark 2.1 and enables

Pigeon scheduler features within the Spark;

• Pigeon EC2 Deploy: This Python-based module contains multiple Python or Shell

scripts that enable auto-deployment of Pigeon on AWS EC2;

• Modified Sparrow and Eagle: As for the comparison against Pigeon scheduler, each of

the mentioned open source software was slightly modified from their original version

for the feature support or bug fix issues. None of their core scheduling policies are

changed;

• Pigeon plot toolkit: Our collected experiment data and the Python script used for

result analysis are also publicly available at: https://github.com/ruby-/data-collection.

A quick review of how we depict the results can also be found in the Appendix A.

Next, we provide the detailed implementation information about Pigeon core and the

rest modules.

4.8.1 Core Pigeon Module

Pigeon cloud engine is the core component of for the Pigeon scheduler. As shown in

Figure 4.12, because Pigeon scheduler is only responsible to dispatch the incoming requests
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to the delegated Pigeon masters in the second layer, it’s typically light-weighted in a prop-

erly configured and balanced scenario. And the user can send job request to any distributed

scheduler in the frontend as depicted. For the data and transition layer, we adopt Apache

Thrift as the RPC (Remote Procedure Calls) support. A detailed discussion on the Thrift

RPC framework is out of the scope of this dissertation, so here we only give a brief intro-

duction. Thrift is an interface definition language (IDL) and binary communication protocol

used for defining and creating services for numerous languages, thus the use of Pigeon is

not necessarily tied to a specific language. The input job requests are typically formed as a

number of job trace files collected from the real cluster in the industry. Each line of entry in

the request file represents a job executed and recorded, specifies the time stamps on arrival

and a list tasks with their execution latency.

Figure 4.12: Pigeon system components
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The Pigeon master is selected from the Pigeon workers running at the backend of each

worker node. At startup, all Pigeon workers belong to the same Pigeon group will register

themselves with the delegated Pigeon master specified in the configuration. In the current

release of Pigeon, the worker node by default requires at least one CPU and sufficient amount

of memory for the type of input fed in, but a future extension to the fully utilization of the

resources can be trivial to achieve.

In Figure 4.13 we show the most important remote procedure calls invoked by the Pigeon

engine. As shown in the figure, a typical workflow of Pigeon involves multiple calls in between

the long-running frontend daemon and backend daemon procedures (the pigeon masters and

workers). The pigeon frontend can be implemented in any applications or platforms that

extend the exposed interfaces (e.g. SubmitJob() method). The Pigeon scheduler immediately

dispatch the tasks to the delegated master nodes attached to it, and keeps track of all tasks

that belong to the same job request. The Pigeon master maintains a list of idle workers and

continuously process the upcoming task requests and finished tasks among its group for that

list. Once all tasks belong to the same job request completes, the Pigeon master shall notify

the scheduler, then the scheduler reports back to the frontend once all tasks belong to the

same job request are completed.

4.8.2 Spark Plugin and Other Modules

We also provide a Pigeon Spark Plugin for the user to evaluate Pigeon on their own

Spark workloads. This implementation is written in Scala and Java and can also be found

in our public repository: https://github.com/ruby-/spark-parent 2.11. A README file can
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Figure 4.13: Pigeon Core RPC (parameters not shown)

be found on the page to guide the user through the usage of that plugin.

Also, for the convenience of deploying Pigeon scheduler on the EC2 cloud, we embed

the AWS SDK [2] and provide multiple CLI (Command Line Interface) tools as a separate

module in our Pigeon open source project for user to automatically deploy and manage their

Pigeon cluster. This toolkit can be retrieved at the same public code repository (the Pigeon

Core) under the /deploy folder and a README file with an example on startup, deploy,

collect data and finally shutdown the cluster.

The rest modules are related to Sparrow [43] and Eagle [19] open source projects. Both

software are slighted modified from their original version to accommodate at least the follow-
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ing features: 1) Major bug fix; 2) Support auto-deploy on EC2 cloud; 3) Support frontend

interface and retrieve performance matrics. Both projects are re-distributed under the same

license with their original copy and can be found in the following public code repositories:

• Sparrow-mod: https://github.com/ruby-/sparrow-mod

• Eagle-mod: https://github.com/ruby-/eagle-mod

4.9 Conclusions

In this paper, we propose Pigeon, a distributed hierarchical job scheduler for datacenters.

In Pigeon, workers are divided into groups. Each group has a master worker which centrally

manages all the tasks handled by the group. Weighted fair queuing is used to provide

priority service differentiation between tasks of short jobs and tasks of long jobs. A small

portion of workers in each group are reserved to serve short job tasks only. The ability

of each master in managing its group resources centrally makes Pigeon highly effective in

scheduling heterogeneous jobs. The analysis, simulation and experiment results demonstrate

that Pigeon outperforms Sparrow and Eagle by significant margins. Pigeon is implemented

and tested in Amazon EC2 cloud, which has validated the Pigeon simulator used for the

Pigeon evaluation.
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Chapter 5

Conclusion

In this dissertation, we present a new performance model and job scheduler for today’s

data centers. Our developed tools and collected experiment results are all published as

open source projects that may directly contribute to other related researches in academia or

industry.

The first presented modeling approach (IPSO) in this dissertation is inspired by the clas-

sic Amdahl’s model which can be applied in a wide domain of parallel computing. This new

model generalizes the classic performance models of its predecessors and renders them as

its special cases. The direct extension of this new model can be unfolded at two variations:

a deterministic version and a stochastic version. While the earlier can be used as a quick

and qualitative analysis method, the latter is more accurate and can be applied in quanti-

tative measurement or scenarios when strict system modeling is required. In this research,

our experiment studies on eight selected benchmarks and two case studies found in other

publications verify IPSO’s feasibility and efficacy in a real practice.

In the consideration of a common feature of today’s data-intensive applications, a per-

formance model which can account for multi-staged workloads is developed (USBA) in this

research. As a direct descendant of IPSO, the USBA model generalizes all mentioned clas-
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sic performance models and can be applied in both stochastic and deterministic scenarios.

Moreover USBA can also be directly utilized in the analysis of multi-staged workload such

as Spark applications. In this work, we also use our trained USBA model to predict the

speedup of four selected machine learning benchmarks at an EC2 cluster which spins up

to 260 nodes in size. Our experiment results verify this model’s accuracy and its value in

guiding resource provisioning for data-intensive applications. At the end of this work and

the previous one, we release our modeling tool as an open source project.

Move on towards the investigation of resource provision techniques in modern data cen-

ters, we allocate several important factors that can greatly impact the performance of execu-

tion such as head-of-line blocking, long job starvation, etc. And based on these observations,

we narrow down several major causes of job execution delay in current distributed or cen-

tralized solutions and design a new distributed, hierarchical scheduler called Pigeon. Pigeon

leverages the speedup of job scheduling by its quick dispatching ability on top layer and

special queuing mechanism on the second layer. Our experiment results on the AWS EC2

cloud computing platform significantly outperform existing schedulers such as Sparrow or

Eagle. We also open source our Pigeon project under MIT license after this work’s been

published.

In our next steps, we plan to transplant the Pigeon cloud engine into today’s edge comput-

ing environment. The vibrant developments of today’s IoT (Internet of Things) techniques

indicate potentially a great value of the light-weighted, efficient job scheduler for the next

generation of IoT clusters. Specifically, we are targeting at releasing Pigeon cloud engine

depending on container orchestration systems, such as Kubernetes-based edge computing

platforms (e.g. K3S, KubeEdge, etc). The key challenge is to integrate the Pigeon cloud en-
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gine into existing edge computing platforms and enable its management on the microservices,

also from the users’ aspect, Service Level Agreement (SLA) must be met.
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Appendix A

Python script: Pigeon plot

This python script plots our main results of Pigeon scheduler against Sparrow and Eagle

for 50, 90 and 99 percentiles job latency. Collection of raw experiment data can be retrieved

from our public repository at https://github.com/ruby-/data-collection.

1 #! / usr / bin /env python

2 # −∗− coding : utf−8 −∗−

3 import matp lo t l i b . pyplot as p l t

4 import numpy as np

5 import pandas as pd

6 import random

7

8 # randomize c o l o r f o r v i s u a l i z a t i o n

9 # cmap=p l t . cm . get cmap ( p l t . cm . v i r i d i s , 1 43 )

10 # c=cmap( random . rand int (1 ,144) )

11 #################################

12 # Functions

13 #################################

14 # Ava i l ab l e g rad i en t f o r cmaps :
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15 # ’ Greys ’ , ’ Purples ’ , ’ Blues ’ , ’ Greens ’ , ’ Oranges ’ , ’ Reds ’ ,

16 # ’ YlOrBr ’ , ’YlOrRd ’ , ’OrRd ’ , ’PuRd ’ , ’RdPu ’ , ’

BuPu ’ ,

17 # ’GnBu ’ , ’PuBu ’ , ’YlGnBu ’ , ’PuBuGn ’ , ’BuGn ’ , ’

YlGn ’

18 #

19 de f g r ad i en tb a r s 0 ( bars ) :

20 grad = np . a t l e a s t 2 d (np . l i n s p a c e (0 , 1 , 256) ) .T

21 ax = bars [ 0 ] . axes

22 l im = ax . ge t x l im ( ) + ax . ge t y l im ( )

23 f o r bar in bars :

24 bar . s e t z o r d e r (1 )

25 bar . s e t f a c e c o l o r ( ’ none ’ )

26 x , y = bar . get xy ( )

27 w, h = bar . get width ( ) , bar . g e t h e i g h t ( )

28 ax . imshow ( grad , extent =[x , x + w, y , y + h ] ,

29 aspect=” auto ” , zorder =0)

30 ax . a x i s ( l im )

31

32 de f g rad i en tba r s ( bars , cname , py , he ight ) :

33 grad = np . a t l e a s t 2 d (np . l i n s p a c e (0 , 1 , 256) ) .T

34 ax = bars [ 0 ] . axes
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35 l im = ax . ge t x l im ( ) + ax . ge t y l im ( )

36

37 i = 0

38 f o r bar in bars :

39 bar . s e t z o r d e r (1 )

40 bar . s e t f a c e c o l o r ( ’ none ’ )

41 x , y = bar . ge t x ( ) , py

42 w, h = bar . get width ( ) , he ight [ i ]

43 i += 1

44 ax . imshow ( grad , extent =[x , x + w, y , y + h ] ,

45 cmap=p l t . get cmap ( cname ) , aspect=” auto ” ,

zorder =0, alpha =0.8)

46

47 ax . a x i s ( l im )

48

49 #################################

50 # Adjustments

51 #################################

52 data path = ” https : // raw . g i thubuse rcontent . com/ruby−/data−

c o l l e c t i o n / master / l o n g 9 0 t i l e . csv ”

53 width = 0.15 # the width o f a bar

54 f i g h = 6 # f i g u r e he ight
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55 f i g w = 8 # f i g u r e width

56 f i g y l a b l e = ’ Pigeon Speedup ’ # y−l a b l e

57 f i g x l a b l e = ’ load l e v e l (0˜100% of t o t a l #nodes ) ’ # x−

l a b l e

58 f i g t i t l e = ’90− t i l e p l o t ( long ) ’ # f i g u r e t i t l e

59 # x−l a b l e s f o r bars

60 l a b e l s = [ ’50% ’ , ’60% ’ , ’70% ’ , ’80% ’ , ’90% ’ ]

61

62 # Gradient ly fade−out r a t i o o f sparrow (max) bar to f i g u r e

top margin

63 fadeYTop = 0 .8

64 # s c a l e o f sparrow above thresho ld , ad jus t t h i s va lue to

change fading−bar he ight

65 s c a l e = 2

66 # Space l e f t f o r legend p lo t

67 l s c a l e = 0 .5

68 # uncomment below to choose pos t i on f o r legend p lo t

69 l egend pos = ’ upper r i g h t ’

70 # legend pos = ’ upper l e f t ’

71

72 # Rotation o f t ex t l a b e l above each bar

73 t x t r o t a t e n = 60
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74

75 #################################

76 # Data input

77 #################################

78 df = pd . r ead c sv ( data path )

79 eag l e = df [ ’ e ag l e ’ ]

80 e a g l e s i m u l a t e d = df [ ’ e a g l e s ’ ]

81 sparrow = df [ ’ sparrow ’ ]

82 sparrow s = df [ ’ sparrow s ’ ]

83

84 #################################

85 # Vars

86 #################################

87 # s p l i t sparrow up/below thre sho ld value

88 r u l e r = max(np . maximum( eag le , e a g l e s i m u l a t e d ) )

89 th r e sho ld = r u l e r ∗ 1 .5

90 v sparrow = np . array ( sparrow )

91 v spar row s = np . array ( sparrow s )

92

93 # Set t ing the p o s i t i o n s and width f o r the bars

94 pos = l i s t ( range ( l en ( eag l e ) ) )

95 # Adjust t h i s va lue to l eave space f o r legend p lo t
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96 o f f s e t = r u l e r ∗ l s c a l e

97

98 # c o l o r s o f bars

99 c1 = ’ seagreen ’ # eag l e

100 c2 = ’ goldenrod ’ # e a g l e s

101 c3 = ’ darkred ’ # spar row be low thre sho ld

102 c4 = ’ red ’ # spar row above thre sho ld

103 c5 = ’ mediumslateblue ’ # spar row s be l ow thre sho ld

104 c6 = ’ s l a t e b l u e ’ # spar row s above th r e sho ld

105 c7 = ’ dimgray ’ # thre sho ld l i n e c o l o r

106 c8 = ’ dimgray ’ # text above th r e sho ld l i n e c o l o r

107 c9 = ’ Reds ’ # grad i en t c o l o r f o r sparrow

108 c10 = ’ Purples ’ # grad i en t c o l o r f o r sparrow s

109

110 #################################

111 # Graphix

112 #################################

113 # Plo t t i ng the bars

114 f i g , ax = p l t . subp lo t s ( f i g s i z e =( f ig w , f i g h ) )

115 # Set t ing a x i s l a b e l s and t i c k s

116 ax . s e t y l a b e l ( f i g y l a b l e )

117 ax . s e t x l a b e l ( f i g x l a b l e )
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118 ax . s e t t i t l e ( f i g t i t l e )

119 ax . s e t x t i c k s ( [ p + 1 .5 ∗ width f o r p in pos ] )

120 ax . s e t x t i c k l a b e l s ( l a b e l s )

121

122 e a g l e b a r = p l t . bar ( pos , eag le , width ,

123 alpha =0.8 ,

124 c o l o r=’w ’ ,

125 hatch=’ ’ ,

126 f a c e c o l o r=c1 ,

127 edgeco l o r=’w ’ ,

128 l a b e l=l a b e l s [ 0 ] )

129

130 e a g l e s i m u l a t e d b a r = p l t . bar ( [ p + width f o r p in pos ] ,

eag l e s imu la t ed , width ,

131 alpha =0.69 ,

132 c o l o r=’w ’ ,

133 hatch=’ x ’ ,

134 f a c e c o l o r=c2 ,

135 edgeco l o r=’w ’ ,

136 l a b e l=l a b e l s [ 1 ] )

137

138 # upper
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139 sparrow above thresho ld tmp = np . maximum( v sparrow −

thresho ld , 0)

140 i n d i c e s u p = np . nonzero ( sparrow above thresho ld tmp )

141 spar row above thre sho ld = sparrow above thresho ld tmp [

i n d i c e s u p ]

142

143 spar row s above thresho ld tmp = np . maximum( v spar row s −

thresho ld , 0)

144 i n d i c e s u p s = np . nonzero ( spar row s above thresho ld tmp )

145 spa r row s above th r e sho ld = sparrow s above thresho ld tmp [

i n d i c e s u p ]

146 # lower

147 spar row be low thre sho ld = np . minimum( v sparrow , th r e sho ld )

148 i n d i c e s b e l o w = np . where ( v sparrow < th r e sho ld )

149 sparrow be low thresho ld shown = v sparrow [ i n d i c e s b e l o w ]

150

151 spa r row s be l ow thre sho ld = np . minimum( v sparrow s ,

th r e sho ld )

152 i n d i c e s b e l o w s = np . where ( v spar row s < th r e sho ld )

153 spar row s be low thresho ld shown = v sparrow s [ i n d i c e s b e l o w

]

154
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155 # sparrow bar below thre sho ld

156 sparrow bar be low = p l t . bar ( [ p + width ∗ 2 f o r p in pos ] ,

sparrow be low thresho ld , width ,

157 alpha =0.8 ,

158 c o l o r=’ k ’ ,

159 hatch=’ ’ ,

160 f a c e c o l o r=c3 ,

161 edgeco l o r=’w ’ ,

162 l s= ’− ’ ,

163 lw=None ,

164 l a b e l=l a b e l s [ 2 ] )

165

166 spar row s bar be low = p l t . bar ( [ p + width ∗ 3 f o r p in pos ] ,

spar row s be low thre sho ld , width ,

167 alpha =0.99 ,

168 c o l o r=’ k ’ ,

169 hatch=’ \\ ’ ,

170 f a c e c o l o r=c5 ,

171 edgeco l o r=’w ’ ,

172 l s= ’− ’ ,

173 lw=None ,

174 l a b e l=l a b e l s [ 2 ] )
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175

176 # sparrow bar above th r e sho ld

177 i f l en ( i n d i c e s u p [ 0 ] ) :

178 sparrow bar upper = p l t . bar ( [ p + width ∗ 2 f o r p in np .

n d i t e r ( i n d i c e s u p ) ] , sparrow above thresho ld , width ,

179 bottom=

spar row be low thre sho ld [

i n d i c e s u p ] ,

180 alpha =0.8 ,

181 c o l o r=’ k ’ ,

182 hatch=’ ’ ,

183 f a c e c o l o r=c4 ,

184 edgeco l o r=’w ’ ,

185 l s= ’− ’ ,

186 lw=None ,

187 l a b e l=l a b e l s [ 2 ] )

188 # draw the bars above th r e sho ld as faded

189 s p a r r o w d i s t r a t i o = spar row above thre sho ld / \

190 (np . amax( spar row above thre sho ld ) )

191 s p a r r o w d i s t a r r = ( r u l e r ∗ s c a l e −

192 th r e sho ld ) ∗ fadeYTop ∗

s p a r r o w d i s t r a t i o
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193 g rad i en tba r s ( sparrow bar upper , c9 , thresho ld ,

s p a r r o w d i s t a r r . t o l i s t ( ) )

194

195 i f l en ( i n d i c e s u p s [ 0 ] ) :

196 spar row s bar upper = p l t . bar ( [ p + width ∗ 3 f o r p in

np . n d i t e r ( i n d i c e s u p s ) ] , spar row s above thre sho ld ,

width ,

197 bottom=

spar row s be l ow thre sho ld

[ i n d i c e s u p s ] ,

198 alpha =0.99 ,

199 c o l o r=’ k ’ ,

200 hatch=’ \\ ’ ,

201 f a c e c o l o r=c6 ,

202 edgeco l o r=’w ’ ,

203 l s= ’− ’ ,

204 lw=None ,

205 l a b e l=l a b e l s [ 2 ] )

206

207 s p a r r o w s d i s t r a t i o = spar row s above th r e sho ld / \

208 (np . amax( spa r row s above th r e sho ld ) )

209 s p a r r o w s d i s t a r r = ( r u l e r ∗ s c a l e −
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210 th r e sho ld ) ∗ fadeYTop ∗

s p a r r o w s d i s t r a t i o

211 g rad i en tba r s ( sparrow s bar upper , c10 ,

212 thresho ld , s p a r r o w s d i s t a r r . t o l i s t ( ) )

213

214

215 # Set t ing text l a b e l s on each bar

216 f o r x , y in z ip ( pos , e ag l e ) :

217 p l t . t ex t (x , y , ’ %.1 f ’ % y , ha=’ cen te r ’ ,

218 va=’ bottom ’ , r o t a t i o n=t x t r o t a t e n )

219

220 f o r x , y in z ip ( pos , e a g l e s i m u l a t e d ) :

221 p l t . t ex t ( x + width , y , ’ %.1 f ’ %

222 y , ha=’ cent e r ’ , va=’ bottom ’ , r o t a t i o n=

t x t r o t a t e n )

223

224 i f l en ( i n d i c e s b e l o w [ 0 ] ) :

225 f o r x , y in z ip (np . n d i t e r ( i n d i c e s b e l o w ) , np . n d i t e r (

sparrow be low thresho ld shown ) ) :

226 p l t . t ex t ( x + width ∗ 2 , y , ’ %.1 f ’ %

227 y , ha=’ cent e r ’ , va=’ bottom ’ , r o t a t i o n=

t x t r o t a t e n )
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228

229 i f l en ( i n d i c e s u p [ 0 ] ) :

230 f o r x , y , yPos in z ip (np . n d i t e r ( i n d i c e s u p ) , np . n d i t e r (

spar row above thre sho ld + thre sho ld ) , np . n d i t e r (

s p a r r o w d i s t a r r ) ) :

231 p l t . t ex t ( x + width ∗ 2 , th r e sho ld + yPos , ’ %.1 f ’ %

232 y , ha=’ cent e r ’ , va=’ bottom ’ , r o t a t i o n=

t x t r o t a t e n )

233

234 i f l en ( i n d i c e s b e l o w s [ 0 ] ) :

235 f o r x , y in z ip (np . n d i t e r ( i n d i c e s b e l o w s ) , np . n d i t e r (

spar row s be low thresho ld shown ) ) :

236 p l t . t ex t ( x + width ∗ 3 , y , ’ %.1 f ’ %

237 y , ha=’ cent e r ’ , va=’ bottom ’ , r o t a t i o n=

t x t r o t a t e n )

238

239 i f l en ( i n d i c e s u p s [ 0 ] ) :

240 f o r x , y , yPos in z ip (np . n d i t e r ( i n d i c e s u p s ) , np .

n d i t e r ( spa r row s above th r e sho ld + thre sho ld ) , np .

n d i t e r ( s p a r r o w s d i s t a r r ) ) :

241 p l t . t ex t ( x + width ∗ 3 , th r e sho ld + yPos , ’ %.1 f ’ %

242 y , ha=’ cent e r ’ , va=’ bottom ’ , r o t a t i o n=
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t x t r o t a t e n )

243

244 # Adding the legend and showing the p l o t

245 p l t . l egend ( [ ’ e ag l e ’ , ’ e a g l e s i m u l a t e d ’ , ’ sparrow ’ ,

246 ’ sparrow s imulated ’ ] , l o c=legend pos )

247

248 # Set t ing the x−a x i s and y−a x i s l i m i t s

249 p l t . xl im (min ( pos ) − width , max( pos ) + width ∗ 5)

250

251 i f l en ( i n d i c e s u p [ 0 ] ) or l en ( i n d i c e s u p s [ 0 ] ) :

252 p l t . yl im ( [ 0 , r u l e r ∗ 2 + o f f s e t ] )

253 p l t . y t i c k s (np . arange (0 , thresho ld , 10) )

254 # h o r i z o n t a l l i n e i n d i c a t i n g the th r e sho ld

255 ax . p l o t ( [ 0 . , 4 . 5 ] , [ thresho ld , th r e sho ld ] , ”k−−” , c o l o r

=c7 )

256 p l t . t ex t ( pos [ 0 ] + width , thresho ld ,

257 ’> { : 0 . 1 f }x ’ . format ( th r e sho ld ) , ha=’ cen te r ’ ,

va=’ bottom ’ , c o l o r=c8 )

258 e l s e :

259 p l t . yl im ( [ 0 , r u l e r + o f f s e t ] )

260 p l t . y t i c k s (np . arange (0 , thresho ld , 0 . 2 ) )

261

60



262 # p l t . g r id ( )

263 p l t . show ( )
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