
LEARNING ROBOT MANIPULATION TASKS VIA OBSERVATION

by

MICHAIL THEOFANIDIS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington, in the context of the Ph.D. program,

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2019

Copyright c© by MICHAIL THEOFANIDIS 2019

All Rights Reserved

To my family and friends for always being by my side.

ACKNOWLEDGEMENTS

Firstly I would like to express my sincerest gratitude to my supervisor Prof.

Fillia Makedon for believing in me and for her continuous and unconditional support

in my research. Her intuition and guidance have been invaluable towards completing

my Ph.D.

In addition, I would like to thank my colleagues and labmates at the Heracleia

Lab, UTA for the numerous fruitful conversations and collaborations we had over

the years. They all played a special role in the successful completion of this Thesis.

Special thanks go to my dear friends Alexandros Lioulemes, Joe Cloud and Maher

Abujelala for their constant support and mentoring. Their knowledge has been an

indispensable factor towards improving my research skills and becoming a better

scientist. Moreover, I would like to thank the committee members of this thesis and

professors at UT Arlington for their valuable research insights during my Ph.D.

Lastly, I would like to thank my parents Stavros and Olga, as well as my two

siblings Faidon and Sofia for being the greatest source of emotional support and

encouragement I could ever ask for.

November 26, 2019

iv

ABSTRACT

LEARNING ROBOT MANIPULATION TASKS VIA OBSERVATION

MICHAIL THEOFANIDIS, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Fillia Makedon

The coexistence of humans and robots has been the aspiration of many scien-

tific endeavors in the past century. Most anthropomorphic or industrial robots are

highly articulated and complex machines, which are designed to carry out tasks that

often involve the manipulation of physical objects. Traditionally, robots learn how to

perform such tasks with the aid of a human programmer or operator. In this regard,

the human acts as a teacher who provides a demonstration of a task. From the data

of the demonstration, the robot must learn a state-action mapping that accomplishes

the task. This state-action mapping is often addressed in the literature as a policy

[1]. A common strategy for the acquisition of robot motor policies for a task is often

achieved with Learning from Demonstration (LfD) algorithms [1].

Initial attempts to create LfD methods relied purely on supervised learning algo-

rithms [2], while most modern paradigms rely on Reinforcement Learning (RL). This

phenomenon indicates a shift from supervised learning to goal-oriented algorithms

[3]. The development of the Dynamic Movement Primitive (DMP) framework [4] was

an essential contribution to this trend, as it provides an abstraction layer between

the dimensions of state, action, and environment by computing a policy with distinct

v

meta-parameters that affect the behavior of the robot [5]. One of the advantages of

the DMP framework is its ability to learn motor policies by transforming motion tra-

jectories (high-dimensional space) to specific motion features (low-dimensional latent

space) via regression.

The DMP framework learns policies that lie in the trajectory level. However,

humans and other animals are capable of learning new behaviors simply by obser-

vation. Robots need to achieve the same performance even if there is a substantial

domain shift in the environment, embodiment, and perspective between the robot

and the teacher [6]. Most modern large deep neural network models can enable com-

plex motor skill representation across different embodiments. As such, we propose

a method to learn end-to-end visuomotor policies for robotic arms from demonstra-

tions. The method computes state-action mappings in a supervised learning manner

from raw images and motor commands. At the core of the system, a Convolutional

Neural Network (CNN) extracts image features and produces motion features. The

motion features encode and reproduce motor commands according to the Dynamic

Movement Primitives (DMP) framework.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . x

Chapter Page

1. Introduction . 1

1.1 Evolution of Robot Programming . 1

1.1.1 Early Robot Programming . 1

1.1.2 From Programming to Imitation 3

1.2 A Taxonomy for Imitation Learning methods 4

1.2.1 Data collection . 5

1.2.2 Feature selection . 7

1.2.3 Policy derivation . 7

1.3 Learning from Demonstration . 9

1.4 Classification of LfD methods . 9

1.4.1 Teleoperation . 11

1.4.2 Sensors on Teacher . 12

1.4.3 Shadowing . 12

1.4.4 External Observation . 13

2. Dynamic Movement Primitives . 15

2.1 Model Development . 15

2.2 The Dynamic Movement Primitives Framework 18

2.3 Learning Movement Primitives . 19

vii

2.4 Dynamic Movement Primitives for Multiple Degrees of Freedom . . . 20

2.5 Adaptation with Reinforcement Learning 21

2.6 Learning Motor Skills with Dynamic Movement Primitives 23

3. A Motion and Force Analysis System for Human Upper-limb Detection . . 27

3.1 Human Arm Kinematic model . 29

3.1.1 Forward Kinematics of the Human Arm Kinematic model . . . 30

3.1.2 Inverse Kinematics of the Human Arm Kinematic model . . . 31

3.1.3 Human Arm Dynamic Model 33

3.2 Motion and Force Analysis System Overview 36

3.3 Experimental Assumptions . 39

3.4 Experimental Results . 40

4. VARM: Using Virtual Reality to Program Robotic Manipulators 44

4.1 Programming Robotic Manipulators with Virtual Reality VARM . . . 44

4.2 System Components . 47

4.2.1 Forward Kinematics of the 4-DoF Barrett WAM 47

4.2.2 Inverse Kinematics of the 4-DoF Barrett WAM 49

4.2.3 Gesture Detection . 52

4.3 VARM System Architecture . 53

4.4 Experimental Hypothesis and Case Study 55

4.5 Experimental Results . 57

4.6 Summary . 59

5. Combining Forward and Inverse Models with Reinforcement Learning for

Motor Policy Adaptation . 61

5.1 Forward and Inverse Model System Architecture 63

5.1.1 Phase One: Policy Estimation 63

5.1.2 Phase Two: Policy optimization 70

viii

5.2 Experimental Section . 71

5.2.1 Hypothesis . 72

5.2.2 Experimental Protocol . 72

5.2.3 Implementation Details . 73

5.2.4 Experimental Results . 74

6. Learning Visuomotor Policies by Combining Movement Primitives and Con-

volutional Neural Networks . 78

6.1 Method to learn end-to-end visuomotor policies 78

6.2 Architecture of the Proposed Learning Method 82

6.2.1 Data Pre-processing . 83

6.2.2 First Sub-module Architecture 83

6.3 Experimental Section . 85

6.3.1 Experimental Framework . 85

6.3.2 Test cases . 85

6.3.3 Implementation Details . 87

6.3.4 Experimental Results . 89

7. Epilogue . 94

7.1 Summary . 94

7.2 Conclusion and Future Work . 94

7.3 Published Implementations . 96

REFERENCES . 97

BIOGRAPHICAL STATEMENT . 105

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Diagram depicting multi-modal teleoperation architecture for robotic

arms used in manufacturing scenarios [7] 2

1.2 Generalized pattern of imitation learning frameworks showing how ac-

quired skills are turned into learned skills 4

1.3 A human operator performs a demonstration with kinesthetic teaching 5

1.4 A human operator teaches a robot in VR simulation. Figure reproduced

from [8] . 6

1.5 Learning from Demonstration framework depicting the multi-phase sys-

tem in which a policy is derived and later executed. Figure reproduced

from [1] . 8

1.6 State-action mappings between teacher and learner showing the se-

quence of mappings between the original demonstration and the learner

reproducing the movements [1] . 9

1.7 Categories of LfD methods [1] . 10

1.8 Example of a Shadowing LfD method depicting a human performing a

demonstration in front of a camera which is later encoded by a neural

network into robot gestures [9] . 13

2.1 Example of the decay of the phase variable s for duration τ=656 sec

and α=25 . 17

2.2 Graphical representation of the DMP framework for point-to-point sys-

tems . 18

x

2.3 Extension of the Dynamics Movement Primitives framework for a sys-

tem with multiple degrees of freedom where each degree of freedom is

represented by a different transformation system 21

2.4 Human teacher demonstrating the task via kinesthetic teaching, the

data is recorded into a database . 24

2.5 A representation of the data from the trajectory shown in figure 2.4 . . 24

2.6 The smoothing introduced in the learned trajectory with data from

Figure 2.4 . 25

2.7 The left figure depicts the initial Gaussian representation of the mo-

tor policy which is learned from 2.4. The right figure shows how the

Gaussian policies changed with Reinforcement Learning 26

2.8 Comparing the position trajectory of the initial Gaussian policy in red

line with the altered Gaussian policy in black line from Figure 2.7 . . . 26

3.1 4 DoF Kinematic Model of the Human Arm depicting the coordinate

frames for each joint and sensor . 29

3.2 Anthropomorphic data for the human body segments captured by [10].

The table values are the mass distributions for different body parts . . 36

3.3 End-to-end pipeline for capturing human key-points with Kinect v2

through processing of data and finally application of RNE to calculate

torques that affect the human arm . 37

3.4 The above images present four frames for a particular exercise, and

jerky motions from the Kinect is inevitable. Note, that the Kinect

doesn’t estimate precisely the position of the left arm, because of the

same depth information with the rest of the body 38

xi

3.5 The top four diagrams show the evolution of the exercise motion for

the raw Kinect model. The bottom four diagrams present the corrected

motion based on the polynomial fitting motion estimation 38

3.6 Captured Elbow and Wrist positions by the Kinect,blue line. Filtered

Elbow data, red line. Note that the proposed method eliminates oscil-

lations present in the original signal 40

3.7 The image of the left side depicts the polynomial fitting of the estimated

joint angles from the IK solver. The fitted solutions are shown in red

color, while the raw angles are in blue. The right image shows the

velocities of the fitted joint angles . 40

3.8 Angular accelerations for the four joints 41

3.9 Estimated Torques (N/m) for the four joints 42

4.1 The interface of the proposed method with the various components high-

lighted . 46

4.2 Barrett WAM Arm kinematic model and the Virtual Robot in Maya

showing the link configurations . 47

4.3 VARM System Architecture depicting the three stage pipeline: acquire,

process, and perform. Note that the process performed relies on which

hand is used . 53

4.4 2D Graphical User Interface to Control the Barrett WAM. The Interface

is used as a baseline comparison to measure the effectiveness of the

proposed method . 55

4.5 Physical configuration of the experiment depicting the boxes used and

the relative position of the robotic arm. The VR setup can be found in

the upper left hand corner of the image 56

xii

4.6 Overview of the three different interface systems where both MATLAB

control code and VR interact with the Barrett WAM via ROS 57

4.7 Average time to perform a task between the thee interface systems of

Figure 4.6. Note that due to the cumbersome interface of the 2D GUI,

it required over double the time as VARM to perform the task 58

4.8 Number of collisions per task when comparing the three interface sys-

tems of Figure 4.6. Physical interactions avoid collisions as the robot

can be directly manipulated in the original environment 59

5.1 Architecture of system that combines forward and inverse models with

reinforcement to learn motor policies 63

5.2 Kinematic Model of the Sawyer Robot 66

5.3 Architecture of the Forward Model . 67

5.4 Error between the forward kinematic equation and the network in the

x dimension . 68

5.5 Error between the forward kinematic equation and the network in the

y dimension . 69

5.6 Error between the forward kinematic equation and the network in the z

dimension . 69

5.7 Inverse Model Training Data . 70

5.8 Scenario 1: The robot performs the second experiments and attempts

to grab the cube at δ̂2 = [−0.217,−0.474,−0.04]. 75

5.9 Scenario 2: The robot performs the second experiments and attempts

to grab the cylinder at δ̂2 = [−0.217,−0.474,−0.04]. 75

5.10 Calculated trajectories for scenario 2, experiment 2 75

5.11 Calculated trajectories for scenario 1, experiment 2 76

6.1 LfD with the DMPs . 80

xiii

6.2 LfD with CNN . 80

6.3 Proposed LfD method . 80

6.4 The architecture of the proposed learning method depicting the end-to-

end system . 82

6.5 Simulation Environment in Unreal Engine 84

6.6 Robot reaches an object from the side.l Engine 84

6.7 Robot reaches an object from the top 84

6.8 Error between end effector and object. 87

6.9 Test case for object 1 and δ4 . 88

6.10 Test case for object 2 and δ2 . 89

6.11 Test case for object 3 and δ8 . 89

6.12 test case for object 3 and δ1 . 89

6.13 Test case for object 1 and δ4 . 91

6.14 Test case for object 2 and δ2 . 91

6.15 Test case for object 3 and δ8 . 92

6.16 Test case for object 3 and δ1 . 92

xiv

CHAPTER 1

Introduction

As technology becomes more important in manufacturing and domestic applica-

tions, creating easily re-programmable machines has become increasingly necessary.

During the past century, many advances in the field of Human-Computer Interac-

tion (HCI) enabled users to perform complex operations with computers, without

any knowledge of their internal operation. Compared to computers, robots are not

as easily programmed because they can move in the real world. This phenomenon

makes the creation of user-friendly robotic applications a challenging task. In the

following section, we briefly discuss the evolution of robot programming and provide

an overview of modern imitation learning paradigms.

1.1 Evolution of Robot Programming

1.1.1 Early Robot Programming

Robot programming traces back to the 1980s with manufacturing robotics [11],

as a response to the rapidly increasing number of industrial robots [12]. Early robot

programming relied on manual teleoperation control through various interface devices.

Initial research focused on the design and creation of safe and easy-to-use interfaces

that enabled robotic arms to perform simple manual tasks. Common technologies for

robot operation include control devices, 2D and 3D Graphical User Interfaces (GUIs),

Virtual Reality (VR) interfaces [13], mechanical trackers and exoskeletons [14]. Fig-

ure 1.1 provides an illustration of early robot programming concepts. One of the key

problems that researchers tried to address is the creation of interfaces for operators

1

that have no prior knowledge of robotics. This endeavor entailed the decoupling of

the kinematic complexity of the robot from it’s programming [8]. Thus, human-robot

interfaces should have a wide range of communicative modalities that allow a hu-

man operator to control multiple Degrees of Freedom (DoFs) while visualizing the

work-space of the robot and tracking the robot’s surroundings.

Figure 1.1. Diagram depicting multi-modal teleoperation architecture for robotic
arms used in manufacturing scenarios [7].

By utilizing one or multiple of the previously mentioned technologies, human

operators were able to demonstrate how a robot should perform a task. During

2

the demonstration, the system captures sensorimotor information. As sensorimotor

information, we define variables such as the position of the robot and the location of

the object [2]. This information is then stored in a database and used by the robot

to replicate the task. By performing multiple demonstrations, robot operators could

created a battery of different point-to-point movements that could be played back to

perform different tasks.

1.1.2 From Programming to Imitation

As robot programming became a topic of interest in the field of HRI, researchers

developed the idea that robots should learn how to perform a task by human guid-

ance. This idea was indirectly influenced by the human tendency to learn practical

skills from other humans by imitation. Eventually, as HRI became more human-

centric and bio-inspired, the term robot programming was replaced with learning

from imitation [11]. This shift raised questions about how to predict, encode and rec-

ognize motion [2]. Moreover, just replicating demonstrations is not adequate, because

playing back a trajectory does not guarantee the completion of a task in a different

environment or by a dissimilar robot. To address how to transfer motor-skills across

different robotic agents and novel environments, researchers believed that from the

demonstration data we must find which features generalize the knowledge of the task.

Motion features are often addressed in the literature as motion primitives [15].

Motor primitives can be used as building blocks to create new trajectories and encode

demonstrations. This trend prompted the creation of many imitation frameworks

that enable robots to learn motor skills. Figure 1.2 provides a graph that describes a

generalized pattern of imitation learning frameworks [11]. Initially, a demonstration

of the motor skill must be presented by a teacher. Then the system must extract and

pass the features of the motor skill to the controller. The controller reproduces new

3

Figure 1.2. Generalized pattern of imitation learning frameworks showing how ac-
quired skills are turned into learned skills.

motor trajectories by recombining these features according to an imitation evaluation

metric [2]. Once this optimization process is complete, the robotic agent is able to

reproduce a new motor trajectory that performs the task.

Another way to analyze Figure 1.2 is to assume that the controller creates a

mapping between the state of the robot environment and the actions of the robot.

This mapping is often addressed as a policy in the respective literature [1]. From this

perspective, imitation methods create policies from examples of state-action map-

pings, which are given in the form of task demonstrations. During a demonstration,

information must be obtained about the state of the robot, the state of the environ-

ment, and the action that the robot must perform. From this data, the controller

creates a policy that dictates the actions of the robot with respect to the state of the

environment.

1.2 A Taxonomy for Imitation Learning methods

Ever since the establishment of imitation learning as a topic of research in the

field of HRI, researchers have been trying to answer the questions what to imitate,

how to imitate and who to imitate [2]. The first question asks what features should

be selected to represent motor skills. The second seeks to answer which strategy

4

should be implemented by the controller; the last question regards the collection of

the data from the demonstration. Encoding, generalizing, and reproducing motor

skills remains an open problem in imitation learning. Moreover, the mathematical

formulation of the state and action dimensions varies according to the mechanical

structure of the robot and task that the robot must learn. Note that the feature

selection method, data collection process, and policy formulation algorithm are closely

associated. Thus, a suitable metric to categorize imitation methods is according to

feature selection, policy derivation, and data collection.

Figure 1.3. A human operator performs a demonstration with kinesthetic teaching.

1.2.1 Data collection

Despite their numerous differentiation, all imitation learning methods begin

with the data collection phase, which aims to create a dataset for learning a motor

5

Figure 1.4. A human operator teaches a robot in VR simulation. Figure reproduced
from [8].

skill. This dataset may contain more than one demonstration per motor skill, as some

imitation algorithms require multiple examples to build a generalized and adaptable

model of the motor skill. The purpose of this dataset is to extract state-action pairs

and features to create a policy. One key issue that regards the creation of this dataset

is if the state-action dimension of the teacher and the learner is identical. Note that

researchers refer to this problem as the problem of correspondence. This criterion

can be used to classify robot programming techniques into two categories [1]. The

first category requires datasets were the learner can use the state-action pair of the

teacher directly. Creating such a dataset is possible with teleoperation or kinesthetic

teaching, as seen in figure 1.3. On the other hand, in the second category, the teacher’s

state-action mapping is indirectly recorded, such as the case of a robot learning to

perform tasks through videos [16].

6

1.2.2 Feature selection

Imitation learning datasets contain information about trajectories that describe

how to execute a motor skill. Initial attempts of feature selection in robot trajecto-

ries came from the realization that storing time and position vectors for every task is

ineffective in terms of storage. To overcome this problem, a third or fifth-order poly-

nomial with parabolic blends can be used to represent a robot trajectory. Effectively,

this reduces the amount of stored data since the entire trajectory can be reproduced

just by storing the parameters of the polynomial. In this case, the parameters of

the polynomial represent the features that encapsulate motion. However, motion

primitives can describe higher-level concepts. It is possible to assume an entire point-

to-point movement as a primitive by labeling it with a symbolic relation such as ”in

contact”, ”close to” or ”grasp-object” [2]. Note that in the first example, the feature

extraction process took place at the trajectory level and in the second example, it

occurred at the symbolic level [2]. Imitation learning algorithms at the symbolic level

often utilize entire point-to-point movements as features, while learning approaches

at the trajectory level deal with continuous signals.

1.2.3 Policy derivation

Recent literature [1] suggests that both AI and engineering approaches can be

used for policy derivation. Symbolic approaches that deal with sequences of predefined

motions, often rely on traditional graph-based approaches to recombine different sets

of point-to-point motions to construct different behaviors. Deriving policies at the

trajectory level is complicated, since algorithms of this category deal with continuous

spaces. Methods that derive policies in a continuous space often utilize machine

learning, mathematical models or a combination of both. In this regard, classical

7

control theory approaches estimates policies with the use of mathematical models.

However, the problem of such models is their lack of generalization. Initial attempts

to create generalized motor skill policies involved supervised learning algorithms,

such as Gaussian Mixture Models (GMMs) [2]. As a general rule, most trajectory

level learning methods perform regression with supervised learning machine learning

algorithms to create generalized state-action mappings from state-action pairs that

emerge from the demonstration dataset. However, imitation learning algorithms of

this category can adapt and evolve with Reinforcement Learning. Algorithms that

learn motor policies in continuous spaces by self-exploration are considered a different

subcategory with its own separate literature [17].

Figure 1.5. Learning from Demonstration framework depicting the multi-phase sys-
tem in which a policy is derived and later executed. Figure reproduced from [1].

8

1.3 Learning from Demonstration

In the previous sections, we provided an overview and taxonomy of imitation

learning algorithms. In this section, we will discuss a special case of imitation learn-

ing algorithms, which are addressed in the respective literature as Learning from

Demonstration (LfD) algorithms [1] [2]. Figure 1.5 illustrates the LfD framework.

LfD algorithms operate in two phases [1]; the policy derivation phase and the policy

execution stage. In the demonstration stage, a teacher performs a demonstration of a

task. While the demonstration is conducted, the LfD system records demonstration

data D that associate with the state and actions of the teacher. The learner then

forms a policy that accomplishes the demonstrated task. In the policy execution

phase, the robot applies the policy to perform the task. While the learner interacts

with the work, it has to pick actions α when it is at state s with respect to the world.

Figure 1.6. State-action mappings between teacher and learner showing the sequence
of mappings between the original demonstration and the learner reproducing the
movements [1].

1.4 Classification of LfD methods

LfD methods require datasets of state-action pairs to learn a policy. As ex-

pressed in Figure 1.5 the acquisition of such a dataset is possible with the assistance

of a teacher. However, the learner must be able to use the state-action pair that

the system recorded from the teacher. Finding a mapping between the state-action

9

dimension of the learner and the state-action dimension teacher is important because

it enables the learner to learn a policy from the demonstrations of the teacher. This

mapping is often addressed as the correspondence problem [1], [2]. As figure 1.6 illus-

trates, the correspondence problem can be defined by two independent sub-mappings,

the record mapping and the embodiment mappings. The record mapping transfers the

data that were collected during the policy derivation phase and creates a dataset of

recorded executions, while the embodiment mapping adjusts the dimensions of the

stored state-action pairs into the state-action dimensions of the learner.

Figure 1.7. Categories of LfD methods [1].

Moreover, if the state-action pairs in the recorded execution are identical to the

states and actions of the teacher during the demonstration, we consider the recording

10

mapping as identical or as nonidentical if additional transformations are required.

Similarly, if the state-action pairs in the recorded execution dataset match the state

and action dimensions of the learner, the embodiment mapping is identical and non-

identical otherwise. This phenomenon defines a metric that categorizes LfD methods

[1] [1]. When the recording mapping is nonidentical, the demonstration dataset con-

tains encoded information of the teacher demonstration. Also, when the embodiment

mapping in nonidentical, the learner must first decode the information which is stored

in the recorded execution. This implies that LfD methods that require nonidentical

mappings to solve the problem of correspondence have higher complexity. Figure 1.7

presents the four categories of LfD methods. On the horizontal axis LfD methods are

categorized according to the type of embodiment mapping, while on the vertical axis,

they are classified according to the type of record mapping. As previously stated,

both mappings can be either identical or nonidentical. The simplest category of LfD

algorithms is Teleoperation, followed by Sensors of Teachers, Shadowing and finally

External Observation, which is the most complicated case of LfD algorithms.

1.4.1 Teleoperation

Teleoperation LfD algorithms require a human operator to directly program a

robot to perform a task. During the demonstration of the task, the system records

data with the aid of the robot’s internal sensors. In this category, the robot directly

records the states and actions that perform the task. Teleoperation is the simplest

method of LfD because the state-action pairs of the demonstration are fully observ-

able and accessible by the robot. Therefore, the recorded data does not require any

further transformation to be used by the robot that learns the policy. Traditionally,

teleoperation approaches are ideal when a human teaches a robot how to learn a sim-

ple task. This is the case for example when a robot has to learn a repeatable pick and

11

place task. Applications such as those are common in industrial plants, where factory

workers have to teach manufacturing robots how to move objects in an automation

pipeline. Kinesthetic teaching and teaching a robot how to perform a task with the

aid of a joy-stick belong in this category of LfD algorithms.

1.4.2 Sensors on Teacher

LfD algorithms of this class use sensor information which directly records the

state and action of the teacher into a dataset. This means that no additional trans-

formations are required during the record mapping. However, that is not the case

during the embodiment mapping, as the recorded data must be transformed to be

used by the learner. This category of LfD algorithms is usually employed when the

morphology of the teacher and learner are vastly different. For example, when a

human teacher places sensors on their body when executing a demonstration of the

task and a robot it called to learn the task with the recorded data [15]. A similar

scenario that would require the employment of this LfD method is when a master

robot teaches a slave robot how to perform a task and the two robots have different

DoFs.

1.4.3 Shadowing

In Shadowing LfD methods, during the record mapping the state-action pairs

of the teacher’s execution are not directly recorded. They are first encoded before

transferring to the learner in the embodiment mapping. The data from the teacher’s

demonstration, which are stored into the recorded execution dataset, are an encode-

ment or a ”shadow” of the true state-action pair of the teacher. However, since the

embodiment mapping is identical, the encoded information in the dataset can be

directly used by the learner. As such, the learner learns from the ”shadow” of the

12

teacher and not by the teacher directly. When compared to teleoperation LfD meth-

ods, shadow LfD methods are algorithmically complex. An example of shadow LfD

method can be seen in [9], where a humanoid robot learns how to perform specific

arm gestures by observing a human teacher through a camera. Figure 1.8 describes

how the LfD system of [9] operates. The pipeline begins with a human that performs

a demonstration of a gesture. A camera records the demonstration and provides a

stream of images to a neural network, which classifies the images into a specific set

of distinct gestures. Lastly, the gestures dataset assigns a specific robot pose for each

gesture class.

Figure 1.8. Example of a Shadowing LfD method depicting a human performing a
demonstration in front of a camera which is later encoded by a neural network into
robot gestures [9].

1.4.4 External Observation

LfD methods that rely on external observations assume that both the robot and

the recording method can partially observe the true state-action dimensions of the

teacher. Since the teacher’s information is inferred through various transformations,

this category of LfD methods is characterized by the highest complexity and uncer-

tainty. Traditionally, in the case of external observation the sensor which is used to

13

record the demonstration of the teacher is vision-based, which means in this category

the learning component of the LfD system computes visuomotor policies [18], [19].

Examples of this category is a robotic arm that learns pole balancing via stereo-

vision and human demonstration [20], a robot that learns to play air hockey [21],

and a robotic arm that learns pushing/reaching task policies by utilizing a Deep

Convolutional Neural Network [19].

14

CHAPTER 2

Dynamic Movement Primitives

Researchers in many scientific areas such as physics, robotics, neuroscience and

biology have attempted to model complex behaviors by designing nonlinear dynamic

systems. The Dynamics Movement Primitives (DMP) framework models the behav-

ior of goal-oriented attractor and rhythmic systems by utilizing simple regression

algorithms. The essence of the DMP framework is that a simple dynamical system

described by a set of linear differential equations can be encoded and reproduced

by learning the forcing term which drives the system. The model can learn both

point-to-point and cycle trajectories. DMPs are time independent and are capable

of describing the motions of complex mechanical systems with multiple Degrees of

Freedom (DoF). Learning the open parameters of the system is straightforward and

computationally efficient, which makes it suitable for real-world applications.

2.1 Model Development

A brief overview of the DMP framework will be presented here as described

from the authors in [22], [4]. DMPs are a series of different differential equations

encompassing discrete and rhythmic movements.

τ u̇ = az(βz(g − x)− u) + f (2.1)

τ ẋ = u (2.2)

15

Equations 2.1 and 2.2 are a generalization of the damped-spring model. The

variables x and u are the position and velocity of the robot’s joints, respectively. τ

is the final time T that represents the duration of the demonstration, x0 and g is

the initial position and target position, respectively. Note that equation 2.1 is stable

when (u̇, x) = (0, g). The terms az and βz are control gains which render the system

critically damped at βz = az/4 and f acts as the forcing term that drives the system.

Equations 2.1 and 2.2 will be addressed as the transformation system of the model.

The forcing term is further defined as:

f(s) = (g − x0)
∑N

i wiψi(s)s∑N
i ψi(s)

(2.3)

Where ψi(s) = exp(−hi(s−ci)2) are Gaussian basis functions, with width hi and

centers ci, while wi are adjustable weights that changes the shape of the Gaussians

over the phase s and N denotes the number of Gaussian functions. The forcing term

is dependent on s, which is derived from the equation:

τ ṡ = −αs (2.4)

In equation 2.4, s represents a phase variable that fades over time as it starts

with a value of s=1 at time t=0 and becomes zero s=0 at t=τ . In the literature,

equation 2.4 is referred to as the canonical system, because it determines how the

forcing term drives the system over time. The computation of the phase variable s is

made possible by setting α in equation 2.4 so that s becomes zero at the final time

τ . Figure 2.1 illustrates how the canonical system behaves.

The forcing term of equation 2.3 and the canonical system of equation 2.4

are designed to model the behavior of point-to-point attractor systems containing a

distinct beginning x0 and goal g. The DMP model can describe systems with rhythmic

16

Figure 2.1. Example of the decay of the phase variable s for duration τ=656 sec and
α=25.

behavior that follow cycle trajectories by introducing terms to the canonical system

and the forcing term that describe periodicity. To achieve this, the authors of [4]

suggest changing the canonical system of equation 2.4 to a phase oscillator as shown

in equation 2.5, where φ ∈ [0, 2π] is the phase angle of the oscillator.

τ φ̇ = 1 (2.5)

Furthermore, the forcing term of equation 2.3 is changed to equation 2.6 to

include the new phase term φ, amplitude ρ and instead of the exponential term of

equation 2.3, in equation 2.6 the term ψi changed to ψi(φ) = exp(hi(cos((φ − ci) −
17

1)), which is a von Mises basis function that act as Gaussian-like functions that are

periodic. The system can be initialized with ρ = 1, τ = 1 and φ = 0.

f(φ, r) =

∑N
i wiψi(φ)∑N
i ψi(φ)

r (2.6)

Figure 2.2. Graphical representation of the DMP framework for point-to-point sys-
tems .

2.2 The Dynamic Movement Primitives Framework

Figure 2.2 illustrates how the DMP framework operates for the cases of discrete

attractor systems. Initially, the canonical system is estimated by using the given

duration of the task and the variable α from equation 2.4. The canonical system

estimates the variable s, which drives the forcing term f . To compute the forcing term,

the weights of the Gaussians wi, the goal and starting location of the system g, x0 and

the number of Gaussian functions N all must be defined. Finally, the forcing term

is transformed into a control command u by employing the transformation system of

equation 2.1, which requires the goal g, the duration of the task τ and the control gains

az, bz. Control commands can either be a position, velocity, or acceleration command.

If the system utilizes equation 2.5 for the canonical system and equation 2.6 for the

18

forcing term, then the system is capable of encoding rhythmic systems that can

perform circular trajectories.

The duration of the task τ , the goal g, and the starting location x0 depend on

the task and can be trivially extracted from the data. The control gains az and bz are

selected so that the transformation system is stable. The authors of [4] prove that

the transformation system can be expressed as a bounded-input, bounded-output

(BIBO) problem which is stable when az = 25 and bz = az/4, while the parameter

of the canonical system α can be set at α = az/3. The parameters of the Gaussian

functions of the forcing term in equation 2.3 can be set to N = 20, while the center

of the Gaussian functions ci and their height hi are selected so that the Gaussians

are equally spaced in x(t) = exp(−α(t/τ)). The Gaussians weights wi are the only

parameters in the pipeline of Figure 2.2 which are not defined and instead must

be learned. This mechanism indicates that by learning the weights wi, the system

can learn motor policies by considering the weights as the features that encode and

reproduce motion.

2.3 Learning Movement Primitives

To learn a DMP motor policy, first a teacher must provide a demonstration of a

task. From the demonstration, the position x(t)demo, velocity u(t)demo, acceleration

u̇(t)demo and the duration t = [0, ..., T] of the performed trajectory must be recorded.

The phase variable s can be computed offline according to equation 2.4 by setting α

so that s starts with a value of one at t = 0 and becomes zero at the final time t = T .

To continue with the computation of the motor policy and compute the weights wi,

we then estimate the forcing term of the demonstration ftarget from equation 2.7,

19

since the goal g and start x0 can be found at x(t = 0) and x(t = T) and the control

gains of the transformation system can be estimated offline.

ftarget = τ ˙udemo − az(βz(g − xdemo)− udemo) (2.7)

The system learns the weights of the Gaussians by performing regression using

the Locally Weighted Regression (LWR) algorithm as suggested in [4]. Learning the

weights is a function approximation problem where the parameters of f are computed

by minimizing the cost function of equation 2.8 such that the representation weights

wi are as close as possible to ftarget.

Ji =
T∑
t=0

ψi(t)(ftarget − wiξ(t))
2 (2.8)

where ξ(t) = x(t)(g − x0) for discrete systems and the solution of equation 2.8

is given from equations 2.10.

wi =
sTΓiftarget
sTΓis

(2.9)

Γi =

ψ(1) 0 0

0 ψ(2) 0

...

0 0 ψ(T)

(2.10)

2.4 Dynamic Movement Primitives for Multiple Degrees of Freedom

In the previous chapter we discussed how the DMP framework can learn motor

policies for single DoF systems. Figure 2.3 provides a paradigm that describes how

the DMP framework can be extended for systems with multiple DoFs that perform

20

point-to-point trajectories. Each DoF of the system is synchronized according to a

single canonical system as equation 2.4 suggests and computes N number of forcing

terms according to equation 2.3, where N is this case is the number of DoFs that

characterizes the system. Each forcing term is then transformed to a low-level control

command u.

Figure 2.3. Extension of the Dynamics Movement Primitives framework for a system
with multiple degrees of freedom where each degree of freedom is represented by a
different transformation system.

2.5 Adaptation with Reinforcement Learning

The vast majority of modern imitation learning paradigms rely on self explo-

ration instead of supervised learning. This phenomenon indicates a shift to goal-

oriented algorithms for motor policy adaption and generalization. The development

21

Algorithm 1 Policy learning by weighted exploration.

Initialization: Policy with parameters θ0 While θk has not
converged: Create sample rollouts using:
α = (θk + εt)ψi(s), ε ∼ N(0, σ2)
Estimate the importance of each rollout:
Q(s, α, t) =

∑T
t=0 r(st, αt, t)

Discard the rollouts with low reward.
Update using the following rule:

θk+1 = θk +

∑T
t=0 εtQ(s, α, t)∑T
t=0Q(s, α, t)

of the DMP framework was an essential contribution to this trend, as it provides

an abstraction layer between the dimensions of state, action, and environment by

providing policies with distinct meta-parameters that affect the behavior of the sys-

tem. This formalization enabled the creation of RL policy gradient search algorithms

that consider the meta-parameters of the policy as the action space and the joint or

Cartesian configuration of the robot as the state space [4], [5].

The fusion of the DMP framework and the RL paradigm has proven to suc-

cessfully learn complicated goal-oriented tasks such as robot grasping [23] and the

Ball-in-a-Cup task [24]. However, a single DMP cannot generalize over every possi-

ble trajectory that resembles a different task. To adapt motor policies learned from

DMPs, various policy search reinforcement learning algorithms have been proposed

[25],[26],[24]. From the respective literature, we utilize the Policy learning by Weight-

ing Exploration with the Returns (PoWER) algorithm as described in [5]. A pseudo-

code of the implemented RL algorithm can be seen in the section Algorithm 1.The

general goal of the algorithm is to find a rollout, which in our case is a joint trajectory,

that maximizes the reward. Different rollouts can be generated by using equation 2.1

with different forcing terms according to equation 2.3. Note that the forcing term is

22

the learned policy from the DMP that constitutes the motor policy that generates the

entire trajectory. As denoted by equation 2.3 a motor policy is affected by wi, hi and

ci. Although all three of these parameters can be modified to generate a new policy.

In the current algorithm, we only modify wi to generate new policies. As such, the

algorithm initially generates multiple actions as the sum of the current weights wi,

plus a random exploration rate εt. The exploration rate is sampled from a normal

distribution with mean zero and a standard deviation equal to the standard deviation

of the respective weighted Gaussian that is learned from the DMP, which is seen as a

separate probability distribution. This decision inserts bias into the system, because

this means that the learned Gaussians that contribute the most to the learned policy

will probably still contribute the most in the modified policy. Finally, the algorithm

updates the parameters of the policy by using the rollouts that received the highest

Q values. The number of samples, the percentage of the accepted rollouts, and the

selected reward function are defined by the user. Note that learning and further op-

timization with RL may occur in Cartesian space [2],[27] or in joint space [28], or

both [22]. The learning space of the framework is critical as it directly affects the

formulation of the reward function [24],[3].

2.6 Learning Motor Skills with Dynamic Movement Primitives

In this section, we provide an example to illustrate how the framework works

as expressed in [29]. To learn a motor policy from a demonstration, we record x(t)

and by knowing the duration t = T we can derive ˙x(t) and it’s derivative. Figure 2.4

is an example of the data collection process, where a human teacher tries to teach a

robot how to grab a 3D-printed block. An example of the Cartesian trajectory that

was collected can be seen in Figure 2.4. Furthermore, the system learns by imitation

by employing the LWR algorithm [30] to produce the motor policy. Note that the

23

Figure 2.4. Human teacher demonstrating the task via kinesthetic teaching, the data
is recorded into a database.

Figure 2.5. A representation of the data from the trajectory shown in figure 2.4.

system learns in joint space and not in Cartesian space, which means that the system

abides by the principles expressed in Figure 2.3. The system learns the weights wi of

24

the forcing term in equation 2.3 by performing regression with the LWR algorithm [4].

The trajectory which is learned by the system can be seen in Figure 2.6.

Figure 2.6. The smoothing introduced in the learned trajectory with data from Fig-
ure 2.4.

We can further adapt the motor policy to generate new motor skills by utilizing

the PoWER algorithm 1. Before performing regression the forcing term can be

represented by a battery of Gaussian functions which are equally spread on the s

plane. As the leftmost graph of Figure 2.7 suggests. After regression, the functions

are spread disproportionately in the s plane, as each weight wi has changed, and with

it each Gaussian has a changed shape as the rightmost graph of Figure 2.7 shows.

Figure 2.8 shows in red line the joint trajectory of Figure 2.6, which is a result of

of the initial Gaussian policy of Figure 2.7. To adapt the policy according to the

PoWER algorithm we have to provide a new goal. The new goal was given in the

form of a vector g = [−2.7, 3.4, 0.6,−0.3, 1.8,−2.7]. As we can see in Figure 2.6 the

black lines, which represent the adapted trajectories, reach the new goal, because

the PoWER algorithm to changed the weights wi. The new Gaussian weights can

25

be seen in the right section of Figure 2.7. From comparing the two figures we can

conclude that the policy adapted and it produced a new forcing term that drives the

trajectories to the new desired goal.

Figure 2.7. The left figure depicts the initial Gaussian representation of the motor
policy which is learned from 2.4. The right figure shows how the Gaussian policies
changed with Reinforcement Learning.

Figure 2.8. Comparing the position trajectory of the initial Gaussian policy in red
line with the altered Gaussian policy in black line from Figure 2.7.

26

CHAPTER 3

A Motion and Force Analysis System for Human Upper-limb Detection

This chapter describes a novel system that can demonstrate the potential to

track and estimate the torques that affect the human arm of an individual that per-

forms rehabilitation exercises with the use of the Microsoft Kinect v2. The system

focuses on eliminating the jerky motions captured by the Kinect with the incorpora-

tion of robotic mechanics methodologies. In order to achieve these results, the system

takes full advantage of the dynamic and kinematic formulas that describe the motion

of rigid bodies. Simulation experiments are depicted to demonstrate the results of

the system.

The system can be used to monitor the physical state of the upper limbs of

a human. To further elaborate, with the data collected from the Kinect, the sys-

tem provides a precise estimation of the motion parameters (position, velocity, and

acceleration) and torques that affect the shoulder and elbow of the human. The

system emphasizes the use of the Microsoft Kinect v2 as opposed to other systems

that require several different sensors such as embedded accelerometers, EMGs or even

wearable exoskeleton arms [31] and mechanical manipulators [32]. We will discuss

how the system incorporates a variety of key methodologies that originate from the

field of robotics mechanics and kinematics in particular.

A considerable amount of research has been conducted in the fields of com-

puter vision, human-computer and human-robot interaction to track the human body.

Whereas for entertainment or rehabilitation applications [33], [34], each of the above

fields utilizes different technologies and diverse methodologies to track the state of

27

the human body [35]. In this thesis, we combined a variety of these techniques to

track and calculate the motion parameters and torques that affect the shoulder and

elbow of an individual who performs rehabilitation exercises. Specifically, research

in the area of human exoskeletons shows that the human arm can be mathemati-

cally represented as a kinematic chain [36]. [37] of seven DoF, much like a mechanical

manipulator. By making this assumption, we can express the relationship of the

human joint’s rotation and translation in relevance to a world frame by using the

Denavit-Hartenberg (DH) parameters [38]. Moreover, we can derive the forward and

inverse kinematic equations of the human arm to obtain a relationship between the

position and orientation of the end effector (wrist) with the rotation of the joints.

These set of equations are useful as they facilitate the calculation of the rotational

position, velocity, and acceleration of the joints over a specific trajectory. This makes

the estimation of the torques that affect the human arm tractable with the use of the

Recursive Newton Euler (RNE) method, which is described in more detail in [39].

We will elaborate more on these methods in the next section of this chapter.

In contrast with other studies, we consider marker-less and low cost solutions

for obtaining the necessary positions for our calculations [40]. Our system takes ad-

vantage of the Kinect v2 skeleton tracking algorithm to track the position of the

wrist. Unfortunately, due to the probabilistic nature of the Kinect skeleton tracker,

the positions are collected with certain inaccuracies under specific circumstances [41].

For this reason, the system eliminates jerky data obtained from the Kinect through

a polynomial fitting process in the joint space that is derived from the inverse kine-

matic equations of our human kinematic model. Thus, the proposed system utilizes

techniques in computer vision and robot mechanics to solve the human arm tracking

problem.

28

Figure 3.1. 4 DoF Kinematic Model of the Human Arm depicting the coordinate
frames for each joint and sensor.

3.1 Human Arm Kinematic model

In this section, we provide a thorough analysis of the bio-mechanic model that

the proposed system utilizes to track the human arm. As mentioned above, the

human arm can be represented as a kinematic chain, much like a robotic arm. Since

the system focuses in the behavior of the shoulder and elbow, we designed a 4 Degree

of Freedom (DoF) kinematic chain to express the shoulder glenohumeral rotation and

the elbow flexion. Figure 3.1, provides a graphical illustration of the developed human

arm model.

A summary of the frames description can be seen in Table 3.1. The kinematic

chain begins from frame {K}, which acts as the world frame of the model. Notice

that frame {K} denotes where the Kinect is stationed, meaning that when we derive

the forward and inverse kinematic equations of the model, all the frame positions are

29

Table 3.1. Kinematic model frames

Frame Location Description
K Kinect {K} World frame
0 Chest {C} Human Chest Position
1 Shoulder {S1} Abduction: -90 ≤ θ1 ≤ 90
2 Shoulder {S2} Flexion: -130 ≤ θ2 ≤ 45
3 Shoulder {S3} Pronation: -90 ≤ θ3 ≤ 90
4 Elbow {E} Flexion: 0 ≤ θ1 ≤ -150
e Wrist {W} Position

related to the Kinect directly. Next, frame {C} represents the chest of the human

who is positioned l0 meters along the zk axis of the Kinect. As expected, frames

{S1},{S2} and {S3} describe the glenohumeral rotation of the shoulder. Frame {S1}

and {S2} rotate around the axis z1 and z2 as shown in Figure 3.1. Note, that to

avoid the formation of an Euler gimbal lock in the shoulder, which would make the

solution of the inverse kinematics extremely complicated, frame S3 rotates around

the axis x3 [38]. Frame {E} follows by representing the flexion of the elbow around

z4 axis. Finally, the position of the end effector or wrist {W} is located along the

axis x4 of the elbow frame.

3.1.1 Forward Kinematics of the Human Arm Kinematic model

Based on the modified DH table 3.1 we can determine the rotation and trans-

lation of frame i− 1 to i according to the following matrix:

i−1
i T =

cθi −sθi 0 αi−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθiαi−1 cαi−1 cαi−1di

0 0 0 1

(3.1)

30

k
eT =k

0 T ∗01 T ∗12 T ∗23 T ∗34 T ∗4e T (3.2)

Note, that cθ stands for the cosine of θ and sθ stands for the sine of θ. Based on

the multiplication that are shown above the general transformation from the Kinect

frame to the human’s wrist is:

k
eT =

r11 r12 r13 ler11 + l2c1c2 + l1

r21 r22 r23 ler21 + l2s1c2

r31 r32 r33 ler31 + l2s2 + l0

0 0 0 1

(3.3)

r11 = c1c2c4 − c1s2c3s4 + s1s3s4

r12 = −c1c2s4 − c1s2c3c4 + s1s3c4

r13 = c1s2s3 + s1c3

r21 = s1c2c4 − s2s2c3s4 − c1s3s4

r22 = −s1c2s4 − s1s2c3c4 − c1s3c4

r23 = s1s2s3 − c1c3

r31 = s2c4 + c2c3s4

r32 = −s2s4 + c2c3c4

r33 = −c2s3

(3.4)

3.1.2 Inverse Kinematics of the Human Arm Kinematic model

For the derivation of the inverse kinematic equations we consider the positions

of the wrist and elbow as the known variables and the joint angles as unknown

variables. Traditionally, in robotics the orientation and position of the end effector

31

are the only known parameters. However, in this particular case, instead of using the

wrist’s orientation, we use the position of the elbow to find the joint angles as it can

be directly obtained from the Kinect.

k
eT =

r11 r12 r13 xe

r21 r22 r23 ye

r31 r32 r33 ze

0 0 0 1

(3.5)

k
4T =

r11 r12 r13 x4

r21 r22 r23 y4

r31 r32 r33 z4

0 0 0 1

(3.6)

Position of Elbow:
x4 = l2 ∗ c1 ∗ c2 + l1

y4 = l2 ∗ s1 ∗ c2

z4 = l2 ∗ s2 + l0

(3.7)

Position of Wrist (End Effector):

xe = l3 ∗ (c1 ∗ c2 ∗ c4 − c1 ∗ s2 ∗ c3 ∗ s4+

s1 ∗ s3 ∗ s4) + l2 ∗ c1 ∗ c2 + l1

ye = l3 ∗ (s1 ∗ c2 ∗ c4 − s1 ∗ s2 ∗ c3 ∗ s4−

c1 ∗ s3 ∗ s4) + l2 ∗ s1 ∗ c2

ze = l3 ∗ (s2 ∗ c4 + c2 ∗ c3 ∗ s4) + l2 ∗ s2 + l0

(3.8)

32

Angles Derivation (θ1, θ2, θ3, θ4):
s2 = z4−l0

l2

c2 = ±
√

(1− s22)

θ2 = atan2(s2, c2)

(3.9)

s1 = y4

l2∗c2

c1 = ±
√

(1− s1)

θ1 = atan2(s1, c1)

(3.10)

c4 =

l22+l23+
√

((xe−x1)2+(ye−y1)2+(ze−z1)2)

2∗l2∗l3

s4 = ±
√

(1− c24)

θ4 = atan2(s4, c4)

(3.11)

c3 = ze−z4

l3

s3 = ±
√

(1− c23)

θ3 = atan2(s3, c3)

(3.12)

3.1.3 Human Arm Dynamic Model

In robotics dynamics, the RNE method is often used to solve the inverse dy-

namics problem. Specifically, it is used to provide an estimate of the torques that

produce the robot’s joints given the angles, velocities, and accelerations of the joints

[38][42]. However, the RNE method can be applied to every kinematic chain, as long

as the motion parameters and the mass of the links are known. In our case, since

we are measuring the torques that affect the human arm, we estimated the mass of

the human upper limbs by taking into consideration the relative relation between

33

the human weight and the weight of the human arm. [10] Figure 3.2 depicts the

analogies of anthropomorphic data that were taken into consideration in the scope of

this study.

The RNE method is divided into two steps as seen below. In the first step

(Outward iteration), the method calculates the relative angular and linear motion

parameters from the starting joint to the end effector. The second step (Inwards

iteration) iterates backwards and provides an estimation of the moments and torques

that affect the joints.

3.1.3.1 Outward iteration

0→ 3

ω : relative angular velocity of joints

θ̇ : joint angular velocity

θ̈ : joint angular acceleration

Ẑ : the axis of rotation

P : matrix indicating the direction of the center of mass

m : mass of link

c : center of mass

F : linear Force applied in the center of mass

34

N : moments

i+1ωi+1 =i+1
i R ∗i ωi + θ̇i+1 ∗i+1 Ẑi+1

i+1ω̇i+1 =i+1
i R ∗i ω̇i +i+1

i Ri ∗ ωi × θ̇i+1 ∗i+1 Ẑi+1+

θ̈i+1 ∗i+1 Ẑi+1

i+1υ̇i+1 =i+1
i R(iω̇×i]P i+1 +i ωi × (iωi×i]P i+1) +i υ̇i)

i+1υ̇Ci+1
=i+1 ω̇i+1 ×i+1 PCi+1

+i+1 ωi+1 × (i+1ωi+1×

i+1]PCi+1
) +i+1 υ̇i+1

i+1F i+1 = mi+1 ∗i+1 υ̇Ci+1

i+1N i+1 =Ci+1 I i+1 ∗i+1 ω̇i+1 +i+1 ωi+1 ×Ci+1 I i+1∗

i+1]ωi+1

(3.13)

3.1.3.2 Inward iteration

f : Force Propagation

τ : Torque applied to the joints

n : Accumulative torque applied to the joints

4→ 1

if i =i
i+1 R ∗i+1 f i+1 +i F i

ini =i N i +i
i+1 R ∗i+1 ni+1 +i P Ci

×i F i +i P i+1×

i
i+1R ∗i+1 f i+1

τ i =i nT
i ∗i Ẑi

(3.14)

35

Figure 3.2. Anthropomorphic data for the human body segments captured by [10].
The table values are the mass distributions for different body parts.

3.2 Motion and Force Analysis System Overview

A block diagram of the proposed system can be seen in Figure 3.3. The diagram

summarizes the majority of the processes that compose the overall system. As an

input to the system, the user must capture the person who is performing the exercise

with the Kinect, according to the configuration that Figure 3.1 suggests. Once the

trajectory of the subject’s arm has been captured, the Kinect passes the Cartesian

positions of the chest, shoulder, elbow, and wrist frames to the first unit of the system

that reconstruct raw model. The raw model provides an abstract illustration of the

physical configuration that was captured by the Kinect.

The system then applies a median filter to the raw data to eliminate any ab-

normal behavior from the skeleton tracking algorithm of the Kinect. This module

produces a smooth trajectory that is used by the system’s Inverse Kinematics Solver

(IK Solver) to provide an estimation of the angles of the human arm joints. Note

that this unit utilized the inverse kinematics equations that were described in the

36

previous section. At this point, the system has produced the first estimation in joint

space. In the next iteration, the system must make sure that all data in joint space

are characterized by a polynomial profile. This happens because the motion of all

rigid bodies, such as our model, must be expressed with a polynomial function that

can produce a second, third or even forth derivative (jerk)[38].

Once the polynomial fitting process is completed, the system recreates the kine-

matic model according to the forward kinematic equations and calculates the veloc-

ities and accelerations of the human arm joints. Lastly, the system provides an

estimation of the torques that affect the subject’s arm with the RNE method and

presents all of the results in the graphical user interface as denoted in Figure 3.3.

Figure 3.3. End-to-end pipeline for capturing human key-points with Kinect v2
through processing of data and finally application of RNE to calculate torques that
affect the human arm.

37

Figure 3.4. The above images present four frames for a particular exercise, and
jerky motions from the Kinect is inevitable. Note, that the Kinect doesn’t estimate
precisely the position of the left arm, because of the same depth information with the
rest of the body.

Figure 3.5. The top four diagrams show the evolution of the exercise motion for the
raw Kinect model. The bottom four diagrams present the corrected motion based on
the polynomial fitting motion estimation.

38

3.3 Experimental Assumptions

Before we continue to the experimental results section, we must mention certain

assumptions that led to the system’s development. The following hypothesis are

centered around the idea that we try to estimate the kinematic and dynamic properties

of the human arm with techniques that have been applied to mechanical manipulators.

Our assumptions can be summarized as follows:

• First of all, since our study focuses on tracking the human shoulder and elbow,

we disregarded the degrees of freedom that the human wrist provides. Tradi-

tionally, the human arm is represented with 7 DoFs (3 at the wrist, 1 at the

elbow and 3 at the shoulder). However our kinematic model is limited to only

4 DoFs. The inclusion of a 7 DoF model in our system would be extremely

challenging, due to the Kinect’s inability to provide an accurate estimation of

the wrist’s rotation.

• Second, we did not include in our calculations any external forces that are

exclusive to the human arm. The reason behind this decision is the absent of a

wrist frame, which would suggest the incorrect propagation of the external force

in the kinematic chain by the RNE unit of the system. Additionally, our model

doesn’t consider any relevant friction between the joint links as it is difficult to

simulate the effects of muscle fatigue.

• Last but not least, the assumption that the human arm can be abstracted as a

rigid body kinematic chain is incorrect, because on of the key principles of rigid

body dynamics is that the modeled body does not succumb to deformation. This

is clearly an incorrect statement in our case. Despite this fact, this assumption

is widely used in the related work which was mentioned in section 2.

39

Figure 3.6. Captured Elbow and Wrist positions by the Kinect,blue line. Filtered
Elbow data, red line. Note that the proposed method eliminates oscillations present
in the original signal.

Figure 3.7. The image of the left side depicts the polynomial fitting of the estimated
joint angles from the IK solver. The fitted solutions are shown in red color, while the
raw angles are in blue. The right image shows the velocities of the fitted joint angles.

3.4 Experimental Results

The team conducted various exercises using the Barret WAM arm robotic ma-

nipulator in order to extensively validate the behavior of the system. The robotic arm

was used in the experiment as an ad-hoc simulator of various rehabilitation exercises.

40

Figure 3.4 shows the physical configuration of the experiment and the captured

Kinect skeleton tracker, while the results of the experiment are presented in Fig-

ure 3.5. The results indicate that the system greatly improved the initial estimation

of the Kinect. Specifically, in Figure 3.5 the upper four sub figures show the gradual

evolution of the captured Kinect trajectories of the human wrist and elbow in blue

and red colors. It can be clearly seen from the rapid fluctuations of the trajectories

that the Kinect does not regard the physical properties of the human arm as these

trajectories doesn’t correlate with the motion of the real human arm. However, the

four bottom sub pictures of Figure 3.5, that demonstrate the final estimation of the

system in equivalent time frames provide a more accurate description of the actual

physical trajectory that the human arm followed in the exercise.

Figure 3.8. Angular accelerations for the four joints.

41

Figure 3.9. Estimated Torques (N/m) for the four joints.

It is our omission not to refer to the predominant reason that causes these

inaccurate readings of the Kinect v2. Traditionally, if in this particular instance

the human arm was performing a free motion without any wearable attachment to

the wrist, the Kinect should be more accurate and without fluctuations. But in

this setup, since the participant is grabbing the end-effector of the robotic arm, the

Kinect’s depth sensor regards the robotic arm as a natural extension of the human’s

arm and thus provides false readings in certain frames.

Up to this point, the user of the system can perceive how the system obtained

the raw data from the Kinect and produced an accurate estimation of the real motion.

We will further enrich the experimental results section, by providing additional details

for the intermediate steps of the system, which are detrimental for the final derivation

42

of the torque calculations. Starting from the manipulation of the raw Kinect data,

the system applies a median filter to eliminate any irregular variation in collected

data. Figure 3.6 describe how the median filter is applied in the current experimental

set up. Obviously, the median filter removed certain values in the captured elbow and

wrist trajectory that would otherwise make the derivation of the inverse kinematics

solution unsolvable. After the trajectory filtering is done, the system performs the

polynomial fitting process in the joint space obtained from the solution of the inverse

kinematic equations and the filtered trajectories.The left side of Figure 3.7 shows

analytically polynomial fitting process of the raw angles obtained from the solution

of the inverse kinematics equations and the filtered trajectories. Lastly, the systems

derives the velocities, accelerations and torques through the derivation of the joint

space trajectories. The results are shown in the right side of Figure 3.7, Figure‘3.8

and Figure 3.9.

43

CHAPTER 4

VARM: Using Virtual Reality to Program Robotic Manipulators

In this chapter we present an application that demonstrates how Human-Robot

Interaction (HRI) may benefit from Virtual Reality (VR) and non-pervasive tech-

nologies, such as the Leap Motion Controller, to present a safe, visual and interactive

way to program robotic arms [8]. By interacting with the virtual robot, the user can

define the task of the real robot. The system acts as a teleoperation interface system

to program industrial robotic arms. The system demonstrates the potential to create

a programmable interface that enables users with no prior knowledge of robotics to

safely program mechanical manipulators with the use of VR and the Leap Motion

Controller. The system takes full advantage of the Leap Motion to navigate the vir-

tual work-space of the robot that was created through the kinematic properties of the

real robot. The implementation of the application was deemed possible by interfacing

the Unity Engine with the four Degrees of Freedom (DoF) Barrett WAM robotic arm.

Preliminary experimental results show the ability of the system to engage and train

appropriately the user in robot programming.

4.1 Programming Robotic Manipulators with Virtual Reality VARM

HRI is a multidisciplinary field of science that strives to establish safe, intuitive

and robust communication methods between robots and humans. In this chapter, we

present an application that demonstrates how HRI may benefit from VR and non-

pervasive technologies, such as the Leap Motion Controller, to present a safe, visual

and interactive way to program robotic arms. The application’s goal is to provide

44

an immersive and easy-to-use interface for users that wish to program a mechanical

manipulator to perform simple or complicated manual tasks, such as to pick and

place an object from a particular location to another. Specifically, the application

utilizes the Unity game engine to provide a VR environment of the robot’s work-space

in combination with the Oculus Rift headset for visualization. The Leap Motion

Controller was mounted on top the Oculus Rift device to capture the hands of the

user and enable gesture recognition to traverse the virtual environment and interact

with the virtual robot. By interacting with the virtual robot, the user can define the

task of the real robot. Once the task has been defined, the task is sent to the real

robot, which in our case is the four DoF Barrett Whole Arm Manipulator (WAM).

Figure 4.1 illustrates the set up.

Whereas for industrial or medical applications, the field of HRI utilizes different

technologies and diverse methodologies to program robotic arms. The variety of

the techniques depends on the level of autonomy of the robot and the task it must

accomplish. These techniques range from direct physical interaction with the robot

[43] to computer aided graphical interfaces (GUI) [44],[13]. Note that a common

challenge that HRI tries to combat is to provide an interface that decouples the

complexity of the kinematics of the robot from it’s programming [43],[44],[13] as

the visualization of the dexterous work-space of the robot is difficult. Additionally,

in applications that regard the teleoperation of one or multiple slave robots it has

been shown that the emerging technology of Leap Motion [43],[16] can provide more

interactive ways to define a robot’s trajectory and define a robot’s motion through

gesture recognition [45], [46],[47].

In our work, we combined a variety of the previously mentioned techniques

that have been used to program industrial robotic arms. Specifically, the presented

application emphasis the use of Leap motion in combination with VR to provide

45

Figure 4.1. The interface of the proposed method with the various components high-
lighted.

an immersive and interactive experience while the user programs the robot. By

directly interacting with the robot in VR the user can define a task without any

prior knowledge of the kinematics or the dynamics. In addition, gesture recognition

enhances the experience by relating the gestures of the user into particular commands

that control the navigation of the user in the VR and the motion of the virtual robot.

As seen from related work, gestures captured from the Leap device can be correlated

to relative gripper postures in the real robot [46]. An equivalent methodology has

been applied in the presented application, since the task performed by the real robot

is based on the interaction between the user and the virtual robot. To elaborate more,

the user defines the trajectory of the real robot by performing a grabbing gesture on

the end effector of the virtual robot to move it through the desired trajectory. The

virtual robot then follows the grabbing gestures of the user, while the system records

the performed movement of the virtual robot. Once the trajectory is defined, the

captured motion is sent to the real robot, which mimics the behavior of the virtual

robot. A set up of the system can be seen in Figure 4.1

46

Figure 4.2. Barrett WAM Arm kinematic model and the Virtual Robot in Maya
showing the link configurations.

4.2 System Components

In this section, we provide a thorough analysis of the modeling process of the

virtual robot and how the application enables the interaction between the user and

the robot through gesture recognition. As mentioned above, the user will be able to

use his hands as a tool to navigate and interact with the robot, which means that the

work-space of the virtual robot must accurately represent the work-space of the real

robot.

4.2.1 Forward Kinematics of the 4-DoF Barrett WAM

Figure 4.2 illustrates the kinematic model that was used to construct the virtual

model of the robot. The frame placement of the kinematic chain is defined according

to the DH parameters, which are provided in the Barrett WAM user manual.

47

Table 4.1. DH Table for 4-DOF Barrett WAM

i αi ai di θi
1 -90 0 0 θ1
2 90 0 0 θ2
3 -90 0.045 0.55 θ3
4 90 -0.045 0 θ4
e 0 0 0.35 0

Based on the DH table described above the homogeneous coordinate matrix of

the frames can be derived according to the following matrix :

i−1
i T =

cθi −cαisθi sαisθi aicθi

sθi cαicθi −sαicθi aisθi

0 sαi cαi di

0 0 0 1

(4.1)

Thus, the forward kinematics of the robot are derived by the following equation:

k
eT =k

0 T ∗01 T ∗12 T ∗23 T ∗34 T ∗4e T (4.2)

Which determines that the resulting homogeneous transformation from the base

frame of the robot to the robot’s end effector frame:

k
eT =

r11 r12 r13 xe

r21 r22 r23 ye

r31 r32 r33 ze

0 0 0 1

(4.3)

48

r11 = c1c2c3c4 − s1s3c4 − c1s2s4

r12 = −c1c2s3 − s1c3

r13 = c1c2c3s4 − s1s3s4 + c1s2c4

r21 = s1c2c3c4 + c1s3c4 − s1s2s4

r22 = −s1c2s3 + c1c3

r23 = s1c2c3s4 + c1s3s4 + s1s2c3

r31 = −s2c3c4 − c2s4

r32 = s2s3

r33 = −s2c3s4 + c2c4

xe = l2r13 + z4r11 + z3(c1c2c3 − s1s3) + l1(c1c2)

ye = l2r23 + z4r21 + z3(s1c2c3 + c1s3) + l1(s1s2)

ze = l2r33 + z4r31 + z3(−s2c3) + l1(c2)

(4.4)

4.2.2 Inverse Kinematics of the 4-DoF Barrett WAM

In contrast to the forward kinematics problem, the goal of the inverse kine-

matics problem is to find a set of joint configurations given a particular end-effector

position and orientation. The difficulty of the inverse kinematics problem arises from

the fact that it depends on the physical configuration of the robot. Predominantly,

non-redundant robotic arms can be solved analytically, while more complicated re-

dundant manipulators require more advanced mathematical solutions such as artificial

intelligent, pseudo-inverse or transpose Jacobian solutions. However, these method-

ologies require algorithms with high time complexity costs, when compared with the

analytical solutions [48], [49].

49

The 4 DoF Barrett WAM is a kinematic redundant manipulator, which means

that an analytical solution is impossible to exist. However, we solved the inverse

kinematics analytically by setting the redundant third joint of the robot as a free pa-

rameter and thus effectively converting the redundant kinematic chain of the Barrett

WAM robot to a non-redundant one. Note, that although this simplification allows to

decouple the kinematic problem and solve it analytically, the solution of the inverse

kinematics now exists for any particular x, y, z coordinate within the Barrett WAM

work-space configuration, but only one fixed orientation that is defined by the value

of the third joint angle θ3.

For the purposes of the VR application, it was decided that the value of θ3

should be zero. This alters the final position vector as follows:

xe = c1(l2c2s4 + l2s2c4 + z4c2c4 − z4s2s4 + z3c2c4 + l1s2)

ye = s1(l2c2s4 + l2s2c4 + z4c2c4 − z4s2s4 + z3c2c4 + l1s2)

ze = −l2s2s4 + l2c2c4 − z4s2c4 − z4c2s4 − z3s2 + l1c2

(4.5)

By taking the sum of the squares of the position vectors, the solution of θ4 can

be given from the equation:

A tan
θ4
2

2

+B tan
θ4
2

+ C = 0 (4.6)

where,

A =

x2
e+y2e+z2e−z23−z24−l21−l22+2(l2l1+z4z3)

4

B = −(l2z3 − l1z4)

C =
x2
e+y2e+z2e−z23−z24−l21−l22−2(l2l1+z4z3)

4

50

As a result, θ4 has two solutions (an elbow up and elbow down solution) which

are:

θ4 = 2 arctan
−B ±

√
B2 − 4AC

2A
(4.7)

Moreover, to derive the solution of θ2 we take the sum of squared the x and

y position vectors. Note, that as with θ4, θ2 also has two solutions (shoulder up,

shoulder down):

θ2 = 2 arctan
±M

√
x2e + y2e − zeL

±L
√
x2e + y2e + zeM

(4.8)

where,

M = (l2c4 − z4s4 − l1)

L = (l2s4 + z4c4 + z3)

Last but not least, the solution of θ1 can be found from the x and y coordinates

of the robot’s end effector.

θ1 = arctan
ye
xe

(4.9)

From the partial analytical solution described above it is important to mention

that θ4 has two independent solutions, θ1 has an independent solution that can result

in two different joint configurations and θ2 can be computed by two different solu-

tions that depend on θ4. This implies that there is a total of four unique kinematic

configurations for every Cartesian point of the robot’s end effector. This phenomenon

is typical for planar manipulators as the same elbow up/down position of the robot

can be expressed with different joint configurations.

51

4.2.3 Gesture Detection

For accurate estimation of static and dynamic gestures along with finger 3D

positions, we selected the Leap Motion as the acquisition device [50]. According

to the specifications provided by the manufacturer, it reaches up to 200 frames per

second processing speed, with a high accuracy of 0.2mm. It has a field of view of 150

degrees with 0.25m3 interactive 3D space. It is powered over USB and works more

efficiently with USB 3.0 port.

By leveraging the flexibility and prowess of the state-of-art SDK provided by

the manufacturer, the depth signals recorded by the device are transformed into

quantifiable entities such as fingers, hands, gestures, and positions. The Leap Motion

provides coordinates in millimeters with respect to its frame of reference as shown

in Figure 4.2. Also a class called Frames in the SDK represents a set of hands as

well as fingers which are tracked in the captured frame. From the Frame object, one

can access the hand object and get the fingers position as well as other details, palm

velocity/orientation, etc. Several dynamic gesture detection utilities are provided by

the developers, specifically the pinch detector enabled us to detect and track the

activity of holding a ball and moving it around in the virtual environment and click

detector for detecting the click gesture.

According to the designed protocol, the left hand is designated for moving

around in the virtual environment, while the right hand is used for holding a ball,

which controls the robot’s end-effector position. For detecting the gestures to move

around in the virtual world, we are considering the isExtended() member function of

the the pointable class of the left hand, which is assigned to each finger. If the user

wants to move to the right, isExtended() is called for each finger pointable and if the

52

index finger returns true, then the move right activity is activated. Similarly, if the

user wants to move to the left, the isExtended() of only the thumb should be true.

For holding the object, the pinch detects utility was used. The reason for using

this gesture is that it provides a natural sense of holding an object. The pinch detector

activates if the user makes a pinch gesture around 3cm to 10cm away from the object

and the distance between the index finger and thumb is less than 1cm.

Figure 4.3. VARM System Architecture depicting the three stage pipeline: acquire,
process, and perform. Note that the process performed relies on which hand is used.

4.3 VARM System Architecture

The proposed system can be segmented into three parts as Figure 4.3 depicts:

1. Acquire: The acquisition phase involves projecting the 3D environment devel-

oped in Unity to the Oculus Rift. The default settings of the Leap Motion

project only the 3D skeleton. To make it look more realistic a 3D hand model

prefab developed by the manufacturer was attached to the Leap Motion user

53

object. The transformation of the 3D hand model changes according to the po-

sition and orientation of each joint in the hand, which is captured by the Leap

Motion Controller. The avatar’s point of view was defined as a transformation

that is modified according to the user’s head movement, which is captured by

the Oculus Rift.

2. Process : Once the GUI and the 3D environment is projected, the next phase

involves the detection of hand gestures. The Hand detection module is respon-

sible for getting the 3D joint coordinates for both hands. Further processing

is the conducted based on whereas the left or right hand is detected. If the

user performs a pinch gesture the pinch detection activates given that the con-

ditions detailed in the previous Section are satisfied. The inverse kinematics

module of the system is triggered as soon as the ball moves according to the

grabbing gesture. The forward kinematics provide visualization of the robot’s

joint configuration by changing the angular values of the virtual robot, which

is projected to the Oculus. When the ball starts moving the 3D coordinates of

the ball are recorded given that the collision detection module returns a false

indication. This is possible by making the obstacles as triggers in Unity, so that

it sends a signal to the system indicating a collision. This prevents the path

recording module to capture incoming coordinates that exist inside an obstacle.

The goal position is a translucent sphere which has a trigger attached to it and

as soon as the ball hits the goal sphere the system understands that the user

has reached the goal. The application will stop and the 3D coordinates are then

sent to the actual robot.

3. Perform: The stored trajectory of the robot’s end effector is passed to the

robot by using socket communication to connect to ROS, which then transmits

54

the necessary control signals to the robot’s motors according to the inverse

kinematics.

A video example of the proposed VR teleoperation system is illustrated at this

link:

https://www.youtube.com/watch?v=h5JdnUqQf9A.

Figure 4.4. 2D Graphical User Interface to Control the Barrett WAM. The Interface
is used as a baseline comparison to measure the effectiveness of the proposed method.

4.4 Experimental Hypothesis and Case Study

To evaluate the usability and effectiveness of the proposed interface system, we

created a hypothesis that compares our system with two different approaches that

have already been established in the related bibliography. The comparison is meant to

test the system in terms of safety and usability. To test the hypothesis we performed

an experimental case study that provides measurements to support or debunk the

55

https://www.youtube.com/watch?v=h5JdnUqQf9A

hypothesis. Our goal will be to prove whereas that the VARM can provide a safe and

intuitive interface to program robotic arms when compared to an application that

utilizes a 2D GUI (Figure 4.4) and an application that enables the user to teach the

robot through direct physical interaction.

Figure 4.5. Physical configuration of the experiment depicting the boxes used and
the relative position of the robotic arm. The VR setup can be found in the upper left
hand corner of the image.

At this point, we have to mention the experimental configuration that was used

to test the hypothesis and provide details about the test protocol that was followed

throughout the process. The experiment involved a robotic challenge that would

help determine the strength or weakness of the hypothesis. Figure 4.5 illustrates the

scenario of the challenge. To elaborate more, the participants of the experiment were

asked to use the three provided interface applications (Learning from Demonstration,

2D GUI, Virtual Environment) to make the robot move from the green box of Figure

4.5 to the red one without colliding with any objects in the real environment. Figure

4.6 depicts an overview of the three different interface systems.

The hypothesis was tested by 11 different participants of both genders, with

little to no background in the field of robotics, from the age of 20 to 25. The devel-

opment team of VARM provided a quick overview of the experimental process and

explained the challenge that every participant must accomplish with all three inter-

56

Figure 4.6. Overview of the three different interface systems where both MATLAB
control code and VR interact with the Barrett WAM via ROS.

faces. Furthermore, each participant was exposed to a tutorial run by a member of

the team and was given a trial run to get a better understanding of every different

system before they had a test run. Note that during the test run the team measured

how much time it took each user to accomplish the task and how many times the

robot collided with an obstacle.

4.5 Experimental Results

Results showed that the participants took less time to complete the task of the

experiment by directly interacting with the real robot, when compared to the VARM

and 2D GUI approaches. The VARM interface stood second in this comparison,

while the 2D GUI was last. Figure 4.7 illustrates these results. Moreover, Figure 4.8

showcases that the same pattern was monitored from the recordings of the obstacle

collisions. To be more specific the average time to perform the task took 24 seconds

by direct interaction, 92 seconds when using the 2D GUI and 42 seconds with the

VARM. The average number of collisions when performing the task directly was 0,

57

6 when using the 2D GUI and 3 when using the VARM. Also, regardless of the

measurements that were collected, it is clear that the safest approach is the 2D GUI,

the most dangerous one is the direct interaction with the real robot and the VARM

stands somewhere in between.

Figure 4.7. Average time to perform a task between the thee interface systems of
Figure 4.6. Note that due to the cumbersome interface of the 2D GUI, it required
over double the time as VARM to perform the task.

As a final notice, from the numerical data that were collected, it was shown that

the VARM interface stood in between the other two approaches in terms of both task

design effectiveness and safety. That is to be expected since VARM tries to emulate a

real interaction between a robot and a human, but it is lackluster it terms of freedom

and realism, since no matter how realistic a virtual environment is, it still alienates

the user from the real world.

58

Figure 4.8. Number of collisions per task when comparing the three interface systems
of Figure 4.6. Physical interactions avoid collisions as the robot can be directly
manipulated in the original environment .

4.6 Summary

Given the high tracking and gesture detection accuracy provided by the Leap

Motion Controller, the proposed interface enables a user to program a robotic arm

in an intuitive manner. The experimental results proved that the users felt that

interacting with a robot is more natural with a gesture based VR environment than

with a teaching box or a graphical interface. The system gives the freedom to make

errors and collide with objects in the virtual world which could prove costly. Thus, a

collision avoidance system could be implemented in the VR that would prevent the

real robot from hitting a real object. Moreover, the interaction could be improved by

enabling the user to interact directly with any part of the robotic arm, not just the

end effector. Lastly, it is important to highlight that the system requires an accurate

replication of real world in the virtual world. However, this could be eliminated

59

by integrating a depth sensor and projecting a point cloud representation of the

robot’s work-space to the Oculus, or by having multiple stereo cameras that provide

continuous visual feedback back to the user in the VR environment.

60

CHAPTER 5

Combining Forward and Inverse Models with Reinforcement Learning for Motor

Policy Adaptation

In this chapter, we describe a two-phase system for robot motor skill learning.

In the first phase, a pair of pre-trained forward and inverse models [51] perform a

series of actions based on the demonstration of a desired motor skill. In the second

phase, the system learns an initial state-action policy by using the Dynamic Move-

ment Primitives (DMP) framework [4]. The initial policy is further optimized with

Reinforcement Learning (RL) according to a task-dependent reward function. The

system is tested on the Degrees of Freedom (DoFs) Sawyer Robotic Arm. The system

learns goal-dependant motor skills by employing Learning from Demonstration (LfD),

with a human teacher providing a demonstration which is used to acquire an initial

motor policy by utilizing the DMP framework [4],[15].

The adaptation is possible by incorporating goal-driven policy search RL meth-

ods [5],[52]. However, the adaptation capabilities of a single motor policy still remains

an open problem. In this chapter, we plan to incorporate forward and inverse models

in the learning loop to improve environmental adaptation[51]. The purpose of the

models is to provide an initial suboptimal motor policy, which can be learned by a

DMP and further optimized with RL.

In recent years, many imitation frameworks have been applied to solve the

problem of deriving policies that generalize the behavior of a robot over different

environmental states. Initial attempts to create learning from demonstration meth-

ods purely relied on supervised learning algorithms [2], while the vast majority of

61

modern imitation paradigms rely on RL [3]. This phenomenon indicates a shift to

self exploration algorithms. The development of the DMP framework was an es-

sential contribution to this trend, as it provides an abstraction layer between the

dimensions of state, action, and the environment by providing a policy with distinct

meta-parameters. This formalization enabled the creation of RL policy search algo-

rithms that consider the meta-parameters of the policy as the action space and the

joint or Cartesian configuration of the robot as the state space [25],[52]. Moreover,

another discrepancy between the proposed methods is that the learning occurs on the

Cartesian space [2],[27] or the joint space [28], or both [22]. The learning space of

the framework is important because it directly affects the formulation of the reward

function [3],[24].

The fusion of the DMP framework with RL has proven to successfully learn com-

plicated goal-oriented tasks such as robot grasping [23] and the Ball-in-a-Cup task

[24]. However, a policy cannot generalize over every possible trajectory that resem-

bles a different task. Experimentation has shown that tasks which are composed of a

plethora of different sequences of kinematic configurations requires multiple demon-

strations and policies to be learned. A scenario which best illustrates this case is a

robot that learns to play tennis by demonstration [53]. The authors of [53] propose

the construction of a library of motor primitives (MoMP), which associates different

environmental stimuli with the equivalent meta-parameters of the learned motor poli-

cies. To learn the initial suboptimal motor policy, they combine the meta-parameters

in action space with the use of a gating network. Another way to address the issue

of motor primitive generalization and combination, the authors of [22] also propose

the creation of a motion library that combines motor primitives with traditional do-

main planning artificial intelligence methods. In our work, instead of using a gating

network, we propose the incorporation of a forward model and an inverse model

62

that estimates the initial suboptimal mapping, without having to perform multiple

demonstrations and learn multiple DMPs.

Figure 5.1. Architecture of system that combines forward and inverse models with
reinforcement to learn motor policies.

5.1 Forward and Inverse Model System Architecture

In this section we will provide an overview of the proposed system architecture.

The system can be seen as a two phase system where phase one performs policy esti-

mation and phase two does policy optimization. Figure 5.1 illustrates the architecture

of the system. In phase one, the pair of pre-trained forward and inverse models esti-

mate an initial policy. The Gaussian representation of this suboptimal policy is then

learned according to the presented DMP framework and it is improved with RL.

5.1.1 Phase One: Policy Estimation

Phase one starts with the system receiving a goal δ̂ from the external sensor.

The system computes a distance vector that describes the relationship of the robot

63

with respect to δ̂ by combining the output of the forward model with the stimuli of

the sensor. The relationship vector, denoted as x̂e is fed to the inverse model which

provides a motor command to the robot to drive it closer to the goal. As the robot

tries to reach the goal, the state of the robot and the goal is recorded in a dataset for

phase two.

In the scope of this thesis, we consider the robot’s joint positions q(t) as the

robot’s state and the position of the graspable object as the goal δ̂. Given this

scenario, the forward model solves the forward kinematics of the robot, while the

inverse model receives an estimation of the Cartesian distance vector from the robot’s

end-effector to the goal and provides a joint velocity command. The velocity command

is then applied to the joints of the robot to minimize the distance vector x̂e(t).

Since both models represent non-linear mappings, we trained two different mul-

tilayer perceptron neural networks with distinct hyperparameters, which were trained

in a supervised manner. The forward model was trained offline by utilizing the for-

ward kinematics equation of the respective robot [51], [54]. The architecture of the

forward model depends purely on the geometrical characteristics of the robot [54],

while the composition of the second network relies on the complexity of the demon-

stration [51]. Thus, the inverse model was trained offline with data collected from the

demonstration of the task. The forward model was incorporated to make the system

as model agnostic as possible.

The demonstration was performed with kinesthetic teaching and it depicted how

the robot can reach the goal δ. During the demonstration, we recorded the location

of the object δ̂, the estimation of the position of the robot’s end-effector x̂, the state

of the robot q(t) and the duration of the demonstration. To enhance the accuracy of

the inverse model, we augmented the dataset of the demonstration with simple third

64

and fifth order polynomial splines of various parabolic blends [55]. Effectively, this

enables the inverse model to learn different paths from the start location of the robot

until the robot successfully reaches the goal location.

The architecture of the forward and inverse model is heavily based on the me-

chanical articulation of the robot platform, which is part of the system. The for-

ward model estimates the forward kinematic equation of robots with multilayer feed-

forward neural networks. In the current experiments we utilize the 7-DoF Sawyer

Robotic Arm. We formalize the kinematic problem as a supervised problem and we

propose an MLP architecture to solve the problem [54].Figure 5.2 illustrates the

kinematic model of the Sawyer Robotic Arm. The model was constructed by reverse

engineering the geometrical properties of the physical robot. According to the homo-

geneous transformation of the joint frames from Figure 5.2, the DH Table 5.1 of the

model was formulated. Note though, that in the table we do include the elevation

of the robot above the world frame, which is estimated to be 0.3160 meters. Based

on the Denavit–Hartenberg (DH) table, the homogeneous coordinate matrix of the

frames can be derived according to matrix (5.1).

Table 5.1. DH Table for the 7DOF Sawyer Robotic Arm

i αi ai di θi
1 -90◦ 0.0810 0 θ1
2 90◦ 0 0.1910 θ2
3 -90◦ 0 0.3990 θ3
4 90◦ 0 -0.1683 θ4
5 -90◦ 0 0.3965 θ5
6 90◦ 0 0.1360 θ6
7 0 0 0.1785 θ7

65

Figure 5.2. Kinematic Model of the Sawyer Robot.

i−1
i T =

cθi −cαisθi sαisθi aicθi

sθi cαicθi −sαicθi aisθi

0 sαi cαi di

0 0 0 1

(5.1)

1
7T =1

2 T ∗23 T ∗34 T ∗45 T ∗56 T ∗67 T (5.2)

66

−175◦ ≤ θ1 ≤ 175◦

−175◦ ≤ θ2 ≤ 175◦

−175◦ ≤ θ3 ≤ 175◦

−170◦ ≤ θ4 ≤ 170◦

−170◦ ≤ θ5 ≤ 170◦

−170◦ ≤ θ6 ≤ 170◦

−180◦ ≤ θ7 ≤ 180◦

(5.3)

To solve the forward kinematics problem of equation 5.1, we employ the multi-

layered feed-forward neural network of Figure 5.3. The input layer of the network

represents a vector of joint angle values (θ1,θ2,θ3,θ4,θ5,θ6,θ7), while the output of the

network stands for the Cartesian coordinates of the robot’s end effector. Both the

input and output units contain linear units for normalization purposes.

Figure 5.3. Architecture of the Forward Model.

67

The network was trained using the back-propagation algorithm with the mean

squared error of the output units as a metric. During the back-propagation process,

we used ADAM optimizer. To produce the training dataset of the network, 4 mil-

lion random kinematic configurations of joint angles with their equivalent Cartesian

positions were utilized. During the creation of the dataset, we made sure that the

joint angle values uniformly cover the ranges of equation 5.3. Because of the size of

the dataset, the network was trained with a batch size of 100 units and 30 epochs.

Also, 10% of the dataset was used for cross validation and 10% was used for testing

purposes.

After the training is complete, the networks achieved 99.997% validation accu-

racy. To demonstrate the effectiveness of the network, in this section we will compare

the network estimations with the output of the forward equation as computed by

equation 5.1 for the same input joint trajectory samples. Figure 5.4 shows the sam-

ple trajectory in joint space.

Figure 5.4. Error between the forward kinematic equation and the network in the x
dimension.

68

Figure 5.5. Error between the forward kinematic equation and the network in the y
dimension.

Figure 5.6. Error between the forward kinematic equation and the network in the z
dimension.

The difference between the estimations of the forward kinematic equations and

the proposed network is shown in figures 5.4, 5.5 and 5.6, where every figure represents

one of the Cartesian dimensions of the robot’s end effector. Note that the scale in

the vertical axis is in meters.

Figure 5.7 illustrates the augmented dataset of the inverse model. The green

trajectory depicts the demonstration data in Cartesian space, while the other trajec-

tories were generated with a variety of different splines. In total 125 trajectories were

used to train the inverse model. The architecture of the inverse model is a multi-

69

Figure 5.7. Inverse Model Training Data.

layered feed-forward neural network with three inputs and as many outputs as the

DoFs of the robot. The input is the Cartesian vector x̂e(t) = xe(t)− δ̂ and the output

is the equivalent joint velocity vector. The network contained three layers with 300,

200 and 100 sigmoid units and it was trained using the back-propagation algorithm

with the mean squared error loss function. During the back-propagation process we

used the Adam optimizer.

5.1.2 Phase Two: Policy optimization

To enter phase two, a stopping condition must be met. This stopping condition

is determined by a function that measures the error between the robot’s end-effector

and the goal position. Phase two starts by learning the motor policy using the

trajectory data that was computed from the forward and inverse models.

70

To estimate the transformation system, the forcing terms and the canonical

system of the DMP component of the system. τ is the final time T that represents

how long it took the inverse model to drive the robot’s end-effector to the target, x0

and g are the initial position and target position of the robot’s joint. The terms az

and βz are control gains selected to make the system critically damped and f acts as

the control input that drives the system towards the goal.

By using the Locally Weighted Regression (LWR) algorithm we learn the pa-

rameters of the motor policy as expressed in [4]. This motor policy constitutes a

suboptimal policy, which is then passed to the RL module to be further optimized

to reach the goal. According to the DMP framework, the learned suboptimal policy

π̂t(s, α) can be expressed as a battery of Gaussians that expand in the s domain.

For the purposes of this study, the shape of the Gaussians can only be altered if

the parameters wi are changed. As such, the RL module utilizes the Policy learning

by Weighting Exploration with the Returns (PoWER) algorithm to find the optimal

set of parameters wi that generate the optimal policy π∗
t (s, α) which in turn drives

the robot to the goal δ̂, as described in Chapter 2. Note, that if the learned DMP

can generalize its motor policy to reach the goal, the RL is not expected drastically

modify the Gaussians of the policy. On the other hand, if the initial policy π̂t(s, α)

can not generalize its action space to reach the goal, the RL module must alter the

weights of the Gaussians accordingly.

5.2 Experimental Section

In this section, we present our hypothesis which quantifies how much the forward

and inverse model improves environmental adaptation. Based on this hypothesis, we

provide an experimental protocol that evaluates the effectiveness of the proposed

system. We continue by providing some of the technical details of the experimen-

71

tal set-up and the implementation details of the second phase, such as the reward

function. We conclude this section by presenting the results of the experiments.

5.2.1 Hypothesis

Since the purpose of the models is to provide an initial guess of the optimal

policy, the evaluation metric has to measure how close the initially estimated policy

is to the optimal one. If the RL module requires a single episode to optimize the

estimated policy, it means that the estimated policy is the optimal one. Thus, if

we have two policies ˆπt(s, α)1 and ˆπt(s, α)2 and they require e1 and e2 episodes to

converge to the optimal policy, if e1 > e2 for any given goal g, then we can assume

that ˆπt(s, α)2 is more adaptable than ˆπt(s, α)1.

5.2.2 Experimental Protocol

The experimental protocol includes two different sets of grasping scenarios with

the Sawyer Robotic Arm. In the first scenario, the robot attempts to grab a small

cube from a table, while in the second one the robot has to learn how to grab a

cylindrical cup from the table. In both scenarios the robot’s initial position in joint

space is q(t = 0) = [0◦,−50◦, 0◦, 120◦, 0◦, 0◦, 0◦]. For each scenario a total of five

different experiments were conducted by placing the graspable object in five different

goal locations δ. The Cartesian location of the goals according to the world frame of

the robot were:

δ̂1 = [0.237,−0.466,−0.04]

δ̂2 = [−0.217,−0.474,−0.04]

δ̂3 = [1.110,−0.551,−0.04]

72

δ̂4 = [−0.179,−0.678,−0.04]

δ̂5 = [0.217,−0.680,−0.04]

Note that for the cube grabbing experiments the final orientation of the end

effector was set to [180◦, 0◦, 90◦], while to grasp the cylindrical cup, the orientation

was set to [−135◦,−90◦, 135◦].

Before the experimental procedure, we performed a demonstration with kines-

thetic teaching, depicting how the robot can grab a small cube from a goal location

δ̂Experiment = [0, 035,−0, 573,−0, 04]. After we collected the data from the demonstra-

tion, we trained the forward and inverse model as suggested in the previous section.

In every experiment, the models generate trajectory data to compute the initial policy

ˆπt(s, α) that is later optimized by the RL module in phase two. To evaluate whereas

the models produce an adaptable policy ˆπt(s, α)mdl, for every experiment we also

learn a policy ˆπt(s, α)demo, which is computed without the help of the models. By

comparing the number of episodes that were required for the two policies to converge

to the optimal one for all δi we can reason according to our hypothesis whereas the

models increase the adaptability of the system or not.

5.2.3 Implementation Details

At this point we ought to mention that the motor policies are composed of 20

Gaussian functions. The RL module creates 10 different samples in each episode and

discards half of the least successful ones. The success of a rollout is correlated with

a user defined reward function. The reward function is defined in equation 5.4 and

is inspired by [27]. The reward function contains two branches, which are meant to

evaluate a roll-out at it’s final state (t = T) and throughout it’s duration (t 6= T).

73

The term w1 (0 to 1 inclusive) weights the importance of reaching state g at time

t = T .

r(t) =

w1 exp (−||g − x||2) if t = T

(1−w1)
T

exp (−||g − x||2) if t 6= T

(5.4)

For the system to collect δ̂ we use a manually-calibrated downward-facing we-

bcam that performs color detection to estimate δ̂ of the location δ with respect to

the world frame of the robot. Lastly, a threshold is used to stop the robot once it is

within 1cm of the goal.

Experiment 1 2 3 4 5 Total
Models 18 17 14 6 6 61
Demonstration 29 12 19 13 9 82

Table 5.2. Results from ’cube’ scenario

Experiment 1 2 3 4 5 Total
Models 14 18 17 8 8 65
Demonstration 17 6 15 12 13 63

Table 5.3. Results from ’cup’ scenario

5.2.4 Experimental Results

The final results of the experiments can be seen in table 5.2 for the first scenario

and in table 5.3 for the second scenario. The first line in each table indicates the

number of episodes that were necessary to convert policy ˆπt(s, α)mdl to the optimal

74

Figure 5.8. Scenario 1: The robot performs the second experiments and attempts to
grab the cube at δ̂2 = [−0.217,−0.474,−0.04]..

Figure 5.9. Scenario 2: The robot performs the second experiments and attempts to
grab the cylinder at δ̂2 = [−0.217,−0.474,−0.04]..

Figure 5.10. Calculated trajectories for scenario 2, experiment 2.

75

Figure 5.11. Calculated trajectories for scenario 1, experiment 2.

one, while the second line shows the number of episodes for policy ˆπt(s, α)demo. The

columns of the tables represent how many episodes were necessary for the policies to

adapt in each experiment and what is the total number of episodes per scenario.

Figures 5.8 and 5.9 illustrate how the system performed in the first and second

scenario during the second experiment. Specifically, they show the starting pose of

the robot, the final pose of the trajectory that was generated by the inverse model,

and the final pose that was performed by the optimal policy. In figures 5.10 and 5.11

the blue line represents the trajectory that was computed by the inverse model that

drove the robot to a position near the goal. The red line represents the trajectory of

the initial policy and the black line is the optimal policy that enables the robot to

reach the goal location.

Since an optimal policy converges in a single episode, with a seven DoF robot

and five experiments, there are a total of 45 episodes required. According to our exper-

imental hypothesis and from the results of table 5.2, we deduce that since ˆπt(s, α)mdl

76

is closer to the optimal policy in almost every experiment, the models increase the

adaptability of the system. However, from the results of table 5.3 we note that the

adaptation of both policies is almost identical in the cup grasping scenario, despite

the fact that ˆπt(s, α)mdl adapted more quickly in experiments one, four and five. The

main reason for this phenomenon is that the inverse model was trained on data that

involved the cube and not the cup grabbing scenario.

77

CHAPTER 6

Learning Visuomotor Policies by Combining Movement Primitives and

Convolutional Neural Networks

One common characteristic of all animals and humans is their ability to sense,

learn and perform actions. Researchers in the field of robotics are aware of this

phenomenon and they are trying to incorporate these behaviors in robotic systems.

In the first chapter of his book, Craig [12] regards robotics as an interdisciplinary

field of science of locomotion, mechanical control, artificial intelligence, and sensor

analysis. Most robotic systems are designed by combining multiple components that

perform each of these operations separately. One of the groundbreaking effects of

the Dynamic Movement Primitive (DMP) frameworks is its ability to learn motor

skills. In this chapter, we propose a system that introduces sensory capabilities in

the learning loop of the DMP framework.

6.1 Method to learn end-to-end visuomotor policies

In this section, we present a method to learn end-to-end visuomotor policies

for robotic arms from demonstrations. The method computes state-action mappings

in a supervised learning manner from raw images and motor commands. At the

core of the system, a Convolutional Neural Network (CNN) extracts image features

and produces motion features. The motion features encode and reproduce motor

commands according to the DMP framework. To evaluate the effectiveness of the

proposed learning method, we conduct experiments with a PR2 robot in a simulation

78

environment. The purpose of these experiments is to evaluate the system’s ability to

control a robot to perform tasks.

In recent years, robotics researchers put substantial effort into building au-

tonomous agents by leveraging the abilities of learning into the classical sense-reason-

act loop [56]. Early research in the field of Human-Robot-Interaction (HRI) intro-

duced the notion that robots should learn to perform tasks through human guidance

and not programming. This idea is influenced by the human tendency to learn prac-

tical skills by observing and imitating other humans [11]. This trend established the

area of imitation learning, which lead to the development of Learning from Demon-

stration (LfD) approaches [1].

LfD algorithms operate in two stages [1]; the demonstration and the execution

stage. In the demonstration stage, the LfD method records data that associate with

the world state and the action of the demonstrator. The learner then creates a state-

action mapping which accomplishes the demonstrated task. This mapping is often

referred to in LfD literature as a policy. In the execution stage, the robot applies

the policy to perform the task in a similar setting. LfD methods can be categorized

according to how the data is collected, what features are selected, and how the policy

is derived [11], [1].

In recent years, many LfD frameworks have been applied to solve the problem

of deriving policies that generalize the behavior of a robot over different state-action

mappings. The development of the DMP framework [4] was an essential contribution

to this trend, as it provides an abstraction layer that connects the dimensions of

state, action, and environment by computing a motor policy with distinct meta-

parameters that affect the behavior of the system. However, the experiments reported

in [28], [53], [22] have shown that tasks which are composed of a plethora of different

sequences of kinematic configurations require multiple DMP policies to be learned.

79

A typical test case for multiple DMPs is a robot learning tennis by demonstration

[28], [53]. Muelling et al. proposes to solve the issue of motor primitives generalization

by combining the meta-parameters of multiple DMP policies through regression with

a gating network.

Figure 6.1. LfD with the DMPs.

Figure 6.2. LfD with CNN.

Figure 6.3. Proposed LfD method.

With the development of modern CNNs, researchers began to develop systems

that train on perception and control data to learn end-to-end policies from raw images

to low-level motor commands [18], [19], such as joint torques. LfD systems that

incorporate CNNs have the ability to learn policies from datasets with videos of

80

demonstrations and their respective joint motor commands [57]. Since CNNs have

the capacity to extrapolate visual information on a higher abstract dimension with

respect to the presented data [58], LfD methods which combine CNNs can learn to

perform tasks from different embodiment [59]. Such is the case when the authors

of [6] learn tasks from both human and robot demonstrations to infer a policy of a

new task from just one new human demonstration.

Recently, [60], [61] present methodologies that make use of both CNNs and

DMPs. Specifically, the authors of [60] augment the learning capabilities of the DMP

framework by creating a deep encoder-decoder network that maps raw images to the

parameters of a DMP policy. Since the meta-parameters of a DMP policy lie in

different dimensions, a custom cost function is used to train the network. Similarly,

[61] proposes a two-step learning method that combines CNNs and DMPs. In the

first step, a CNN learns to map images to task parameters, while in the second step

a fully connected neural network converts the learned task parameters and a clock

signal to DMP parameters.

Overall, the DMP framework has the capacity to transform motion trajectories,

which is a high-dimension space, to specific motion features, which is a low-dimension

latent space, via regression. The motion features are then converted into motor com-

mands by employing a dynamic model as suggested in figure 6.1. On the other hand,

CNN LfD methods utilize convolutions to extract image features from images and

then output motor commands via regression. As such, both DMP and CNN frame-

works have the capacity to extract low-dimensional features of motion and images

respectively and map them to motor commands. In this chapter, we propose an al-

ternative LfD method to compute visuomotor policies by combining characteristics

of both DMPs and CNNs. Figure 6.3 illustrates our proposed method that utilizes

convolutions to extract image features, maps them with regression to DMP motion

81

features and then produces motor commands with dynamic models. The novelty of

the proposed method is that regression is not performed between a high and low di-

mension space, but between two low-dimension latent spaces, which often yields more

successful results [62].

Figure 6.4. The architecture of the proposed learning method depicting the end-to-
end system.

6.2 Architecture of the Proposed Learning Method

In this section, we will provide an analysis of the proposed learning method.

Figure 6.3 suggests that the proposed method has two sub-modules that operate in

order. The first one is composed of a CNN that maps raw images and the state

of the robot to DMP parameters, while the second sub-module converts the DMP

parameters to motor commands. An analytical illustration of the system can be seen

in Figure 6.4.

82

6.2.1 Data Pre-processing

For training, the learning method requires a dataset D containing multiple

demonstrations of each training task. Every demonstration lasts a specific amount of

time which is denoted as the time vector t = [0, .., ti, .., tf], where tf = τ is the duration

of the demonstration and i symbolizes the number of data points per demonstration.

Furthermore, we collect observations oi, which are RGB images of the demonstration

at time ti, and we record the robot state vector of joint angle positions qi at time ti.

The DMP parameters for each task are computed using q and t. Specifically, a fixed

number of interval recordings i and Gaussians in equation 2.3 are set. The number

of Gaussians, control gains az, bz, and the variable α are set to constants according

to [4], enabling us to derive phase variable s from equation 2.4. The starting position

x0 and goal g is assumed to be the initial q(t = 0) and q(t = T) terminal state of the

robot for each demonstration. To compute the vector weights wi we used the LWR

algorithm [4] as previously in chapter 2. Thus, only the goal g, starting pose x0,

phase s, and weights wi are changing in each demonstration. This means that these

variables are the parameters of the DMP motor policy that encode and generalize the

joint trajectories of the demonstration.

6.2.2 First Sub-module Architecture

The network’s architecture is inspired by [18], [19], and [6] in terms of function-

ality and composition. We proceed to training the first sub-module after appending

the DMP parameters to D and normalizing the dataset. The observations oi are used

as input and DMP parameters as output. The inputted RGB images are segmented

into 3 channels and their dimensions reduced to 125x125. Next, they are fed into

4 convolution layers with 16 filter of size 4 and stride of 4. The output of the last

83

Figure 6.5. Simulation Environment in Unreal Engine.

Figure 6.6. Robot reaches an object from the side.l Engine.

Figure 6.7. Robot reaches an object from the top.

convolution layer is transformed into spatial features with the use of the soft-argmax

operator [18], [19]. The spatial image features are then fused with the state of the

robot qi, which is represented by a vector of joint positions. Note that during the

concatenation of the features and the state, we add a bias term to make the image

feature dimensions less dominant [18], [19], [58]. The fused dimension is then passed

84

to 3 fully connected layers with 200 units and ReLU activation units. The output of

the network represents the DMP parameters, which are used to derive the new forcing

term that drives the robot according to equation 2.1 of the transformation system in

Chapter 2.

6.3 Experimental Section

For the experiments, we have made use of a game engine-based simulation. In

this section, we first introduce the simulation and describe the experimental frame-

work. Next, we present test cases to challenge the robustness of the learning method.

We continue by elaborating on the data collection method and explain the metrics of

evaluation. Finally, we present and discuss the experimental results.

6.3.1 Experimental Framework

Figure 6.4 provides an illustration of the simulation environment. The environ-

ment contains a simulation of a PR2 robot in a virtual kitchen setting. The simulation

was developed with Unreal Engine due to its photo-realistic renderings and powerful

physics engine. All object in the simulation, including the robot, can be controlled via

ROS (using a ROS bridge). The proposed method was implemented with TensorFlow.

6.3.2 Test cases

The training data is acquired with simulated tasks depicting various reaching

motions using the robot’s right arm. The left arm remains still throughout the exper-

iment. Each demonstration begins with the same starting arm pose while the target

objects are placed in novel positions and orientations. The duration of the demon-

stration, τ , remains constant. This means we can extract the DMP parameters of

each demonstration and reduce the number of parameters needed to be learned by the

85

system as the goal g and weight vector w in equation of the forcing term are sufficient

for reproducing the movement. The size of the DMP parameter vector (shown in

figure 6.4) is based on the resolution of the DMP forcing term (i.e. the number of

Gaussians basis functions) and the degrees of freedom of the manipulator (which is

seven in our case with the PR2). The simplification in representation enables training

with mean squared error as opposed to custom cost functions as proposed in [60].

Additional variance is introduced within the dataset by introducing different

reaching paths from the initial position of the robot to the object. As Figures 6.6 and

6.7 suggest, the robot is able to reach the object from the side or from the top. To be

exact, if the observed object is cylindrical in shape, the robot is ordered to approach

the object sideways, while if the object is cube-like, the robot approaches to object

from the top. The end-to-end network recognizes this automatically and is thus able

to infer and select a primitive accordingly.

The trajectory of the demonstration is generated by finding the inverse kine-

matics solution of a position near the object, and then interpolates polynomial joint

space trajectories leading from the starting joint position. When the joint trajecto-

ries are calculated, they are passed to the position controller of the simulated robot

and as the robot executes the trajectory, a camera within the simulation records the

observations oi.

To establish a metric of evaluation, we decided to train an additional CNN. The

second neural network has a similar architecture as the one in Figure 6.4, with the

exception that it learns to produce joint velocity commands dqi in every interval based

on the observation oi and robot state qi. The proposed learning method encapsulates

the network that outputs DMP parameters and the second network which outputs

velocities. After both networks are trained with data from the same demonstrations,

we compare how the robot behaves while being controlled by each network in a set of

86

test cases. In these cases, new objects are introduced and are placed in a set of novel

location with respect to the torso of the robot. For every object and every location,

we proceed by comparing how each network commands the robot to reach the object.

Figure 6.8. Error between end effector and object..

6.3.3 Implementation Details

As seen from Figures 6.6 and 6.7 the robot’s right arm always start from q(t =

0) = [−90◦,−70◦, 0◦, 0◦,−70◦, 0◦, 0◦]. The forcing term of the DMPs is characterized

by 20 Gaussian functions. The dataset contains demonstrations of 27 different objects,

which are placed in 22 random locations. Each demonstration lasted 4 seconds divided

into 100 intervals. During testing, 4 different new objects were placed in the following

10 locations δ for a total of 40 cases. As aforementioned, for each test case we compare

how the network that learns DMPs and the network that learns velocities, control

87

the robot. The Cartesian positions (x-y-z) and orientations (yaw angle in radians) of

all the δ with respect to the torso frame of the robot are as follows:

δ1 = [0.488, 0.009,−0.33,−0.0105]

δ2 = [0.682,−0.029,−0.33, 0.0963]

δ3 = [0.608, 0.07,−0.33,−0.232]

δ4 = [0.615,−0.255,−0.33,−1.522]

δ5 = [0.514, 0.212,−0.33,−0.6333]

δ6 = [0.478, 0.147,−0.33,−0.8206]

δ7 = [0.627,−0.123,−0.33, 0.9057]

δ8 = [0.521,−0.285,−0.33, 0.3928]

δ9 = [0.571,−0.038,−0.33, 0.8010]

δ10 = [0.627,−0.183,−0.33, 0.9661]

Figure 6.9. Test case for object 1 and δ4.

88

Figure 6.10. Test case for object 2 and δ2.

Figure 6.11. Test case for object 3 and δ8.

Figure 6.12. test case for object 3 and δ1.

6.3.4 Experimental Results

The first metric of evaluation is the euclidean distance of the robot’s end effector

at the terminal state from the center of the object. This metric is selected to establish

which system is more successful at guiding the robot near the object. Figure 6.8

presents a comparison between the two methods with regards to the average error

89

distance in meters from the center of the objects for all 10 locations δ per object. We

notice that the network that learns velocities has an average distance error of 20 cm

in comparison to the proposed method that has an average error of about 11 cm.

Although Figure 6.8 shows that the proposed method is successful at guiding the

robotic arm near the object, we present further comparisons. Figures 6.9 to 6.12 and

Figures 6.13 to 6.16 provide additional comparisons between how the robot behaves

when controlled by each network. Both Figures illustrate how each network guides the

robot when presented with the 4 different object for cases δ4, δ2, δ8, and δ1 respectively.

Figures 6.9 to 6.12 shows sequences of images that capture the behavior of the robot

while it is being controlled by each network individually. Figures 6.13 to 6.16 presents

the equivalent Cartesian trajectories that the robot’s end effector followed. A common

trend in all cases is that the robot’s arm performed an arch shape trajectory when

it is controlled by the network that produces velocities. In contrast, the network

that learns DMPs guides the robot thought trajectories which are characterized by

over-shots and oscillations. Despite this phenomenon, the proposed method retained

a sense of goal and direction in comparison to the velocity network. In Figures 6.13

to 6.16 we highlight that despite the perturbations, the blue trajectory converges to

a position near the object’s true position, which is denoted as a red dot.

Another noteworthy event is that the proposed methodology retained the form

of the primitive movement of the trajectory. This is apparent for example in Fig-

ure 6.11 where the robot is trying to reach the object from the top and not sideways,

which happens in the rest of the Figures. This can be attributed to the fact that

the object of Figure 6.11 is not cylindrical in shape and thus the network chooses to

approach it from the top. The exact opposite happens in the rest of the examples

where the robot approaches the object sideways because they are of cylindrical shape.

90

Figure 6.13. Test case for object 1 and δ4.

Figure 6.14. Test case for object 2 and δ2.

We found that the network that learned DMPs created a mapping between

images and the parameters of the forcing term of a spring damper system which leads

the robot arm to a specific goal. This explains why the robot performed oscillations

91

Figure 6.15. Test case for object 3 and δ8.

Figure 6.16. Test case for object 3 and δ1.

and over-shots in the experiments, but retained the form of the learned trajectory

and the goal. The generated trajectory is characterized by oscillatory motion due

to lack of data and not optimizing the neural network hyper-parameters. Moreover

92

the velocity network that was used for testing interpolated between the two different

primitive motions. This result can be explained by other relevant studies such as

[28], [53]. An intuitive explanation is that the geometric interpolation of a top down

and a side ways approach to an object will result in an arching trajectory.

Due to a couple of simplifications that were made in the experimental section,

the proposed learning method did not require a custom cost function like [60]. It

must be mentioned though that deriving a custom cost function for every DMP pa-

rameter can be a challenging task, especially when the network architecture becomes

more complex. However, optimizing the network’s parameters with respect to such a

function will result in better overall performance.

93

CHAPTER 7

Epilogue

7.1 Summary

This thesis explores concepts and ideas from a variety of different scientific

fields that associate with robotics, such as robot kinematics and dynamics, computer

vision, control theory, and machine learning. Some of the examined techniques are

model-based such as robot kinematics and robot dynamics, while others are model-

agnostic, such as the Dynamic Movement primitives (DMP) framework and Convo-

lutional Neural Networks (CNNs). Each proposed system utilized a combination of

these techniques intending to synthesize semi-autonomous robotic systems for robot

manipulation for a variety of different applications.

Throughout this research, we present the potential and advantage of fusing

model-based with model-agnostic approaches. The intuition behind this idea is that

model-based approaches are very robust and accurate, but can’t generalize over differ-

ent environmental parameters, while model-agnostic techniques achieve the opposite.

As such, the combination of model-based approaches, in the form of deterministic

mathematical models and formulas, and model-agnostic approaches, which is advo-

cated through the use of machine learning, can have beneficiary effects in an intelligent

system.

7.2 Conclusion and Future Work

The DMP framework can enable a robot to act and learn based on a control

module and a learning component. However, sensing is a modality that is absent from

94

the learning loop of the DMP framework. In this thesis, we attempted to augment the

learning capabilities of the DMP framework by incorporating DNNs. The research of

Chapter 6 proposes a novel learning method to fuse sensing, learning, and motion by

learning end to end visuomotor policies by combining CNNs and DMPs.

The proposed method of Chapter 6 performed better than the state of the art

approach since it learned to distinguish between different behaviors with regards to

visual environmental stimuli. On the other hand, traditional frameworks interpolated

between motor commands to produce negative results. Thus, the parameter space of

the DMP framework is a latent space that concatenates information about motion.

It also proves that it is a suitable dimension to learn motor skills with regression.

In essence, the proposed method learned the parameters of a forcing term,

which drives an attractor system that behaves as the mass-spring-damper system.

As such, the system learned the non-optimal parameters of a controller that drives

the robot from a specific start location to the desired goal location. Computing the

optimal parameters of such a system is difficult with machine learning because the

DMP framework learns a general policy and not an optimal one. Note, that is is the

reason why the motion of the robot in Chapter 6 was oscillatory.

Finally, although the experiment of Chapter 6 was successful, the system was

limited because the CNN only learned a couple of the DMP parameters, such as the

weights of the forcing term and the goal of each trajectory. A real-life system must

be able to learn the phase and the starting position of the system as well. Thus,

a possible avenue for future exploration is to train the model of Chapter 6 with a

custom cost function, such as the one presented in [60]. Also, by creating a cost

function that takes into consideration the derivatives of the DMPs, the system will

become more stable and accurate.

95

7.3 Published Implementations

One of the products of this thesis is the release of various software implementa-

tions to analyze and examine the proposed methodologies. In this section, we provide

the systems that are publicly available to promote experimentation by the research

community:

1. pyrdmp: Implementation of the DMP framework and the Policy learning by

Weighting Exploration with the Returns (PoWER) algorithm. Chapter 2 pro-

vides the fundamentals of the implementation. Readers can find the implemen-

tation on the following link: https://github.com/heracleia/pyrdmp.

2. Learning Visuomotor Policies by Combining Movement Primitives and Convo-

lutional Neural Networks. The system presented in Chapter 6 can be found in

the following link: https://github.com/MichailTheofanidis/CNN-DMP-fusion,

while the data-set of the reaching attempts by the robot can be found in:

https://github.com/MichailTheofanidis/CNN-DMP-fusion-Datasets-Results.

3. Combining Forward and Inverse Models with Reinforcement Learning for Motor

Policy Adaptation. The learning method presented in Chapter 5 along with a

library to perform kinematic computations for the sawyer robotic arm can be

found in: https://github.com/heracleia/sawyer-nn-pyrdmp.

96

https://github.com/heracleia/pyrdmp
https://github.com/MichailTheofanidis/CNN-DMP-fusion
https://github.com/MichailTheofanidis/CNN-DMP-fusion-Datasets-Results
https://github.com/heracleia/sawyer-nn-pyrdmp

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot

learning from demonstration,” Robotics and autonomous systems, vol. 57, no. 5,

pp. 469–483, 2009.

[2] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and gener-

alizing a task in a humanoid robot,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp.

1238–1274, 2013.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical

movement primitives: learning attractor models for motor behaviors,” Neural

computation, vol. 25, no. 2, pp. 328–373, 2013.

[5] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE Robotics

& Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[6] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine, “One-shot

imitation from observing humans via domain-adaptive meta-learning,” arXiv

preprint arXiv:1802.01557, 2018.

[7] G. C. Burdea, “Invited review: the synergy between virtual reality and robotics,”

IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 400–410,

1999.

[8] M. Theofanidis, S. I. Sayed, A. Lioulemes, and F. Makedon, “Varm: Using vir-

tual reality to program robotic manipulators,” in Proceedings of the 10th Interna-

97

tional Conference on PErvasive Technologies Related to Assistive Environments.

ACM, 2017, pp. 215–221.

[9] M. Ogino, H. Toichi, Y. Yoshikawa, and M. Asada, “Interaction rule learning

with a human partner based on an imitation faculty with a simple visuo-motor

mapping,” Robotics and Autonomous Systems, vol. 54, no. 5, pp. 414–418, 2006.

[10] R. Drillis, R. Contini, and M. Bluestein, “w,” Artificial limbs, vol. 8, no. 1, pp.

44–66, 1964.

[11] C. Sylvain, “Robot programming by demonstration: A probabilistic approach,”

2009.

[12] J. J. Craig, Introduction to robotics: mechanics and control, 3/E. Pearson

Education India, 2009.

[13] R. Crespo, R. Garćıa, and S. Quiroz, “Virtual reality simulator for robotics

learning,” in Interactive Collaborative and Blended Learning (ICBL), 2015 In-

ternational Conference on. IEEE, 2015, pp. 61–65.

[14] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical

human–robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp.

253–270, 2008.

[15] S. Schaal, “Dynamic movement primitives-a framework for motor control in hu-

mans and humanoid robotics,” in Adaptive motion of animals and machines.

Springer, 2006, pp. 261–280.

[16] L. Peppoloni, F. Brizzi, C. A. Avizzano, and E. Ruffaldi, “Immersive ros-

integrated framework for robot teleoperation,” in 3D User Interfaces (3DUI),

2015 IEEE Symposium on. IEEE, 2015, pp. 177–178.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

98

[18] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep

visuomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1,

pp. 1334–1373, 2016.

[19] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

collection,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.

421–436, 2018.

[20] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in ICML,

vol. 97. Citeseer, 1997, pp. 12–20.

[21] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng, “Humanoid robot

learning and game playing using pc-based vision,” in IEEE/RSJ international

conference on intelligent robots and systems, vol. 3. IEEE, 2002, pp. 2449–2454.

[22] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization

of motor skills by learning from demonstration,” in Robotics and Automation,

2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 763–768.

[23] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Grasping with vision descriptors

and motor primitives,” in Informatics in Control, Automation and Robotics.

Springer, 2011, pp. 211–223.

[24] J. Kober and J. Peters, “Learning motor primitives for robotics,” in Robotics

and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE,

2009, pp. 2112–2118.

[25] J. Kober and J. R. Peters, “Policy search for motor primitives in robotics,” in

Advances in neural information processing systems, 2009, pp. 849–856.

[26] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,

pp. 2219–2225.

99

[27] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordina-

tion with em-based reinforcement learning,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 3232–

3237.

[28] K. Muelling, J. Kober, and J. Peters, “Learning table tennis with a mixture

of motor primitives,” in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS

International Conference on. IEEE, 2010, pp. 411–416.

[29] J. Cloud, M. Theofanidis, J. Brady, and F. Makedon, “Importance of effective

teaching in robot motor skill learning,” in Proceedings of the 12th ACM Interna-

tional Conference on PErvasive Technologies Related to Assistive Environments.

ACM, 2019, pp. 489–492.

[30] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from non-

parametric statistics for real time robot learning,” Applied Intelligence, vol. 17,

no. 1, pp. 49–60, 2002.

[31] C. J. van Andel, N. Wolterbeek, C. A. M. Doorenbosch, D. H. E. J. . Veeger,

and J. Harlaar, “Complete 3D kinematics of upper extremity functional tasks,”

Gait and Posture, vol. 27, no. 1, pp. 120–127, 2008.

[32] E. Magrini, F. Flacco, and A. De Luca, “Control of generalized contact mo-

tion and force in physical human-robot interaction,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 2298–2304.

[33] M. Abujelala, A. Lioulemes, P. Sassaman, and F. Makedon, “Robot-aided

rehabilitation using force analysis,” in Proceedings of the 8th ACM International

Conference on PErvasive Technologies Related to Assistive Environments, ser.

PETRA ’15. New York, NY, USA: ACM, 2015, pp. 97:1–97:2. [Online].

Available: http://doi.acm.org/10.1145/2769493.2769582

100

http://doi.acm.org/10.1145/2769493.2769582

[34] A. Lioulemes, P. Sassaman, S. N. Gieser, V. Karkaletsis, F. Makedon, and

V. Metsis, “Self-managed patient-game interaction using the barrett wam arm

for motion analysis,” in Proceedings of the 8th ACM International Conference

on PErvasive Technologies Related to Assistive Environments, ser. PETRA

’15. New York, NY, USA: ACM, 2015, pp. 34:1–34:8. [Online]. Available:

http://doi.acm.org/10.1145/2769493.2769517

[35] H. Zhou and H. Hu, “Human motion tracking for rehabilitation-A survey,”

Biomedical Signal Processing and Control, vol. 3, no. 1, pp. 1–18, 2008.

[36] S. Parasuraman, C. Y. Kee, and A. Oyong, “Human upper limb and arm kine-

matics for robot based rehabilitation,” IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, AIM, pp. 845–850, 2009.

[37] S. Parasuraman, A. W. Oyong, and V. Ganapathy, “Development of robot as-

sisted stroke rehabilitation system of human upper limb,” in 2009 IEEE Inter-

national Conference on Automation Science and Engineering. IEEE, 2009, pp.

256–261.

[38] J. J. Craig, Introduction to robotics: mechanics and control. Pearson Prentice

Hall Upper Saddle River, 2005, vol. 3.

[39] L. Ferrajoli and A. De Luca, “A modified newton-euler method for dynamic com-

putations in robot fault detection and control,” Proceedings - IEEE International

Conference on Robotics and Automation, pp. 3359–3364, 2009.

[40] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts

from single depth images,” in Proceedings of the 2011 IEEE Conference

on Computer Vision and Pattern Recognition, ser. CVPR ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 1297–1304. [Online]. Available:

http://dx.doi.org/10.1109/CVPR.2011.5995316

101

http://doi.acm.org/10.1145/2769493.2769517
http://dx.doi.org/10.1109/CVPR.2011.5995316

[41] Q. Wang, G. Kurillo, F. Ofli, and R. Bajcsy, “Evaluation of pose tracking ac-

curacy in the first and second generations of microsoft kinect,” in Healthcare

Informatics (ICHI), 2015 International Conference on. IEEE, 2015, pp. 380–

389.

[42] M. S. Erden and A. Billard, “End-point impedance measurements at human hand

during interactive manual welding with robot,” Proceedings - IEEE International

Conference on Robotics and Automation, pp. 126–133, 2014.

[43] S. Devine, K. Rafferty, and S. Ferguson, “Real time robotic arm control us-

ing hand gestures with multiple end effectors,” in Control (CONTROL), 2016

UKACC 11th International Conference on. IEEE, 2016, pp. 1–5.

[44] B. F. Yousef, “A robot for surgery: Design, control and testing,” in Advances in

Robotics and Virtual Reality. Springer, 2012, pp. 33–59.

[45] Y. Pititeeraphab, P. Choitkunnan, N. Thongpance, K. Kullathum, and C. Pin-

tavirooj, “Robot-arm control system using leap motion controller,” in Biomedical

Engineering (BME-HUST), International Conference on. IEEE, 2016, pp. 109–

112.

[46] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, and T. Bock, “Intuitive

and adaptive robotic arm manipulation using the leap motion controller,” in

ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of.

VDE, 2014, pp. 1–7.

[47] J. Artal-Sevil and J. Montañés, “Development of a robotic arm and implementa-

tion of a control strategy for gesture recognition through leap motion device,” in

Technologies Applied to Electronics Teaching (TAEE), 2016. IEEE, 2016, pp.

1–9.

[48] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, “Hu-

manoid motion planning for dual-arm manipulation and re-grasping tasks,” in

102

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Con-

ference on. IEEE, 2009, pp. 2464–2470.

[49] G. K. Singh and J. Claassens, “An analytical solution for the inverse kinematics

of a redundant 7dof manipulator with link offsets,” in Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010,

pp. 2976–2982.

[50] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with leap

motion and kinect devices,” in Image Processing (ICIP), 2014 IEEE Interna-

tional Conference on. IEEE, 2014, pp. 1565–1569.

[51] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning with

a distal teacher,” Cognitive science, vol. 16, no. 3, pp. 307–354, 1992.

[52] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust

parametrized motor primitives to new situations,” Autonomous Robots, vol. 33,

no. 4, pp. 361–379, 2012.

[53] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and gen-

eralize striking movements in robot table tennis,” The International Journal of

Robotics Research, vol. 32, no. 3, pp. 263–279, 2013.

[54] M. Theofanidis, S. I. Sayed, J. Cloud, J. Brady, and F. Makedon, “Kinematic

estimation with neural networks for robotic manipulators,” in International Con-

ference on Artificial Neural Networks. Springer, 2018, pp. 795–802.

[55] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy

gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[56] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in

cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

103

[57] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in 2017

IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2017, pp. 2786–2793.

[58] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adap-

tation of deep networks,” in Proceedings of the 34th International Conference on

Machine Learning-Volume 70. JMLR. org, 2017, pp. 1126–1135.

[59] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual imitation

learning via meta-learning,” arXiv preprint arXiv:1709.04905, 2017.

[60] A. Gams, A. Ude, J. Morimoto, et al., “Deep encoder-decoder networks for map-

ping raw images to dynamic movement primitives,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–6.

[61] A. Pervez, Y. Mao, and D. Lee, “Learning deep movement primitives using con-

volutional neural networks,” in 2017 IEEE-RAS 17th International Conference

on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 191–197.

[62] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

104

BIOGRAPHICAL STATEMENT

Michal Theofanidis was born in Athens, Greece in 1989. In 2013 he completed

his undergraduate studies at the University of Piraeus, Greece with a B.Sc. from

the Department of Digital Systems and he obtained his M.Sc. from the Department

of Engineering Mathematics at the University of Bristol, UK. After his graduation

he worked as a Research Assistant at the National Center of Scientific Research

Demokritos in Greece for a semester.

During his Ph.D. research, he had the opportunity to work for two large Na-

tional Science Foundation (NSF) grants (US-government funded), the iRehab NSF

center project (NSF 1338118) and the iWork project (NSF 1719031). The iRehab

center sponsors projects that include personalized rehabilitation therapy for indi-

viduals suffering from motor disabilities and cognitive impairments. Moreover, his

contribution to the iWork project was to build a smart robot teleoperation system

for manipulation, to ensure safe human-robot interaction in intelligent manufacturing

or Industry 4.0. Specifically, he designed a robot Learning from Demonstration (LfD)

imitation learning framework, which assumes that a robot learns motor skills from a

human teacher via kinesthetic teaching.

During the summer semester of 2019, he interned at the Institute of Artificial

Intelligence at the University of Bremen in Germany under the supervision of Prof.

Michael Beetz. His work there involved learning end-to-end visuomotor policies by

combining Convolutional Neural Networks and Dynamic Movement Primitives.

105

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	Introduction
	Evolution of Robot Programming
	Early Robot Programming
	From Programming to Imitation

	A Taxonomy for Imitation Learning methods
	Data collection
	Feature selection
	Policy derivation

	Learning from Demonstration
	Classification of LfD methods
	Teleoperation
	Sensors on Teacher
	Shadowing
	External Observation

	Dynamic Movement Primitives
	Model Development
	The Dynamic Movement Primitives Framework
	Learning Movement Primitives
	Dynamic Movement Primitives for Multiple Degrees of Freedom
	Adaptation with Reinforcement Learning
	Learning Motor Skills with Dynamic Movement Primitives

	A Motion and Force Analysis System for Human Upper-limb Detection
	Human Arm Kinematic model
	Forward Kinematics of the Human Arm Kinematic model
	Inverse Kinematics of the Human Arm Kinematic model
	Human Arm Dynamic Model

	Motion and Force Analysis System Overview
	Experimental Assumptions
	Experimental Results

	VARM: Using Virtual Reality to Program Robotic Manipulators
	Programming Robotic Manipulators with Virtual Reality VARM
	System Components
	Forward Kinematics of the 4-DoF Barrett WAM
	Inverse Kinematics of the 4-DoF Barrett WAM
	Gesture Detection

	VARM System Architecture
	Experimental Hypothesis and Case Study
	Experimental Results
	Summary

	Combining Forward and Inverse Models with Reinforcement Learning for Motor Policy Adaptation
	Forward and Inverse Model System Architecture
	Phase One: Policy Estimation
	Phase Two: Policy optimization

	Experimental Section
	Hypothesis
	Experimental Protocol
	Implementation Details
	Experimental Results

	Learning Visuomotor Policies by Combining Movement Primitives and Convolutional Neural Networks
	Method to learn end-to-end visuomotor policies
	Architecture of the Proposed Learning Method
	Data Pre-processing
	First Sub-module Architecture

	Experimental Section
	Experimental Framework
	Test cases
	Implementation Details
	Experimental Results

	Epilogue
	Summary
	Conclusion and Future Work
	Published Implementations

	REFERENCES
	BIOGRAPHICAL STATEMENT

