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ABSTRACT 

 

AN IMPLEMENTATION OF THE REGULARIZED EXTENDED FINITE ELEMENT 

METHOD IN ABAQUS 

 

Yu-Jui Liang, PhD 

The University of Texas at Arlington, 2019 

 

Supervising Professor: Endel V. Iarve 

The Regularized eXtended Finite Element Method (Rx-FEM) methodology is a 

discrete damage modeling (DDM) technique, which represents an approach to the progressive 

damage analysis (PDA) in laminated composites when multiple damage events such as matrix 

cracks and delamination are introduced into the model via the displacement discontinuities. In 

the Rx-FEM, the Heaviside step function that is typically used to introduce a displacement 

discontinuity across a crack surface in the eXtended Finite Element Method (x-FEM) is 

replaced by a continuous function approximated by using the finite element (FE) shape 

functions. This regularization offers unique possibility for the implementation of the Rx-FEM 

methodology in commercial finite element software which has many advantages including the 

powerful solver, built-in capabilities, post-processing, and visualization. The proposed 

implementation of the Rx-FEM methodology in Abaqus consists of the mesh-independent 
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cracking (MIC) technique to modeling the transverse matrix cracks in each ply of the 

composite laminate, and modeling the delamination between plies by using the mixed-mode 

cohesive formulation which is also used to describe the MIC matrix crack propagation 

characteristics, and the interaction between matrix crack and delamination. The validity of the 

proposed implementation is tested by several verification models of MIC modeling in 

composite laminates, and delamination between plies. The proposed implementation not only 

demonstrates accurate predictions, but also allows to take advantages of various built-in 

capabilities from the host software Abaqus such as geometrically nonlinear solution, contact 

interactions, post-processing, and visualization. More importantly, it opens up a new venue for 

the Rx-FEM implementation across different element platforms including multiphysics 

applications. 

  



vi 
 

 

TABLE OF CONTENTS 

 

I. INTRODUCTION ................................................................................................................. 1 

1-1 Continuum Damage Modeling ........................................................................................ 3 

1-2 Discrete Damage Modeling ............................................................................................ 4 

1-3 Implementation in Commercial Finite Element Software .............................................. 6 

II. RESEARCH OBJECTIVES ................................................................................................ 8 

III. REGULARIZED EXTENDED FINITE ELEMENT METHOD ..................................... 10 

3-1 Standard Finite Element Method .................................................................................. 10 

3-2 The eXtended Finite Element Method .......................................................................... 14 

3-3 The Regularized eXtended Finite Element Method ...................................................... 18 

3-3-1 Cohesive Zone Model ............................................................................................ 19 

3-3-2 Mesh-Independent Crack modeling within a ply ................................................... 24 



vii 
 

3-3-3 Propagation of the Mesh-Independent Crack ........................................................ 30 

3-3-4 Delaminations and their Interaction with Mesh-Independent Cracks .................... 33 

IV. IMPLEMENTATION OF THE REGULARIZED EXTENDED FINITE ELEMENT 

METHOD IN ABAQUS ......................................................................................................... 35 

4-1 Implementation of the Mesh-Independent Cracking .................................................... 36 

4-2 Implementation of Delamination .................................................................................. 40 

4-3 Solution Algorithm ....................................................................................................... 44 

V. VERIFICATION MODELS .............................................................................................. 48 

5-1 Uniaxial Tension of a 9 Elements Bar .......................................................................... 48 

5-2 Off-Axis Test of Unnotched Composites ..................................................................... 50 

5-3 Unidirectional Composites with Open Hole ................................................................. 52 

5-4 Double Cantilever Beam Test ....................................................................................... 57 

5-5 End-Notched Flexure Test ............................................................................................ 60 

5-6 Transverse Crack Tension Test ..................................................................................... 63 



viii 
 

5-7 Bending of 2 plies composite laminate ......................................................................... 66 

VI. CONCLUSIONS .............................................................................................................. 70 

APPENDIX A ......................................................................................................................... 72 

APPENDIX B ......................................................................................................................... 77 

APPENDIX C ......................................................................................................................... 79 

APPENDIX D ......................................................................................................................... 89 

REFERENCES ....................................................................................................................... 92 

 

 

  



ix 
 

 

LIST OF FIGURES 

 

Figure 1. Damage progression in a composite laminate under tensile loading. (a) Pristine state; 

(b) Matrix cracking stage; (c) Delamination stage, linking up matrix cracks in various plies and 

(d) failure [1]. ............................................................................................................................ 2 

Figure 2. Splitting damage predicted using a radial mesh and an aligned mesh [14]. ............. 4 

Figure 3. Damage progression of open hole composites for different load levels [22]. .......... 5 

Figure 4. Crack growth of a cantilever beam with an eccentric crack [36]. ............................ 7 

Figure 5. Crack on a structured mesh (left) and an unstructured mesh (right). The circled nodes 

are enriched by the Heaviside step function whereas the squared nodes are enriched by the 

crack tip function [21]. ............................................................................................................ 14 

Figure 6. Subdivision of the domain by the signed distance function. .................................. 15 

Figure 7. The schema of the x-FEM formulation. ................................................................. 17 

Figure 8. Traction-Separation and Damage-Separation relationships [7] .............................. 20 

Figure 9. The schema of the Rx-FEM formulation. ............................................................... 25 



x 
 

Figure 10. The MIC implementation by superimposing two native Abaqus elements connected 

by a MIC UEL. ....................................................................................................................... 40 

Figure 11. An interface UEL used to connect four native Abaqus elements in the top and 

bottom plies with a MIC crack in each ply. ............................................................................ 44 

Figure 12. The schema of the regularized Heaviside step function and its gradient within a 

crack region. ............................................................................................................................ 45 

Figure 13. The framework for the proposed implementation of the Rx-FEM methodology in 

Abaqus. ................................................................................................................................... 47 

Figure 14. The displacement field of the uniaxial tensile test of a 9 elements bar for (a) pristine 

and (b) failure. ......................................................................................................................... 49 

Figure 15. The off-axis test of unnotched composites. (a) Geometry, (b) 15°, (c) 30°, (d) 45°, 

(e) 60°, (f) 75°, (g) 90°. ........................................................................................................... 50 

Figure 16. The static failure envelop simulation from the proposed implementation of the Rx-

FEM in Abaqus. ...................................................................................................................... 52 

Figure 17. Geometry of the OHT unidirectional composites ................................................. 53 



xi 
 

Figure 18. Numerical results of the OHT specimen with 90° fiber orientation. (a) Pristine σ22 

stress field, (b) pristine ux displacement field, and (c) failure ux displacement field. ............ 54 

Figure 19. Numerical results of the OHT specimen with 45° fiber orientation. (a) Pristine σ22 

stress field, (b) pristine ux displacement field, and (c) failure ux displacement field. ............ 55 

Figure 20. Numerical results of the OHT specimen with 0° fiber orientation. (a) Axial 

displacement field ux before cracking and (b) after separation. (c)Axial stress field σ11 before 

cracking and after separation. ................................................................................................. 56 

Figure 21. Numerical results of both average traction and normalized crack length of each 

crack versus applied strain, and comparison between numerical results and experiment data for 

normalized crack length of each crack versus applied strain. ................................................. 57 

Figure 22. Geometry of the DCB specimen. .......................................................................... 58 

Figure 23. Load-displacement curve of the DCB test. ........................................................... 59 

Figure 24. Geometry of the ENF specimen. .......................................................................... 61 

Figure 25. Load-displacement curve of the ENF test. ........................................................... 62 

Figure 26. Deformed shape of the ENF specimen displaying the contact between delaminated 

plies. ........................................................................................................................................ 63 



xii 
 

Figure 27. Geometry of the TCT specimen. .......................................................................... 64 

Figure 28. Applied average stress-displacement curve of the TCT test. ............................... 65 

Figure 29. Geometry of the composite laminate. ................................................................... 66 

Figure 30. Progressive damage analysis in composite laminate. The σ22 stress field just (a) 

before a MIC insertion and (b) after, and the displacement field (c) in the end of 1st step and 

(d) 2nd step. .............................................................................................................................. 68 

 

  



xiii 
 

 

LIST OF TABLES 

 

Table 1. Unidirectional ply stiffness and strength properties. ................................................ 51 

Table 2. Unidirectional ply stiffness and strength properties. ................................................ 54 

Table 3. Material properties for the DCB and ENF models. .................................................. 58 

Table 4. Material properties for the TCT model .................................................................... 64 

Table 5. Material properties for the composite laminate. ...................................................... 67 

 

  



1 
 

 

CHAPTER I 

INTRODUCTION 

 

 The usage of composite materials has increased rapidly from defense industries to civil 

aviation and other automotive applications. Composite materials offer high specific strength, 

corrosion resistance and manufacturability. However, the cost associated with certification and 

qualification of such advanced structures remains high. Detailed modeling of the deformation 

and fracture of composite materials is widely considered a vital step toward a new design and 

qualification paradigm where significant amounts of experimental testing are replaced by 

computational modeling and simulation. This brings the need for the development of high-

fidelity methodologies and analysis tools with detailed modeling of damage accumulation and 

evolution in composite materials. The fracture mechanism, especially in laminated composites, 

is a progressive evolution of discrete damage events, such as fiber/matrix debonding, matrix 

cracking within a ply, delamination between plies and fiber failure. These damage modes 

evolve in various combinations, and they can be isolated in some specific situations. However, 

even in these cases, the specific failure modes can be isolated only at certain load levels, i.e. 

transverse cracking will lead to delamination and delamination propagation in unidirectional 

composites is accompanied by fiber bridging. Free-edge delamination in most cases are 

precipitated and/or closely followed by matrix cracking. An idealized damage progression 

sequence in a laminated composite plate subjected to tensile loading is shown in Figure 1 [1]. 

Thus, one of the objectives of the Advanced Composites Project (ACP) program which was 
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recently launched by NASA is development and validation of physics-based analysis tools in 

order to predict performance and durability of structural elements made from composite 

materials. 

 

 

Figure 1. Damage progression in a composite laminate under tensile loading. (a) Pristine state; 

(b) Matrix cracking stage; (c) Delamination stage, linking up matrix cracks in various plies and 

(d) failure [1]. 
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1-1 Continuum Damage Modeling 

 To date, significant progress has been achieved in developing progressive damage 

modeling methodologies for the damage evolution and interaction phenomena of laminated 

composite materials. The continuum damage modeling (CDM) methodology is the most 

common and widely used approach for progressive damage modeling in laminated composites 

[2]–[4]. Intra-ply damage modes have been studied primarily while delamination between plies 

has been investigated extensively using the interface fracture modeling technique such as 

cohesive zone models [5]–[7] and virtual crack closure techniques [8], [9]. A critical distinction 

between the CDM and interface fracture modeling exists in the approach where a displacement 

discontinuity is provided. The CDM represents all forms of damage as the local volumetric 

stiffness degradation which describes matrix and fiber damage by developing local constitutive 

material models for directionally reducing the stiffness properties of the affected elements, 

whereas the interface fracture modeling techniques directly include the kinematics of the 

displacement jump. 

 The ease of implementation for the CDM methodology in conventional FE framework 

has greatly proliferated its application [10]–[12]. However, it has significant difficulties in 

predicting local effects of interactions between various damage modes and local effects of 

stress redistribution in the damage area without any special meshing techniques such as fiber 

aligned meshing [13]–[15]. This issue has been investigated in detail [16]–[18] where the CDM 

is inaccurate to modeling longitudinal splits in plies with fiber aligned with the tensile loading 

direction as shown in Figure 2 [14], or the fracture is characterized by strong coupling between 

transverse matrix crack and delamination [19], [20]. 
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Figure 2. Splitting damage predicted using a radial mesh and an aligned mesh [14]. 

 

1-2 Discrete Damage Modeling 

 Discrete damage modeling (DDM) represents an approach to progressive damage 

analysis when multiple individual damage events, such as matrix cracks in plies, delamination 

between plies and their interaction, are explicitly introduced into model through the 

displacement discontinuities. The DDM approach to modeling crack-induced displacement 

discontinuities employs the mesh-independent crack (MIC) technique for crack growth without 

remeshing, such as the eXtended Finite Element Method (x-FEM) [21] which has been 

developed over the past decade. In the x-FEM formulation, additional degrees of freedom are 

added to the element along the crack surface to describe the displacement discontinuities. This 

crack surface partitions the element into two parts in which the integration schema must be 

customized. Although the x-FEM formulation is not straightforward and much more 
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complicate than CDM, it can solve some of the most significant problems associated with the 

CDM methodology. 

 

 

Figure 3. Damage progression of open hole composites for different load levels [22]. 

 

 Another direction of the DDM is the Regularized eXtended Finite Element Method 

(Rx-FEM) [1], [22]–[26], where the Heaviside step function used in x-FEM to represent the 

crack surface is replaced by a continuous function changing from 0 to 1 over a narrow volume 

called crack region or gradient zone. The narrow volume integrals in the gradient zone to the 

surface integrals in the limit of mesh refinement was discussed in [1]. The Rx-FEM 
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formulation [23] uses the displacement approximation shape functions to approximate the 

Heaviside step function and maintain the Gauss integration schema for computing the stiffness 

matrix without regard to crack orientation. This is a robust numerical approach for modeling 

complex networks of matrix cracks and delamination as shown in Figure 3. This methodology 

is implemented in an in-house custom software program BSAM, and extensively applied to 

static and fatigue analysis in laminated composite structures [27]–[31]. To date, several stand-

alone implementations of the DDM have been reported, and applied to failure prediction in 

laminated composite coupons [1], [32], [33] and structures of increasing complexity [27], [28], 

[34]. 

 

1-3 Implementation in Commercial Finite Element Software 

 Commercial finite element software has several advantages including established 

markets, reputation, very powerful solver, and many built-in capabilities which are impractical 

to implement again in a research code. The implementation of the DDM methodologies in 

commercial software adds significant mathematical complexity compared to the 

implementation of the CDM methodologies, where the damage is represented as a change of 

element stiffness properties. To date, several implementations of DDM methodologies into the 

commercial FE software and Abaqus [35] in particular have been reported [36]–[39]. What is 

common in these implementations is that a user defined element (UEL) was created 

encapsulating the kinematics of the x-FEM element pair, which is produced after the degrees 

of freedom are enriched. This type of implementation has wide freedom to allow customizing 

the integration scheme of the cracked elements and introducing either phantom nodal degrees 

of freedom (Augmented-FEM [38], [39]) or degrees of freedom representing displacements at 
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the crack surface and element edge intersection (Floating node method [37]), and traditional 

x-FEM [36]. However, these implementations only allow to take advantages of a very small 

subset of capabilities in the commercial FE software, and this approach can take advantage of 

the solver portion of the code, while even visualization represents challenges, not to speak of 

more essential features such as contact, etc. 

 

 

Figure 4. Crack growth of a cantilever beam with an eccentric crack [36]. 
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CHAPTER II 

RESEARCH OBJECTIVES 

 

 Within the Rx-FEM, the matrix crack surface is described by a continuous function, 

which is approximated by using the same shape functions for representing the displacement 

discontinuities. The elements along the crack surface are not partitioned because the crack 

surface is not encapsulated in an element but spread over several neighboring elements. This 

regularization of the Heaviside step function offers unique possibility to implement the Rx-

FEM in commercial FE software. The implementation capitalizes on utilization of original 

Gauss integration schema of the native Abaqus element in Rx-FEM even after the enrichment 

is introduced to accommodate a MIC. Therefore, the first research objective of the present 

research is to provide a novel approach of the Rx-FEM implementation in commercial FE 

software Abaqus [40], [41], which is based on native element superposition. 

 To date, there are several implementations [36]–[39] of DDM methodologies into the 

commercial FE software and Abaqus [35] in particular. What is common in these 

implementations is that a user defined element (UEL) was created encapsulating the kinematics 

of the x-FEM element pair, which is produced after the degrees of freedom are enriched. 

However, these implementations only allow to take advantages of a very small subset of 

capabilities in the commercial FE software, and this approach can take advantage of the solver 

portion of the code, while even visualization represents challenges, not to speak of more 

essential features such as contact, etc. Therefore, the second objective of the present research 
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aims to utilization of core capabilities such as geometrically nonlinear capability, contact 

feature, and visualization from the host FE software without modification of the Rx-FEM 

implementation. 

 Last, the third objective of the research is to apply the proposed implementation to 

solution of a number of problems and evaluate the accuracy and robustness of the developed 

methodology. 

 In the following chapters, the chapter of the Rx-FEM theory is introduced first, and 

then followed by the chapter of the Abaqus implementation which includes the implementation 

of the MIC technique to modeling mesh-independent matrix cracks in each ply of the 

composite laminate, and the implementation for modeling delamination between plies at the 

ply interface. Last, several numerical models devoted to verification and application of the 

proposed method in laminated composites are considered to verify the transverse matrix crack 

insertion and propagation correctly, and the accuracy of delamination for mode I fracture and 

mode II fracture and the interaction between initial matrix crack and delamination by 

comparing with the benchmark solutions. 

 The proposed implementation of the Rx-FEM not only demonstrates accurate 

predictions for progressive damage analysis in laminated composites, but also allows to take 

advantage of various built-in capabilities from the host finite element software Abaqus such as 

geometrically nonlinear solution, contact, post-processing, and visualization. 
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CHAPTER III 

REGULARIZED EXTENDED FINITE ELEMENT METHOD 

 

In this chapter, the Regularized eXtended Finite Element Method (Rx-FEM) 

methodology which consists of modeling transverse matrix cracks in each ply of composite 

laminate by the mesh-independent cracking (MIC) technique and modeling delamination 

between plies is presented in detail. First, a brief overview of the standard finite element 

method (FEM) is provided for context, and to point out certain aspects of element formulation. 

The traditional eXtended Finite Element Method (x-FEM) is then discussed for introducing 

the basic concept of displacement discontinuity by partitioning element. 

Next, the Rx-FEM methodology which is a variant of the x-FEM is then presented. 

First, the mixed-mode cohesive zone model used for delamination and matrix crack 

propagation is described. This is followed by development of the MIC technique for modeling 

transverse matrix cracks within a single ply of composite laminate. The usage of the surface-

based cohesive zone model to describe the MIC crack propagation characteristics is then 

discussed. Finally, the discussion of modeling the interaction between transverse matrix cracks 

and delaminations in a composite laminate is presented. 

 

3-1 Standard Finite Element Method 

In the standard finite element method, the displacement field is described by defining 

the values at nodes which are connected by elements. Both the physical location of the element 
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and the displacement field within the element are described by using the same parametric 

equations/shape functions: 

 

 
xሺξ, η, ζሻ ൌ෍ N୧ሺξ, η, ζሻx୧

୒౤౥ౚ౛౩

୧ୀଵ
 

(1) 
 

uሺξ, η, ζሻ ൌ෍ N୧ሺξ, η, ζሻu୧
୒౤౥ౚ౛౩

୧ୀଵ
 

 

where the xi and ui are the nodal values of the coordinates and displacements, Nnodes is number 

of nodes, and Ni is the shape functions in natural coordinates (ξ, η, ζ). These continuous shape 

functions keep continuities of the physical location and the displacement field within the 

element. The local strain field ε is then computed from the derivatives of the displacement field 

in natural coordinates as follows: 

 

 ઽሺξ, η, ζሻ ൌ ۰ሺξ, η, ζሻ ∙  (2) ܝ

 

where B is the strain-displacement matrix which contains the derivatives of the shape functions. 

The local stress filed σ is then calculated by multiplying the local strain field by the material 

modulus matrix D as follows: 

 

 ોሺξ, η, ζሻ ൌ ۲ ∙ ઽሺξ, η, ζሻ (3) 
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The strain energy of an element is be computed by integration of the strain energy density over 

the whole element as follows: 

 

 
Wୣ ൌ

1
2
න ୘ܝ

ஐ౛

۰୘۲۰݀ܝΩ (4) 

 

The strain energy of the volume is obtained by the summation of the strain energy for all the 

elements. Next, the element stiffness ke which is the relationship between the nodal forces and 

displacements is calculated as follows: 

 

 
܍ܓ ൌ න ۰୘۲۰݀Ω

ஐ౛

 (5) 

 

In the numerical computation, the integral in element formulation is typically using a Gauss 

quadrature rule where the volume integration is approximated by the summation as follows: 

 

 
܍ܓ ൎ ෍ሺ۰۸|۲۰܂|ሻ૆࢒ ∙ ௟ܹ

୒౟౤౪

௟ୀଵ

 (6) 
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where the parameters ߦl is the location of the integration points, Nint is the number of integration 

point, Wl is the weight functions which depend on the order of the quadrature, and J is the 

Jacobian matrix which maps the derivatives with respect to the parametric variables ߦ to the 

spatial derivatives. A brief overview of the element formulation in standard FEM was 

presented above. Multiple combinations of elements in standard FEM comes from the choices 

of the element type (tetrahedral, wedge, and hexahedral), shape functions (first order and 

second order), and integration schemes (full, reduced, and selective). 

A significant challenge of the standard FEM is, however, representation of a 

discontinuity such as a crack within the finite element model, since the continuity of the shape 

functions within the element is one of the requirements for converging the solution. Although 

the easiest way to introduce a discontinuity is along the element boundaries, many restrictions 

must be taken into account such as either the crack location must be considered when 

generating the initial mesh of the structure before the analysis start, or the structure is remeshed 

for crack insertion and propagation during the analysis. Both approaches to describe 

discontinuity have serious limitations. First, it is not always possible to know where the cracks 

will appear before the analysis start except for certain situations, and the idea of this way is 

contrary to the goal of predicting damage in structure. Second, remeshing technique used for 

laminated composites is questionable because multiple meshing constraints occurs at the ply 

interface, where the cracks with different orientations in adjoining plies must be 

accommodated. 
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3-2 The eXtended Finite Element Method 

The eXtended Finite Element Method (x-FEM) methodology was proposed to 

introduce the displacement discontinuities for crack growth without any remeshing technique 

[21]. The idea of the x-FEM is that this methodology enriches the displacement field within a 

domain with an arbitrary crack by introducing additional degrees of freedom to accommodate 

for discontinuity, and then divides the domain into two regions where the additional degrees 

of freedom act. The domain boundaries, which represents the discontinuity, may cross the 

element boundaries as shown in Figure 5 [21] which shows a schema of an arbitrary crack on 

a structured and unstructured mesh.. 

 

 

Figure 5. Crack on a structured mesh (left) and an unstructured mesh (right). The circled nodes 

are enriched by the Heaviside step function whereas the squared nodes are enriched by the 

crack tip function [21]. 
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 The crack surface Γα, where the displacement function is experiencing a discontinuity, 

can be described by the signed surface distance function fα(x) as follows: 

 

 f஑ሺܠሻ ൌ sign൫ܖሺܠതሻሺܠ െ തሻ൯minܠ
ത∈୻ಉܠ

ܠ‖ െ  ത‖ (7)ܠ

 

where ܖሺܠതሻ is the normal to the crack surface Γα at the point ܠത. The signed surface distance 

function is defined at an arbitrary point x of the domain and is equal to the distance from that 

point to the crack surface, and is positive if the point is above the crack surface and negative 

on the other side of the crack surface as shown in Figure 6. 

 

 

Figure 6. Subdivision of the domain by the signed distance function. 
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The Heaviside step function H(x) as follows: 

 

ሻݔሺܪ  ൌ ቄ0					ݔ ൏ 0
ݔ					1 ൒ 0

 (8) 

 

where the Heaviside step function is used to describe the displacement jump at the crack 

surface Γα. Assuming u(1) is the displacement field within the region below the crack surface 

(fα(x) < 0) and u(2) is the displacement field within the region above the crack surface (fα(x) > 

0). Thus, the entire displacement field of the domain can be described as follows: 

 

ܝ  ൌ ሺ1 െܪሺ ఈ݂ሺܠሻሻሻ ∙ ܝ
ሺଵሻ ൅ ሺܪ ఈ݂ሺܠሻሻ ∙ ܝ

ሺଶሻ (9) 

 

The derivative of the Heaviside step function is the Dirac delta function δ, where the value 

within the domain is zero except for the origin. At the origin where the Heaviside step function 

is discontinuous, the Dirac delta function is undefined. The Dirac delta function is not a 

function in the usual sense, and it is more correctly referred to as Dirac delta distribution. It is 

also has the property for an arbitrary function g(x) of x, then: 

 

 
න ሻ݀xܠሻgሺܠሺߜ ൌ gሺܠ૙ሻ

ஶ

ିஶ

 (10) 
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Different forms of approximation of the fields u(1) and u(2) have been proposed over the 

years such as an approach by Hansbo and Hansbo [42] in which the displacements u(1) and u(2) 

are approximated by the original shape functions and result in phantom nodes in the enriched 

element. Common to all such approaches is the fact that the integration schema for the domain 

1 and domain 2 which correspond to the sub-volumes fα(x) < 0 and fα(x) > 0 are different as 

shown in Figure 7. 

 

 

Figure 7. The schema of the x-FEM formulation. 

 

 Therefore, a custom integration schema in each sub-volume is needed. Such a 

construction is possible but is quite tedious and involves many possible combinations of crack 

locations with respect to the element boundaries. For instance, in two-dimension a quadrilateral 

element in this case may divide to two quadrilateral elements or two triangle elements or one 

triangle element and one five-sided region that will need to be further subdivided. There are 

even more complicate combinations to consider in three-dimensional case. Moreover, at the 
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interface between two plies with different fiber orientation in laminated composites, a double 

partition of the element surface must be considered in order to represent the delamination 

propagation from the crack intersections. Thus, just as it is advantageous to preserve the mesh 

structure, another representation of the crack that does not involve the recalculation of 

integration point locations is desirable. 

 

3-3 The Regularized eXtended Finite Element Method 

Generally, any smoothing or filtering operation could be thought of as a regularization 

process when the “regularized” form is used in place of the original. Hence, the term 

“Regularized” is used in this methodology that a function ill-suited for analytical purposes is 

replaced by a smoother approximation which captures the essential qualities of the original 

function. 

The overview of Regularized eXtended Finite Element Method (Rx-FEM) could be in 

order the following sections describe the formulation of the Rx-FEM methodology. First, the 

cohesive zone model used for the delamination and transverse matrix crack propagation is 

described followed by the development of the regularized mesh-independent cracking (MIC) 

modeling technique for transverse matrix crack within a single ply of the composite laminate. 

Next, the usage of the mixed-mode surface-based cohesive zone model to describe the MIC 

crack propagation is provided. Finally, the discussion of modeling the interaction between 

transverse matrix cracks and delamination in a composite laminate is presented. 
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3-3-1 Cohesive Zone Model 

The mixed-mode cohesive zone interface fracture model proposed by Turon [7] is 

discussed in the present section. A brief overview is provided for completeness of the Rx-FEM 

formulation and the reader is referred to reference [7] for full details. An arbitrary point at the 

crack interface with a normal vector n and a displacement jump vector Δu. The goal is to 

describe the fracture energy of separation of an arbitrary point at the crack interface which will 

be used in deriving the system of equations from the minimum potential energy principle. This 

discussion of the cohesive model directly pertains to the delamination propagation between 

plies and will be used for the MIC crack propagation as well. 

In this model, the cohesive traction on the crack surface is related to the displacement 

jump Δu in the following: 

 

࣎  ൌ ሺ1െ ݀ሻܝ∆ܭ ൅  (11) ܖ〈௡ݑ∆െ〉ܭ݀

 

where the K is a high initial penalty stiffness of the surface bond and d is the damage variable. 

The first term in Eq. (11) is responsible for the crack cohesive force, and the second term is 

presented to prevent interpenetration of the crack surfaces. The brackets 〈ݔ〉 ൌ ଵ

ଶ
ሺݔ ൅  ሻ|ݔ|

represent the McAuley operator. The component of the displacement jump normal to the crack 

surface is as follows: 

 

௡ݑ∆  ൌ ሺ∆ܝ ∙  ሻ (12)ܖ
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where Δun represents the mode I component of the total separation. According to the 

methodology proposed by Turon [7], the cohesive energy can be written in the invariant form 

as a function of the absolute value of the displacement jump λ = |Δu|, and a mode mixity 

parameter B defined as follows: 

 

 
ܤ ൌ 1െ

ଶ〈௡ݑ∆〉

ଶߣ
 (13) 

 

The parameter B is equal to 0 for representing pure mode I fracture and is equal to 1 for pure 

mode II and III fracture. 

 

 

Figure 8. Traction-Separation and Damage-Separation relationships [7] 
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As one can see in Figure 8 [7], a bi-linear traction-separation law is assumed if B is fixed to a 

constant. Once the maximum traction τ0 is reached at the separation Δ0, the cohesive traction 

starts to linearly reduce until separation reaches the final separation Δf where the cohesive 

traction is zero. The traction-separation equation is shown as follows: 

 

 

߬ሺߣሻ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

,ߣܭ ߣ ൏ ∆଴

∆௙ െ ߣ
∆௙ െ ∆଴

߬଴, ∆଴൏ ߣ ൏ ∆௙

0, ߣ ൐ ∆௙

 (14) 

 

where τ0 is the cohesive strength. In Eq. (14), the initial value of the displacement jump beyond 

which the beginning of the interface failure takes place is defined as follows: 

 

 ∆଴ൌ
߬଴
ܭ

 (15) 

 

The damage variable d is determined by substituting Eq. (14) into Eq. (11) as shown below: 
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݀ሺߣሻ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

0, ߣ ൏ ∆଴

ቆ
ߣ െ ∆଴
∆௙ െ ∆଴

ቇ
∆௙
ߣ
, ∆଴൏ ߣ ൏ ∆௙

1, ߣ ൐ ∆௙

 (16) 

 

And the damage rate law can be found from the derivative: 

 

 

߲݀
ߣ߲

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

0, ߣ ൏ ∆଴

∆଴∆௙
ଶሺ∆௙ߣ െ ∆଴ሻ

, ∆଴൏ ߣ ൏ ∆௙

0, ߣ ൐ ∆௙

 (17) 

 

Both the cohesive strength and the stiffness are reduced by prior damage. If the cohesive zone 

is unloaded, damage d does not accumulate again until the new maximum traction associated 

with the prior damage is reached. 

 The cohesive strength τ0 also depends on the mode mixity parameter B as follows: 

 

 ሺ߬଴ሻଶ ൌ ܻଶ ൅ ሺܵଶ െ ܻଶሻܤఎ (18) 

 

where Y and S are the interfacial normal and shear strength, and η is an experimentally 

determined influence parameter. All cohesive parameters in the analysis can be measured by 
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using standard test methods such as fracture toughness and cohesive strength. The fracture 

energy density g(λ, B) required to create a displacement jump λ at the given point of the fracture 

surface is the area under the τ(λ) curve as follows: 

 

 
gሺܤ,ߣሻ ൌ න ߬ሺܤ,ݍሻ

ఒ

௤ୀ଴
 (19) ݍ݀

 

To ensure the correct crack propagation response, the final value of the displacement jump Δf 

is defined so that the following condition is satisfied: 

 

 gሺ∆௙ ሻܤ, ൌ  ሻ (20)ܤ௖ሺܩ

 

where the critical energy release rate (ERR), Gc, or fracture toughness, is assumed to be a 

function of the mode mixity as follows: 

 

௖ܩ  ൌ ூ௖ܩ ൅ ሺܩூூ௖ െ  ఎ (21)ܤூ௖ሻܩ

 

and GIc and GIIc are experimentally measured fracture toughness values. In the case of a bi-

linear relationship cohesive law, the final value of the displacement jump is determined by the 

initial value of the displacement jump and the fracture toughness as follows: 
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∆௙ൌ

௖ܩ2
଴∆ܭ

 (22) 

 

The fracture energy associated with a delamination between plies is computed by 

integrating the fracture energy over the interface between n and n+1, designated by the 

horizontal crack surface z = zn, and is given by: 

 

 
Φ௡ ൌ නන gሺܤ,ߣሻ

௭ୀ௭೙

݀ܵ (23) 

 

In the Rx-FEM methodology, the displacement jump at the ply interface surface z = zn is 

computed by using the enriched displacement approximation in the adjacent plies n and n+1, 

provided in the next section in Eq. (39). 

 

3-3-2 Mesh-Independent Crack modeling within a ply 

 The goal of the MIC technique is modeling mesh-independent matrix cracks in each 

ply of the laminate. The regularized MIC formulation is derived from the traditional x-FEM 

proposed by Moes [21], where the cracked element is enriched by adding additional degrees 

of freedom to ensure the displacement jump across the crack surface. These additional degrees 

of freedom are associated with the shape functions, which are partitioned along the crack 

surface, and represented by the Heaviside step function. In the Rx-FEM formulation [1], [22], 

the Heaviside step function used in the x-FEM for representing the matrix crack surface is 
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replaced by a continuous function changing from 0 to 1 over a narrow area or volume called 

gradient zone as shown in Figure 9. 

 

 

Figure 9. The schema of the Rx-FEM formulation. 

 

 This continuous function is approximated by the same shape functions as the 

displacement discontinuities. An advantage of the regularized MIC formulation is in 

maintaining a fixed Gauss integration schema throughout the analysis without regard to 

location and direction of the crack created during the analysis. In this case, the Gauss 

integration schema of the initial approximation may be used for integration of the enriched 

functions. This also simplifies the interaction between plies with different crack orientations 

because they maintain a common integration schema. The elements, as opposed to x-FEM are 

not partitioned since the crack surface is not inside an element, but rather spread over several 

neighbor elements which become an area or volume [43]. 

 The displacement field is represented by defining its value at discrete nodes xi, and i is 

from 1 to the total number of nodes of a given element. Both the physical domain and the 
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displacement field of an isoparametric element are described by using the same shape functions. 

Denote a set of all nodes of a given element e as Ωe and conversely a set of elements sharing a 

node i as ℧i. We will assume that the nodes are numbered in global numeration and write for 

each element as follows: 

 

 
௘ሻߦሺ࢞ ൌ෍ ௜ܰ

௘ሺߦ௘ሻ࢞௜
௜∈ஐ೐

 

(24) 
 

௘ሻߦሺܝ ൌ෍ ௜ܰ
௘ሺߦ௘ሻܝ௜

௜∈ஐ೐
 

 

where ξ is the parametric coordinates. Considering a matrix crack appearing in this volume 

with a crack surface Γα, where the displacement exhibits a discontinuity, define a signed 

distance function fα, which is the same as Eq. (7) as follows: 

 

 ஑݂ሺܠሻ ൌ sign൫ܖሺܠതሻሺܠ െ തሻ൯minܠ
୶ത∈୻ಉ

ܠ‖ െ  ത‖ (25)ܠ

 

where ܖሺܠതሻ is the normal to the crack surface Γα at the point ܠത. In the traditional x-FEM, the 

displacement discontinuity over the crack surface is obtained by multiplying the shape 

functions by the Heaviside step function and redefining the integration domains on each side 

of the discontinuity. The Heaviside step function in the Rx-FEM formulation, however, is 

replaced by a continuous function ܪ෩ሺߦ௘ሻ as follows: 
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௘ሻߦ෩ሺܪ ൌ෍ ௜ܰ

௘ሺߦ௘ሻ݄௜
௜∈ஐ೐

 (26) 

 

where Ni
e are the same shape functions as in Eq. (24). The continuity of the regularized step 

function in Eq. (26) through the domain is assured by single field of nodal values computed 

for node i, by summing over all elements sharing that node as following: 

 

 
݄௜ ൌ

1
2
ቊ1൅ ቆන ෍ ௜ܰ

௘
ఈ݂dܸ

௘∈Լ೔௏
ቇ /ቆන ෍ ௜ܰ

௘| ఈ݂|dܸ
௘∈Լ೔௏

ቇቋ (27) 

 

where we have omitted the coordinate dependence for clarity. All integrals are taken over 

element domains in parametric coordinates. This definition involves only continuous functions 

and the integrals can be calculated by using standard Gauss quadratures. The coefficients hi 

are equal to 0 or 1 if the signed distance function fα does not change sign within the domain of 

the shape functions Ni
e. If an arbitrary crack crosses the domain of the shape functions, then 

the displacement field within the crack region can be defined in the following form: 

 

ܝ  ൌ ෩ܪ ∙ ሺଵሻܝ ൅ ൫1െ ෩൯ܪ ∙  ሺଶሻܝ

(28) 

 
ሺଵሻܝ ൌ෍ ௜ܰ

௘ܝ௜
ሺଵሻ

௜∈ஐ೐
 

 
ሺଶሻܝ ൌ෍ ௜ܰ

௘ܝ௜
ሺଶሻ

௜∈ஐ೐
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where the spatial argument has been omitted for conciseness. This displacement approximation 

in Eq. (28) contains enriched displacement fields in the crack region via displacement fields 

u(1) and u(2), which are approximated by each original shape functions. If the fields u(1) and u(2) 

coincide then there is no displacement discontinuity and the crack begins to open otherwise. 

Since the independence of the displacement fields u(1) and u(2), the strain and stress fields in 

each zone are also independent. The strain field is calculated from each displacement field in 

zone 1 and zone 2 using original strain-displacement relation matrix [B] as follows: 

 

 ઽ ൌ ෩ܪ ∙ ઽሺଵሻ ൅ ൫1െ ෩൯ܪ ∙ ઽሺଶሻ 

(29)  ઽሺଵሻ ൌ ሾ࡮ሿܝሺଵሻ 

 ઽሺଶሻ ൌ ሾ࡮ሿܝሺଶሻ 

 

And the stress field is computed from the strain as follows: 

 

 ો ൌ ෩ܪ ∙ ોሺଵሻ ൅ ൫1െ ෩൯ܪ ∙ ોሺଶሻ 

(30)  ોሺଵሻ ൌ ሾࡰሿોሺଵሻ 

 ોሺଶሻ ൌ ሾࡰሿોሺଶሻ 

 

where [D] is the stress-strain constitutive matrix. Note that in the Rx-FEM formulation the 

integration schema for the displacement zone 1 and zone 2 coincides with each original element 

integration schema without subdivision of the element as opposed to the x-FEM which 
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partition of the element. The strain energy W in the volume V computed using Eq. (28) to Eq. 

(30) is written as follows: 

 

 ܹ ൌ ܹሺଵሻ ൅ܹሺଶሻ 

(31) 

 
ܹሺଵሻ ൌ

1
2
න ෩൫ઽሺଵሻ൯ܪ

்
ોሺଵሻdܸ

௏

 

 
ܹሺଶሻ ൌ

1
2
නሺ1െ ෩ሻ൫ઽሺଶሻ൯ܪ

்
ોሺଶሻdܸ

௏

 

 

The strain energy given in Eq. (31) does not include the energy associated with the MIC 

propagation which is introduced in the next section. Denote a set of all integration point l of a 

given element as Π. The stiffness matrices [K] associated with the displacement fields u(1) and 

u(2) are computed using the Gauss integration points as follows: 

 

 ሾࡷሿ ൌ ሾࡷሿሺଵሻ ൅ ሾࡷሿሺଶሻ 

(32) 

 
ሺଵሻࡷ ൎ෍ሺࡶ|࡮ࡰ்࡮|ሻ|క೗ ∙ ෩ܪ ∙ ௟ܹ

௟∈ஈ

 

 
ሺଶሻࡷ ൎ෍ሺࡶ|࡮ࡰ்࡮|ሻ|క೗ ∙ ൫1െ ෩൯ܪ ∙ ௟ܹ

௟∈ஈ
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where J is the Jacobian matrix, and Wl are the Gauss weights. The load-displacement 

relationship for the element becomes as follows: 

 

 
ቊ
ሺଵሻࡲ

ሺଶሻࡲ
ቋ ൌ ቈ

ሺଵሻࡷ

૙
૙
ሺଶሻ቉ࡷ ቊ

ሺଵሻܝ

ሺଶሻܝ
ቋ (33) 

 

The off-diagonal 0 matrices represent stiffness associated with the separation of the two fields. 

When a cohesive zone model is used to simulate tractions at the crack surfaces, non-zero 

stiffness coefficients will appear in these positions. 

 

3-3-3 Propagation of the Mesh-Independent Crack 

 In the standard x-FEM the fracture energy of the crack would be calculated over crack 

surface by integrating over each facet of the crack surface within each traversed element. In 

the regularized MIC formulation of the Rx-FEM methodology, the MIC propagation is 

governed by the cohesive constitutive relationship developed by Turon [7] for interface 

fracture which is directly inserted into the gradient zone of the MIC. A volume integration (3D) 

or area integral (2D) over gradient zone encompassing crack surface is performed instead.  This 

narrow volume surrounding the crack surface is called gradient zone because in this region 

หܪ׏෩ห ൌ ඥܪ׏෩ ∙ ෩ܪ׏ ൐ 0. The idea is that the true crack surface area is equal to the effective area 

of the crack surface described by a continuous step function, and the fracture energy balance 

has to be represented through volume integration. Consider an arbitrary volume v of a ply 
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which contains a crack surface Γα defined by a signed distance function fα. The surface area of 

this crack Sv in the volume v can be calculated as: 

 

 
S௩ ൌ න ஽ሺߜ ஑݂ሻ

௩
dܸ (34) 

 

where δD(fα) is the Dirac’s delta function of the signed distance function. Assuming an arbitrary 

continuous function g(x) defined in volume v, an equivalence of the surface integral over the 

crack surface Γα (ΓαϵV) and a volume integral can be described by applying Eq. (34) as: 

 

 
ඵ gሺܠሻ
୻ಉ∈௩

dS ൌ න gሺܠሻߜ஽ሺ ఈ݂ሻ
௏

dV (35) 

 

In the case of the Rx-FEM formulation, the Dirac’s delta function of the signed distance 

function δD(fα) of the right term in Eq. (35) is replaced by the gradient of the continuous step 

function หܪ׏෩ห. Now the continuous function g(x), which is defined over the volume v, is 

replaced by the point-wise fracture energy of crack opening which depends implicitly upon the 

spatial coordinates as a function the separation λ and the mode mixity B. Thus, the fracture 

energy required for crack surface opening within the arbitrary volume V is equivalent in the 

regularized and conventional crack surface formulations, and can be calculated as: 
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න gሺܤ,ߣሻߜ஽ሺ ఈ݂ሻ
௏

dV ൎ න gሺܤ,ߣሻหܪ׏෩ห
௏

dV (36) 

 

Note that the volume V must be sufficiently large with respect to the mesh size for the crack 

surface area computed by using the gradient of the step function to be equal to the real crack 

surface area. 

 In traditional interface cohesive zone formulation, the fracture energy is a function of 

the crack opening and dependent on the ratio of the mode I fracture (normal to the crack surface) 

and mode II fracture (tangential to the crack surface). In the regularized MIC formulation, the 

displacement jump is calculated, and the normal vector is defined at all points of the gradient 

zone as follows: 

 

ܝ∆  ൌ ሺଵሻܝ െ  ሺଶሻܝ
(37) 

ܖ  ൌ ׏ ఈ݂ 

 

where u(1) and u(2) are defined by using the enriched displacement fields in Eq. (28). 

Considering the Eq. (36), an equivalent crack surface fracture energy is calculated by using the 

following volume integral as follows: 

 

 
M ൌ ෍ න gሺܤ,ߣሻ

௩೐

หܪ׏෩หdV

ே౛ౢ౛ౣ

௘ୀଵ

 (38) 
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where the M is the cohesive energy associated with the crack, ve is the element domain, g(λ, B) 

is the point-wise cohesive fracture energy corresponding to the displacement jump in the 

gradient zone, and Nelem is the total number of elements. Note that only the elements in the 

gradient zone will be contributing to the cohesive energy.  

 

3-3-4 Delaminations and their Interaction with Mesh-Independent Cracks 

The same cohesive zone model mentioned above [7] is used to modeling the 

delamination between two plies in composites laminate. Consider the ply interface between n 

and n + 1, where the enriched displacement fields are created by the MIC technique for both 

plies. The displacement jump between two plies is computed as follows: 

 

ܝ∆  ൌ ෩௡ାଵܪ ∙ ௡ାଵܝ
ሺଵሻ ൅ ൫1 െܪ෩௡ାଵ൯ ∙ ௡ାଵܝ

ሺଶሻ െ ෩௡ܪ ∙ ௡ܝ
ሺଵሻ െ ൫1െ ෩௡൯ܪ ∙ ௡ܝ

ሺଶሻ (39) 

 

where the subscript denotes the ply number. The delamination fracture energy Φ involves the 

interaction of displacements between two neighboring plies and is computed by integrating the 

point-wise fracture energy over the area of the ply interface in Eq. (23). 

The minimum potential energy principle for deriving the equilibrium equations of an 

N-ply laminate which contains matrix cracks in a ply and delamination between plies can be 

written as follows: 
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δ൭෍൫ܪ෩ ௡ܹ

ሺଵሻ ൅ ൫1െ ෩൯ܪ ௡ܹ
ሺଶሻ ൅M௡൯

ே

௡ୀଵ

൅ ෍Φ௡

ேିଵ

௡ୀଵ

െ ൱ܣ ൌ 0 (40) 

 

where A is the work of external tractions applied at the laminate boundary. The first summation 

for the MIC modeling includes the strain energy Wn
(1) and Wn

(2) on the two sides of the crack 

surface, and the MIC fracture energy Mn of the nth ply. The delamination fracture energy Φn 

for the second summation designates that it is computed for the interface between nth and 

(n+1)th ply. Calculation of the surface energy associated with delamination is conceptually 

straightforward and analogous to MIC which is based on Eq. (19), where the displacement 

jump is calculated as the difference of the displacements on the interface between plies nth and 

(n+1), which is given in each ply by Eq. (39). As a result, all quantities of the regularized 

formulation in Eq. (40) is calculated by Gauss integration throughout the entire element 

domain. The equilibrium system equations are computed without introducing any special 

partitions or integration rules and without regard to the mesh orientation. 
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CHAPTER IV 

IMPLEMENTATION OF THE REGULARIZED EXTENDED FINITE ELEMENT 

METHOD IN ABAQUS 

 

The implementation of the Rx-FEM within a stand-alone finite element code called 

BSAM has been already extensively applied to the static and fatigue analysis in laminated 

composites [27], [29]–[31]. However, commercial FE software, and Abaqus in particular, has 

its advantages including the established markets and trained users, powerful solver in explicit 

and implicit solution forms, and many built-in capabilities which are impractical to implement 

again in the custom code. The following sections describe a path of implementation of the Rx-

FEM methodology which allows to take advantage of such capabilities directly since the 

kinematic portion of the formulation is based on native elements of the host solver. First, the 

implementation of the regularized MIC modeling technique for transverse matrix cracks within 

a single ply is presented. This is followed by the implementation for modeling delamination 

between plies by using the Turon’s [7] surface-based cohesive model, which is also used to 

describe the MIC crack propagation characteristics. Finally, the solution algorithm of the Rx-

FEM implementation in Abaqus is introduced and further detail about the mechanism of the 

MIC implementation is then discussed. 
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4-1 Implementation of the Mesh-Independent Cracking 

The idea of implementation of the MIC modeling by the Rx-FEM approach is based on 

representing the enriched displacement field corresponding to u(1) and u(2) in Eq. (28) by 

superimposing two built-in native Abaqus elements. The cohesive force between the two, 

which corresponds to energy Mn in Eq. (40) is implemented by means of an ABAQUS user 

defined element (UEL). Figure 10 shows two native Abaqus elements (CPS4) with nodes 1 to 

4 and the element with nodes 5 to 8, where the node 1 to 4 and node 5 to 8 are pairwise 

coincident. The Abaqus user defined material (UMAT) capability is employed to multiply the 

material elasticity matrix by ܪ෩ሺݔሻ and ቀ1െ  ሻቁ which correspond to the first and secondݔ෩ሺܪ

terms in Eq. (40), respectively. We shall call these superimposed elements as the “original 

element” and “duplicate element” and rewrite Eq. (28) for the purposes of implementation as 

follows: 

 

ܝ  ൌ ෩ܪ ∙ ୭୰୧୥୧୬ୟ୪ܝ ൅ ൫1െ ෩൯ܪ ∙  ୳୮୪୧ୡୟ୲ୣ (41)ୢܝ

 

The original and duplicate element form identical but independent FE model. It 

introduces an overhead, which can be avoided in standalone implementation but not 

commercial software implementation. Note that this overhead is present in any x-FEM type 

implementation where the respective UEL contains additional (phantom or floating) degrees 

of freedom. In the present work the UEL implemented to account for the cohesive forces 

corresponding to energy Mn contains no independent or additional degrees of freedom and only 

ties together the physical degrees of freedom of the kinematic elements involved akin to a 
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typical cohesive UEL often build for interface failure modeling in standard element analysis. 

Since there are two different UEL usage in this article, we shall call the UEL described in the 

present section as the “MIC UEL” for the MIC implementation and another UEL as the 

“interface UEL” for delamination implementation which will be introduced in the later section. 

In the two-dimensional formulation, the MIC UEL contains nodes 1 to 8 and calculates the 

cohesive traction as a result of separation, which can be obtained as follows: 

 

 ∆uሺx, yሻ ൌ ሼࡺሽሼሺuହ െ uଵሻ	ሺu଺ െ uଶሻ	ሺu଻ െ uଷሻ	ሺu଼ െ uସሻሽ் 

(42)   

 ∆vሺx, yሻ ൌ ሼࡺሽሼሺvହ െ vଵሻ	ሺv଺ െ vଶሻ	ሺv଻ െ vଷሻ	ሺv଼ െ vସሻሽ் 

 

and 

 ሼࡺሽ ൌ ሼ ଵܰ	 ଶܰ	 ଷܰ	 ସܰሽ 

(43) 

  

 
ଵܰ ൌ

ሺ1െ ሻሺ1െߦ ሻߟ
4

, ଶܰ ൌ
ሺ1൅ ሻሺ1ߦ െ ሻߟ

4
 

ଷܰ ൌ
ሺ1൅ ሻሺ1൅ߦ ሻߟ

4
, ସܰ ൌ

ሺ1 െ ሻሺ1൅ߦ ሻߟ

4
 

 

where the shape function vector {N} in the natural coordinates (ζ, η) is that of the original 

element or duplicate element which are identical, and u1 to u8 and v1 to v8 are the nodal 

displacements of normal and shear components in the global coordinates. In the MIC 

implementation, the matrix cracks within a single ply of the laminate are inserted parallel to 
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the fiber orientation and therefore the normal Δun and shear Δut components of the 

displacement separation vector can be written as: 

 

 
൜
∆u௧
∆u௡

ൠ ൌ ሾ܀ሿ ൜
∆uሺx, yሻ
∆vሺx, yሻൠ 

(44) 
  

 ሾ܀ሿ ൌ ቂ cos ߠ sinߠ
െ sinߠ cos ߠ

ቃ 

 

where [R] is the global-local transformation matrix, and θ is the fiber orientation with respect 

to the X axis of the global coordinate system as shown in Figure 10. We shall express the 

displacement separation vector through nodal displacements in the two elements at the 

interface between plies. Introduce a nodal displacement vector containing 16 components 

corresponding to the nodes 1 to 8 with each x and y degrees of freedom in global coordinates.  

Adopting the following sequence of the degrees of freedom {U} as shown below: 

 

 ሼ܃ሽ ൌ ሼuଵ		vଵ		uଶ		vଶ		uଷ		vଷ		uସ		vସ		uହ		vହ		u଺		v଺		u଻		v଻		u଼		v଼ሽ (45) 

 

and substituting Eq. (42) (43) and (45) into Eq. (44), the relationship between the separation 

and the nodal displacements is derived as follows: 
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where [Y] is the global displacement-separation relation matrix, and C and S are cos θ and sin 

θ, respectively. A specific form of the traction separation law of the implemented cohesive 

zone model is then used to calculate the normal τn and shear τt components of a point-wise 

traction vector, which prior to damage initiation is defined by high penalty coefficients K1 and 

K2 as following: 

 

 ቄ
߬௧
߬௡
ቅ ൌ ൜

ଵ∆u௧ܭ
ଶ∆u௡ܭ

ൠ (48) 

 

The formulation of the MIC UEL requires a residual load vector often denoted as {RHS} in 

Abaqus which is obtained in the following expression: 
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where J is the Jacobian matrix. The expression for the tangent stiffness matrix can be obtained 

by standard approach based on differentiation as in Turon [7].  In the present implementation 

secant matrix is used instead for stable convergence in lieu of efficiency. 

 

 

Figure 10. The MIC implementation by superimposing two native Abaqus elements connected 

by a MIC UEL. 

 

4-2 Implementation of Delamination 

In this section, another Abaqus UEL called “interface UEL” connecting two plies with 

enriched displacement approximation in Eq. (41) is described. Figure 11 shows the schematics 

of the interface UEL as well as the normal (Δ2, Δ4) and shear (Δ1, Δ3) components of the 
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displacement jump in the local coordinates in two-dimensional implementation. Suppose a 

matrix crack inserted by the MIC modeling exists in the top ply and bottom ply as well as the 

associated regularized Heaviside step function ܪ෩்௢௣  and ܪ෩஻௢௧௧௢௠ , respectively. We will 

define the values of the regularized Heaviside step function in the nodes of the original element 

in each ply first, and denote them as ܪ෩ଵ
஻௢௧௧௢௠, ܪ෩ଶ

஻௢௧௧௢௠ and ܪ෩ଷ
்௢௣, ܪ෩ସ

்௢௣. The respective values 

of the regularized Heaviside step function in the nodes of the duplicate element are then 

computed as ሺ1െ ෩ଵܪ
஻௢௧௧௢௠ሻ, ሺ1െ ෩ଶܪ

஻௢௧௧௢௠ሻ and (1െ ෩ଷܪ
்௢௣ሻ, (1െ ෩ସܪ

்௢௣ ). We will further 

omit the superscript Top and Bottom in the following equations since we have unique nodal 

indices for each ply eliminating confusion as to which ply the regularized Heaviside step 

function belongs. Therefore, the displacement jump between top and bottom ply can be 

computed by taking into account Eq. (39) and Eq. (41), and the notations described above as 

following: 

 

 ∆ଵൌ ൫ܪ෩ସuସ௟ ൅ ሺ1 െ ෩ସሻu଼௟൯ܪ െ ൫ܪ෩ଵuଵ௟ ൅ ሺ1െ  ෩ଵሻuହ௟൯ܪ

(50) 

  

 ∆ଶൌ ൫ܪ෩ସvସ௟ ൅ ሺ1 െܪ෩ସሻv଼௟൯ െ ൫ܪ෩ଵvଵ௟ ൅ ሺ1െ  ෩ଵሻvହ௟൯ܪ

  

 ∆ଷൌ ൫ܪ෩ଷuଷ௟ ൅ ሺ1െ ෩ଷሻu଻௟൯ܪ െ ൫ܪ෩ଶuଶ௟ ൅ ሺ1െ  ෩ଶሻu଺௟൯ܪ

  

 ∆ସൌ ൫ܪ෩ଷvଷ௟ ൅ ሺ1െ ෩ଷሻv଻௟൯ܪ െ ൫ܪ෩ଶvଶ௟ ൅ ሺ1െ  ෩ଶሻv଺௟൯ܪ
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where u1l to u8l and v1l to v8l are the nodal displacements of normal and shear components in 

the local coordinates. On the basis of the Rx-FEM theory, if there is no matrix crack insertion 

in each ply the values of  ܪ෩்௢௣ and ܪ෩஻௢௧௧௢௠ in the nodes of the original element in each ply 

are equal to 1, and the respective values of  ሺ1െ ෩்௢௣ሻ and ሺ1െܪ  ෩஻௢௧௧௢௠ሻ in the nodes of theܪ

duplicated element in each ply are computed as 0. Then the expressions of the interface UEL 

displacement jump in Eq. (50) reduces to the standard surface-based cohesive zone formulation 

without any matrix cracks. This interface UEL contains nodes 1 to 8, and calculates the 

cohesive traction as a result of separation. The separation or displacement jump can be 

computed as follows: 

 

 ൜
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∆u௡

ൠ ൌ ൤ ଵܰ
0
0
ଵܰ

ଶܰ
0
0
ଶܰ
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(51)   
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where the shape function matrix [N] in the natural coordinates (ζ) is that of the original or 

duplicate element which are identical, and the Δun and Δut are the normal and shear 

components of the displacement separation vector along the delamination direction. Next, the 

point-wise cohesive traction {τ} related to the displacement separation can be obtained by 

following the Eq. (11) which uses the mixed-mode surface-based cohesive zone model by 

Turon [7]. The normal τn and shear τt components of the cohesive traction prior to the damage 

initiation can be calculated by using Eq. (48). The global X and Y degrees of freedom of the 
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interface UEL contain 16 components corresponding to 8 nodes in two-dimensional 

implementation, which for the node numbering on Figure 11 are numbered in the same 

sequence as in Eq. (45). The residual load vector {RHS} of the interface UEL, which is 

required to be defined in Abaqus, can then be written as following: 

 

 
ሼ܁۶܀ሽ ൌ න ሿ்܇ሾܬ ቄ
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 (52) 

and 
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where [Y] is the global displacement-separation relation matrix which can be obtained by 

following the same procedure as in the previous section, and the, however, in this case C=cos 

φ and S=sin φ, where  (sin φ, cos φ) is the normal vector of the ply surface in the X and Y 

coordinates. When top and bottom plies start to move apart, the displacement jump between 

plies will be created, which generates the cohesive tractions and eventually softening and full 

separation. 
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Figure 11. An interface UEL used to connect four native Abaqus elements in the top and 

bottom plies with a MIC crack in each ply. 

 

4-3 Solution Algorithm 

We begin by discussing the implementation of the Rx-FEM kinematic discontinuity 

and follow up with the overall implementation algorithm. The numerical simulation begins 

without any initial matrix cracks, i.e. displacement discontinuity built into the model. As the 

loading is increased, the matrix cracks oriented parallel to the fiber orientation are inserted 

according to a failure criterion LaRC04 failure criterion [44] evaluated at each integration point 

at the end of each loading. If the failure criterion is exceeded, a level set function of the signed 

distance function of the matrix crack surface is introduced, and a regularized Heaviside step 

function associated with this level set is calculated for elements involved. The step function in 
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original and duplicate elements as well as its gradient in the MIC UEL are shown below for a 

9 elements example in Figure 12. 

 

 

Figure 12. The schema of the regularized Heaviside step function and its gradient within a 

crack region. 

 

Prior to crack insertion the step function in all elements was as in the “No Damage” 

region. The original element had an unmodified stiffness and the duplicate element had zero 

stiffness, which created no resistance nor separation in the nodes between the two models. Note 

that with minimal control of the stiffness matrix assembly in the host software the duplicate 

elements and the MIC UELs in the “No Damage” region can be excluded from assembly 

eliminating any overhead. Due to this limitation the MIC UELs in the “No Damage” region 
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are set to tie the original and duplicate models, which in this zone contains zero stiffness 

elements. When the crack is inserted and the “Crack Region” appears, the stiffness of both the 

original and duplicate element is nonzero and they start moving independently. Note that the 

crack region is one element larger than the gradient zone on each side, i.e. in the elements R3 

and R7 (ܪ׏෩ ൌ 0). The presence of these elements in the “Crack Region” is required for 

modeling an arbitrary number of cracks in the model. While no manipulation of nodal 

connectivity is required nor allowed in commercial FE, these elements facilitate the load 

transfer in and out of the duplicate model. As one can see at the boundaries B1, G1 and B9 and 

G9 the elements of the duplicate model have zero stiffness. The applied external load, in this 

case axial tension is transferred from the left side through elements B1 and B2, however, the 

next element B3 has 0 stiffness thus not transferring any load to B4. The B3 on the other hand 

is tied to element G3 effectively transferring the loading into the duplicate model elements. 

The load from the right-hand side is transferred through the original element B4-B9. Thus, if 

the cohesive force in the gradient zone the MIC UELs R4-R6 has been overcome, then we have 

the left and right-hand side of the model independent of each other with active elements B1, 

B2, G3-G6 on one side and B4-B9 on the other. Such setup allows to replace any of the “No 

Damage” regions with another “Crack Region” thus modeling multiple cracking. 

The solution algorithm of a typical simulation is shown in Figure 13. The left part of 

the Figure 13 is the flow chart of the execution inside the Abaqus/Standard, and the right part 

of the Figure 13 is the external code which communicates with Abaqus by using user 

subroutines. In the model preparation step, both original and duplicate models which are 

connected by the MIC UELs in each ply and the interface UELs between plies must be built 

into the full model first before the start of analysis. Once the analysis starts, the MIC database 
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is initiated at the first call of the UEXTERNALDB before the first increment and will be 

updated on each load increment. During the update we perform pointwise evaluation of the 

failure criterion [44]. If it is exceeded, then a signed distance function for the crack surface, 

regularized step function and its gradient are calculated and passed to the respective elements 

of the original and duplicate models according to schematics on Figure 12. After the load is 

incremented a solution on a new step is converged and the process repeated. Addition of the 

interface UEL and extension to multiple plies requires no modification of the algorithm on 

Figure 13. 

 

 

Figure 13. The framework for the proposed implementation of the Rx-FEM methodology in 

Abaqus. 
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CHAPTER V 

VERIFICATION MODELS 

 

In this chapter, several numerical models devoted to verification and application of the 

proposed implementation in laminated composites are presented below. Uniaxial tension 

example of MIC implementation illustrated previously in Figure 12 is examined first. 

Validation of the transverse matrix crack insertion and propagation is performed for off-axis 

pristine and open-hole tensile (OHT) unidirectional composites. Second, several benchmark 

examples with analytical solutions including a double cantilever beam (DCB) test, an end-

notched flexure (ENF) test and a transverse crack tension (TCT) test are performed to verify 

the accuracy of the interface UEL for mode I, mode II and the interaction between an initial 

matrix crack and delamination, respectively. Finally, the bending test of a pristine composite 

beam with 0° and 90° plies is considered to examine all the capabilities of the proposed 

implementation for modeling the progressive damage analysis. 

 

5-1 Uniaxial Tension of a 9 Elements Bar 

In this example, a bar containing a row of 9 elements length with an initial MIC 

insertion in the middle under uniaxial traction is simulated as shown in Figure 14. The low 

initiation strength and high fracture toughness of the cohesive properties are considered for 

easy convergence. The stiffness properties are isotropic and plane stress conditions imposed 

via CPS4 elements. This model appears to have 9 elements but contains 27 elements. This is 
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the same configuration as in Figure 12 which includes 9 original elements, 9 duplicate elements, 

and 9 MIC UELs. After increasing load to completely separation of the bar, the final 

configuration appears to have 10 elements in Figure 14(b). Here and below the visualization is 

performed within Abaqus by using the state variable parameters (SDVs), which allow to 

display or hide elements which satisfy certain criterion defined in Abaqus/CAE. In the present 

and following models within the crack region, only the original and duplicate elements which 

have ܪ෩ሺݔሻ ൐ 0.5 at any integration point in the element are shown. Corresponding to the 

Figure 12, the 5 elements of left-hand side shown from left to right in Figure 14(b) are active 

elements B1, B2, G3, G4, G5, whereas active element G6 is hidden. Similarly, the right-hand 

side of the same figure displays active elements B5-B9, in this case element B4 is hidden. Note 

that the MIC UELs do not require visualization since all the kinematics are accommodated by 

Abaqus native elements. 

 

 

Figure 14. The displacement field of the uniaxial tensile test of a 9 elements bar for (a) pristine 

and (b) failure. 
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5-2 Off-Axis Test of Unnotched Composites 

The geometry of unidirectional unnotched composites in this test is shown in Figure 

15(a). The ratio of the unnotched length 125 mm to width 25 mm (L/W) is 5, and the structured 

mesh size is 1 mm. Ply-level properties of composites used for the analysis are shown in Table 

1 including the stiffness, strength properties, as well as the fracture toughness required for the 

cohesive law. The matrix crack initiation is determined by checking the ply-level failure 

criterion, LaRC04 [44], at each integration point in the end of each increment. If the failure 

criterion is met or exceeded, one or more MICs are inserted at that location. The matrix crack 

is assumed to be planar, parallel to the fiber orientation, and extend to the edges of the model; 

however, it is introduced in the fully closed state. 

 

 

Figure 15. The off-axis test of unnotched composites. (a) Geometry, (b) 15°, (c) 30°, (d) 45°, (e) 

60°, (f) 75°, (g) 90°. 
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Table 1. Unidirectional ply stiffness and strength properties. 

Property Value 

E11 (MPa) 157600 

E22 (MPa) 8977 

G12 (MPa) 5000 

v12 0.32 

Yt (MPa) 92 

S (MPa) 89 

GIC (N/mm) 0.24 

GIIC (N/mm) 0.739 

 

Figure 15(b)-(g) display the regularized Heaviside step function ܪ෩ሺݔሻ distribution for 

the MIC inserted for six different fiber angles (15°, 30°, 45°, 60°, 75° and 90°) when reaching 

the failure criterion of the matrix crack initiation. The visualization is performed according to 

rules as described in previous section thus in the bulk of the specimen away from the crack 

ሻݔ෩ሺܪ ൌ 1   and 0.5 ൏ ሻݔ෩ሺܪ ൏ 1  in the gradient zone. As expected from physical 

considerations these specimens exhibit unstable two pieces failure along the crack surface 

immediately after crack insertion, which was observed in progressive failure analysis 

simulations as well. Figure 16 shows the predicted failure strength as well as the failure envelop 

corresponding to LaRC04 failure criterion [44], which coincide and thus validate the MIC 

insertion portion of the Rx-FEM implementation. 
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Figure 16. The static failure envelop simulation from the proposed implementation of the Rx-

FEM in Abaqus. 

 

5-3 Unidirectional Composites with Open Hole 

A rectangular unidirectional composite plate with a central hole under uniaxial tension 

is considered in this next. The material properties of the OHT coupons used for the analysis 

are identical to the off-axis test as shown in Table 2. The diameter of the hole was 6.375 mm 

(1/4 inch) and the ratio of width to hole diameter (W/D) and length to diameter (L/D) are 6 and 

18 respectively as shown in Figure 17. Three coupons with 90°, 45° and 0° fiber orientations 

are examined. The structured mesh size is 1 mm for 90° and 45° coupons and 0.5 mm for 0° 

coupon. The stress and displacement fields in the pristine and failed specimens are examined. 

In the cases of the 90° and 45° coupons, the normal transverse stress component σ22 and the ux 
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displacement are shown in Figure 18 and Figure 19, whereas for the 0° coupon the fiber 

direction σ11 stress and ux are shown in Figure 20. 

 

 

Figure 17. Geometry of the OHT unidirectional composites 

 

In both cases of the 90° and 45° coupons, as one can see the crack insertion locations 

coincide with the transverse stress concentration location as shown on the right of the Figure 

18 and Figure 19. One MIC on each side of the hole is inserted, and these coupons with two 

matrix cracks are separated immediately after increasing the load.  The figure of stress 

distribution after separation is not shown here since the stress of specimen vanishes right after 

fully separation. The displacement distribution after separation indicates a complete two pieces 

failure as shown in Figure 18(c) and Figure 19(c). Note that the ability to readily display the 

displacement field, stress field and separation of the specimens by using standard Abaqus 

visualization options can only be achieved by using native Abaqus elements for simulation. 
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Table 2. Unidirectional ply stiffness and strength properties. 

Property Value 

E11 (MPa) 157600 

E22 (MPa) 8977 

G12 (MPa) 5000 

v12 0.32 

Yt (MPa) 92 

S (MPa) 89 

GIC (N/mm) 0.24 

GIIC (N/mm) 0.739 

 

 

Figure 18. Numerical results of the OHT specimen with 90° fiber orientation. (a) Pristine σ22 

stress field, (b) pristine ux displacement field, and (c) failure ux displacement field. 
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Figure 19. Numerical results of the OHT specimen with 45° fiber orientation. (a) Pristine σ22 

stress field, (b) pristine ux displacement field, and (c) failure ux displacement field. 

 

Next a 0° coupon is considered.  In this case, 4 longitudinal cracks are inserted at the 

locations corresponding to the LaRC04 failure criteria [44] at approximately ±78° angle with 

respect to the loading direction at the edge of the hole. The axial displacement field ux before 

the crack insertion and after separation are shown in Figure 20(a) and Figure 20(b). As one can 

see the specimen separates into 4 part which include the outer ligaments and two middle 

ligaments. Two middle ligaments are pulled out, whereas the outer ligaments are displaying 

linear displacement patterns as shown in Figure 20(b). The stress fields corresponding to such 

kinematics are represented in Figure 20(c) and Figure 20(d). One can observe a high fiber 

stress concentration at the ±90° locations at the edge of the hole before the coupon splitting as 

shown in Figure 20(c). After separation, as seen in Figure 20(d), the top and bottom ligaments 
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are uniformly loaded with no stress concentration, whereas the middle ligaments are 

completely unloaded. This splitting phenomena is very important for understanding various 

failure patterns and strength effects in laminated composites and needs to be accurately 

modeled on the ply level [45]. 

 

 

Figure 20. Numerical results of the OHT specimen with 0° fiber orientation. (a) Axial 

displacement field ux before cracking and (b) after separation. (c)Axial stress field σ11 before 

cracking and after separation. 

 

Figure 21 displays the average traction versus applied strain and normalized crack 

length versus applied strain which is also compared with the experiment data. When the applied 

strain is around 0.0016, four cracks are inserted and their opening leads to the stiffness 

reduction. When the applied strain is increasing, the crack 1 and 2 start propagating first 

followed by the crack 3 and 4 and the trend has a good agreement compared with the 

experiment data. 
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Figure 21. Numerical results of both average traction and normalized crack length of each 

crack versus applied strain, and comparison between numerical results and experiment data 

for normalized crack length of each crack versus applied strain. 

 

5-4 Double Cantilever Beam Test 

The DCB benchmark test [46] is used to verify the performance of the interface UEL 

in the proposed Abaqus implementation under pure mode I fracture. As shown in Figure 22, 

the dimensions of the DCB specimen are length L = 50 mm, thickness h = 3 mm. The width is 

20 mm, and the right end of the DCB model is a fixed boundary condition. An initial crack 

length a = 30 mm is created, and the material properties are given in Table 3.  
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Figure 22. Geometry of the DCB specimen. 

 

Table 3. Material properties for the DCB and ENF models. 

Property Value 

E11 (MPa) 135300 

E22 (MPa) 9000 

G12 (MPa) 5200 

v12 0.32 

Yt (MPa) 57 

S (MPa) 90 

GIC (N/mm) 0.28 

GIIC (N/mm) 0.63 

 

The structured mesh size 0.2 mm along the interface and 0.3 mm through the thickness 

are sufficiently fine. The top beam of the DCB specimen, as well as the bottom beam, contains 

the native Abaqus plane strain elements CPE4 used for both original and duplicate models 

which are connected by the MIC UELs. The bottom surface of the top beam and the top surface 
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of the bottom beam are connected by using the interface UELs except for the initial crack 

surface.  

 

 

Figure 23. Load-displacement curve of the DCB test. 

 

While not necessarily displaying the MIC, this example, as well as the following 

example, provides verification of the Mode I and Mode II delamination propagation by using 

the proposed interface UEL. For the pure mode I static failure analysis, the load-displacement 
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curve of the DCB test is compared with the analytical solutions which include classical beam 

theory (CBT) and modified beam theory (MBT) as shown in Figure 23. As a result, the 

numerical simulation has a good agreement with the MBT analytical solution in the DCB test. 

The proposed implementation which is based on utilization of the native Abaqus elements 

allows to take advantages of the features of the host software, e.g. geometrically nonlinear 

analysis. In this particular case, numerical solutions by using geometrically linear and 

nonlinear analysis were performed and show similar results as expected. 

 

5-5 End-Notched Flexure Test 

The ENF benchmark test [46] is used to verify the performance of the proposed 

interface UEL under pure mode II failure. As shown in Figure 24, the dimensions of the ENF 

specimen and the material properties are the same as the DCB specimen. The left end node and 

right end node of the ENF bottom surface are the pinned and roller boundary conditions applied, 

respectively. The Abaqus CPE4 elements with 0.2 mm length and 0.3 mm thickness mesh size 

are adopted to the ENF specimen which is identical to the DCB model configuration, where 

the original and duplicate elements are tied by the MIC UELs and the interface UELs are set 

to connect between the top beam and bottom beam along the potential crack propagation path 

excluding the initial crack surface. 
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Figure 24. Geometry of the ENF specimen. 

 

In the present case, another capability of the host software which is the Abaqus built-in 

contact interactions is added between the bottom surface of the top beam and the top surface 

of the bottom beam. Contact properties with “Frictionless” for tangential behavior and “Hard 

contact” for normal behavior are assigned to four different contact pairs including: 

 The bottom surface of the original top beam and the top surface of the original bottom 

beam 

 The bottom surface of the original top beam and the top surface of the duplicate bottom 

beam 

 The bottom surface of the duplicate top beam and the top surface of the original bottom 

beam 

 The bottom surface of the duplicate top beam and the top surface of the duplicate 

bottom beam 

 For the pure mode II static failure analysis, the load-displacement curve of the ENF test 

is compared with the analytical solution as shown in Figure 25. It can be seen that the numerical 

result has a good agreement with the analytical solution for this ENF analysis. The deformed 

shape of the ENF specimen is shown in Figure 26 displaying the displacement fields and 
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sliding contact between top and bottom beams thus proving the ability to use host software 

contact capability within Rx-FEM implementation. Similarly, the DCB case the computations 

were carried out in geometrically linear and nonlinear formulations. 

 

 

Figure 25. Load-displacement curve of the ENF test. 
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Figure 26. Deformed shape of the ENF specimen displaying the contact between delaminated 

plies. 

 

5-6 Transverse Crack Tension Test 

The TCT specimen, described in reference [47], is examined to evaluate the accuracy 

of the proposed implementation for predicting the interaction between an initial matrix crack 

and delamination. As shown in Figure 27, the TCT model consists of three 0° unidirectional 

plies with thickness h, 2h and h from top ply, middle ply to bottom ply. The dimensions of the 

TCT specimen are length L = 120 mm, h = 1 mm and width = 32 mm. An initial crack is cut 

through the width at the middle of the middle ply. The potential delamination propagation 

paths including the top-middle surface and middle-bottom surface are modeled by using the 

interface UEL previously described. The contact interaction pairs of the Abaqus built-in 

capability are also activated for those interfaces, where 4 contact pairs are set for the top-

middle surface and the other 4 contact pairs for the middle-bottom surface. The TCT model is 

subjected to uniaxial tensile loading, and the material properties used in this test are 
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summarized in Table 4. The Abaqus plane strain elements (CPE4) for the original and duplicate 

elements are used with mesh size 0.5 mm length and 0.5 mm through the whole thickness 

which are sufficiently fine. Geometric linear analysis is applied in the Abaqus/Standard. 

 

 

Figure 27. Geometry of the TCT specimen. 

 

Table 4. Material properties for the TCT model 

Property Value 

E11 (MPa) 139900 

E22 (MPa) 10100 

G12 (MPa) 4600 

v12 0.3 

Yt (MPa) 80 

S (MPa) 100 

GIC (N/mm) 0.12 

GIIC (N/mm) 0.5 
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The applied stress versus applied displacement curve compared with the analytical 

analysis is shown in Figure 28. 

 

 

Figure 28. Applied average stress-displacement curve of the TCT test. 

 

When the displacement loading is applied, the applied stress initially increases linearly 

until the delamination initiation starting from two tips of the middle crack. Then these 

delaminations start to propagate in a stable manner while the applied stress remains constant. 
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Finally, the applied stress starts increasing again after the delaminations reach the grips, but 

with a different slope since the middle ply of the TCT specimen is completely unloaded. As 

one can see the numerical simulation in the TCT test shows a good agreement with the 

analytical solution for predicting the applied stress value of the delamination initiation starting 

from the tips of the matrix crack. 

 

5-7 Bending of 2 plies composite laminate 

Consider a 2 plies laminate with L = 50 mm and h = 3 mm consisting of a 0° 

unidirectional top ply, 90° unidirectional bottom ply and a loading roller with r = 3 mm as 

shown in Figure 29. 

 

 

Figure 29. Geometry of the composite laminate. 

 

 Both the left end node and right end node of the bottom surface are pinned boundary 

condition. The material properties are given in Table 5. The Abaqus native element CPE4 for 

original and duplicate elements, the MIC UEL for MIC propagation, and the interface UEL for 

delamination are adopted in the model. 
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Table 5. Material properties for the composite laminate. 

Property Value 

E11 (MPa) 157600 

E22 (MPa) 8977 

G12 (MPa) 5000 

v12 0.32 

Yt (MPa) 92 

S (MPa) 89 

GIC (N/mm) 0.24 

GIIC (N/mm) 0.739 

 

 The Abaqus built-in contact feature with “Frictionless” and “Hard contact” is applied 

to six different contact pairs including four pairs for the interface between top ply and bottom 

ply as discussed previously in the ENF test, and two pairs for the following: 

 The bottom surface of the original top beam and the top surface of the original bottom 

beam 

 The bottom surface of the original top beam and the top surface of the duplicate bottom 

beam 

 The bottom surface of the duplicate top beam and the top surface of the original bottom 

beam 

 The bottom surface of the duplicate top beam and the top surface of the duplicate 

bottom beam 
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 Roller surface and the top surface of the original top ply 

 Roller surface and the top surface of the duplicate top ply 

In this test, a roller will apply two step displacement loading on the top surface of the composite 

laminate. 

 

 

Figure 30. Progressive damage analysis in composite laminate. The σ22 stress field just (a) before 

a MIC insertion and (b) after, and the displacement field (c) in the end of 1st step and (d) 2nd 

step. 

 

 The simulation begins without any initial matrix crack and delamination. In the first 

step, the roller applies 6 mm displacement loading along the -y direction. Figure 30(b) shows 

the normal transverse stress component σ22 just after a MIC insertion, where the location 
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coincides with the maximum stress location at the center point of the bottom surface just before 

the matrix crack initiation as shown in Figure 30(a). As one can see that the MIC forms a 

matrix crack and the delamination starts to propagation along the ply interface in the end of 

the first step in Figure 30(c) which shows the displacement field. Please note again that it 

appears to have a real matrix crack since any element having ܪ෩ሺݔሻ ൏ 0.5 at every integration 

point is hidden by using the SDVs in Abaqus visualization. In the second step, the roller is 

sliding 10 mm left along the -x direction. When the roller is moving left, further delamination 

grows as expected as shown in Figure 30(d). The numerical simulation in Figure 30 proves 

that the proposed implementation has the ability for modeling the progressive damage analysis 

in laminated composites which consists of the arbitrary matrix crack insertion and propagation, 

and delamination due to the matrix cracks. 
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CHAPTER VI 

CONCLUSIONS 

 

A successful implementation of the Rx-FEM methodology in the commercial finite 

element software Abaqus is demonstrated in two-dimensional formulation for modeling 

progressive damage analysis in laminated composite materials. The proposed implementation 

consists of the implementation of MIC technique to modeling arbitrary transverse matrix 

cracks in each ply of the composite laminate, and delamination between plies by using mixed-

mode cohesive formulation which is also used to describe the MIC matrix crack propagation. 

The implementation of MIC modeling is based on by superimposing two native Abaqus 

elements which are connected by a cohesive MIC UEL. In order to facilitate the regularized 

Heaviside step function based energy conditions for the MIC propagation, a UMAT is used in 

the superimposed elements. In addition, an interface UEL is developed to connect two 

composite plies with MICs.  

Three verification models including a simple bar, unnotched plate, and an OHT coupon 

are considered for verifying accurate insertion and propagation of the arbitrary transverse 

matrix crack in the MIC implementation. The numerical simulations for unnotched plate and 

OHT coupon show that one or more MICs are correctly inserted parallel to the fiber orientation 

at the failure locations when the LaRC04 failure criterion [44] is met or exceeded at the end of 

each loading increment. The propagation of each MIC, governed by a mixed-mode cohesive 
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model implemented in the MIC UEL, has good agreement compared with the experiments data 

for the splitting phenomenon of the OHT 0° coupon.  

 Benchmark solutions were used to successfully verify interface UEL accuracy for 

Mode I, Mode II propagation and the interaction between initial matrix crack and delamination 

in geometrically linear and non-linear formulation for DCB, ENF and TCT specimens. Finally, 

a bending example of a 2 plies composite laminate was considered bringing together the 

developed capabilities in geometrically nonlinear formulation to simulate matrix cracking and 

delamination under sliding roller contact displaying the ability of the present implementation 

to utilize features of the host software without modification of the Rx-FEM implementation. 
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APPENDIX A 

ABAQUS INPUT FILE OF THE PROPOSED IMPLEMENTATION 

 

 The present appendix is the Abaqus input file of 9 elements bar example for the 

proposed implementation. Further detail of this example is provided for reader in section 5-1 

Uniaxial Tension of a 9 Elements Bar. 

  

**MODEL DEFINITION 

*node 

**nodes 1 to 20 for original elements, nodes 21 to 40 for duplicate elements 

1, 0, 0 

2, 0.1, 0 

3, 0.2, 0 

4, 0.3, 0 

5, 0.4, 0 

6, 0.5, 0 

7, 0.6, 0 

8, 0.7, 0 

9, 0.8, 0 

10, 0.9, 0 

11, 0.9, 0.1 

12, 0.8, 0.1 

13, 0.7, 0.1 

14, 0.6, 0.1 

15, 0.5, 0.1 

16, 0.4, 0.1 

17, 0.3, 0.1 
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18, 0.2, 0.1 

19, 0.1, 0.1 

20, 0, 0.1 

21, 0, 0 

22, 0.1, 0 

23, 0.2, 0 

24, 0.3, 0 

25, 0.4, 0 

26, 0.5, 0 

27, 0.6, 0 

28, 0.7, 0 

29, 0.8, 0 

30, 0.9, 0 

31, 0.9, 0.1 

32, 0.8, 0.1 

33, 0.7, 0.1 

34, 0.6, 0.1 

35, 0.5, 0.1 

36, 0.4, 0.1 

37, 0.3, 0.1 

38, 0.2, 0.1 

39, 0.1, 0.1 

40, 0, 0.1 

*element, type=CPS4, elset=original 

1, 1, 2, 19, 20 

2, 2, 3, 18, 19 

3, 3, 4, 17, 18 

4, 4, 5, 16, 17 

5, 5, 6, 15, 16 

6, 6, 7, 14, 15 

7, 7, 8, 13, 14 

8, 8, 9, 12, 13 

9, 9, 10, 11, 12 
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*element, type=CPS4, elset=duplicate 

10, 21, 22, 39, 40 

11, 22, 23, 38, 39 

12, 23, 24, 37, 38 

13, 24, 25, 36, 37 

14, 25, 26, 35, 36 

15, 26, 27, 34, 35 

16, 27, 28, 33, 34 

17, 28, 29, 32, 33 

18, 29, 30, 31, 32 

*orientation, name=ori-1 

**crack orientation for this example 

1., 0., 0., 0., 1., 0. 

3, 90. 

*solid section, elset=original, orientation=ori-1, material=umat1 

1 

* solid section, elset=duplicate, orientation=ori-1, material=umat2 

1 

*material, name=umat1 

*user material, constants=4, type=mechanical 

**UMAT for original element 

9000, 9000, 3080, 0.3 

*depvar 

4 

* material, name=umat2 

*user material, constants=4, type=mechanical 

**UMAT for duplicate element 

9000, 9000, 3080, 0.3 

*depvar 

4 

*user element, type=U111, nodes=8, coordinates=2, properties=5, variables=42 

1, 2 

*element, type=U111, elset=mic_uel 
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**MIC UEL 

19, 1, 2, 19, 20, 21, 22, 39, 40 

20, 2, 3, 18, 19, 22, 23, 38, 39 

21, 3, 4, 17, 18, 23, 24, 37, 38 

22, 4, 5, 16, 17, 24, 25, 36, 37 

23, 5, 6, 15, 16, 25, 26, 35, 36 

24, 6, 7, 14, 15, 26, 27, 34, 35 

25, 7, 8, 13, 14, 27, 28, 33, 34 

26, 8, 9, 12, 13, 28, 29, 32, 33 

27, 9, 10, 11, 12, 29, 30, 31, 32 

*uel property, elset=mic_uel 

**properties for cohesive model 

0.2, 0.2, 60, 60, 1000000 

*step, nlgeom=no, inc=1000 

step 1 

*static, stabilize, factor=0.002, allsdtol=0.05, continue=no 

0.001, 1.0, 1e-20, 0.01 

*controls, reset 

*controls, parameters=time incrementation 

8, 10, , , , , , 50, , ,  

*Controls, parameters=field, field=displacement 

0.025, 0.05, , , 0.1, , , 

*boundary 

1, 2, 2, 0 

21, 2, 2, 0 

10, 2, 2, 0 

30, 2, 2, 0 

1, 1, 1, -0.1 

21, 1, 1, -0.1 

20, 1, 1, -0.1 

40, 1, 1, -0.1 

10, 1, 1, 0.1 

30, 1, 1, 0.1 
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11, 1, 1, 0.1 

31, 1, 1, 0.1 

*node print 

U 

RF 

*el print 

S 

*el print 

SDV 

*output, field 

*node output, variable=preselect 

U, RF 

*element output, directions=yes, variable=preselect 

S, E, SDV 

*end step 
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APPENDIX B 

ABAQUS USER-DEFINED MATERIAL CODE OF THE PROPOSED 

IMPLEMENTATION 

 

 The present appendix is the Abaqus user-defined material (UMAT) code of the 

proposed implementation. This UMAT code is employed to multiply the material elasticity 

matrix by regularized Heaviside step function ܪ෩ሺݔሻ and ቀ1െ  ሻቁ which correspond to theݔ෩ሺܪ

first and second terms in Eq. (40), respectively. Further detail of the UMAT is provided for 

reader in section 4-1 Implementation of the Mesh-Independent Crack. 

 

!abaqus 2d UMAT user subroutine definition 

!multiply material stiffness by regularized H 

subroutine H_Mat (PROPS,DDSDDE,H) 

 include 'ABA_PARAM.INC' 

 dimension PROPS(*), DDSDDE(3,3) 

  

 !!isotropic material 

 ! real(8) :: E, nu, G, H 

 

 ! E = PROPS(1) 

 ! nu = PROPS(2) 

 ! G = E/(2.0D0*(1.0D0+nu)) 

  

 ! DDSDDE(1,1) = H*E/(1.0D0-nu**2) 

 ! DDSDDE(1,2) = H*E/(1.0D0-nu**2)*nu 
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 ! DDSDDE(2,1) = H*E/(1.0D0-nu**2)*nu 

 ! DDSDDE(2,2) = H*E/(1.0D0-nu**2) 

 ! DDSDDE(3,3) = H*G 

  

 !Composite material 

 real(8) :: E1, E2, G12, nu12, H 

  

 E1 = PROPS(1) 

 E2 = PROPS(2) 

 G12 = PROPS(3) 

 nu12 = PROPS(4) 

 nu21 = (E2*nu12)/E1 

  

 DDSDDE(1,1) = H*E1/(1.0D0-nu12*nu21) 

 DDSDDE(1,2) = H*(E1*nu21)/(1.0D0-nu12*nu21) 

 DDSDDE(2,1) = DDSDDE(1,2) 

 DDSDDE(2,2) = H*E2/(1.0D0-nu12*nu21) 

 DDSDDE(3,3) = H*G12 

  

 return 

end subroutine 

 

  



79 
 

 

APPENDIX C 

ABAQUS USER-DEFINED ELEMENT CODE OF THE PROPOSED 

IMPLEMENTATION 

 

 The present appendix is the Abaqus user-defined element (UEL) code of the proposed 

implementation. The MIC UEL implemented to account for the cohesive forces corresponding 

to energy Mn in Eq. (40) contains no independent or additional degrees of freedom and only 

ties together the physical degrees of freedom of the kinematic elements involved akin to a 

typical interface UEL often build for interface failure modeling in standard element analysis. 

Further detail of the MIC UEL and interface UEL is provided for reader in section 4-1 

Implementation of the Mesh-Independent Crack and 4-2 Implementation of Delamination, 

respectively. 

 

!abaqus 2D UEL user subroutine definition 

subroutine uel(RHS, AMATRX, SVARS, ENERGY, NDOFEL, NRHS, NSVARS, & 

 PROPS, NPROPS, COORDS, MCRD, NNODE, U, DU, V, A, JTYPE, TIME, & 

 DTIME, KSTEP, KINC, JELEM, PARAMS, NDLOAD, JDLTYP, ADLMAG, & 

 PREDEF, NPREDF, LFLAGS, MLVARX, DDLMAG, MDLOAD, PNEWDT, JPROPS, & 

 NJPRO, PERIOD) 

  

 use rxfem_core 

 include 'ABA_PARAM.INC' 

  

 dimension RHS(MLVARX, *), AMATRX(NDOFEL, NDOFEL), PROPS(*), & 
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  SVARS(*), ENERGY(8), COORDS(MCRD, NNODE), U(NDOFEL), & 

  DU(MLVARX, *), V(NDOFEL), A(NDOFEL), TIME(2), PARAMS(*), & 

  JDLTYP(MDLOAD, *), ADLMAG(MDLOAD, *), DDLMAG(MDLOAD, *), & 

  PREDEF(2, NPREDF, NNODE), LFLAGS(*), JPROPS(*) 

 

 !variables used in the UEL subroutine 

 dimension Sc(ndofel, ndofel), Fc(ndofel, nrhs), & 

  T(mcrd, nrhs), T_d(mcrd, mcrd), R(mcrd, mcrd), & 

  Bc(mcrd, ndofel), Bct(ndofel, mcrd), ShapeN(nnode), Co_de(mcrd, nnode), & 

  del(mcrd), GP_W1(4), GP_W2(2), tmp(ndofel, mcrd), Co_de_l(mcrd, nnode), & 

  Transformation_M(ndofel, ndofel), Transformation_M_T(ndofel, ndofel), & 

  tmp1(ndofel, ndofel), Sc_global(ndofel, ndofel), Fc_global(ndofel, nrhs), H(4) 

   

 !variables for CZM model 

 double precision Gn, Gt, Tn_m, Tt_m, th, lambda_ncr, lambda_tcr, & 

  T_t, T_n, Jacobian, delta_h, N1, N2, N3, N4, del1, del2, del3, & 

  del4, del5, del6, del7, del8, deln_max, delt_max, el_length, damage 

 

 integer :: i, n_GP 

  

 type(element), pointer :: elem  !the element from elems_a which this MIC UEL shares a facet with 

  real(8), allocatable :: crack_norm(:)        !the crack_normal vector for the element         

  real(8), allocatable :: elem_mcs(:,:)        !the material coordinate system for the element 

  real(8), allocatable :: crack_cs(:,:)        !the crack surface coordinate system 

  real(8) :: vec3(3)              !a dummy vector 

  real(8) :: mag                  !dummy for magnitude of vec3 

  

 !MIC UEL for connection elem_a and elem_b 

 if (JTYPE .eq. 111) then 

   

  !initializations 

  n_GP = 4 

  GP_W1 = (/1.d0 , 1.d0 , 1.d0 , 1.d0/) 
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  call k_Matrix_Zero(RHS, ndofel, nrhs) 

  call k_Matrix_Zero(AMATRX, NDOFEL, NDOFEL) 

  Transformation_M = 0.d0 

  Transformation_M_T = 0.d0 

  Co_de = 0.d0 

   

  !properties for CZM model 

  Gn     = PROPS(1) 

  Gt     = PROPS(2) 

  Tn_m   = PROPS(3) 

  Tt_m   = PROPS(4) 

  K  = PROPS(5) 

   

  !Change from the global coordinates to the local coordinates 

  do i = 1, mcrd 

   do j = 1, nnode 

    Co_de(i, j) = COORDS(i, j) + U(2*(j-1)+i) 

   end do 

  end do 

 

  do i =1, n_GP 

   !first get the gradient of the step function at this integration point 

   call get_elem(JELEM-4*size(groups(1)%elems_a), elem) 

    

   !now obtain the norm of the element's step function gradient 

   delta_h = elem%norm_grad_stepf_int(i) 

    

   !get rid of small values in delta_h 

   if (abs(delta_h) .lt. 1e-10) then 

    delta_h = 0.d0 

   end if 

    

   if ((allocated(elem%crack_norm)) .and. (delta_h .ne. -1.d0)) then 
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    !now obtain the set of basis vectors aligned with the crack surface 

    if (allocated(crack_norm) .ne. .true.) then 

     allocate(crack_norm(size(elem%crack_norm))) 

     allocate(elem_mcs(size(elem%orient,1),size(elem%orient,2))) 

     allocate(crack_cs(size(elem_mcs,1),size(elem_mcs,2))) 

    end if 

     

    !pull the element attributes into dummy parameters 

    crack_norm(:) = elem%crack_norm(:) 

    elem_mcs(:,:) = elem%orient(:,:) 

     

    !fill the first axis of the crack c.s. with the crack normal 

    crack_cs(1,1:) = crack_norm(1:size(crack_cs,2)) 

    !fill the second axis of the crack c.s. with the fiber direction 

    crack_cs(2,1:) = elem_mcs(1:,1) 

         

    !transpose the crack_cs so that its columns are the basis vectors of the  
    crack_cs 

    crack_cs = transpose(crack_cs)     

    R = transpose(crack_cs) 

   else 

    R(1,:) = (/1.d0, 0.d0/) 

    R(2,:) = (/0.d0, 1.d0/) 

   end if 

     

   !now get the tangential and normal separations at this integration point 

   call k_Coords_Transform (PROPS, R, el_length, COORDS, U, ndofel, nnode, delta_h, 
   & mcrd, Jacobian, Co_de_l, Transformation_M, Transformation_M_T, Co_de, c_r, 
   c_s, i) 

 

   del1 = Co_de_l(1, 5) - Co_de_l(1, 1) 

   del2 = Co_de_l(2, 5) - Co_de_l(2, 1) 

   del3 = Co_de_l(1, 6) - Co_de_l(1, 2) 

   del4 = Co_de_l(2, 6) - Co_de_l(2, 2) 
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   del5 = Co_de_l(1, 7) - Co_de_l(1, 3) 

   del6 = Co_de_l(2, 7) - Co_de_l(2, 3) 

   del7 = Co_de_l(1, 8) - Co_de_l(1, 4) 

   del8 = Co_de_l(2, 8) - Co_de_l(2, 4) 

      

   !Numerical integration to compute RHS and AMATRX 

   N1 = (1 - c_r)*(1 - c_s)*0.25 

   N2 = (1 + c_r)*(1 - c_s)*0.25 

   N3 = (1 + c_r)*(1 + c_s)*0.25 

   N4 = (1 - c_r)*(1 + c_s)*0.25 

   del(1) = N1*del1 + N2*del3 + N3*del5 + N4*del7 

   del(2) = N1*del2 + N2*del4 + N3*del6 + N4*del8 

       

   !for cohesive law 

   damage = SVARS(i) 

   call cohesive_law2 (PROPS, T, T_d, del, SVARS, damage, delta_h) 

    

   !store CZM damage into elem_a 

   elem%damage(i) = damage 

    

   ShapeN(1) = -N1 

   ShapeN(2) = -N2 

   ShapeN(3) = -N3 

   ShapeN(4) = -N4 

   ShapeN(5) = N1 

   ShapeN(6) = N2 

   ShapeN(7) = N3 

   ShapeN(8) = N4 

 

   Bc(1, 1) = ShapeN(1) 

   Bc(1, 2) = 0.d0 

   Bc(1, 3) = ShapeN(2) 

   Bc(1, 4) = 0.d0 
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   Bc(1, 5) = ShapeN(3) 

   Bc(1, 6) = 0.d0 

   Bc(1, 7) = ShapeN(4) 

   Bc(1, 8) = 0.d0 

   Bc(1, 9) = ShapeN(5) 

   Bc(1, 10) = 0.d0 

   Bc(1, 11) = ShapeN(6) 

   Bc(1, 12) = 0.d0 

   Bc(1, 13) = ShapeN(7) 

   Bc(1, 14) = 0.d0 

   Bc(1, 15) = ShapeN(8) 

   Bc(1, 16) = 0.d0 

   Bc(2, 1) = 0.d0 

   Bc(2, 2) = ShapeN(1) 

   Bc(2, 3) = 0.d0 

   Bc(2, 4) = ShapeN(2) 

   Bc(2, 5) = 0.d0 

   Bc(2, 6) = ShapeN(3) 

   Bc(2, 7) = 0.d0 

   Bc(2, 8) = ShapeN(4) 

   Bc(2, 9) = 0.d0 

   Bc(2, 10) = ShapeN(5) 

   Bc(2, 11) = 0.d0 

   Bc(2, 12) = ShapeN(6) 

   Bc(2, 13) = 0.d0 

   Bc(2, 14) = ShapeN(7) 

   Bc(2, 15) = 0.d0 

   Bc(2, 16) = ShapeN(8) 

 

   call k_Matrix_Transpose (Bc, Bct, mcrd, ndofel) 

   call k_Matrix_Multiply (Bct, T_d, tmp, ndofel, mcrd, mcrd) 

   call k_Matrix_Multiply (tmp, Bc, Sc, ndofel, mcrd, ndofel) 

   call k_Matrix_Multiply (Transformation_M_T, Sc, tmp1, ndofel, ndofel, ndofel) 
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   call k_Matrix_Multiply (tmp1, Transformation_M, Sc_global, ndofel, ndofel, ndofel) 

   call k_Matrix_PlusScalar (AMATRX, Sc_global, Jacobian, ndofel, ndofel) 

   call k_Matrix_Multiply (Bct, T, Fc, ndofel, mcrd, nrhs) 

   call k_Matrix_Multiply (Transformation_M_T, Fc, Fc_global, ndofel, ndofel, nrhs) 

   call k_Matrix_PlusScalar (RHS, -Fc_global, Jacobian, ndofel, nrhs) 

 

   !update the SVARS for cohesive law 

   SVARS(i) = damage 

 

  end do 

  

 !interface UEL between plies 

 else if (JTYPE .eq. 112) then 

 

  !initializations 

  n_GP = 2 

  GP_W2 = (/1.d0, 1.d0/) 

  call k_Matrix_Zero(RHS, ndofel, nrhs) 

  call k_Matrix_Zero(AMATRX, NDOFEL, NDOFEL) 

  Transformation_M = 0.d0 

  Transformation_M_T = 0.d0 

  Co_de = 0.d0 

  H(4) = 0.d0 

   

  !properties for CZM model 

  Gn     = PROPS(1) 

  Gt     = PROPS(2) 

  Tn_m   = PROPS(3) 

  Tt_m   = PROPS(4) 

  K  = PROPS(5) 

   

  do i = 1, mcrd 

   do j = 1, nnode 
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    Co_de(i, j) = COORDS(i, j) + U(2*(j-1)+i) 

   end do 

  end do 

 

  do i =1, n_GP 

    

   !get element information 

   call get_elem(JELEM-5*size(groups(1)%elems_a), elem) 

 

   H(1) = elem%nodes(4)%node%stepf 

   H(2) = elem%nodes(3)%node%stepf 

   H(3) = elem%nodes(2)%node%stepf 

   H(4) = elem%nodes(1)%node%stepf 

     

   !now get the tangential and normal separations at this integration point 

   call k_Coords_Transform_interface (PROPS, R, el_length, COORDS, U, ndofel, 
   nnode, delta_h, & mcrd, Jacobian, Co_de_l, Transformation_M,   
   Transformation_M_T, Co_de, c_r, c_s, i) 

 

   del1 = H(4)*Co_de_l(1, 4) + (1-H(4))*Co_de_l(1, 8) - H(1)*Co_de_l(1, 1) - (1- 
   H(1))*Co_de_l(1, 5) 

   del2 = H(4)*Co_de_l(2, 4) + (1-H(4))*Co_de_l(2, 8) - H(1)*Co_de_l(2, 1) - (1- 
   H(1))*Co_de_l(2, 5) 

   del3 = H(3)*Co_de_l(1, 3) + (1-H(3))*Co_de_l(1, 7) - H(2)*Co_de_l(1, 2) - (1- 
   H(2))*Co_de_l(1, 6) 

   del4 = H(3)*Co_de_l(2, 3) + (1-H(3))*Co_de_l(2, 7) - H(2)*Co_de_l(2, 2) - (1- 
   H(2))*Co_de_l(2, 6) 

      

   !Numerical integration to compute RHS and AMATRX 

   N1 = (1 - c_s)*0.5 

   N2 = (1 + c_s)*0.5 

   del(1) = N1*del1 + N2*del3 

   del(2) = N1*del2 + N2*del4 

    

   !for cohesive_law 

   damage = SVARS(i) 



87 
 

 

   call cohesive_law_interface (PROPS, T, T_d, del, SVARS, damage) 

    

   !Bc matrix 

   Bc(1, 1) = -H(1)*N1 

   Bc(1, 2) = 0.d0 

   Bc(1, 3) = -H(2)*N2 

   Bc(1, 4) = 0.d0 

   Bc(1, 5) = H(3)*N2 

   Bc(1, 6) = 0.d0 

   Bc(1, 7) = H(4)*N1 

   Bc(1, 8) = 0.d0 

   Bc(1, 9) = (-1+H(1))*N1 

   Bc(1, 10) = 0.d0 

   Bc(1, 11) = (-1+H(2))*N2 

   Bc(1, 12) = 0.d0 

   Bc(1, 13) = (1-H(3))*N2 

   Bc(1, 14) = 0.d0 

   Bc(1, 15) = (1-H(4))*N1 

   Bc(1, 16) = 0.d0 

   Bc(2, 1) = 0.d0 

   Bc(2, 2) = -H(1)*N1 

   Bc(2, 3) = 0.d0 

   Bc(2, 4) = -H(2)*N2 

   Bc(2, 5) = 0.d0 

   Bc(2, 6) = H(3)*N2 

   Bc(2, 7) = 0.d0 

   Bc(2, 8) = H(4)*N1 

   Bc(2, 9) = 0.d0 

   Bc(2, 10) = (-1+H(1))*N1 

   Bc(2, 11) = 0.d0 

   Bc(2, 12) = (-1+H(2))*N2 

   Bc(2, 13) = 0.d0 
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   Bc(2, 14) = (1-H(3))*N2 

   Bc(2, 15) = 0.d0 

   Bc(2, 16) = (1-H(4))*N1 

 

   call k_Matrix_Transpose (Bc, Bct, mcrd, ndofel) 

   call k_Matrix_Multiply (Bct, T_d, tmp, ndofel, mcrd, mcrd) 

   call k_Matrix_Multiply (tmp, Bc, Sc, ndofel, mcrd, ndofel) 

   call k_Matrix_Multiply (Transformation_M_T, Sc, tmp1, ndofel, ndofel, ndofel) 

   call k_Matrix_Multiply (tmp1, Transformation_M, Sc_global, ndofel, ndofel, ndofel) 

   call k_Matrix_PlusScalar (AMATRX, Sc_global, Jacobian, ndofel, ndofel) 

   call k_Matrix_Multiply (Bct, T, Fc, ndofel, mcrd, nrhs) 

   call k_Matrix_Multiply (Transformation_M_T, Fc, Fc_global, ndofel, ndofel, nrhs) 

   call k_Matrix_PlusScalar (RHS, -Fc_global, Jacobian, ndofel, nrhs) 

    

   !update the SVARS for cohesive_law2 

   SVARS(i) = damage 

 

  end do 

   

 end if 

  

 return 

end subroutine 
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APPENDIX D 

ABAQUS USER-DEFINED EXTERNAL DATABASES CODE OF THE PROPOSED 

IMPLEMENTATION 

 

 The present appendix is the Abaqus user-defined external databases 

(UEXTERNALDB) code of the proposed implementation. The UEXTERNALDB is used to 

manage user-defined external databases and calculate model-independent history information. 

Further detail of the UEXTERNALDB is provided in [35]. 

 

!abaqus UEXTERNALDB user subroutine definition 

subroutine uexternaldb(lop, lrestart, time, dtime, kstep, kinc) 

 

 use rxfem_core 

 include 'aba_param.inc' 

  

 !inputs 

 integer :: lop, lrestart, kstep, kinc 

 real(8) :: time(:), dtime 

  

 !working parameters 

 character(300) :: path, file 

 integer :: len_path, len_file, i 

 type(string) :: a 

  

 !if beginning of analysis, read in the input file and populate rxfem model constructs 

 if (lop .eq. 0) then 
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  !get the working directory 

  call getoutdir(path, len_path) 

  a = trim(path) 

   

  !get the input file name 

  call getjobname(file, len_file) 

  a = a + '\' + trim(file) + '.inp' 

   

  !call delete entity 

  call deleteentity() 

   

  !setup the rxfem model containers 

  call process_input_file(a%chars) 

 

 end if 

  

 !print the increment number in the beginning of every increment 

 if (lop .eq. 1) then 

  print *, 'working on load increment: ', kinc 

 end if 

  

 !check failure criterion to insert crack 

 if (lop .eq. 2) then 

  !calculate the failure index of every integration point 

  call LaRC04() 

   

  !check the failure index to insert crack 

  call check2insertcrack() 

   

 end if 

  

 !if end of analysis 

 if (lop .eq. 3) then 
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  !call delete entity 

  call deleteentity() 

 end if 

  

 return 

  

end subroutine uexternaldb 
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