
USING PROPERTY-BASED TESTING, WEIGHTED GRAMMAR-BASED

GENERATORS AND A CONSENSUS ORACLE TO TEST BROWSER RENDERING

ENGINES AND TO REPRODUCE MINIMIZED VERSIONS OF EXISTING TEST

CASES

by

JOEL DAVID MARTIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2019

Supervising Committee:

Farhad Kamangar, Supervising Professor

David Levine, Supervising Professor

Manfred Huber

Gergley Zaruba

Copyright by

Joel David Martin

2019

The copyright of Chapter 2 was transferred to the IEEE as part of publication in

COMPSAC 2018 (“Property-Based Testing of Browser Rendering Engines with a

Consensus Oracle”) [1]. Please refer to the IEEE for information about licensing the

content from Chapter 2.

Chapter 3 is a manuscript that is intended for separated publication. All copyrights on

Chapter 3 are currently reserved to Joel Martin.

The remainder of this work, excluding Chapter 2 and Chapter 3, is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

ACKNOWLEDGMENTS

Thank you to the members of my Supervising Committee for their support and guidance.

In particular, I would like to thank David Levine who spent many long hours with me

discussing the research and helping with the numerous large and small details that were

necessary to complete my thesis. Many thanks to my employer, Viasat, for the financial

investment toward my education. Thank you to my supervisors at Viasat, Ingolf Krueger

and Markus Kaltenbach, for their support and encouragement throughout my graduate

education. I would like to apologize for the harm done to numerous figurative trees during

the completion of this research. As a thank you to the reader(s) of this dissertation, I offer

you a gift. Contact me with proof that you have read this work and I will send you a prize

(limited quantities available). Thank you to Aaron Brooks for being a sounding board for

many of the ideas that were explored in this research. Thank you to Matt Oquist, Ingolf

Krueger, and Rebecca Martin for their detailed reviews and the valuable feedback that

they provided.

DEDICATION

I dedicate this work to my brilliant and beautiful wife, Dr. Rebecca Martin. She worked

hard to ensure that I would be successful in this endeavor. Let it be noted, for posterity,

that she received her doctorate 8.5 years prior to me receiving mine.

ABSTRACT

Using Property-Based Testing, Weighted Grammar-Based Generators, and a Consensus

Oracle to Test Browser Rendering Engines and to Reproduce Minimized Versions of

Existing Test Cases

Joel David Martin, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professors: Farhad Kamangar and David Levine

Verifying that a web browser rendering engine correctly renders all valid web pages is

challenging due to the size of the input space (valid web pages), the difficulty of determining

correct rendering for any given web page (the test oracle problem), and the degree to which

normal variation in browser rendering behavior can obscure other differences (fonts, bor-

ders, input controls, etc). These challenges lead to manual human involvement during the

testing process. We propose a new Property-Based Testing (PBT) approach that addresses

these challenges in order to enable automated web browser render testing. Our approach

is composed of the following modules: a system for translating HyperText Markup Lan-

guage (HTML) and Cascading Style Sheets (CSS) specification data into grammar-based

generators; a grammar weighting system that controls test case generation along with mul-

tiple methods for automatically adjusting those weights; and a consensus oracle of multiple

rendering engines to identify failing test cases.

Our approach increases the practicality of real-world testing. It has the ability to re-

produce existing test cases from external sources, is able to shrink test cases to assist with

root-cause analysis, and supports generic test specifications. We validated and characterized

the effectiveness of our approach with a constrained markup grammar developed for this

purpose. Applying our approach while testing Mozilla Firefox and Google Chrome revealed

1695 unique test cases that yield rendering differences. Testing of Mozilla’s new Servo web

vi

browser revealed multiple bugs including eleven crashes and resource leaks. We reported

these issues to Mozilla developers and are working together to develop and verify solutions.

vii

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1

1.1.1 Browser Testing Challenges . 1

1.1.2 Solving the Limitations of PBT with Instacheck 3

1.1.3 Use case: a New Web Browser Engine 4

1.1.4 Objectives . 5

1.2 Modules and Document Structure . 7

1.2.1 Modules . 7

1.2.2 Document Structure . 9

2 “Property-Based Testing of Browser Rendering Engines with a Consensus

Oracle” (COMPSAC, July 2018) 11

2.1 Abstract . 12

2.2 Introduction . 12

2.3 Property-Based Testing (PBT) . 13

2.3.1 Test Generation using Clojure test.check 14

2.3.2 Test Shrinking . 15

2.4 Test System Architecture . 16

2.5 Grammar-based Input Generators . 18

2.5.1 HTML5 Grammar . 18

vi

2.5.2 CSS3 Grammar . 20

2.6 Generator Tuning . 21

2.7 Consensus . 22

2.7.1 Challenges . 22

2.7.2 Calculating Consensus . 23

2.8 Results . 24

2.9 Related Work . 27

2.10 Conclusion and Future Work . 27

3 “Instacheck: An Automated Property-based Testing Model to Increase

Coverage and Enable Directed Testing using Weighted Grammars” 28

3.1 Abstract . 29

3.2 Introduction . 29

3.3 Property-based Testing (PBT) . 30

3.3.1 PBT Input Properties . 31

3.3.2 PBT Test Shrinking . 32

3.3.3 Limitations of PBT . 33

3.4 Instacheck . 34

3.4.1 Instacheck Grammars . 34

3.4.2 Grammar Weights . 36

3.4.3 Grammar Paths, and Treks . 38

3.4.4 Grammar Weight Reduction and Propagation 41

3.4.5 Reproducing and Shrinking Existing Test Cases 44

3.5 Results . 45

3.5.1 Test Grammars . 45

3.5.2 Controlling Coverage . 48

3.5.3 Increasing Coverage with Weight Reduction 52

3.5.4 Shrinking . 54

vii

3.5.5 Reproducing Existing Test Cases . 55

3.5.6 Case-study: Detecting Browser Rendering Differences 59

3.6 Related Work . 61

3.7 Conclusion . 62

3.7.1 Future Work . 62

4 Instacheck In Greater Depth 63

4.1 Clojure test.check PBT Example . 63

4.2 Clojure test.check Generators . 67

4.3 Extended Backus-Naur form (EBNF) Generators and Weight Tuning 71

4.3.1 MG4 and MG8 Grammars . 76

4.4 Translating EBNF Grammars to Clojure Generators 82

4.5 Instacheck Command Line and Library Usage 85

4.5.1 Generate Random Test Cases . 86

4.5.2 Test and Shrink . 89

4.5.3 Reproduce and Shrink an existing Test Case 94

4.5.4 Translate EBNF Specification into Clojure Generators 98

5 HTML and CSS Grammars (html5-css3-ebnf) 101

5.1 Backus-Naur form (BNF) and EBNF Background 101

5.2 Hypertext Markup Language version 5 (HTML5) Grammar 103

5.2.1 HTML5 Background . 103

5.2.2 Parsing and Translating HTML5 . 103

5.3 Cascading Style Sheet Level 3 (CSS3) Grammar 107

5.3.1 CSS3 Background . 107

5.3.2 The CSS3 Value Definition Syntax (VDS) Grammar 110

5.3.3 Parsing and Translating CSS3 . 113

5.4 Parsing Challenges . 117

viii

5.5 html5-css3-ebnf Usage . 119

5.5.1 Generate EBNF Parsing Grammars 119

5.5.2 Parse Web Pages . 121

6 Bartender: Browser Automated Render TestiNg DrivER 125

6.1 The State of Browser Render Testing . 125

6.2 Bartender System Architecture . 128

6.2.1 Optimizing and Translating EBNF Grammars to Clojure Generators 130

6.2.2 Bartender Testing Process . 133

6.3 Consensus . 135

6.3.1 Consensus Algorithms . 136

6.3.2 Consensus Challenges and Solutions 139

6.3.3 Consensus Example . 145

6.4 WebDriver Browser Automation . 157

6.5 Monitoring and Reporting Applications . 159

6.5.1 Runtime Monitoring Application . 159

6.5.2 Test Reporting Application . 164

6.6 Bartender Usage . 169

6.6.1 Executing Test Runs . 169

6.6.2 Compare Renderings of an Existing Web Page 171

6.6.3 Parse an Existing Web Page . 172

6.6.4 Optimize and Translate EBNF Grammars to Clojure Generators . . . 174

7 Overall Browser Render Testing Results 175

7.1 Testing Firefox against Chrome . 176

7.2 Testing Servo against Firefox and Chrome 180

7.2.1 Bugs Discovered and Reported . 182

ix

8 Related Work 185

8.1 Property-based Testing (PBT) /

Metamorphic Testing . 185

8.2 Consensus Oracle / Differential Testing . 187

8.3 Grammar-based Testing . 188

8.4 Fuzz Testing . 189

8.5 Browser Testing . 191

9 Concluding Remarks 194

9.1 Future Directions . 197

A Translations of math.ebnf Grammar to Clojure Generators 199

B Instacheck Library Functions 204

C Full Instaparse EBNF Syntax 208

D Tags and Attributes Grammar 210

E Firefox versus Chrome Rendering Differences Data 212

F Servo versus Firefox and Chrome Rendering Differences Data 216

G Bartender Configurations used for Render Testing 222

H Bartender Example Test Run 227

I Project/Library Versions and Locations 230

J Artifact Statistics 232

Bibliography 234

x

Listings

2.1 Basic Generator . 14

2.2 Compound Generator - Tuple . 14

2.3 Compound Generator - Vector . 14

2.4 Recursive Generator . 15

2.5 Simple EBNF . 19

2.6 HTML5 EBNF . 20

2.7 Simple Div . 20

2.8 “text-emphasis-position” VDS . 21

2.9 “text-emphasis-position” EBNF . 21

2.10 “text-emphasis-position” EBNF . 25

2.11 Smallest Test Case . 26

2.12 Smallest Failing Test Case . 26

3.1 Values sampled from the generator V . 30

3.2 Example result from quick-check . 31

3.3 Value trek for the Figure 3.3 grammar. 39

3.4 Wtrek (weight trek) for the Figure 3.3 grammar. 41

3.5 Weight Propagation Algorithm :zero Pseudocode 43

3.6 Weight Propagation Algorithm :max-child Pseudocode 43

3.7 Weight Propagation Algorithm :reducer Pseudocode 44

3.8 Markup grammar degree 4 (MG4) . 46

xi

3.9 Test case generated by MG4 containing a single unique combination of tag,

attribute, property, and property name (TAPV): 1302. 46

3.10 Test case generated by MG4 containing three unique TAPV: 2223, 2230, 1201. 47

3.11 Test case generated by MG4 containing seven unique TAPVs: 2310, 2313,

2330, 2000, 2001, 2032, 2010. 47

3.12 Example test case resulting in a rendering difference 60

4.1 Example of test.check generator (input property) composed of two compound

generators and two scalar generators. 63

4.2 Example of values sampled from the generator defined in listing 4.1. 64

4.3 Example of test.check test Oracle (output property) function which returns

false if 3 adjacent numbers are an increasing order 64

4.4 Example of results of using test.check ’s quick-check function with the input

property generator from listing 4.1 and the output property oracle function

from listing 4.3 . 65

4.5 Example of a compound test.check frequency generator 67

4.6 Simple EBNF defined generator . 71

4.7 Simple EBNF defined generator with user defined weights 72

4.8 Example of 30 test cases sampled from a generator based on the grammar in

Listing 4.9 . 72

4.9 Default weights (wtrek) for the grammar in Listing 4.9 73

4.10 Default weights (wtrek) for the grammar in Listing 4.9 73

4.11 Example of 30 test cases sampled from a generator based on the grammar in

Listing 4.9 with weights adjusted with the wtrek in Listing 4.10 75

4.12 Markup grammar degree 8 (MG8) . 77

4.13 MG4 sample output with default weights . 79

4.14 Simple non-recursive and recursive EBNF grammars 82

4.15 Clojure translation of the simple non-recursive EBNF grammar in Listing 4.14. 83

xii

4.16 Clojure translation of the simple recursive EBNF grammar in Listing 4.14. . 83

4.17 EBNF representing a simple mathematical expression 85

4.18 Clojure namespace preamble for requiring Instacheck modules 86

4.19 Generate 100 random test cases based on the EBNF grammar in Listing 4.17 86

4.20 Test cases that satisfy the EBNF grammar in Listing 4.17 87

4.21 Default active wtrek for the EBNF grammar in Listing 4.17 87

4.22 Test cases that satisfy the EBNF grammar in Listing 4.17 and that have the

weight of digit “7” increased to 1000. 88

4.23 A simple system under test (SUT) and test oracle script 90

4.24 Check EBNF grammar in Listing 4.17 using mathtest.sh SUT/Oracle harness

in Listing {reflst:mathtest.sh . 90

4.25 Result of 10 check iterations of the EBNF grammar in Listing 4.17 with elided

lines . 90

4.26 Run 50 check iterations of the EBNF grammar in Listing 4.17 using matht-

est.sh SUT/Oracle harness in Listing 4.23 91

4.27 Result of 50 check iterations of the EBNF grammar in Listing 4.17 with elided

lines . 91

4.28 An existing test case that causes the mathtest.sh harness in Listing 4.23 to

return a failure . 94

4.29 Parse a path log frequency trek from existing test case 95

4.30 Parsed path log frequency trek from existing test case 95

4.31 Run 50 check iterations of the EBNF grammar in Listing 4.17 using matht-

est.sh SUT/Oracle harness in Listing 4.23 and using parsed path log frequency

trek in Listing 4.30 . 95

4.32 translate the EBNF grammar in Listing 4.17 into a Clojure source file con-

taining the equivalent test.check generator code. 98

xiii

4.33 Clojure generator code translated from the EBNF grammar in Listing 4.17

for the expression rule (reformatted) . 99

5.1 Simple Math Expression BNF Grammar . 102

5.2 Simple Math Expression EBNF Grammar 102

5.3 World Wide Web Consortium (W3C) HTML Elements Table Header and

<a>Entry . 104

5.4 W3C HTML Attributes Table Header and <href>Entry 104

5.5 Parsed data for W3C HTML Element “<a>” 105

5.6 Parsed data for W3C HTML Attribute “href” 105

5.7 Final EBNF Generated for the W3C HTML Element “<a>” 105

5.8 HTML file with CSS defined using an embedded “<style>” tag 107

5.9 CSS defined in a separate file and included into the HTML 108

5.10 HTML file with CSS embedded inline within “style” attributes of individual

elements . 109

5.11 Rendering of the the HTML and CSS from listings 5.8, 5.9, and 5.10 109

5.12 EBNF definition of the CSS VDS grammar (part 1) 111

5.13 EBNF definition of the CSS VDS grammar (part 2) 112

5.14 Generate/regenerate the HTML EBNF grammars from the W3C specification

data (command and output) . 119

5.15 Generate/regenerate the CSS EBNF grammars from the W3C specification

data (command and output) . 120

5.16 Generate/regenerate the CSS EBNF grammars with status filtering 120

5.17 Execute html5-css3-ebnf parse command to parse a web page (commands and

output) . 122

5.18 Simple HTML page containing a div tag with red text styling 122

5.19 Resulting path frequency trek from parsing HTML from Listing 5.18 123

xiv

5.20 Resulting HTML EBNF grammar after pruning the grammar using the path

frequency trek in Listing 5.19 . 123

5.21 Resulting CSS EBNF grammar after pruning the grammar using the path

frequency trek in Listing 5.19 . 124

6.1 Rendering of Acid1 Test Case . 126

6.2 Rendering of Acid2 Test Case . 126

6.3 Rendering of Acid3 Test Case . 126

6.4 Whitespace EBNF Rules . 131

6.5 Repeated Whitespace is Ignored in HTML 132

6.6 Whitespace EBNF Rules . 132

6.7 Example of “Ahem test: XpÉ” string rendered with Ahem font . . . 140

6.8 Web page demonstrating Servo Ahem font bug 24042 141

6.9 Workaround Servo Ahem render bug 24042 by wrapping each character in a

span with color matched background color 141

6.10 A section of the normalize.css CSS Resets used in Bartender generated test

cases . 144

6.11 Execute Bartender tests command to start test runs 169

6.12 Bartender tests command output for trial, failure, and shrink iterations . . . 170

6.13 Execute Bartender check-page command to compare consensus pool renderings172

6.14 Bartender check-page command output . 172

6.15 Execute Bartender parse command to parse an existing web page test case . 173

6.16 Bartender parse command output . 173

6.17 Execute Bartender translate command to optimize and translate HTML and

CSS EBNF grammars to Clojure generator code. 174

A.1 Translation of EBNF grammar in Listing 4.17 to Clojure generator code with

one generator function per grammar rule (Part 1) 200

xv

A.2 Translation of EBNF grammar in Listing 4.17 to Clojure generator code with

one generator function per grammar rule (Part 2) 201

A.3 Translation of EBNF grammar in Listing 4.17 to Clojure generator code with

one generator factory function (Part 1) . 202

A.4 Translation of EBNF grammar in Listing 4.17 to Clojure generator code with

one generator factory function (Part 2) . 203

D.1 The tags and attributes grammar used for first pass of parsing by html5-

css3-ebnf . 211

G.1 Bartender Configuration used for Testing Firefox against Chrome 223

G.2 Bartender Configuration used for Testing Servo against Firefox and Chrome 224

G.3 Portion of Bartender configuration used for testing with BrowserStack 225

H.1 Bartender tests command output (Part 1) 228

H.2 Bartender tests command output (Part 2) 229

xvi

List of Figures

1.1 Test System Architecture With Highlighted Modules 8

2.1 Test System Architecture . 17

2.2 Step 7 . 25

3.1 Grammar with one simple rule containing alternation. 36

3.2 Grammar with one rule containing a concatenation, an alternation, a 0 or

more repetition (star), and all the terminal types supported by the syntax. . 36

3.3 Complete grammar with two rules. 37

3.4 Value trek paths shown visually with red dotted lines for the Figure 3.3 grammar. 40

3.5 Wtrek (weight trek) paths shown visually with red dotted lines for the Figure

3.3 grammar. 41

3.6 Coverage for the MG4 grammar with default grammar weights. The X axis

delimits tags (large boxes) and attributes (small boxes) and the Y axis delimits

properties (large boxes) and property values (small boxes). 48

3.7 Coverage for the MG4 grammar one weight adjusted. First figure shows cov-

erage with the weight of tag1 multiplied by ten. Second figure shows coverage

with weight of tag1 set to zero. 49

3.8 Coverage for MG4 grammar with two weights adjusted. Left figure show

weights for tag2 and prop2 multiplied by ten. Right figure shows weights for

tag2 and prop2 set to 0. 50

xvii

3.9 Failing TAPVs found for each selection and propagation algorithm across 6

different reducer function steps using the MG4 grammar. Counts are averaged

across 5 sample runs. 52

3.10 Number of test runs required to find each failing TAPVs for each selection

and propagation algorithm across 6 different reducer function steps using the

MG4 grammar. Counts are average across 5 sample runs. 53

3.11 Example of shrinking process using MG8 grammar over 10 runs (with max

size 6). The iteration and initial failure size are marked with a circle and the

iteration and final shrunk size for that run are marked with a square. 56

3.12 Effectiveness of reproducing an existing test case with the MG4 grammar by

parsing existing test cases with varying amounts of noise. 58

3.13 Effectiveness of reproducing an existing test case with the MG8 grammar by

parsing existing test cases with varying amounts of noise. 59

3.14 Firefox, Chrome, and Servo render for test case in listing 3.12 61

4.1 A railroad diagram and entity diagram representation of Listing 4.1 64

4.2 Test cases trees for the initial detected failure and failure after shrinking. . . 65

4.3 Values generated by the int generator sampled 1,000,000 times for each max-

imum size from 5 to 80 . 68

4.4 Values generated by double generator sampled 100,000 times with a maximum

size of 80 and the X-axis cropped to between -7 to 7 68

4.5 Length of vectors generated vector generator sampled 1,000,000 times for each

maximum size from 5 to 80 . 69

4.6 Values generated by frequency generator defined in Listing 4.5 sampled 1,000,000

times . 69

4.7 Values generated by the EBNF generator in Listing 4.6 sampled 1,000,000 times 71

4.8 Values generated by the weighted EBNF generator in Listing 4.7 sampled

1,000,000 times . 72

xviii

4.9 A grammar with two production rules. 72

4.10 Graph representation of grammar in 4.9 . 73

4.11 Graph representation of grammar in 4.9 annotated with weighted paths and

default weights. 74

4.12 Graph representation of grammar in 4.9 annotated with weighted paths and

adjusted weights. 74

4.13 Visual representation of the MG4 grammar 78

4.14 Coverage of the MG4 and MG8 grammars for 100 runs with default grammar

weights. The X axis delimits tags (large boxes) and attributes (small boxes)

and the Y axis delimits properties (large boxes) and property values (small

boxes). 80

4.15 Partial wtrek of weight adjustments for the MG8 grammar 81

4.16 Coverage of the MG8 grammar for 100 runs with weights set to the partial

wtrek shown in Listing 4.15. The X axis delimits tags (large boxes) and

attributes (small boxes) and the Y axis delimits properties (large boxes) and

property values (small boxes). 81

4.17 Generate 20 random test cases based on a simple EBNF grammar using the

ebnf-sample-seq library function . 89

4.18 Result of generating 20 random test case samples using the ebnf-sample-seq

function as shown in Listing 4.17 . 89

4.19 Check (test) a function with a simple EBNF grammar using the instackeck

library function . 92

4.20 Result of checking a function with an EBNF grammar as shown in Listing 4.19 93

4.21 Use an EBNF defined parser to parse a path log frequency trek from an

existing test case using the parse-wtrek library function 96

4.22 Result of parsing a path log frequency trek from an existing test case as shown

in Listing 4.21 . 97

xix

4.23 Check (test) a function with a simple EBNF grammar using the instackeck

library function . 97

4.24 Result of checking function with an EBNF grammar as shown in Listing 4.23 97

4.25 Translate EBNF grammar to Clojure generator source using Instacheck . . . 99

4.26 Result of translating EBNF grammar in Listing 4.25 to Clojure generator

source using Instacheck . 100

5.1 Definition of the “border” property in Mozilla Developer Network (MDN) CSS

repository . 114

5.2 Definition of the “line-width” syntax in MDN CSS repository 114

5.3 Definition of the “@media” at-rule in MDN CSS repository 115

5.4 Definition of the “length” type in MDN CSS repository 115

5.5 Translation of “border”, “line-width”, and “length” to EBNF 116

6.1 Bartender System Architecture . 129

6.2 Test iteration example showing: Servo with a rendering that different from

Firefox and Chrome; Servo, Firefox, and Chrome all with different renderings;

Firefox with a rendering that is different (Servo and Chrome are in agreement)137

6.3 Rendering of HTML in Listing 6.8 in Firefox/Chrome, Servo, and as a color

channel difference . 142

6.4 Consensus test case example: list view . 148

6.5 Consensus test case example iteration 0: first iteration 149

6.6 Consensus test case example iteration 0 rendering: first iteration 149

6.7 Consensus test case example iteration 2: Chrome difference ignored 150

6.8 Consensus test case example iteration 2 rendering: Chrome difference ignored 150

6.9 Consensus test case example iteration 13: prior to first failure 151

6.10 Consensus test case example iteration 13 rendering: prior to first failure . . . 152

6.11 Consensus test case example iteration 14: initial failure 153

xx

6.12 Consensus test case example iteration 14 rendering: initial failure 154

6.13 Consensus test case example iteration 135: shrinking 155

6.14 Consensus test case example iteration 135 rendering: shrinking 155

6.15 Consensus test case example iteration 171: shrunk 156

6.16 Consensus test case example iteration 171 rendering: shrunk 156

6.17 Monitoring application main tab view . 160

6.18 Monitoring application test run view . 161

6.19 Monitoring application test run view with thumbnail images 162

6.20 Reporting application flat list view showing first page of test results 165

6.21 Reporting application flat list view showing only tests that contain the float

property name . 166

6.22 Reporting application TAPV view showing test results arranged by Tags &

Attributes and by Tags & Property Names 167

6.23 Reporting application TAPV view showing test cases that contain an img tag

and contain an src attribute . 168

7.1 Plot of Firefox and Chrome testing runs (with weight reduction between runs)

showing the median initial failure size byte count (red) and the percentage of

runs per 200 runs that failed (blue) . 177

7.2 Plot of Firefox and Chrome testing runs (with reduction between runs) show-

ing the mean initial failure size byte count (red), the mean final shrunk size

byte count (green), and reduction percentage (blue). Linear regressions for

each plot line are shown as dotted lines. 178

7.3 Box and whisker plots for Firefox and Chrome testing runs (with reduction

between runs) showing quartiles for initial failure sizes (red) and final shrunk

sizes (green). The black circles indicate the means. 178

xxi

7.4 Box and whisker plots for Servo vs Firefox and Chrome testing runs (with

reduction between runs) showing quartiles for initial failure sizes (red) and

final shrunk sizes (green). The black circles indicate the means. 180

xxii

List of Tables

2.1 EBNF Expansions . 19

3.1 EBNF Syntax . 35

6.1 WebDriver endpoints . 157

6.2 Description of files created in the datastore during test execution. [SLUG] is

the current test run slug, [IDX] is the current iteration index. [Ba] and [Bb]

are the first two browser identifiers (from the configuration). 171

7.1 Browser bugs discovered during testing. Status correct as of 2019-10-29 . . . 183

B.1 Instaparse Modules and Functions Part 1 . 205

B.2 Instaparse Modules and Functions Part 2 . 206

B.3 Instaparse Modules and Functions Part 3 . 207

C.1 List of all Instaparse EBNF syntax features used 209

E.1 Firefox and Chrome: Number of Test Cases with Rendering Differences for

each HTML Tag and HTML Attribute . 213

E.2 Firefox and Chrome: Number of Test Cases with Rendering Differences for

each CSS Property (Part 1) . 214

E.3 Firefox and Chrome: Number of Test Cases with Rendering Differences for

each CSS Property (Part 2) . 215

xxiii

F.1 Servo vs Firefox and Chrome: Number of Test Cases with Rendering Differ-

ences for each HTML Tag and Attribute . 217

F.2 Servo vs Firefox and Chrome: Number of Test Cases with Rendering Differ-

ences for each CSS Property . 218

F.3 Servo vs Firefox and Chrome: HTML Tags and HTML Attributes Matrix . . 219

F.4 Servo vs Firefox and Chrome: HTML Tags and CSS Properties Matrix Part 1 220

F.5 Servo vs Firefox and Chrome: HTML Tags and CSS Properties Matrix Part 2 221

G.1 Description of Bartender configuration file options 226

I.1 Projects/Modules Created or Modified to support this research 230

I.2 Projects/Libraries used by Instacheck, html5-css3-ebnf, and Bartender 231

I.3 Projects/Libraries used by for test runs, data analysis, and data visualization 231

J.1 Written lines of code excluding comments and blank lines (SLOC) 232

J.2 Generated lines of code excluding comments and blank lines (SLOC) 233

xxiv

Acronyms and Abbreviations Used

AST abstract syntax tree. 96, 128

BNF Backus-Naur form. viii, xiv, 18, 101, 102

CFG Context-Free Grammar. 197

CSS Cascading Style Sheets. vi, viii, xiv, xv, xx,

xxiii, xxiv, 1–3, 6, 7, 9, 12, 15, 20, 24, 26, 29,

34, 59, 101, 107–121, 124, 125, 128, 130, 131,

134, 135, 140, 144–148, 159, 163, 164, 166,

171, 173, 174, 179–181, 184, 193–195, 197,

198, 208, 212, 214–216, 218, 220, 221

CSS3 Cascading Style Sheet Level 3. viii, 1, 12, 16,

18, 20–22, 24, 27, 101, 107, 110, 113

DAG directed acyclic graph. 36

DOM document object model. 125, 192

DSL domain-specific language. 195

EBNF Extended Backus-Naur form. viii–x, xii–xvi,

xviii–xx, xxiii, 6, 7, 9, 16, 18–20, 29, 34–36,

45, 59, 71, 72, 75, 76, 82–102, 105, 106, 110–

113, 116, 117, 119–121, 123, 124, 128, 130–

133, 173, 174, 194, 195, 197–203, 208–210

FSM finite state machine. 192

xxv

HTML HyperText Markup Language. vi, viii, xiv, xv,

xx, xxiii, xxiv, 2, 3, 6, 7, 9, 15, 18–20, 24, 26,

29, 32, 34, 59, 101, 103–110, 117–123, 128,

130–135, 139, 140, 142, 145–147, 159, 163,

164, 166, 171, 173, 174, 179, 181, 191, 193–

195, 198, 212, 213, 216, 217, 219–221, 227

HTML5 Hypertext Markup Language version 5. viii,

1, 12, 16, 18–22, 24, 27, 101, 103, 139

HTTP HyperText Transfer Protocol. 157, 158

IE7 Internet Explorer 7. 190

IR intermediate representation. 186

JS JavaScript. 157, 158

JSON JavaScript object notation. 14, 113

MDN Mozilla Developer Network. xx, 113–116, 128

PBT Property-Based Testing. vi–viii, x, 2–6, 9, 12–

15, 27, 29–34, 37, 42, 45, 62, 63, 86, 89, 92,

94, 131, 134, 136, 146, 169, 185, 186, 190, 191,

194, 195, 197

PEG parsing expression grammar. 62, 198

PNG Portable Network Graphics. 16, 128

PRN pseudo random number. 31–33

SSD sum of square of differences. 23, 59, 60, 136,

145, 175

SUT system under test. xiii, 2, 12, 13, 29–34, 37,

46, 51, 63, 89–91, 94, 95, 135, 136, 190, 194–

196

SVG Scalable Vector Graphics. 125

xxvi

TAPV combination of tag, attribute, property, and

property name. xii, xviii, 45–47, 51–57

UML Unified Modelling language. 191

URL Uniform Resource Locator. 157, 158

VDS Value Definition Syntax. viii, xiv, 20, 110–

113, 116, 128, 197, 208

VLSI very large-scale integration. 188

W3C World Wide Web Consortium. xiv, 59, 103–

107, 113, 117, 119, 120, 127, 128, 157, 194

WaSP Web Standards Project. 125, 127

WHATWG Web Hypertext Application Technology

Working Group. 103, 139

WPT web-platform-tests. 127, 198

XBIS cross-browser incompatibilities. 192

XHTML Extensible HyperText Markup Language. 103

XML Extensible Markup Language. 103

YAML Yet Another Markup Language. 158, 169

xxvii

Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Browser Testing Challenges

One of the challenges of developing a new browser engine is in creating a rendering engine

with correct rendering behavior across the entire range and possible combinations of page

elements and layouts. The HTML5 [2] and CSS3 [3] standards consist of large and compli-

cated specifications. Verifying that a browser rendering engine correctly renders all possible

pages is a significant testing challenge.

One way to approach this challenge is to manually create test cases with corresponding

reference images and then compare the resulting rendered page to the reference image. This

is the method that the Acid Tests [4] use to test various CSS standard versions. This method

involves manual creation of both the test cases and the reference images.

Another approach to browser render testing is to create two different test pages that

should both have the same visual appearance when rendered but which use different un-

derlying mechanisms to achieve it. Differences in the results indicate a possible rendering

error/defect. It is possible to automate test case creation, however creating a model that

is able to determine when two separate cases should result in the same rendering can still

1

present a significant challenge. In addition, the type of test cases that can be tested with this

method is limited to those types of pages and layouts that have multiple rendering paths

with the same visual result. There is also likely to be significant overlap in the methods

used within a test case to achieve the same visual rendering. Some types of defects within

these common paths can result in renderings that are the same in both cases but incorrect

nonetheless.

The principal problem with these approaches is that human intervention is necessary

during input creation or output validation or both. We propose a technique that uses

Property-Based Testing (PBT) to automate both the creation of inputs (web page test cases)

and the validation of rendered output. This is achieved by automated input generation using

grammar-based test generators and automated output validation using a consensus oracle.

Property-based testing (sometimes referred to as “generative testing”) is a method of

automated software verification that can reveal software defects beyond what traditional

hand-written tests can reveal. Tests are defined in terms of input and output properties. The

input properties are used by the test system to generate the test cases (often stochastically).

The tests are run against the SUT and the results are validated using the output properties.

Test cases which violate the output properties are defects in the SUT.

However, this simple description belies the fact that creating input and output properties

for non-trivial software can present significant challenges. Input properties might need to

specify large streams of complex data. Output properties present a larger challenge because

they often need to be a fairly complete model of correct behavior for the SUT. This testing

model is known as a test oracle and developing a test oracle for a complex piece of software

can approach the complexity of the original system. The “test oracle problem” is why

property-based testing is often reserved to unit testing where it is simpler to infer correct

behavior.

Browser rendering is an area that could greatly benefit from fully automated property-

based testing. However, generating interesting inputs (HTML and CSS) and creating a test

2

oracle that can detect an incorrectly rendered web page based on the inputs is a significant

challenge. Another significant challenge is the fact that current popular web browsers have

significantly divergent “normal” behavior. In this paper, we propose a new PBT approach

that addresses these challenges so that web browser render testing can be performed with

minimal human intervention in the process. We have successfully used the technique to

identify nearly 1700 unique web page test cases that are rendered differently between the

Mozilla Firefox and Google Chrome rendering engines.

1.1.2 Solving the Limitations of PBT with Instacheck

PBT is a powerful automated testing approach and we have had success using it in an

industry setting to discover bugs that went undetected using standard example-based testing

methods. This was strong motivation for us to use it as the basis for automated testing of

browser rendering engines. However, this testing domain is different from the typical use of

PBT due to the size and recursive nature of the input space (HTML and CSS web pages);

and due to the variability of browser rendering behavior (large number of counterexamples).

We identified the following limitations with the standard PBT approach when we attempted

to apply it to browser render testing: input property generators are not defined using a

general grammar language; adjusting test coverage involves updating or creating new test

input property generators; and the same test cases tend to be rediscovered especially when

the PBT test shrinking capability is used.

We developed a new approach to PBT, Instacheck, that addresses these limitations and

also enables a new PBT capability: the ability to reproduce and shrink of preexisting test

cases. Although we developed it to address the issues we discovered during browser render

testing, Instacheck is a generic PBT-based approach and can be applied to many other

testing contexts.

3

1.1.3 Use case: a New Web Browser Engine

The Mozilla foundation started the Servo project in 2012 [5] with the goal of developing a web

browser engine with improved parallelism, security, modularity, and performance [6]. The

project is using the Rust language [7] to build the Servo browser and rendering engine. New

components are being developed for all aspects of web page rendering including: parsing, lay-

out, image decoding, tile rendering, compositing, etc [8]. We believe that there is significant

opportunity for fully automated web browser render testing to accelerate the development

of new web browsers like Servo. The use of this system to advance the development of the

Servo engine is one of the motivations for this work. Using the system we identified over

250 unique web pages that Servo renders differently from Firefox and Chrome. In addition

we discovered 11 confirmed bugs in Servo including several crashes due to resource leaks.

We have worked with Mozilla engineers to resolve several of these bugs and are working to

resolve the remaining ones. We were also able to reproduce several preexisting Servo bugs

using our technique and then leverage the shrinking capability of PBT to shrink those bugs

into simpler test cases.

4

1.1.4 Objectives

The objectives for this research fall into three general categories which are listed below

along with related sub-objectives. Each item references the sections of the document that

demonstrate how the objectives were satisfied.

1. End-to-end automated browser render testing

(a) Run a large number of tests to show that the system is able to effectively detect

browser render differences. Determine the degree to which the test cases are able

to be shrunk by the PBT shrinking functionality (7).

(b) Support testing of any unmodified web browser that supports the WebDriver

testing framework. In particular, browsers should not require code changes or

special instrumentation in order to be validated. In addition, support the use of

online cloud testing services such as BrowserStack 6.4.

(c) Perform targeted testing of Mozilla’s Servo browser and report any bugs discov-

ered (7.2).

2. A grammar weight system that increases test case coverage through auto-

matic weight tuning and that can reproduce and shrink existing test cases.

(a) Develop a constrained web page-like grammar with synthetic error conditions

that can be used to empirically validate various aspects of the Instacheck system

(3.5.1).

(b) Reduce the probability of generating the same failing test cases repeatedly by

using automatic weight tuning algorithms between test runs (3.4.4). Validate this

capability using the constrained grammars 3.5.3). This is especially important for

browser render testing because web browsers have divergent rendering behavior

that is consider “normal”, but this divergent behavior can hide other real bugs.

5

(c) Generate new failing test cases that are similar to but smaller and/or simpler

than existing failing test cases (3.4.5).

(d) Use the constrained grammar to characterize how well the system is able to re-

produce test cases with various amounts of noise in the test case (3.5.5). The

ability of PBT to shrink test cases to more minimal test cases is very powerful

and the grammar weighting technique enables this capability to be used ala carte

with existing test cases.

(e) In order to support arbitrary web page test cases, make sure that the translated

HTML and CSS EBNF grammars are complete enough to parse normal valid web

pages (5.4).

3. Practical utility for testing. There are a number of software testing approaches

which appear powerful in theory but end up being narrowly applicable or difficult to

use for practical testing. We identified a number of specific capabilities to make this

research practically useful including:

(a) A modular architecture that enables components of the system to be separately

useful (1.2, 4.5, 5.5, 6.6).

(b) Provide testers with multiple levels of controllability including the grammar gen-

erator weights, choice of automated selection/reduction algorithms, and config-

urable consensus decision algorithms (and G).

(c) Command line PBT usage of Instacheck (4.5), html5-css3-ebnf (5.5), and Bar-

tender (6.6). This includes the ability to reproduce and shrink existing test cases

with both Instacheck and Bartender.

6

1.2 Modules and Document Structure

1.2.1 Modules

Our approach to achieving the objectives consists of three complementary modules. Figure

1.1 shows the full system architecture with each module outlined. The modules are described

below with references where the modules are described in this document and the URLs where

the modules are published as open source projects.

� Instacheck: https://github.com/kanaka/instacheck

A property-based testing approach with test specifications defined generically as

EBNF, with a weighted grammar model that controls test case generation, and with

with multiple methods for automatically adjusting grammar weights to either avoid

already discovered test cases or reproduce existing test cases (chapters 3 and 4).

Instacheck is outlined with a blue dotted box in Figure 1.1.

� html5-css3-ebnf : https://github.com/kanaka/html5-css3-ebnf

A method for parsing and translating HTML and CSS specification data into EBNF

grammars (Chapter 5). html5-css3-ebnf is outlined with a green dotted box in Figure

1.1.

� Bartender https://github.com/kanaka/bartender

(Browser Automated Render TestiNg DrivER): An automated end-to-end browser

render testing architecture that uses Instacheck and html5-css3-ebnf along with a

web browser consensus oracle to identify failing test cases (Chapter 6). Bartender

is outlined with a red dotted box in Figure 1.1.

7

https://github.com/kanaka/instacheck
https://github.com/kanaka/html5-css3-ebnf
https://github.com/kanaka/bartender

html5-css3-ebnf
(Grammar Translation)

Bartender
(Test Execution)

Consensus
Browsers

WebSockets

Webdriver (HTTP)

Test Driver

HTTP

HTTP

Web Server

Configuration,
Generators,

Parsers

EBNF Grammars

Monitoring Web Application, Static Images,
Bartender Configuration, EBNF Grammars,

Generators, Tests (HTML/CSS), Screenshots

Test Cases,
Screenshots,
Result Data

Specification Parser

HTML5 Elements/Attributes

HTML5 EBNF
Grammar Generator

CSS3 EBNF
Grammar Generator

VDS Parser

CSS3 VDS Grammar

CSS3 VDS AST

Monitoring
Browser

Mozilla
Developer
Network
(MDN)

HTML5 Specification Text

World Wide Web
Consortium

(W3C)

Clojure Generators

EBNF Grammar
Translator

Instacheck

Figure 1.1: Test System Architecture With Highlighted Modules

8

1.2.2 Document Structure

This document is structured as follows:

� Chapter 2 was published as “Property-Based Testing of Browser Rendering En-

gines with a Consensus Oracle” (COMPSAC 2018) [1]. This serves as a high-level

overview of PBT, the translation of HTML and CSS specification to EBNF grammars,

controllable weighted grammars (later named Instacheck), consensus oracle, and an

architecture that combines all those components to enable end-to-end automation of

web browser render testing.

� Chapter 3 introduces the Instacheck technique. This includes the use of EBNF gram-

mars for defining PBT input properties, a weighted grammar for controlling test cov-

erage, multiple weight reduction algorithms for either reducing the rediscovery bugs or

for reproducing existing external test cases.

� Chapter 4 provides greater depth about the PBT, Clojure’s test.check library, and the

Instacheck technique. Practical use of Instacheck as a library and as a command line

tool is also described.

� Chapter 5 describes the html5-css3-ebnf module and the process and challenges of

sanitizing and translating HTML and CSS specification data into EBNF grammars that

are useful for both parsing web pages and for creating random web page generators.

Practical use of html5-css3-ebnf as a command line tool is also described.

� Chapter 6 covers the architecture of the end-to-end system as defined by the Bar-

tender module. Bartender combines html5-css3-ebnf, Instacheck, and a consensus

oracle to enable fully automated web browser render testing. Practical use of Bar-

tender as a command line tool is also described.

� Chapter 7 describes the results of using Bartender to test two different consensus

pools and consensus algorithm configurations. The first configuration compares Mozilla

9

Firefox to Google Chrome. The second configuration uses a combination of Firefox and

Chrome to do targeted testing of Mozilla Servo. This chapter expands on the browser

render testing use-case introduced in Chapter 3.

� Chapter 8 describes other research and literature that is related to, or provides a

foundation for, the research described in this document.

� Chapter 9 has concluding remarks and discussion of future work that should be pur-

sued.

10

Chapter 2

“Property-Based Testing of Browser

Rendering Engines with a Consensus

Oracle” (COMPSAC, July 2018)

Authors:

Joel Martin, University of Texas at Arlington, joel@martintribe.org

David Levine, University of Texas at Arlington, levine@cse.uta.edu

© 2018 IEEE. This chapter is not licensed under a Creative Commons license. Reprinted,

with permission, from Martin and Levine, “Property-Based Testing of Browser Rendering

Engines with a Consensus Oracle”, COMPSAC, July 2018 [1].

11

2.1 Abstract

Verifying that a browser rendering engine correctly renders all valid web pages is a chal-

lenging problem due to the size of the input space (valid web pages) and the challenge of

knowing whether the rendering for any given page is correct (the test Oracle problem). We

propose a PBT approach that uses controllable grammar-based generators for creating the

inputs (web pages containing HTML5 and CSS3) and that uses a (lack of) consensus among

multiple rendering engines to identify failing test cases. To assist with root-cause analysis

the system uses test shrinking to report much smaller versions of failing test cases. This tech-

nique may also be used to test other software systems where there are multiple preexisting

implementations of the SUT.

2.2 Introduction

One of the challenges of developing a new browser engine is achieving a rendering engine

with correct rendering across the wide range of possible combinations of page elements

and layouts. The HTML5 [2] and CSS3 [9] standards consist of large and complicated

specifications. Verifying that a browser rendering engine correctly renders all possible pages

is a significant testing challenge.

One way to approach this challenge is to manually create test cases with corresponding

reference images and then compare the resulting rendered page to the reference image. This

is the method that the Acid Tests [4] use to test various CSS standard versions. This method

involves manual creation of both the test cases and the reference images. Another approach

is to create two test pages that have the same rendered visual appearance but which use

different underlying mechanisms to achieve it. Differences in the results indicate a possible

rendering error/defect. The type of test cases that can be tested with this method is limited

to those types of pages and layouts that have multiple rendering paths with the same visual

result. While it is possible to automate test case creation, creating a model that can generate

12

web pages which result in the same rendering using different page elements is a significant

challenge.

The key problem with these approaches is that the model (Oracle) used to validate a

test case is either via manual human inspection or the process of creating tests is manual,

complex and limited in scope. In other words, human intervention is necessary during

input creation or output validation or both. To address these challenges we propose a

PBT system (Section 3.3) that automates both the creation of inputs (web page test cases)

and the validation of rendered output. This is achieved by automated input generation

using grammar-based test generators (Section 2.5 and Section 2.6) and automated output

validation using a consensus Oracle (Section 2.7). The system architecture and the results

of using the system are described in sections 2.4 and 2.8 respectively.

2.3 Property-Based Testing (PBT)

PBT (also known as generative testing) is a method of automated software verification in

which tests are defined in terms of input and output properties. This is in contrast with

the common example-based testing in which each test is defined as a fixed set of inputs, the

mechanism for running the tests, and the expected outputs for that test.

In PBT the possible inputs to the SUT are defined as properties. These properties

are used by the test system to generate valid inputs for the SUT that satisfy the input

properties. Using the input properties to generate a comprehensive set of all possible inputs

is an option if the input property search space is relatively small. However, this is rarely a

tractable option: a program that takes two 4-byte integers has 1.84× 1019 possible inputs

without any further constraints. For this reason, PBT systems often generate the inputs

stochastically. In addition to the input properties, the developer defines output properties

which are used to determine if the given input results in a correct outcome when the test is

run.

13

One of the most popular PBT systems is QuickCheck [10] which was originally developed

in Haskell but has been ported to many other languages. Our system is written in Clojure [11]

and leverages Clojure’s test.check library [12] which is a PBT library based on QuickCheck.

2.3.1 Test Generation using Clojure test.check

The test.check library provides a number of base generators. For example, Listing 2.1 shows

a generator that generates a random integer. In the following listings tc, gen, and prop are

abbreviations for the test.check, test.check.generators, and test.check.properties namespaces

respectively.

gen/int

Listing 2.1: Basic Generator

Generators can be combined into compound generators. For example, the following

generator outputs a two element tuple that contains a random integer followed by a random

alphanumeric string:

(gen/tuple gen/int gen/string-alphanumeric)

Listing 2.2: Compound Generator - Tuple

A more interesting case is the following generator which outputs a random length vector

containing random integers:

(gen/vector gen/int)

Listing 2.3: Compound Generator - Vector

Recursive generators can also be defined. For example, the following will generate

JavaScript object notation (JSON) like structures containing a random hierarchy of maps

and lists:

14

(defn compound [inner-gen]
(gen/one-of [(gen/list inner-gen)

(gen/map inner-gen inner-gen)]))

(def scalars
(gen/one-of [gen/int gen/boolean]))

(def json-like
(gen/recursive-gen compound scalars))

Listing 2.4: Recursive Generator

Test generators can be thought of as tree data structures in which the leaves of the tree

are the fundamental generators (i.e. provided by test.check) and the internal nodes of the

tree are compound generators that are defined in terms of fundamental generator leaves. In

the case of the browser test system, the root node of the tree is a compound generator that

generates full web pages (HTML/CSS) and the leaves of the tree are fundamental generators

that generate atomic elements of the page such as HTML tags or CSS property names.

When a generator (fundamental or compound) is invoked it takes two parameters: a

sizing value and a random seed value. Invoking the same generator again with the same

size and seed results in the same generated result. Note that the size value has a meaning

that is specific to each type of generator. For example, for a random integer generator, the

size determines the maximum possible magnitude of generated integer value. For example if

gen/int is invoked with a size of 10 then it will output a random value between -10 and 10. In

the case of gen/vector the size value determines the maximum length of the vector. During

normal test generation mode, compound generators invoke their child generators using their

own size value and random seed values that are deterministically derived from their own size

and random seed value.

2.3.2 Test Shrinking

Most QuickCheck derived PBT systems provide a feature called test shrinking that attempts

to identify the smallest version of the test case that continues to fail (does not satisfy the

test property).

15

A failing test case is defined in terms of a generator tree with the size and random seed

values that were used at every node and leaf of the tree. The shrinking process modifies

the current instantiated generator tree by picking a random node in the current instantiated

generator tree and replacing the size value with a smaller size value. This new instantiated

generator tree is used to generate a new test and if that test continues to fail the system will

adopt this as the current smallest test case. If the test passes the system will backtrack and

attempt to shrink a different node of the instantiated generator tree.

2.4 Test System Architecture

Fig. 2.1 shows the basic architecture of the testing system. A test case (complete web page)

is randomly generated (Fig. 2.1-H) from the combined HTML5 and CSS3 EBNF grammar

(Section 2.5) based on the current seed and size setting. The test driver uses the WebDriver

protocol [13] to establish a connection (Fig. 2.1-J) to each browser in the consensus pool

(Fig. 2.1-K) and requests that the test page (including any referenced static resources) is

loaded via the web server (Fig. 2.1-G).

In parallel, each browser loads and renders the test page (Fig. 2.1-L). Then the test

driver requests that each browser take a screenshot of the rendered page and return it as

a Portable Network Graphics (PNG) image to the test driver (Fig. 2.1-M). For each set

of browser screenshots, the test driver determines if there is a consensus rendering (Section

2.7.2).

The process is repeated with new test cases until the number of passing tests reaches the

configured number of test cases or until the first failing test is found. Once a failing test

case is found, the test driver switches to test shrink mode and attempts to find the smallest

and/or simplest test case that still fails (Section 2.3.2).

16

Generator Preparation

Test Execution

Browsers

Test Driver

Web Server

Tests(HTML/CSS)
Static Images
Screenshots

EBNF Grammars

Tests
(HTML/CSS)

Webdriver protocol

Screenshots
(PNG)

HTTP protocol

Mozilla
Developer
Network
(MDN)

HTML5
Downloader

HTML5 Elements/Attributes

CSS3
Downloader

HTML5
EBNF Grammar
Generator

HTTP protocol HTTP protocol

CSS3
EBNF Grammar
Generator

DVS Parser

CSS3 DVS Grammar

CSS3 DVS AST

EBNF Grammars

(A)

(B)

(C)

(D)

(E)

(G)

(F)

(H)

(I)

(J)

(K)

(L)

(M)

Figure 2.1: Test System Architecture

17

2.5 Grammar-based Input Generators

One option for generating web page input would be to manually write test.check genera-

tors for generating HTML5 and CSS3. However, given the large scope of the HTML5 and

CSS3 standards a more automatic solution is necessary to get wide test coverage. Since

both standards can be described in terms of formal grammars, we propose a method that

downloads, scrubs and compiles the HTML5 and CSS3 specification data into Extended

Backus-Naur form (EBNF) grammars. Backus-Naur form (BNF) is a formal notation for

describing context-free grammars. EBNF is the name for a number of variants of the orig-

inal BNF with increased expressive power by adding features like grouping, repetition, and

regular expressions. Our test system uses the instaparse [14] Clojure library which supports

most of the popular EBNF variant syntaxes. Table 2.1 contains a summary of the EBNF

expansion syntax supported by instaparse.

EBNF grammars are used in our system as a common intermediate format that is then

translated into test.check generators that can be loaded and executed by the test system.

These test.check generators are used during browser render testing. The EBNF transla-

tion and test.check execution components of our system are generic and can used to test

any command-line application for which the inputs are (or can be) defined with an EBNF

grammar.

2.5.1 HTML5 Grammar

HyperText Markup Language (HTML) is a format for describing the content and semantic

layout of a web page. A web page is a structured hierarchy of HTML elements which are

delineated by tags. Normal HTML elements are defined with a start and end tag. A start

tag is a string containing the element name surrounded by angle brackets such as <div>.

An end tag is similar to a start tag but the element name is prefixed with a slash such as

</div>. The content of the tag is defined between the start and end tags and may contain

18

Table 2.1: EBNF Expansions
A B or A, B concatenation
A | B alternation
(A B) grouping
A? or [A] optional (zero or one)
A+ one or more
A* or {A} zero or more
"abc" or 'abc' string literal
#"abc" or #'abc' regular expression

textual data and definitions for other elements.

The start tag for HTML elements may contain element attributes after the tag name and

before the ending angle bracket. These are enumerated as key/value pairs with a = symbol

between the key and value. The attribute value is typically surrounded by double-quotes

although this is only required when the value contains spaces.

The structural grammar for HTML5 is fairly shallow even though it contains over 130

tag elements and 110 tag attributes. In theory, we could just define these in terms of any

string of valid characters as shown in this EBNF grammar snippet:

element = '<' tag-char+ (<space> attribute)* '>'
(element | content)* '</' tag-char+ '>'

attribute = attr-char+ '="' char-data '"'

Listing 2.5: Simple EBNF

The grammar can parse structurally sound web pages but there are two key problems

that arise when we attempt to use this grammar to generate random web pages. The

first problem is that because EBNF is context-free we don’t have a mechanism to generate

arbitrary matching start and end tags. Even if we had way to address this problem (e.g.

using a non-context free grammar) we would still have a second problem. Since the generated

tag names are random strings it is exceedingly rare that the strings will match HTML5 tags

and trigger interesting structural or rendering semantics in the browser. For these reasons,

the EBNF grammar that we generate (Fig. 2.1-B) contains full definitions for HTML5 tags

and attributes. Listing 2.6 shows a snippet of the resulting HTML5 EBNF grammar.

19

element = '<a' (<space> a-attribute)* '>'
(element | content)* ''

| '<abbr' (<space> abbr-attribute)* '>'
(element | content)* '</abbr>'

a-attribute = 'download="' attr-val-download '"'
| 'href="' attr-val-href '"'

Listing 2.6: HTML5 EBNF

2.5.2 CSS3 Grammar

Cascading Style Sheet Level 3 (CSS3) is a language for describing the presentation or visual

appearance of the HTML element of a web page. CSS properties modify the appearance or

behavior of HTML elements. Each property is composed of a property name followed by a

colon followed by a one or more property values. Listing 2.7 shows a normal div tag that has

a style attribute containing contains some text. The div element has single style attribute

containing two CSS properties which adjust the font size and color of any textual content

within the div element.

<div style="font: 2em; color: red">
my test

</div>

Listing 2.7: Simple Div

The CSS3 standard is more expansive than the HTML5 standard and consists of over

50 different sub-specifications referred to as CSS3 modules which are in various stages of

standardization [15]. There are more than 360 CSS property names across all the CSS3

modules. The CSS3 Property Values are defined in terms of a formal grammar called Value

Definition Syntax (VDS) [16]. Th VDS grammar is similar to EBNF but has some addi-

tional combinators and multipliers that allow concise definitions of common patterns in CSS

property values. In addition whitespace between terminal elements is implicit.

We define a separate EBNF grammar specifically for parsing VDS data so that we can

reuse our parsing code (Fig. 2.1-D). The parsed VDS data is then translated into the final

EBNF representation (Fig. 2.1-E) for use in the test execution system. The following listings

shows the VDS for the text-emphasis-position data value and the translated EBNF grammar:

20

<'text-emphasis-position'> = [over | under] &&
[right | left]

Listing 2.8: “text-emphasis-position” VDS

prop-text-emphasis-position =
(

('over' ' ' | 'under' ' ') ' '
('right' ' ' | 'left' ' ') ' '

) ;

Listing 2.9: “text-emphasis-position” EBNF

2.6 Generator Tuning

During test execution, a weights file can be used to tune the behavior of the HTML5 and

CSS3 generators. The weights are used to adjust the frequency distribution for alternation

rules in the grammar. The default weights are set to the same value for all components

which results in a uniform distribution (each alternation component will be selected with

an even probability). More fine-grained grammar control is discussed in Lämmel 2006 [17].

There are a number of scenarios where tuning of generator weights is useful including:

1. Single component testing: The weights can be tuned to focus test generation on one

component (or a small number of components) by significantly increasing the weights

along the path to the component of interest in the grammar.

2. Avoid known failures: Failures that occur at smaller test case sizes can mask failures

at larger sizes. The weights can be tuned to avoid the components causing the known

failures by setting the weight to zero (or much smaller values). This will increase the

likelihood of discovering unique failures.

3. Pairwise or combinatorial testing: Empirical studies (Appendix B of Kuhn 2010

[18]) show that a high percentage of software failures are caused by the interaction

of a small number of variables and the interaction of just two variables is typically

21

sufficient to discover over 50% of software failures. Pairwise or combinatorial testing

can be performed using our test system by generating weight files that have pairs or

combinations of weights with large values (high probability).

4. Typical and atypical test cases: An existing collection of web pages can be used

to tune the test system. For example, if a tester wants to gain confidence that popular

web pages will render correctly, a collection of web pages could be created of the most

frequently visited web pages. The existing HTML5 and CSS3 grammars can be lever-

aged to parse these web pages to determine the average frequency with which different

components appear and this frequency data can be used to set the generator weights.

Alternatively if the tester is interested in uncommon HTML5 and CSS3 components

then the weights can be set to an inverted distribution based on the frequencies.

2.7 Consensus

2.7.1 Challenges

In a consensus Oracle testing model (named “differential testing” in McKeeman 1998 [19]),

test cases are loaded in multiple different implementations and if there is a consensus then

the current test case is considered to be passing. The challenge with a consensus Oracle is

identifying false positives: differences that do not indicate a true failure. The web standards

provide some leeway in terms of how browsers are allowed to render the same test case so it

is important to either eliminate these differences from the generated test cases or to identify

and ignore differences that do not indicate a failure. We have identified element borders [20]

and font rendering as the two most problematic areas.

The most obvious solution to permissible rendering differences is to avoid these cases

(at least initially). This is fairly simple for the element border differences because the

test generators can simply be configured to not use problematic border features. However,

22

font rendering is more likely to reveal rendering defects in a browser and omitting fonts

from testing would result in a significant testing gap. The Ahem font [21] was designed

specifically for the purpose of browser testing. The Ahem font consists of filled squares and

rectangles that are precisely specified so that they are able to be rendered the same regardless

of platform and rendering engine [22].

2.7.2 Calculating Consensus

We define consensus for a single input test case as the condition where all pairs of rendered

images have a disagreement value that is less than a threshold. Given a set of browser

renderings B for a single input test case, an algorithm R that gives a measure of disagreement

between two rendered images a and b, and a maximum disagreement threshold θ for that

algorithm, then consensus is when ∆ is the empty set:

∆ = {{a, b} ∈ B ×B |R(a, b) >= θ}

Conversely if ∆ is not the empty set then there is not a consensus. The algorithm that

is used for calculating the disagreement value is a configurable option in the system but the

default algorithm is to calculate a normalized sum of square of differences (SSD) as follows:

R(a, b) =

∑
x,y

(a(x, y)− b(x, y))2

√∑
x,y

(a(x, y)2.
∑
x,y

b(x, y))2

Additionally, we can define a particular browser x as being at fault for the disagreement if

every browser-pair containing x is also in ∆ (the browser disagrees with every other browser).

{{x, b} ∈ x×B |x 6= b} ⊂ ∆

Note that more than one browser may be at fault since more than one browser may be

23

in disagreement with all other browsers. This includes the case where all browsers are fault.

There is also the interesting case where there is disagreement among the browsers but no

particular browser is identified as at fault. Consider an Oracle composed of three browsers

x, y and z where R(x, z) >= θ (disagreement) but R(x, y) < θ and R(y, z) < θ. In other

words x and z are in disagreement but y has a rendering that has split the difference and

has feature of the others such that neither R(x, y) or R(y, z) are in disagreement. It is not

clear in this case whether the fault lies with x or z or perhaps all three.

There are alternatives for calculating which browser is most at fault for a disagreement

in the case where no single browser disagrees with all other browsers. One method would

be to generate an average image of all the rendered images and then identify which browser

is most different from the average. However this would conflate two different types of dis-

agreement and we found it useful to be able to distinguish between all four categories of

agreement/disagreement: all browsers in agreement, disagreement with one browser most at

fault, disagreement with all browsers at fault, disagreement with no single browser at fault.

2.8 Results

To validate the capabilities of our system we used a configuration that included three browsers

in the consensus pool: PhantomJS (version 2.1.1), Mozilla Firefox (version 52), and Mozilla

Servo (release build of git hash 854d720b2). Our initial tests used the full HTML5 and CSS3

grammar including elements that are marked obsolete and experimental in the standards.

These elements are less standardized across browsers and so we expected to easily find

browser differences due to these elements being included in test cases. We also used a

minimally tuned weight file to focus the test cases on visual rendering differences.

Step 1 of each test run uses the smallest test case that can be generated by the grammar.

The HTML/CSS of this test case (shown in Listing 2.11) is an html element containing a

single body element with no content. The body element has a default style that specifies a

24

<html>
<body style="background: #1289af;

font: 25px/1 Ahem">
<marquee bgcolor="navy">
<q cite="STUB_cite" ...ELIDED... >

<!---uo--><!--WZ-G-G--><!--iM--> <!---->pX
</q>

</marquee>
p
<mark ...ELIDED...> </mark>
<strong ...ELIDED...

style="offset-anchor: right;
box-align: stretch;
padding-right: -1.75vw;
scroll-snap-type-x: mandatory">

<!--m-->
<mark ...ELIDED...> Xp<!---M-S-->XX </mark>
É

</body>

</html>

Listing 2.10: “text-emphasis-position” EBNF

(a) Firefox (b) Firefox∆PhantomJS (c) PhantomJS

(d) PhantomJS∆Servo (e) Servo (f) Firefox∆Servo

Figure 2.2: Step 7

blue background and that the Ahem font should be used as the default font for text within

the body. The reason for the blue background setting is to distinguish the case where a

25

browser completely fails to render a particular page and just shows a default background

color.

<html>
<body style="background: #1289af;

font: 25px/1 Ahem">
</body>

</html>

Listing 2.11: Smallest Test Case

Fig. 2.2 shows expanded results for the first step where the output property is violated

(step 7). The HTML/CSS code that was generated is shown side-by-side with browser

screenshots and browser difference images. The differences between the screenshots can be

seen in sub-figures b, d and f of fig. 2.2. Just from visual inspection it can be seen that the

difference between Firefox and PhantomJS is much less that the difference between Servo

and the other two browsers. However, the difference between Firefox and PhantomJS still

resulted in a value that was over the threshold resulting in all three browsers marked as at

fault.

Once the test system finds a test case that violates the output property (consensus), it

will begin searching for a smaller version of that test case which continues to violate the

output property (failing test). Fig. 2.12 shows the smallest test case found that continues

to violate the output property. The failure has been reduced to a single marquee tag that

contains a single text character and has no attributes.

<html>
<body style="background: #1289af;

font: 25px/1 Ahem">
<marquee> p </marquee>
</body>

</html>

Listing 2.12: Smallest Failing Test Case

The median number of steps to identify a failing test case was 8 steps and the maximum

was 15 steps. The median size of the first failing test case was 3025 bytes and the maximum

was 109,983 bytes. The median number of steps needed to shrink a test case was 113. The

median size of the test case after shrinking was 154 bytes and the maximum was 245 bytes.

26

2.9 Related Work

This section is elided because the content is subsumed by the overall Related

Work in chapter 8

2.10 Conclusion and Future Work

We discovered that the system is able to quickly discover failure cases: across 130 test runs

the maximum number of steps until a failing case was found was 15 (median 8). A key

reason why failing cases are discovered quickly is that the PBT method grows the test case

with each step. This effectively means that each step is checking many features and feature

combinations simultaneously. This also means that the initial failing test case can be quite

large. Therefore test shrinking is important for reducing the test case so that it is useful for

human analysis. The average test case reduction was 90.05%.

The controllable grammar aspect of the system enables the targeting of specific features

and reducing the rediscovery of failure cases. With manual inspection of test cases we were

able to easily identify specific HTML5 and CSS3 features that might be at fault and tune

the grammar to discover new test cases. The system could be extended to automatically

tune the grammar to avoid already discovered failing cases or to take a failing test case from

another test source or a user bug report. The grammar would be used to parse the test case

and generate additional related failing test cases to assist in characterizing the nature of the

failing test. This would be particularly useful for taking a large test case and generating a

much smaller test case that still exhibits the failure.

27

Chapter 3

“Instacheck: An Automated

Property-based Testing Model to

Increase Coverage and Enable

Directed Testing using Weighted

Grammars”

Authors:

Joel Martin, University of Texas at Arlington, joel@martintribe.org

David Levine, University of Texas at Arlington, levine@cse.uta.edu

© 2018 Joel Martin and David Levine. This chapter is in manuscript form and is intended

for separated publication. This chapter is not licensed under a Creative Commons license.

28

3.1 Abstract

While PBT is a powerful automated testing model, it has some significant shortcomings: test

specifications are usually defined in the same programming language as the SUT rather than

a more abstract and portable language; changing or increasing test coverage often requires

manually updating or defining new test specifications; simple bugs can often hide the exis-

tence of more complex bugs; and the shrinking capability cannot be used with existing test

cases. We propose a technique called Instacheck that addresses these issues by using EBNF

defined inputs, by using an adjustable grammar weighting system to control test coverage,

and by using an automatic weight-adjusting approach that can avoid known bugs across

multiple runs. We use a constrained markup language to show that Instacheck addresses

each of PBT’s mentioned limitations. We also present a case-study that uses Instacheck to

automatically identify differences between web browser rendering engines.

3.2 Introduction

PBT is a powerful automated testing approach that can reveal defects that are difficult to find

with manual example-based testing [23]. Our own success with PBT in an industry setting

motivated us to use it for automated testing of browser rendering engines. This testing

domain is different from the typical use of PBT due to the size and recursive nature of the

input space (HTML and CSS web pages); and due to the variability of browser rendering

behavior (large number of counterexamples). We discovered a number of limitations affecting

PBT’s utility in this domain. We propose a new approach, Instacheck, that addresses these

limitations and also enables a new PBT capability: the ability to reproduce and shrink of

preexisting test cases.

This paper is structured as follows: an introduction to PBT and its limitations (3.3);

a description of the Instacheck approach (3.4); results of validating Instacheck with a con-

strained grammar and with a full browser rendering use-case (3.5); related works (8); and

29

concluding remarks (3.7).

3.3 Property-based Testing (PBT)

The canonical Property-Based Testing (PBT) system is QuickCheck [10], “a simple domain-

specific language of testable specifications which the tester uses to define expected properties

of functions under test. QuickCheck then checks that the properties hold in a large number of

cases” [10]. The domain-specific language of QuickCheck derives from Haskell’s type system.

The QuickCheck model of property-based testing has implementations in other languages

with less formally defined type systems but the essence of the PBT model is that inputs are

generated from an input specification, and a test oracle verifies correct output/behavior of

the system under test (SUT) for a given generated input [24].

Let’s consider the definition of a simple SUT: f(v) = x. The function f takes a vector v

containing a sequence of integers and floating point numbers, performs data analysis on the

sequence, and returns a result x. Further, let’s assume that if v contains three immediately

adjacent numbers which are in increasing order, this will trigger a defect in f , resulting in

an incorrect value being returned for x. To test f we first define a PBT input property for v

as V (S(I(), F ())) where I is a scalar generator returning an integer, F is a scalar generator

returning a floating point number, S is a compound generator that selects between other

generators, and V is a compound generator that returns a vector of values from another

generator. Listing 3.1 shows an example of vector values sampled from V .

[] [0] [-1 -1.0] [1.5] [-1.5 1] [4] [2] []
[3.1171875 -8 1.0 0.55078125 0.99609375 -2]
[-1 3 0 0.0 -0.2880859375] ...

Listing 3.1: Values sampled from the generator V

In addition to the PBT input properties, we also define a PBT output property test

oracle O(v) that returns the correct result for the SUT. The PBT process then checks the

30

following assertion: for all values of v, the result of f(v) must equal the result of O(v).

{:pass? false,
:num-tests 7,
:fail [[0.9140625 1.9375 -6 -6 -1 2.25]],
:shrunk {:total-nodes-visited 46,

:smallest [[-1 0 1]]}}

Listing 3.2: Example result from quick-check

Listing 3.2 shows an example result from using the input and output properties described

above to execute the quick-check function from Clojure’s [11] test.check PBT library [12].

The output shows that a failing test case was found on test iteration 7 and the sequence that

caused the initial failure was [0.9140625 1.9375 -6 -6 -1 2.25] . The shrinking process

then considered 46 nodes of the generator tree and returned [-1 0 1] as the smallest value

that still fails the output property (shrinking is described in Subsection 3.3.2).

3.3.1 PBT Input Properties

PBT implementations provide a library of generators that can be composed to define input

properties of the SUT. This library includes generators that return scalar values such as

integers, natural numbers, floating point numbers, characters, strings, keywords, and sym-

bols. The library also includes compound or container generators such as fixed length tuples,

variable length vectors, and associative maps. Compound generators are defined in terms of

other scalar or compound generators that they contain.

PBT generators take two parameters: a size value and a pseudo random number (PRN).

The size parameter indicates the magnitude of the value that the generator should return.

The effect of the size parameter is specific to a given generator definition. For example,

the size value of an integer generator typically indicates the maximum absolute value of the

integer that is returned. The PRN parameter is used to determine what value is returned

for a given size parameter value. Compound generators will call their contained generators

31

using a size value that is equal to or smaller than their own size parameter and use a PRN

generated deterministically from their own PRN parameter. A combination of generator,

size, and PRN always returns the same value which guarantees deterministic behavior so

that test executions are reproducible.

The input and output properties (generators and test oracle) are invoked multiple times

with varying size and PRN values until a counterexample is discovered where the output

properties are violated. This is normally accomplished by invoking the input generators

with small initial size values and increasing the size value until an output property violation

is discovered. This counterexample is reported to the tester as the initial failing test case.

After a failing test case is discovered most PBT systems apply a shrinking process (Section

3.3.2) to find a smaller test case that continues to violate the output properties.

Input property generator functions can be recursive in nature. An example is a generator

that returns arbitrary HTML data or any generic tree-like structure. The PBT system is

responsible for ensuring that recursion must eventually terminate. This is often accomplished

by using the size parameter to determine the maximum depth to which the generator may

recurse.

3.3.2 PBT Test Shrinking

PBT is effective at finding bugs in a SUT. However the size values used for the generators

may be large when a failing test case is discovered. This large size may be essential to

trigger the failure in the SUT or the failure may be detected due to the high coverage of

the individual test case. In this case most of the content of the test case is noise that is not

related to the output property violation. A noisy test case indicates that a bug exists within

the SUT without giving useful indication where in the system the bug exists. PBT systems

usually provide a test shrinking capability to address this issue. The capability to shrink

tests cases means that the PBT test model can be effective both at discovering failing test

cases and providing small versions of those test cases that are useful for identifying the root

32

cause that triggered the failure [23].

Each test case has an in-memory tree representation of the generator nodes with the size

and PRN parameters that were used to generate the test case. The shrinking process picks a

generator node from the tree and checks whether a smaller version of that generator results

in a test case that continues to violate the output property. If so then the new test case is

considered smaller than the original one. This shrinking process is repeated until some sort

of termination condition is met; either the shrinking process determines that it has reached

a local minimum of test case size or it reaches some arbitrary maximum number of search

iterations.

One method of shrinking a generator node is to reduce the size value that is used to invoke

the generator. However, generator functions are typically defined with custom shrinking

processes that accomplish more effective shrinking of the generator data. For example, a

bifurcation process can be used to shrink sequences of generated data and a binary search

can be used to shrink scalar values [25] [26].

3.3.3 Limitations of PBT

PBT is a powerful automated testing approach that can reveal bugs that are difficult to

find with manual example-based tests [23], but there are limitations affecting PBT’s utility

in important problem domains. First, PBT input property generators are defined with a

domain-specific language that is often a subset of or closely related to the implementation

programming language of the SUT [27]. This means that the test specifications are difficult

for non-developers to create [28] and the specifications are not reusable for testing similar

functionality of systems implemented in other languages.

Second, the domain of the input properties is effectively unlimited so choices must be

made during test specification design about the distribution of input data. For example,

a function that takes five unconstrained 64-bit integers has an input domain that exceeds

the number of atoms in the observable universe [29]. When a tester wants to use the PBT

33

model to test a new component in the SUT or to adjust the coverage for an existing test

this implies adjusting or creating new test specifications.

Third, the PBT process tends to rediscover the same problems reducing the likelihood of

finding bugs triggered only by larger or more complex test cases. This problem is exacerbated

by the PBT shrinking process because it does not know if a smaller bug discovered during

the shrinking process is actually the same underlying bug or if it is different one [30].

3.4 Instacheck

To address the limitations with PBT we propose a new technique, Instacheck, which builds on

the PBT model and addresses the limitations. To validate the Instacheck model we created

an implementation of Instacheck in Clojure [11] that leverages the test.check PBT library [12]

which is based on the QuickCheck model [10]. In this paper we use the term “Instacheck”

to refer to both the technique and its Clojure implementation 1. As with QuickCheck, the

Instacheck model can be applied to other languages and testing contexts [24].

3.4.1 Instacheck Grammars

The first PBT limitation that Instacheck addresses is that the test specifications are typically

defined using a subset of the language of the SUT. There are at least two reasons for defining

test specifications in a more general and abstract language than that of the SUT. The first

is to enable reuse of test specifications across SUTs implemented in different programming

languages. The second is that the inputs for certain types of systems are already described

in an abstract grammar which can readily be translated into the abstract test specification

language. One of the motivations for Instacheck is to enable automated testing of web

browser rendering engines for which test cases are web pages containing HTML and CSS.

The HTML and CSS formats are web standards that are specified using formal grammars.

1We selected Clojure due to author familiarity and due to the availability of the test.check library for
PBT and the Instaparse library for defining EBNF parsers.

34

Section 3.5.6 describes the results of using Instacheck to test web browser rendering engines.

Instacheck currently defines test specifications using a class of formal language grammars

known as Extended Backus-Naur form (EBNF). Instacheck leverages the Instaparse [14]

library for grammar parsing and therefore supports the Instaparse EBNF variant. The

supported EBNF syntactical elements, their meaning, and their textual (key) and visual

(icon) representation are listed in Table 3.1. The weight column indicates the elements that

can be weighted (described in Section 3.4.2).

EBNF Syntax Meaning Key Icon Weight

A non-terminal (LHS) N

A non-terminal (RHS) N

"abc" or 'abc' literal terminal "

#"abc" or #'abc' regexp terminal R

"" or '' or ε epsilon terminal ε

A B or A, B concatenation :cat C

A | B alternation :alt | X

A? or [A] optional :opt ? X

A* or {A} zero or more :star * X

A+ one or more :plus +

(A B) grouping

Table 3.1: EBNF Syntax

Instacheck Grammar Examples

Figure 3.1 shows the directed tree representation of a single EBNF rule r1 = 'a' | 'b' ; .

This rule defines a grammar that parses a document containing a single character that is

either “a” or “b”.

Figure 3.2 shows the directed tree representation of a more complicated rule.

35

N

|

"

r1

'a'
"
'b'

r1 = 'a' | 'b' ;

Figure 3.1: Grammar with one simple rule containing alternation.

N

C

" |

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

r1 = 'a' ('b' | #'[cd]+' | r2*) ;

Figure 3.2: Grammar with one rule containing a concatenation, an alternation, a 0 or more
repetition (star), and all the terminal types supported by the syntax.

The grammar in Figure 3.2 is incomplete because it has a leaf node that refers to a

non-terminal r2 on the right side of the rule that is not defined. Figure 3.3 expands the

grammar to include the definition of the r2 rule.

Each separate production rule in an EBNF grammar is a directed acyclic graph (DAG).

The grammar as a whole may contain cycles where non-terminals in leaf position of a pro-

duction rule refer to another rule definition including a reference back to the root of the

current rule (self-recursive) or to a “parent” of the current rule (mutually recursive).

3.4.2 Grammar Weights

Instacheck uses a system of weights that can be modified to adjust the generated test cases.

This is used to address the other PBT limitations. An Instacheck grammar contains weighted

nodes that have multiple child paths that may be selected during test case generation. The

36

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

r1 = 'a' ('b' | #'[cd]+' | r2*) ;
r2 = 'e' r2 | 'f' ;

Figure 3.3: Complete grammar with two rules.

weight values affect the probability distributions of traversed paths during value generation.

Instacheck provides default uniform weight values for the generators but the weight values

can be manually configured prior to a test run or automatically adjusted across multiple test

runs. This capability enables Instacheck to address the PBT limitations related to coverage.

The original Haskell QuickCheck implementation can be applied to individual routines

of the SUT by performing a naive translation of the type definitions of those routines to

generator functions. For simple routines with reasonably constrained input types this can

provide a sufficient level of code coverage. However, for more complex routines and when

QuickCheck is used at a higher level (modules or whole programs) it is usually necessary

to write custom generators to generate test cases with the desired code coverage because

generators derived only from the type definitions are unlikely to activate all code paths within

the SUT. Grammar weights allow directed code coverage without requiring new custom

generators to be created manually.

37

3.4.3 Grammar Paths, and Treks

The nodes and edges within a grammar graph are identified by Instacheck paths. An In-

stacheck path is a tuple containing a rule keyword followed by zero or more alternating node

type keywords and child edge identifiers. In Figure 3.1 the path of the non-terminal root

node of the rule is [:r1] . The path of the :alt node (|) in the middle of the graph is

[:r1 :alt] . The paths to the terminal strings “a” and “b” (") are [:r1 :alt 0] and

[:r1 :alt 1] respectively.

The :alt (|) node type uses zero-based indexes to identify child edges within grammar

paths. The :opt (?) and :star (*) node types use nil and 0 to identify child edges within

grammar paths. When the grammar is used in a parsing context, a nil child edge means

no text was matched by a child tree and 0 means either one match or one or more matches

by the child tree for :opt and :star node types respectively. When the grammar is used in a

generator context a nil child edge means no text is produced and 0 means the child tree

produces either once or one or more times for :opt and :star node types respectively.

Instacheck introduces a class of data structures called treks to represent grammar graph

information. Each trek is a shallow (single level) associative map of grammar paths to values

of some type. There are multiple types of treks used in Instacheck but we will focus on value

treks and wtreks (or weight treks).

A value trek maps grammar paths to leaf node values. Each path in a value trek represents

a possible traversal of the grammar from a root non-terminal (N) to leaf terminals / non-

terminal (N , " , R , or ε). A value trek is an enumeration of all Instacheck grammar leaf

nodes indexed by the paths to those nodes from the root of the grammar. Value treks are a

flattened view of the graph that are used for efficient lookup and modification of leaf nodes.

Because the paths contain the full node and edge traversal to every leaf node, this means a

value trek can be transformed to and from a full graph representation.

A wtrek (weight trek) maps grammar paths to grammar weight values. The weights in a

wtrek are used by Instacheck to determine the probability that a child path is chosen during

38

test case generation. Serialized wtreks are used to durably store and to configure grammar

weights and serve as a convenient format for end-user customization of the weights. Each

path in a wtrek represents a traversal of the grammar from a root non-terminal (N) to the

child edge of a weighted node (| , ? , or *). For a given grammar the paths in a value

trek and wtrek are partially overlapping sets. A value trek contains paths to unweighted leaf

nodes while a wtrek does not. A wtrek contains paths to internal (non-leaf) weighted edges

while a value trek does not.

Value Trek Example

Listing 3.3 shows the value trek for the grammar in Figure 3.3. The value trek contains eight

path to value mappings. The paths are highlighted in Figure 3.4 with dotted lines. The :r1

grammar rule has a tree with five paths from root non-terminal node to leaf terminals / non-

terminals. The first five key-values of the value trek in listing 3.3 define the :r1 rule. The

:r2 grammar rule has a tree with three paths from root non-terminal node to leaf terminals

/ non-terminals. The final three key-values of the value trek in listing 3.3 define the :r2

rule.

{
[:r1 :cat 0] "a",
[:r1 :cat 1 :alt 0] "b",
[:r1 :cat 1 :alt 1] #"[cd]+",
[:r1 :cat 1 :alt 2 :star nil] "",
[:r1 :cat 1 :alt 2 :star 0] :r2,
[:r2 :alt 0 :cat 0] "e",
[:r2 :alt 0 :cat 1] :r2,
[:r2 :alt 1] "f"

}

Listing 3.3: Value trek for the Figure 3.3 grammar.

39

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

Figure 3.4: Value trek paths shown visually with red dotted lines for the Figure 3.3 grammar.

Weight trek (wtrek) Example

Listing 3.4 shows the wtrek representation of the grammar in Figure 3.3. The wtrek contains

seven path to weight mappings. The paths are shown visually in Figure 3.5 with red dotted

lines. The :r1 grammar rule has a tree with five paths from root non-terminal node to

weighted node child edges. The first five key-values of the wtrek in listing 3.4 define the

weights for the :r1 rule. The :r2 grammar rule has a tree with two paths from root non-

terminal node to leaf terminals / non-terminals. The final two key-values of the value trek

in listing 3.4 define the weights for the :r2 rule. The [:r2 :alt] node has two children

with weights of 200 and 100 respectively. This means that during test case generation, the

probability that the first child path ([:r2 :alt 0]) will be chosen is twice as high as the

second child path ([:r2 :alt 1]). Paths with higher weights are also considered “simpler”

by the Instacheck test case shrinking process.

In Figure 3.5 the :star node (0 or more) has an epsilon child indicated by the nil as

the final path element. The separation of the epsilon (empty) child of :star and :opt nodes

gives more control over the test cases generated by the grammar.

40

{
[:r1 :cat 1 :alt 0] 100,
[:r1 :cat 1 :alt 1] 50,
[:r1 :cat 1 :alt 2] 50,
[:r1 :cat 1 :alt 2 :star nil] 10,
[:r1 :cat 1 :alt 2 :star 0] 90,
[:r2 :alt 0] 200,
[:r2 :alt 1] 100

}

Listing 3.4: Wtrek (weight trek) for the Figure 3.3 grammar.

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

Figure 3.5: Wtrek (weight trek) paths shown visually with red dotted lines for the Figure

3.3 grammar.

When the weight value for a child path is zero, then the probability of that path being

chosen during generation is also zero. This means that the child node is unreachable from

the parent node and also from the grammar as a whole. A node is reachable if there is a

path from the root of the grammar to the node and all weighted edges that are crossed have

a weight greater than zero.

3.4.4 Grammar Weight Reduction and Propagation

Instacheck defines an automatic weight modification approach that can increase multiple run

coverage by reducing the probability of traversing the grammar paths that were already used

to generate counterexamples. This is achieved by modifying the active wtrek configuration

41

that Instacheck will use for subsequent test runs. Automatic weight reduction addresses

the third limitation with PBT where the same counterexamples are found repeatedly and

may hide more complex counterexamples. There are three components of Instacheck weight

reduction: selecting weights to reduce, reducing the selected weights, and propagating weight

reductions to prevent invalid weight configurations. An invalid weight configuration is one in

which a weighted node is reachable from the root node but has no reachable children because

all of its child edges have a zero weight.

The weight selection algorithms currently supported by Instacheck reduce the active

wtrek using a parsed frequency trek of each path that is traversed while parsing a test

case. This path frequency trek is a form of wtrek where the weights represent the frequency

with which the respective paths were found in the parsed test case. In a multiple test run

scenario the test case that is parsed is the final shrunk test case from the most recent test

run. Instacheck currently has three selection algorithms:

1. :weight - Random choice weighted by the weight value of paths in the parsed path

frequency trek.

2. :dist - Random choice weighted by the distance of the weighted path from the root of

the grammar using Djikstra’s Shortest Path First algorithm [31].

3. :weight-dist - Random choice weighted by a combination of :dist and :weight.

Once a path is selected for reduction, a reducer function is then applied to modify the

weight for that path in the active wtrek. The reducer function takes the current wtrek weight

and the weight from the parsed path frequency trek and returns a new weight that is used

to update the active wtrek. The reducer function must eventually reduce the weight to 0.

Once a wtrek weight value is reduced, the propagation algorithm is applied in order to

prevent invalid weight configurations. Instacheck currently has three propagation algorithms:

1. :zero - If all siblings of a node are zero, reduce nearest parent edge weights to zero.

42

2. :max-child - If all siblings of a node have a weight that is less than parent edge weight

then reduce that parent edge weight to the largest sibling weight.

3. :reducer - If all siblings of a node are zero, reduce parent edge weights by reducer-fn

function and distribute the removed weights to valid (no removed descendant) child

edges of node.

Listing 3.5, 3.6, and 3.7 show pseudocode for the three propagation algorithms.

We found that these algorithms for selection, reduction, and propagation have a rea-

sonable balance between increasing coverage and algorithmic efficiency (see Section 3.5.3).

Particular characteristics of the underlying grammars being tested may have a significant

impact on the effectiveness of selection, reduction, and propagation strategies.

pend := selected-and-reduced-nodes
while pend:

node := pop(pend)
mcw := max-child-weight(node)
if mcw > 0: continue at while
foreach pnode of parents(node):

push(pend, pnode)
wtrek[pnode] := mcw

Listing 3.5: Weight Propagation Algorithm :zero Pseudocode

pend := selected-and-reduced-nodes
while pend:

node := pop(pend)
mcw := max-child-weight(node)
foreach pnode of parents(node):

if pnode child weight towards node > mcw
then:

push(pend, pnode)
wtrek[pnode] := mcw

Listing 3.6: Weight Propagation Algorithm :max-child Pseudocode

43

pend := selected-and-reduced-nodes
while pend:

node := pop(pend)
mcw := max-child-weight(node)
if mcw > 0: continue at while
acc := 0
foreach pnode of parents(node):

tmp := wtrek[pnode]
wtrek[pnode] := reducer-fn(wtrek[pnode])
acc += tmp - wtrek[pnode]
if max-child-weight(pnode) == 0:
push(pend, pnode)

cnodes := children-with-valid-descendants(node)
foreach cnode of cnodes:

wtrek[code] += acc / count(cnodes)

Listing 3.7: Weight Propagation Algorithm :reducer Pseudocode

3.4.5 Reproducing and Shrinking Existing Test Cases

The process described in Section 3.4.4 uses a path frequency trek parsed from a generated

test case and uses those paths to reduce the weights in the active wtrek. The grammar paths

with reduced weights will be less likely to be traversed during test case generation, which

reduces the likelihood of generating similar test cases.

Using an inverse weight adjustment process, we can parse a path frequency trek from an

existing test case that was not generated by Instacheck and use the parsed frequencies to

increase rather than decrease the probability of those grammar paths being traversed. This

will increase the probability that Instacheck will produce similar test cases to the parsed

external test case. The weights in the path frequency trek capture the weighted node path

probability distributions of the parsed test case and these weights can be used directly as

the active wtrek configuration. New test cases generated with this weight configuration may

not be identical to the original test case but they will have a similar frequency distribution

of paths taken through the grammar during generation. This increases the likelihood that

the bug that triggered the counterexample in the external test case will be detected in new

generated test cases (see Section 3.5.5).

44

The normal PBT shrinking process cannot be applied directly to external test counterex-

amples because there is no in-memory generator tree available on which to apply the process.

The use of weight configuration to find similar counterexamples allows the shrinking process

to be applied because the generator tree is available for test cases generated by the system

itself.

3.5 Results

3.5.1 Test Grammars

To validate the Instacheck model we use a two variant EBNF grammar that describes simple

web page-like test cases containing tag elements, tag attributes, properties and property

values. These two variants are referred to as MG4 (markup grammar degree 4) and MG8

(markup grammar degree 8) respectively. The EBNF for the first variant is shown in listing

3.8. The second grammar is similar but has eight alternations for each tag, attribute, prop-

erty, and property value rather than four. Listing 3.9 shows a simple test case generated by

the MG4 grammar.

The features and failures in test cases generated by MG4 or MG8 grammars are quantified

using a TAPV. The test case in listing 3.9 has a single TAPV [tag1, attr3, pname0, pval2]

which is abbreviated as 1302. Listing 3.10 shows a larger test case generated by grammar

MG4. This test case contains three TAPVs: 2223, 2230, 1201. Each generated tag may

contain more than one TAPV because a tag may contain multiple attributes, an attribute

may contain multiple properties, and a property may have multiple property values. TAPVs

do not span multiple tags even if a tag element is contained within another tag element

(recursion).

Each TAPV defines a “feature unit” of the theoretical system that renders these test

cases (the system under test). When three or four of the TAPV numeric indexes match,

then the feature has incorrect behavior. In other words, TAPV 1011 triggers a misbehavior

45

(counterexample) in the underlying SUT because the tag, property and property value in-

dexes match. The test case in listing 3.10 contains three unique TAPVs of which TAPV 2223

triggers a failure (counterexample). The test case in listing 3.11 has seven unique TAPVs.

TAPV 2001 occurs twice but only counts as a single TAPV for feature coverage purposes.

This test case also contains a counterexample TAPV 2000.

The number of possible TAPVs for a grammar with degree d is given by d4 and the

number of failing TAPVs is given by 4d(d − 1) + d. The MG4 and MG8 grammars have a

total of 256 and 4096 possible TAPVs and 52 and 232 failing TAPVs respectively.

test = elem+
elem = '<tag0' (' ' attr)+ '>' elem* '</tag0>'

| '<tag1' (' ' attr)+ '>' elem* '</tag1>'
| '<tag2' (' ' attr)+ '>' elem* '</tag2>'
| '<tag3' (' ' attr)+ '>' elem* '</tag3>'
| '<tag4' (' ' attr)+ '>' elem* '</tag4>'

attr = aname '="' prop (' ' prop)* '"'
prop = pname ':' (' ' pval)+ ';'

aname = 'attr0' | 'attr1'
| 'attr2' | 'attr3'

pname = 'pname0' | 'pname1'
| 'pname2' | 'pname3'

pval = 'pval0' | 'pval1'
| 'pval2' | 'pval3'

Listing 3.8: Markup grammar degree 4 (MG4)

<tag1 attr3="pname0: pval2;">
</tag1>

Listing 3.9: Test case generated by MG4 containing a single unique TAPV: 1302.

46

<tag2 attr2="pname2: pval3;
pname3: pval0;">

<tag1 attr2="pname0: pval1;">
</tag1>

</tag2>

Listing 3.10: Test case generated by MG4 containing three unique TAPV: 2223, 2230, 1201.

<tag2 attr3="pname1: pval0 pval3;
pname3: pval0;">

</tag2>
<tag2 attr0="pname0: pval0 pval1 pval1;

pname3: pval2;
pname1: pval0;">

</tag2>

Listing 3.11: Test case generated by MG4 containing seven unique TAPVs: 2310, 2313,
2330, 2000, 2001, 2032, 2010.

47

3.5.2 Controlling Coverage

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

Figure 3.6: Coverage for the MG4 grammar with default grammar weights. The X axis

delimits tags (large boxes) and attributes (small boxes) and the Y axis delimits properties

(large boxes) and property values (small boxes).

48

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

Figure 3.7: Coverage for the MG4 grammar one weight adjusted. First figure shows coverage

with the weight of tag1 multiplied by ten. Second figure shows coverage with weight of tag1

set to zero.

49

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

Figure 3.8: Coverage for MG4 grammar with two weights adjusted. Left figure show weights

for tag2 and prop2 multiplied by ten. Right figure shows weights for tag2 and prop2 set to

0.

50

Figures 3.6 - 3.8 show heatmap representations of TAPV coverage that result from generating

random test case samples with the MG4 grammar. Each small box represents a single

TAPV and the darker the box the greater the frequency of that TAPV occurring within

the generated samples (white means there was no coverage of that TAPV). The TAPVs are

arranged with tag indexes and attribute indexes along the horizontal axis and properties and

property values along the vertical axis. The large boxes delineate tags and properties that

contain attributes and property values respectively. The dots mark the TAPV squares that

trigger failures.

Figure 3.6 shows the result of using the MG4 grammar with uniform weights to generate

100 random samples with a maximum generation size of 6. The “X” in the figure shows the

location of TAPV tag1, attr3, pname0, pval2 (1302). This is the TAPV from the test case

in listing 3.9.

Figure 3.7 shows two MG4 coverage heatmaps that result from repeating the same sam-

pling process but with adjusted weights for tag1 (grammar path [:elem :alt 1]). The first

heatmap shows the result of multiplying the weight by ten. The second heatmap shows the

result of setting the weight to zero. The left heatmap shows that the coverage of all TAPVs

with tag1 increases while other TAPV coverage decreases. The right heatmap shows that the

coverage of TAPVs with tag1 drops to zero while other TAPV coverage increases. Figure 3.8

shows two MG4 coverage heatmaps that result from repeating the same sampling process

but with weights adjusted up and down for both tag2 (grammar path [:elem :alt 2])

and pval2 (grammar path [:pval :alt 2]).

This shows that manual grammar weight adjustment can be used to target specific fea-

tures of the SUT either by increasing coverage for features of interest or by decreasing or

eliminating coverage for uninteresting features.

51

Reducer Function Steps

0

5

10

15

20

25

30

35

40

45

50

55

F
a
il
in

g
 I

D
s
 F

o
u

n
d

 (
M

e
a
n

)

1 2 4 8 16 32

max-child / dist max-child / weight max-child / weight-dist
reducer / dist reducer / weight reducer / weight-dist
zero / dist zero / weight zero / weight-dist

Figure 3.9: Failing TAPVs found for each selection and propagation algorithm across 6
different reducer function steps using the MG4 grammar. Counts are averaged across 5
sample runs.

3.5.3 Increasing Coverage with Weight Reduction

Figures 3.9 and 3.10 show the results of using different combinations of Instacheck reduction

algorithms over multiple test runs. Each primary bar represents a combination of propagation

algorithm (:dist, :weight, :weight-dist) and selection algorithm (:max-child, :reducer, :zero).

The bars are grouped by the number of reducer function steps that were used. The reducer

step count is the number of times that the weight is reduced before it reaches zero and can

no longer be reduced (starting from 100). For example, a reducer function that divides the

weight by four would have four steps, because it results in the following integer progression

(when starting from 100): 25, 6, 1, 0.

52

Reducer Function Steps

0

2

4

6

8

10

12

14

16

R
u

n
s
 /

 F
a
il
in

g
 I

D

1 2 4 8 16 32

max-child / dist max-child / weight max-child / weight-dist
reducer / dist reducer / weight reducer / weight-dist
zero / dist zero / weight zero / weight-dist

Figure 3.10: Number of test runs required to find each failing TAPVs for each selection and
propagation algorithm across 6 different reducer function steps using the MG4 grammar.
Counts are average across 5 sample runs.

Each algorithm combination is tested by starting with a uniform active wtrek config-

uration. After each run, the active wtrek is adjusted by the algorithms being tested and

the result is used for the subsequent run. This process continues until the active wtrek can

no longer be reduced, because the active wtrek configuration has reached an invalid state

(propagation has reached the grammar root node). This process is repeated 5 times for each

algorithm combination and the results are averaged.

Figure 3.9 shows the average number of failing TAPVs discovered at the conclusion of

the test for each algorithm combination. The horizontal line at 52 indicates the number

of failing TAPVs that exist in the MG4 grammar. The darker overlay bars represent the

expected number of failing TAPVs that would be discovered if the test was for the same

53

number of runs with no reduction being applied. The expected coverage value M with n

elements and x samples with replacement is:

E[M] = n

(
1−

(
n− 1

n

)x)
The use of reduction algorithms results in an increase in the number of failing TAPVs

discovered for a given number of test runs for every algorithm combination. The propagation

/ selection combination of :reducer / :weight finds the most failing TAPVs before no further

reductions can be applied. However, it is also important to consider efficiency. Figure 3.10

shows the average number of runs that is required to find each failing TAPV. Smaller bars

indicate greater efficiency. The light bars show the expected number of runs per failing

TAPV if the test was run for the same number of runs as the corresponding primary bar

and with no reductions applied. In all cases, using the reduction algorithms is more efficient

than testing with no reductions. The most efficient algorithm combinations are :max-child

/ :dist and :zero / :dist. However, these algorithms tend to perform worse in terms of the

total number of failing TAPVs discovered when run to completion.

These results show that the use of Instacheck weight reduction algorithms increase cov-

erage across multiple runs and are more efficient at finding failing test cases than repeated

test runs without reduction. The choice of reduction algorithm combination depends on the

desired balance of discovered failing test cases and the efficiency of finding each test case.

3.5.4 Shrinking

Figure 3.11 shows 10 runs of the quick-check process using the MG8 grammar with a

maximum generation size parameter set to 6. The X axis shows the run iteration when the

initial test failure was discovered (circle) and when the final shrunk test case was reported

(square). The difference between the shrunk iteration and the initial failure iteration repre-

sents the number of iterations that were used to complete the shrinking process. The Y axis

54

is a logarithmic axis that shows the byte count size of the test case of the initial test case

discovery and of the final shrunk test case.

Several of the lines in Figure 3.11 show momentary increases in the size of the test case

during shrinking. There are two reasons for this. The first is that this figure is reporting what

Clojure’s test.check reports as the current smallest test case, which represents a minimum

in the current branch of exploration and not necessarily the smallest test case globally. A

second reason is that during the translation from the abstract generator tree to an actual

test case there are cases where the tree may be considered smaller even though it results in

more bytes in the translated test case. For example, property name strings use six bytes in

a test case while property value strings only use five bytes. However, both of these represent

a single node in the generator tree and would be considered equivalent in size by the test

system.

In Figure 3.11, the initial failure size has a mean of 1357 bytes and a shrunk size mean of

125 bytes. This represents a 91% decrease from the initial mean to the shrunk mean. This

is a small sample using a synthetic grammar; however, this is consistent with the results

from browser render testing discussed in Section 3.5.6 where we saw a 94% decrease from

the initial mean size (4784 bytes) to the shrunk mean size (308 bytes).

3.5.5 Reproducing Existing Test Cases

Figures 3.12 and 3.13 show the effect of using Instacheck to parse existing test cases in order

to reproduce the same failure (counterexample). For this test we consider only a single

TAPV to be a failing feature. The X axis shows the number of TAPVs in the test case

that were parsed to extract a path frequency trek. In both figures, the left-most part of

the graph represents test cases containing 256 TAPV values. This means that the test cases

contain 255 TAPVs that are not relevant to the failure condition. Each subsequent tick

mark represents a 50% reduction in the number of irrelevant TAPVs (noise) in the test case.

The right-most tick represents a test case that contains only the failing TAPV. The Y axis

55

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Iteration (Trials/Shrinking)

10

20

30

100

200

300

1,000

2,000

3,000

10,000
Te

s
t

C
a
s
e
 B

y
te

s

failure shrunk

Trials / Shrinking

Figure 3.11: Example of shrinking process using MG8 grammar over 10 runs (with max size
6). The iteration and initial failure size are marked with a circle and the iteration and final
shrunk size for that run are marked with a square.

represents the number of TAPVs that were checked during a single quick-check run before a

failing test case was discovered.

For each initial test case size, a random test is generated with the given number of unique

TAPVs. One of the TAPVs is randomly chosen to represent the failing feature. The test

case is then parsed by Instacheck to extract a path frequency trek. This trek is then used

directly as the active wtrek configuration to run quick-check (with a max generator size of

25) until a failing case is discovered. The TAPVs from all iterations of the run are summed

to give a measure of the computational effort that is necessary to rediscover a failing test

56

case. The actual elapsed time needed to discover a failure is similar in shape to the number

of TAPVs explored but it is noisier because it can be affected by conditions of the test system

while TAPV count is not. For each size value the test is run 1000 times (9000 runs total per

figure). The line shows the median TAPV count and the band shows the third and second

quartiles above and below the median respectively.

One question that arises from comparing the two results is: why does the same amount

of noise (non-failing TAPVs in the test case) results in different levels of effort between the

MG4 and MG8 grammar? The effect results from the weights in the grammar being attached

to components of the TAPVs rather than to whole TAPVs. At higher levels of noise, the

weights at every alternation point (tag, attribute, property name, and property value) are

likely to have a non-zero weight and a possibility of generating data. The higher degree of

possible paths at each alternation point in the MG8 grammar means that generated test

cases will be more diverse for a given amount of noise.

The data shows that parsing an existing test case can be an effective way of reducing

the effort required to reproduce the failure. It is also clear that parsing of narrower test

cases (less noise or irrelevant TAPVs) will result in less effort required to rediscover the

failure using Instacheck. This data represents the worst-case case scenario where the is no

correlation between TAPV elements. In real-world scenarios, the elements would be likely

to be correlated which would increase the reproduction efficiency.

57

2
5
6

1
2
8

6
4

3
2

1
6 8 4 2 1

Initial Test Case Size (parsed TAPV IDs)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400
R

e
p

ro
d

u
c
e
 E
ff

o
rt

 (
s
e
a
rc

h
 T

A
P

V
 I

D
s
)

Figure 3.12: Effectiveness of reproducing an existing test case with the MG4 grammar by

parsing existing test cases with varying amounts of noise.

58

2
5
6

1
2
8

6
4

3
2

1
6 8 4 2 1

Initial Test Case Size (parsed TAPV IDs)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000
R

e
p

ro
d

u
c
e
 E
ff

o
rt

 (
s
e
a
rc

h
 T

A
P

V
 I

D
s
)

Figure 3.13: Effectiveness of reproducing an existing test case with the MG8 grammar by

parsing existing test cases with varying amounts of noise.

3.5.6 Case-study: Detecting Browser Rendering Differences

We validated the Instacheck model on a real-world testing problem by using it to catalog

browser web page rendering differences between browser rendering engines. To do this we

translated W3C [32] HTML and CSS specification data into EBNF grammars. These gram-

mars were then loaded by Instacheck and used as input properties to generate random but

semantically valid web pages. Each generated web page was loaded into a browser consen-

sus pool (differential test). The resulting rendered pages were captured and a disagreement

value for each pair of screenshots was calculated as a normalized SSD for each color channel

calculated as follows:

59

R(a, b) =

∑
x,y

(a(x, y)− b(x, y))2

√∑
x,y

(a(x, y)2.
∑
x,y

b(x, y))2

The value calculated for each color channel was averaged and if the value was above a

configurable threshold, then the browsers were considered to be in disagreement and the web

page test case was considered a failing test case.

Results were generated using Google Chrome 75.0.3770.142, Mozilla Firefox 68.0, and

Mozilla Servo (git hash 9451a00). The number of iterations for each run was set to 25 with a

maximum generator size parameter of 50. The normalized SSD threshold value was 0.0001.

After each test run the weights were reduced using the :weight selection algorithm, the :zero

propagation algorithm, and a 3 step reducer function (weight progression: 100, 10, 1, 0).

Listing 3.12 shows an example of a shrunk test page found during testing where Firefox

has different rendering from Chrome and Servo.

<body style="hyphens: unset;
text-emphasis: filled;
hyphens : unset">

x
<div>X</div>

</body>

Listing 3.12: Example test case resulting in a rendering difference

The rendered results for this test case are shown for Firefox, Chrome, and Servo in Figure

3.14. Note that font characters are rendered as solid boxes due to use of the Ahem [21] font

to reduce normal browser font rendering differences.

We ran two sets of test runs: the first tested Firefox against Chrome and the second

compared Servo against Firefox and Chrome. The Firefox/Chrome comparison was executed

for 5,000 test runs totaling 89 hours of run time and 712,193 total page load iterations. 1,805

test cases were identified that caused rendering differences of which 1,695 were unique test

60

Figure 3.14: Firefox, Chrome, and Servo render for test case in listing 3.12

cases. Across both sets of tests the mean size of the initial test failure was 5823 bytes while

the mean shrunk page size was 371 bytes giving a ratio of mean shrink size to mean initial

size of 6% (a decrease of 94%).

For the second set of test runs we used Firefox and Chrome as a test oracle to test

Servo. We used a consensus algorithm that classified a test case as failing only when Servo’s

rendering differed and both Firefox and Chrome were in consensus (below the threshold

value). To increase testing efficiency we initialized this set of runs by using the reduced

weights resulting from the Firefox/Chrome set of test runs. The Servo test was executed

for 1000 test runs totaling 60 hours of run time and 112,073 total page load iterations. 257

test cases were identified that caused rendering differences of which all 257 were unique test

cases. Finally, we identified 19 confirmed bugs in Servo including a number of rendering

related resources leaks that resulted in crashes. Several of the bugs have been resolved and

we are continuing to work with Mozilla developers to resolve the remaining bugs.

3.6 Related Work

This section is elided because the content is subsumed by the overall Related

Work in chapter 8

61

3.7 Conclusion

We have presented a new technique called Instacheck that addresses limitations with PBT.

We validated the capabilities of Instacheck using a constrained markup language grammar.

We were able to successfully apply Instacheck in a browser rendering case-study and iden-

tified over 1,600 unique and minimized (shrunk) web page test cases that cause rendering

differences between Firefox and Chrome. In addition, we used the system to identify a

number of bugs in Servo, including some resource leaks serious enough to lead to crashes.

3.7.1 Future Work

In the future we plan to use automatic weight adjusting techniques for performing Pairwise

(or N-Way) feature testing. We also plan to explore other algorithms for weight selection,

propagation, and reduction that may be even more effective and more efficient and to deter-

mine if there are more appropriate algorithms for certain types of grammars. Finally, the

context-free nature of EBNF grammars limits the types of test cases that can be expressed

so we plan to develop support for other types of formal grammars such as parsing expression

grammars (PEGs) and to add a more granular annotation language for grammar weights

such as the Geno language described by Lämmel [17].

Acknowledgments

Our thanks to Ingolf Krueger and Matt Oquist for their detailed feedback. Joel Martin

thanks his supervisors at Viasat, Markus Kaltenbach and Ingolf Krueger, for their support

and encouragement of his graduate studies and research. He also thanks his employer, Viasat

Inc, for financially supporting his education. Any opinions expressed are those of the authors

and not that of the institutions with which they are affiliated.

62

Chapter 4

Instacheck In Greater Depth

This chapter provides more detailed information about the Instacheck module (available

at https://github.com/kanaka/instacheck) that is described in Chapter 3. In

addition, more detail is provided about the Clojure PBT test.check library that Instacheck

builds on.

4.1 Clojure test.check PBT Example

Section 3.3 provides an abstract example of defining PBT input and output properties

and using PBT to check them. This section provides a more concrete example of testing

the same SUT using Clojure’s [11] test.check library [12]. Listing 4.1 shows the definition of

a simple generator using both scalar and compound generators. The outer-most generator

is vector which is a compound generator that returns zero or more values from the inner

generator. The inner generator is one-of which is also a compound generator that selects

(def gen (vector (one-of [int double])))

Listing 4.1: Example of test.check generator (input property) composed of two compound
generators and two scalar generators.

63

https://github.com/kanaka/instacheck

vector one-of int

double

vector

one-of

int double

Figure 4.1: A railroad diagram and entity diagram representation of Listing 4.1

(take 10 (sample-seq gen))
;;=> ([] [0] [-1 -1.0] [1.5] [-1.5 1] [4] [2] []
;; [3.1171875 -8 1.0 0.55078125 0.99609375 -2]
;; [-1 3 0 0.0 -0.2880859375])

Listing 4.2: Example of values sampled from the generator defined in listing 4.1.

(defn oracle-fn [x]
(not (some #(apply < %) (partition 3 1 x))))

(oracle-fn [7 2.1 -1 3 2])
;;=> true
(oracle-fn [7 -2.1 -1 3 2])
;;=> false

Listing 4.3: Example of test.check test Oracle (output property) function which returns false
if 3 adjacent numbers are an increasing order

64

(quick-check 1000 (for-all* [gen] oracle-fn))
;;=> {:pass? false,
;; :num-tests 7,
;; :failing-size 6,
;; :seed 1565579590402,
;; :fail [[0.9140625 1.9375 -6 -6 -1 2.25]],
;; :shrunk {:pass? false,
;; :total-nodes-visited 46,
;; :smallest [[-1 0 1]]}}

Listing 4.4: Example of results of using test.check ’s quick-check function with the input
property generator from listing 4.1 and the output property oracle function from listing 4.3

vector

one-of one-of one-of

int

-1

int

0

int

1

vector

one-of one-of one-of one-of one-of one-of

double

1.9375

int

-6

int

-6

int

-1

double

2.25

double

0.9140625

Figure 4.2: Test cases trees for the initial detected failure and failure after shrinking.

65

one of its inner generators to return a value. The inner generators are int which returns

an integer value and double which returns a floating point value. The overall effect of the

gen generator is to return a vector containing integers and floating point numbers. Figure

4.1 shows an entity relationship and railroad diagram representation for the gen generator.

We can now use the helper function sample-seq which returns an infinite lazy sequence

of values from the given generator. Listing 4.2 shows the result of taking the first 10 values

from an invocation of sample-seq . The result is 10 vectors each containing zero or more

integers and floating point numbers. Each sample is generated using a larger size value than

the previous sample. This means the maximum possible length of each vector increase, the

maximum absolute magnitude of the integers increase, and the maximum absolute magnitude

and precision of the floating point numbers increases with each subsequent sample.

We define an output property oracle function that returns false (counterexample) if the

vector contains three adjacent numbers which are in increasing size order; otherwise, the

function returns true (success). Listing 4.3 shows an example definition of a test oracle

function and the result of using that function on a non-failing example test case and on a

failing (counterexample) test case.

Listing 4.4 shows the result of running quick-check using the input property (gen)

and output property (oracle-fn). The output shows that a failing test case was found

on test iteration 7 with a generator size value of 6. The sequence that caused the initial

failure was [0.9140625 1.9375 -6 -6 -1 2.25] . The shrinking process then considered

46 nodes of the generator tree and returned [-1 0 1] as the smallest value that still fails

the oracle check.

Figure 4.2 shows a tree representation of the initial failure test case and of the shrunk

test case. The left side of Figure 4.2 gives a representation of the in-memory generator tree

for the initial failing test case generated by gen. This test case violates the property defined

in 4.3 that there should be no three adjacent numbers in ascending order due to the sequence

[-6, -1, 2.25]. The right side of 4.2 shows the final shrunk test case case that continues to

66

violate the property.

4.2 Clojure test.check Generators

The distribution of values returned by most test.check generators is not uniform. The fre-

quency of smaller or simpler values is greater than the frequency of larger or more complex

values. This distribution represents a tension between the goal of discovering simple test

case counterexamples early in the testing process and the goal of still being able to discover

more complex test counterexamples with increased iterations [33]. The rest of this section

describes a few of the generators provided by the Clojure test.check library: int, double,

vector, and frequency.

Figure 4.3 shows the distribution of values returned by the test.check int generator for

different max size settings. For each maximum size setting, 1,000,000 samples were generated

using the int generator. For a maximum size of 5, just over one 1/3rd values were equal

to 0. A little less than 1/6th of the values were equal to -1 and 1/6th of the values were

equal to 1. As the maximum size value is increased, the value generated become more evenly

distributed but the numbers closer to 0 are always the most dominant.

Figure 4.4 show the distribution of values returned by the test.check double generator.

The figure shows 100,000 values sampled from the generator with a maximum size of 80.

Note that the X-axis in the figure is cropped to a minimum of -7 and maximum of 7 because

the most relevant details related to distributed are in that range however there is a small

(frequency
[[30 (return 1)]
[10 (return 2)]
[5 (return 3)]
[30 (return 4)]
[25 (return 5)]])

Listing 4.5: Example of a compound test.check frequency generator

67

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Values from int

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000
F
re

q
u

e
n

c
y

5 10 20 40 80

Maximum Size

Figure 4.3: Values generated by the int generator sampled 1,000,000 times for each maximum
size from 5 to 80

-7.0-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Values from double

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

F
re

q
u

e
n

c
y

80

Maximum Size

Figure 4.4: Values generated by double generator sampled 100,000 times with a maximum
size of 80 and the X-axis cropped to between -7 to 7

68

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Lengths of vector

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000
F
re

q
u

e
n

c
y

5 10 20 40 80

Maximum Size

Figure 4.5: Length of vectors generated vector generator sampled 1,000,000 times for each
maximum size from 5 to 80

1 2 3 4 5

Values from frequency

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

F
re

q
u

e
n

c
y

Figure 4.6: Values generated by frequency generator defined in Listing 4.5 sampled 1,000,000
times

69

distribution of values from -80 to 80 beyond the area shown in the figure. Similar to the int

generator, 0.0 is the most frequently occurring value for the double generator and there is

general drop in frequency of values as the magnitude increase. The degree of precision is an

additional a measure of complexity/size for the double generator, . The next most common

values after 0.0 are -2.0, -1.0, -0.5, 0.5, 1.0, and 2.0 are. In other words, the distribution of

values from double is inversely correlated with both magnitude and level precision.

Figure 4.5 shows the distribution of vector lengths returned by the test.check vector

generator (the contained generated returns a constant value). The most common vector

length is 0 with larger sizes dropping off in frequency. Increasing the maximum size value

flattens the distribution of lengths but the general distribution shape is maintained.

The frequency generator is a particularly important generator in the context of Instacheck

because it is part of the mechanism used to implement the grammar weighting. Listing 4.5

shows the definition of a compound generator using frequency. The generator constructor

takes a sequence of [weight, generator] tuples. The distribution of values from the frequency

generator will match the weight defined for each value. In other words, the probability of a

given value A being generated is:

P (A) =
w(A)∑
a∈V w(a)

where w is a function returning the weight of a value and V is the set of all weights. Figure

4.6 shows the values generated from the generator defined in listing 4.5. Note that the

weights in the generator sum to 100 to make it convenient to compare with the frequencies

in figure. However, this is not necessary when defining a generator. For example, the value

1 occurs with a frequency of 30% (300,000 out of 1,000,000 samples).

70

(ebnf->gen
"x = '1' | '2' | '3' | '4' | '5'")

Listing 4.6: Simple EBNF defined generator

1 2 3 4 5

Values from EBNF Generator

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

F
re

q
u

e
n

c
y

Figure 4.7: Values generated by the EBNF generator in Listing 4.6 sampled 1,000,000 times

4.3 EBNF Generators and Weight Tuning

The Instacheck library provides a convenience function ebnf->gen that takes an EBNF

string and returns a generator based on that string. Listing 4.6 shows the definition of

a simple generator using the EBNF definition x = '1' | '2' | '3' | '4' | '5' . The

EBNF grammar has a single rule with an alternation that describes a string containing a

single digit in the range 1 to 5 inclusive. Figure 4.7 shows frequency distribution of values

from generator based on the EBNF grammar. The figure shows the result of sampling a

value from the generator 1,000,000 times. Each value occurs approximately 20% of the time

or about 200,000 occurrences.

The ebnf->gen function also has a two argument form that allows a configuration map

to be provided that can adjust the behavior of the returned generator. Listing 4.7 shows

the configuration map being used to specify user defined weights for each branch of the

71

(ebnf->gen
{:weights {[:x :alt 0] 50

[:x :alt 1] 25
[:x :alt 2] 12
[:x :alt 3] 8
[:x :alt 4] 5}}

"x = '1' | '2' | '3' | '4' | '5'")

Listing 4.7: Simple EBNF defined generator with user defined weights

1 2 3 4 5

Values from EBNF Generator

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

F
re

q
u

e
n

c
y

Figure 4.8: Values generated by the weighted EBNF generator in Listing 4.7 sampled
1,000,000 times

r1 = 'a' ('b' | #'[cd]+' | r2*)
r2 = 'e' r2 | 'f'

Figure 4.9: A grammar with two production rules.

("ad" "acc" "acc" "af" "ab" "ad" "accd" "adddcccdd"
"ab" "aeeffffffeeff" "acdccdcdcddc" "adcdddd"
"acdcccccd" "ab" "ab" "a" "addccdddd" "ab" "a"
"aeeffffefefeffffffefeef" "acddcdccccc"
"adccddddcdddcccdcdc" "a" "a"
"adddcdccddcddcdcdcddcccdd" "ab" "a" "ab" "adc" "ab")

Listing 4.8: Example of 30 test cases sampled from a generator based on the grammar in
Listing 4.9

72

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

Figure 4.10: Graph representation of grammar in 4.9

{
[:r1 :cat 1 :alt 0] 100,
[:r1 :cat 1 :alt 1] 100,
[:r1 :cat 1 :alt 2] 100,
[:r1 :cat 1 :alt 2 :star nil] 100,
[:r1 :cat 1 :alt 2 :star 0] 100,
[:r2 :alt 0] 100,
[:r2 :alt 1] 100

}

Listing 4.9: Default weights (wtrek) for the grammar in Listing 4.9

{
[:r1 :cat 1 :alt 0] 10,
[:r1 :cat 1 :alt 1] 0,
[:r1 :cat 1 :alt 2] 100,
[:r1 :cat 1 :alt 2 :star nil] 0,
[:r1 :cat 1 :alt 2 :star 0] 100,
[:r2 :alt 0] 100,
[:r2 :alt 1] 0

}

Listing 4.10: Default weights (wtrek) for the grammar in Listing 4.9

73

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

100100

100

100

100

100 100

Figure 4.11: Graph representation of grammar in 4.9 annotated with weighted paths and
default weights.

N

C

"
|

R *

ε N

"

r1

r2

#'[cd]+'

'a'

'b'

N

C

"

|

r2

'e'

N

r2

"
'f'

10010

0

100

0

100 0

Figure 4.12: Graph representation of grammar in 4.9 annotated with weighted paths and
adjusted weights.

74

("aef" "aefef" "aef" "aef" "af" "aefefef" "aefefeefeef"
"aefefeffefefef" "aefeefffefef" "aef"
"aeefeeffeefeefefefefefeefef" "aeefeeefeefeefeefeefeefef"
"aeeffefeefeefeeeff" "aeefefefeefeeefeeffeefeefeef"
"aeeefefeefeffef" "afefeefefefeefeefeeefefeefefeef"
"aeeefeefeefefeeefef" "aefef" "afefeefeeef"
"aeefeefefeeffeeefef" "ab" "afefeeefefefefeeefefefeeefeef"
"aeefefef" "aeefeefef"
"afefeefefeefeffefeefeefefefefefeefeefefeffeefeeefefef"
"aeefeefeeefeeffeefeefeeefefeefeeefeefeefeefeef"
"aefefeffefeeefeeefeeefeeefeefeeefefeefefeefeefeefeefeef"
"ab" "ab" "ab")

Listing 4.11: Example of 30 test cases sampled from a generator based on the grammar in
Listing 4.9 with weights adjusted with the wtrek in Listing 4.10

alternation in the grammar. The weights are used to adjust the frequency distribution for

alternation rules in the grammar during generation of test cases. Figure 4.8 shows the effect

that the weights have on the distribution of values returned from the generator.

Figure 4.9 shows a larger EBNF grammar that was originally introduced in Listing 3.3.

In addition to containing two separate production rules, the grammar makes use of con-

catenation (C), alternation (|), and zero-or-more (*) combinators. It also contains three

terminal types supported in Instacheck grammars: string literals ("), regular expression

literals (R), and epsilon (ε). The epsilon terminal represents an empty or non-producing

terminal type. Listing 4.8 shows an example of 30 test cases sampled from a generator based

on the grammar.

The default weight that Instacheck assigns to each weighted path in a grammar tree is

100. For the grammar in Listing 4.9 this is equivalent to the weight trek (wtrek) shown in

figure 4.9. All seven weighted paths in the grammar have a weight of 100. This is represented

in visual form in Figure 4.11. The weighted paths in the grammar are depicted as red arrows

from the start of the production to the weighted edge in the grammar. Each weighted edge

show the edge weight in red. The default weight configuration is the one that was used to

generate the samples shown in Listing 4.8.

Adjusting the wtrek configuration to the weights shown in Listing 4.10 will give the visual

75

representation shown in Figure 4.12. Sampling the grammar generator using these adjusted

weights will give a test result that resembles Listing 4.11. The samples are larger than

with the default wtrek weight configuration because the overall probabilities of reaching and

recursing back into the :r2 rule are much greater in this configuration.

4.3.1 MG4 and MG8 Grammars

Section 3.5 introduced the MG4 and MG8 grammars that are used to validate the In-

stacheck approach. Listing 3.8 in that section shows the EBNF definition of the MG4

grammar. Figure 4.13 shows the visual representation of the MG4 grammar. Note that the

representation only shows the grammar graph below the “tag1” alteration. The other tag

alternations are elided for space but their portion of the graph is identical to the “tag1”

portion of the graph. Listing 4.12 shows the MG8 variant of the grammar that has eight

possible choices at each tag, attribute, property name, and property value alteration point in

the grammar. Listing 4.13 shows the three results from an invocation of sample-seq using

the MG4. These results have had indenting added to clarify the structure of the results.

The heat maps shown in Figure 4.16 depict the results of taking 100 random samples from

the MG4 and MG8 grammar generators respectively and then mapping the TAPV features

within those samples into boxes arranged by tag (large boxes on X-axis), attribute (small

boxes on X-axis), property name (large boxes on Y-axis), and property values (small boxes

on Y-axis). The yellow boxes indicate light coverage of those TAPVs and the darker blue

indicates high coverage of those TAPVs. If the weight configuration is adjusted using the

partial wtrek shown in figure 4.15 and then 100 new samples are taken from the grammar

generator, the coverage will look similar to the heat map in 4.16.

76

test = elem+
elem = '<tag0' (' ' attr)+ '>' elem* '</tag0>'

| '<tag1' (' ' attr)+ '>' elem* '</tag1>'
| '<tag2' (' ' attr)+ '>' elem* '</tag2>'
| '<tag3' (' ' attr)+ '>' elem* '</tag3>'
| '<tag4' (' ' attr)+ '>' elem* '</tag4>'
| '<tag5' (' ' attr)+ '>' elem* '</tag5>'
| '<tag6' (' ' attr)+ '>' elem* '</tag6>'
| '<tag7' (' ' attr)+ '>' elem* '</tag7>'

attr = aname '="' prop (' ' prop)* '"'
prop = pname ':' (' ' pval)+ ';'

aname = 'attr0'
| 'attr1'
| 'attr2'
| 'attr3'
| 'attr4'
| 'attr5'
| 'attr6'
| 'attr7'

pname = 'pname0'
| 'pname1'
| 'pname2'
| 'pname3'
| 'pname4'
| 'pname5'
| 'pname6'
| 'pname7'

pval = 'pval0'
| 'pval1'
| 'pval2'
| 'pval3'
| 'pval4'
| 'pval5'
| 'pval6'
| 'pval7'

Listing 4.12: Markup grammar degree 8 (MG8)

77

N

:test

|

+

N

:elem

N

:elem

CC C C

"
'<tag1'

+

"
'>'

* "
'</tag1>'

N

:elem

C

"
' '

N

:attr

N

:attr

C

"
'="'

* "
'"'

N

:aname

N

:prop

"
' '

N

:prop

C

N

:prop

C

"
':'

"
';'

N

:pname

"
' '

N

:pval

C

+

|

N

:aname

"
'attr0'

"
'attr1'

"
'attr2'

"
'attr3'

|

N

:pname

"
'pname0'

"

'pname1'

"
'pname2'

"

'pname3'

|

N

:pval

"
'pval0'

"
'pval1'

"
'pval2'

"
'pval3'

Figure 4.13: Visual representation of the MG4 grammar

78

<tag1 attr1="pname3: pval3;">
<tag1 attr1="pname3: pval3;">
</tag1>

</tag1>

<tag3 attr2="pname2: pval1;"
attr1="pname0: pval1 pval3;">

</tag3>

<tag3 attr2="pname2: pval2;
pname1: pval3;">

<tag1 attr2="pname0: pval0;
pname1: pval1 pval0 pval0;
pname0: pval0 pval0 pval3;
pname1: pval3;
pname2: pval3 pval0;"

attr3="pname0: pval1 pval3;
pname0: pval3 pval0 pval1;"

attr1="pname3: pval3 pval1 pval3;
pname3: pval1 pval2 pval0 pval1;
pname2: pval2 pval3 pval2 pval2;
pname3: pval0 pval2;">

<tag2 attr3="pname2: pval3;"
attr0="pname0: pval3 pval1 pval0;

pname3: pval2 pval3;
pname0: pval2 pval3;
pname1: pval1;">

</tag2>
</tag1>

</tag3>

Listing 4.13: MG4 sample output with default weights

79

0 / 0 0 / 1 0 / 2 0 / 3 1 / 0 1 / 1 1 / 2 1 / 3 2 / 0 2 / 1 2 / 2 2 / 3 3 / 0 3 / 1 3 / 2 3 / 3
Tag / Attribute

0
 / 0

0
 / 1

0
 / 2

0
 / 3

1
 / 0

1
 / 1

1
 / 2

1
 / 3

2
 / 0

2
 / 1

2
 / 2

2
 / 3

3
 / 0

3
 / 1

3
 / 2

3
 / 3

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

0/0 0/4 1/0 1/4 2/0 2/4 3/0 3/4 4/0 4/4 5/0 5/4 6/0 6/4 7/0 7/4
Tag / Attribute

0
/0

0
/4

1
/0

1
/4

2
/0

2
/4

3
/0

3
/4

4
/0

4
/4

5
/0

5
/4

6
/0

6
/4

7
/0

7
/4

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

Figure 4.14: Coverage of the MG4 and MG8 grammars for 100 runs with default grammar
weights. The X axis delimits tags (large boxes) and attributes (small boxes) and the Y axis
delimits properties (large boxes) and property values (small boxes).

80

{
[:elem :alt 2] 1000,
[:elem :alt 3] 0,
[:pname :alt 4] 2,
[:aname :alt 5] 200

}

Figure 4.15: Partial wtrek of weight adjustments for the MG8 grammar

0/0 0/4 1/0 1/4 2/0 2/4 3/0 3/4 4/0 4/4 5/0 5/4 6/0 6/4 7/0 7/4
Tag / Attribute

0
/0

0
/4

1
/0

1
/4

2
/0

2
/4

3
/0

3
/4

4
/0

4
/4

5
/0

5
/4

6
/0

6
/4

7
/0

7
/4

P
ro

p
e
rty

 N
a
m

e
 / P

ro
p

e
rty

 V
a
lu

e

Figure 4.16: Coverage of the MG8 grammar for 100 runs with weights set to the partial
wtrek shown in Listing 4.15. The X axis delimits tags (large boxes) and attributes (small
boxes) and the Y axis delimits properties (large boxes) and property values (small boxes).

81

4.4 Translating EBNF Grammars to Clojure Genera-

tors

An EBNF grammar has a general graph structure because production rules can refer to

other arbitrary production rules. However, each individual production rule of EBNF is a

tree structure. Instacheck is able to take advantage of this structure by iterating through

each production rule independently and using a recursive descent process to translate the

content of a production rule. At each node of the rule Instacheck has a dispatch routine

that calls the translation function for the given node type. The translation functions then

call back into the dispatch function for each component of the combinator. Instacheck also

passes an indent parameter as part of the recursive descent that is used to output code that

is formatted for human readability.

Clojure’s test.check library provides the recursive-gen function for defining recursive gen-

erators that return tree shaped data. Recursive generators must be defined using recursive-

gen in order to guarantee that the generator eventually terminates. Generators that are

defined in this way will have the a maximum number of leaf nodes that is proportional to

the current generation size parameter. The recursive-gen generator takes two other gener-

ators as arguments. The first generator argument is the recursive generator that represent

the inner structure of the tree structure that will be generated. The second generator argu-

ment will be used for the leaf nodes of the generated tree structure and so it must not be

recursive. We will refer to these two arguments as the tree generator and leaf generator re-

spectively. While the recursive-gen method of defining recursive generators allows recursive

x = 'a' 'x' | 'b' | 'c' ;

x = 'a' x | 'b' | 'c' ;

Listing 4.14: Simple non-recursive and recursive EBNF grammars

82

(igen/freq :x [
[100

(gen/tuple
(gen/return "a")
(gen/return "x"))]

[100
(gen/return "b")]

[100
(gen/return "c")]])))

Listing 4.15: Clojure translation of the simple non-recursive EBNF grammar in Listing 4.14.

(gen/recursive-gen
(fn [inner]

(igen/freq :x [
[100

(gen/tuple
(gen/return "a")
inner)]

[100
(gen/return "b")]

[100
(gen/return "c")]]))

(igen/freq :x [
[100
(gen/return "b")]

[100
(gen/return "c")]]))

Listing 4.16: Clojure translation of the simple recursive EBNF grammar in Listing 4.14.

83

data to be generated without the problem of runaway production of data, it is inconvenient

for automatic translation EBNF grammars. In addition, it does not provide a direct means

of defining mutually recursive generators.

There are four challenges that must be addressed by Instacheck during translation: mu-

tual recursion must be prevented, the tree generator must be transformed to use the leaf

generator internally, the leaf generator must not refer to itself, and generator code should

be translated in dependency order to avoid the necessity of forward references in the code.

Instacheck prevents mutual recursion by performing a topological sort of the grammar

using Kahn’s algorithm [34]. The presence of a non-terminal within a grammar rule is treated

as a dependency edge between the contained non-terminal and the rule that it references.

We modified a Clojure implementation [35] of Kahn’s algorithm to add support for enumer-

ating mutually recursive cycles in the dependency graph. Any mutual recursion detected is

reported as an error during the EBNF to Clojure code translation process.

Instacheck transforms the tree generator to use the leaf generator parameter by tracking

the current grammar rule name in a context parameter that is passed through to the recursive

descent translation functions. When a non-terminal is encountered it is compared to the

current rule name and if it matches then it is replaced with the leaf generator parameter.

Instacheck removes self-references within the leaf generator by identifying the smallest

optional branches of the generator which are recursive and removing those branches. In this

case, “optional” means that the branch is a weighted child edge of a parent node. Instacheck

does this pruning by performing a postwalk on the grammar tree and progressively rewriting

sub-trees of the grammar until a optional edge of the grammar is reached.

In addition to mutual recursion detection, we also use Kahn’s algorithm to sort the

grammar rules during translation so that they are translated in a dependency order. Before

sorting, directly recursive references are pruned so that the topology sort can complete

without error. This is acceptable for purposes of code order because recursive generators do

not need forward references due to the Clojure property that functions can refer to themselves

84

(as is generally true in any language that supports recursion).

Listing 4.14 shows two simple EBNF grammars. The first contains no recursion while

the second replaces the terminal string “x” with a recursive reference to the rule. List-

ings 4.16 and 4.16 demonstrate the translated generator code for first and second gram-

mars respectively. In the second translation the entire generator has been wrapped with a

gen/recursive-gen generator and the (gen/return "x") generator has been replaced by

a reference to the inner parameter of the recursive generator. In addition, the second argu-

ment to gen/recursive-gen is a version of the same translated code but with the recursive

parts of the tree removed.

4.5 Instacheck Command Line and Library Usage

line = expression '\n'?
expression = "(" expression ")"

| expression "+" expression
| expression "-" expression
| expression "*" expression
| expression "/" expression
| any-number

any-number = any-digit
| nz-digit any-digit+

any-digit = "0"
| nz-digit

nz-digit = "1"
| "2"
| "3"
| "4"
| "5"
| "6"
| "7"
| "8"
| "9"

Listing 4.17: EBNF representing a simple mathematical expression

One of the advantages of using a generic test specification language like EBNF is that tests

can be written and executed without a need for tests to be written in a domain-specific test

85

(require '[instacheck.core :as instacheck])

Listing 4.18: Clojure namespace preamble for requiring Instacheck modules

lein run samples --samples 100 --weights-output tmp/weights.edn \
math.ebnf tmp/

Listing 4.19: Generate 100 random test cases based on the EBNF grammar in Listing 4.17

specification language. Our implementation of the Instacheck system provides a command

line interface for testing a command line program by using input tests specified via EBNF.

The EBNF grammar depicted in Listing 4.17 is used for the command line examples described

in this section. In addition, the command line examples use the Leiningen project [36] for

Clojure project management and execution. Leiningen is invoked via the lein command.

In addition to command line usage, Instacheck also provides a library of functions for

that loading and manipulating grammars, running PBT tests using those grammars, running

the reduction algorithms directly, etc. The examples below demonstrate a small subset of

the functions that are available. See Appendix B for a more complete list and description of

available Instacheck library functions. Listing 4.18 shows the Clojure command to import

(require) the Instacheck library for use in the examples that follow.

4.5.1 Generate Random Test Cases

Command Line

Instacheck can be invoked from the command line to generate random test cases based

on an EBNF specification. Consider the EBNF definition in Listing 4.17 for a document

containing a single simple mathematical expression.

Given a file math.ebnf containing the EBNF grammar in Listing 4.17, then random test

samples can be generated that satisfy the grammar as shown in listing 4.19. Examples of

86

0*60101403+8

40600080410*3905/(907590727-7)/(134940050403203641/4008350)

((0))-(3948502540020)+0+0

Listing 4.20: Test cases that satisfy the EBNF grammar in Listing 4.17

{
[:any-digit :alt 0] 100,
[:any-digit :alt 1] 100,
[:any-number :alt 0] 100,
[:any-number :alt 1] 100,
[:expression :alt 0] 100,
[:expression :alt 1] 100,
[:expression :alt 2] 100,
[:expression :alt 3] 100,
[:expression :alt 4] 100,
[:expression :alt 5] 100,
[:line :cat 1 :opt 0] 100,
[:line :cat 1 :opt nil] 100,
[:nz-digit :alt 0] 100,
[:nz-digit :alt 1] 100,
[:nz-digit :alt 2] 100,
[:nz-digit :alt 3] 100,
[:nz-digit :alt 4] 100,
[:nz-digit :alt 5] 100,
[:nz-digit :alt 6] 100,
[:nz-digit :alt 7] 100,
[:nz-digit :alt 8] 100

}

Listing 4.21: Default active wtrek for the EBNF grammar in Listing 4.17

87

400717-5770

767000070707077000+1/(760873724720779407070)

7/7+9/0/97-77779077131870870137200000090707077074700077+7075907070

Listing 4.22: Test cases that satisfy the EBNF grammar in Listing 4.17 and that have the
weight of digit “7” increased to 1000.

sample files that are generated in the tmp/ directory are shown in Listing 4.20.

The command line option --weights-output is used to create the file tmp/weights.edn

containing the active wtrek that was used during the sample generation (shown in Listing

4.20). This file can be manually modified to adjust the active wtrek configuration for sub-

sequent runs and loaded with the --weights option. For example, if the weight for the

grammar path [:nz-digit :alt 6] is increased to 1000 then the generated test cases will

show an increase in the frequency of the digit “7” as shown in listing 4.22

Library

Instacheck provides a ebnf-sample-seq function that can be used to generate test cases

from an EBNF specification. An example of this is depicted in Listing 4.17. The function

takes an EBNF string and an optional configuration. The configuration in the example is

used to decrease the probability of the [:x :start nil] path through the grammar. This

path represents the empty or epsilon case of the outer zero-or-more (“*”) grammar element.

The effect is to increase the length of generated strings. The ebnf-sample-seq function

returns an infinite lazy sequence of samples of increasing size. The take function is used

to realize and return the first 20 elements of the sequence. Listing 4.17 shows the resulting

samples that are returned by the command.

88

(take 20
(instacheck/ebnf-sample-seq

"x = ('1' | '2' | '3' | '4' | '5')* ;"
{:weights {[:x :star nil] 10}}))

Figure 4.17: Generate 20 random test cases based on a simple EBNF grammar using the
ebnf-sample-seq library function

("4" "52" "" "54" "511" "115533" "221341" "5113444" "341111235"
"" "123121" "" "22" "2" "51245255314452" "3422332422313424"
"2253212432" "44443" "4151332153351" "45123533141145")

Figure 4.18: Result of generating 20 random test case samples using the ebnf-sample-seq
function as shown in Listing 4.17

4.5.2 Test and Shrink

Command Line

Instacheck can be invoked from the command line to run the full PBT testing process

against another command line program that serves as a SUT test executor and test oracle.

The simple shell script shown in Listing 4.23 evaluates the mathematical input expression

using python and ruby as SUT and test oracle respectively. Listing 4.24 shows the command

used to invoke Instacheck’s PBT check process. The % symbol in the command line is

a special placeholder that is replaced with the path to the test case for the current test

iteration. Listing 4.25 shows the result of the check process. The check process ran 10 check

iterations and did not find any failures where the python and ruby expression evaluation

differed.

When the number of iterations is increased to 50 with the --iterations option (listing

4.26) then a failing test case is found and shrunk as shown in Listing 4.27 (“...” represents

elided lines from the output). The initial failure that was found on the 36th iteration was

8020860000000402010-0/90400205/6017007061993070000006817 . The shrink process then

activated and after 221 further iterations determined that 10002006300850036100/6 was a

89

#!/bin/bash

set -e

SUT() {
python -c "from __future__ import division; print '%d' % (${1})"

}
ORACLE() {

ruby -e "require 'mathn'; printf '%d', (${1})"
}

res=$(SUT $(cat "${1}"))
check=$(ORACLE $(cat "${1}"))

echo "SUT: ${res}, Oracle: ${check}"
[["${res}" == "${check}"]]

Listing 4.23: A simple SUT and test oracle script

lein run check-once math.ebnf tmp/ -- mathtest.sh %

Listing 4.24: Check EBNF grammar in Listing 4.17 using mathtest.sh SUT/Oracle harness
in Listing {reflst:mathtest.sh

Running: ./mathtest.sh tmp/sample-0001
Result: Pass
NEW STATE: trial
Running: ./mathtest.sh tmp/sample-0002
Result: Pass
Running: ./mathtest.sh tmp/sample-0003
Result: Pass
...
Running: ./mathtest.sh tmp/sample-0009
Result: Pass
Running: ./mathtest.sh tmp/sample-0010
Result: Pass
NEW STATE: complete
Saving weights to tmp/weights.edn
Saving result map to tmp/result.edn
Result:
{:result true,
:pass? true,
:num-tests 10,
:time-elapsed-ms 892,
:seed 1570598045791}

Listing 4.25: Result of 10 check iterations of the EBNF grammar in Listing 4.17 with elided
lines

90

lein run check-once math.ebnf tmp/ --iterations 50 -- ./mathtest.sh %

Listing 4.26: Run 50 check iterations of the EBNF grammar in Listing 4.17 using mathtest.sh
SUT/Oracle harness in Listing 4.23

Running: ./mathtest.sh tmp/sample-0001
Result: Pass
NEW STATE: trial
Running: ./mathtest.sh tmp/sample-0002
Result: Pass
...
Running: ./mathtest.sh tmp/sample-0035
Result: Pass
Running: ./mathtest.sh tmp/sample-0036
Result: Fail (exit code 1)
NEW STATE: failure
Running: ./mathtest.sh tmp/sample-0037
Result: Fail (exit code 1)
NEW STATE: shrink-step
Running: ./mathtest.sh tmp/sample-0038
Result: Pass
...
Running: ./mathtest.sh tmp/sample-0257
Result: Fail (exit code 1)
NEW STATE: shrunk
Saving weights to tmp/weights.edn
Saving result map to tmp/result.edn
Result:
{:shrunk
{:total-nodes-visited 213,
:depth 17,
:pass? false,
:result false,
:result-data nil,
:time-shrinking-ms 18804,
:smallest ["10002006300850036100/6"]},
:failed-after-ms 3096,
:num-tests 36,
:seed 3,
:fail ["8020860000000402010-0/90400205/6017007061993070000006817"],
:result false,
:result-data nil,
:failing-size 35,
:pass? false}
Smallest Failure: tmp/sample-final

Listing 4.27: Result of 50 check iterations of the EBNF grammar in Listing 4.17 with elided
lines

91

simpler test case that still reproduced the problem. Note: the reason for the discrepancy

between Python and Ruby is because the from __future__ import division changes the

default behavior of integer division to always return a real number rather than an integer.

This results in different precision from ruby during the conversion back to an integer by the

print statement.

Library

The Instacheck function instacheck can be used to perform QuickCheck PBT testing using

EBNF grammars. The second argument to instacheck is an EBNF test case specification.

The first argument is the function that the user wishes to check. This check function takes a

single argument and is called repeatedly by the test system with input strings generated from

the EBNF grammar. When the function returns a false or nil value, then the test system

treats the input as a failing test case (counterexample). Otherwise, the input is considered

passing.

Listing 4.19 shows a simple example of how the command can be used. The check

function uses a simple regular expression match and will return nil if the test case contains

two adjacent “3” digits. The EBNF grammar is a simple grammar that defines test cases

contain zero or more of the digits “1” through “5”. Listing 4.20 shows two example results of

that simple test invocation. The first result is a test run where 10 iterations were performed

(10 is the default) and no failures were identified. The second result is a test run where a

failing test case, “54133” was identified on iteration 6. The shrinking process activated and

executed more iterations until it determined that “33” was the smallest test case that still

(instacheck/instacheck
(fn [t] (not (re-seq #"33" t)))
"x = ('1' | '2' | '3' | '4' | '5')* ;")

Figure 4.19: Check (test) a function with a simple EBNF grammar using the instackeck
library function

92

{:result true,
:result-data nil,
:pass? true,
:num-tests 10,
:time-elapsed-ms 2,
:seed 1573679260619}

{:result false,
:result-data nil,
:pass? false,
:num-tests 6,
:failing-size 5,
:failed-after-ms 1,
:seed 1573679262126,
:fail ["54133"],
:shrunk {:total-nodes-visited 10,

:depth 2,
:pass? false,
:result false,
:result-data nil,
:time-shrinking-ms 3,
:smallest ["33"]}}

Figure 4.20: Result of checking a function with an EBNF grammar as shown in Listing 4.19

93

had a failing result.

The two arguments to the instacheck function are Instacheck analogs for the input and

output properties of standard PBT; the EBNF grammar string defines the input property

and the check function is the output property. In actual practice, the check function will

often be more sophisticated than the simple example shown. For example, a typical check

function will do the following: deserialize the test case string into a form that can be used

to invoke the SUT; invoke the SUT using the test case; and then invoke a test oracle to

determine if the SUT behavior was correct for the given test case.

4.5.3 Reproduce and Shrink an existing Test Case

Command Line

Listing 4.28 shows an existing test case that causes the mathtest.sh harness in listing

4.23 to return a failure due a difference in result between the Python SUT and the Ruby test

oracle. Instacheck can be invoked from the command line to parse an existing test case to

extract a path log frequency trek (grammar path frequency log). The command to do this

is shown in Listing 4.29 and the resulting path log frequency trek file test1.edn is shown

in Listing 4.30.

The path log frequency trek can then be used directly as the active trek configuration

for Instacheck to focus test coverage on the elements contained in the test case in order

to reproduce similar failing test cases. Once a failing case is found, Instacheck applies the

shrinking process. The command to run Instacheck with the parsed path log frequency trek

is shown in Listing 4.31.

100000000000000002/2

Listing 4.28: An existing test case that causes the mathtest.sh harness in Listing 4.23 to
return a failure

94

lein run parse math.ebnf test1.expr > test1.edn

Listing 4.29: Parse a path log frequency trek from existing test case

{
[:any-digit :alt 0] 16,
[:any-digit :alt 1] 2,
[:any-number :alt 0] 1,
[:any-number :alt 1] 1,
[:expression :alt 0] 0,
[:expression :alt 1] 0,
[:expression :alt 2] 0,
[:expression :alt 3] 0,
[:expression :alt 4] 1,
[:expression :alt 5] 2,
[:line :cat 1 :opt 0] 1,
[:line :cat 1 :opt nil] 0,
[:nz-digit :alt 0] 1,
[:nz-digit :alt 1] 2,
[:nz-digit :alt 2] 0,
[:nz-digit :alt 3] 0,
[:nz-digit :alt 4] 0,
[:nz-digit :alt 5] 0,
[:nz-digit :alt 6] 0,
[:nz-digit :alt 7] 0,
[:nz-digit :alt 8] 0

}

Listing 4.30: Parsed path log frequency trek from existing test case

lein run check-once math.ebnf tmp/ --weights test1.edn \
--iterations 50 -- ./mathtest.sh %

Listing 4.31: Run 50 check iterations of the EBNF grammar in Listing 4.17 using mathtest.sh
SUT/Oracle harness in Listing 4.23 and using parsed path log frequency trek in Listing 4.30

95

Library

The Instacheck parse-wtrek function can be used to parse a path frequency log trek

from an existing test case. Listing 4.21 shows an example of invoking that function. The first

argument to the function is a Instaparse parser which can be generated using the Instacheck

load-parser convenience function. The second argument to the function is the test case

string to parse, in this case “334”. Listing 4.22 shows the result that is returned from parsing.

The :parsed key contains the Instaparse parsed abstract syntax tree (AST). The :wtrek

key contains a wtrek structure where the weights represent the frequency that the given path

in the grammar was used to parse the test case.

The wtrek shown in Listing 4.22 that was returned by the parse-wtrek call in Listing

4.21 can be used to generate test cases that are similar to the test that was parsed. Generated

test cases will be similar in the sense that the probability of elements in generated test cases

will be similar to the frequency of those elements in the parsed test case. This can be used

to reproduce an existing failing test case and then shrink it. The test case that was parsed,

“31313143433411” is 14 character long and contains the failure condition (two adjacent “3”

digits). The final shrunk case found by the instacheck function was “33”.

(def parse-result
(instacheck/parse-wtrek

(instacheck/load-parser "x = ('1' | '2' | '3' | '4' | '5')* ;")
"31313143433411"))

Figure 4.21: Use an EBNF defined parser to parse a path log frequency trek from an existing
test case using the parse-wtrek library function

96

{:parsed [:x "3" "1" "3" "1" "3" "1" "4" "3" "4" "3" "3" "4" "1" "1"],
:wtrek
{[:x :star nil] 13,
[:x :star 0] 14,
[:x :star 0 :alt 0] 5,
[:x :star 0 :alt 1] 0,
[:x :star 0 :alt 2] 6,
[:x :star 0 :alt 3] 3,
[:x :star 0 :alt 4] 0}}

Figure 4.22: Result of parsing a path log frequency trek from an existing test case as shown
in Listing 4.21

(instacheck/instacheck
(fn [t] (not (re-seq #"33" t)))
"x = ('1' | '2' | '3' | '4' | '5')* ;"
{:weights (:wtrek parse-result)})

Figure 4.23: Check (test) a function with a simple EBNF grammar using the instackeck
library function

{:result false,
:result-data nil,
:pass? false,
:num-tests 3,
:failing-size 2,
:failed-after-ms 0,
:seed 1573685725439,,
:fail ["333"],
:shrunk
{:total-nodes-visited 3,
:depth 1,
:pass? false,
:result false,
:result-data nil,
:time-shrinking-ms 1,
:smallest ["33"]}}

Figure 4.24: Result of checking function with an EBNF grammar as shown in Listing 4.23

97

4.5.4 Translate EBNF Specification into Clojure Generators

Command Line

Instacheck can be invoked from the command line to translate an EBNF test specification

directly to Clojure test.check generator code. This process is normally performed by

Instacheck when it loads an EBNF test specification for testing. If Instacheck is used as a

library within Clojure code, then it is much more efficient to translate the EBNF grammar

once and load it directly as Clojure code. The command to load and translate an EBNF

test specification is shown in listing 4.32. The second argument is the name of the Clojure

namespace used when generating the code. Listing 4.33 shows a portion of the translated

code for the expression generator. Listings A.1 and A.2 of Appendix A show the full

translation of the grammar with each grammar rule defined as individual Clojure generators.

The command also takes an optional --function argument that changes the mode so that

a factory function, gen-math is generated rather than individual generator functions. The

factory function is called to get the generator for a specific start rule. The factory function

also takes an optional configuration parameter that allows the default weights to be adjusted.

Listings A.1 and A.2 of Appendix A show the Clojure code output from the second mode.

lein run clj math.ebnf math.generators > generators.clj

lein run clj math.ebnf math.generators --function gen-math > generators.clj

Listing 4.32: translate the EBNF grammar in Listing 4.17 into a Clojure source file containing
the equivalent test.check generator code.

98

...
(def gen-expression

(gen/recursive-gen
(fn [inner]
(igen/freq :expression [

[100 (gen/tuple (gen/return "(") inner (gen/return ")"))]
[100 (gen/tuple inner (gen/return "+") inner)]
[100 (gen/tuple inner (gen/return "-") inner)]
[100 (gen/tuple inner (gen/return "*") inner)]
[100 (gen/tuple inner (gen/return "/") inner)]
[100 gen-any-number]]))

gen-any-number))
...

Listing 4.33: Clojure generator code translated from the EBNF grammar in Listing 4.17 for
the expression rule (reformatted)

Library

The grammar->generator-defs-source Instacheck library function translates an In-

stacheck grammar to Clojure generator code. Listing 4.25 shows an invocation of this func-

tion and Listing 4.26 shows the string that is returned with the equivalent translated Clojure

test.check generator code. Note that the initial parameter to the call is a configuration

option that contains default weights to use during the translation. In the translated code

the modified weight is marked with the ;; ** adjusted by config *** comment to make

it clear that the default weight was explicitly adjusted by the caller.

(instacheck/grammar->generator-defs-source
{:weights {[:x :star 0 :alt 0] 0}}
(instacheck/load-grammar "x = ('1' | '2' | '3' | '4' | '5')* ;"))

Figure 4.25: Translate EBNF grammar to Clojure generator source using Instacheck

99

(def gen-x
(gen/fmap util/flatten-text

(igen/freq :x [
[100

(gen/return "")]
[100

(igen/vector+
(igen/freq :x [

[0 ;; ** adjusted by config ***
(gen/return "1")]

[100
(gen/return "2")]

[100
(gen/return "3")]

[100
(gen/return "4")]

[100
(gen/return "5")]]))]])))

Figure 4.26: Result of translating EBNF grammar in Listing 4.25 to Clojure generator source
using Instacheck

100

Chapter 5

HTML and CSS Grammars

(html5-css3-ebnf)

The html5-css3-ebnf module takes HTML5 and CSS3 specification data and translates it

into EBNF grammar definitions that can be used for both generating and parsing web pages.

The process is divided into three steps: parsing and pruning of specification data; translating

the data to EBNF grammars; and assembling the translated grammars with boilerplate and

low-level data definitions to create the final EBNF grammars. These steps are performed

for both HTML5 and CSS3 data. This chapter describes BNF and EBNF grammars (5.1);

the process of translating HTML specification data into EBNF grammars 5.2; the process

of translating CSS specification data into EBNF grammars 5.3; and challenges that are pre-

sented when using those EBNF grammars for parsing and how those challenges are addressed

in html5-css3-ebnf (5.4).

5.1 BNF and EBNF Background

BNF is a formal notation for describing context-free grammars. A BNF grammar is

composed of 1 or more rules. Each rule contains a non-terminal symbol and an expansion

separated by a “::=”. Non-terminals are names surrounded by angle brackets. The expan-

101

<expr> ::= <term> "+" <expr>
| <term>

<term> ::= <factor> "*" <term>
| <factor>

<factor> ::= "(" <expr> ")"
| <integer>

Listing 5.1: Simple Math Expression BNF Grammar

expr = term ("+" expr)?
term = factor ("*" term)?
factor = "(" expr ")" | integer

Listing 5.2: Simple Math Expression EBNF Grammar

sion may contain one or more non-terminal symbols (referencing other expansion rules) and

terminals (literals that should appear at that position). A terminal can be either a literal

string enclosed in double-quotes or a terminal class (a unquoted name that is not surrounded

by angle brackets) representing a class of literals (such as integers). A juxtaposition is a se-

quence of terminals and non-terminals in an expansion is indicates that every element must

appear in the given order. In addition to juxtaposition, BNF expansion also supports alter-

nation (a choice between multiple options) using a “|” symbol. Listing 5.1 depicts a BNF

grammar for representing mathematical containing addition, multiplication and grouping.

Extended Backus-Naur form (EBNF) is the name for a number of variants of the original

BNF that have a less verbose syntax with greater expressive power especially when dealing

with repetition. Many EBNF variants also have a syntax for including regular expressions in

the grammar definition. Our system uses the Instaparse library [14] for parsing EBNF gram-

mars. Table 3.1 contains a summary of the EBNF syntax elements supported by Instaparse.

In EBNF rules, the non-terminals can be specified without angle brackets and the symbol

“=” can used instead of “::=” for rule definition. Listing 5.2 shows the simple mathematical

BNF grammar from Listing 5.1 reexpressed in EBNF syntax.

102

5.2 HTML5 Grammar

5.2.1 HTML5 Background

The HTML language was originally defined by CERN [37] in 1990. In 1995 stewardship of the

HTML definition was transferred to the newly created W3C organization. In 1998 the W3C

stopped development on HTML and spent several years working on an Extensible Markup

Language (XML) based reformulation of HTML known as Extensible HyperText Markup

Language (XHTML). In 2004 Apple, Mozilla, and Opera created a new organization, Web

Hypertext Application Technology Working Group (WHATWG) [38], to reinvigorate the de-

velopment of HTML. The emphasis of the group was on backwards compatibility, changing

the specification to match common implementations rather than trying to change imple-

mentations to match specifications, and writing specifications in enough detail to achieve

complete interoperability between implementations. WHATWG release a new a version of

the HTML standard called HTML5. In 2007 the W3C and WHATWG organizations be-

gan to work together on the HTML standard. The W3C now manages the development

and maturing of the official HTML5 specification while the WHATWG organization contin-

ues to maintain a version of the HTML specification that includes features that are more

exploratory in nature and that may eventually be standardized by the W3C [39].

5.2.2 Parsing and Translating HTML5

In addition to the human readable official standard specification published by the W3C

[2], the W3C also maintains a structured version of the specification data [40]. This latter

version is the data source that is used by the html5-css3-ebnf module. While this data is

more structured than the readable format, it is still in HTML tables that are more convenient

for assembly into readable specification documents than for machine processing. For this

reason we still must parse this specification data into a data structure that we can use for

translation.

103

<tr>
<th> Element
</th><th> Description
</th><th> Categories
</th><th> Parents†
</th><th> Children
</th><th> Attributes
</th><th> Interface

</th></tr>

<tr>
<th><{a}></th>
<td>Hyperlink</td>
<td>flow;

phrasing*;
interactive</td>

<td>phrasing</td>
<td><a>transparent*</td>
<td>globals;

<{links/href}>;
<{links/target}>;
<{links/download}>;
<{links/rel}>;
<{links/hreflang}>;
<{links/type}></td>

<td>{{HTMLAnchorElement}}</td>
</tr>

Listing 5.3: W3C HTML Elements Table Header and <a>Entry

<tr>
<th>Attribute</th>
<th>Element(s)</th>
<th>Description</th>
<th>Value</th>

</tr>

<tr>
<th><code>href</code></th>
<td><{a}>; <{area}></td>
<td>Address of the <a>hyperlink</td>
<td><a>Valid URL potentially surrounded by spaces</td>

</tr>

Listing 5.4: W3C HTML Attributes Table Header and <href>Entry

104

{:element "a",
:description "Hyperlink",
:categories ["flow" "phrasing*" "interactive"],
:parents "phrasing",
:children "transparent*",
:attributes ("links/href"

"links/target"
"links/download"
"links/rel"
"links/hreflang"
"links/type"),

:interface "HTMLAnchorElement"}

Listing 5.5: Parsed data for W3C HTML Element “<a>”

{:attribute "a/href",
:description "Address of the hyperlink",
:value {:raw "Valid URL potentially surrounded by spaces",

:literals #{},
:metas #{"Valid URL potentially surrounded by spaces"}},

:element "a"}

Listing 5.6: Parsed data for W3C HTML Attribute “href”

element = '<a' (<rS> a-attribute)* '>' (element | content)* ''

a-attribute = global-attribute
| 'download="' attr-val-a__download '"'
| 'href="' attr-val-a__href '"'
| 'hreflang="' attr-val-a__hreflang '"'
| 'rel="' attr-val-a__rel '"'
| 'rev="' attr-val-a__rev '"'
| 'target="' attr-val-a__target '"'
| 'type="' attr-val-a__type '"'

attr-val-a__href = ''
| url

url = #'[A-Za-z0-9$_@.,&+%=;/#?:-]*[A-Za-z0-9$_@.&+%=;/#?:-]'

Listing 5.7: Final EBNF Generated for the W3C HTML Element “<a>”

105

There are four main sources of data that are parsed by html5-css3-ebnf to extract

definitions: the elements definition table, the attributes definition table, and two tables that

define the form input elements. The top of listing 5.3 shows the header fields for the table

that defines HTML elements. The bottom of listing 5.3 shows an example of the definition of

the <a> element from that table. The top of listing 5.4 shows the header fields for the table

that defines HTML attributes. The bottom of listing 5.4 shows an example of the definition

of the href attribute from that table.

The html5-css3-ebnf module uses the Clojure hickory [41] library to parse the data

from each specification table. The header data for a table is zipped together with rest of the

table row data in order to construct a sequence of associative maps for each table. Listing

5.5 shows the resulting Clojure data structure for the <a> element. and Listing 5.6 shows

the result for the href attribute that applies to it.

The final step is to translate the parsed data into the equivalent EBNF representation.

The attribute data is more challenging to translate than the element data due to the inclusion

of a free form Value string that describes that valid values that the attribute may be set to.

We did a survey of the strings that are used in this slot. The majority of the values occur

multiple times and have a clear meaning such as “Valid integer” and “Valid MIME type”.

However, other values are more ambiguous such as “Varies*” or “Text”. We settled on a

lookup table for the obvious cases with a fallback that generates a generic attribute value

string.

Listing 5.7 shows a portion of the final HTML EBNF grammar for the <a> element

and the href attribute. The “url” non-terminal for the href attribute is defined in other

specifications [42] and not within the the W3C HTML standard itself. There are number

of elements that fall into this category and we define these manually in a separate common

EBNF definition file that we merge into the final EBNF grammar file.

106

<!DOCTYPE html>
<html>

<head>
<style>
div {

color: red
}
.my-class {

color: green
}
#my-id {

color: blue;
font-style: italic

}
</style>

</head>
<body>

<div>
Red text

</div>
<div class="my-class">
Green text

</div>
<div id="my-id">
Italic blue text

</div>
</body>

</html>

Listing 5.8: HTML file with CSS defined using an embedded “<style>” tag

5.3 CSS3 Grammar

5.3.1 CSS3 Background

The standardization of the CSS language is overseen by the the W3C [3]. The current

version of the CSS language as a whole is “Level 3”. Previous versions of the CSS standard

(Levels 1, 2, and 2.1) were defined as a single monolithic standard. Cascading Style Sheet

Level 3 (CSS3) is composed of individual modules that are developed in parallel and can

have their own level designation (some are currently at Level 4). As of Nov 2019, 40 CSS

modules at or nearing “candidate recommendation” maturity or higher and there are more

107

div {
color: red

}
.my-class {

color: green
}
#my-id {

color: blue;
font-style: italic

}

<!DOCTYPE html>
<html>

<head>
<link rel="stylesheet" href="colors-style-file.css">

</head>
<body>

<div>
Red text

</div>
<div class="my-class">
Green text

</div>
<div id="my-id">
Italic blue text

</div>
</body>

</html>

Listing 5.9: CSS defined in a separate file and included into the HTML

108

<!DOCTYPE html>
<html>

<head>
</head>
<body>

<div style="color: red">
Red text

</div>
<div style="color: green">
Green text

</div>
<div style="color: blue; font-style: italic">
Italic blue text

</div>
</body>

</html>

Listing 5.10: HTML file with CSS embedded inline within “style” attributes of individual
elements

Listing 5.11: Rendering of the the HTML and CSS from listings 5.8, 5.9, and 5.10

109

than 50 additional modules that are in a working draft state [43].

CSS is a domain-specific language or grammar that is used to modify the appearance

or behavior of HTML elements on a web page. CSS is composed of two core components:

properties and selectors. Groups of properties are delineated by curly braces. Within a

group multiple properties are delimited by a semi-colon. Each property is composed of a

property name followed by a colon followed by one or more property values. Property values

are the most complex part of CSS and formal grammar used to define them is described in

section 5.3.2.

CSS elements can be specified in three different contexts: in a separate file containing

only CSS definitions (listing 5.9), as the content of HTML style elements (5.8), or contained

within the value of style attributes (5.10). The first two forms of CSS (separate file and style

element) have CSS selectors that prefix each CSS property group. The selectors indicate the

HTML elements that the following properties apply to. The third CSS form (element style

attribute) applies to the element the attribute is attached to, so no selector is needed (or

permitted). Listings 5.8 - 5.10 show the different contexts where CSS can be specified. The

result is the same in all three cases and is shown in Listing 5.11.

5.3.2 The CSS3 VDS Grammar

CSS property values in the CSS3 specifications are defined using a domain-specific formal

grammar called VDS [16] [44]. As noted in 2.5.2, the VDS grammar is similar to EBNF

with some additional features that make it more convenient for expressing CSS property

values [45]. The grammar of VDS is defined in listings 5.12 and 5.13. Note that the VDS

grammar is itself defined in terms of EBNF itself. In addition to the EBNF syntax elements

listed in Table 3.1, the middle section of Table C.1 in Appendix C lists some of the additional

EBNF that are used to define the VDS grammar.

110

assignments = assignment (<rS> assignment)* <S>?
assignment = non-terminal <'='> <S> single-bar

<non-terminal> = <S> non-property <S>
| <S> property <S>

(* Operator precedence: mult, juxt, &&, ||, | *)
single-bar = double-bar (<rS> <'|'> <rS> double-bar)*
double-bar = double-amp (<rS> <'||'> <rS> double-amp)*
double-amp = juxtapose (<rS> <'&&'> <rS> juxtapose)*
juxtapose = (<S> component (comma? | <rS>))* component

component = component-single
| component-multiplied

component-single = literal
/ func
/ keyword-value
/ non-property
/ property
/ brackets
/ block

component-multiplied = component-single multiplier
multiplier = question

| asterisk
| plus
| braces
| hash
| hash-braces

Listing 5.12: EBNF definition of the CSS VDS grammar (part 1)

111

keyword-value = identifier
non-property = <'<'> identifier <'>'>
property = <"<'"> identifier <"'>">
brackets = <'['> <S> single-bar <S> <']'> bang?
block = '{' <S> single-bar <S> '}'

| single-bar ';'
func = identifier <'('> <S> single-bar <S> <')'>
hash-braces = <hash> braces
question = <'?'>
asterisk = <'*'>
plus = <'+'>
braces = bracesA

| bracesA-B
| bracesA-

bracesA = <'{'> digit+ <'}'>
bracesA-B = <'{'> digit+ <','> digit+ <'}'>
bracesA- = <'{'> digit+ <',}'>
hash = <'#'>
bang = <'!'>

literal = #'[-_a-zA-Z0-9,/:;%]+'
| '"'
| <"'"> #"[-_a-zA-Z0-9,˜|ˆ$.<>={}:

\u0028\u0029/\u005B\u005D\u002A\u002B]*" <"'">↪→

| #'[\u0028\u0029]'

<identifier> = #'@?[-_a-zA-Z][-a-zA-Z0-9]*(?:\u0028\u0029)?(?x)
#identifier'↪→

digit = #'[0-9]'
comma = ','
S = #'\s*'
rS = #'\s+'

Listing 5.13: EBNF definition of the CSS VDS grammar (part 2)

112

5.3.3 Parsing and Translating CSS3

The W3C publishes specifications for CSS modules but this information is spread across

many separate documents and is designed primarily for human consumption so it is not

an especially convenient format for programmatic access. However, the MDN maintains a

repository [46] that aggregates the CSS definitions from those modules into comprehensive

JSON data files.

There are three main JSON files that are loaded by html5-css3-ebnf to extract CSS

data: property definitions, syntax definitions, and at-rule definitions.

The property definition file contains an dictionary of CSS properties with a mapping

of property name keys to property value definitions. The property values themselves are a

dictionary of attributes that define the property. Listing 5.1 shows the JSON definition of

the “border” property. The most relevant field for both parsing of and generating properties

is the “syntax” field which contains the VDS grammar that defines the valid “border” values.

The syntax definition file contains additional VDS definitions that is common to multiple

properties. For example, the syntax of the “border” property contains a reference to “<line-

width>”. Listing 5.2 shows the definition of “<line-width>” from the syntax definition file.

There are 10 other properties that refer to “<line-width>”. However, note that “<line-

width>” is not itself a top-level CSS property. The “<line-width>” syntax also refers to

“<length>”. Types are defined in a types definition file. Listing 5.4 shows the types file

definition of the “<length>” type. Note that the types files does not provide any syntactical

definition but just a link to a human readable web page that defines the type. In html5-

css3-ebnf we used the human readable definitions to manually define the types in a separate

EBNF grammar file that is merged into the final EBNF grammar definition.

The at-rules definition file defines a set of CSS statements that define some CSS behaviors.

The generators of our system do not currently generate at-rules but many web pages use

them so it is important to support them to be able to parse existing pages. Listing 5.3 shows

the definition of the the “@media” at-rule. This rule allows groups of CSS properties to

113

{
...
"border": {

"syntax": "<line-width> || <line-style> || <color>",
"media": "visual",
"inherited": false,
"animationType": [

"border-color",
"border-style",
"border-width"

],
"percentages": "no",
"groups": [

"CSS Backgrounds and Borders"
],
"initial": [

"border-width",
"border-style",
"border-color"

],
"appliesto": "allElements",
"computed": [

"border-width",
"border-style",
"border-color"

],
"order": "orderOfAppearance",
"alsoAppliesTo": [

"::first-letter"
],
"status": "standard",
"mdn_url": "https://developer.mozilla.org/docs/Web/CSS/border"

},
...
}

Figure 5.1: Definition of the “border” property in MDN CSS repository

{
...
"line-width": {

"syntax": "<length> | thin | medium | thick"
},
...
}

Figure 5.2: Definition of the “line-width” syntax in MDN CSS repository

114

{
...
"@media": {

"syntax": "@media <media-query-list> {\n <group-rule-body>\n}",
"interfaces": [

"CSSGroupingRule",
"CSSConditionRule",
"CSSMediaRule",
"CSSCustomMediaRule"

],
"groups": [

"CSS Conditional Rules",
"Media Queries"

],
"status": "standard",
"mdn_url": "https://developer.mozilla.org/docs/Web/CSS/@media"

},
...
}

Figure 5.3: Definition of the “@media” at-rule in MDN CSS repository

{
...
"length": {

"groups": [
"CSS Types"

],
"status": "standard",
"mdn_url": "https://developer.mozilla.org/docs/Web/CSS/length"

},
...
}

Figure 5.4: Definition of the “length” type in MDN CSS repository

115

prop-border =
(

nonprop-all |
((
nonprop-line-width |
nonprop-line-style |
nonprop-color

)+)
) ;

nonprop-line-width =
(

nonprop-length |
('thin' S) |
('medium' S) |
('thick' S)

) ;

nonprop-length = any-number length-unit S
| '0' S ;

Figure 5.5: Translation of “border”, “line-width”, and “length” to EBNF

enabled or disabled depending on features of the media that the web page is being rendered

for. The “@media” at-rule is commonly used to make adjustments for different screen sizes

and for printing.

Because the MDN repository [46] uses the JSON format to define the CSS components,

there is no special parsing needed to import that top-level data. However, the syntax field

of every definition contains values defined using VDS grammar. This data is parsed by the

VDS parser defined in Section 5.3.2.

The final step is translating the parsed VDS syntax data into the final EBNF grammar.

This accomplished by performing a depth-first walk of the parsed syntax tree and translating

each VDS combinator and terminal value into an equivalent EBNF representation. We keep

track of the call depth of each generated element so that the final grammar is indented

correctly which makes the EBNF easier to understand. This was especially important to

validate the final EBNF grammar against the original VDS grammar. Listing 5.5 shows the

final translated EBNF for the “border” property, “line-width” syntax, and “length” type.

116

5.4 Parsing Challenges

One of challenges with using the HTML and CSS specification derived grammars for parsing

is that many web pages in the wild are not actually compliant with the W3C standards. In

addition to obsolete elements that were never fully standardized, web pages often contain

misspelled HTML elements/attributes and CSS property names/values.

Another challenge related to parsing is related to the use of Instaparse library for parsing

and its support for ambiguous grammars. While this support provides significant expressive

power when defining grammars, it can sometimes result in the need for Instaparse to do

significant backtracking in order to find a path through the grammar that is able to parse the

full text. Instaparse can return all possible ways to parse a text given an ambiguous grammar.

However, by default, Instaparse will short circuit and return the first successful parse through

the text. However, even with short circuiting, certain combinations of ambiguous grammars

and texts can be inefficient. This is especially true if the web page is not valid and there

are no valid parses that will satisfy the grammar. In that case, Instaparse will need to

exhaustively search all optional paths through the grammar before determining that there

are no possible valid parses.

To address these challenges, html5-css3-ebnf provides support for multiple parsing

passes. The first pass uses a much simpler tags and attributes grammar with less ambiguity

in the grammar. Listing D.1 of appendix contains the EBNF definition of this grammar. This

grammar encodes the basic syntactic and structural characteristics of an HTML page with

the specification-based constraints of the full grammar. In addition, the grammar accepts

arbitrary tag names, attribute names and values and also parses tags with no closing pair.

Once the web page is parsed with the tags and attributes parser, several transformation

are applied to the the resulting parse data to transform the web page before it is passed to

the next parsing phases. These transforms include the following:

� Remove elements that can be large and complicated to parse but are not directly

117

relevant for web page render testing such as the content of <script> and <svg>

tags.

� Deduplicate attributes that occur multiple times in the HTML tag by either removing

subsequent occurrences or by combining the content of the attributes into a single

attribute.

� Remove extra whitespace that does not have any semantic or visual impact.

� Prune or rewrite tags, attributes, and attribute values that match certain patterns

that are known to happen on real-world web pages that can pose problem for the later

parsing phases. For example, many sites set the value of the table border attribute to

“0” to hide the border. However, this is not valid according to the specification so the

value is replaced with an empty string.

� Split apart CSS style information contained in <style> elements and in style at-

tributes.

The tags and attributes parsing phase returns the HTML and CSS data as separate values

which are then parsed in separate passes. This enables the grammars for HTML and CSS to

be defined and used separately which reduces the complexity and ambiguity of the grammars

resulting in faster and more memory efficient parsing.

The tags and attributes grammar can also be used as a standalone library without the

subsequent parsing phases. This allows subsets of the the transformations listed above to be

applied or omitted. There are also additional translations that are not applied during the

normal parsing process but can be applied on demand. One feature of the tags and attributes

parser is that it retains all whitespace information from the original web page. This allows

narrow transformations to be made against the HTML data without visual changes to the

whitespace and indenting. The parser also provides a mode that can replace the whitespace

data of the page with properly indented whitespace.

118

5.5 html5-css3-ebnf Usage

Over time the HTML and CSS standards are changed as new components are added and

current components are modified or improved. The html5-css3-ebnf project (available at

https://github.com/kanaka/html5-css3-ebnf) can be used from the command

line to regenerate the EBNF grammar files and cached parsing grammar files to incorporate

those changes. The CSS regeneration mode also supports the ability to filter the selected

components of the standard by their standardization maturity. In addition, the parse mode

supports parsing of web pages to extract Instacheck style wtreks or to prune the EBNF

grammar based on the parsed web page.

The examples below use the Leiningen project [36] for Clojure project management and

execution. Leiningen is invoked via the lein command.

5.5.1 Generate EBNF Parsing Grammars

The primary function of the html5-css3-ebnf module is to translate W3C HTML and CSS

specification data into EBNF grammars that can parse web page test cases that comply with

those specifications. Listings 5.14 and 5.15 show the commands to generate the HTML and

CSS EBNF grammars from the W3C specification data. The HTML and CSS specification

data is contained in the w3c_html and mdn_data directories respectively. These directories

time lein with-profile html5 run

Generating HTML5 EBNF based on: (./w3c_html/sections/elements.include
./w3c_html/sections/attributes.include ./w3c_html/sections/semantics-forms.include
./resources/html5-prefix.ebnf ./resources/html5-base.ebnf ./resources/common.ebnf)

↪→
↪→
Checking EBNF and converting to Parser
Converting Parser to Cached Grammar
Saving HTML5 EBNF to ./data/html5.ebnf
Saving cached parser grammar EDN to ./data/html5.grammar

Listing 5.14: Generate/regenerate the HTML EBNF grammars from the W3C specification
data (command and output)

119

https://github.com/kanaka/html5-css3-ebnf

time lein with-profile css3 run

Creating VDS grammar parser from: ./resources/css-vds.ebnf
Generating full CSS VDS grammar based on: ./mdn_data/css/properties.json

mdn_data/css/syntaxes.json mdn_data/css/at-rules.json↪→
Saving full CSS VDS grammar file to: ./data/css3.vds
Parsing CSS VDS grammar
Converting CSS VDS grammar to EBNF
Saving EBNF to ./data/css3.ebnf
Checking EBNF and converting to Parser
Converting Parser to Cached Grammar
Saving cached parser grammar EDN to ./data/css3.grammar

Listing 5.15: Generate/regenerate the CSS EBNF grammars from the W3C specification
data (command and output)

are git submodules [47] that pull the original repositories directly into the html5-css3-ebnf

repository.

Selecting and Filtering Specification Data

The HTML and CSS specification data is being continually updated by the W3C. Nor-

mal git fetch and branching commands can be used within the w3c_html and mdn_data

submodule directories to update to newer or older versions of the specification data. In

addition, the CSS data also contains standards status values that can be used to filter parts

of the standard. By default, the “standard” status value is selected for translation however,

the command in Listing 5.16 demonstrates the use of the --status-list option to include

both standard and obsolete parts of the CSS standard in the translated EBNF grammars.

Valid status values include: “standard”, “obsolete”, “nonstandard”, and “experimental”.

time lein with-profile css3 run --status-list standard,obsolete

Listing 5.16: Generate/regenerate the CSS EBNF grammars with status filtering

120

5.5.2 Parse Web Pages

Once EBNF grammars have been generated from the specification data (as described by

the process in), these grammars can then be used to parse web pages in order to validate that

the web page adheres to the HTML and CSS specifications and to extract a path frequency

weight trek from the web pages. The first command shown in Listing 5.17 demonstrates how

to do this. The second command shows additional options that use Instacheck to output

HTML and CSS EBNF grammars that have been pruned of all unreachable paths based on

the parsed path frequency trek. More than one web page can be specified on the command

line, in which case, all the pages will be parsed and the resulting path frequencies weights

will represent a summation of all the individual path frequency weights. The combined path

frequency trek is saved to a file and is also used for the grammar pruning.

Web Page Parsing Example

This section shows the results of using html5-css3-ebnf to parse a very simple web page

that is shown in Listing 5.18. The web page contains a single <div> element containing a

single “x” character. The element has a single color CSS property attached to it to change

the font color of contained text. Listing 5.19 shows the full path frequency trek that results

from parsing the web page in Listing 5.18.

This path frequency trek can then be used to prune unreachable parts of the HTML

and CSS grammar and save these pruned grammars to disk (as shown in the second

command in Listing 5.17). In the path frequency trek (Listing 5.19) the only top-level

HTML element path that appears is [:element :alt 26] which is the alternation for the

<div> element. All other element path alternations have an implicit path frequency of

zero. The result is that in the pruned grammar in Listing 5.20 the rule

element = "<div" ">" content * "</div>" contains a <div> element and no other

elements. Likewise the path [:css-known-standard :alt 98] refers to the color CSS

property name and is the only property name that occurs in the path frequency trek. This

121

time lein run page-to-parse.html --weights-output weights.edn

time lein run page-to-parse.html --weights-output weights.edn
--html-ebnf-output html.ebnf --css-ebnf-output css.ebnf↪→

Loading HTML parser
Loading CSS parser
Processing: 'page-to-parse.html'

- parsing HTML
- HTML weights: 13/1750
- parsing CSS
- CSS weights: 24/3576

Weight count: 36
Generating pruned HTML EBNF
Saving pruned HTML EBNF to: 'html.ebnf'
Generating pruned CSS EBNF
Saving pruned CSS EBNF to: 'css.ebnf'
Saving weights to: 'weights.edn'

Listing 5.17: Execute html5-css3-ebnf parse command to parse a web page (commands and
output)

<html>
<body>

<div style="color: red">
x

</div>
</body>
</html>

Listing 5.18: Simple HTML page containing a div tag with red text styling

122

{[:S :star 0] 3,
[:S :star nil] 7,
[:body :cat 1 :star nil] 1,
[:body :cat 3 :star 0 :alt 0] 1,
[:body :cat 3 :star 0] 1,
[:content :alt 0] 1,
[:css-assignments :alt 1 :cat 2 :star nil] 1,
[:css-assignments :alt 1 :cat 3 :star nil] 1,
[:css-assignments :alt 1] 1,
[:css-combinator :alt 3] 1,
[:css-declaration :alt 0 :cat 0 :ord 0] 1,
[:css-declaration :alt 0 :cat 1 :alt 0] 1,
[:css-declaration :alt 0] 1,
[:css-known-standard :alt 98] 1,
[:css-ruleset :cat 1 :star nil] 1,
[:css-selector :cat 1 :star 0 :opt 0] 1,
[:css-selector :cat 1 :star 0] 1,
[:css-simple-selector :alt 0 :cat 0 :opt 0 :alt 1] 1,
[:css-simple-selector :alt 0 :cat 0 :opt 0] 1,
[:css-simple-selector :alt 0 :cat 1 :star nil] 1,
[:css-simple-selector :alt 0] 1,
[:css-simple-selector :alt 1] 1,
[:css-univ :cat 0 :opt nil] 1,
[:element :alt 26 :cat 1 :star nil] 1,
[:element :alt 26 :cat 3 :star 0 :alt 1] 1,
[:element :alt 26 :cat 3 :star 0] 1,
[:element :alt 26] 1,
[:html :cat 0 :opt nil] 1,
[:html :cat 1 :star nil] 1,
[:html :cat 3 :star nil] 1,
[:html :cat 6 :opt nil] 1,
[:nonprop-color :alt 5] 1,
[:nonprop-named-color :alt 121] 1,
[:prop-color :alt 1] 1,
[:stylesheet :cat 1 :star 0 :alt 0] 1,
[:stylesheet :cat 1 :star 0] 1}

Listing 5.19: Resulting path frequency trek from parsing HTML from Listing 5.18

html = "<html" ">" <S> body "</html>" <S>
body = "<body" ">" element* "</body>" <S>
element = "<div" ">" content* "</div>"
content = char-data
char-data = #"[ˆ<&]*"
S = #"\s"*

Listing 5.20: Resulting HTML EBNF grammar after pruning the grammar using the path
frequency trek in Listing 5.19

123

stylesheet = S css-ruleset*
css-ruleset = css-selector "{" S css-assignments "}" S
css-assignments = css-declaration S
css-declaration = css-known-standard
css-selector = css-simple-selector

(css-combinator css-simple-selector)?*
css-combinator = rS
rS = #"\s+"
css-simple-selector = css-univ?
css-univ = "*"
css-known-standard = "color" S ":" S prop-color
prop-color = nonprop-color
nonprop-color = nonprop-named-color
nonprop-named-color = "red" S
S = #"\s"*

Listing 5.21: Resulting CSS EBNF grammar after pruning the grammar using the path
frequency trek in Listing 5.19

results in the pruned rule css-known-standard = "color" S ":" S prop-color in the

grammar depicted in Listing 5.21.

124

Chapter 6

Bartender: Browser Automated

Render TestiNg DrivER

6.1 The State of Browser Render Testing

In 1998 the Web Standards Project (WaSP) [48] was formed to promote the use of web

standards within browser implementations and use of those standard by the web developer

community [49]. As part of the effort three Acid tests were developed to test web browser

standards conformance. Acid1 [50] was released in 1998 [51] and incorporated much of the

CSS 1.0 specification into a single web page that could be easily compared to a reference

image. Figure 6.1 shows a rendering of the Acid1 test case. Acid2 [52] was released in 2005

and designed to test browser compliance with the CSS 2.1 specification [53]. Figure 6.2 shows

a rendering of the Acid2 test case. Acid3 [54] was release by WaSP in 2008 and designed to

test browser compliance with: the document object model (DOM) Level 2 specification, the

first ECMAScript (JavaScript) standard, the Scalable Vector Graphics (SVG) specification,

and some parts of the CSS Level 3 specification [55]. Acid3 uses a number of elements

from those specifications that were still being standardized and it has diverged from the

standards that were eventually adopted by browser vendors. Figure 6.3 shows a rendering of

125

Listing 6.1: Rendering of Acid1 Test Case

Listing 6.2: Rendering of Acid2 Test Case

Listing 6.3: Rendering of Acid3 Test Case

126

the Acid3 test in Chrome 73 indicating that only 97 out of 100 features tested by the page

completed successfully. The WaSP group disbanded in 2013 after determining that their

effort to promote web standards had been successful.

The web-platform-tests (WPT) [56] is a project that was launched by the W3C in 2014

as a consensus-driven (human consensus rather than automated testing consensus) open-

source project that maintains a central repository of tests for the web platform [57]. There

are three main types of tests that are part of the WPT project: reftests, visual tests, and

manual tests. Reftests consist of two or more test cases that must render identically and can

be checked automatically with assertions within the test case. Visual tests are test cases that

are loaded and a screenshot is taken that is compared to an image with the correct rendering.

Manual tests are test cases that require some sort of visual inspection or interaction in order

to validate the final result [58].

Both WPT reftests and visual tests can be executed in an automated fashion, however

there are still significant parts of the test life cycle that require manual human intervention.

Reftests must be carefully crafted so that each page in the test results has assertions which

check for the same rendering behavior [59]. The reference images that are used by visual

tests are manually generated or manually validated [60].

We have developed a new approach called Bartender (Browser Automated Render TestiNg

DrivER) that automates the entire testing process. It does this by using specification based

generators to create random test cases and by using a consensus oracle of different browsers

to determine an indirect measure of correctness for the resulting rendering. This measure is

indirect and approximate because if all browsers in the consensus pool have the same defect

then there will be consensus even though the behavior is incorrect. The Bartender approach

is not a replacement but rather complements the WPT testing approach. It can detect

edge cases that are tedious to cover comprehensively reftests. In addition, WPT test cases

tend to focus on a single feature or element of a web specification. The Bartender approach

can effectively cover the interactions between the large number of web specification features

127

without the need for tests to be written manually that cover every interaction.

6.2 Bartender System Architecture

Figure 6.1 shows an complete depiction of the system architecture in introduced in Figure

2.1. The bottom of Figure 6.1 shows the process that is used to parse, cleanup, and translate

HTML and CSS specification data into EBNF grammars. This happens in the html5-css3-

ebnf module that is described in Chapter 5. Raw HTML specification data from the W3C [40]

is parsed at 6.1-A into data structures describing the HTML element and attributes which

is translated at 6.1-B into equivalent EBNF grammar data which is stored in the datastore

at 6.1-E. Raw CSS VDS grammar is parsed from MDN [46] data to a VDS AST data

structure at 6.1-C which is translated to equivalent EBNF grammars at 6.1-D and stored

in the datastore (6.1-E). The EBNF grammars are then loaded, optimized for generating

test cases, and translated into Clojure generator code 6.1-F. The process of optimizing and

translating the grammars is described in more detail in Section 6.6.3.

The top of Figure 6.1 shows the runtime testing process of Bartender itself. When the

test system is started, the runtime testing configuration (see G), the HTML and CSS EBNF

grammars, and the HTML and CSS generators are loaded at 6.1-G. A web server is started

at 6.1-H to serve static files from the datastore (6.1-E). WebDriver [13] connections are

established with each browser in the browser consensus pool at 6.1-I.

The test harness then begins to execute iterations of the first Instacheck run. For each

iteration, the generators are invoked to create an HTML and CSS test case which is stored in

the datastore (6.1-E) and each browser is requested to load the test case via the WebDriver

connection (6.1-I). Once the test case is rendered, the test driver again uses the WebDriver

interface (6.1-I) to request that each browser take a screenshot of the rendered page and

return it as a Portable Network Graphics (PNG) image to the test driver. Each screenshot

is normalized, difference images are calculated for each browser pair, and thumbnail images

128

html5-css3-ebnf
(Grammar Translation)

Bartender
(Test Execution)

Consensus
Browsers

WebSockets

Webdriver (HTTP)

Test Driver

HTTP

HTTP

Web Server

Configuration,
Generators,

Parsers

EBNF Grammars

Monitoring Web Application, Static Images,
Bartender Configuration, EBNF Grammars,

Generators, Tests (HTML/CSS), Screenshots

Test Cases,
Screenshots,
Result Data

Specification Parser

HTML5 Elements/Attributes

HTML5 EBNF
Grammar Generator

CSS3 EBNF
Grammar Generator

VDS Parser

CSS3 VDS Grammar

CSS3 VDS AST

Monitoring
Browser

Mozilla
Developer
Network
(MDN)

HTML5 Specification Text

World Wide Web
Consortium

(W3C)

Clojure Generators

EBNF Grammar
Translator

Instacheck (O)

(D)

(C)

(B)

(A)

(H)(L)

(J)

(G)
(F)

(I)

(K)

(N) (M)

(E)

Figure 6.1: Bartender System Architecture

129

are generated. All this image data is stored at 6.1-L to the datastore (6.1-E).

Bartender also provides real-time monitoring of the testing process via a monitoring web

application. The application is loaded from the datastore via the static files web server at

6.1-M. The application then makes a WebSocket connection back to the test driver to the

current test driver state along with real-time updates as the testing process proceeds. The

monitoring application is described in more detail in Section 6.5.

The core Bartender system is implemented in Clojure and the monitoring and report-

ing applications are written in ClojureScript [61] (a variant of Clojure that compiles to

JavaScript). Clojure is very well suited to data processing and manipulation. In addition,

the use of Clojure allowed us to use both Java libraries such as OpenCV and Selenium

WebDriver as well as Clojure libraries such as test.check, test.chuck, Instaparse, Hickory,

specter, ring, differ, and transit. The use of ClojureScript for the monitoring applications

allows reuse of Clojure data structures and libraries that are used by the server. In addition,

ClojureScript allows us to leverage JavaScript libraries like React. See Appendix I for the a

description of the projects and libraries used in Bartender and Appendix J for code size and

other statistics related to Bartender.

6.2.1 Optimizing and Translating EBNF Grammars to Clojure

Generators

The Instacheck module provides the ability to translate EBNF grammars to Clojure gener-

ators at runtime. However, for large grammars like the HTML and CSS grammars this can

take a long time and translation process requires substantially more memory than the using

the translated grammars for test case generation. For this reason, Bartender uses Instacheck

to pretranslate and cache the Clojure code as a separate one-time step prior to using them

for testing (6.1-F). This process is described in more detail in Section 4.4. The Bartender

command for executing this process is described in Section 6.6.4. The translated Clojure

code is then loaded by Bartender via the normal Clojure code loading process.

130

S = #'\s'* ;
rS = #'\s+' ;

Listing 6.4: Whitespace EBNF Rules

The EBNF grammars that are generated by the html5-css3-ebnf module could be trans-

lated directly to Clojure generators code but there a number of cases where it is suboptimal

to use the direct translation of EBNF grammars. During translation there are several cat-

egories of grammar modifications and optimizations that are applied to the grammar. A

non-exhaustive list of some of the most common optimization categories are described be-

low:

Whitespace

The grammar rules for white space matching are used throughout both the HTML and CSS

grammar definitions. Listing 6.4 shows how these rules are defined. The S rule means that

zero or more whitespace characters must appear at this location and the rS rule means one

or more whitespace characters must appear at this location. A naive translation of these

rules to generator functions would result in generators that would return sequences of spaces

with a length up to the current PBT size limit for the generator. However, in both HTML

and CSS there is no semantic difference between a single space and two or more adjacent

spaces (unless they are literal quoted string values). For example, Listing 6.5 shows two

different portions of HTML that would be rendered identically by the browser. For this

reason, during the optimization phase, whitespace rules in the grammar are replaced with a

simple generator that returns a single space character.

Scalar Types

One of the limitations with the use of EBNF as the fundamental way to define the

generators is that there is no predefined rules for fundamental scalar types and so the scalar

131

<div> This is a test </div>

<div> This is a
test

</div>

Listing 6.5: Repeated Whitespace is Ignored in HTML

integer = #"-?[0-9]+" ;
non-negative-integer = #"[0-9]+" ;
positive-integer = #"[1-9][0-9]*" ;
floating-point-number = #"-?[0-9]*[.][0-9]+(?:[eE]-?[0-9]+)?" ;
any-number = integer | floating-point-number ;

Listing 6.6: Whitespace EBNF Rules

types are defined using string and regular expression primitives. Listing 6.6 shows the

definition for numeric types in the EBNF grammars. These definitions are acceptable for

parsing but there are problems with using the definitions directly for generation. The first

problem is that generators derived from these definitions are less efficient than the native

scalar generators provided by the test.check library. A more significant problem is that

these rules do not take advantage of the type specific sizing and shrinking capabilities of the

test.check scalar generators. For example, a generator based directly on the floating-point-

number EBNF rule will generate a scientific notation about 50% of the time and does not

consider 1.000 to be a simpler value than 5.789 for the purposes of sizing and shrinking. For

this reason, during the optimization phase, rules for numeric types are replaced with the

equivalent test.check generators.

Image URLs

The EBNF definition for URLs makes sure that those URLs are well formed. However, in

actually test cases, these URLs have a context dependent meaning. For example, the href

132

attribute of an img tag is used to load an image from that URL to be rendered on the page.

In particular, images are an important use case that we want to test. A naive translation of

the EBNF grammar will result in URLs that are effectively random strings that have a near

zero change of referring to images being served by the embedded webserver. For this reason,

during the optimization, phase the generator for image URLs is replaced with generator that

returns image URLs that point to a limited set of images that are actually being served by

the webserver.

Bug Workarounds

The optimization phase can also be used to fix certain classes of browser bugs that may

interfere with determining consensus. One of the Servo bugs that was discovered during

testing is that adjacent characters in the HTML that use the Ahem font have a faint color

border between the characters that can be reported as a rendering difference (https://

github.com/servo/servo/issues/24042). To workaround this issue we replace the

character data rule with one that wraps each character with a special span tag that sets the

background color of the span with the color of the font itself.

6.2.2 Bartender Testing Process

The following process happens when Bartender starts up:

1. The user configuration is loaded and parsed (6.1-E).

2. Any additional wtrek (weight) files are loaded and merged into the active wtrek con-

figuration (6.1-E).

3. The embedded web server is started (6.1-H). The WebSockets endpoint (6.1-H) is also

started which is used to update monitoring applications as the test state changes (6.1-

N).

133

https://github.com/servo/servo/issues/24042
https://github.com/servo/servo/issues/24042

4. The cache parser tree data structures for both HTML and CSS are loaded (6.1-G).

These are used to parse wtrek data from generated test cases.

5. A WebDriver session is established with each browser that is configured in the consensus

pool (6.1-I).

6. The starting configuration and runtime state is sent to any connected monitoring ap-

plications (6.1-N).

The following steps occur during each Bartender test run:

1. The run number and current random seed are updated.

2. The test case generator is updated with the current weight configuration (wtrek).

3. Instacheck is used to execute the quick-check iterations using the test case generator

and check function which serves as both the test executor and test oracle.

4. If weight reduction is configured and the quick-check process detected a counterex-

ample/failure then Instacheck is used to adjust the active wtrek weights with the

configured reduction algorithms.

5. The current wtrek (weight) configuration is stored in the datastore (6.1-L).

The following steps occur during each Bartender PBT test iteration:

1. A new web page is generated from the HTML and CSS grammar generators and stored

in the datastore (6.1-L).

2. The web page is loaded by each browser in the consensus pool (6.1-I and 6.1-J).

3. A screenshot of the current rendered state is taken (6.1-I) and stored in the datastore

(6.1-L) for each browser in the consensus pool .

134

4. Difference images are created and stored in the datastore for each pair of browser

screenshots (6.1-L).

5. Thumbnail images are created and stored in the datastore for all screenshots and

difference images (6.1-L).

6. The configured comparison algorithm is applied to generate a disagreement measure

which is compared to configured threshold value to determine if the screenshots are

different enough to be added to the set of violations.

7. The configured consensus algorithm is then applied to the set of violations from the

previous step to determine if test case should be considered an overall failure/coun-

terexample. If so, then subsequent iterations are part of the shrinking phase. See more

about consensus in Section 6.3.

8. During the shrinking phase, any time a smaller failure is discovered, the test case is

parsed using Instacheck to extract its path frequency weight trek and a summary of

the tags, attributes, and properties on the page. This path frequency weight trek is

used as an input to weight reduction process between test runs.

9. The run state is updated with the results of the test iteration. This triggers a delta

packet to be sent to all connected monitoring applications (6.1-N).

6.3 Consensus

The HTML and CSS specifications are both quite large and undergoing frequent updates.

A test oracle that can automatically and comprehensively perform formal verification of

web browser rendering behavior approaches the complexity of developing a web browser

rendering itself. In addition, this form of test oracle is likely to have its own defects that will

reduce its utility for formal verification of other SUTs. For this reason most browser render

testing involves manual human involvement at various stages of the testing process. The

135

approach taken with Bartender is to use multiple browsers as a consensus test oracle (this

was introduced in Section 2.7). This is a form of differential testing where multiple SUTs

are compared and differences in behavior indicate that the test case is a counterexample

candidate [19].

A lack of consensus may indicate a defect exists in one of the SUTs, but in some cases the

behavior differences may be permissible and not indicate a defect. In addition, the presence

of consensus also does not necessarily imply that a test case is defect free. It is possible

that all implementations in a consensus pool have a defect which affects behavior in the

same way. However, in the context of web browser rendering engines, common behavior

may be a more important measure of quality than a low number of defects. An alternate

way of expressing this is that a “difference in behavior” can itself be considered a defect in

this context. In fact, a less widely used browser that has better adherence to a formally

defined specification may be considered the “defective” browser in comparison to the more

widely used browser. The situation where a SUT prioritizes common behavior over strict

formal correctness is known as “bug compatibility” [62]. The desire for “bug compatibility”

is another reason that a traditional test oracle is not optimal for browser render testing.

However, the consensus oracle approach used by Bartender, by definition, detects differences

between browsers via lack of consensus.

6.3.1 Consensus Algorithms

There are two components of determining browser consensus for any given PBT test iteration

(a single page load/render): calculate a disagreement measure between each pair of browsers

and determining whether the set of disagreement measure represent a consensus or represent

a lack of consensus and therefore a test failure/counterexample. The default method for

calculating the disagreement measure value is to perform a normalized SSD between the

color channels of each pair of rendered browser screenshot images and taking the mean across

the color channels. The default method for deciding on consensus from a set of disagreement

136

Figure 6.2: Test iteration example showing: Servo with a rendering that different from
Firefox and Chrome; Servo, Firefox, and Chrome all with different renderings; Firefox with
a rendering that is different (Servo and Chrome are in agreement)

measures is to compare each measure to a threshold value. If all disagreement values are

under the threshold value then the iteration is considered to have consensus, otherwise it is

considered to be a failing case.

The default methods of calculating disagreement measures and overall consensus are

described in more detail in Section 2.7.2. However, these methods are not the only options

for determining consensus. The most useful consensus method is often highly dependent

on the specific goals of the testing being performed. The Bartender system has several

other consensus algorithms that are available and the system has been designed to allow

other consensus algorithms to be developed and integrated. For the disagreement measure

Bartender uses the OpenCV library [63] and any of the OpenCV template matching functions

are available for consensus calculation include the normalized and unnormalized versions

of SQDIFF, CCORR, and CCOEFF [64]. In addition, the threshold that the results are

compared against is user configurable. This can be used to adjust the sensitivity of the

consensus to small variations in the rendering screenshots.

The default overall Bartender consensus algorithm is to treat any difference measure

violating the threshold as a lack of overall consensus. Bartender also supports a “target”

mode in which one browser in the pool is the focus of the testing and the other browsers in

137

the pool are used as a test oracle to for the targeted browser.

Figure 6.2 shows some example iterations from the monitoring application during tar-

geted testing of Servo. In each image the columns represent the following: iteration number,

consensus result, Firefox, Chrome, and Servo screenshots, Firefox/Chrome, Chrome/Servo,

and Servo/Firefox difference images, and an average of the browser screenshots (the moni-

toring application is described in more detail in Section 6.5).

The only test cases that are considered failures are when the Servo rendering for the

test case is different from both Firefox and Chrome but Firefox and Chrome do not show a

difference. This is the case shown in the first image of Figure 6.2. If all three browsers have a

different rendering then the test case is not considered a failing case (counterexample). In the

targeted testing configuration, the common behavior of Firefox and Chrome is considered to

be the test oracle for the targeted browser, Servo. When Firefox and Chrome disagree then

there is not enough information about the behavior of Servo to determine its correctness so

the overall test is considered passing. This is the case shown in the second image of Figure

6.2. Another case that is considered to be passing is if Servo’s rendering behavior is the same

as Firefox and different from Chrome or vice versa. This is another case where ambiguity

exists in the Firefox+Chrome test oracle so the overall test case is considered passing. The

third image of Figure 6.2 depicts the case where Servo is different from Firefox but has the

same rendering as Chrome.

The targeted testing algorithm is described above in terms of three browsers, but the

algorithm applies to any number of browsers (greater than one). The test case is considered

failing (a counterexample) if, and only if, the targeted browser is in disagreement with all

other browsers, and none of non-targeted browsers are in disagreement with each other.

Disagreement in this case means the disagreement measure violates the threshold. Note

that in a two browser configuration (one target, one non-target) the targeted testing mode is

equivalent to the default overall consensus algorithm in which any disagreement is considered

a failing test case.

138

6.3.2 Consensus Challenges and Solutions

The release of the HTML5 proposed specification by the WHATWG organization was an

attempt recognize and formalize the areas of HTML where the dominant browsers already

had common behavior and to either deprecate or tighten up areas with divergent behavior

(see Section 5.2.1). This has reduced the need for “bug compatibility” between browser

implementations. In addition most browsers support “Quirks Mode” rendering which is a

backwards compatibility mode for web pages that assume certain browser behavior that are

no longer considered desirable [65] [66]. The current test cases generated by Bartender do

not trigger “Quirks Mode”. However, there are still a number of challenges that must be

addressed to make a consensus oracle useful within a browser render testing context. Section

2.7.1 gave a brief introduction to challenges that exist in using multiple browser rendering

engines as a consensus test oracle.

The key challenge, is that in the context of web browser rendering there a differences in

behavior that may be considered permissible (false positives). There are a number of reasons

for differences in behavior including:

� Configuration differences between the browsers.

� Host operating system differences that may affect each browsers in different ways.

� Proprietary features that are only supported by a subset of browsers.

� Obsolete features that have been removed or have different behavior in a subset of the

browsers.

� Experimental features that are present or have different behavior in a subset of the

browsers.

� Features that have standard specifications but which are poorly, or under specified,

and are interpreted differently by a subset of the browsers.

139

� Unintended defects in the implementation of features that exist in a subset of the

browsers.

A simple solution to permissible rendering differences is to simply configure grammar

weights to avoid these cases. However, this would eliminate a large number of important

HTML and CSS elements that are desirable to test if possible. For example, font rendering

is a particularly problematic area where browsers vary widely in rendering behavior, and

yet, nearly every real-world web page contains text, so omitting fonts from testing would

be a significant testing gap. In addition, text on a web page may interact with many other

elements on a page ways that may not be testable by other means. Testing font rendering

is challenging, but it is also important to include as part of comprehensive browser render

testing. Other browser rendering differences occur due to the varying browser defaults for

many CSS styling properties. Many of these setting variations are in common page elements

so omitting them is not a good option. For example, even the default margin between the

browser control elements and the content of the page varies among browsers. Solutions to

the these consensus challenges are discussed below.

The Ahem Font

Including text in web page test cases increases the likelihood of revealing rendering defects

in a browser. Omitting fonts from testing would be a significant testing gap. However, fonts

have a wide variation in the way that they are rendered on a web page and these differences

do not necessarily indicate a defect. Browsers attempt to select the best match between

the font requested by the current CSS style setting and the fonts that are available to the

Listing 6.7: Example of “Ahem test: XpÉ” string rendered with Ahem font

140

<html>
<head>
<style>

@font-face {
font-family: Ahem;
src: url(Ahem.ttf);

}
body {

font: 50px/1 Ahem;
color: #808000;

}
</style>
</head>
<body>

abc

cd e

</body>
</html>

Listing 6.8: Web page demonstrating Servo Ahem font bug 24042

.wrap-ahem {
font: 25px/1 Ahem;
margin: 0px;
background: currentColor; /* match font color */

}

X

Listing 6.9: Workaround Servo Ahem render bug 24042 by wrapping each character in a
span with color matched background color

141

Figure 6.3: Rendering of HTML in Listing 6.8 in Firefox/Chrome, Servo, and as a color
channel difference

142

browser. Different browser installations will likely have differing sets of available fonts. Even

when the same size font is used, there may be differences in kerning and spacing of those

fonts that can result in significant rendering differences. For example, two different font

typefaces may result in page text occupying a different amount of space on the page which

may cause other large elements to overflow and to render in a different spot on the web page.

The Ahem font [21] was designed specifically for the purpose of browser testing. The

Ahem font consists of three different sized solid rectangles and empty space. Each is precisely

specified so that they are able to be rendered the same regardless of platform and rendering

engine [22]. The glyphs ‘X’ (Unicode 0x0058), ‘p’ (Unicode 0x0070), ‘É’ (Unicode 0x00c9)

and ‘ ’ (Unicode 0x0020) are reflective of the four possible Ahem font renderings. Figure

6.7 shows the string “Ahem test: XpÉ” rendered in Chrome with and without the

Ahem font.

During testing we discovered a bug with the rendering of the Ahem font in Servo that

negatively impacts the ability to determine consensus. We reported this as Servo issue 24042

(https://github.com/servo/servo/issues/24042). The nature of this bug is

that the left and right edge of each Ahem character is slightly transparent which allows the

background color to be visible. Listing 6.8 shows a small test case that reproduces this bug.

The top image in Figure 6.3 shows how this test case is rendered in Firefox and Chrome.

The middle image shows the rendered result in Servo and it is clear that there are vertical

lines between rendered Ahem characters. The bottom image is a color channel difference

of the first and second images. Any differences between the two images is rendered as non-

black pixels. The purple lines that are visible in the difference image shows that the vertical

lines are not just occurring where rendered Ahem characters are directly adjacent but is also

occurring on the left and right edges of those characters as well.

This issue with Ahem font rendering has not yet been resolved at the time the research

was completed. In order to continue with testing we developed a mitigation for the issue.

We modified the generator for character data to wrap every Ahem character with a span

143

https://github.com/servo/servo/issues/24042

/**
* Add the correct display in IE 9-.

*/

article,
aside,
footer,
header,
nav,
section {

display: block;
}

/**
* Correct the font size and margin on `h1` elements within `section`

* and `article` contexts in Chrome, Firefox, and Safari.

*/

h1 {
font-size: 2em;
margin: 0.67em 0;

}

Listing 6.10: A section of the normalize.css CSS Resets used in Bartender generated test
cases

element that has a background color that matches the current foreground text color. Listing

6.9 shows the CSS style used for the tag and an example of the workaround.

We also discovered in early testing that in certain cases the test shrink phase was slow

because it generated many small incremental tests cases while it was attempting to shrink

text content. For this reason we limited the actual generated text characters list above. By

limiting the text content grammar in this way we achieve a significant test shrink speedup

for test cases that contain plain text content.

CSS Resets

There are a number of areas where the default rendering behaviors differ between browsers.

These differences are not defects but rather an issue of differing configuration; each browser

has a built-in default set of CSS styles (stylesheet) that is applied to all loaded pages. Bar-

144

tender makes use of a technique called “CSS resets” [67] [68] to adjust CSS defaults to

common values. Each test case generated by Bartender loads a stylesheet from the normal-

ize.css project (version 7.0.0 [69]) to reset CSS styles. Listing 6.10 shows a portion of the

normalize.css stylesheet. This part shows the display type for several HTML elements being

adjusted (to compensate for a different default in version 9 of Microsoft’s Internet Explorer

browser) and the font size and margins being adjusted for the <h1> tag (to compensate for

differences in Chrome, Firefox, and Apple Safari).

6.3.3 Consensus Example

This section describes the Bartender consensus process with example data from a actual test

run. Listings 6.5 - 6.15 show the web page test cases (HTML and CSS) for several notable

iterations (0, 2, 13, 14, 135, 171) from the test run. Figures 6.6 - 6.16 show screenshots and

difference images that correspond to those listings. The figures are arranged to more clearly

show which browsers the difference images related to by positioning each difference image

between the pair of browser screenshots to which it relates.

Figure 6.4 shows a list view of the test run as represented by the monitoring application.

A summary of the test run appears above the iteration list table. Each row of the table

represents an iterations from a test run. The columns of the table are as follows: iteration

number, overall iteration result (PASS or FAIL), test case link (HTML), screenshot image

links (1 per browser), difference image links (1 per browser pair), average difference image

link. The difference images are calculated by subtracting the color values of the screenshot

image from one browser in the pair from the other in the pair. When there is no difference

between two browsers the image will be solid black. A difference measure is then calculated

for the difference images. The method of calculating the disagreement measurement value is

configurable but defaults to calculating the SSD of each color channel and averaging them

together to get a single number (described in more detail in Section 2.7.2). The difference

image columns are highlighted with a red background if the disagreement measure exceeds

145

the threshold for that pair. The browser column is highlighted with a red background if the

browser is part of any browser pair where the difference value is above the threshold (the

monitoring application is discussed in more detail in Section 6.5).

The test run starts with a small size test case in iteration 0. The HTML of the test

case is shown in Listing 6.5 and contains only ‘ xX ’ within the document body. There are

no HTML attributes on the body tag and no additional HTML tags within the body. The

rendered screenshots and difference images are shown in Figure 6.6. The test case renders

identically in Firefox and Chrome (the disagreement measure is 0.0). The Servo rendering

is very slightly different from the other two browsers however the disagreement measure of

0.000007 falls well below the configured threshold of 0.0001.

The first iteration where a disagreement measure exceeds the threshold is iteration 2.

Listing 6.7 shows the test case HTML and Figure 6.8 shows the screenshots and difference

images. This test case has a higher complexity (PBT test size) than the initial case. The

body tag has CSS styles applied to it and there is a tag with an attribute in the body.

Chrome has disagreement measures of 0.000419 with Firefox and of 0.000430 with Servo,

both of which are above the threshold. Firefox and Servo have a disagreement measure of

0.000015 which is below the threshold. In other words, the Chrome rendering of the test

case is reported as different from the other two browsers which are reported as the same.

However, note that the overall iteration is not reported as a FAIL. The reason is that this

test run was configured to performing targeted testing of Servo. This means that for any

test case where Firefox and Chrome disagree on the rendering (difference measure above the

threshold) the Servo data is ignored (PASS). In other words, in this configuration, Servo

must be the only member of the pool that differs for the iteration to be considered a failure

(counterexample). The effect of this configuration is that Firefox and Chrome are being used

as the combined test oracle to test Servo.

Iteration 13 is the largest test case that is generated prior to a failure being reported.

Listing 6.9 shows the test case HTML and Figure 6.10 shows the screenshots and difference

146

images. In this test case the body contains both text and a <div> tag. The body and the

<div> tag have 27 and 5 style properties attached respectively. No disagreement measures

exceed the threshold so the test case is considered passing.

Iteration 14 represents an initial failure case where the rendering in Servo is different

from Firefox and Chrome and where Firefox and Chrome are considered the same. Listing

6.11 shows the test case HTML and Figure 6.12 shows the screenshots and difference images.

The test case is significantly large and more complex even than iteration 13. There are five

different tags with the body. The body and two of the tags within the body have style

properties applied to them. Text characters are scattered within and between the tags. It

is clear from Subfigure 6.14e that Servo has a black rectangle in the upper left of screenshot

while the other browsers do not. In fact, it appears from visual inspection that Firefox and

Chrome are not showing any elements on the page apart from the background color on the

document itself. However, it is not immediately obvious from the test case HTML what

combination of tags, attributes, properties, or textual content is causing this difference in

behavior.

Once the initial failing test case is found in iteration 14, the system transitions to the

shrinking phase to try and find smaller and/or simpler versions of the test case that continue

to fail. Listing 6.13 shows the test case HTML and Figure 6.14 shows the screenshots and

difference images for iteration 135 during the shrinking process. This is an iteration that

is identified as a failing case by the shrinking process (Servo is different from Firefox and

Chrome). The test case is much simpler than the initial failure detected in iteration 14. The

body has a single style property and contains a single <param> element with 13 CSS styles

applied.

The shrinking process completes at iteration 171. Listing 6.15 shows the test case HTML

and Figure 6.16 shows the screenshots and difference images for iteration 171. This is the

minimal test case found by the system that was still reported as failing. This test case

has an x character and an empty <div> tag within the body. The body and <div> tag

147

each have a single CSS property applied to them. Compared to the original failure, the

reduced test case greatly simplifies root cause analysis. In this case, searching for the CSS

properties on Mozilla’s Servo issue tracking system [70] reveals issue https://github.

com/servo/servo/issues/20142 showing that the visibility: collapse property

is not yet implemented in Servo (as of 2019-11-15).

O Bartender 61344-13-13 X

Show thumbnails | Iterations 172, Mode: shrunk, First Failure: 14, Shrink: 772 > 67 bytes
Elements: {:tags #{"div"}, :attrs #{}, :props #{"visibility" "mask-mode"}}
Iteration Result Html �refox chrome servo �refoxΔchrome �refoxΔservo chromeΔservo Δ Avg
0 PASS / png png png 0.000000 0.000007 0.000007 png
1 PASS / png png png 0.000000 0.000007 0.000007 png
2 PASS / png png png 0.000419 0.000015 0.000430 png
3 PASS / png png png 0.000000 0.000007 0.000007 png
4 PASS / png png png 0.000000 0.000029 0.000029 png
5 PASS / png png png 0.000000 0.000007 0.000007 png
6 PASS / png png png 0.000000 0.000007 0.000007 png
7 PASS / png png png 0.000000 0.000015 0.000015 png
8 PASS / png png png 0.000000 0.000015 0.000015 png
9 PASS / png png png 0.000000 0.000016 0.000016 png
10 PASS / png png png 0.000000 0.000000 0.000000 png
11 PASS / png png png 0.000000 0.000015 0.000015 png
12 PASS / png png png 0.000000 0.000018 0.000018 png
13 PASS / png png png 0.000000 0.000007 0.000007 png
14 FAIL / png png png 0.000000 0.031689 0.031689 png
15 FAIL / png png png 0.000000 0.031689 0.031689 png
16 PASS / png png png 0.000000 0.000007 0.000007 png
17 PASS / png png png 0.000000 0.000007 0.000007 png
18 PASS / png png png 0.000000 0.000007 0.000007 png
19 FAIL / png png png 0.000000 0.031689 0.031689 png
20 FAIL / png png png 0.000000 0.031689 0.031689 png
21 FAIL / png png png 0.000000 0.031689 0.031689 png
22 FAIL / png png png 0.000000 0.031689 0.031689 png
23 PASS / png png png 0.000000 0.000007 0.000007 png
24 PASS / png png png 0.000000 0.000007 0.000007 png
25 PASS / png png png 0.000000 0.000007 0.000007 png
26 PASS / png png png 0.000000 0.000007 0.000007 png
27 PASS / png png png 0.000000 0.000007 0.000007 png
28 PASS / png png png 0.000000 0.000007 0.000007 png
29 PASS / png png png 0.000000 0.000007 0.000007 png
30 PASS / png png png 0.000000 0.000007 0.000007 png
31 PASS / png png png 0.000000 0.000007 0.000007 png
32 PASS / png png png 0.000000 0.000007 0.000007 png
33 PASS / png png png 0.000000 0.000007 0.000007 png
34 PASS / png png png 0.000000 0.000007 0.000007 png
35 PASS / png png png 0.000000 0.000007 0.000007 png
36 PASS / png png png 0.000000 0.000007 0.000007 png
37 PASS / png png png 0.000000 0.000007 0.000007 png
38 PASS / png png png 0.000000 0.000007 0.000007 png
39 PASS / png png png 0.000000 0.000007 0.000007 png
40 PASS / png png png 0.000000 0.000007 0.000007 png

html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt

Figure 6.4: Consensus test case example: list view

148

https://github.com/servo/servo/issues/20142
https://github.com/servo/servo/issues/20142

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">
<title>
</title>

</head>
<body>

xX
</body>
</html>

Figure 6.5: Consensus test case example iteration 0: first iteration

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.6: Consensus test case example iteration 0 rendering: first iteration

149

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">

</head>
<body style="top : 1.0% ;

line-height : 2 ;
text-emphasis : revert ;
transition-delay : unset">

x
<style type="u/x">
X

</style>
</body>
</html>

Figure 6.7: Consensus test case example iteration 2: Chrome difference ignored

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.8: Consensus test case example iteration 2 rendering: Chrome difference ignored

150

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">

</head>
<body style="width : available ;

outline-width : thick ;
place-content : unset ;
scroll-behavior : auto ;
page-break-after : right ;
justify-content : space-evenly ;
white-space : unset ;
scroll-margin-bottom : auto ;
grid-auto-rows : revert ;
outline-offset : -7em !important ;
text-justify : none ;
scroll-snap-align : unset ;
shape-image-threshold : revert ;
color-adjust : exact;
place-items : unset ;
place-self : unset ;
text-justify : auto ;
place-self : self-start auto ;
transform-origin : left center 11vmin ;
scroll-margin : unset ;
z-index : 9;
font-variant-position : unset ;
text-justify : inter-word ;
scroll-padding-inline-end : auto ;
scroll-padding-bottom : -10em ;
scroll-padding-block : unset ;
unicode-bidi : isolate">

xX
<div style="list-style-image : url('QUOTED STRING') ;

place-self : unset ;
scroll-margin-block : unset ;
scroll-padding-inline : auto 2ex;
caption-side : inline-end ;
/* CSS comment */">

</div>
</body>
</html>

Figure 6.9: Consensus test case example iteration 13: prior to first failure

151

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.10: Consensus test case example iteration 13 rendering: prior to first failure

152

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">

<title>
</title>
</head>
<body style="scroll-margin-inline-start : 10mm;

page-break-after : left ;
orphans : revert;
visibility : collapse;
border-image-source : revert;
scale : -5.5"

spellcheck="">
x
<cite dropzone=""

style="vertical-align : top ;
touch-action : manipulation ;
scroll-margin-bottom : auto ;
scroll-behavior : unset">

X
<!-- HTML comment -->

</cite>
<ins cite="">
</ins>
<script>
XXXX
<!-- HTML comment -->

</script>
XXX
<tfoot style="">
</tfoot>
<template>
XX

</template>
X
<rp lang=""

style="min-block-size : 6rem;
outline-color : rgb (-6% -6% -3.9154052734375%) ;
scroll-margin-left : 5mozmm ;
scroll-behavior : smooth ;
shape-image-threshold : 3;
shape-image-threshold : revert ;
border-style : unset;
animation-iteration-count : infinite;
text-indent : 2%"

tabindex="5"
title="">

</rp>
</body>
</html>

Figure 6.11: Consensus test case example iteration 14: initial failure

153

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.12: Consensus test case example iteration 14 rendering: initial failure

154

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">

</head>
<body style="visibility : collapse">

x
<param value="q" name="" name="wvzxnofDH" name="" name="zi"

style="unicode-bidi : plaintext;
scroll-padding-top : 1.75% ;
opacity : unset ;
pointer-events : inherit ;
scroll-margin-top : auto ;
transition-delay : revert ;
object-fit : revert ;
opacity : unset ;
place-content : baseline normal ;
place-content : revert ;
padding-inline-start : revert ;
orphans : unset;
resize : block">

</body>
</html>

Figure 6.13: Consensus test case example iteration 135: shrinking

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.14: Consensus test case example iteration 135 rendering: shrinking

155

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" href="/static/normalize.css">
<link rel="stylesheet" href="/static/rend.css">

</head>
<body style="visibility : collapse">

x
<div style="mask-mode : unset">
</div>

</body>
</html>

Figure 6.15: Consensus test case example iteration 171: shrunk

(a) Firefox (b) Firefox ∆ Chrome (c) Chrome

(d) Firefox ∆ Servo

(e) Servo

(f) Chrome ∆ Servo

Figure 6.16: Consensus test case example iteration 171 rendering: shrunk

156

6.4 WebDriver Browser Automation

Bartender uses the WebDriver [13] framework to automate the browsers that are part of the

consensus test pool. The WebDriver specification is being standardized by the W3C and

derived from the Selenium framework [71]. Each browser in the consensus pool starts in a

special testing mode that provides HyperText Transfer Protocol (HTTP) endpoints for the

WebDriver interface. The WebDriver specification defines dozens of endpoints but Bartender

only needs to interact with six endpoints in order to accomplish the automation required

for browser render testing Table 6.1 lists the WebDriver HTTP endpoints that are used by

Bartender and what they are used for.

Table 6.1: WebDriver endpoints

HTTP Endpoint HTTP Method Description

/session POST Create a new session and return SESSION-ID

/session/{SESSION-ID} DELETE Delete an existing session

/session/{SESSION-ID}/url POST Load a new web page by URL

/session/{SESSION-ID}/execute/sync POST Execute JS and return the result

/session/{SESSION-ID}/window/rect POST Alter the browser window size

/session/{SESSION-ID}/screenshot GET Take a screenshot and

When Bartender starts up it creates a connection to each browser in the consensus pool

by making a HTTP POST request to the /session WebDriver endpoint (6.1-I). This request

includes “capabilities” information which is basically constraints that the client (Bartender)

is requesting from the browser. If the browser can satisfy these constraints then the Web-

Driver interface creates a context for a new automation session and returns a unique ID

SESSION-ID so that the caller can access the state of the session in subsequent calls. When

Bartender terminates, either at the end of a series of test runs or due to some exception

condition, an HTTP DELETE request is sent to the /session/{SESSION-ID} endpoint to

terminate the session and allow the browser to free up any windows or resources associ-

ated with the session (where {SESSION-ID} is a variable representing the session ID of the

157

session).

For determining consensus it is important that the browsers have a common size for

their rendering viewport. This is not just so that the screenshot images are the same size,

but also because the size of the available rendering area can change the way that the same

web page test case is rendered. For this reason, once Bartender has created a WebDriver

session, it then sends an HTTP POST request to the /session/{SESSION-ID}/execute/sync

endpoint containing a small piece of JavaScript (JS) code that is executed by the browser

to determine the size of the browsers control elements (menus, control bar, scroll bar, status

bars, etc). Once this information is returned to Bartender it can use this information to

calculate the desired browser window size so that the rendering viewport is the same on

all browsers. To adjust the browser window size an HTTP POST request is send to the

/session/{SESSION-ID}/window/rect endpoint with the desired window dimensions.

During the testing process, Bartender sends an HTTP POST request to the /session/{SESSION-

ID}/url endpoint with the Uniform Resource Locator (URL) of the current test case. Then

an HTTP GET request is sent to the /session/{SESSION-ID}/screenshot endpoint to cap-

ture a screenshot of the current rendered state.

In addition to browsers started locally to be part of a consensus pool, Bartender also

support browsers running on remote WebDriver-based services such as BrowserStack [72].

Listing G.3 shows a portion of the YAML (Yet Another Markup Language) configuration

for Bartender that is used to configure three different browsers in the BrowserStack service.

Note that the capabilities field is used as part of the BrowserStack session creation HTTP

POST request to specify the requested browser vendor, browser version, browser window

geometry, etc.

158

6.5 Monitoring and Reporting Applications

One of the central goals of the Bartender system is to make the underlying testing approach

accessible and practical for users of the system. Towards this end, Bartender includes built-

in web applications that provide runtime monitoring of test runs and provide summary

reports of the test results. These applications are implemented with ClojureScript and use

the Reagent ClojureScript interface [73] to the React [74] library for generating the user

interface and dynamically rendering the test state data.

6.5.1 Runtime Monitoring Application

Bartender provides runtime monitoring via a web application that is updated dynamically

as test runs are executed. The initial application resources (HTML, CSS, and images)

are loaded from the embedded web server. Once the application is loaded, it initializes a

WebSocket connection back to the Bartender system via the embedded webserver. Bartender

registers this new WebSocket client and sends an initial message containing a complete copy

of Bartender’s runtime state including the test configuration, current active wtrek, and the

full log of every run and iteration. The Bartender runtime state can become fairly large

over multiple test runs so after the initial full state message, Bartender sends delta messages

rather than full copies of the state. These delta messages contain change set structures

that are generated using the differ [75] Clojure library. On the web application side, these

change set (diff) structures are then used to patch the runtime state. The combination of

WebSockets and delta messages means that that web application state can efficiently keep

in sync with Bartender server state.

Figure 6.17 shows the initial view from the reporting application. At the top of the ap-

plication is a tabbed navigation bar that is used to select the information the user wishes to

view. The left-most tab indicates that the application has an active WebSocket connection

and is able to receive dynamic updates from the Bartender system (“Network state: Con-

159

O Bartender 42876-3-3 X 42876-7-7 X

Network state: Connected

Test Iterations Mode Δ Avg Info

42876-
0-0 25 complete

42876-
1-1 400 shrunk

First Failure: 10, Shrink: 940 > 90 bytes
Elements: {:tags #{}, :attrs #{}, :props #{"animation-play-state" "font-
style"}}

42876-
2-2 25 complete

42876-
3-3 197 shrunk

First Failure: 15, Shrink: 1427 > 105 bytes
Elements: {:tags #{}, :attrs #{"dir"}, :props #{"animation-play-state"
"border-image-outset"}}

42876-
4-4 379 shrunk

First Failure: 17, Shrink: 1932 > 95 bytes
Elements: {:tags #{}, :attrs #{}, :props #{"transition-duration" "animation-
play-state"}}

42876-
5-5 25 complete

42876-
6-6 25 complete

42876-
7-7 18

shrink-
step

First Failure: 8, Shrink: 661 > 237 bytes
Elements: {:tags #{"span"}, :attrs #{}, :props #{"border-right-color" "inset-
inline-start" "visibility" "�lter" "border-end-end-radius" "inset-block-end"}}

Figure 6.17: Monitoring application main tab view

160

O Bartender 42876-3-3 X 42876-7-7 X

Show thumbnails | Iterations 18, Mode: shrink-step, First Failure: 8, Shrink: 661 > 237 bytes
Elements: {:tags #{"span"}, :attrs #{}, :props #{"border-right-color" "inset-inline-start" "visibility" "�lter" "border-end-end-
radius" "inset-block-end"}}
Iteration Result Html �refox chrome servo �refoxΔchrome �refoxΔservo chromeΔservo Δ Avg
0 PASS / png png png 0.000000 0.000015 0.000015 png
1 PASS / png png png 0.000000 0.000015 0.000015 png
2 PASS / png png png 0.000000 0.000007 0.000007 png
3 PASS / png png png 0.000000 0.000015 0.000015 png
4 PASS / png png png 0.000000 0.000009 0.000009 png
5 PASS / png png png 0.000000 0.000007 0.000007 png
6 PASS / png png png 0.000000 0.000015 0.000015 png
7 PASS / png png png 0.000000 0.000007 0.000007 png
8 FAIL / png png png 0.000000 0.031689 0.031689 png
9 FAIL / png png png 0.000000 0.031689 0.031689 png
10 PASS / png png png 0.000000 0.000007 0.000007 png
11 PASS / png png png 0.000000 0.000007 0.000007 png
12 PASS / png png png 0.000000 0.000007 0.000007 png
13 FAIL / png png png 0.000000 0.031689 0.031689 png
14 PASS / png png png 0.000000 0.000007 0.000007 png
15 FAIL / png png png 0.000000 0.031689 0.031689 png
16 PASS / png png png 0.000000 0.000007 0.000007 png
17 FAIL / png png png 0.000000 0.031689 0.031689 png

html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt
html txt

Figure 6.18: Monitoring application test run view

161

O Bartender 42876-3-3 X 42876-7-7 X

Show thumbnails | Iterations 18, Mode: shrink-step, First Failure: 8, Shrink: 661 > 237 bytes
Elements: {:tags #{"span"}, :attrs #{}, :props #{"border-right-color" "inset-inline-start" "visibility" "�lter" "border-end-end-radius" "inset-block-end"}}
Iteration Result Html �refox chrome servo �refoxΔchrome �refoxΔservo chromeΔservo Δ Avg

0 PASS /

 0.000000 0.000015 0.000015

1 PASS /

 0.000000 0.000015 0.000015

2 PASS /

 0.000000 0.000007 0.000007

3 PASS /

 0.000000 0.000015 0.000015

4 PASS /

 0.000000 0.000009 0.000009

5 PASS /

 0.000000 0.000007 0.000007

6 PASS /

 0.000000 0.000015 0.000015

7 PASS /

 0.000000 0.000007 0.000007

8 FAIL /

 0.000000 0.031689 0.031689

9 FAIL /

 0.000000 0.031689 0.031689

10 PASS /

 0.000000 0.000007 0.000007

11 PASS /

 0.000000 0.000007 0.000007

12 PASS /

 0.000000 0.000007 0.000007

13 FAIL /

 0.000000 0.031689 0.031689
14 PASS /

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

html txt

Figure 6.19: Monitoring application test run view with thumbnail images

162

nected”). Below the connection state indicator is a table containing a summary of each test

run that has either been completed or is currently executing.

Figure 6.17 shows seven completed test runs and one test run that is currently executing.

The table columns are:

1. The test run slug consisting of a random ID for this set of test runs, the test run index,

and the starting random seed for the test set.

2. The number of iterations completed for the test run.

3. The current mode, or state of the test run (“trial”, “complete”, “failure”, “shrink-

step”, “shrunk”)

4. A thumbnail image of the average of all difference images (∆ Avg).

5. Summary info of the test run including the initial and smallest shrunk byte size and a

summary of the HTML tags, HTML attributes, and CSS property names that appear

in the smallest test case discovered so far.

In Figure 6.17 four of the test runs completed 25 iterations without finding an initial

failure (indicated by the green “complete” mode). Three test runs found an initial failure

and completed the shrinking process (indicated by the red “shrunk” mode). The currently

executing test run found an initial failure and is currently performing the shrinking process

(indicated by the “shrink-step” mode). From this view the tester can click on a test run slug

button to add that test run to the tabbed navigation bar. When the user clicks on the test

run slug tab, the test run view is show for that test run. Figure 6.18 shows the test run view

for the currently executing test run. The test run table columns are:

1. The iteration index.

2. The result of the iteration (“PASS” or “FAIL”)

3. Links to the HTML test case (HTML form and raw text form)

163

4. A label for each browser in the consensus pool: firefox, chrome, and servo. Browsers

with any difference measures exceeding the threshold value are highlighted with a red

background.

5. The difference measure of the screenshots and links to the screenshots for each browser

pair: firefox∆chrome, firefox∆chrome, and firefox∆servo. Difference measures

exceeding the threshold value are highlighted with a red background.

6. A link to an average of the screenshot images (∆ Avg).

The test run shown in Figure 6.18 detected a failure on the ninth iteration (iteration

index 8) and had completed 9 shrinking iterations when the screenshot in the figure was

captured. The top of the test run view has the summary information for this test run.

Figure 6.19 shows the same test run view with the thumbnail images enabled.

6.5.2 Test Reporting Application

In addition to the runtime monitoring application described in Section 6.5.1, Bartender

also provides a web application for loading and reporting test run results. The reporting

application loads one or more Bartender test run log files and provides two different views

of the test results. The first view provides a flat list of test cases that can be filtered by

HTML tag, HTML attribute, or CSS property name. Figure 6.20 shows an example of the

view with a test run log file loaded that contains the data for 256 failing test cases. Figure

6.21 shows the same data filtered to only test cases that the included the CSS float property

name. The columns of the results table are:

1. A unique ID index assigned to each failing test case. This can be used to correlate

results with results from the table view reporting application.

2. A Link to the HTML test case.

164

Flat List of Rendering Di�erences
ID HTML Summary �refox chrome servo Δ Avg

0
Tags: ol, aside
Attrs:
Props: �oat, page-break-inside

1
Tags: q, div
Attrs:
Props: quotes, perspective

2
Tags:
Attrs:
Props: text-align-last, perspective

3
Tags: div
Attrs:
Props: background-color,
perspective

4
Tags: div
Attrs:
Props: visibility, perspective

5
Tags:
Attrs:
Props: text-align-last, perspective,
pointer-events

6
Tags: video, div
Attrs:
Props:

7
Tags: span, div, aside
Attrs:
Props: word-wrap, perspective

8

Tags: small, div
Attrs:
Props: scale, scroll-margin-block-
start, border-style, row-gap, scroll-
margin-inline-start, perspective-
origin, place-items

9
Tags: video, div, tbody
Attrs: width
Props:

10
Tags: �gure, nav
Attrs:
Props: text-align-last, perspective-
origin

11 Tags: span, data, wbr
Attrs:
Props:

html

html

html

html

html

html

html

html

html

html

html

html

Page Info tag/attr/prop filter <- 0-99 of 256 ->

Figure 6.20: Reporting application flat list view showing first page of test results

165

Flat List of Rendering Di�erences
ID HTML Summary �refox chrome servo Δ Avg

0
Tags: ol, aside
Attrs:
Props: �oat, page-break-inside

209
Tags: div, h1
Attrs:
Props: �oat, outline-color

html

html

Page Info float <- 0-1 of 1 ->

Figure 6.21: Reporting application flat list view showing only tests that contain the float
property name

3. A Summary of the HTML tags, HTML attributes, and CSS property names that

appear in the test case.

4. A screenshot thumbnail image for each browser that was in the consensus pool when

test case was discovered: firefox, chrome, and servo.

5. A thumbnail image of the average of the screenshot images (∆ Avg).

The second reporting application presents two tables with a matrix of test results arrange

by HTML Tags and HTML attributes and by HTML tags and CSS property names. Figure

6.22 shows an example table/matrix view of the same 256 test cases that were described in

the flat list view described above. An non-empty cell in each table represents the intersection

of row and column features where one or more failing test cases were discovered. The count

on the button represents the number of test cases that matched those features, while an

empty cell means the loaded data contains no failing test cases that match those features.

If the user clicks on a cell button then the application shows a modal dialog containing the

test cases that matched those features. An example of this is shown in Figure 6.23 for the

img tag and src attribute. Note that the modal dialog provides the same information and

layout as the flat list view but filtered by the feature of the selected cell from the matrix

166

Rendering Di�erences Arranged Tags & Attributes

[None] 2 4 2 4 3 1 1 108 1 1 1 1 1 1 3 2 2 3 2 1 1 1 1 1 2 1 3 1 1 51 1 3 7 1 1 3 2 1 1 3 1
accesskey 2 1 1

charset 1 1
content 1

contextmenu 2
crossorigin 4 2 1 3 1 4

dir 2
height 1 4 5
muted 1 1 1
poster 2 2

preload 1 1 1
src 1 5 7 4 1 2 3

tabindex 1
usemap 1 1 1 1

width 3 4 2 1 1 1 1

Rendering Di�erences Arranged Tags & Properties

[None] 2 1 1 2 1 28 9 3 3 1 1 12 3 1 1 3 2 19 1
animation-direction 7 3 3 1
animation-duration 9 1 13 7 1
animation-�ll-mode 8 14 1 7 1 2

animation-iteration-count 7 5 1 1 1 2 1
animation-name 1 5 1 2

animation-play-state 1 1 1
animation-timing-function 4 7 3 1 1

backface-visibility 1
background-attachment 1

background-clip 1 1 1
background-color 4

border-bottom 1
border-collapse 1

border-style 1 1
border-top 1

border-top-style 1 1 1
box-shadow 1

column-width 1 1
columns 1
content 6 1 5 1 1

direction 3 1 1
display 2 1 2 1

�oat 1 1 1 1
font 11 2

font-size 23 1 5 1 5 1 1
font-stretch 1 1

font-style 7 1 1 1
font-weight

BODY
arti

cle

asid
e

bdi
ca

nvas

data
dd dfn div dt em �gca

ptio
n

�gure
fo

rm
h1 im

g
ins m

ain
m

eta
m

ete
r

nav
nosc

rip
t

ol outp
ut

p q ru
by

s se
cti

on

sm
all

sp
an

str
ong

su
b

su
p

tb
ody

td te
m

plate

tfo
ot

tim
e

tr var
video

wbr

BODY
arti

cle

asid
e
bdi

ca
nvas

data
dd dfn div dt em �gca

ptio
n

�gure
fo

rm
h1 im

g
ins m

ain
m

eta
m

ete
r

nav
nosc

rip
t

ol outp
ut

p q ru
by

s se
cti

on

sm
all

sp
an

str
ong

su
b

su
p

tb
ody

td te
m

plate

tfo
ot

tim
e

tr var
video

wbr

Page Info

Figure 6.22: Reporting application TAPV view showing test results arranged by Tags &
Attributes and by Tags & Property Names

167

Rendering Di�erences Arranged Tags & Attributes

[None] 2 4 2 4 3 1 1 108 1 1 1 1 1 1 3 2 2 3 2 1 1 1 1 1 2 1 3 1 1 51 1 3 7 1 1 3 2 1 1 3 1
accesskey 2 1 1

charset 1 1
content 1

contextmenu 2
crossorigin 4 2 1 3 1 4

dir 2
height 1 4 5
muted 1 1 1
poster 2 2

preload 1 1 1
src 1 5 7 4 1 2 3

tabindex 1
usemap 1 1 1 1

width 3 4 2 1 1 1 1

Rendering Di�erences Arranged Tags & Properties

[None] 2 1 1 2 1 28 9 3 3 1 1 12 3 1 1 3 2 19 1
animation-direction 7 3 3 1
animation-duration 9 1 13 7 1
animation-�ll-mode 8 14 1 7 1 2

animation-iteration-count 7 5 1 1 1 2 1
animation-name 1 5 1 2

animation-play-state 1 1 1
animation-timing-function 4 7 3 1 1

backface-visibility 1
background-attachment 1

background-clip 1 1 1
background-color 4

border-bottom 1
border-collapse 1

border-style 1 1
border-top 1

border-top-style 1 1 1
box-shadow 1

column-width 1 1
columns 1
content 6 1 5 1 1

direction 3 1 1
display 2 1 2 1

�oat 1 1 1 1
font 11 2

font-size 23 1 5 1 5 1 1
font-stretch 1 1

font-style 7 1 1 1
font-weight

BODY
arti

cle

asid
e

bdi
ca

nvas

data
dd dfn div dt em �gca

ptio
n

�gure
fo

rm
h1 im

g
ins m

ain
m

eta
m

ete
r

nav
nosc

rip
t

ol outp
ut

p q ru
by

s se
cti

on

sm
all

sp
an

str
ong

su
b

su
p

tb
ody

td te
m

plate

tfo
ot

tim
e

tr var
video

wbr

BODY
arti

cle

asid
e
bdi

ca
nvas

data
dd dfn div dt em �gca

ptio
n

�gure
fo

rm
h1 im

g
ins m

ain
m

eta
m

ete
r

nav
nosc

rip
t

ol outp
ut

p q ru
by

s se
cti

on

sm
all

sp
an

str
ong

su
b

su
p

tb
ody

td te
m

plate

tfo
ot

tim
e

tr var
video

wbr

img + src
ID HTML Summary �refox chrome servo Δ Avg

21
Tags: img
Attrs: width, src
Props: animation-iteration-count,
display

29
Tags: img, span
Attrs: src
Props:

92
Tags: img, span, div
Attrs: src, crossorigin
Props:

94
Tags: img, tr, div, aside
Attrs: src, usemap
Props:

113
Tags: img, span
Attrs: src
Props:

207
Tags: img, tfoot, div
Attrs: src
Props:

211
Tags: img, tr
Attrs: width, src
Props:

html

html

html

html

html

html

html

X

Page Info

Figure 6.23: Reporting application TAPV view showing test cases that contain an img tag
and contain an src attribute

168

tables. Note, that since each test may contain more than one of each feature category (tag,

attribute, or property name), a test case may appear in more than one cell of each table and

the total number of test case counts per table is greater (or equal) to the number of failing

test cases in the data.

6.6 Bartender Usage

The concrete implementation of the Bartender approach (available at https://github.

com/kanaka/bartender) provides a command line interface for executing the available

functionality.

The examples below use the Leiningen project [36] for Clojure project management and

execution. Leiningen is invoked via the lein command.

6.6.1 Executing Test Runs

The primary mode of execution for the Bartender system is perform one or more PBT

test runs as described in Section 6.2.2. Listing 6.11 shows two command line invocations

of Bartender test runs. The first command line example uses configuration entirely defined

in the config.yaml configuration file. Appendix G contains example Bartender configuration

files in the YAML format (listings G.2 and G.1) and a description of the available options

(Table G.1). A second command line in Listing 6.11 shows some of the options that can

override the configuration file settings including: the starting random seed value, the number

of iterations per test, and the number of test runs.

lein run tests config.yaml

lein run tests config.yaml --seed 37 --iterations 10 --run 2

Listing 6.11: Execute Bartender tests command to start test runs

169

https://github.com/kanaka/bartender
https://github.com/kanaka/bartender

Loading http://127.0.0.1:3000/gen/28214-0-32/8.html in each browser
qc-report type: trial

Loading http://127.0.0.1:3000/gen/28214-0-32/12.html in each browser
Threshold violations: ("firefox" "chrome" "servo"), failure.
qc-report type: failure

Loading http://127.0.0.1:3000/gen/28214-0-32/102.html in each browser
Threshold violations: ("firefox" "chrome" "servo"), failure.
qc-report type: shrink-step

Listing 6.12: Bartender tests command output for trial, failure, and shrink iterations

Listing H.1 in Appendix H shows the initial output from Bartender when it is invoked

with either of the commands described in Listing 6.11. At this point the system has loaded its

configuration, started the embedded web server, initialized testing state, connected to each

of the configured browser WebDriver interfaces, and is waiting for the tester to press enter

to continue. The reason for this pause (which can be overridden with the –non-interactive

option) is to give the user an opportunity to load the monitoring application to view the

testing as it progresses (refer to Section 6.5).

Listing 6.12 shows output from Bartender that is reported for three different types of iter-

ations. The first output shows a trial iteration for which there was consensus (no violations).

The second output shows the initial failure iteration. The example shows that Bartender

considered all three browsers in the consensus pool to be in violation. The final output shows

a shrink step iteration. Once again, all three browsers are considered in violation. A more

complete output example is given in Listing H.2 of Appendix H.

While Bartender is executing test runs, it generates a number of files that are stored in

the datastore. For each test run, a random five digit number is created to uniquely identify

the test run. This number is combined with the current test run index and the current

170

Table 6.2: Description of files created in the datastore during test execution. [SLUG] is the
current test run slug, [IDX] is the current iteration index. [Ba] and [Bb] are the first two
browser identifiers (from the configuration).

File Description

[SLUG].edn state serialization of all completed test runs
[SLUG]/log.edn state serialization of one completed test run
[SLUG]/weights-start.edn weight wtrek at start of test run
[SLUG]/weights-end.edn weight wtrek after test run (with reduction)
[SLUG]/[IDX].html HTML and CSS test case
[SLUG]/[IDX].html.txt HTML and CSS test case (for raw display)
[SLUG]/[IDX] diffs.edn disagreement measures for every browser pair
[SLUG]/[IDX] avg.png avg of all browser screenshots
[SLUG]/[IDX] avg thumb.png avg of all browser screenshots (thumb)
[SLUG]/[IDX] davg.png avg of all browser difference images
[SLUG]/[IDX] davg thumb.png avg of all browser difference images (thumb)
[SLUG]/[IDX] [Ba].png screenshot of browser render
[SLUG]/[IDX] [Ba] thumb.png screenshot of browser render (thumb)
... (continue for all browsers)
[SLUG]/[IDX] diff [Ba] [Bb].png difference image for browser pair
[SLUG]/[IDX] diff [Ba] [Bb] thumb.png difference image for browser pair (thumb)
... (continue for all browser pairs)

starting pseudo-random seed number to create a test “slug”. An example test slug is 58144-

0-32 which indicates this is a test ID “58144”, test run index 0 (the first run of the set of

test runs), and starting random seed 32. For every test run, the test slug is used to created a

top-level directory in the datastore. Within the test slug directory, each file generated during

a quick-check iteration is prefix with the index of the iteration. The iteration index starts at

0 for the first trial iteration, increments with each trial iteration, and continues incrementing

during shrinking iterations. Table 6.2 describes the files that are created during Bartender

test run execution.

6.6.2 Compare Renderings of an Existing Web Page

A secondary mode of Bartender execution is using the browser consensus pool to render

an existing web page test case. This is useful for comparing the rendering behavior of the

browsers for an existing test case. Listing 6.13 shows how the check-page command can be

171

lein run check-page config.yaml test-page.html

Listing 6.13: Execute Bartender check-page command to compare consensus pool renderings

...

Loading http://127.0.0.1:3000/gen/check-page/0.html in each browser
Threshold violations: ("chrome"), failure.

Continuing to serve on port 3000
Press <Enter> to exit

Listing 6.14: Bartender check-page command output

invoked with a configuration file to render the test-page.html file. The standard Bartender

configuration file format is used with this mode, but the only options that are used from

the configuration are compare, web, and browsers (refer to Table G.1 for a definition of

those options). The initial output from check-page is very similar to the output from the

tests command shown in Listing H.1. Similarly, the command will pause by default before

executing the comparison to give the tester an opportunity to load the monitor and then

press enter. Once the tester chooses to continue, the system will load the test case and render

it across the consensus pool browsers and perform the normal test case comparison process

including the creation of datastore files as if for a single iteration using test slug “check-

page”. Listing 6.14 shows the additional output resulting the from check-page command.

Note in this particular case the test page rendering was considered different for all three

browsers in the consensus pool (all three browser identifiers appear in the violations list).

6.6.3 Parse an Existing Web Page

One of the capabilities of Instacheck is the ability to parse a grammar path frequency

weight trek from an existing test case and then use that as the the active wtrek configuration.

This increases the likelihood of reproducing the failures (counterexamples) that were trig-

172

lein run parse test-page.html --weights-output weights.edn

lein run parse test-page.html --weights-output weights.edn
--html-ebnf-output html.ebnf --css-ebnf-output css.ebnf↪→

Listing 6.15: Execute Bartender parse command to parse an existing web page test case

Loading HTML parser
Loading CSS parser
Processing: 'test-page.html'

- parsing HTML
- HTML weights: 13/1750
- parsing CSS
- CSS weights: 24/3524

Combined and filtered weights: 51
Generating pruned HTML EBNF
Saving pruned HTML EBNF to: 'html.ebnf'
Generating pruned CSS EBNF
Saving pruned CSS EBNF to: 'css.ebnf'
Saving merged weights to: 'weights.edn'

Listing 6.16: Bartender parse command output

gered by the existing test case. This is particular useful as a means of shrinking or simplifying

an existing test case. It may also reveal other failure modes or interactions of the underlying

root cause of the failure. Bartender extends this capability of Instacheck to web browser test

cases. The first command in Listing 6.15 shows the basic parse command line to parse and

store a path frequency weight trek from a web page test case. The second command shows

additional options that use Instacheck to output HTML and CSS EBNF grammars that

have been pruned of all unreachable paths based on the parsed path frequency trek. Listing

6.15 also shows an example of output from the second command including summaries of the

weights that were parsed. The behavior and files that are generated by the parse command

are very similar to the html5-css3-ebnf parse command shown in Section 5.5.2 so they are

not repeated here. The primary difference is that the grammar used by Bartender has a

small number of differences due to the optimizations during translation that are described

in sections and 6.6.4.

173

time lein run translate --mode html --namespace rend.html5-generators
--function html5-generators --weights-output
resources/html5-weights.edn --clj-output
resources/rend/html5_generators.clj

↪→

↪→

↪→

time lein run translate --mode css --namespace rend.css3-generators
--function css3-generators --weights-output resources/css3-weights.edn
--clj-output resources/rend/css3_generators.clj

↪→

↪→

Listing 6.17: Execute Bartender translate command to optimize and translate HTML and
CSS EBNF grammars to Clojure generator code.

6.6.4 Optimize and Translate EBNF Grammars to Clojure Gen-

erators

Section 6.6.3 describes optimizations that are applied to the EBNF grammars from html5-

css3-enbf when they are translated into Clojure generator code for use by Bartender. Listing

6.17 shows the Bartender commands for executing the translation and optimization process.

The same command is invoked for both the HTML and CSS grammars but using a different

mode, Clojure namespace and file paths. Weight trek files are also generated that contain

the full list of weighted paths in the grammars along with their default weight values. There

is no output from the command if the process is completed successfully.

174

Chapter 7

Overall Browser Render Testing

Results

This chapter describes the results of using the Bartender system to perform browser render

testing. The approach used by Bartender is introduced in Chapter 2 and described in detail

in Chapter 6. The versions of the software projects, libraries, and modules that composed

the Bartender system at the time these tests were performed are listed in Appendix I.

Two different sets of tests are reported here. The first set of tests was a comparison

of Mozilla’s Firefox browser against Google Chrome’s browser. The second set of tests

was a comparison of Mozilla’s Servo browser against Mozilla Firefox and Google Chrome.

Appendix G lists the Bartender configurations that were used for each testing mode. The

following common configuration settings were used for both set of test runs:

� The number of iterations was 25.

� The maximum generator size parameter of 50.

� The normalized SSD threshold value was 0.0001.

� After each test run the weights were reduced using the :weight selection algorithm, the

:zero propagation algorithm, and a 3 step reducer function (with a weight progression

175

of: 100, 10, 1, 0).

� The starting random seed was initialized to the current run number at the start of

each new test run.

For the first set of tests, 5000 test runs were completed and for the second set 1000 test

runs were completed. The test runs were executed in chunks of 100 to 500 test runs at a time.

This provided the opportunity to sanity check and analyze the data as the tests proceeded

and served as check-points from where the testing could be restarted in case of interruption

(such as power failure).

7.1 Testing Firefox against Chrome

The first set of tests that we ran were to compare the rendering behavior of Mozilla’s Firefox

browser in comparison to Google’s Chrome browser. The Bartender configuration that was

used to perform this testing is shown in Listing G.1 of Appendix G. For this test any

disagreement measure above the threshold was considered a failing test case.

In total 5000 test runs were completed that took an aggregate clock time of 89 hours

(a mean of about 64 seconds per run). A total of 712,193 iterations were performed (the

Bartender iteration process is described in Section 6.2.2) with each iteration taking an av-

erage of 0.45 seconds. Out of the 5000 runs, 1805 test cases resulted in detected rendering

differences. After shrinking 1695 of the 1805 tests cases were unique (110 shrunk test cases

were identical to another shrunk test case).

Figure 7.1 is a plot showing an overview of the 5000 test runs over time (runs are grouped

into bins of 200 runs). The green line shows the percentage of test runs that are considered

failures (counterexamples). The reason for the decrease over time is due to the use of the

weight reduction process. Every time a failing test case is discovered, the weights are adjusted

to try and reduce the probability of detecting the same test case in subsequent runs. This

also has the effect of reducing the likelihood that any given test run will detect a failure

176

0 400 800 1,200 1,600 2,000 2,400 2,800 3,200 3,600 4,000 4,400 4,800

Test Run

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

F
a
il
u

re
s

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

7,000

7,500

8,000

M
e
d

ia
n

 In
itia

l F
a
il S

iz
e
 (B

y
te

s
)

Figure 7.1: Plot of Firefox and Chrome testing runs (with weight reduction between runs)
showing the median initial failure size byte count (red) and the percentage of runs per 200
runs that failed (blue)

177

0 400 800 1,200 1,600 2,000 2,400 2,800 3,200 3,600 4,000 4,400 4,800

Test Run

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
e
a
n

 S
h

ru
n

k
 B

y
 %

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

M
e
a
n

 In
itia

l F
a
il S

iz
e
 (B

y
te

s
), M

e
a
n

 S
h

ru
n

k
 S

iz
e
 (B

y
te

s
)

Figure 7.2: Plot of Firefox and Chrome testing runs (with reduction between runs) showing
the mean initial failure size byte count (red), the mean final shrunk size byte count (green),
and reduction percentage (blue). Linear regressions for each plot line are shown as dotted
lines.

Initial Fail Size (Bytes)

100 200 300 1,000 2,000 3,000 10,000 20,000 30,000 100,000

Shrunk Size (Bytes)

Figure 7.3: Box and whisker plots for Firefox and Chrome testing runs (with reduction
between runs) showing quartiles for initial failure sizes (red) and final shrunk sizes (green).
The black circles indicate the means.

178

before reaching the maximum of 25 trial iterations.

The blue line in Figure 7.1 shows the median byte size of the initial failing test case

for runs that detect a failing test case. Initially, the test case size that is needed to detect

rendering differences is fairly small (under 1000 bytes). The data shows a general increase

over time in the size of test cases that are required to discover a failure (rendering counterex-

ample). The line becomes more noisy for later runs (higher variance) because the results are

binned by test run (regardless of failure result) so the later bins have smaller sample sizes

(fewer test fail in later test runs).

Figure 7.1 is a plot showing an overview how well the system is able to perform shrinking.

The data covers the 5000 test runs over time (runs are grouped into bins of 200 runs). The

red line shows the mean byte size of the initial failure for test runs with failures. The green

line shows the mean byte size of the final shrunk test case for the respective test run. The

blue line shows the mean percentage decrease between the initial failure test case and the

shrunk test case. Figure 7.3 shows the same data but in summary box and whisker format.

The initial failing test case sizes have a minimum of 171 bytes, median size of 2921 bytes,

mean of 5924 bytes, and maximum of 95993 bytes. The final shrunk test case sizes have a

minimum of 163 bytes, a median size of 279 bytes, a mean of 379 bytes, and a maximum

of 1907 bytes. The ratio of mean shrink size to mean initial size is 6% (a decrease of 94%).

The mean of individual shrink ratios is 19% (a mean decrease of 81%).

Tables E.1, E.2, and E.3 in Appendix E enumerate the number of failing (shrunk) test

cases that each HTML tag, HTML attribute, and CSS property appear in. Note that these

represent a possible cause of a rendering difference between Servo as compared to Firefox

and Chrome for that particular element. This does not necessarily imply that the element

caused the render difference because it may be in the same test case with other elements

and simply represent that the shrinking process terminated before it was able to eliminate

this element. However, if the element appears in a high number of test cases then this is

evidence that it may be causing or contributing to the rendering difference.

179

Some of the CSS property differences indicated in tables E.2, and E.3 are due to the

use of animation related properties. These likely represent a race condition in the timing of

when the screenshot was actually triggered in relation to the timing of the animated element.

In other words, these elements might show a rendering difference even consensus pool was

composed of multiple instance of the exact same browser. Using the same browser multiple

times in the consensus pool may be interesting for future work as a means of detecting

transient rendering differences.

7.2 Testing Servo against Firefox and Chrome

The second set of tests that we ran were to compare the rendering behavior of Mozilla’s Servo

browser against the combined behavior of Mozilla’s Firefox browser and Google’s Chrome

browser.

The Bartender configuration that was used to perform this testing is shown in Listing G.2

of Appendix G. This test was configured to use the same image comparison algorithm as the

Firefox/Chrome test set. However, the consensus algorithm was configured to use the target

mode testing with Servo as the target. In this mode test cases are only considered failures

when Servo is in disagreement with both Firefox and Chrome, but Firefox and Chrome are

in agreement. The target consensus mode is described in more detail in Section 6.3.1.

In total 1000 test runs were completed that took an aggregate clock time of 60 hours (a

mean of 216 seconds per run). A total of 112,073 iterations were performed (the Bartender

iteration process is described in Section 6.2.2) with each iteration taking an average of 1.92

Initial Fail Size (Bytes)

100 200 300 1,000 2,000 3,000 10,000 20,000 30,000 100,000

Shrunk Size (Bytes)

Figure 7.4: Box and whisker plots for Servo vs Firefox and Chrome testing runs (with
reduction between runs) showing quartiles for initial failure sizes (red) and final shrunk sizes
(green). The black circles indicate the means.

180

seconds. Out of the 1000 runs, 257 test cases resulted in detected rendering differences and

all 257 had unique shrunk test cases.

Figure 7.4 shows box and whisker plots that summarize the shrinking process across all

1000 runs. The initial failing test case sizes have a minimum of 190 bytes, median size of

2699 bytes, mean of 5113 bytes, and maximum of 43629 bytes. The final shrunk test case

sizes have a minimum of 164 bytes, a median size of 276 bytes, a mean of 317 bytes, and a

maximum of 896 bytes. The ratio of mean shrink size to mean initial size is 6% (a decrease

of 94%). The mean of individual shrink ratios is 18% (a mean decrease of 82%).

Tables F.1, and F.2 in Appendix F enumerate the number of failing (shrunk) test cases

that each HTML tag, HTML attribute, and CSS property appear in. The same caveats

apply here that applied for the Firefox/Chrome test cases in Section 7.1. In addition, tables

F.3, F.4, and F.5 show a matrix representation of the result data. Each cell in Table F.3

represents and intersection of HTML tag (column) and HTML attribute (row). The count

in each cell reflects the number of times that the tag and attribute combination appear in

one of the 257 failing test cases. A cell with no number is equivalent to a zero count (no test

case contained the combination of tag and attribute). Tables F.4 and F.5 show the same

category of information but for the intersection of HTML tags and CSS properties.

A note about the data in tables F.3, F.4, and F.5: the div and span tags are excluded

during weight reduction which results in those tags having abnormally high counts. The

reason that div and span are excluded from the reduction process is because those tags

represent the two most general grouping elements in HTML. The weights for those elements

are not reduced so that they always have some chance of appearing in generated test cases.

This is true even if the weights for all other HTML elements have been reduced to zero. The

non-zero probability for these elements means that there is always the possibility of HTML

elements to which CSS properties can be attached.

Most of the differences found between Servo and Firefox/Chrome represent differences

that would be of interest to a developer that is creating web pages or web applications

181

that should behave identically from the perspective of the end user. In other words, these

difference represent modifications required to make Servo’s rendering behavior match the end

user perceived quality of Firefox and Chrome. Some of the differences may simply be due

to implementation gaps where the functionality is incomplete and likely to be implemented

in the future. However, some of the differences may also represent bugs in the current

implementation. In addition to the Servo bugs listed in Table 7.1, we are also working with

Mozilla to determine how we can adjust the Bartender technique to be most beneficial to

Servo as development on the browser continues.

7.2.1 Bugs Discovered and Reported

Table 7.1 lists the bugs that we discovered, confirmed, and reported to the respective issue

tracking systems for each browser. The Issue ID column contains issue numbers specific to

the bug/issue tracking systems for Brave [76], Mozilla Firefox [77], and Mozilla Servo [70].

The status of the bugs in the tables and in the description below is correct as of November

2019.

Early in the testing process we discovered several issues related to use of the WebDriver

interface for testing automation. In testing Firefox we found that taking a screenshot of

a web page with no content would incorrectly return an empty response to the WebDriver

request. The correct behavior is to return image with zero dimensions. We reported this as

Firefox issue 1492357. The issue itself is not yet resolved but we were able to work around

this issue during testing by generating at least a single character of content for every test

case.

The Brave browser uses the same underlying rendering engine as Google Chrome [78] [79].

Although we did not perform significant testing of the Brave browser, our brief testing

revealed that the WebDriver connections would timeout when the browser was launched in

headless mode. We reported this as Brave issue 41523 and confirmed a fix that was provided

by Brave developers.

182

Table 7.1: Browser bugs discovered during testing. Status correct as of 2019-10-29

Browser Issue ID Type Status Description

Firefox 1492357 WebDriver Open No error from WebDriver screenshot if
height or width of image is 0

Brave 41523 WebDriver Resovled Connection timeout when using –head-
less with chromedriver

Servo 13825 Testing Open –no-native-titlebar option silently dis-
ables –headless option

Servo 13826 WebDriver Resolved Webdriver screenshot command timeout
Servo 16134 WebDriver Resolved Running headless with webdriver pegs

CPU while idle
Servo 18606 WebDriver Resolved Headless testing (webdriver) fails to fully

render on 4th load
Servo 20015 WebDriver Resolved Headless testing causes crash on 5th

load/screenshot
Servo 23905 Core In Progress ”Too many open files” crash after load-

ing test cases via webdriver
Servo 23909 Core In Progress Introduce a shared ipc router and a ipc

handle
Servo 23913 Core In Progress Improve IPC interfaces
Servo 23925 Core In Progress Use of gfx/FontSource in layout can

crash
Servo 23959 Core In Progress Panic with Windowproxy traced while

being transplanted
Servo 24042 Layout Open Ahem font characters render with verti-

cal lines
Servo 24047 Core Closed Ensure documents and fetch cancellers

drop
Servo 24052 Core Open Block destructor panic after window is

dropped
Servo 24072 Core Resolved Ensure documents drop when a pipeline

exits
Servo 24074 Core In Progress Prevent memory leak of PerformanceOb-

server
Servo 24088 Layout Open Block elem with no left/top following in-

line elem breaks positioning
Servo 24096 Core Open Ensure Task-queue doesn’t leak tasks of

closed pipelines
Servo 24099 Testing Resolved Call gstreamer root with top dir string,

not func
Servo 24109 Core Resolved Performance: limit buffer size, clear on

pipeline exit

183

We discovered six bugs in Mozilla Servo related to either the WebDriver interface or

with command line options related to automated testing. Mozilla developers have resolved

four of these issues (13826, 16134, 18606, and 20015) and we have confirmed the fixes with

additional testing. We proposed a fix to address issue 24099 that was accepted into the

Mozilla code base. Servo issue 13825 has not yet been resolved but it is easy to avoid and

does not prevent WebDriver automated testing.

We discovered eleven bugs in Mozilla Servo that caused different kinds of resource leaks

that eventually resulted in a crash of the browser. Two of these (24072 and 24109) have been

resolved and integrated into the main Servo source tree (master). Six issues (23905, 23909,

23913, 23925, 23959, and 24074) have proposed fixes that are not yet merged to the main

Servo source tree (master). Issue 24047 has been closed in favor of the fix for 24072 which

also addresses the underlying issue. Issues 24052 and 24096 are still under investigation and

they may be related closely enough to some of the other issues that they will be resolved by

resolutions of those other issues.

Finally, we discovered two clear Servo rendering and layout bugs that we reported that

have not yet been fixed. Issue 24042 is a bug with the rendering of the Ahem font that is

described in Section 6.3.2. Issue 24088 was discovered while attempting to use Bartender to

reproduce and shrink an existing issue (issue 17870). Bartender reported a problem with CSS

absolute positioning when a “inline” element is directly follow by a block element containing

the absolute position style property.

184

Chapter 8

Related Work

In “Property-Based Testing of Browser Rendering Engines with a Consensus Oracle” [1]

the use of property-based testing with a consensus oracle was explored as a means of fully

automating the process of browser render testing. Instacheck is a refinement and formal-

ization of the core technique with the addition of the multirun reduction capability and the

ability to reproduce and shrink existing test cases. Additional related work is grouped into

five categories: Property-Based Testing (PBT) / metamorphic testing, consensus oracle /

differential testing, grammar-based testing, fuzz testing, and browser testing. The following

sections highlight some notable work from each category of research.

8.1 Property-based Testing (PBT) /

Metamorphic Testing

The term “property-based testing” was coined in “Towards a property-based testing envi-

ronment with applications to security-critical software” [80] (1994) in the context of testing

security-critical software. In 1997 PBT was formalized as a more general software testing

technique in “Property-based testing: a new approach to testing for assurance” [81]. The

basic concept is that formal program specifications are used to derive a test oracle and to

185

generate test data.

The most popular formalization of property-based testing is the QuickCheck tool de-

scribed in “QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs”

(2000) [10]. However, the true power of the property-based testing technique to perform test

shrinking is introduced in “Testing Telecoms Software with Quviq QuickCheck” [23] (2006)

and further expanded in “QuickCheck testing for fun and profit” [27] (2007).

In “Find More Bugs with QuickCheck!” [30] several techniques are proposed to address

the problem of repeated discovery of the same bugs.

“RandIR: differential testing for embedded compilers” [82] (2016) describes a property-

based testing system for compiler testing. The system uses a grammar syntax to generate

random intermediate representation (IR) code test cases that are then differentially testing

against multiple compiler implementations. The research described in “RandIR” is proba-

bly the closest related work to our research because it incorporates property-based testing,

grammar-based test generators, differential / consensus oracle testing and supports test-

ing shrinking. Apart from the obvious difference that “RandIR” is testing compiler behavior

rather than browser rendering, another key differences is our system uses weighted grammars

to guide generation of test cases. “Property-Based Testing with External Test-Case Gener-

ators” [83] (2017) integrates an external test-case generator into PBT to allow model-based

mutation testing and give the tester more control over coverage criteria.

Metamorphic testing is a property-based testing model that defines properties as relation-

ships between separate instances of inputs and outputs (test iterations) or between different

implementations of the system (differential testing). Our research does not use metamorphic

properties but this might be an interesting area to consider in the future.

Recent papers on metamorphic testing include: “Metamorphic Testing for (Graphics)

Compilers” [84] (2016), “Metamorphic testing for adobe analytics data collection javascript

library” [85] (2018), “Metamorphic Testing: A Review of Challenges and Opportunities” [86]

(2018).

186

8.2 Consensus Oracle / Differential Testing

The term “test oracle” first appeared in literature in “Theoretical and empirical studies

of program testing” [87] (1978). More recently, “The oracle problem in software testing: A

survey” [88] (2015) give a comprehensive survey of the approaches for solving the “test oracle

problem”. Section 5 describes derived test oracles which are test oracles that are derived

from some type of preexisting artifact such as documentation, descriptions of properties of

the system or other implementations of the system under test. A test oracle that is effectively

an alternate implementation of the primary system being tested is known as a pseudo-oracle.

An N-version oracle is a pseudo-oracle in which looks for a consensus or agreement across

multiple implementations. In this paper we refer to this as a “consensus oracle”. The use of

an N-version or consensus pseudo-oracle for testing is is often called “differential testing”.

“Differential testing for software” [19] gives an excellent introduction to differential testing

with a focus on generating useful test cases. The paper covers compiler testing by using a

formal grammar to generating strings from increasingly complex grammar specifications that

are used to test multiple compilers to ensure they arrive at consensus result. The paper also

describes using some grammar-based fuzzing techniques for performing test shrinking after

the fact.

In “Crowdoracles: Can the crowd solve the oracle problem” [89] (2013), the concept of

a consensus or differential test oracle is explored. However, rather than an fully automated

software-based test oracle, the paper proposes using crowd sourcing techniques to get an

answer from a large number of participants in the test project (for example, using Amazon’s

Mechanical Turk system).

Using consensus oracle for differential testing greatly simplifies the test oracle problem for

complex software. However, the challenge of generating input test cases that actually trigger

bugs is still a challenge. The two main approaches to this problem are to automatically

generate the inputs from some sort of specification or formal grammar or to use existing

test cases and modify or fuzz them to generate new test cases. The problem with both of

187

these methods is that without some sort of guiding function, the test process will often need

very large numbers of generated tests in order to find small numbers of bugs. In “NEZHA:

Efficient Domain-Independent Differential Testing” [90] (2017) this problem is addressed by

introducing the notion of δ-diversity which is a measure of behavioral asymmetry between

the implementations that are part of the consensus oracle. This measure is used to guide

the test system towards test cases that are more likely to trigger failures. Using the NEZHA

guiding algorithm to extend our system would be interesting for future work.

8.3 Grammar-based Testing

One of the earlier attempts at using formal grammars to automatically generate random

test cases is described in “Generating programs from syntax” [91] 1967. “Using Attributed

Grammars to Test Designs and Implementations” [92] (1981) is an discussion of improving

the generation of test cases by adding additional attributes or annotations to the grammar

to guiding the test generator to more interesting test cases.

“The Automatic Generation of Test Data” [93] (1987) provides a survey of approaches

for automatically generating test data. In particular the paper addresses the advantages and

challenges of generating test cases from syntax data (e.g. formal grammar specifications).

It also covers the issue that with pure context-free grammars it is common to generate syn-

tactically correct but semantically wrong test cases which greatly limits the code coverage

that can be achieved efficiently. “Generating Test Data with Enhanced Context-Free Gram-

mars” [94] (1990) is a readable paper that shows a case study of using enhanced context free

grammars to automatically generate test data for very large-scale integration (VLSI) testing.

In this case “enhanced” refers to additions to the grammar that allow the tester to guide

the grammar, use variables (to related parts of the grammar) and to embed other useful

information such embedded code that can generate parts of the test that may be difficult to

generate with a pure context-free grammar.

188

“Controllable combinatorial coverage in grammar-based testing” [17] (2006) formalizes

annotations that are useful for grammar based test generation and proposed a new grammar

called Geno that is optimized for this type of annotation and control.

“Combinatorial Interaction Testing for Test Selection in Grammar-Based Testing” [95]

(2012) applies principles of combinatorial testing to grammar-based test generation. Com-

binatorial testing is an approach that focuses on pairs or n-wise combinations of features of

a system. Combinatorial testing has been shown to discover high numbers of system bugs

while greatly limited the space of test cases that must be generated to find those bugs.

In “Combining Stochastic Grammars and GeneticProgramming for Coverage Testing at

the System Level” [96] (2014) and the follow on research in “Generating Valid Grammar-

based Test Inputs by means of Genetic Programming and Annotated Grammars” [97] (2017)

the authors describe a system for using formal grammars to generate test cases. Two different

methods are described for guiding the generation of test cases. The first paper describes the

use of genetic programming with a code coverage based fitness function to tune the learned

probabilities of the grammar based on a corpus corpus of existing test cases. The second

paper proposes a additional approach that uses grammar annotations combined with genetic

programming to guide the test generation process.

The current approach we are using uses a fairly simple form of annotated grammars

where weights can be added to alternation points in the grammar. It would be interesting

future work to explore more sophisticated annotations to the grammar and perhaps the use

of genetic programming to increase feature coverage. It would also be interesting to use the

existing annotations to implement a form of combinatorial testing.

8.4 Fuzz Testing

Unlike grammar-based test generation which randomly generate test cases from scratch, fuzz

testing takes existing test cases and makes modifications to the test case to try and trigger

189

failures in the system under test. Although the “fuzz testing” is sometimes used to refer to

PBT in additional to traditional fuzz testing.

One of the problems with fuzz testing is that the effectiveness is limited when the modi-

fications to the existing test cases are made without sufficient semantic awareness. This par-

ticularly true for highly structured inputs. “Grammar-based whitebox fuzzing” [98] (2008)

proposes an enhancement to traditional fuzz testing where legal modifications are described

with grammar-based constraints. This increased code coverage of Internet Explorer 7 (IE7)

JavaScript interpreter from 53% to 81% while using one third the number of test cases.

Even with grammar assisted mutation as described in “Grammar-based” [98] the problem

still exists that the test developer must manually create the grammar used for mutation. In

“GramFuzz: Fuzzing testing of web browsers based on grammar analysis and structural

mutation” [99] (2013) and “Learning to fuzz: Application-independent fuzz testing with

probabilistic, generative models of input data” [100] (2016) this problem is addresses by

having the respective systems parse a corpus of existing test data and building a grammar

tree derived from that corpus which is then used to guide the mutation process. While this

technique greatly improves the percentage of syntactically valid test cases that are generated

and code coverage efficiency there is still a non-trivial amount of syntactically invalid test

cases that are generated.

“FairFuzz: Targeting Rare Branches to Rapidly Increase Greybox Fuzz Testing Cover-

age” [101] (2018) takes a different approach for increasing code coverage with fuzz testing.

“FairFuzz” identifies code branches that are rarely exercised and uses this information to

generate a mutation mask which is used to biased test creation towards those rare branches.

“Evaluating Fuzz Testing” [102] (2018) does an in-depth survey of 32 fuzz testing papers

and identifies problems in all evaluations. The paper proposes a structured system for

evaluating fuzz test system and gives guidelines for avoiding common pitfalls.

The focus of most fuzz testing is finding bugs that crash the SUT and security vulner-

abilities. One reason for this is that it is difficult to create a test oracle that can correctly

190

predict what the effect of random mutation will be on the system. For this reason the oracle

is often limited to identifying crashes and security vulnerabilities. Using differential testing

with fuzz testing is an area that could use more research. Another limitation of fuzz testing

is that failing test cases can be large and it is difficult to shrink the test because much of

the semantic information about the test case is not maintained (unlike with PBT shrinking).

However the Halfempty [103] project has a method to shrink fuzz test results. Perhaps the

most interesting aspect of Halfempty is that it proposes a novel approach for partitioning the

shrinking process so that it can be run in parallel. This same approach would be interesting

applied to the context of PBT shrinking.

8.5 Browser Testing

One of the first papers to propose a systematic approach to web application testing is “Anal-

ysis and testing of web applications” [104]. The approach described is that a web page is

downloaded and analyzed to create a Unified Modelling language (UML) model of the page.

This UML model is the used to generate test cases for the web application. This paper was

published in 2001 which is prior to the significant growth in browser power and capabilities.

The focus is on testing individual web applications with a focus on form submission behavior.

The paper “An empirical approach to evaluating web application compliance across di-

verse client platform configurations” [105], published in 2007, describes an approach where

correctness data is collected from web applications that are running on live user browser

configurations. Along with information about the HTML tags contained within a page, the

system inductively determines how well a web application is expected to work given the

HTML tags used in the application and the specific browser configurations.

One of the first works to directly address the problem of automating cross-browser testing

is “WEBDIFF: Automated identification of cross-browser issues in web applications” [106]

published in 2010. In the proposed WEBDIFF system a web application is loaded in multiple

191

browsers and the differential testing is performed on both screenshots of the visual rendering

and structural analysis of the resulting DOM. The visual comparison is done by activating

and deactivating elements of the DOM and incrementally taking screenshots of the result to

determine which element on the page is different. The system was used to test nine existing

web applications and 121 issue were identified with 21 false positives.

In “Automated cross-browser compatibility testing” [107] (2011), web applications are

tested by crawling the application to generate a finite state machine (FSM) representing

the behavior of the applications. The same process is performed across multiple browser

environments and any differences in the FSMs are detected.

“X-PERT: Accurate Identification of Cross-Browser Issues in Web Applications” [108]

and “Browserbite: Accurate Cross-Browser Testing via Machine Learning Over Image Fea-

tures” [109] were both published in 2013 and both suggest approaches for cross-browser

differential testing of web applications. The focus of “X-PERT” is apply different differ-

encing techniques for different classes of cross-browser incompatibilities (XBIS) including

structural, content and behavior. The focus of “Browserbite” is on more accurately identi-

fying visual differences by using image segmentation in conjunction with machine learning.

In “Webpage cross-browser test from image level” [110] (2017) a new algorithm is intro-

duced named “iterative perceptual hash” (IPH) that calculates a single difference index based

on global and local color and structural differences. This approach is then used for compar-

ing web application visual rendering within multiple browsers to find differences. The IPH

approach detects attempt to imitate human nonlinear visual perception and identify global

and local visual differences that are perceptible to the human eye.

The research described above is primarily focused on testing web applications to find

cross-browser compatibility issues within those applications. The focus of our research is

testing the browser environment itself, specifically browser rendering. Limiting the test

inputs to a collection of web applications test cases would means that coverage of browser

rendering functionality will be limited. In fact, if the collection of test pages is selected from

192

published web sites, then many browser differences will have been intentionally removed by

the authors of those pages.

There is significant literature related to testing of browsers with a focus on stability

and security. There is also a significant number of papers on testing JavaScript engines via

differential testing. However, research focusing on testing browser rendering is surprisingly

limited. In other words the focus of our system is to test browser correctness across the

space of possible web pages rather than testing the correctness of web applications on one

or more browsers. The system we developed could be adjusted to generate test cases that

would include the HTML and CSS features that are used by one or more web applications.

This would automate the discovery of browser differences that have the potential to effect

the rendering of those applications across different browsers.

In ”Applying Model-based Testing to HTML Rendering Engines–A Case Study” [111]

(2008), the authors describe a modified Behavior Adaption in Testing (BAiT) model that

is used to test to correct rendering of browser CSS box models. This is done by creating a

formal specification for the CSS box model and then generating simple CSS test cases based

on the model. Information about the result is extracted and compared to the theoretical

model. The results described in the paper were limited to testing on a single rendering engine

(Mozilla Gecko) and generated small test cases. Unsurprisingly, no true positive faults were

discovered.

193

Chapter 9

Concluding Remarks

Our research started with two initial goals. The first was to develop a testing approach

that enables end-to-end automated browser render testing. Existing browser render testing

techniques require manual at various stages of the testing process. The second goal was

for the testing approach to be effective and practical for the users performing tests. A

primary use-case for the approach was to test Mozilla’s new experimental browser Servo.

After discussion with a Mozilla engineer we added a third goal to overall focus: the ability

to reproduce and shrink preexisting test cases.

We chose to base our the approach on the PBT model of testing where tests are defined

as input properties and output properties. The input properties are used to automatically

generic random test cases, and the output properties serve as a test oracle that determine

if the SUT behaves correctly for a give test case. For automatic generation of test cases,

we developed a module, html5-css3-ebnf that converts the W3C’s specification data for

HTML and CSS into EBNF grammars. These grammars and then translated to PBT style

generators. To automate the checking of browser behavior we implemented a consensus pool

oracle composed of multiple browsers from which we take screenshots of rendering results

and then determine if there is a consensus or lack-of-consensus. Our initial research showed

that end-to-end automation of browser render testing was possible and we published our

194

initial results at COMPSAC in 2018 [1].

During the initial phase of research, we discovered that the standard PBT approach has

some serious limitations that inhibit the testing model we were trying to develop. The first

limitation is that PBT test specification are usually defined in a domain-specific language

(DSL) that is closely related to the software language of the SUT rather than in a more

generic test specification grammar. The second is that adjusting the coverage of those

test specification typically involves manually updating the specifications or creating new

specifications. The third limitation is that the normal PBT model tends to rediscover the

same problems. The shrinking capability of PBT, while extremely powerful, exacerbates this

problem by often shrinking new test cases to already discovered simpler test cases. Finally,

PBT does not provide a direct mechanism for using the shrinking process with preexisting

test cases that were not generated by the system itself.

To address the PBT issues we developed a new PBT-based approach called Instacheck.

This approach uses EBNF grammars as a generic grammar language for test specifications

to address the first issue. The remaining issues are addressed by using a grammar weighting

system. The system can be used by the tester to manually adjust coverage without modifying

the test specification. The system also provides automatic weight reduction algorithms that

adjust the weights between test runs in order to reduce the probability of discovering failing

test cases that have already been discovered. And finally, existing test cases can be parsed

to generate a weight configuration that can then be used to generate similar test cases which

can then be shrunk by Instacheck. The Instacheck approach is a generic testing approach

and is not specific to browser render testing. We validated the Instacheck approach using a

grammar that generate test cases resembling HTML and CSS web pages but is much more

constrained to enable more fine grained analysis. The results show that Instacheck is able

to successfully address the limitations we identified in PBT.

Bartender (Browser Automated Render TestiNg DrivER) is the name of the module

that leverages the capabilities of Instacheck and html5-css3-ebnf to implement the full

195

browser render testing system. We used Bartender run over 6000 test runs testing the Firefox,

Chrome, and Servo web browsers. We created reports showing over 1,500 unique test cases

that trigger rendering differences between those browsers. In addition, we identified and

reported over 20 confirmed bugs that we have and are continuing to work with the browser

vendors to resolve. This includes a number of resource leak bugs in Servo that cause the

browser to crash. We also verified that Bartender can successfully parse preexisting test

cases and then reproduce and shrink those test cases.

Finally, Instacheck, html5-css3-ebnf, and Bartender fulfill our overall goal of practical util-

ity. In addition to successfully demonstrating the ability to find bugs in real-world systems,

the concrete implementations of all three modules have command line and library interfaces

that are documented for ease of use by end users and developers. All three modules have

implementations that have been released as open source projects. Refer to Appendix I for

more information about module versions and locations. Refer to Appendix J for general

statistics about the artifacts.

The Bartender approach was developed and discussed in the context of browser render

testing. However, the general approach is not limited to browsers. The Bartender approach

is directly applicable to other document rendering applications such as word processors, PDF

viewers, image viewers, etc. In addition, the approach could be applied to any context where

there are SUTs with multiple implementations that take the same structured inputs and are

designed to have similar or identical behavior are candidates for the Bartender approach.

Candidates include compilers, transport protocols, computer vision feature detectors, and

artificial neural networks, and among others. There is existing literature exploring differen-

tial testing in a number of these contexts but Bartender and Instacheck offer some unique

capabilities that could be beneficial in those domains. These capabilities include the auto-

matic weight adjustment processes to increase coverage and reduce rediscovery; the ability

to shrink tests; and the ability to parse and reproduce preexisting tests.

196

9.1 Future Directions

While developing the techniques described in this work, we identified a number of future

directions for the work. Some of these thoughts are described below:

� The current test.check library that extended as part of Instacheck uses a sequential

trial and shrinking process. There is significant opportunity to improve performance

by adding parallel execution capability to test.check or switching to a PBT library that

already implements parallel testing. In addition opportunities for parallel execution

within Instacheck, Bartender could also be extended to perform multiple test runs in

parallel. The main challenge here is that the weight reduction process would need to

be adjusted to account for the parallel nature of test runs.

� There are many opportunities for extending the Instacheck and Bartender technique to

work at larger scale. In particular, the support for the WebDriver standard means that

Bartender can be used with web testing services running in the public cloud. Combined

with parallel testing, being able to run the testing process at scale would significant

increase the testing coverage that could be accomplished within a given amount time.

� The use of grammar weights in Instacheck and Bartender provides a a point of leverage

for implementing additional functionality. For example, automatic pairwise (N-wise

testing) testing could be implemented by selecting a pair of weights prior to each test

run. The weights for other related features would be set to zero or to values much

smaller than the selected pair.

� Metamorphic testing is an extension to the standard PBT testing model that would

be interesting to explore in the context of Instacheck and Bartender.

� The use of ebnf grammars to define test generators has some limitations due to the

Context-Free Grammar (CFG) nature of EBNF. In particular, there are some parts

of the CSS VDS grammar that are difficult or inconvenient to represent using EBNF.

197

Providing an option to use PEGs grammar for the HTML and CSS grammar might

provide a generations rather than EBNF.

� The WPT organization has a large repository of HTML and CSS rendering tests. These

tests could be run automatically using Bartender’s check-page feature to build a data

set of results from different browsers. The WPT already has some tools for automated

test execution, however, the benefit that Bartender could provide would be parsing

those test cases to try and provide minimal versions that still trigger the differences.

� There is considerable literature on image comparison techniques. Some of these tech-

niques would be interesting additions to the set of algorithms available in Bartender

for comparing screenshot images and determining consensus.

� The Bartender approach could be used for regression testing by running different ver-

sions of the same browser in the consensus pool. The consensus algorithm and reporting

functionality could be extended to have an awareness of browsers versions and order.

This would enable the tester to both identify regressions and to identify when the

regression was introduced (version). In addition, the ability to reproduce existing test

cases would allow the tester to more efficiently and more confidently confirm when a

regression is fixed.

198

Appendix A

Translations of math.ebnf Grammar

to Clojure Generators

This appendix contains translations of the math.ebnf EBNF grammar in Listing 4.17 to

Clojure code. Listings A.1 and A.2 shows the translation with each grammar rule defined

as individual Clojure generators. Listings A.3 and A.4 show the translation with a single

exported factory function that can be called to get the generator for a specific start rule with

optional adjusted default weights.

199

(ns math.generators
(:require [clojure.test.check.generators :as gen]

[com.gfredericks.test.chuck.generators :as chuck]
[instacheck.generators :as igen]

[instacheck.util :as util]))

;; Generated by instacheck

(def gen-nz-digit
(igen/freq :nz-digit [

[100
(gen/return "1")]

[100
(gen/return "2")]

[100
(gen/return "3")]

[100
(gen/return "4")]

[100
(gen/return "5")]

[100
(gen/return "6")]

[100
(gen/return "7")]

[100
(gen/return "8")]

[100
(gen/return "9")]]))

(def gen-any-digit
(igen/freq :any-digit [

[100
(gen/return "0")]

[100
gen-nz-digit]]))

(def gen-any-number
(igen/freq :any-number [

[100
gen-any-digit]

[100
(gen/tuple
gen-nz-digit
(igen/vector+

gen-any-digit))]]))

Listing A.1: Translation of EBNF grammar in Listing 4.17 to Clojure generator code with
one generator function per grammar rule (Part 1)

200

(def gen-expression
(gen/recursive-gen

(fn [inner]
(igen/freq :expression [
[100

(gen/tuple
(gen/return "(")
inner
(gen/return ")"))]

[100
(gen/tuple
inner
(gen/return "+")
inner)]

[100
(gen/tuple
inner
(gen/return "-")
inner)]

[100
(gen/tuple
inner
(gen/return "*")
inner)]

[100
(gen/tuple
inner
(gen/return "/")
inner)]

[100
gen-any-number]]))

gen-any-number))

(def gen-line
(gen/fmap util/flatten-text

(gen/tuple
gen-expression
(igen/freq :line [
[100

(gen/return "")]
[100

(gen/return "\n")]]))))

Listing A.2: Translation of EBNF grammar in Listing 4.17 to Clojure generator code with
one generator function per grammar rule (Part 2)

201

(ns math.generators
(:require [clojure.test.check.generators :as gen]

[com.gfredericks.test.chuck.generators :as chuck]
[instacheck.generators :as igen]

[instacheck.util :as util]))

;; Generated by instacheck

(defn- gen-math-part-0 [gmap weights]
(let [g gmap

w weights

gen-nz-digit
(igen/freq :nz-digit [

[(get w [:nz-digit :alt 0] 100)
(gen/return "1")]

[(get w [:nz-digit :alt 1] 100)
(gen/return "2")]

[(get w [:nz-digit :alt 2] 100)
(gen/return "3")]

[(get w [:nz-digit :alt 3] 100)
(gen/return "4")]

[(get w [:nz-digit :alt 4] 100)
(gen/return "5")]

[(get w [:nz-digit :alt 5] 100)
(gen/return "6")]

[(get w [:nz-digit :alt 6] 100)
(gen/return "7")]

[(get w [:nz-digit :alt 7] 100)
(gen/return "8")]

[(get w [:nz-digit :alt 8] 100)
(gen/return "9")]])

g (assoc g :nz-digit gen-nz-digit)

gen-any-digit
(igen/freq :any-digit [

[(get w [:any-digit :alt 0] 100)
(gen/return "0")]

[(get w [:any-digit :alt 1] 100)
(:nz-digit g)]])

g (assoc g :any-digit gen-any-digit)

gen-any-number
(igen/freq :any-number [

[(get w [:any-number :alt 0] 100)
(:any-digit g)]

[(get w [:any-number :alt 1] 100)
(gen/tuple

(:nz-digit g)
(igen/vector+
(:any-digit g)))]])

g (assoc g :any-number gen-any-number)

Listing A.3: Translation of EBNF grammar in Listing 4.17 to Clojure generator code with
one generator factory function (Part 1)

202

gen-expression
(gen/recursive-gen

(fn [inner]
(igen/freq :expression [

[(get w [:expression :alt 0] 100)
(gen/tuple

(gen/return "(")
inner
(gen/return ")"))]

[(get w [:expression :alt 1] 100)
(gen/tuple

inner
(gen/return "+")
inner)]

[(get w [:expression :alt 2] 100)
(gen/tuple

inner
(gen/return "-")
inner)]

[(get w [:expression :alt 3] 100)
(gen/tuple

inner
(gen/return "*")
inner)]

[(get w [:expression :alt 4] 100)
(gen/tuple

inner
(gen/return "/")
inner)]

[(get w [:expression :alt 5] 100)
(:any-number g)]]))

(:any-number g))
g (assoc g :expression gen-expression)

gen-line
(gen/tuple

(:expression g)
(igen/freq :line [
[(get w [:line :cat 1 :opt nil] 100)

(gen/return "")]
[(get w [:line :cat 1 :opt 0] 100)

(gen/return "\n")]]))
g (assoc g :line gen-line)]

g))

(defn gen-math [& [gmap weights]]
(let [g (or gmap {})

w weights

g (gen-math-part-0 g weights)]
g))

Listing A.4: Translation of EBNF grammar in Listing 4.17 to Clojure generator code with
one generator factory function (Part 2)

203

Appendix B

Instacheck Library Functions

This appendix summarizes the library functions that are available in the Clojure implemen-

tation of the Instacheck system (as of version 0.9.1). The Instacheck module is available

at https://github.com/kanaka/instacheck. Tables B.1, B.2, and B.3 list and

describe the functions grouped by code module.

204

https://github.com/kanaka/instacheck

Table B.1: Instaparse Modules and Functions Part 1

Module Function Description

core grammar->generator-obj create a generator object from a context
and grammar

update-generator-obj update a generator object with adjusted
properties

ebnf->gen create a generator from a EBNF string,
grammar, parser, or file

grammar->ns create full namespace code translation
for a grammar

parse-wtrek parse a string and return a path-log (fre-
quency) wtrek

parse-wtreks parse multiple strings and return an
overall path-log (frequency) wtrek

ebnf-sample-seq generate an infinite sequence of values
generated from an EBNF string

ebnf-generate generate a single value generated from
an EBNF string

instacheck run the quick-check process using an
EBNF-based generator

reduce reducer-zero reducer that returns 0 regardless of start
weight

reducer-half reducer that returns half the start
weight

reducer-div reducer that returns start weight di-
vided by divisor

reducer-ladder reducer that returns next weight in se-
quence that is lower than start-weight

reduce-wtrek reduce a grammar wtrek by a reduce-
mode and propagate if needed

reduce-wtrek-with-weights reduce a grammar wtrek by a weight
map and pick-mode

prune-grammar prune a grammar based on a wtrek
and/or list of paths

prune-grammar->sorted-ebnf prune-grammar and return EBNF for
that grammar

parse parse a parse function that checks for errors
and has elided position reporting

205

Table B.2: Instaparse Modules and Functions Part 2

Module Function Description

grammar parser->grammar convert a parser object to a grammar
tree

grammar->parser convert a grammar tree to a parser ob-
ject

load-parser create parser object from an EBNF
string

load-grammar create a grammar tree from an EBNF
string

grammar->ebnf translate a grammar tree to an EBNF
string

get-in-grammar get the grammar node at the given path
in a grammar tree

update-in-grammar apply an update function to a given path
in a grammar tree

assoc-in-grammar replace a node at the given path in the
grammar tree

apply-grammar-update updates a grammar tree with an update
trek

paths-to-leaf return paths in the grammar tree with
the given non-terminal as a leaf value

get-descendants return descendant paths of the given
path that fulfill a predicate function

get-ancestors return all nearest ancestors of given path
that fulfills a predicate function

get-weighted-ancestors return nearest weighted ancestors of a
given path

children-of-node return direct child paths of the node at
the given path

combine-strings combine strings that are immediately
adjacent in the grammar tree

trek-grammar walk grammar tree applying a transac-
tion function at each path/node

trek return a value trek (paths to values) for
a grammar tree

comment-trek parse grammar comments in a grammar
tree as Clojure data structures

trek->grammar convert a value trek (paths to values) to
a grammar tree

206

Table B.3: Instaparse Modules and Functions Part 3

Module Function Description

weights removed-node? check if a path has all zero child weights
given a grammar and wtrek

filter-trek-weighted return weighted paths filtered from a
trek

wtrek return a wtrek (weight trek) for a gram-
mar tree

path-log-trek return path-log trek for a grammar
based on a parse-result

path-log-wtrek return path-log wtrek for a grammar
based on a parse-result

print-weights pretty print sorted and indented weight-
s/wtrek

save-weights save sorted and indented weights/wtrek
to a file

likelihood-trek return trek with likelihood of reaching
every node of grammar based on a wtrek

terminal-likelihood-trek return trek of likelihood of reaching each
terminal of grammar based on a wtrek

distance-trek return trek of distance of every node
from the root of the grammar

codegen check-and-order-rules return dependency ordered path list
from grammar (throw if indirect cycles)

grammar->generator-defs-source return string of Clojure generator code
for a grammar; one function per rule

grammar->generator-func-source return string of Clojure generator code
for a grammar; one factory function

eval-generator-source evaluate/instantiate a Clojure generator
code string returning last generator

generator-func->generator get a named generator from a generator
factory function

util tree-matches return a sequence of nodes in a tree data
structure that match a predicate

tree-deps return dependency map of keys that oc-
cur under top-level keys

remove-key walk a tree data structure and remove
all matching key/values

tree-distances return distances of nodes from a start
node (modified Djikstra’s algorithm)

flatten-text take tree of strings and flatten into a sin-
gle string

207

Appendix C

Full Instaparse EBNF Syntax

Table C.1 in this appendix lists all of the Instaparse EBNF syntax features that used by

Instcheck, html5-css3-ebnf, or Bartender. The top section of the table shows the syntax

elements used by Instacheck derived grammar generators. In addition to the elements intro-

duced in Table 3.1 of Subsection 3.4.1, this table adds the ordered alternation combinator

(:ord) which is similar to the regular alternation combinator but when the grammar is am-

biguous then the parser will prefer earlier elements of the ordered alternation. The middle

section of the table lists the syntax elements that used by the CSS VDS grammar (in addi-

tion to the elements in the top section). The VDS grammar is described in Subsection 5.3.2.

The bottom of the table includes the negative lookahead operator that is used by the tags

and attributes grammar depicted in Listing D.1 of Appendix D and described in Section 5.4.

208

EBNF Syntax Meaning Key Icon Weight

A non-terminal (LHS) N

A non-terminal (RHS) N

"abc" or 'abc' literal terminal "

#"abc" or #'abc' regexp terminal R

"" or '' or ε epsilon terminal ε

A B or A, B concatenation :cat C

A | B alternation :alt | X

A / B ordered alternation :ord / X

A? or [A] optional :opt ? X

A* or {A} zero or more :star * X

A+ one or more :plus +

(A B) grouping

<A> hidden LHS non-terminal

 or <'abc'> etc hidden RHS element

= or := or : or ::= LHS / RHS delimiter

; rule terminator (optional)

(* comment *) comment

!A negative lookahead (PEG)

Table C.1: List of all Instaparse EBNF syntax features used

209

Appendix D

Tags and Attributes Grammar

This appendix contains the simplified tags and attributes grammar in Listing D.1. This

EBNF grammar is used for the first pass of the dual-pass parsing mode used by html5-

css3-ebnf. The use of this grammar is described in Section 5.4.

210

html = '<!DOCTYPE html>'? S comment? elem+ ;
elem = script-elem

/ style-elem
/ svg-elem
/ ahem-elem
/ start-elem
/ end-elem
/ content ;

script-elem = '<' 'script' attrs S '>' script-data '</script>' S ;
style-elem = '<' 'style' attrs S '>' style-data '</style>' S ;
svg-elem = '<' 'svg' attrs S '>' svg-data '</svg>' S ;
ahem-elem = '<' 'span' ahem-attrs S '>' ahem-data '' S ;
start-elem = '<' tag-name attrs S '>' S;
end-elem = '</' tag-name '>' S ;
content = char-data

| comment ;

<script-data> = (#'[ˆ<]*' | !'</script>' #'<')+ ;
<style-data> = (#'[ˆ<]*' | !'</style>' #'<')+ ;
<svg-data> = (#'[ˆ<]*' | !'</svg>' #'<')+ ;
<ahem-data> = (#'.' | 'É') ;

attrs = attr* ;
attr = rS attr-name S <'='> attr-val

| rS attr-name ;
ahem-attrs = ahem-attr+ ;
ahem-attr = rS ahem-attr-name S <'='> ahem-attr-val ;
ahem-attr-name = 'class' ;
ahem-attr-val = S <'"'> 'wrap-ahem' <'"'> ;

<char-data> = #'[ˆ<]+' ;

attr-val = S <'"'> (#'\\.' | #'[ˆ\\"]*')* <'"'>
| S <"'"> (#"\\." | #"[ˆ\\']*")* <"'">
| S #'[ˆ"\'\s>]*' ;

<tag-name> = name ;
attr-name = name ;
<name> = #'[A-Za-z_:][A-Za-z_:\-.0-9]*' ;

<comment> = '<!--' (#'[ˆ-]*' | !'-->' #'-')* '-->' ;

<S> = #'\s*' ;
<rS> = #'\s+' ;

Listing D.1: The tags and attributes grammar used for first pass of parsing by html5-css3-
ebnf

211

Appendix E

Firefox versus Chrome Rendering

Differences Data

This appendix summarizes data that was generated during Mozilla Firefox and Google

Chrome testing. Tables E.1, E.2, and E.3 enumerate the number of failing (shrunk) test

cases that each HTML tag, HTML attribute, and CSS property appear in. This data is

described in detail in Section 7.1.

212

Table E.1: Firefox and Chrome: Number of Test Cases with Rendering Differences for each
HTML Tag and HTML Attribute

HTML Tags Count

img 42
abbr 31
meter 30
dd 29
q 28
b 26
video 26
keygen 25
blockquote 24
address 24
area 24
rb 23
button 22
ul 22
legend 22
table 22
audio 21
time 21
small 21
label 20
bdi 20
s 19
code 18
mark 18
menu 18
output 18
aside 17
a 17
article 17
map 17
h6 16
ins 16
canvas 16
bdo 15
del 15
option 15
h3 15
optgroup 15
caption 14
ruby 14
cite 14
em 14
fieldset 14
sub 14
dl 13
section 13
rt 13
var 13
tr 13
figure 13
object 13
embed 12
picture 12

HTML Tags Count

textarea 12
nav 12
input 12
hr 12
summary 12
h2 12
rtc 12
progress 12
li 11
header 11
colgroup 11
th 11
select 11
p 11
tfoot 11
tbody 10
strong 10
u 10
dfn 10
pre 10
figcaption 10
base 10
form 10
td 10
h1 9
details 9
i 9
ol 9
main 9
datalist 9
h4 9
thead 9
sup 9
samp 9
data 8
iframe 8
kbd 8
footer 8
br 8
h5 7
source 7
noscript 7
dt 7
meta 6
wbr 5
rp 5
param 5
menuitem 4
link 4
template 3
col 3
track 2

HTML Attributes Count

controls 27
border 18
width 16
crossorigin 14
src 14
contenteditable 13
sizes 12
class 11
type 10
alt 10
spellcheck 8
dir 8
translate 8
contextmenu 7
draggable 6
height 6
autofocus 6
hidden 5
title 5
href 5
dropzone 5
tabindex 4
accesskey 4
max 4
srcset 4
min 4
lang 4
value 3
form 3
download 3
muted 3
keytype 2
usemap 2
name 2
hreflang 2
id 2
label 2
ismap 2
loop 2
data 1
disabled 1
novalidate 1
rowspan 1
challenge 1
cite 1
autoplay 1
coords 1

213

Table E.2: Firefox and Chrome: Number of Test Cases with Rendering Differences for each
CSS Property (Part 1)

CSS Properties Count

font-family 89
animation-name 49
border-style 46
float 44
align-items 41
margin-inline-start 41
font 40
animation-iteration-count 36
position 35
all 33
background-color 33
padding 30
font-size 25
padding-block 22
margin-left 22
border-bottom-style 22
writing-mode 22
animation-play-state 22
mask-image 21
font-variant-caps 20
margin-inline 18
animation-fill-mode 18
animation-direction 18
display 17
border-bottom 17
margin-block 16
animation-timing-function 16
border-top-style 15
font-variant-position 15
column-width 15
width 15
line-height 15
margin-top 14
word-break 14
vertical-align 14
column-gap 14
block-size 14
align-content 13
border-block 13
border-block-style 12
margin 12
padding-bottom 12
overflow-wrap 12
grid-auto-rows 11
text-emphasis 11
padding-right 11
border-right-style 11
scroll-padding-inline 11
border-left 11
margin-block-start 11
text-emphasis-style 11
clip-path 10
animation-duration 10
mix-blend-mode 10
overflow-x 10
overflow 10

CSS Properties Count

inset 10
page-break-inside 10
align-self 10
text-align 10
text-transform 10
counter-reset 10
border-top-left-radius 9
animation-delay 9
border-block-end-style 9
font-weight 9
padding-inline 9
border-top-width 9
overflow-y 9
scale 9
translate 9
border-block-start-style 8
grid-auto-flow 8
border-image 8
border-top 8
column-count 8
border-left-style 8
max-width 8
list-style-position 8
opacity 7
background-image 7
text-decoration-style 7
bottom 7
box-shadow 7
padding-block-start 7
background-size 7
border-block-end-color 7
margin-bottom 7
border-block-end-width 7
transition-timing-function 7
inset-block 7
text-indent 7
scroll-margin-block 7
text-orientation 7
text-align-last 7
padding-inline-start 6
table-layout 6
mask-type 6
font-synthesis 6
border-inline-end-style 6
border-radius 6
letter-spacing 6
border-inline-style 6
filter 6
content 6
unicode-bidi 6
min-height 6
border-bottom-left-radius 6
animation 6
background-origin 6
grid-template-areas 6
border 6

CSS Properties Count

will-change 6
line-break 6
outline-color 6
background-repeat 6
counter-increment 6
padding-inline-end 6
flex-flow 6
transform-style 5
mask 5
list-style 5
color 5
box-decoration-break 5
font-style 5
border-spacing 5
perspective 5
font-size-adjust 5
outline-style 5
background-clip 5
word-wrap 5
padding-block-end 5
z-index 5
list-style-type 5
column-rule-color 5
margin-block-end 5
scroll-margin-block-end 5
scroll-margin-block-start 5
border-right 5
transform 5
flex-direction 5
inset-inline 5
transform-box 5
border-inline 5
margin-right 5
top 5
border-image-source 5
border-image-slice 5
scroll-margin-inline 5
border-image-repeat 5
inline-size 4
text-emphasis-position 4
padding-top 4
border-image-outset 4
max-height 4
text-shadow 4
orphans 4
border-block-start-color 4
font-variant-alternates 4
border-block-color 4
grid-column 4
min-inline-size 4
scroll-padding-block-start 4
image-orientation 4
border-end-start-radius 4
empty-cells 4
scroll-padding-bottom 4
text-decoration 4

214

Table E.3: Firefox and Chrome: Number of Test Cases with Rendering Differences for each
CSS Property (Part 2)

CSS Properties Count

border-bottom-width 4
scroll-margin-bottom 4
cursor 4
direction 4
border-inline-end-width 4
inset-inline-start 4
mask-clip 4
margin-inline-end 4
column-rule 4
backface-visibility 4
place-content 4
outline-width 4
shape-margin 4
height 4
columns 4
background-attachment 4
font-variant-ligatures 4
grid-auto-columns 4
mask-repeat 3
isolation 3
hyphens 3
scroll-padding 3
border-left-width 3
background 3
border-inline-color 3
tab-size 3
justify-self 3
color-adjust 3
justify-items 3
border-inline-width 3
scroll-padding-block 3
caret-color 3
object-position 3
list-style-image 3
place-self 3
border-inline-start 3
background-blend-mode 3
border-top-right-radius 3
shape-image-threshold 3
object-fit 3
column-span 3
border-right-width 3
grid-column-end 3
mask-composite 3
scroll-margin-top 3
outline 3
border-collapse 3
touch-action 3
transition-delay 3
grid 3
text-combine-upright 3
justify-content 3
scroll-padding-top 3
shape-outside 3
column-rule-style 2
border-inline-start-style 2

CSS Properties Count

padding-left 2
rotate 2
flex 2
transition 2
font-variant 2
text-underline-position 2
inset-block-end 2
pointer-events 2
place-items 2
scroll-margin 2
resize 2
perspective-origin 2
scroll-padding-inline-start 2
border-inline-start-color 2
text-decoration-line 2
font-feature-settings 2
border-block-start 2
order 2
border-inline-end-color 2
grid-row-start 2
break-before 2
scroll-snap-align 2
flex-grow 2
border-block-width 2
text-overflow 2
flex-wrap 2
row-gap 2
scroll-margin-left 2
page-break-before 2
border-block-start-width 2
scrollbar-width 2
visibility 2
grid-column-start 2
text-justify 2
text-decoration-color 2
scroll-behavior 2
outline-offset 2
scroll-snap-type 2
break-inside 2
text-rendering 2
border-block-end 2
font-language-override 2
scroll-padding-inline-end 2
border-color 2
transition-property 2
border-width 2
border-inline-end 2
border-top-color 2
min-width 2
flex-basis 1
scroll-snap-stop 1
font-stretch 1
scroll-padding-right 1
caption-side 1
left 1
mask-mode 1

CSS Properties Count

border-image-width 1
clear 1
scroll-padding-block-end 1
scroll-margin-inline-start 1
inset-inline-end 1
font-optical-sizing 1
grid-template-columns 1
grid-template 1
break-after 1
widows 1
mask-origin 1
box-sizing 1
border-end-end-radius 1
min-block-size 1
border-start-end-radius 1
mask-position 1
grid-area 1
border-left-color 1
hanging-punctuation 1
border-bottom-color 1
border-start-start-radius 1
grid-row-end 1
border-bottom-right-radius 1
mask-size 1
quotes 1
word-spacing 1
border-right-color 1
column-rule-width 1
white-space 1
font-kerning 1
flex-shrink 1
scroll-padding-left 1
font-variant-east-asian 1
transform-origin 1
grid-template-rows 1
text-emphasis-color 1
clip 1
inset-block-start 1
image-rendering 1
scrollbar-color 1
page-break-after 1
font-variant-numeric 1
transition-duration 1
right 1
background-position 1
scroll-margin-inline-end 1
gap 1
border-inline-start-width 1
column-fill 1
grid-row 1
scroll-margin-right 1

215

Appendix F

Servo versus Firefox and Chrome

Rendering Differences Data

This appendix summarizes data that was generated during Mozilla Servo versus Mozilla

Firefox and Google Chrome testing. Tables F.1, and F.2 in Appendix F enumerate the

number of failing (shrunk) test cases that each HTML tag, HTML attribute, and CSS

property appear in. Tables F.3, F.4, and F.5 show the test case data is matrix representation

of the results. This data is described in detail in Section 7.2.

216

Table F.1: Servo vs Firefox and Chrome: Number of Test Cases with Rendering Differences
for each HTML Tag and Attribute

HTML Tag Count

video 20
img 12
meta 7
sup 7
aside 5
tfoot 4
canvas 4
data 3
template 3
article 3
meter 3
sub 3
s 3
tbody 2
main 2
ins 2
q 2
tr 2
bdi 2
td 2
wbr 1
h1 1
strong 1
dfn 1
nav 1
ruby 1
time 1
figcaption 1
dd 1
ol 1
section 1
noscript 1
small 1
em 1
form 1
var 1
p 1
dt 1
figure 1
output 1

HTML Attribute Count

src 10
crossorigin 6
height 5
width 5
accesskey 3
poster 2
contextmenu 2
dir 2
tabindex 1
charset 1
content 1
preload 1
usemap 1
muted 1

217

Table F.2: Servo vs Firefox and Chrome: Number of Test Cases with Rendering Differences
for each CSS Property

CSS Property Count

font-size 30
animation-duration 24
animation-fill-mode 24
text-align-last 22
mask-type 17
margin-left 15
animation-timing-function 13
font 13
animation-iteration-count 13
content 11
animation-direction 11
position 11
visibility 11
font-style 10
mask-size 9
outline-color 9
perspective 7
mask-origin 7
vertical-align 7
object-position 6
animation-name 6
min-inline-size 5
page-break-inside 5
mask-position 5
outline-width 5
transition-duration 5
padding-inline-start 4
mask-mode 4
orphans 4
transition 4
display 4
background-color 4
text-align 4
padding 4
margin 4
width 4
mask-repeat 3
text-shadow 3
padding-block-end 3
direction 3
z-index 3
object-fit 3
text-indent 3
word-break 3
margin-inline-end 3
max-width 3

CSS Property Count

border-top-style 2
left 2
opacity 2
padding-left 2
pointer-events 2
perspective-origin 2
word-wrap 2
margin-top 2
page-break-before 2
quotes 2
animation-play-state 2
column-width 2
padding-bottom 2
min-width 2
float 2
font-stretch 1
mix-blend-mode 1
place-items 1
scroll-margin-inline-start 1
padding-right 1
box-shadow 1
min-block-size 1
order 1
background-clip 1
font-weight 1
margin-bottom 1
min-height 1
border-top 1
row-gap 1
border-style 1
mask-composite 1
scroll-margin-block-start 1
border-collapse 1
outline-offset 1
margin-right 1
backface-visibility 1
inset-block-start 1
scale 1
page-break-after 1
columns 1
top 1
background-attachment 1
right 1
padding-inline-end 1
border-bottom 1

218

Table F.3: Servo vs Firefox and Chrome: HTML Tags and HTML Attributes Matrix

B
O

D
Y

a
rt

ic
le

a
si

d
e

b
d

i
ca

n
v
a
s

d
a
ta

d
d

d
fn

d
t

em fi
g
ca

p
ti

o
n

fi
g
u

re

fo
rm

h
1

im
g

in
s

m
a
in

m
et

a

m
et

er
n

a
v

n
o
sc

ri
p

t

o
l

o
u

tp
u

t

p q ru
b
y

s se
ct

io
n

sm
a
ll

st
ro

n
g

su
b

su
p

tb
o
d

y

td te
m

p
la

te

tf
o
o
t

ti
m

e

tr v
a
r

v
id

eo

w
b

r

[None] 2 4 2 4 3 1 1 1 1 1 1 1 1 3 2 2 3 2 1 1 1 1 1 2 1 3 1 1 1 3 7 1 1 3 2 1 1 3 1
accesskey 2
charset 1 1
content 1
contextmenu 2
crossorigin 2 1 1 4
dir 2
height 1 5
muted 1 1
poster 2
preload 1 1
src 1 7 1 2 3
tabindex 1
usemap 1 1 1
width 4 1 1 1 1

219

Table F.4: Servo vs Firefox and Chrome: HTML Tags and CSS Properties Matrix Part 1

B
O

D
Y

a
rt

ic
le

a
si

d
e

b
d

i
ca

n
v
a
s

d
a
ta

d
d

d
fn

d
t

em fo
rm

h
1

im
g

in
s

m
a
in

m
et

a

m
et

er

o
l

o
u

tp
u

t

p q ru
b
y

s se
ct

io
n

sm
a
ll

st
ro

n
g

su
b

su
p

tb
o
d

y

td te
m

p
la

te

tf
o
o
t

ti
m

e

tr v
a
r

v
id

eo

w
b

r

[None] 2 1 1 2 1 9 3 3 1 1 3 1 1 3 2 19 1
animation-direction 7 1
animation-duration 9 1 1
animation-fill-mode 8 1 1 2
animation-iteration-count 7 1 1 1 1
animation-name 1 1
animation-play-state 1
animation-timing-function 4 1 1
backface-visibility 1
background-attachment
background-clip 1
background-color
border-bottom
border-collapse
border-style 1
border-top 1
border-top-style 1
box-shadow 1
column-width 1
columns
content 6 1 1
direction 1 1
display 1 1
float 1 1 1
font 11
font-size 23 1 1 1 1
font-stretch 1
font-style 7 1
font-weight 1
inset-block-start 1
left 1
margin 1 1 1
margin-bottom 1
margin-inline-end 1
margin-left 6 1 1
margin-right
margin-top 1
mask-composite 1
mask-mode 2
mask-origin 4
mask-position 2 1 1 1 1
mask-repeat 1 1 1
mask-size 5 1 1 1
mask-type 5 1 1 1 1 1 1 1
max-width 1
min-block-size 1

220

Table F.5: Servo vs Firefox and Chrome: HTML Tags and CSS Properties Matrix Part 2

B
O

D
Y

a
si

d
e

d
a
ta

d
fn

d
t

em fi
g
ca

p
ti

o
n

fi
g
u

re

fo
rm

h
1

im
g

in
s

m
a
in

m
et

a
n

a
v

n
o
sc

ri
p

t

o
l

o
u

tp
u

t

p q se
ct

io
n

sm
a
ll

st
ro

n
g

su
b

tb
o
d

y

td te
m

p
la

te

ti
m

e

v
id

eo

min-height 1
min-inline-size 3 1
min-width 1 1
mix-blend-mode
object-fit 1 1
object-position 3 1 1 1 1
opacity 1
order 1
orphans 4
outline-color 4 1 1 1 1
outline-offset 1
outline-width 4
padding 2
padding-block-end 1
padding-bottom 1 1
padding-inline-end
padding-inline-start 2 1
padding-left
padding-right 1
page-break-after 1
page-break-before 1
page-break-inside 3 2 1
perspective 3 1 1
perspective-origin 1 1 1
place-items 1
pointer-events 2
position 3 1 1 1 1
quotes 2
right 1
row-gap 1
scale 1
scroll-margin-block-start 1
scroll-margin-inline-start 1
text-align 2 1
text-align-last 12 1 1 1 1
text-indent
text-shadow 3
top 1
transition 4
transition-duration 4
vertical-align 1
visibility 3
width 1 1 1 1 1 1
word-break 1 1 1
word-wrap 1
z-index 1 1 1

221

Appendix G

Bartender Configurations used for

Render Testing

This appendix contains the Bartender configuration files that are used for Mozilla Firefox

and Google Chrome testing (Section 7.1) and for Mozilla Servo versus Firefox and Chrome

testing (Section 7.2). Listing G.1 contains the Firefox and Chrome test configuration and

Listing G.2 contains the Servo vs Firefox and Chrome test configuration. Listing contains a

part of configuration that enables the use of the BrowserStack testing service. The various

elements that make up a Bartender configuration file are described in Table G.1. The usage

of configuration files in Bartender is described in Section 6.6.

222

runs: 500
reduce-weights:

pick-mode: weight # weight, dist, or weight-dist
reduce-mode: zero # zero, max-child, or reducer
reducer-div: 10

start-seed: 0
quick-check:

iterations: 25
max-size: 50

weights:
base: ["resources/html5-weights.edn",

"resources/css3-weights.edn",
"resources/default-weights.edn"]

compare:
method: "SQDIFF_NORMED" # SQDIFF
threshold: 0.0001

web:
host: "127.0.0.1"
port: 3000
dir: "gen"

browsers:
firefox:

url: "http://localhost:7000"
capabilities: {"moz:firefoxOptions":

{"args": ["--headless"]}}
chrome:

url: "http://localhost:7001"
capabilities: {"chromeOptions":

{"args": ["--headless"]}}

Listing G.1: Bartender Configuration used for Testing Firefox against Chrome

223

runs: 100
reduce-weights:

pick-mode: weight # weight, dist, or weight-dist
reduce-mode: zero # zero, max-child, or reducer
reducer-div: 10

start-seed: 0
quick-check:

iterations: 25
max-size: 50

weights:
base: ["resources/html5-weights.edn",

"resources/css3-weights.edn",
"resources/default-weights.edn"
"firefox-chrome-weights.edn"]

compare:
method: "SQDIFF_NORMED" # SQDIFF
threshold: 0.0001
target: servo

web:
host: "127.0.0.1"
port: 3000
dir: "gen"

browsers:
firefox:

url: "http://localhost:7000"
capabilities: {"moz:firefoxOptions":

{"args": ["--headless"]}}
chrome:

url: "http://localhost:7001"
capabilities: {"chromeOptions":

{"args": ["--headless"]}}
servo:

url: "http://192.168.88.2:7002"

Listing G.2: Bartender Configuration used for Testing Servo against Firefox and Chrome

224

...
browsers:

bs-chrome-win-62:
url: "https://USER:KEY@hub-cloud.browserstack.com/wd/hub"
capabilities: {"browserstack.local": true,

"browser": "Chrome",
"browser_version": "69.0",
"os": "Windows",
"os_version": "10",
"resolution": "1024x768"}

bs-firefox-win-62:
url: "https://USER:KEY@hub-cloud.browserstack.com/wd/hub"
capabilities: {"browserstack.local": true,

"browser": "Firefox",
"browser_version": "62.0",
"os": "Windows",
"os_version": "10",
"resolution": "1024x768"}

bs-edge-win-17:
url: "https://USER:KEY@hub-cloud.browserstack.com/wd/hub"
capabilities: {"browserstack.local": true,

"browser": "Edge",
"browser_version": "17.0",
"os": "Windows",
"os_version": "10",
"resolution": "1024x768"}

Listing G.3: Portion of Bartender configuration used for testing with BrowserStack

225

Table G.1: Description of Bartender configuration file options

Path Type Description

runs integer total number of test runs to execute
start-seed integer pseudo-random number generator seed start
quick-check CONFIG quick-check execution config
quick-check ⇒ iterations integer maximum trial iterations per test run
quick-check ⇒ max-size integer maximum size to use with generator functions
compare CONFIG browser consensus config
compare ⇒ method string algorithm for measuring disagreement
compare ⇒ threshold float image disagreement measure threshold value
reduce-weights CONFIG optional weight reduction config
reduce-weights ⇒ pick-mode string selection algorithm for weight reduction
reduce-weights ⇒ reduce-mode string propagation algorithm for weight reduction
reduce-weights ⇒ reducer-div integer individual weight divisor for weight reduction
weights CONFIG initial weight/wtrek config
weights ⇒ base list wtrek files to merge into default wtrek config
weights ⇒ start string starting wtrek config (others set to zero)
web CONFIG embedded web server config
web ⇒ host string optional IP to bind embedded web service
web ⇒ port integer port to bind embedded web service to
web ⇒ dir string path to store test cases, images, logs
browsers CONFIG browsers consensus pool config
browsers ⇒ NAME CONFIG browser config (NAME is arbitrary string)
browsers ⇒ NAME ⇒ url string URL of WebDriver port for the browser
browsers ⇒ NAME ⇒ capabilities CONFIG Browser capabilities requested

226

Appendix H

Bartender Example Test Run

This appendix contains the output from the execution of a Bartender test run (tests com-

mand). Listing H.2 has elided lines (shown with “...”) and the large test case HTML has

been elided (shown with “............”).

227

HTTP kit server started on port: 3000, serving directory: gen
Loading HTML parser
Loading CSS parser
Initializing browser session for: :firefox
Nov 01, 2019 9:00:01 PM org.openqa.selenium.remote.ProtocolHandshake createSession
INFO: Detected dialect: W3C
Initializing browser session for: :chrome
Nov 01, 2019 9:00:02 PM org.openqa.selenium.remote.ProtocolHandshake createSession
INFO: Detected dialect: OSS
Initializing browser session for: :servo
Nov 01, 2019 9:00:02 PM org.openqa.selenium.remote.ProtocolHandshake createSession
INFO: Detected dialect: W3C
Test Mode: tests
Test Configuration:
{:quick-check {:iterations 25, :max-size 100},
:weights {:base :ELIDED-5243, :start :ELIDED-0},
:verbose 0,
:browsers
{:firefox
{:url "http://localhost:7000",
:capabilities {:moz:firefoxOptions {:args ("--headless")}}},
:chrome
{:url "http://localhost:7001",
:capabilities {:chromeOptions {:args ("--headless")}}},
:servo {:url "http://192.168.88.2:7002"}},
:compare {:method "SQDIFF_NORMED", :threshold 1.0E-4},
:start-seed 32,
:runs 10,
:reduce-weights
{:pick-mode "weight", :reduce-mode "zero", :reducer-div 10},
:web {:host "127.0.0.1", :port 3000, :dir "gen"}}

Press <Enter> to start tests

Listing H.1: Bartender tests command output (Part 1)

228

...

------ Run index 1 --------------------
Test State:
...

Loading http://127.0.0.1:3000/gen/28214-0-32/0.html in each browser
qc-report type: trial

Loading http://127.0.0.1:3000/gen/28214-0-32/1.html in each browser
qc-report type: trial

...

Loading http://127.0.0.1:3000/gen/28214-0-32/11.html in each browser
qc-report type: trial

Loading http://127.0.0.1:3000/gen/28214-0-32/12.html in each browser
Threshold violations: ("firefox" "chrome" "servo"), failure.
qc-report type: failure

...

Loading http://127.0.0.1:3000/gen/28214-0-32/115.html in each browser
Threshold violations: ("firefox" "chrome" "servo"), failure.
qc-report type: shrink-step
qc-report type: shrunk

Quick check results:
{:shrunk
{:total-nodes-visited 54,
:depth 14,
:pass? false,
:result false,
:result-data nil,
:time-shrinking-ms 198959,
:smallest
["<!DOCTYPE html><html><head><link rel=\"stylesheet\" href=\"/static/normalize.css\"><link

rel=\"stylesheet\" href=\"/static/rend.css\"></head><body>x<button></button><div
dir=\"\"></div></body></html>"]},

↪→
↪→

:failed-after-ms 24213,
:start-time #inst "2019-11-02T05:01:46.485-00:00",
:num-tests 13,
:end-time #inst "2019-11-02T05:05:29.746-00:00",
:seed 32,
:fail
["<!DOCTYPE html><html>............</html>"],
:result false,
:result-data nil,
:failing-size 12,
:pass? false,
:elapsed-ms 223261,
:current-seed 32}

Final test state: gen/28214.edn

Continuing to serve on port 3000
Press <Enter> to exit

Listing H.2: Bartender tests command output (Part 2)

229

Appendix I

Project/Library Versions and

Locations

This appendix provides a list of the projects and libraries that were created or used as

part of this research. Table I.1 lists the modules that were either created from scratch or

modified in significant ways. The source location, version, git source control hash, and code

license are listed for each module. Table I.2 lists the primary dependencies of the Bartender,

Instacheck, and html5-css3-ebnf modules. Each dependency listed with its common name,

version, short description, and source repository page. Table I.3 lists projects and libraries

that were either used during runtime testing (such as browsers) or during data analysis and

visualization. Each is listed with its common name, version, short description, and source

repository or project page.

Table I.1: Projects/Modules Created or Modified to support this research
Module Version git hash Project Site License

Instacheck 0.9.1 c5cb532 https://github.com/kanaka/instacheck MPL 2.0 [112]
html5-css3-ebnf 0.6.4 b7057b1 https://github.com/kanaka/html5-css3-ebnf MPL 2.0 [112]
Bartender 0.3.6 4357fde https://github.com/kanaka/bartender MPL 2.0 [112]
Instaparse (modified) 1.4.9.3 410e2b8 https://github.com/kanaka/instaparse EPL 1.0 [113]

230

Table I.2: Projects/Libraries used by Instacheck, html5-css3-ebnf, and Bartender
Name Version Description Project Site

Clojure 1.10.0 Clojure programming language https://github.com/clojure/clojure
ClojureScript 1.10.520 Clojure to JavaScript compiler https://github.com/clojure/clojurescript
test.check 0.10.0-alpha3 QuickCheck for Clojure https://github.com/Clojure/test.check
test.chuck 0.10.0-alpha3 Utility library for test.check https://github.com/gfredericks/test.chuck
Instaparse 1.4.9 Clojure context-free grammar parsers https://github.com/Engelberg/instaparse
Differ 0.3.2 Diffing and patching Clojure data https://github.com/Skinney/differ
Specter 1.1.0 Query/transform recursive Clojure data https://github.com/redplanetlabs/specter
Hickory 0.7.0 Translate HTML to/from Clojure data https://github.com/davidsantiago/hickory
Transit-clj 0.8.319 Clojure data marshalling/transport https://github.com/cognitect/transit-clj
Transit-cljs 0.8.256 Transit for ClojureScript https://github.com/cognitect/transit-cljs
ring 1.7.1 Modular HTTP server abstraction https://github.com/ring-clojure/ring
OpenCV 2.4.9 Open Source Computer Vision Library https://github.com/opencv/opencv
Selenium 3.141.59 WebDriver Browser automation https://github.com/SeleniumHQ/selenium
Reagent 0.8.1 ClojureScript interface to React.js https://github.com/reagent-project/reagent
Antizer 0.3.1 ClojureScript Ant React Components https://github.com/priornix/antizer
Meander 0.0.137 Clojure data transformation https://github.com/noprompt/meander
Oz 1.6.0-alpha6 Clojure data viz. with Vega/Vega-Lite https://github.com/metasoarous/oz
Vega 5.4.0 Visualization grammar https://github.com/vega/vega
Vega-Lite 4.0.0-beta.0 Grammar of interactive graphics https://github.com/vega/vega-lite

Table I.3: Projects/Libraries used by for test runs, data analysis, and data visualization
Name Version Description Project Site

Chrome 75.0.3770.142 Google Chrome web browser https://www.google.com/chrome/
Firefox 68.0 Mozilla Firefox web browser https://hg.mozilla.org/mozilla-central/
Servo git 9451a00 Mozilla Servo web browser https://github.com/servo/servo
Meander 0.0.137 Clojure data transformation https://github.com/noprompt/meander
Oz 1.6.0-alpha6 Clojure data viz. with Vega/Vega-Lite https://github.com/metasoarous/oz
Vega 5.4.0 Visualization grammar https://github.com/vega/vega
Vega-Lite 4.0.0-beta.0 Grammar of interactive graphics https://github.com/vega/vega-lite

231

Appendix J

Artifact Statistics

This appendix provides some summary statistics about the artifacts that were created or

generated as part of the research work. During the two phases of browser testing described

in 7, Bartender generated over 12 Gigabytes of test data composed of 13.5 million individual

files. Tables J.1 and J.2 list the number of lines of code in the three modules that make up

the test system. The monitoring and reporting application in Bartender are listed separately

from the Bartender core code. In addition, the line count include code that defines 230 unit

tests.

Component
Clojure &

ClojureScript
EBNF

HTML &
CSS

Total

Instacheck 3,514 3,514
html5-css3-ebnf 1,281 325 1,606
Bartender Core 1,330 22 208 1,560
Bartender Web Apps 1,011 414 1,425

Total 7,136 347 622 8,105

Table J.1: Written lines of code excluding comments and blank lines (SLOC)

232

Component
Clojure &

ClojureScript
EBNF CSS VDS Total

html5-css3-ebnf 8,163 634 8,797
Bartender Core 21,586 21,586

Total 21,586 8,163 634 30,383

Table J.2: Generated lines of code excluding comments and blank lines (SLOC)

233

Bibliography

[1] J. Martin and D. Levine, “Property-based testing of browser rendering engines with

a consensus oracle,” in 2018 IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), vol. 2. IEEE, 2018, pp. 424–429.

[2] A. Eicholz, S. Faulkner, S. Moon, T. Leithead, and A. Danilo, “HTML

5.2,” W3C, W3C Recommendation, Dec. 2017, https://www.w3.org/TR/2017/

REC-html52-20171214/.

[3] F. Rivoal, T. A. Jr., and E. Etemad, “CSS snapshot 2018,” W3C, W3C Note, Jan.

2019, https://www.w3.org/TR/2019/NOTE-css-2018-20190122/.

[4] I. Hickson. (2008, Dec.) Acid tests. http://www.acidtests.org/.

[5] First commit to servo browser engine. https://github.com/servo/servo/commit/

ce30d4520d67f2c6ef960571a9b3e450c5dcbebe.

[6] Servo Developers. (2017, Sep.) Servo design wiki page. https://github.com/servo/

servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954.

[7] Rust Language. https://rust-lang.org/.

[8] Servo Developers. (2017, Sep.) Servo design wiki page. https://github.

com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954#

the-task-architecture.

234

https://www.w3.org/TR/2017/REC-html52-20171214/
https://www.w3.org/TR/2017/REC-html52-20171214/
https://www.w3.org/TR/2019/NOTE-css-2018-20190122/
http://www.acidtests.org/
https://github.com/servo/servo/commit/ce30d4520d67f2c6ef960571a9b3e450c5dcbebe
https://github.com/servo/servo/commit/ce30d4520d67f2c6ef960571a9b3e450c5dcbebe
https://github.com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954
https://github.com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954
https://rust-lang.org/
https://github.com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954#the-task-architecture
https://github.com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954#the-task-architecture
https://github.com/servo/servo/wiki/Design/5aa3f8c3480e98cf2b72df470e2e333825046954#the-task-architecture

[9] T. A. Jr., F. Rivoal, and E. Etemad, “CSS snapshot 2015,” W3C, WD not longer in

development, Oct. 2015, http://www.w3.org/TR/2015/NOTE-css-2015-20151013/.

[10] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random testing of

haskell programs,” 2000.

[11] R. Hickey and other authors. Clojure. [Online]. Available: https://clojure.org/

[12] R. Draper and G. Fredericks. test.check. [Online]. Available: https://github.com/

clojure/test.check

[13] S. Stewart and D. Burns, “Webdriver,” W3C, W3C Recommendation, Jun. 2018,

https://www.w3.org/TR/2018/REC-webdriver1-20180605/.

[14] M. Engelberg. Instaparse. [Online]. Available: https://github.com/Engelberg/

instaparse

[15] Mozilla and individual contributors. (2018, Jan.) CSS3. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3

[16] E. Etemad and T. A. Jr., “CSS values and units module level 3,” W3C, Candidate Rec-

ommendation, Jan. 2019, https://www.w3.org/TR/2019/CR-css-values-3-20190131/.

[17] R. Lämmel and W. Schulte, “Controllable combinatorial coverage in grammar-based

testing,” in IFIP International Conference on Testing of Communicating Systems.

Springer, 2006, pp. 19–38.

[18] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Sp 800-142. practical combinatorial testing,”

2010.

[19] W. M. McKeeman, “Differential testing for software,” Digital Technical Journal,

vol. 10, no. 1, pp. 100–107, 1998.

235

http://www.w3.org/TR/2015/NOTE-css-2015-20151013/
https://clojure.org/
https://github.com/clojure/test.check
https://github.com/clojure/test.check
https://www.w3.org/TR/2018/REC-webdriver1-20180605/
https://github.com/Engelberg/instaparse
https://github.com/Engelberg/instaparse
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3
https://www.w3.org/TR/2019/CR-css-values-3-20190131/

[20] L. Lazaris. (2011, Sep.) How do browsers render the different css border style values?

[Online]. Available: https://www.impressivewebs.com/comparison-css-border-style/

[21] T. Fahrner, P. Nelson, and S. Malkin. (2016, Jul.) Ahem font. [Online]. Available:

https://www.w3.org/Style/CSS/Test/Fonts/Ahem/

[22] W. Authors. (2018, Jan.) The ahem font. http://web-platform-tests.org/writing-tests/

ahem.html.

[23] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms software with quviq

quickcheck,” in Proceedings of the 2006 ACM SIGPLAN workshop on Erlang. ACM,

2006, pp. 2–10.

[24] J. Hughes, “How to specify it!” 2019.

[25] S. Sahayam. (2017, Apr) How does scalacheck shrinking work? [Online]. Available:

https://blog.ssanj.net/posts/2017-04-12-how-does-scalacheck-shrinking-work.html

[26] N. Smallbone. (2016, Dec) Different approach to shrinking (comment). [Online]. Avail-

able: https://github.com/nick8325/quickcheck/issues/130#issuecomment-265606351

[27] J. Hughes, “Quickcheck testing for fun and profit,” in International Symposium on

Practical Aspects of Declarative Languages. Springer, 2007, pp. 1–32.

[28] L. M. Castro, P. Lamela, and S. Thompson, “Making property-based testing easier to

read for humans,” Computing and Informatics, vol. 35, no. 4, pp. 890–913, 2017.

[29] Wikipedia contributors, “Observable universe,” 2019, [Online; accessed 2019-

11-06]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Observable

universe&oldid=924843744

[30] J. Hughes, U. Norell, N. Smallbone, and T. Arts, “Find more bugs with quickcheck!”

in Proceedings of the 11th International Workshop on Automation of Software Test.

ACM, 2016, pp. 71–77.

236

https://www.impressivewebs.com/comparison-css-border-style/
https://www.w3.org/Style/CSS/Test/Fonts/Ahem/
http://web-platform-tests.org/writing-tests/ahem.html
http://web-platform-tests.org/writing-tests/ahem.html
https://blog.ssanj.net/posts/2017-04-12-how-does-scalacheck-shrinking-work.html
https://github.com/nick8325/quickcheck/issues/130#issuecomment-265606351
https://en.wikipedia.org/w/index.php?title=Observable_universe&oldid=924843744
https://en.wikipedia.org/w/index.php?title=Observable_universe&oldid=924843744

[31] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[32] World Wide Web Consortium (W3C). [Online]. Available: https://www.w3.org/

[33] J. Nelson, “The design and use of quickcheck,” 2017, [Online; accessed 2019-11-01].

[Online]. Available: https://begriffs.com/posts/2017-01-14-design-use-quickcheck.

html

[34] A. B. Kahn, “Topological sorting of large networks,” Commun. ACM, vol. 5, no. 11, pp.

558–562, Nov. 1962. [Online]. Available: http://doi.acm.org/10.1145/368996.369025

[35] T. Ormandy. (2013, Aug.) Kahn’s topological sort in clojure. [Online]. Available: https:

//gist.github.com/alandipert/1263783/11de850ddeff201330fbd1f78d2518c451fa509b

[36] P. Hagelberg. Leiningen. [Online]. Available: https://github.com/technomancy/

leiningen

[37] CERN. http://home.cern.

[38] WHATWG. https://whatwg.org/.

[39] HTML5 History. https://dev.w3.org/html5/spec-LC/introduction.html#history.

[40] W3C Authors. (2018, Jan.) HTML. https://github.com/w3c/html.

[41] D. Santiago. Hickory. [Online]. Available: https://github.com/davidsantiago/hickory

[42] S. Ruby and A. van Kesteren, “URL,” W3C, WD not longer in development, Dec.

2016, https://www.w3.org/TR/2016/NOTE-url-1-20161206/.

[43] B. Bos. (2019) CSS Specifications. [Online]. Available: https://www.w3.org/Style/

CSS/current-work

237

https://www.w3.org/
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
http://doi.acm.org/10.1145/368996.369025
https://gist.github.com/alandipert/1263783/11de850ddeff201330fbd1f78d2518c451fa509b
https://gist.github.com/alandipert/1263783/11de850ddeff201330fbd1f78d2518c451fa509b
https://github.com/technomancy/leiningen
https://github.com/technomancy/leiningen
http://home.cern
https://whatwg.org/
https://dev.w3.org/html5/spec-LC/introduction.html#history
https://github.com/w3c/html
https://github.com/davidsantiago/hickory
https://www.w3.org/TR/2016/NOTE-url-1-20161206/
https://www.w3.org/Style/CSS/current-work
https://www.w3.org/Style/CSS/current-work

[44] Mozilla and individual contributors. (2018, Jan.) Value definition syn-

tax. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/CSS/

Value definition syntax

[45] R. Weakley, “Understanding the css property value syntax,” 2016, [Online;

accessed 2019-11-01]. [Online]. Available: https://www.smashingmagazine.com/2016/

05/understanding-the-css-property-value-syntax/

[46] M. Team. (2018, Jan.) MDN Web Technology Data. https://github.com/mdn/data.

[47] S. Chacon and B. Straub, “Pro git (second edition),” 2014, [Online; accessed 2019-11-

01]. [Online]. Available: https://git-scm.com/book/en/v2/Git-Tools-Submodules

[48] Web Standards Project. https://www.webstandards.org.

[49] Wikipedia contributors, “Web standards project,” 2019, [Online; accessed 2019-11-

19]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Web Standards

Project&oldid=926378476

[50] Acid1 test. https://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm.

[51] Wikipedia contributors, “Acid1,” 2019, [Online; accessed 2019-11-19]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Acid1&oldid=926881280

[52] Acid2 test. http://acid2.acidtests.org/#top.

[53] Wikipedia contributors, “Acid2,” 2019, [Online; accessed 2019-11-19]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Acid2&oldid=926717324

[54] Acid3 test. http://acid3.acidtests.org/.

[55] Wikipedia contributors, “Acid3,” 2019, [Online; accessed 2019-11-19]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Acid3&oldid=924197884

[56] WPT Authors. (2019) web-platform-tests. https://web-platform-tests.org.

238

https://developer.mozilla.org/en-US/docs/Web/CSS/Value_definition_syntax
https://developer.mozilla.org/en-US/docs/Web/CSS/Value_definition_syntax
https://www.smashingmagazine.com/2016/05/understanding-the-css-property-value-syntax/
https://www.smashingmagazine.com/2016/05/understanding-the-css-property-value-syntax/
https://github.com/mdn/data
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.webstandards.org
https://en.wikipedia.org/w/index.php?title=Web_Standards_Project&oldid=926378476
https://en.wikipedia.org/w/index.php?title=Web_Standards_Project&oldid=926378476
https://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
https://en.wikipedia.org/w/index.php?title=Acid1&oldid=926881280
http://acid2.acidtests.org/#top
https://en.wikipedia.org/w/index.php?title=Acid2&oldid=926717324
http://acid3.acidtests.org/
https://en.wikipedia.org/w/index.php?title=Acid3&oldid=924197884
https://web-platform-tests.org

[57] P. le Hegaret. (2017, May) The web-platform-tests project. [Online]. Available:

https://www.w3.org/blog/2017/05/the-web-platform-tests-project/

[58] WPT Authors. (2019) Writing Tests. https://web-platform-tests.org/writing-tests/

index.html.

[59] ——. (2019) Reftests. https://web-platform-tests.org/writing-tests/reftests.html.

[60] ——. (2019) Visual Tests. https://web-platform-tests.org/writing-tests/visual.html.

[61] R. Hickey and other authors. Clojurescript. [Online]. Available: https://github.com/

clojure/clojurescript

[62] Wikipedia contributors, “Bug compatibility,” 2019, [Online; accessed 2019-11-10].

[Online]. Available: https://en.wikipedia.org/w/index.php?title=Bug compatibility&

oldid=916996650

[63] OpenCV. https://github.com/opencv/opencv.

[64] OpenCV Template Matching. https://docs.opencv.org/2.4/doc/tutorials/imgproc/

histograms/template matching/template matching.html.

[65] Wikipedia contributors, “Quirks mode,” 2019, [Online; accessed 2019-11-

10]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Quirks mode&

oldid=923879006

[66] W3C Authors. (2019) Doctypes and markup styles. https://www.w3.org/wiki/

Doctypes and markup styles.

[67] “What is a css reset?” 2019, [Online; accessed 2019-11-01]. [Online]. Available:

https://cssreset.com/what-is-a-css-reset/

[68] E. A. Meyer, “Css tools: Reset css,” 2019, [Online; accessed 2019-11-01]. [Online].

Available: https://meyerweb.com/eric/tools/css/reset/

239

https://www.w3.org/blog/2017/05/the-web-platform-tests-project/
https://web-platform-tests.org/writing-tests/index.html
https://web-platform-tests.org/writing-tests/index.html
https://web-platform-tests.org/writing-tests/reftests.html
https://web-platform-tests.org/writing-tests/visual.html
https://github.com/clojure/clojurescript
https://github.com/clojure/clojurescript
https://en.wikipedia.org/w/index.php?title=Bug_compatibility&oldid=916996650
https://en.wikipedia.org/w/index.php?title=Bug_compatibility&oldid=916996650
https://github.com/opencv/opencv
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://en.wikipedia.org/w/index.php?title=Quirks_mode&oldid=923879006
https://en.wikipedia.org/w/index.php?title=Quirks_mode&oldid=923879006
https://www.w3.org/wiki/Doctypes_and_markup_styles
https://www.w3.org/wiki/Doctypes_and_markup_styles
https://cssreset.com/what-is-a-css-reset/
https://meyerweb.com/eric/tools/css/reset/

[69] Nicolas Gallagher. A modern alternative to CSS resets. https://github.com/necolas/

normalize.css.

[70] Servo Issues. https://github.com/servo/servo/issues/.

[71] Selenium. https://github.com/SeleniumHQ/selenium.

[72] BrowserStack. https://www.browserstack.com.

[73] Reagent. https://github.com/reagent-project/reagent.

[74] React. https://reactjs.org.

[75] Differ. https://github.com/Skinney/differ.

[76] Brave Community / Issues. https://community.brave.com/t/.

[77] Firefox Issues. https://bugzilla.mozilla.org/show bug.cgi.

[78] Brave authors. brave-browser/package.json. https://github.com/brave/brave-browser/

blob/dd0ad3450/package.json#L32.

[79] Wikipedia contributors, “Brave (web browser),” 2019, [Online; accessed 2019-

11-10]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Brave (web

browser)&oldid=926442562

[80] G. Fink, C. Ko, M. Archer, and K. Levitt, “Towards a property-based testing envi-

ronment with applications to security-critical software,” CALIFORNIA UNIV DAVIS

DEPT OF COMPUTER SCIENCE, Tech. Rep., 1994.

[81] G. Fink and M. Bishop, “Property-based testing: a new approach to testing for assur-

ance,” ACM SIGSOFT Software Engineering Notes, vol. 22, no. 4, pp. 74–80, 1997.

[82] G. Ofenbeck, T. Rompf, and M. Püschel, “Randir: differential testing for embed-

ded compilers,” in Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala.

ACM, 2016, pp. 21–30.

240

https://github.com/necolas/normalize.css
https://github.com/necolas/normalize.css
https://github.com/servo/servo/issues/
https://github.com/SeleniumHQ/selenium
https://www.browserstack.com
https://github.com/reagent-project/reagent
https://reactjs.org
https://github.com/Skinney/differ
https://community.brave.com/t/
https://bugzilla.mozilla.org/show_bug.cgi
https://github.com/brave/brave-browser/blob/dd0ad3450/package.json#L32
https://github.com/brave/brave-browser/blob/dd0ad3450/package.json#L32
https://en.wikipedia.org/w/index.php?title=Brave_(web_browser)&oldid=926442562
https://en.wikipedia.org/w/index.php?title=Brave_(web_browser)&oldid=926442562

[83] B. K. Aichernig, S. Marcovic, and R. Schumi, “Property-based testing with external

test-case generators,” in 2017 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW). IEEE, 2017, pp. 337–346.

[84] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics) compilers,” in

Proceedings of the 1st International Workshop on Metamorphic Testing. ACM, 2016,

pp. 44–47.

[85] Z. Wang, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing for adobe

analytics data collection javascript library,” in Proceedings of the 3rd International

Workshop on Metamorphic Testing. ACM, 2018, pp. 34–37.

[86] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q. Zhou,

“Metamorphic testing: A review of challenges and opportunities,” ACM Computing

Surveys (CSUR), vol. 51, no. 1, p. 4, 2018.

[87] W. E. Howden, “Theoretical and empirical studies of program testing,” in Proceedings

of the 3rd international conference on Software engineering. IEEE Press, 1978, pp.

305–311.

[88] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in

software testing: A survey,” IEEE transactions on software engineering, vol. 41, no. 5,

pp. 507–525, 2015.

[89] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the crowd solve the oracle

problem,” in International Conference on Software Testing, Verification and Validation

(ICST), 2013, pp. 342–351.

[90] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Efficient domain-

independent differential testing,” in Security and Privacy (SP), 2017 IEEE Symposium

on. IEEE, 2017, pp. 615–632.

241

[91] W. H. Burkhardt, “Generating test programs from syntax,” Computing, vol. 2, no. 1,

pp. 53–73, 1967.

[92] A. G. Duncan and J. S. Hutchison, “Using attributed grammars to test designs and

implementations,” in Proceedings of the 5th international conference on Software en-

gineering. IEEE Press, 1981, pp. 170–178.

[93] D. C. Ince, “The automatic generation of test data,” The Computer Journal, vol. 30,

no. 1, pp. 63–69, 1987.

[94] P. M. Maurer, “Generating test data with enhanced context-free grammars,” IEEE

Software, vol. 7, no. 4, pp. 50–55, Jul 1990, copyright - Copyright IEEE Computer

Society Jul/Aug 1990; Last updated - 2014-05-22; CODEN - IESOEG.

[95] E. Salecker and S. Glesner, “Combinatorial interaction testing for test selection in

grammar-based testing,” in Software Testing, Verification and Validation (ICST), 2012

IEEE Fifth International Conference on. IEEE, 2012, pp. 610–619.

[96] F. M. Kifetew, R. Tiella, and P. Tonella, “Combining stochastic grammars and genetic

programming for coverage testing at the system level,” in International Symposium on

Search Based Software Engineering. Springer, 2014, pp. 138–152.

[97] ——, “Generating valid grammar-based test inputs by means of genetic programming

and annotated grammars,” Empirical Software Engineering, vol. 22, no. 2, pp. 928–961,

2017.

[98] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” in

ACM Sigplan Notices, vol. 43, no. 6. ACM, 2008, pp. 206–215.

[99] T. Guo, P. Zhang, X. Wang, and Q. Wei, “Gramfuzz: Fuzzing testing of web browsers

based on grammar analysis and structural mutation,” in Informatics and Applications

(ICIA), 2013 Second International Conference on. IEEE, 2013, pp. 212–215.

242

[100] J. Patra and M. Pradel, “Learning to fuzz: Application-independent fuzz testing with

probabilistic, generative models of input data,” TU Darmstadt, Department of Com-

puter Science, Tech. Rep. TUD-CS-2016-14664, 2016.

[101] C. Lemieux and K. Sen, “Fairfuzz: a targeted mutation strategy for increasing greybox

fuzz testing coverage,” in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering. ACM, 2018, pp. 475–485.

[102] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2018, pp. 2123–2138.

[103] T. Ormandy. (2018, Sep.) halfempty. [Online]. Available: https://github.com/

googleprojectzero/halfempty

[104] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in Proceedings of

the 23rd international conference on Software engineering. IEEE Computer Society,

2001, pp. 25–34.

[105] C. Eaton and A. M. Memon, “An empirical approach to evaluating web application

compliance across diverse client platform configurations,” International Journal of Web

Engineering and Technology, vol. 3, no. 3, pp. 227–253, 2007.

[106] S. R. Choudhary, H. Versee, and A. Orso, “Webdiff: Automated identification of

cross-browser issues in web applications,” in 2010 IEEE International Conference on

Software Maintenance. IEEE, 2010, pp. 1–10.

[107] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility testing,” in

Proceedings of the 33rd International Conference on Software Engineering. ACM,

2011, pp. 561–570.

243

https://github.com/googleprojectzero/halfempty
https://github.com/googleprojectzero/halfempty

[108] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-pert: accurate identification of

cross-browser issues in web applications,” in Proceedings of the 2013 International

Conference on Software Engineering. IEEE Press, 2013, pp. 702–711.

[109] N. Semenenko, M. Dumas, and T. Saar, “Browserbite: Accurate cross-browser testing

via machine learning over image features,” in Software Maintenance (ICSM), 2013

29th IEEE International Conference on. IEEE, 2013, pp. 528–531.

[110] P. Lu, W. Fan, J. Sun, H. Tanaka, and S. Naoi, “Webpage cross-browser test from

image level,” in Multimedia and Expo (ICME), 2017 IEEE International Conference

on. IEEE, 2017, pp. 349–354.

[111] J. R. Calamé and J. van de Pol, “Applying model-based testing to html rendering

engines–a case study,” in Testing of Software and Communicating Systems. Springer,

2008, pp. 250–265.

[112] “Mozilla public license version 2.0,” Mozilla Foundation. [Online]. Available:

https://www.mozilla.org/en-US/MPL/2.0/

[113] “Eclipse public license,” Eclipse Foundation. [Online]. Available: https://www.eclipse.

org/legal/epl-v10.html

244

https://www.mozilla.org/en-US/MPL/2.0/
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html

	Introduction
	Motivation and Objectives
	Browser Testing Challenges
	Solving the Limitations of pbt with Instacheck
	Use case: a New Web Browser Engine
	Objectives

	Modules and Document Structure
	Modules
	Document Structure

	``Property-Based Testing of Browser Rendering Engines with a Consensus Oracle" (COMPSAC, July 2018)
	Abstract
	Introduction
	Property-Based Testing (PBT)
	Test Generation using Clojure test.check
	Test Shrinking

	Test System Architecture
	Grammar-based Input Generators
	HTML5 Grammar
	CSS3 Grammar

	Generator Tuning
	Consensus
	Challenges
	Calculating Consensus

	Results
	Related Work
	Conclusion and Future Work

	``Instacheck: An Automated Property-based Testing Model to Increase Coverage and Enable Directed Testing using Weighted Grammars"
	Abstract
	Introduction
	Property-based Testing (PBT)
	PBT Input Properties
	PBT Test Shrinking
	Limitations of pbt

	Instacheck
	Instacheck Grammars
	Grammar Weights
	Grammar Paths, and Treks
	Grammar Weight Reduction and Propagation
	Reproducing and Shrinking Existing Test Cases

	Results
	Test Grammars
	Controlling Coverage
	Increasing Coverage with Weight Reduction
	Shrinking
	Reproducing Existing Test Cases
	Case-study: Detecting Browser Rendering Differences

	Related Work
	Conclusion
	Future Work

	Instacheck In Greater Depth
	Clojure test.check pbt Example
	Clojure test.check Generators
	ebnf Generators and Weight Tuning
	MG4 and MG8 Grammars

	Translating ebnf Grammars to Clojure Generators
	Instacheck Command Line and Library Usage
	Generate Random Test Cases
	Test and Shrink
	Reproduce and Shrink an existing Test Case
	Translate ebnf Specification into Clojure Generators

	html and css Grammars (html5-css3-ebnf)
	bnf and ebnf Background
	html5 Grammar
	html5 Background
	Parsing and Translating html5

	css3 Grammar
	css3 Background
	The css3 vds Grammar
	Parsing and Translating css3

	Parsing Challenges
	html5-css3-ebnf Usage
	Generate ebnf Parsing Grammars
	Parse Web Pages

	Bartender: Browser Automated Render TestiNg DrivER
	The State of Browser Render Testing
	Bartender System Architecture
	Optimizing and Translating ebnf Grammars to Clojure Generators
	Bartender Testing Process

	Consensus
	Consensus Algorithms
	Consensus Challenges and Solutions
	Consensus Example

	WebDriver Browser Automation
	Monitoring and Reporting Applications
	Runtime Monitoring Application
	Test Reporting Application

	Bartender Usage
	Executing Test Runs
	Compare Renderings of an Existing Web Page
	Parse an Existing Web Page
	Optimize and Translate ebnf Grammars to Clojure Generators

	Overall Browser Render Testing Results
	Testing Firefox against Chrome
	Testing Servo against Firefox and Chrome
	Bugs Discovered and Reported

	Related Work
	Property-based Testing (pbt) / Metamorphic Testing
	Consensus Oracle / Differential Testing
	Grammar-based Testing
	Fuzz Testing
	Browser Testing

	Concluding Remarks
	Future Directions

	Translations of math.ebnf Grammar to Clojure Generators
	Instacheck Library Functions
	Full Instaparse ebnf Syntax
	Tags and Attributes Grammar
	Firefox versus Chrome Rendering Differences Data
	Servo versus Firefox and Chrome Rendering Differences Data
	Bartender Configurations used for Render Testing
	Bartender Example Test Run
	Project/Library Versions and Locations
	Artifact Statistics
	Bibliography

