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Abstract 

 

RESPONSE OF MICROBIAL NETWORKS AND MICROBIOMES  

TO THE FOREST-TO-PASTURE CONVERSION IN AMAZON SOILS  

 

Md Abdul Wadud Khan, PhD 

The University of Texas at Arlington, 2016 

 

Supervising Professors: Jorge L. M. Rodrigues and James P. Grover 

 

The Amazon rainforest is the largest tropical rainforest ecosystem in the world, 

and an extremely important region ecologically. Due to the growing human needs mainly 

for cattle ranching and cultivation, the rainforest has been in the process of clearing since 

1970s losing an average of 25,000 km annually. This ecosystem conversion has a 

substantially adverse impact on biological diversities, in which the response of microbial 

diversity has not been studied until recently. Several studies showed that the conversion 

severely altered microbial diversities, with an increased alpha and decreased beta 

diversities. Given that microorganisms are closely associated with soil-associated 

functions, where microbial interactions are important in addition to diversity, I attempted 

to explore the spatial pattern of microbial co-occurrence networks based on the relative 

abundance of microbial species. Moreover, I used metagenomes to analyze differential 

abundances of metabolic processes related to ecosystem functioning. The taxonomic (16S 

rRNA) and functional gene datasets were obtained from Amazon forest and pasture soils. 

The analyses showed that forest-to-pasture conversion altered network topological 

properties, with decreases in the number of nodes and edges, average connectivity, 

betweenness centrality, and in-degree. My results also revealed that network topological 
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patterns across ecosystem, and topological roles of major bacteria taxa differed 

significantly between forest and pasture, indicating substantial alteration of relationship 

pattern between different bacterial taxa. I estimated this pattern, which may discern life-

style strategies of species, and syntrophy between species, critical for adaptation. For 

example, higher co-occurrence of Alphaproteobacteria and Nitrospirae, known to have 

members involved in nitrification and denitrification processes, in forest soils may 

indicate higher reliance on nitrogen metabolism for energy harvest. Consistent with the 

taxonomic shifts, functional genes of forest soils showed a similar pattern of metabolic 

pathways involved in nitrogen cycle, whereas the pasture microbiome had increased 

abundance of genes involved in methanogenesis and fermentation. Conversely, forest 

microbiomes had higher relative abundance of genes involved in the TCA cycle and 

oxidative phosphorylation. With the survey of taxonomic and functional diversities, this 

study sheds light on how the anthropogenic activities impact on co-occurrence and 

ecosystem functioning. Our approach, however, requires further validation, and 

approaches such as multi-omics, cultivation and lab experiments should be integrated for 

better understanding of soil-associated functions in these ecosystems. 
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Chapter 1 

Overview on the response of microbial diversity to forest-to-pasture conversion in the 

Amazon and significance of this research project 

 

1.1 Introduction 

The Amazon is the largest reservoir of plant and animal diversities (Dirzo et al. 

2003), and presumably microbial diversity as well. Due to the growing demand of 

humans, the Amazon ecosystem has been facing a huge environmental pressure over the 

last few decades. One of the primary threats is deforestation. Anthropogenic activities 

such as pollution and deforestation lead to adverse consequences to the biological 

composition and thereby ecosystem functions mediated by the entire biological system 

(Laurance et al. 2006). While there are many comprehensive studies on the plant and 

animal communities in the Amazon and effects of deforestation on them (Bierregaard et 

al. 2001, Soares-Filho et al. 2009), few studies were conducted on microbial 

communities, which were restricted to only microbial composition and diversity 

(Borneman et al. 1997, Cenciani et al. 2009, Jesus et al. 2009, Rodrigues et al. 2013, 

Mirza and Rodrigues 2012), and functional diversity (Navarrete et al. 2011, Paula et al. 

2014). Microorganisms comprise of a major portion of terrestrial ecosystems, and are 

closely associated with ecosystem functions such as carbon and nitrogen sequestration 

and biogeochemical cycling of elements (Madsen 2011). Any significant changes in 

microbial diversity therefore might result in alterations of large-scale ecosystem 

processes. To obtain an in-depth knowledge of microbial diversity and to measure the 

impact of rapid deforestation on its diversity, the Amazon Rainforest Microbial 

Observatory (ARMO) was created in 2009. 
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Previous studies have shown that bacterial communities are different between 

Amazon forest soils and pasture soils, and ecosystem conversion from forest to pasture in 

Amazon rainforest alters biogeochemical cycling processes (Herpin et al. 2002, Neill et 

al. 1997a and b, Neill et al. 1995, Neill et al. 1999, Fernandes et al. 2002). However the 

link between the microbial diversity and function remains unknown. One of the most 

comprehensive studies on microbial composition and diversity in Amazon revealed that 

the conversion of primary forest to pasture in Amazon increases microbial alpha 

diversity, while decreasing beta diversity (Rodrigues et al. 2013). This causes spatial 

homogenization of bacterial communities at taxonomic and phylogenetic levels. 

However, it remains unknown whether bacterial homogenization results in functional 

losses. To obtain more insights into it, it is now imperative to study the microbial taxa 

and the ecosystem functions associated with them are impacted by deforestation in the 

Amazon soil.  

Soil is a heterogeneous environment that harbors enormously diverse microbial 

communities, where they dwell by interacting with each other and affect growth and 

metabolism of others (Faust and Raes 2012, Papke and Ward 2004, Horner-Devine et al. 

2004, Fierer and Jackson 2006). This complex ensemble of microbes plays essential roles 

in biogeochemical processes and to maintain a healthy ecosystem. The inter-taxa 

relationships may help reveal the niche spaces shared by community members of 

microbes (Williams et al. 2014), which is particularly valuable in evaluating the impacts 

of ecosystem conversion. However, based on our current knowledge of biology, it is 

currently impossible to map out direct interactions in complex microbial communities, 

which are mostly uncultivable and poorly studied. Therefore microbial network studies 
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are widely used to explore potential inter-taxa relationships for better understanding of 

microbial community structure, where a variety of methods have been developed for 

network construction (Faust et al. 2012, Zhou et al. 2011, Williams et al. 2014, Widder et 

al. 2014). 

I have analyzed taxonomic network and metagenomes of Amazon forest and 

pasture soils to explore the potential consequences on ecosystem processes due to forest-

to-pasture conversion. The network analysis determines the co-occurrence relationships 

of microbes based on relative abundances of different microbial species present across 

and within samples. Topology based analysis allows us to obtain insights into relative 

significance of individual species in the co-occurrence networks. The implementation of 

metagenomic datasets, on the other hand, aids in examining the differential abundances 

of biochemical pathways between ecosystems based on the relative abundances of 

functional genes. Therefore comparative examination of metagenomes demonstrates the 

potential variations of important ecosystem processes that may result from forest-to-

pasture conversion.  

 

1.2 Background and significance 

A microbial ecosystem is a complex system where microorganisms interact with 

each other and the environment surrounding them, which dictates their contributions to 

ecosystem functions (Fuhrman et al. 2008, Raes and Bork 2008). Therefore network 

analysis has been applied widely to understand the potential ecological relationships 

within microbial communities in different ecosystems (Faust et al. 2012, Zhou et al. 

2011, Williams et al. 2014, Widder et al. 2014, Ding et al. 2015, Barberan et al. 2012). 
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While cooperative metabolic interactions potentially increase the abundance of 

interacting microbes, competition for same resources may lead to an opposite abundance 

pattern. Thus network analysis may identify potential microbial interactions, posing 

hypotheses for further work on the mechanisms behind community patterns. My study 

aimed to demonstrate these co-occurrence relationships based on relative abundances of 

microorganisms. However, abundance patterns of microbial pairs may reflect their 

response to a common environmental factor rather than their direct interactions.  

Each network may be divided into sub-networks, termed modules, which contain 

a set of members i.e., microbial species, that have a higher number links among them 

than with other members of other modules (Bascompte et al. 2009). It is assumed that the 

microbial species that belong to a module have similar ecological niches (Olesen et al. 

2007). According to Hartwell et al. 1999, a module in a biological system is “a discrete 

unit whose function is separable from those of other modules”. Therefore modeling the 

entire ecosystem with networks reveals the properties of ecosystem, where different 

modules would capture the different functionalities of a complex ecosystem.  

Following the construction of networks, a myriad of topological features are used 

to describe network properties. Topologies, especially some of the centrality measures, 

are used to determine the role of network members such as degrees, betweenness 

centrality etc.  In a network, degree of a node is the number of connections it has to other 

nodes. It is an important measure while it provides a local characteristic of nodes and 

does not provide the information about the importance of nodes in the network. 

Betweenness centrality, on the other hand, reflects the number of times a node (i.e., an 

item in the network) plays a role as a connector along the shortest path between two other 
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nodes (González et al. 2010; Vick-Majors et al. 2014). While nodes with high 

betweenness values are likely to be situated in the core of the network, nodes with low 

values are expected to have a more peripheral location.  

Over the last few years, the advances in second generation sequencing 

technology, together with the development of analysis tools, provide new insight into 

microbial ecology by deciphering the hidden diversity of uncultivable 

microorganisms and their functional potentialities. We now have to take the 

challenge to expand microbial community analysis beyond the estimation of alpha 

and beta diversities. Taxonomic information alone cannot provide a complete picture of 

microbial contributions in ecosystem processes. Therefore we have to study their roles in 

specific ecosystem functions and possible changes in functions due to anthropogenic 

activities. In my research projects, I have analyzed 16S rRNA genes  and 

metagenomes of Amazon forest and pasture soils, and my results are expected to 

contribute significantly to the understanding of the impact of ecosystem conversion 

on microbial co-occurrence patterns, and soil-associated ecosystem functions 

conducted by microorganisms. 
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1.3 Project aims 

 

The specific research aims are: 

 

Aim 1: To explore the effect of diversity loss on microbial co-occurrence network 

structure and composition. 

Aim 2: To examine the spatial pattern of bacterial co-occurrence networks across 

ecosystems, and ecological relationships between bacterial taxa. 

Aim 3: To analyze the impact of ecosystem conversion on the functional diversity and 

differential abundances of biochemical pathways with ecological significance.  

 

1.4 Hypotheses 

Based on the previously published results, my study revolves around the 

following three hypotheses. 

Hypothesis 1: Forest-to-pasture conversion will lead to less connected microbial 

communities in co-occurrence networks. 

Hypothesis 2: The alteration of microbial diversity will result in the alteration of 

ecological relationship patterns between microbial taxa, and the spatial distribution 

pattern of co-occurrence networks.  

Hypothesis 3: Microbial diversity loss will cause functional diversity loss, and 

differential abundances of biochemical pathways. 

 

 

 



	  

	  
7 

 Chapter 2 

Network analysis reveals substantial alteration of microbial co-occurrence patterns due to 

deforestation in the Amazon rainforest 

 

2.1 Abstract 

In complex communities, organisms interact with the surrounding environment 

and among themselves, driving the success or failure of each species. Historically, 

ecologists emphasized competitive interactions as an important factor for microbial 

assemblies, but later, a more pluralistic view of interactions suggests that non-random co-

occurrence of specific taxa may be the result of either different species responding to 

similar environmental conditions and/or interacting positively. Co-occurrence networks 

analysis allows us for the identification of potential interactions between species. Here, 

we performed Pearson’s correlation calculations for all possible pairwise combinations of 

16S rRNA gene sequence abundances of forest and pasture datasets from the Amazon to 

identify network links (r ≥ 0.95). The forest-to-pasture conversion altered network 

topological properties, with decreases in the number of nodes and edges, average 

connectivity, betweenness centrality, and in-degree. Network membership abundance 

changed with land use and similar results were confirmed for selected taxa using 

quantitative PCR. A predictive functional profiling based on high throughput 16S rRNA 

gene sequences indicated that the removal of hub nodes could have a profound impact on 

ecosystem functions, including nitrification and denitrification. The number of 16S rRNA 

gene sequences identified as belonging to the ammonia-oxidizing Candidatus 

Nitrososphaera and the nitrite-oxidizing Nitrospira were greatly reduced in pasture. This 

study shows that microbial taxa may occur together despite their metabolic dissimilarity. 
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We argue that such relationships require us to reinterpret microbial community assembly 

models taking positive interactions into consideration. 

 

2.2 Importance 

Advances in next-generation sequencing technology coupled with novel 

analytical tools can provide new insights by deciphering the hidden organization of 

yet-to-be-cultured microorganisms. Traditionally, biodiversity studies have relied on 

species richness and turnover, but ignore co-occurrence patterns, which are important for 

understanding how communities assemble and respond to changes. We report that 

ecosystem conversion substantially alters microbial co-occurrence patterns in soil. We 

identified microbial groups serving as network hubs, the equivalent of keystone species, 

and predicted their functional profiles, providing novel information regarding changes to 

ecosystem biogeochemical processes following forest-to-pasture conversion. This work 

provides the foundation to identify species interactions occurring in natural ecosystems.  

 

2.3 Introduction 

The Amazon is the largest continuous rainforest ecosystem in the world and home 

to thousands of species (Dirzo et al. 2003). Due to the growing demand for resources, 

mainly fuel and food, the Amazon rainforest has been facing continuous pressure over the 

last few decades, leaving its biological composition in jeopardy. One of the primary 

threats is forest-to-pasture conversion, with a substantial impact on communities of plants 

and animals (Bierregaard et al. 2001, Soares-Filho et al. 2009), as well as 

microorganisms (Rodrigues et al. 2013, Ranjan et al. 2015, Navarrete et al. 2015). 
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Microorganisms, being closely associated with ecosystem functions such as the 

biogeochemical cycling of elements (Madsen 2011), make a substantial contribution to 

ecosystem services and stability. Therefore, any significant changes in microbial 

communities could result in alterations of large-scale processes.  

Soil is a heterogeneous environment that harbors an enormously diverse microbial 

community (Torsvik et al. 1990, Curtis et al. 2002). Members of this community interact 

ecologically in ways that affect their growth and metabolism. Such interactions can result 

in patterns of species abundance across space and time. Cooperative metabolic 

interactions can lead to increased growth of interacting microbes and ultimately to 

positive co-occurrence patterns in abundance, while competition for the same resources 

may lead to an inverse pattern (Greenblum et al. 2013). Abundance patterns may also 

reflect the response of different species to a common environmental factor rather than 

their direct interactions (Zhou et al. 2011). A co-occurring microbial pair therefore 

indicates they are either interacting synergistically or they have similar responses to 

environmental factors. This inter-taxa relationship may help reveal the niche spaces 

shared by members of a microbial community (Williams et al. 2014), which is 

particularly valuable in evaluating the impacts of environmental changes such as 

deforestation on microbial communities. To analyze co-occurrence patterns, it can be 

helpful to organize community data into networks, where each node represents a species 

and the edges represent correlations in abundance (Zhou et al. 2011). Each network may 

be divided into sub-networks, termed modules, which contain a set of members i.e., 

microbial species, that have a higher number links among them than with other members 

of other modules (Bascompte et al. 2009). Groups belonging to a module may have 
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similar ecological niches (Olesen et al. 2007). Although it is currently not possible to map 

out direct interactions in complex microbial communities, an empirical study reported 

that phylogenetic markers (e.g., 16S rRNA genes) properly predict the niche-defining 

properties (Fuhrman et al. 2006). Hence, microbial network studies may be a way 

forward to understand and test potential inter-taxa relationships in microbial communities 

(Faust et al. 2012, Zhou et al. 2011, Williams et al. 2014, Widder et al. 2014), and to 

enable questions of higher focus. 

In this study, we hypothesize that alteration of microbial composition and 

diversity due to deforestation will lead to the substantial alteration of co-occurrence 

patterns across microbial taxa. By constructing correlation networks using 16S rRNA 

gene data, and estimating network defining topologies, we aimed: (i) to quantify the 

impact of microbial diversity loss on the network structure and composition; (ii) to obtain 

insights into the relative importance of individual microbial species in the networks; and 

(iii) to detect the potential variation in important ecosystem processes that may result 

from forest-to-pasture conversion.  

 

2.4 Materials and methods 

2.4.1 Site description and sampling   

The Amazon Rainforest Microbial Observatory (ARMO) study site is located at 

Fazenda Nova Vida in the State of Rondonia, Brazil (10°10′18.71″S, 62°47′15.67″W), 

representing one of the highest rates of deforestation of the Brazilian Amazonia in the last 

two decades (INPE 2011). Our study was conducted on ten soil samples collected from a 

primary forest and pasture at the end of the rainy season, March 2010. The primary forest 
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is a typical wet Terra Firme forest with the majority of the trees yet to be identified, while 

the pasture was established in 1972 after a slash-and-burn procedure followed by aerial 

seeding of the fast growing grasses Urochloa brizantha and Panicum maximum. 

Sampling plots are 5.5 km apart and on a red-yellow podzolic latosol with 

physicochemical characteristics described in detail elsewhere (Neill et al. 1997a).  

A sampling design based on a 100m2 quadrat with 10-m2, 1-m2, 0.1-m2, and 0.01-

m2 quadrats within was established for primary forest and pasture). For this study, 

samples were collected from a transect along the cardinal direction North in both forest 

and pasture. Following the removal of litter, soil sampling was performed with a 10 cm-

depth by 5 cm-diameter corer with samples being transported on ice to the laboratory and 

stored at -80oC until soil DNA extractions. Soil physicochemical properties were 

analyzed at the Laboratorio de Fertilidade do Solo, Department of Soil Sciences, 

University of Sao Paulo. At the time of sampling, pH measured in situ averaged 3.96 in 

forest and 4.24 in pasture, while average soil temperature for both sites was 25.5oC.  

 

2.4.2 DNA extraction, amplification and sequencing  

Ten grams of soil from each sample were used for total genomic DNA using the 

PowerLyzer PowerSoil DNA isolation kit (MoBio Inc, Carlsbad, CA, USA). The 

concentration and purity of soil DNA were determined spectrophotometrically 

(NanoDrop Technologies Inc., Wilmington, DE). Prokaryotic primers 515F and 806R, 

which amplify the V4 hyper-variable region of 16S rRNA gene, were used for PCR 

amplification as described elsewhere (Caporaso et al. 2012). A unique 12-bp long 

barcode was incorporated to the forward primer for specific identification of each sample. 

The resulting bar-coded amplicons were pooled in an equimolar concentration to carry 
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out sequencing using the MiSeq platform (Illumina, Inc., San Diego, California) at the 

DOE Joint Genome Institute (Walnut Creek, CA). 

 

2.4.3 Sequence processing and taxonomic assignment  

 All the upstream and downstream analyses of raw Illumina sequences were 

carried out in the QIIME 1.8.0 environment as described in Caporaso et al. (2010) and 

Kuczynski et al. (2012). Raw sequences belonging to a specific sample were sorted based 

on the bar code sequences, followed by quality filtering to discard anonymous bases and 

removal of primer sequences. Sequences were then assigned to Operational Taxonomic 

Units (OTUs) at a minimum of 97% sequence identity using de novo OTU-picking 

protocol with QIIME 1.8.0 (Caporaso et al. 2010) with the following controls before 

analysis: (1) singleton OTUs were removed from downstream analysis to reduce the 

possibility of sequencing error and to differentiate unique OTUs from potential data 

noise, (2) rarefaction was performed ten times and subsequent results were based on 

standard means of rarefactions. The algorithm Uclust (Edgar, 2010) was used to cluster 

the quality-filtered reads against the GreenGenes database (DeSantis et al. 2006), which 

was followed by the assignment of taxonomy using the RDP classifier (Wang et al. 

2007).  

 

2.4.4 Taxonomic network analysis  

Networks were constructed to identify correlations among members of soil 

bacterial communities using the open-access pipeline Molecular Ecological Network 

Analysis (MENA, Zhou et al. 2011). The correlation coefficient cutoff was r ≥ 0.95 with 

significance of P ≤ 0.01 for pairwise comparisons. When constructing networks, relative 

abundance data for OTUs were transformed to logarithmic scale, followed by Pearson 
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correlation assessment of all possible pairwise combination of OTUs across samples. 

Only significant pairwise relationships were combined for network construction with 

each node representing an OTU and each edge representing a significant pairwise 

association between them: a positive correlation between two OTUs denoted similar 

abundance patterns, while a negative correlation was characterized as opposite abundance 

patterns. Interacting nodes within networks represented co-occurrence across samples. 

Networks were visualized with Cytoscape 2.6.0 using group attributes layout, where it 

separates OTUs nodes into modules (Cline et al. 2007). Only modules with at least five 

nodes were used in the subsequent analysis. 

Ecological networks exhibit several properties, such as scale-free, small world, 

and modularity (Barabási et al. 2004).  After the construction of networks, the following 

topological features were used to describe network properties: (1) connectivity, which is 

the average number of edges originating from a node; (2) degree, which is the average 

number of edges connecting nodes; (3) path length, which is the average number of edges 

connecting any two nodes; (4) modularity, which refers to the ability of a network to 

become organized into individually separated and distinct units (i.e., modules); and (5) 

betweenness centrality, which reflects the number of times a node plays a role as a 

connector along the shortest path between two other nodes. While average values of the 

indexes are generally used to describe the overall features of the network, the 

betweenness centrality value of each node can indicate its relative importance in the 

network. Nodes with higher betweenness values are likely to be situated in the core of the 

network and those with lower values are expected to have a more peripheral location.  
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2.4.5 Community evenness  

Because deforestation may have a direct effect on soil microbial diversity through 

inequality of species composition, we tested whether network structures were altered 

between forest and pasture. Microbial community evenness was compared using an 

equitability index (Shannon 1948). The index value ranges between 0 to 1, where 0 

indicates completely uneven community and 1 indicates complete evenness. Statistical 

analyses for both indexes were carried out with a two-sample t-test between land uses. 

 

2.4.6 Bipartite network analysis  

A bipartite network study was conducted to determine how taxonomic network 

members were shared between land use types (Navas-Molina et al. 2013). The analysis 

provided two node types: OTU-nodes and sample-nodes. If an OTU is present in a 

sample, then the OTU-node is connected to sample-node(s) by edge(s). The node and 

edge files were generated with a QIIME script using an OTU table as input file and 

imported into Cytoscape 2.6.0 for descriptive visualization (Cline et al. 2007). In the 

diagram, the number of shared members between samples and their abundances shape the 

clustering pattern of samples. While OTUs shared by multiple samples tend to cluster 

together, unique OTUs restricted to a single sample remain isolated. Likewise, samples 

sharing more OTUs tend to remain close together. In order to simulate the output of the 

bipartite network analyses, taxonomic network similarity was evaluated by using the 

Jaccard index. The value of the index was constrained between 0 and 1, with a higher 

value representing higher similarity of microbial communities between two network 

members. This analysis was performed in the QIIME 1.8.0 environment. 
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2.4.7 Predictive functional profiling  

To determine the functional potential of the network members, we used the 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) approach (Langille et al. 2013). To test whether our observed network-

derived microbial communities were in agreement with PICRUSt predictions, two 

Procrustes analyses were carried out: First, a PICRUSt compatible OTU-picking method 

was employed for selection of representative sequences from the 16S rRNA gene dataset 

to obtain a closed-reference OTU table, which was compared against a de novo OTU 

table. Second, the closed-reference table was compared against KEGG Orthologies (KO), 

level 4, which represents specific functional genes, including those for enzymes with 

Enzyme Commission (EC) numbers (Kanehisa 2000). Pairwise distances between 

samples were calculated using the Bray-Curtis similarity matrix (Muegge et al. 2011). 

Statistical significance of the goodness of fit, M2, was estimated by a Monte Carlo 

permutation strategy with 1,000 repetitions for both comparisons.  

 

2.4.8 Quantitative PCR targeting bacterial phyla  

Five dominant bacterial phyla (the phylum Proteobacteria was analyzed for three 

of its six classes) were quantified using quantitative PCR using phylum/class specific 

primer sets (Supplementary Table 2-1). A total of 15 replicates (5 biological X 3 

technical) were used for each land use and each taxon. Each 20µl-reaction mixture 

contained 10µl of SYBR Green Supermix (2X, Bio-Rad, Hercules, CA), 0.3 µM of each 

primer and 5 ng of DNA sample. Reactions were performed with the Applied Biosystems 

7300 real-time PCR system and conditions were experimentally determined for each 

primer set (Supplementary Table 2-1). Negative controls were included with each 
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reaction using PCR-grade water. Dissociation curve analysis of each post-reaction 

confirmed the specificity of the products. Standard curves (103 to 107 copies per reaction) 

were generated with the pCR2.1-TOPO vector containing a PCR-amplified fragment for 

each phylum or class (Invitrogen Corp., Carlsbad, CA). Reaction efficiency (E) was 

determined with the equation E = 10(-1/slope). Differences in abundance between forest and 

pasture samples were assessed using the two-sample t test. 

 

2.5 Results 

2.5.1 OTU filtering and data standardization  

To reduce the noise caused by potential PCR or sequencing errors, singleton 

OTUs from each sample were filtered out prior to downstream analysis. Following 

filtering, the number of sequences obtained from different samples ranged from 27,014 to 

34,659 with the average length of 250 bases. Rarefaction was performed through random 

sampling for ten times at an even depth of 10,000 sequences per sample and data were 

merged for downstream analysis, resulting in a total number of 11,673 OTUs that belong 

to forest and 12,227 OTUs to pasture. A total of 16,660 unique OTUs were observed in 

both land uses. 

 

2.5.2 Topological features of taxonomic networks  

Correlation networks, which included only significant OTU-OTU relationships 

based on their relative abundances, were constructed for forest (Figure 2-1A) and pasture 

(Figure 2-1B). The pasture network had a lower number of nodes (544) and edges (1089) 

in comparison to those observed in the forest (624 nodes and 1351 edges). The average 

connectivity value was found to be higher for forest (4.33) in comparison to pasture 
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(4.00), where the connectivity followed a power-law model with coefficients of 0.93 and 

0.91, respectively. We estimated a higher average path length in forest (2.84) compared 

to pasture (2.4). Network modularities were estimated to be 0.77 and 0.80 for forest and 

pasture, respectively. 

 

Figure 2-1. Networks of co-occurring OTUs for (A) forest and (B) pasture based on a 

Pearson correlation (r ≥ 0.95) with significance of P ≤ 0.01. An interaction (edge) 

between nodes (OTUs) implies a significant correlation. Only modules with at least five 

members are shown. 

A 

B 
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Next, we measured two important centrality measures of networks: betweenness 

centrality and degree, where forest network had significantly higher values than those 

observed for pasture (P < 0.01 and P < 0.05, respectively). While the forest network had 

an average betweenness centrality value of 4.79 x 10-5 and degree value of 2.17, the 

pasture network had values of 3.11 x 10-5 and 2.00, respectively (Figure 2-2). 

         

Figure 2-2. Network properties change with ecosystem conversion: (A) betweenness 

centrality and (B) degree of taxonomic networks. Error bars represent standard error. 

 

2.5.3 Network memberships  

In addition to changes in network structure, the distribution of major microbial 

phyla between the two networks was not preserved. We estimated that microbial 

communities comprising the networks were significantly different between forest and 

pasture. These differences were true at the phylum - [analysis of similarity (ANOSIM): R 

= 0.81, P < 0.01], genus – [ANOSIM: R = 1.00, P < 0.02, using Bray-Curtis dissimilarity 

values], and OTU-level [ANOSIM: R = 1.00, P < 0.0, using Bray-Curtis dissimilarity 
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values; R = 0.97, P < 0.02, using weighted-Unifrac distance]. The largest percentage 

variations of network phyla/class in response to forest-to-pasture conversion were 

observed for Alphaproteobacteria and Firmicutes (Figure 2-3A). The former taxa 

decreased from a mean value of 25.41% [±1.19; α=0.05 confidence intervals (CI)] to 

11.69% (±2.51; α=0.05 CI), and latter taxa increased from 4.16% (±2.33; α=0.05 CI) to 

29.88% (±14.36; α=0.05 CI).  

 

Figure 2-3. (A) Relative abundance of major microbial phyla and classes in forest (green) 

and (red) pasture networks. Error bars represent standard error. Symbols (*), (**), and 

(***) indicate significance values of P < 0.05, P < 0.01, P < 0.001, respectively. (B) 

Bipartite network of OTUs depicting inter-relationships between members comprising 

forest (green) and pasture (red) networks.  

 

Three other major groups, Acidobacteria (P < 0.05), Deltaproteobacteria (P < 

0.05), and Nitrospirae (P < 0.01) showed significant decreases with forest-to-pasture 

conversion from 21.01% (±4.46; α=0.05 CI) to 12.90% (±5.53; α=0.05 CI), from 5.31% 
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(±0.54; α=0.05 CI) to 3.88% (±1.02; α=0.05 CI), and 2.33% (±0.89; α=0.05 CI) to 

0.36% (±0.2; α=0.05 CI), respectively, while the class Betaproteobacteria showed a 

significant increase (P < 0.01) from 2.55% (±1.66; α=0.05 CI) to 6.33% (±0.98; α=0.05 

CI). Intriguingly, Crenarchaeota comprised 4.3%  (±0.99; α=0.05 CI) of the forest 

network, but none of the OTUs in the pasture network were assigned to this archaeal 

phylum (Figure 2-3A). We constructed a bipartite network by combining individual 

forest and pasture networks to identify similarity patterns between community members 

detected in both datasets (Figure 2-3B). Microbial communities were clustered by land 

use with a Jaccard similarity index of 0.15. We estimated that only 145 OTU-nodes were 

shared between these two taxonomic networks, of which 55 were statistically significant 

between forest and pasture (P < 0.05).  

            

The network evenness for the forest and pasture were 0.71 and 0.70 respectively 

(Supplementary Figure 2-1). This represents skewed microbial communities in which 

effectively only a few members predominate. After binning OTUs into genera, 49.11% 

Figure 2-4. Network representation of the 

largest forest module. A total of 87 nodes 

are scaled according to their betweenness 

centrality values, indicating their 

importance in the network. Red node = 

Candidatus Nitrososphaera, green node = 

Opitutus, blue node = Paenibacillus, and 

cyan node = Rhodoplanes.  
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and 38.4% of all forest and pasture sequences, respectively, were assigned to the top 10 

genera in each system (Supplementary Figure 2-2). Among these abundant genera, the 

largest percentage decrease for genera in response to the ecosystem conversion was 

observed with Rhodoplanes [18.07% (±0.56; α=0.05 CI) in forest and 7.27% (±1.78; 

α=0.05 CI) in pasture, P < 0.001], which was counterbalanced by two endospore-forming 

genera, Sporosarcina [1.16% (±0.66; α=0.05 CI) in forest and 11.28% (±4.95; α=0.05 

CI) in pasture, P < 0.01] and Bacillus [0.30% (±0.17; α=0.05 CI) in forest and 2.73% 

(±1.30; α=0.05 CI) in pasture, P < 0.05]. More noticeably, Candidatus Nitrososphaera (P 

< 0.001) and Nitrospira (P < 0.01) contributed 4.11% (±1.08; α=0.05 CI) and 1.38% 

(±0.44; α=0.05 CI) in the forest network, respectively, whereas none of the OTUs in 

pasture network belong to these genera. Rhodoplanes and Candidatus Nitrososphaera 

have not only high frequencies in forest network, but also high relative importance. 

Betweenness centrality values for these genera were estimated to be 7.08 x 10-4 and 1.05 

x 10-4, respectively, in the largest module of forest network (Figure 2-4), which were 

much higher than the average value (Figure 2-2A). While most of the OTUs in this 

module were not identified to the genus-level, members of two other genera, Opitutus 

and Paenibacillus, had high betweenness centrality values, 6.7 x 10-4 and 3.35 x 10-4, 

respectively. 

 

2.5.4 Procrustes analysis  

The analyses showed that two different OTU-picking algorithms, de novo and 

closed-reference OTU lineages, produced similar clustering patterns (Supplementary 

Figure 2-3A). Clustering based on PICRUSt predicted KO gene profiles also resulted in 

patterns similar to closed-reference OTU clustering (Supplementary Figure 2-3B). The 
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coordinates in both cases explained most of the variances, estimated to be 78.9% and 

90%, respectively. Associations between taxonomic and predictive functional profiles 

were robust with goodness of fit values of M2 = 0.307 and 0.009, respectively, and 

statistically significant (P < 0.01).  

 

 

2.5.5 Quantitative PCR (qPCR) 

We selected five dominant phyla to be quantified by qPCR in Amazon soils. 

Cycle threshold (Ct) values were obtained for each specific primer set using a 

representative 16S rRNA gene sequence per phylum or class. The Ct values were used to 

calculate the actual copy numbers of each bacteria phylum or class from standard curves 

(Supplementary Table 2-2). All seven qPCR assays showed R2 values above 0.97 with 

reaction efficiencies ranging between 1.79 and 2.35. The 16S rRNA gene copy numbers 

of Acidobacteria (P > 0.001), Alphaproteobacteria (P > 0.05), and 

Gammaproteobacteria (P > 0.001) were significantly higher for forest samples, while 

those numbers observed for Firmicutes (P > 0.001), Betaproteobacteria (P > 0.05), and 

Figure 2-5. Copy numbers of seven 

major bacterial taxa per gram of dry 

soil determined by quantitative PCR in 

two different land uses in the Amazon: 

forest (green) and pasture (red). Error 

bars represent the standard error. 

Symbols (*), (**), and (***) indicate 

significance values of P < 0.05, P < 

0.01, P < 0.001, respectively.  
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Verrucomicrobia (P > 0.01) were found to be higher for pasture samples. The 16S rRNA 

gene copy numbers for members of the phylum Actinobacteria were not significantly 

different in both land uses (Figure 2-5). 

 

2.6 Discussion 

Soil microbial communities are known to have diverse compositions and varied 

abundances, even when analyzed at the small spatial scales that matter to microorganisms 

(Martiny et al. 2006, Fierer and Jackson 2006). These complex microbial patterns are not 

entirely random distributions, but the outcome of multiple ecological interactions 

(Lidicker 1979). In this study, we used a co-occurrence-based mathematical analysis to 

represent interactions/coupling across multiple microbial species, and identify alterations 

in potential relationships with forest-to-pasture conversion in the Amazon rainforest, the 

largest tropical ecosystem in the world.  

 In order to compare our resulting networks, we first confirmed that they were of 

biological origin (as opposed to randomly self-organizing ones) and evaluated three main 

properties of microbial network associations (Faust and Raes 2012). Both forest and 

pasture networks were found to be: (i) modular in structure with modularity values of at 

least 0.4 (Newman 2006); (ii) scale-free as their connectivity followed a power-law 

model; and (iii) small-world as their average path lengths were short and nodes highly 

clustered (Watts and Strogatz 1998). All of the above properties suggest these co-

occurrence patterns are of non-random organization. 

 Our results indicate that key features of forest and pasture networks were altered 

with conversion. The significant decrease (P ≤ 0.01) in number of nodes (OTUs) and 
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edges (OTU-OTU relationships) signals microbial diversity losses in response to 

ecosystem conversion. This finding is in agreement with previous studies, in which land 

use conversion resulted in biotic homogenization (Rodrigues et al. 2013, Ranjan et al. 

2015). In comparison to forest, the lower connectivity of pasture network has two non-

mutually exclusive explanations. First, it implies that land use conversion increased the 

potential for negative interactions (e.g. competitive exclusion and parasitism/predation) 

with loss of taxa. Resource heterogeneity and spatial isolation have been hypothesized as 

key mechanisms of control on soil microbial diversity (Zhou et al. 2002).  It is reasonable 

to assume that conversion of tropical forests to pastures containing only two grass species 

will reduce the variety of resources, even if the total amount of resources, specifically C-

based compounds, increases. There is evidence that this is occurring in our study system 

as we detected decreases in community dissimilarity at taxonomic, phylogenetic, and 

functional gene levels (Hamaoui et al. 2016, Mirza et al. 2014, Navarrete et al. 2015, 

Ranjan et al. 2015) with increased values of total C in pastures (Cenciani et al. 2009). A 

second and alternative explanation is the effect of positive interactions (e.g. mutualism 

and commensalism) on driving microbial co-occurrences in the forest. It is well 

established that certain microorganisms are functionally complementary to each other, 

such as microbial consortia for anaerobic methane oxidation, thermodynamically 

interdependent degradation, and nutritional exchange, among others (Morris et al 2013). 

Positive interactions through interspecific facilitation have been reported for plants 

(Valiente-Banuet et al. 2007, Elias and Dias 2009) and animals (Cardinale et al. 2002), 

but have yet to be empirically tested in soil microbial communities. Our experimental 

approach was not designed to provide direct evidence of beneficial interactions, 
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nevertheless, the co-occurrence patterns described in our study provide guidance for 

isolation efforts for poorly characterized microbial species that share the same or 

complementary physiological traits with known species, and increase our limited 

understanding of interactions along processes of community assembly involving 

competition and habitat filtering. 

 Given the potential taxonomic and phylogenetic changes with forest-to-pasture 

conversion, we asked which groups were more susceptible to alterations. Our results 

indicate that the relative abundances of Alphaproteobacteria, Deltaproteobacteria, 

Acidobacteria, and Nitrospirae were significantly decreased, while Firmicutes and 

Betaproteobacteria increased. We found direct support for these results with the use of 

qPCR (Figure 2-5). In a previous study, a co-occurrence network analysis for 151 soil 

samples has been used to classify microbial taxa into two ecological strategies, namely 

generalists and specialists (Barberan et al. 2012). Our findings agree with these two very 

general categories as some groups were found in both land uses and others were limited 

to one land use. For example, the phyla Crenarchaeota and Nitrospirae were found only 

in forest soils. OTUs associated with members of these phyla have been linked to 

specialized functions of ammonia and nitrite oxidations in soils (Leininger et al. 2006, 

Spang et al. 2002, Stahl et al. 2012), which are in line with our recent studies (Paula et al. 

2014, Hamaoui et al. 2016). The local abundances of these groups may be directly 

associated with their resource/functional specialization as theoretical (Buchi and 

Builleumier 2014) and experimental (MacLean et al. 2004) studies have shown for other 

groups. There is, however, often a fitness cost associated with specialization, which is the 

diminished range of potential niches for colonization as the primary environment 
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becomes disturbed. Consistent with this idea, we observed that land use change in the 

Amazon rainforest increased the relative abundance of generalist fungi (Mueller et al. 

2016). We argue that similar responses occur for Bacteria and Archaea, but these 

patterns have yet to be identified on a group-by-group basis, as not all phylogenetic 

groups are expected to respond the same. There is evidence that even within groups 

previously characterized as generalists, Acidobacteria and Verrucomicrobia (Barberan et 

al. 2012), the biogeographical patterns and relative abundances change among subgroups 

(Navarrete et al. 2015; Ranjan et al. 2015), albeit the overall response of phylum 

variation in percent remains the same.  

Co-occurrence patterns do not allow mapping of microbial interactions directly, 

but provide information on particular groups sharing habitats or performing similar 

ecological functions (Freilich et al. 2010). We asked whether taxa observed in our study 

would be associated with specific functions.  In order to validate our results, we 

performed two Procrustes analyses (de novo OTU table vs. closed-reference OTU table 

and closed-reference OTU table vs. KO annotation using PICRUSt) using the nearest-

neighbor model (Muegge et al. 2011), and confirmed significant relationships between 

taxonomic and predictive functional profiling (P < 0.01, Supplementary Figure 2-3).  Our 

results indicate that dominant members of the forest network include potential 

contributors to the processes of nitrification and denitrification (Supplementary Figure 2-

2). Nitrification, the metabolic process by which ammonia (NH3) is oxidized to nitrate 

(NO3
−), is mediated jointly by an ammonia oxidizer and a nitrite oxidizer (Martens-

Habbena et al. 2009). Forest networks were comprised of a substantial portion of these 

microorganisms with Candidatus Nitrososphaera being characterized as an ammonia 
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oxidizer, while Nitrospira is known to be a nitrite oxidizer but sometimes is capable of 

ammonia oxidation as well  (Daims et al. 2015, Spang et al. 2002, Stahl et al. 2012, van 

Kessel et al. 2015). This is in agreement with our recently published findings that only 

thaumarchaeal sequences were retrieved for the gene amoA, encoding the α subunit of 

the ammonia monooxygenase enzyme and consistent with our failed attempts to amplify 

amoA gene sequences associated with bacterial ammonia oxidizing microorganisms, 

despite using seven different primer combinations and ten amplification conditions 

(Hamaoui et al. 2016). Moreover, a network node identified in the largest forest module 

and estimated to have a very high betweenness centrality value was classified as 

Candidatus Nitrososphaera (Figure 2-4). 

There are two important implications associated with our findings. At the 

compositional level, the network theory predicts that the nodes with high betweenness 

centrality values should be more vulnerable to disturbance (Montoya et al. 2006, 

Saavedra et al. 2011, Solé et al. 2001) and removal of these nodes results in network 

fragmentation (Widder et al. 2014). There is evidence for both loss of this archaeal genus 

(from 4.11% to 0%, P < 0.001, Supplementary Figure 2-2) and decrease in the number of 

connections (loss of 80 nodes and 262 edges) with forest-to-pasture conversion. At the 

functional level, ecological theory predicts that losses of keystone species (identified as 

hub nodes in the network theory) can have a large impact on ecosystem functioning 

(Chapin et al. 2000). There is also evidence this is happening in our study site as previous 

biogeochemical studies at Fazenda Nova Vida observed higher net nitrification rates in 

forest soils (1.32 to 3.51 µg N g-1 
dry soil day-1) in comparison to pastures (0.02 to 0.77 

µg N g-1 
dry soil day-1) (Neill et al. 1995, Neill et al. 1997b). These studies have 
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hypothesized that a direct consequence of the change in net N mineralization is the 

reduction of NO and N2O emissions from pastures (Melillo et al. 2001), but the reasons 

for these alterations have not been established. We asked if any nodes (taxa) present in 

our networks were associated with denitrification, the process by which NO3
− is reduced 

to N2 (or NO and N2O). We detected the presence of nodes with high betweeness 

centrality associated for the genera Rhodoplanes and Opitutus in the largest forest 

network module. Members of these groups are characterized for their ability to use NO3
− 

as an electron acceptor (Hiraishi et al. 1994, Chin et al. 2001) and while only the former 

has been experimentally shown to be a denitrifier, the latter is known to possess a 

complete denitrification pathway in its genome (Sanford et al. 2012). Nodes associated 

with the above groups were not depicted in pasture networks, suggesting their 

memberships and associated traits were not preserved with land use change. The lower 

denitrification rates measured by others in our study site (Melillo et al. 2001) can be 

explained, at least partially, by the loss of inter-taxa relationships represented by specific 

nodes and edges in co-occurrence networks.  

 

2.7 Final remarks 

The astonishing diversity of soil microorganisms is generally viewed as a 

consequence of their spatial isolation and ecological strategies. Lately, co-occurrence 

association studies draw a different picture, one where certain phylogenetic and 

functional groups are non-randomly associated through resource sharing and metabolic 

exchange. We found that forest-to-pasture conversion strongly impacts microbial co-

occurrence patterns, implying long lasting effects to biogeochemical processes such as 
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the N transformation dynamics in the Amazon rainforest. We identify microbial taxa that 

may occur together despite their metabolic dissimilarity. These novel relationships 

require us to reinterpret microbial community assembly models taking potential positive 

interactions into consideration. 
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Chapter 3 

Forest-to-pasture conversion results in the shifts of spatial co-occurrence patterns of 

bacterial communities in the Amazon soils 

 

3.1 Abstract 

A central goal in ecology is to explore the interactions between organisms and 

their response to any treatment, such as land use change. Yet, this is poorly understood in 

microbial ecology. Here we report a new strategy to construct co-occurrence networks, 

and describe a suite of approaches for analyzing topological measures to infer the 

ecological relationships of bacterial communities in two landscape-scale ecosystems, 

Amazon forest and pasture. Our results revealed that ecosystem-wide topological 

patterns, and topological roles of major bacteria taxa differed significantly between forest 

and pasture, indicating substantial alteration of interaction relationships between different 

taxa. We estimated relationship pattern, which may discern the life-style strategies and 

metabolic synergisms of microorganism critical for adaptation. For example, higher co-

occurrence of Alphaproteobacteria and Nitrospirae, known to have members involved in 

nitrogen metabolism, in forest soils may indicate their higher degree of association in the 

nitrogen cycle. Identifying broadly distributed species, namely generalists, further 

increases our understanding of microbial ecology in terrestrial ecosystems. Forest-to-

pasture conversion decreased generalist OTUs that are known to be involved in carbon 

and nitrogen metabolism, which may explain, at least partially, the higher content of 

these compounds in the pasture soils. We conducted a multivariate analysis to correlate 

network topological measures with environmental factors, which showed that C/N 

content and factors related to soil pH primarily drive the variation of network features. 
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Given that the microbial community is closely associated with ecosystem functioning, 

our novel approach demonstrates microbial interaction associations and allows 

incorporating multiple variables, which is particularly useful to infer ecological traits of 

unstudied microorganisms.	   

 

                   3.2 Importance  

The interactions between microbial species are critical in important ecosystem 

functions. Yet microbial co-occurrences and interaction strategies between them are 

poorly understood, which challenges us in exploring the mechanism of microbial 

adaptation in their natural habitat, and the alteration of microbial life-style strategy in 

response to an anthropogenic activity. Here we report a novel strategy to construct co-

occurrence networks, and analyze the shifts in topological patterns of networks at spatial 

scale due to land use change in the Amazon. This analytical strategy allows us to examine 

co-occurrence pattern of microbial consortium that is selected (or adapted) by 

environmental factors, and subsets of that consortium that are selected (or separated) by 

habitat properties in each sampling site. Therefore an ecosystem-wide study allows us to 

examine the variation of co-occurrence pattern of microbes across different sites, and a 

comparative study allows us to examine the impact of a treatment on co-occurrence 

patterns.  

 

3.3 Introduction 

Soil microbial communities are known to have diverse compositions and varied 

abundances, even when analyzed at small spatial scales (Martiny et al. 2006). Several 
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deterministic processes such as habitat filtering, and niche differentiation drive the co-

occurrence of microorganisms and help maintaining microbial diversity in nature 

(Costello et al. 2009, Ofiţeru et al. 2010, Langenheder and Székely 2011, Stegen et al. 

2012). The abundance patterns of microbial species in any ecosystem are driven by a 

complex web of interactions between microbial and macrobial components, and abiotic 

components of the ecosystem (Faust and Raes 2012, Papke and Ward 2004, Horner-

Devine et al. 2004, Fierer and Jackson 2006). Therefore a similar abundance pattern of 

two microbial species does not necessarily mean they have metabolic interactions; it may 

be a result of their similar response to environmental properties. Also, a similar 

abundance pattern of two species may be a result of interaction(s) with other species, or 

both biotic and abiotic components of the ecosystem. Since the abundance profile of 

microbial species is the only variable used in constituting the co-occurrence networks, we 

may decipher neither direct interactions between microbial species nor the factors 

shaping the microbial frequencies from network survey. An integrated approach 

synthesizing additional information (e.g. spatial variation, taxonomy, metabolism), 

however, can link the abiotic factors associated with the network co-occurrence pattern 

(Zhou et al. 2011, Ding et al. 2014) or network topological features (Ma et al. 2016) in 

order to discern the impact of environmental factors on the interactions between 

microorganisms. The integrated approach might also allow inferences about biotic 

factors, such as likely symbioses or cross-feeding interactions. 

Microbial interactions may contribute to ecosystem functioning more than their 

diversity (Zhou et al. 2011). Therefore exploring the interactions provides insight into 

soil-associated function and may help reveal the role of specific microorganisms in the 
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ecosystem. Due to the scarcity of known biology of diverse microbial communities in 

soil, we rely on abundance patterns of microbial species to comprehend the complex 

partnerships of microorganisms. Based on the relative abundance of microbial species 

across ecosystem, a correlation test is performed to calculate strongly related microbial 

pairs in community, which constitutes a co-occurrence network (Faust et al. 2012, Zhou 

et al. 2011, Barberan et al. 2012, Widder et al. 2014). Since spatial variability has a 

profound influence on the occurrence and abundance pattern of each microbial species 

(Fierer and Jackson 2006, Krave et al. 2002, Wallenstein et al. 2007, Girvan et al. 2003), 

the traditional approach may be incapable of capturing valid pairs of microorganisms, 

which have interactions and/or similar response to environmental factors, in the following 

situations: (i) if a pair of microbes have metabolic interactions but have differential 

responses to other factors; (ii) if a pair of microbes have metabolic interactions when they 

co-occur but are detected sporadically across different soil samples. Both situations 

would cause the dissimilar abundance patterns of this pair across ecosystem, especially 

with high beta diversity, which the traditional approach may neglect to calculate as a 

valid pair. Likewise, a pair of microbes can be calculated as valid that are neither 

interacting nor have a similar response to environmental factors. Hence, this approach 

may be less conducive in calculating valid pairs of microorganisms. Here we introduce a 

novel approach that takes these situations into consideration. Unlike the traditional 

approach, site-wise co-occurrence networks are constructed based on the relative 

abundances of species detected in each site. 

In this study, we constructed site-wise networks to demonstrate relationships of 

multiple microbial species within sites of two contrasting ecosystems, Amazon forest and 



	  

	  
34 

pasture. We used over 13,000 bacterial operational taxonomic units from a total of 69 

sampling sites of these two ecosystems to deduce the variations of microbial assemblage 

patterns in response to the ecosystem conversions. Using topology-based analyses, we 

aimed (i) to calculate the impact of spatial variability on the co-occurrence patterns 

within and between ecosystems; (ii) to identify the network constituents (and co-

occurring pairs) whose occurrences are consistent to the spatial variability and ecosystem 

conversion; (iii) to identify the environmental factors that are associated with the 

variation of network properties. 

  

3.4 Materials and methods 

3.4.1 Sampling strategy  

Soil samples were collected from three one-hectare plots spaced at 1-km and 10-

km distances of Amazon forest and pasture in 2009. Each of 100-m2 quadrat with 10-m2, 

1-m2, 0.1-m2, and 0.01-m2 quadrats nested within was established, which provided a total 

of 36 replications per soil type. This sampling scheme was designed to offer sufficient 

replications such that statistically rigorous techniques could be used to profile 

microbial diversity and determine its response to ecosystem conversion. Site location, 

soil abiotic factors, and sequencing procedures were described in details elsewhere 

(Rodrigues et al. 2013). 

 

3.4.2 16S rRNA gene sequencing  

DNA was extracted from soil samples using PowerSoil DNA Isolation kit (MoBio 

Laboratories) as per manufacturer’s instructions. Prior to the sequencing, the purity of the 

extracted DNA samples was checked with the Nanodrop ND-1000 spectrophotometer, 



	  

	  
35 

which quantified the ratio of A260 and A280. The average ratios were 1.78 and 1.84 for 

forest and pasture, respectively. For PCR, a primer set, 577F (5′-

AYTGGGYDTAAAGNG-3′) and 926R (5′-CCGTCAATTCMTTTRAGT-3′), was used 

targeting the hypervariable V4 region of the 16S rRNA gene. This hypervariable region 

therefore offers comprehensive coverage and evolutionary relatedness across microbial 

lineages (Sul et al. 2011). The amplicons were subjected to high-throughput sequencing 

with the 454 GS FLX Sequencer (454 Life Sciences) at the Michigan State University 

Research Technology Support Facility. 

 

3.4.3 Sequence processing and taxonomy assignment  

All upstream processing of raw sequence datasets, including quality filtering was 

performed using the Mothur software (Schloss et al. 2009), as suggested by Huse et al. 

(2007). Results of three pasture samples were discarded due to low number of sequencing 

reads (<1,000). Remaining sample reads were assigned to Operational Taxonomic Units 

(OTUs) at a minimum of 97% sequence identity using a de novo OTU-picking protocol 

with QIIME 1.8.0 (Caporaso et al. 2010). The algorithm Uclust (Edgar, 2010) was used 

to cluster quality-filtered reads against the GreenGenes database (DeSantis et al. 2006), 

and assignment of taxonomy was performed with the RDP classifier (Wang et al. 2007). 

For all downstream processes, samples were rarefied to 1,000 randomly selected 

sequence reads for 10 times with replacement per sample to avoid sample heterogeneity 

and site-wise networks were constructed using these subsets of 1,000 sequences as 

replicates. 
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3.4.4 Network construction 

To construct co-occurrence networks, we calculated Spearman correlation 

coefficients between all possible OTU pairs within each site. The analysis was performed 

in R 3.2.1 (R Core Team, 2013) using “multtest” package (Pollard et al. 2005). We 

adjusted the P-values using Benjamini and Hochberg false discovery rate (FDR; 

Benjamini et al. 2006), where the cutoff was P < 0.01 for statistical significance. Non-

random co-occurrence pattern of networks were tested with degree distribution following 

the power-law model, where most of the network members (i.e., nodes) have lower 

number of significant correlations to other nodes (i.e., links) and few nodes will have 

high links. The threshold of correlation coefficient, which ranged from 0.79 to 0.83, was 

therefore estimated when degree distribution follows a power-law. Ten networks of each 

ecosystem were removed from the analysis as they failed to follow the power-law degree 

distribution for any of the correlation coefficient values. 

 

3.4.5 Topological measures and analysis  

The following topological features were used to describe network properties: (i) 

degree, which is the average number of edges connecting nodes; (ii) average path length, 

which is the average number of edges connecting any two nodes; (iii) modularity, which 

refers to the ability of a network to become organized into individually separated and 

distinct units (i.e., modules); and (iv) betweenness centrality, which reflects the number 

of times a node plays a role as a connector along the shortest path between two other 

nodes. Degree is an important measure and provides a local quantity of nodes, however 

fails to provide information about the relative importance of nodes in network structure. 

The relative importance of a node can be measured by its betweenness centrality value. 
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Nodes with higher betweenness values are likely to be situated in the core of the network 

and are considered having higher influences to the relationships with other nodes, while 

those with lower values are expected to have a more peripheral location and lower 

influences in the network. These topological features describing individual network 

nodes such as betweenness centrality and degrees, and overall network structures such as 

average path length and modularity were calculated with Gephi (Bastian et al. 2009).  

In addition to the power-law distribution of networks, ecological networks also 

exhibit several other properties, such as low average path length, also known as small 

world, meaning there tends to be a path between any two nodes that involves only a few 

links (Barabási et al. 2004), and modularity, where >0.4 is considered as modular 

structure (Newman 2006).  

 

3.4.6 Statistical analysis  

The Pearson correlation test was used to examine the correlation between OTU 

counts and their degrees in a network to check the non-random pattern of networks. Two 

principle coordinate analyses (PCoA) were performed to calculate the variations of 

network features across ecosystems: one addressing topology as measured by 

betweenness centrality of each node (i.e. OTU), and another addressing presence/absence 

of each node-node pair (i.e., OTU-OTU pair), where a value of one was used for the 

presence of each pair in a network, while zero was used for the absence of it.  The former 

index was used to examine the variation of spatial topological pattern and the latter index 

was used to evaluate the variation of potentially interacting taxa pairs across ecosystems. 

In both cases, the datasets were normalized, and Bray-Curtis distance was used as 

distance metric. Analyses of similarities (ANOSIM) tests of PCoA’s were performed to 
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assess whether forest networks are significantly different from those of pasture. 

Nonparametric two-sample t-tests with 999 Monte Carlo permutations were carried out to 

examine whether the relative importance of different bacterial phyla, as measured by 

their betweenness values, varied between ecosystems. All of these tests were performed 

in the QIIME 1.8.0 platform.  

A Redundancy Analysis (RDA) was performed to analyze the impact of spatial 

variability on the network topology. RDA is a regression-based method that outlines the 

variation within a set of response variables that is explained by a set of explanatory 

variables. In this study, environmental factors were used as explanatory variables, and 

betweenness centrality value of each node in networks was used as quantitative response 

variable that was then categorized into soil types and bacteria taxa. Thus RDA ordination 

plot represents the impact of environmental parameters on the network topological 

feature and relative influence as measured by betweenness of individual bacterial taxa. A 

permutation test under the reduced model was implemented to check whether the pattern 

that is shown by RDA appears random or not. This analysis was performed in R 3.2.0 

using package “vegan” (Dixon 2003).  

 

3.5 Results 

3.5.1 Datasets  

We obtained 454 GS FLX Sequencer-derived 16S rRNA gene sequence datasets 

from 69 soil samples, of which 36 belonged to Amazon forest and 33 belonged to 38-year 

old pasture soils. Upstream processing removed those sequences whose lengths were 

outside of the main distribution, and those with any ambiguous base calls and not having 
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identical primer sequences. The depths of quality-trimmed sequence reads ranged from 

1,242 to 15,415 in forest and 1,386 to 11,814 in pasture soil samples with an average 

length of 350 bases. Following taxonomy assignment, we observed 7,547 OTUs in forest 

and 9,021 in pasture soils, totaling 13,359 unique OTUs in both ecosystems. A 

rarefaction procedure was conducted through random sampling for ten times at the depth 

of 1,000 sequences per sample, which were then used for the construction of site-wise 

networks. 

 

 

Figure 3-1. Spatial distribution patterns of forest and pasture networks. (A) Principle 

coordinate analysis showing the response of topological variations to ecosystem 

conversion (betweenness centrality). (B) Principle coordinate analysis showing the 

response of occurrence of bacterial pairs (OTU-OTU) at phylum-level to ecosystem 

conversion (betweenness centrality). Bray-Curtis distance was used to measure the 

ecological distance in both cases. Green dots, forest networks; red dots, pasture networks. 
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3.5.2 Network description and topological pattern across ecosystems  

Prior to describing individual networks, first we confirmed the non-random nature 

of networks, which were identified by the power-law distribution of degrees 

(Supplementary Table 3-1). Following the exclusion of the OTUs that did not have a 

strong correlation to any OTU, we observed that the number of nodes ranged from 253 to 

1,119 in forest, and 455 to 1,158 in pasture networks. Two other properties calculated 

were modularity and average path length. The range of former index values were 

estimated from 0.79 to 0.98 in forest and 0.74 to 0.96 in pasture, while for latter index, 

forest had a range between 1.56 and 16.54 and pasture had 5.97 and 14.15.  

We analyzed the pattern of co-occurrence networks using PCoA plots in order to 

comprehend variation in network features across forest and pasture ecosystems. Clusters 

specific to these ecosystems were evident for betweenness centrality (Figure 3-1A; 

ANOSIM: R = 0.27, P < 0.01), and for proportional co-occurrence of microbial pairs 

(Figure 3-1B; ANOSIM: R = 0.48, P < 0.01). We also evaluated the impact of land use 

change on the relative influences of major bacterial taxa as measured by their relative 

betweenness centrality values (Figure 3-2). The largest proportional decrease in response 

to forest-to-pasture conversion was by Acidobacteria (P < 0.001), which decreased from 

an average of 19.07% (±0.009; α=0.05 confidence interval (CI) to 12.77% (±0.022; 

α=0.05 CI) followed by the phyla Alphaproteobacteria (P < 0.01) and 

Gemmatimonadetes (P < 0.001).  In contrast, the largest proportional increase was by 

Firmicutes (P < 0.001), which increased from an average of 2.50% (±0.022; α=0.05 CI) 

to 10.57% (±0.014; α=0.05 CI) followed by the phyla Planctomycetes (P > 0.05) and 

Chloroflexi (P < 0.05). 
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Figure 3-2.  Relative influences (measured as betweenness) of different bacterial taxa 

comprising forest (green) and pasture (red) networks. Error bars represent standard 

errors. Symbols (*), (**), and (***) indicate significance values of P < 0.05, P < 0.01, P 

< 0.001, respectively, which were calculated using two-sample t-test. 

 

3.5.3 Relationship between network-level topological features and environmental 

properties  

Several important environmental factors varied between forest and pasture soil 

(Supplementary Table 3-2). We calculated that forest soil has significantly higher base 

saturation (P < 0.05), and lower total carbon (P < 0.001), moisture (P < 0.01), nitrogen (P 

< 0.001) and positive hydrogen ion (P < 0.01) contents in comparison to pasture soils. 

We correlated the soil properties with network topology as measured by betweenness 

centrality by redundancy analysis (RDA; Figure 3-3). The significance test of the overall 

RDA model showed P < 0.01 (number of permutation: 999). While the distribution of 

forest and pasture networks had no obvious pattern, networks on the RDA plot were well 

separated by soil type. On the other hand, the distribution pattern of environmental 
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factors seems to distinguish soils that are more acidic and dominated by Al+3 minerals 

from those that are more basic and have more K+, Ca+2 and Mg+2. Along with these 

factors, the analysis showed that soil H+ and C/N were strongly associated with spatial 

network patterns. While forest networks were negatively correlated with C/N and H+, 

pasture networks had positive correlations with them. RDA was also conducted to 

demonstrate the link between relative influences of individual bacterial taxa and 

environmental factors. Our result showed that Acidobacteria is correlated with decreasing 

H+, while Firmicutes showed the reverse pattern. Two proteobacterial classes Alpha- and 

Gammaproteobacteria were negatively correlated with moisture, C and N content of 

soils, which on the other hand, are in positive correlation with the phyla Actinobacteria 

and Planctomycetes. There is a trend for Deltaproteobacteria to be negatively correlated 

with the concentration of different metal ions (K+, Mg+2 and Ca+2), base saturation (V), S, 

and P, and to be positively correlated with the concentration of Al+3.  
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Figure 3-3. Redundancy analysis shows the influence of environmental factors, known as 

explanatory variables, on the network topology and relative influence of individual 

bacterial taxa, known as response variables, as measured by betweenness centrality. The 

taxa that were correlated with the environmental factors were only shown on the plot. 

Environmental factors are indicated with arrows. The length of arrows corresponds to the 

variance that can be explained by the environmental factors and the direction of arrows 

points to an increasing magnitude of these factors. The perpendicular distance between 

explanatory and response variables indicates their correlations, where a smaller distance 

reflects stronger correlation, and vice versa. Al+3, aluminum; C, carbon; Ca+2, calcium; 

K+, potassium; CEC, cation exchange capacity; H+, hydrogen; Mg+2, magnesium; N, 

nitrogen; P, phosphorus; S, sulfur; V, base saturation. Green circles, forest networks; red 

circles, pasture networks.    

    

Figure 3-4. The distribution of network node counts was plotted as a function of the 

number of networks. Exponential decay of nodes identifies a core suite OTU-nodes, 

known as network generalists. In this analysis, generalists were arbitrarily defined as taxa 

occurring in at least 18 or 20 networks, in forest and pasture, respectively.  
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3.5.4 Network generalists  

We attempted to explore core microbial communities shared across networks of 

both soil types. Using the OTUs comprising networks, the distribution of counts is 

plotted as a function of the number of samples in which OTUs are detected (Figure 3-4). 

An exponential decay was observed within each type of networks, with only few OTUs 

consistently comprising the networks. This analysis was used to identify network 

generalists, which are broadly distributed OTUs, in both soil types (Supplementary 

Tables 3-3 and 3-4), and across soil types (Supplementary Table 3-5). In this study, the 

network OTUs (i.e., nodes) were considered generalists if their presences were detected 

in around 75% of networks or higher, which gave 20 networks in case of forest, and 18 

networks in case of pasture. Under these arbitrarily defined criteria, 2.1% of the nodes 

were identified as forest generalists, and 1.49% as pasture generalists.       
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Figure 3-5. Ecological community association. (A) Forest networks exhibiting percentage 

occurrences of bacterial taxa pairs. (B) Pasture networks exhibiting percentage 

occurrences of bacterial taxa pairs.  

 

3.5.5 Ecological community association 

Using the same approach described above, we further explored the distribution 

pattern of OTU-OTU pairs, where we observed a very low occurrence of pairs more than 

once.  Of more than 20,000 pairs observed in forest, we detected only 102 pairs twice and 

3 pairs thrice. Of more than 20,000 pairs observed in pasture, 126 pairs were detected 

twice in pasture networks, with no pair detected more than this. The correlation pattern of 

each microbial taxon was then explored by estimating the proportional co-occurrence of 

taxa pairs at higher taxonomic level (Figure 3-5). We estimated that the largest 

percentage variations of co-occurrence frequencies between forest and pasture involved 

Acidobacteria, Alphaproteobacteria and Firmicutes. Ecosystem conversion decreased the 

co-occurrence frequencies of Acidobacteria with Alphaproteobacteria from a mean value 

of 6.41% (±0.397; α=0.05 CI) to 3.3% (±0.286; α=0.05 CI), with Acidobacteria itself 

from 3.95% (±0.821; α=0.05 CI) to 1.62% (±0.25; α=0.05 CI), and with 

Gemmatimonadetes from 1.91% (±0.195; α=0.05 CI) to 0.55 % (±0.074; α=0.05 CI), 

whereas it increased with Firmicutes from 0.98% (±0.129; α=0.05 CI) to 2.52% (±242; 

α=0.05 CI). In addition, we estimated a decrease of Alphaproteobacteria with itself from 

2.95% (±0.549; α=0.05 CI) to 1.49% (±0.334; α=0.05 CI), and with Gemmatimonadetes 

from 1.51% (±0.15; α=0.05 CI) to 0.44 % (±0.058; α=0.05 CI). On the other hand, 

pasture ecosystem was estimated to have an increase of Firmicutes with Actinobacteria 
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from a mean value of 0.52% (±0.096; α=0.05 CI) to 2.21% (±0.252; α=0.05 CI), with 

Alphaproteobacteria from 0.87% (±0.145; α=0.05 CI) to 2.55% (±0.269; α=0.05 CI), 

with Chloroflexi from 0.34% (±0.063; α=0.05 CI) to 1.80% (±0.249; α=0.05 CI), with 

Deltaproteobacteria from 0.44% (±0.074; α=0.05 CI) to 1.92% (±0.225; α=0.05 CI), 

with itself from 0.05% (±0.038; α=0.05 CI) to 1.52% (±0.639; α=0.05 CI), and with 

Planctomycetes from 0.50% (±0.082; α=0.05 CI) to 2.47% (±0.296; α=0.05 CI). None of 

the other pairs has over 1% of variation in co-occurrence frequencies between forest and 

pasture. 

 

3.6 Discussion 

 

Terrestrial ecosystems harbor a wide variety of microbial species, where they 

adapt by interacting with a variety of biotic and abiotic variables (Faust and Raes 2012, 

Papke and Ward 2004, Horner-Devine et al. 2004). The environmental conditions are 

associated with the diversity of microbial communities (Martiny et al. 2006, Fierer and 

Jackson 2006, Rodrigues et al. 2013), and therefore the complex interactions between 

microorganisms. In this study, we used bacterial datasets to construct co-occurrence 

network for each sample, and analyze the spatial pattern of topological features and 

ecological relationships between microbial taxa.  

Complex microbial networks are not entirely random distributions, but the 

outcome of multiple ecological interactions (Lidicker 1979). In order to compare our 

resulting networks, we first confirmed that they were of biological origin by evaluating 

three main properties of microbial network associations (Supplementary Table 3-1). 

Networks were retained for the subsequent analysis if they were found to be: (i) modular 
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in structure with modularity values of at least 0.4; (ii) scale-free as their degree 

distribution followed power-law model; and (iii) small-world as their average path 

lengths were short and nodes highly clustered (Watts and Strogatz 1998), however no 

threshold value is proposed. Strong negative correlation between degree of nodes and 

count of nodes for each degree indicated non-random nature of networks. Under this 

criterion, several networks were identified random as indicated by binomial degree 

distribution and were discarded. A recent study on co-occurrence networks of soil 

microbiota showed that archaeal degree follows a binomial distribution, while bacterial 

and fungal degrees follow power-law distributions (Ma et al. 2016). The assembly pattern 

of archaea is mainly influenced by the stochastic forces (Zheng et al. 2013), which 

possibly explains the random pattern of archaeal degree distribution. Although stochastic 

processes may play a partial role, the assembly pattern of soil bacterial community is 

primarily influenced by the deterministic forces (Langenheder and Székely, 2011, Faust 

and Raes 2012, Horner-Devine et al. 2007, Costello et al. 2009), even following the 

burning of forest (Ferrenberg et al., 2013), which probably explains non-random pattern 

of bacterial degree distribution (Horner-Devine et al. 2007).   

Soils are known to possess diverse array of microbial niches, and spatial patterns, 

which largely depend on the aboveground floristic diversity, drives the spatial pattern of 

microbial community (Prober et al. 2015). Therefore ecosystem conversion in the 

Amazon alters the bacterial beta diversity as a function of soil environments (Rodrigues 

et al. 2013, Jesus et al. 2013). Using a novel strategy, we report the impact of spatial 

pattern of bacterial community on the spatial pattern of network topological features 

(Figure 3-1), which illustrates substantial variations not only between ecosystems but also 
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within ecosystems. While the soil pH was identified as the predictor of soil bacterial 

composition at the continental scale (Lauber et al. 2009), other factors such as vegetation 

type, carbon and nutrient contents, soil moisture dictate the composition at local or 

landscape scales (Fierer and Jackson 2006). The landscape scale study showed that forest 

bacterial communities were associated with, in addition to pH, increasing base saturation 

and calcium, whereas pasture communities were associated with increasing carbon, 

nitrogen, and moisture concentrations (Rodrigues et al. 2013). The abundance and 

diversity of individual taxa can also be explained by environmental factors (Navarette et 

al. 2015). Likewise, impact of different abiotic factors can be linked to the co-occurrence 

relationships (Gilbert et al. 2012, Steele et al. 2011, Fuhrman 2009), which was proven 

successful for studying uncultured microorganism (Duran-Pinedo et al. 2011, Faust and 

Raes 2012). Similar to the community composition pattern, topological features of co-

occurrence networks across ecosystems are governed by environmental factors, including 

other biotic factors (Gilbert et al. 2012), to optimize the adaptation of community in soil 

habitats with minimal interspecific competition. A study with forest soils in China 

showed that soil variables affect the topological features of co-occurrence networks (Ma 

et al. 2016). In our analysis, we noticed substantial variations between relative 

abundances of taxa that were described previously (Rodrigues et al. 2013) and relative 

influences of them as measured by their betweenness centrality values (Figure 3-3). The 

largest percentage variations between relative abundances and relative influences were 

observed for Alphaproteobacteria, Actinobacteria, Planctomycetes and Chloroflexi. 

Forest-to-pasture conversion decreased the relative abundance of Alphaproteobacteria 

from a mean value of 25.41% to 11.69%, whereas the relative influence decreased from 
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16.72% to 10.43%. In contrast to the relative abundances of latter three taxa, which 

remained a mean of around 4%, 3% and 2%, respectively in both soil types, ecosystem 

conversion increased the relative influences of them from 10.43% to 12.63%, 9.47% to 

10.27%, and 6.26% to 8.4%, respectively. Intriguingly, some of the taxa including 

Chloroflexi, Planctomycetes, Bacteroidetes and Gemmatimonadetes that were estimated 

to have considerable influences in both network types, while they were not detected in 

top 10 taxa of higher relative abundances in our previous study (Chapter 2). Conversely, 

Verrucomicrobia that was detected in higher abundance (over 21% in each of the forest 

and pasture networks), contributed only about 1% in each of network types (Figure 3-2). 

We reasoned that factors affecting the relative abundance of taxa are different to those 

affecting the relative influences of them in co-occurrence networks. Nonetheless, the 

depth of sequencing effort, and choice of universal primer sets, which may preferentially 

target specific bacterial taxa might play a role for these variations. This is true for, at 

least, Verrucomicrobia, which typically accounts approximately one-fourth of all 

bacterial sequences in soils (Bergmann et al. 2011). While this is evident in previous 

studies (Chapter 2, Ranjan et al. 2015), the relative abundance of Verrucomicrobia in the 

datasets of current study was estimated only 0.28% in forest and 0.79% in pasture soils.  

Amazon forest soil is characterized by lower pH, moisture, nitrogen and carbon 

content (Supplementary Table 3-2). Although statistical significance was not observed, 

we estimated that forest soil has slightly lower average pH (4.3) compared to pasture 

(4.5), which supports previous reports (Chapter 2, Kauffman et al. 1995, Fernandes et al. 

2002). Redundancy analysis in our study revealed that topological pattern of forest 

networks is related to decreasing C/N, while pasture networks followed the opposite 
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(Figure 3-3), which might have important insights into ecological traits of 

microorganisms (Cordovil et al. 2005, Seneviratne 2000, Manojlovic et al. 2010). 

Decreasing C/N may indicate higher mineralization rate due to the fact that there is an 

extra supply of nitrogen compounds as a result of rapid decomposition of litters in the 

forest soil probably to satisfy plant growth. In contrast, increasing C/N may indicate 

higher immobilization rate due to the fact that there is a higher carbon content, and higher 

ammonium as a result of rapid nitrogen fixation in the pasture soil probably to support 

the growth of fast growing grass species (Mirza and Rodrigues 2012). The association of 

individual bacterial taxa with the environmental factors may also demonstrate their 

ecological traits. For example, Actinobacteria and Planctomyctes are positively 

correlated with carbon content of the soil, indicating that these two bacteria phyla may be 

involved in carbon metabolism. Recently, it is known that Actinobacteria decompose 

polysaccharides or phenolic compounds in dead plant biomass (Větrovský et al. 2014), 

and Planctomycetes degradea number of plant cell wall sugars, namely L-fucose and L-

rhamnose (Erbilgin et al. 2014). The RDA plot also shows that Alphaproteobacteria are 

correlated with decreasing nitrogen content of the soil, which may indicate that nitrogen 

deficiency is in proportion to the increasing influence of this taxon. The taxonomic order 

Rhizobiales, which comprises a major portion of the known soil-dwelling nitrogen fixers 

(Brown et al., 2012), belongs to Alphaproteobacteria. Intriguingly, the carbon content is 

negatively correlated with the relative influence of Alphaproteobacteria, known as 

copiotrophs (Eilers et al. 2010), further supporting to the conclusion that relative 

abundance and relative influence may be driven by different factors.  
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Our analysis approach has identified network generalist nodes (Figure 3-4). Our 

results showed an essentially exponential decay of nodes as successive samples are 

added, with an initial slower decay of pasture nodes. This observation is consistent with 

the pervious observation of higher taxonomic similarity in pasture community (Rodrigues 

et al. 2013). Most of the forest generalists in our study belonged to the phylum 

Acidobacteria, of which a known representative genus was Candidatus Koribacter; and 

class Alphaproteobacteria, of which a known representative was Rhodoplanes 

(Supplementary Table 3-3). Genomic evidence suggests that Candidatus Koribacter 

plays an important role in the global carbon cycle, in which they are capable of oxidizing 

carbon monoxide (CO) and degrading complex plant polymers, and the nitrogen cycle, in 

which they are capable of reducing nitrogen compounds (Ward et al. 2009). This 

alphaproteobacterial genus, which was detected with high centrality value in forest 

network in our previous study (Chapter 2), is known for carrying out the denitrification 

process (Hiraishi et. al. 1994). While the ecological significance of most of the other 

generalists are understudied, a few alphaproteobacterial families such as 

Beijerinckiaceae, Hyphomicrobiaceae, Methylocystaceae and Bradyrhizobiaceae, 

belonging to the order Rhizobiales, are known for their nitrogen-fixing ability (Brown et 

al., 2012). Moreover, Methylocystaceae is known for its ability to obtain carbon and 

energy from methane (Bowman 2006). Hence these generalists are speculated to make 

significant contributions to carbon and nitrogen cycles, where scavenging single-carbon 

compounds and atmospheric nitrogen may be important to optimize life of these microbes 

in the Amazon forest soils. Our result aligns with the higher methanotrophic ability of 

forest soil (Paula et al. 2014) though higher nitrogen fixation is evident in pasture soil 



	  

	  
52 

(Mirza and Rodrigues et al. 2012). Conversely, pasture generalists are spread out more 

evenly to several major phyla, where two OTUs are close relatives of forest generalists: 

Candidatus Koribacter and Rhodoplanes (Supplementary Table 3-4). While the majority 

of these are understudied to decipher their ecological significance, some of the generalists 

are known to synthesize antimicrobial agents, such as Bacillus cereus (Naclerio et al. 

1993), others are known for their ability to sporulate, such as members of Firmicutes. 

Given the lower floristic diversity in pasture soil, which may not contribute to a wide 

variety of carbon compounds in rhizospheric regions, this observation may reflect 

increased competition between bacterial taxa. Another important change observed by 

forest-to-pasture conversion was the detection of lower acidobacterial and actinobacterial 

OTUs as generalists; a similar pattern was observed previously due to anthropogenic 

activity (Zhou et al. 2011). In addition to ecosystem-wise study for generalists, we 

identified shared generalists residing across ecosystems, whose presence was not 

influenced by land use change (Supplementary Table 3-5). Most of the shared generalists 

in our study belonged to Acidobacteria and Alphaproteobacteria. Within the former taxa, 

two known representatives were Edaphobacter modestus, which can utilize plant-derived 

sugars and sugar alcohols (Koch et al. 2008), and Candidatus Solibacter, which can 

produce biofilms (Ude et al. 2006). On the other hand, two alphaproteobacteria nodes, 

Phenylobacterium and Pedomicrobium were involved, respectively, in xenobiotic 

degradation (Eberspächer and Lingens 2006) and biofilm production (Sly et al. 1988). 

These shared generalists are therefore versatile at utilizing plant derived compounds as 

carbon and energy sources, and in dealing with extreme variations in environmental 

conditions by producing biofilms. Within the shared generalists, forest nodes mostly had 
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higher centrality values compared to pasture, including the ones, whose closest relatives 

were similar to generalists of forest and pasture networks, meaning that these forest nodes 

are more influential over the interactions with other nodes. This result therefore sheds 

light in understanding the ecology of microorganisms in terrestrial ecosystems. Using 

similar approaches, this ecologically important category was proved useful in microbial 

(Zhou et al. 2011, Barberan et al. 2012) and macrobial (Pandit et al. 2009) ecology 

studies. 

With the same methodology, we also attempted to discern the conservation of the 

ecological community relationships and functional architecture of OTUs. Co-occurring 

pairs of microbes in networks are assumed to share similar niches (Fuhrman et al. 2008, 

Leibold and McPeek 2006, Raes and Bork 2008), which can provide valuable insights 

about ecological interactions and functional distribution of microbes (Williams et al. 

2014). Our results demonstrated that, the co-occurring pairs of nodes, including of 

generalists nodes, were neither preserved across both of the soil types nor within each of 

the soil types. Since most of the network nodes are specialists, meaning they were not 

cosmopolitan across networks (Figure 3-4), it is plausible to observe this pattern for the 

microbial pairs. We investigated bacterial co-occurrence patterns at higher taxonomic 

level (Figure 3-5). The quantitative framework of our approach may suggest metabolic 

interactions of microorganisms through co-occurrence with other microorganism based 

on the assumption that statistically significant correlation pairs are ecologically similar 

(Barberan et al. 2012, Williams et al. 2014, Leibold and McPeek, 2006). It may also 

explain the mechanisms of ecological processes, and alteration of them due to land use 

change (or, any other treatment). For example, Alphaproteobacteria, which comprises 
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both nitrogen-fixers and denitrifiers, is in higher relative proportion with Nitrospirae, 

which comprises nitrifiers (Spang et al. 2002, Stahl et al. 2012) in forest soils (0.8%) 

compared to pasture (0.35%). This higher mathematical correlation between these groups 

of microbes aligns with the experimental observations of higher nitrification and 

denitrification processes in forest soils (Neill et al. 1995, Neill et al. 1997b, Neill et al. 

1999, Melillo et al. 2001). The relationships between these microbial taxa may therefore 

represent testable hypotheses in understanding ecological significance and metabolic 

mechanism of their co-occurrence. This approach would be useful to study microbial 

ecology, especially to microbial groups and ecosystem that are poorly studied. Although 

these hypotheses on metabolic interactions require verification using approaches such as 

co-culture in microcosms along with biochemical tests, our novel approaches provide us 

with a starting point in understanding the physiology and ecology of microorganisms. 

 

3.7 Final remarks 

With this work we demonstrated a novel co-occurrence framework, where 

topology-based analysis approach enhances our knowledge of bacterial biogeography. 

The use of site-wise co-occurrence networks from bacterial datasets of multiple terrestrial 

locations along with the incorporation of environmental factors constitutes a more 

comprehensive approach in revealing ecological traits of microorganisms. We identified 

bacteria taxa that were correlated to soil carbon and nitrogen contents, implying their 

associations of biogeochemical processes and alteration of these processes by ecosystem 

conversion. More importantly, our approach attempted to explore potential metabolic 

interactions between bacterial taxa, which may provide insights in life style strategies of 
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soil bacterial communities. To the best of our knowledge, this is the first study to 

document the spatial assemblage pattern of bacteria, and its alteration in response to the 

anthropogenic activity. 
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Chapter 4 

Forest-to-pasture conversion shifts microbiome as a function of environmental challenges 

in the Amazon soils 

 

4.1 Abstract 

The Amazon rainforest plays a crucial role in global ecosystem processes, and it 

has been subjected to high rates of forest-to-pasture conversion. This conversion 

substantially alters the biological and chemical composition of the soil ecosystem. In this 

study, we used a shotgun metagenomic approach to compare the microbial communities 

and their functional attributes between these two contrasting ecosystems. Here we report 

that taxonomic alpha and beta diversities increased due to ecosystem conversion, which 

mirror functional diversities. Across soils, functional beta diversity had a strong 

concordance with taxonomic beta diversity, where each soil type showed distinct 

clustering pattern. We estimated that ecosystem conversion significantly increased 

copiotrophic microbial taxa such as Actinobacteria, Firmicutes, Bacteroidetes. Consistent 

with the taxonomic shifts, pasture microbial community had overrepresentation of genes 

associated with the utilization of carbohydrates. In contrast, the forest microbiome is 

enriched in genes involved in the gluconeogenesis and utilization of xenobiotic 

compounds. The functional genes observed might have links to the quality and/or 

quantity of plant derived carbon inputs in the soils. For energy harvest, the pasture 

community had lower relative abundance of genes involved in the TCA cycle, 

denitrification, and higher relative abundance of genes involved in fermentation, and 

methanogenesis. Comparative analyses of biochemical pathways revealed that land use 

change from forest to pasture resulted the alteration of the microbiome in relation to the 
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alteration of biological and chemical composition of the soil.  Therefore the identification 

of genes, which were differentially abundant between forest and pasture, offers insights 

for the lifestyle strategies of microbial communities in their ecosystems. To the best of 

my knowledge, this is the most comprehensive study on microbiomes to examine the 

effect of deforestation in the Amazon rainforest. 

 

4.2 Importance 

 

In the Amazon, forest-to-pasture conversion has a strong negative impact on 

biological composition that results in alteration of important ecosystem processes. Most 

of the previous studies were related to understanding the microbial diversity. Though 

there were some studies targeting the specific functional genes, a comprehensive 

understanding of functional attributes of microbial communities remained understudied. 

Employing a shotgun metagenomics approach, we report here that forest and pasture 

communities are functionally distinct. As the most comprehensive survey known to date, 

this study demonstrates predictive understanding of how anthropogenic activity shapes 

microbial and functional diversities across ecosystems, and the link between them. This 

study demonstrates the energy harvest strategies to specific environmental challenges, 

providing insights to understand the mechanism of ecosystem processes. 

 

4.3 Introduction 

The Amazon is the largest continuous rainforest ecosystem in the world and 

provides essential ecosystem services in global scale. It harbors the largest collection of 

plants and animal species in the world (Dirzo et al. 2003), and balances the flux of 
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atmospheric gases, both at regional and global scale (Betts et al. 2008). Despite this 

importance, forest clearing has been alarming over the last few decades. The process of 

deforestation and land use change concurrently alters the chemical and biological 

composition of the soils (Fearnside 1999, Feeley and Silman 2009, Rodrigues et al. 2013, 

Herpin et al. 2002, Neill et al. 1997a, Fernandes et al. 2002), which has important 

consequences to the ecosystem processes. 

Land use change is predicted to be the most important factor in altering 

biodiversity in tropical areas for the twenty first century (Sala et al. 2000). Ecologists 

have long been studying the impact of deforestation on the plant and animal diversity in 

tropical forests (Fearnside 1999, Feeley and Silman 2009), and their contribution in 

ecosystem functions (Andrade et al. 2015, Eva et al. 2004, Feigl et al. 2006, Foley et al. 

2007). In contrast, microbial ecologists have just started to explore similar set of 

questions in the Amazon (Rodrigues et al. 2013, Mirza and Rodrigues 2012, Navarrete et 

al. 2011 and 2015, Ranjan et al. 2015). Despite being closely related to important 

biogeochemical processes such as carbon and nitrogen cycles, microbial diversity has not 

been studied until recently. These microbiological studies, which largely relied on 

ribosomal genes, showed that ecosystem conversion alters bacterial (Borneman and 

Triplett 1997, Cenciani et al. 2009, Jesus et al. 2009, Rodrigues et al. 2013), archaeal 

(Chapter 2, Navarrete et al. 2011) and fungal (Mueller et al. 2014) community 

composition in various Amazonian soil types. These studies showed that microbial 

diversity loss essentially followed the patterns of plant and animal diversity. Plant 

diversity not only increases microbial diversity (Garbeva et al. 2004, Prober et al. 2015) 

but also their activity in the soil (Lange et al. 2015). While other studies demonstrated the 
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consequences of deforestation on microbial activity, these were only restricted to specific 

functional groups of microbes or specific functional genes of interests such as those 

associated with carbon and nitrogen cycles (Chapters 2 and 3, Mirza et al. 2014, 

Navarrete et al. 2011, Paula et al. 2014, Taketani and Tsai 2010). To date, no work has 

been published to understand the change of the microbiome in response to the land use 

change in the Amazon. 

In this study, we attempted to investigate the impact of forest-to-pasture 

conversion on the functional gene abundance of shotgun metagenomic datasets and 

functional processes carried out by microbes. In particular, we aimed (i) to estimate the 

functional composition of the microbiome in primary forest and established pasture; (ii) 

to understand the impact of microbial diversity loss on the status of functional diversity; 

(iii) to demonstrate differential abundances of key functional genes involved in 

ecologically relevant metabolic processes. This study therefore sheds light in a 

comparative understanding of metabolic activities, which are related to specific 

environmental challenges and important biogeochemical processes as a result of 

alteration of soil biological and chemical composition. The slash-and-burn process of 

deforestation is largely responsible for the alteration of the chemical composition of soil 

nutrients, which may result in the alteration of soil microbial structure and function 

(Mäder et al. 2002). Following deforestation, the increased availability of nutrients 

through the incorporation of ashes from forest vegetation and combustion of soil organic 

matter initially increases soil fertility, which is usually maintained by the incorporation of 

cow dung in established pastureland. We therefore hypothesized that forest-to-pasture 

conversion will increase the genes that are involved in nutrient utilization. The strategies 
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for adaptation and energy generation of the microbiome will parallel the availability of 

nutrients in ecosystems and environmental condition.  

 

4.4 Methods and materials 

4.4.1 Site description and sampling  

The sampling sites were located at Fazenda Nova Vida in the State of Rondonia, 

Brazil (10°10′18.71″S, 62°47′15.67″W), representing one of the highest rates of 

deforestation of the Brazilian Amazonia in the last two decades (INPE 2011). The pasture 

was established in 1972 after a slash-and-burn procedure followed by aerial seeding of 

the fast growing grasses Urochloa brizantha and Panicum maximum. The sampling and 

sample processing were describes in detail elsewhere (Chapter 2, Rodrigues et al. 2013). 

In brief, a sampling design based on a 100m2 quadrat with 10-m2, 1-m2, 0.1-m2, and 0.01-

m2 quadrats within was established for primary forest and pasture. Sampling plots are 5.5 

km apart between forest and pasture. For this study, samples were collected in 2010 

following the rainy season along a transect with the cardinal direction North in both 

forest and pasture. Following the removal of litter, soil sampling was performed with a 10 

cm-depth by 5 cm-diameter corer with samples being transported on ice to the laboratory 

and stored at -80oC until soil DNA extractions.  

 

4.4.2 Total DNA extraction and shotgun sequencing  

Ten grams of soil from each sample were used for total genomic DNA extraction 

using the PowerLyzer PowerSoil DNA isolation kit (MoBio Inc, Carlsbad, CA, USA) 

according to the manufacturer’s instruction. The concentration and purity of soil DNA 

were determined spectrophotometrically (NanoDrop Technologies Inc., Wilmington, 
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DE). To obtain taxonomic and functional information from the extracted DNA samples, 

shotgun metagenome sequencing was carried out on total DNA samples extracted from 

forest and pasture soils using Illumina HiSeq 2000 Paired-End Prep kit protocol 

(Illumina, Inc., San Diego, California). 

 

4.4.3 Sequence processing and annotation of shotgun metagenomes  

Raw sequences were uploaded to Rapid Annotation using Subsystems 

Technology for Metagenomes (MG-RAST; Meyer et al. 2008) for quality filtering and 

annotation. Paired end reads were joined using fastq-join as part of the MG-RAST 

pipeline version 3.2. Single end reads that could not be joined were retained. Quality 

filtered sequence reads were annotated using M5rna database for taxonomy and Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al. 2000) database for 

mapping metabolic pathways. The annotations were conducted at an e-value cutoff of 1e-

5, minimum identity cutoff of 60% and minimum alignment length cutoff of 15.  

 

4.4.4 Data analysis  

Following the annotations, taxonomic and functional (KO) profiles were 

downloaded from the MG-RAST server in biome file format. For the downstream 

processes, we discarded taxonomic and KO genes that were observed in less than 3 

samples in each ecosystem. They were considered as less represented genes in their soil 

type. Then all samples were rarefied to their lowest sequencing depth to bring all the 

samples to equal sequencing depth in order to remove sequencing effort bias. The 

threshold numbers of sequences for taxonomic and functional genes were 804,055 and 

60,373,709, respectively. Rarefaction plots were generated to check whether sampling 

effort was sufficient.  
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The relative abundances of major taxa and functional categories of genes (KEGG 

level 2) in the shotgun metagenomes obtained from forest and pasture ecosystems were 

compared. Alpha diversity of functional genes was calculated using Shannon index, H’ 

(Shannon 1948). To test the hypothesis that forest and pasture have differential metabolic 

profiles, principal coordinate analysis (PCoA) tests were performed using the pairwise 

Hellinger distance from the relative abundances of individual annotated genes (KEGG 

level 4).  

To estimate the magnitude of impact of ecosystem conversion on the relative 

frequencies of KO genes, fold difference of forest genes was calculated compared to that 

in pasture and represented as log2foldchange. A score of zero indicates that the KO gene 

has statistically same proportional abundance in metagenomes of both soil types. A 

positive value for a given gene indicates overrepresentation in forest metagenomes 

compared to pasture, while a negative value indicates the reverse pattern. We used these 

KO genes, especially genes encoding enzymes, to conduct ecosystem-level analyses in 

understanding the major differences in metabolic pathways between forest and pasture, 

especially those that are related to important ecosystem processes.  

 

4.4.5 Statistical analysis  

To determine whether the different relative abundances of functional gene 

categories between the ecosystems are statistically significant, a nonparametric two-

sample t-test with 999 Monte Carlo permutations was used. Alpha diversity values 

between soil samples were compared using the same t-test. Analyses of similarities 

(ANOSIM) tests were performed to assess whether metagenomic composition are 

significantly different across the terrestrial ecosystems. Procrustes analyses were carried 
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out to test whether functional datasets produce concordance with taxonomic datasets. We 

used DESeq2 statistic to identify individual KO genes, whose relative abundances 

between forest and pasture differ significantly (Love et al. 2014). Therefore this approach 

identified KO genes that are differentially abundance between forest and pasture. Data 

analyses were performed in the QIIME platform (Caporaso et al. 2010). 

 

4.5 Results 

4.5.1 Metagenome profiles  

Rarefaction of functional genes to even depth yielded a total number of 5,292 

KOs that belong to forest and 5,432 KOs to pasture. A total of 5,607 KOs were estimated 

in both land uses. In both ecosystems, genes associated with central metabolic processes 

comprised the majority of functional gene pools (Figure 4-1). Highest proportional 

abundances of genes were estimated for amino acid metabolism, which comprised 

21.54% [±0.12; α=0.05 confidence interval (CI)] in forest and 21.48% (±0.15; α=0.05 

CI) in pasture. Then carbohydrate metabolism, membrane transport, translation and 

energy metabolism followed. While we have not observed large differences in the 

relative frequencies of major functional categories at KEGG level 2 between forest and 

pasture, the difference in following categories, however, were statistically significant: 

carbohydrate metabolism (P < 0.001), energy metabolism (P < 0.01), replication and 

repair (P < 0.05), nucleotide metabolism (P < 0.05), cell growth and death (P < 0.001), 

and xenobiotic biodegradation and metabolism (P < 0.01).    
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Figure 4-1. Relative abundances of functional categories at KEGG level 2 in the shotgun 

metagenomes obtained from the Amazon forest (green) and pasture (red). Error bars 

represent standard error. Symbols (*), (**), and (***) indicate significance values of P < 

0.05, P < 0.01, P < 0.001, respectively, which were calculated using two-sample t-test.  

 

Analysis of taxonomic profiles of metagenomes results in a total of 20,635 OTUs 

in forest and 21,066 OTUs in pasture, totaling 21,214 OTUs in both soil types. With over 

25% [±1.62; α=0.05 CI] in forest and 18% (±0.48; α=0.05 CI) in pasture, 

Alphaproteobacteria represents the dominant microbial taxon in both ecosystems and the 

largest percentage variation in response to forest-to-pasture conversion (Supplementary 

Figure 4-1). Other major microbial groups that differed substantially between forest and 

pasture: Actinobacteria (P < 0.001) and Firmicutes (P < 0.01), which increased from 

12.61% (±0.48; α=0.05 CI) to 16.2% (±0.83; α=0.05 CI) and 10.96% (±1.22; α=0.05 CI) 

to 14.02% (±0.4; α=0.05 CI), respectively. A slight increase of Cyanobacteria (P<0.05) 
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was observed as abundance of this phylum changed from an average of 4.06% [±0.14; 

α=0.05 CI] to 4.38% (±0.13; α=0.05 CI). Importantly, Thaumarchaeota, an ecologically 

important archaeal phylum, comprised only 1.02%  (±0.19; α=0.95 CI) in forest but 

decreased drastically to 0.21% (±0.03; α=0.95 CI) in pasture.      

 

 

Figure 4-2. Procrustes analyses of functional genes with operational taxonomic units 

(OTUs) observed in (A) shotgun metagenomes and (B) 16S rRNA gene amplicons 

(Chapter 2). The metagenomes and 16S rRNA gene amplicons datasets were obtained 

from the same soil samples. Clustering patterns were statistically significant (P < 0.01) 

with goodness of fit (M2) values of 0.14 and 0.29, respectively. Forest samples are 

represented by green dots and pasture samples are represented by red dots in both panels. 

The white ends of each connector line between two dots connect to the 16S rRNA data 

for the sample, whereas the blue ends connect to the metagenomic data. The length of the 

connector lines is inversely proportional to the overall concordance between taxonomic 

and functional gene datasets.  
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4.5.2 Metagenome diversity  

To test whether the metagenomic datasets have reached the full breadth of 

genomic diversity, we generated rarefaction plots. These plots showed that both the 

taxonomic and functional genes (KO) have reached plateaus (Supplementary Figure 4-2). 

However rarefaction plots of recently studied 16S rRNA amplicons (Chapter 2), which 

were obtained from the same soil samples of metagenomes, have not leveled off 

(Supplementary Figure 4-3). This observation reflects on the procrustes analysis, where 

functional genes have better concordance with taxonomic genes from metagenomes than 

with 16S rRNA amplicons (Figure 4-2; M2=0.007 and 0.307, respectively; P < 0.01 in 

both cases) 

         

Figure 4-3. Response of soil ecosystem conversion to functional diversities in shotgun 

metagenomes. (A) Alpha diversity (Shannon, H’), P < 0.05; (B) Beta diversity 

(Hellinger), P < 0.001. Means (n = 5 for alpha diversity, n = 10 for pair-wise similarity as 

beta diversity) are depicted. Error bars represent standard error. 

 

We calculated alpha and beta diversity of metagenomes, where Shannon index 

(H’) and Hollinger distance measures were used, respectively. Alpha diversity reflects the 
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mean of sample diversities, whereas beta diversity implies the mean diversity between 

any two samples. We observed that both alpha [two sample t-test: t=-4.17 and P < 0.05 

for functional (Figure 4-3A); t=-3.24 and P < 0.01 for taxonomic (Supplementary Figure 

4-4A)], and beta [two-sample t-test: t=-10.35 and P < 0.001 for functional (Figure 4-3B); 

t=-3.88 and P < 0.01 for taxonomic (Supplementary Figure 4-4B)] diversities of 

metagenomes increased following the land use change. We also report beta diversity 

pattern of functional genes using a PCoA plot (Figure 4-4), where most of the variance 

(89.05%) between forest and pasture was estimated. The ordination plots clearly showed 

that forest and pasture metagenomes were functionally distinct (ANOSIM: R = 0.98, P < 

0.02). 

 

4.5.3 Differential abundance of functional genes and pathways  

Next, we focused on determining what functional genes and pathways were 

responsible for the disparities. We used the DESeq2 method, which is based on the 

negative binomial distribution, to identify functional genes whose proportional 

representation differed significantly between forest and pasture. This analysis yielded 

2,070 KEGG orthology (KO) genes that are differentially abundant between forest and 

pasture, of which 1,254 belong to KEGG EC categories (P < 0.01, Benjamini-Hochberg 

adjusted). DESeq2 analysis showed that the major difference of forest and pasture 

metagenomes was associated with genes involved in carbohydrate and energy 

metabolism. 

 

4.5.3.1 Carbohydrate metabolism- Forest-to-pasture conversion results in the enrichment 

of EC genes associated with the metabolism of starch and sucrose, and galactose, in 

which starch, glycogen, cellulose, sucrose and galactose were potential sugar sources 
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(Supplementary Figure 4-5, Supplementary Table 4-1). In addition, genes involved in the 

transport of mono- and di-saccharides were far more abundant in pasture, of which 

log2foldchange values ranged from -1.09 to -4.79. The forest microbiome, on the other 

hand, was enriched in genes involved in gluconeogenesis (Supplementary Figure 4-6). A 

gene encoding fructose-1, 6-bisphosphatase (EC3.1.3.11) involved in a key step of 

gluconeogenesis increased over 2.5 fold (log2foldchange=1.19) in the forest samples 

(Figure 4-5). In addition, genes associated with the pentose phosphate pathway (PPP), the 

conversion of pyruvate to oxaloacetate [pyruvate carboxylase (EC6.4.1.1)], the 

conversion of oxaloacetate to phosphoenolpyruvate [PEP; phosphoenolpyruvate 

carboxykinase (EC4.1.1.49]) have higher relative abundance in the forest soils.	  	  

                                            

Figure 4-4. Principal coordinates analyses of Hellinger distances between functional 

metagenomes across soil samples. Forest samples, green dots; pasture samples, red dots. 

 

  

We observed considerable variation in gene frequencies that are involved in 

subsequent metabolism of these sugars between forest and pasture. Several genes 

involved in fermentation such as metabolism of pyruvate [acetyl-CoA hydrolase 

(EC3.1.2.1) and phosphate acetyltransferase (EC2.3.1.8)], butanoate [phosphate 
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butyryltransferase (EC2.3.1.19)] and propanoate [methylmalonyl-CoA 

carboxyltransferase (EC2.1.3.1) and methylmalonyl-CoA decarboxylase (EC4.1.1.41)] 

are overrepresented in pasture datasets (Figure 4-5, Supplementary Table 4-1). Unlike the 

abundance of different fermentation genes, which increased through ecosystem 

conversion, the forest microbiome demonstrated higher proportional representation of 

genes involved in the utilization of fermentation products, such as L-lactate 

dehydrogenase (EC1.1.2.3) (Supplementary Figure 4-6, Supplementary Table 4-1).  
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Figure 4-5. Differentially abundant genes encoding ECs involved in the carbohydrate 

metabolism (P < 0.01, Bonferroni corrected); x axis shows the values of log2foldchange, 

where positive values indicate the genes enriched in forest (green) and negative values 

indicate the genes enriched in pasture (red). 1= Starch and sucrose metabolism; 2= 

Pyruvate metabolism; 3= Pentose phosphate pathway; 4= Glycolysis/Gluconeogenesis; 

5= TCA cycle; 6= Galactose metabolism. 

 

Figure 4-6. Differentially abundant genes encoding ECs involved in energy metabolism 

(P < 0.01, Bonferroni corrected); x axis shows the values of log2foldchange, where 

positive values indicate the genes enriched in forest (green) and negative values indicate 

the genes enriched in pasture (red). 1= Sulfur metabolism; 2= Oxidative phosphorylation; 

3= Nitrogen metabolism; 4= Methane metabolism. 
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4.5.3.2 Energy metabolism- The forest microbiome had more KO genes that are 

components of the TCA cycle (Supplementary Figure 4-7, Supplementary Table 4-1), 

Figure 4-7. Response of soil ecosystem 

conversion in the differential representation 

of genes encoding ECs involved in nitrogen 

metabolism. Arrows indicate the enzyme-

mediated steps in the pathway, where green 

and red arrows indicate genes enriched in 

forest and pasture, respectively, and black 

arrows indicate genes that were not estimated 

to be differentially abundant between forest 

and pasture. NS; non-significant 

Figure 4-8. Response of soil ecosystem 

conversion in the differential representation 

of genes encoding ECs involved in 

methanogenesis. Arrows indicate the 

enzyme-mediated steps in the pathway, 

where green and red arrows indicate genes 

enriched in forest and pasture, respectively, 

and black arrows indicate genes that were not 

estimated differentially abundant between 

forest and pasture. 
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whereas the relative number of specific genes involved in oxidative phosphorylation, 

typical of respiration, varied considerably between soil types (Supplementary Table 4-2). 

In contrast to the forest microbiome, where different V-type H+-transporting ATPase 

subunits predominated (log2foldchange: 0.44 to 1.08), the pasture microbiome was 

enriched in genes for bidirectional Ni-Fe hydrogenase diaphorase subunits (K05586, 

K05587, K05588; log2foldchange: -1.32 to -1.56; Figure 4-6). Genes involved in 

anaerobic respirations also varied considerably between forest and pasture. This variation 

involved nitrogen metabolism (Figure 4-7) and methane metabolism (Figure 4-8). The 

forest microbiome had overrepresentation of EC genes involved in nitrification 

(EC1.7.99.4), and likewise, denitrification (EC1.7.2.1, EC1.7.2.5 and EC1.7.2.4) and 

assimilatory nitrate reduction (EC1.7.99.4 and EC1.7.7.1). On the other hand, the 

proportions of genes involved in nitrogen fixation (EC1.18.6.1) and dissimilatory nitrate 

reduction to ammonia (DNRA) (EC1.7.1.4) were estimated higher in the pasture 

microbiome. The fold differences of different subunits of nitrogen fixing gene ranged 

from 67.85 to 99.37 (log2foldchange: -6.08 to -6.63; Figure 4-6). The differences in 

abundance for the gene associated with the DNRA, however, was not statistically 

significant. In methane metabolism, several genes (EC1.2.7.4, EC1.12.98.1 and 

EC2.8.4.1; log2foldchange: -5.05, -3.63 and -3.83, respectively) were enriched in the 

pasture microbiome, while others (EC3.1.2.12 and EC4.4.1.22; log2foldchange: 0.08, and 

0.71, respectively) were enriched in the forest. The former set of genes is involved in the 

synthesis of methane (methanogenesis) and latter set involved in the utilization of it 

(methanotrophy).  
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4.5.3.3 Amino acids metabolism- While we have not observed a statistically significant 

difference in amino acid metabolism, we observed overrepresentation of genes for the 

biosynthesis of several amino acids and intermediate compounds including alanine 

(EC4.1.1.12), asparagine (EC6.3.5.4), homoserine (EC1.1.1.3), threonine (EC2.7.1.39), 

homocysteine (EC2.3.1.31 and EC4.4.1.8), arginine (EC6.3.4.5), methionine (EC2.1.1.13 

and EC2.1.1.14), glutamine (EC3.5.1.2) and putrescine (EC4.1.1.17) in the forest 

microbiome (Figure 4-9). Among the ABC transporter genes for amino acids, the pasture 

microbiome had higher representation for the transport of lysine, arginine and ornithine 

(K10013), and D-methionine (K02071-K02073), while forest microbiome had higher 

representation for the transport of branched-chain amino acids (K01995-K01999), 

glutamate and aspartate (K10001-K10003), General L-amino acids (K09969-K09972) 

and putrescine (K11073-K11076) (Supplementary Table 4-3). 
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Figure 4-9.  Response of soil ecosystem conversion in the differential representation of 

genes encoding ECs involved in the amino acid metabolism. Arrows indicate the 

enzyme-mediated steps in the pathway, where green and red arrows indicate genes 

enriched in forest and pasture, respectively.  

 

4.5.3.4 Metabolism of xenobiotic compounds- According to the results of the present 

study, the forest microbiomes had higher representation of genes associated with the 

degradation of xenobiotic compounds, including benzoate, polycyclic aromatic 

hydrocarbon, aminobenzoate (Supplementary Table 4-4). Breakdown of benzoate may 

lead to the production of the intermediates of TCA cycle including succinyl-CoA and 

oxaloacetate (Supplementary Figure 4-8).  

 

4.5.3.5 Sporulation and cell motility- Endospores and flagella are two special structures 

of microorganisms. Forest-to-pasture conversion increased the number of genes affiliated 

with both of these structures. Our analyses demonstrated that the following sporulation 

associated genes were far more abundant in the pasture microbiome: K07697, K07699 

and K13533, where the values of log2foldchange were -2.99, -2.54 and -1.96 

(Supplementary Table 4-5). In cell motility, genes involved in the flagellar assembly that 

were more abundant in the pasture were K02396, K02402, K02406, K02422 and 

K13820, where log2foldchange values were -1.09, -1.44, -1.28, -1.82 and -1.93, 

respectively; as were the chemotaxis genes K03406, K03408, K03411, K05874 and 

K05875, where log2foldchange values were -1.33, -1.07, -1.58, -1.33 and -1.53, 

respectively (Supplementary Table 4-6). 
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4.5.3.6 Biosynthesis of other secondary metabolites- We observed varied abundances of 

genes involved in secondary metabolites, which were antibiotics and bacitracin, an 

antimicrobial agent that inhibits the biosynthesis of cell wall. We estimated a slight 

variation of the mean relative abundances of genes involved in the biosynthesis of 

antibiotics penicillin and cephalosporin (EC3.5.1.11), and streptomycin (EC5.1.3.13) 

(Supplementary Table 4-7). While we have not observed a significant variation of 

biosynthetic enzymes of bacitracin, the two-component signal transduction system 

(K11629-K11630) and the ABC transporter genes for it (K11631-K11632) were far more 

enriched in the pasture microbiome, where log2foldchange values ranged from -2.29 to -

3.57. 

 

4.6 Discussion 

This study represents the first metagenome analysis compared between Amazon 

forest and pasture ecosystems. We obtained soil samples from top layer (0-10-cm) of 

both soil-types, which generally represents the most biologically active zone. By 

comparing the functional metagenome profiles, we evaluated the consequences of forest-

to-pasture conversion in central metabolic processes, especially those that have important 

ecological significance. 

 

4.6.1 Coverage of metagenomic diversity 

We first checked whether the sequencing effort of our samples has reached the 

full breadth of diversity. The rarefaction curves of both the taxonomic and functional 

genes (KOs) of metagenomes confirmed that we obtained the full coverage of genomic 

diversity (Supplementary Figure 4-2). While a similar approach with operational 
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taxonomic units (OTUs) of 16S rRNA amplicon datasets of our study site was not 

conducted in a previous study (Rodrigues et al. 2013), we have not obtained a full 

coverage of taxonomic datasets used in our previous study (Chapter 2, Supplementary 

Figure 4-3). Along with the Procrustes analysis (Figure 4-2), this observation suggests 

that microbial taxa inferred from metagenomes better predict the functional potentiality 

of metagenomes. While the relative proportion of major taxonomic groups showed 

similar abundance patterns between current and previous studies, intriguingly we 

estimated that both alpha and beta diversities of functional genes increased following 

land use change (Figure 4-3). This pattern indicates that ecosystem conversion increases 

mean sample diversity and diversity between any two samples, which is in agreement 

with previous report of taxonomic and phylogenetic alpha diversity but not with beta 

diversity (Rodrigues et al. 2013). We argue that this observation may have two mutually 

exclusive implications: (i) the lower number of samples (five, for each soil type) of the 

current study may limit us to fully explore the spatial diversity of functional genes; (ii) 

the lower sequencing depth of each sample in previous study may not have reached the 

full breadth of diversity coverage.  

 

4.6.2 A trade-off between glycolysis and gluconeogenesis in forest microbiome 

Plants typically contribute major sources of organic carbon to the soils and these 

are often enriched in aromatic compounds, and microbial communities rely on these 

external carbon compounds (Grandy and Neff 2008). The extraordinary physiological 

diversity of microorganism for the utilization of these carbon compounds implies their 

ability to adapt in diverse habitats, which is often associated with energy metabolism. 

They employ different strategies for energy conversion and their primary challenge is 
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how to maintain adequate energy reserves despite challenges in their environment 

(Gianoulis et al. 2009). The differences in functional genes for energy conversion 

pathways between the two soil types presumably relate to the differences in the quantity 

and/or quality of organic carbon compounds present in the soils and environmental 

features such as edaphic factors. For example, pasture soil is rich in cellulosic litter from 

grasses, and one of the two grass species that dominates in pasture is Urochloa brizantha, 

which stores starch, proteins etc. in their rhizomes (Deinum et al. 1996). Therefore 

microbial communities in this soil type are likely to receive these carbohydrates from the 

grass species along with other nutrients. This pattern is supported by the increased 

number of genes involved in the transport of mono- and di-saccharides in pasture 

(Supplementary Table 4-1), which suggests that the pasture microbiome may rely more 

on exogenous saccharides. In contrast to the pasture microbiome, it is apparent that the 

forest microbiome has higher capacity for the utilization of xenobiotic compounds, which 

presumably are more abundant in the floristically richer forest habitat. The breakdown 

products of these compounds such as benzoate may supply the intermediates of the TCA 

cycle that would provide flexibility to energy harvest strategies and anaplerosis in the 

forest microbiome. Based on the results of KEGG pathway mapping, the conversion of 

anaplerotic compound oxaloacetate into phosphoenolpyruvate (PEP) might take place 

when gluconeogenesis is required and the conversion of pyruvate into oxaloacetate might 

take place when glycolysis is required (Supplementary Figure 4-6). Moreover, higher 

pentose phosphate pathway (PPP) associated genes in forest microbiomes may provide 

added flexibility to carbohydrate metabolism because they have higher potentiality to 

funnel glyceraldehyde-3-P, an intermediate of PPP, into gluconeogenesis or glycolysis 
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(Supplementary Figure 4-6). This observation suggests that the forest microbiome is 

better able to maintain a trade-off between glycolysis and gluconeogenesis, a strategy that 

may be critical in maintaining a healthy microbial community. 

The genes affiliated with the production of antibiotics and resistances to them are 

widespread within microbial communities (Allen et al. 2010, Dantas et al. 2008), and 

probably are indicative of competition within microbial communities (Fierer el al. 2012). 

Likewise, bacitracin, which interferes with the cell wall synthesis (Stone et al. 1971), 

may have links to competitive interactions. In contrast to the genes affiliated with the 

synthesis of penicillin and cephalosporin (EC3.5.1.11), and streptomycin (EC5.1.3.13), 

which do not show substantial variations in frequency between forest and pasture, genes 

involved in the transport of bacitracin and resistance response to it were estimated to be 

elevated in the pasture microbiome (Supplementary Table 4-7). In pasture soil, which is 

dominated by just two grass species, the microbial community is expected to have a less 

diverse physiology for the utilization of organic compounds from grasses compared to 

that in forest. This probably explains the possibility of having more interspecific 

competition within the pasture microbial community for the utilization of more similar 

resources, which also supports our previous results (Chapters 2 and 3). 

 

4.6.3 Forest-to-pasture conversion shifts energy harvest strategy in the Amazon 

The most prominent differences imposed by ecosystem conversion in Amazon 

involved pathways relate to the energy metabolism, which is linked functionally to the 

carbohydrate metabolism. Gene abundance data suggest that the strategy of oxidative 

phosphorylation varied considerably between soil types (Supplementary Table 4-2). This 

might have special implications to understanding the ecosystem ecology of 
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microorganisms in both soil types. For example, bidirectional Ni-Fe hydrogenase 

diaphorase subunits, enriched in pasture, is oxygen sensitive and was purified under 

anaerobic condition (Schmitz et al. 2002). On the other hand, genes for superoxide 

dismutase (EC1.15.1.1) and biosynthesis of glutathione (EC6.3.2.2 and EC1.8.1.7) were 

abundant in the forest microbiome, indicating more aerobic processes for energy 

generation. 

Another striking difference involved the metabolism of nitrogen and methane, 

which are related to anaerobic respiration. Deforestation by slash-and-burn process 

causes an initial loss of terrestrial nutrients through emission of gases and hydrologic 

leaching, especially nitrate (Davidson et al. 2007). Therefore it is not surprising to report 

that KEGG EC genes involved in the nitrification and likewise, assimilatory nitrate 

reduction were higher in the forest microbiome, whereas genes involved in nitrogen 

fixation were elevated in the pasture microbiome. These observations support previous 

reports (Neill et al. 1995, Paula et al. 2014). In addition, increased representation of 

Thaumarchaea in forest may be related to the observed abundance of nitrification genes 

(Hamaoui et al. 2016). It is noteworthy that nitrogen deficiency in the pasture habitat 

could increase the frequency and activity of free-living diazotrophs, which was evident in 

the previous study (Mirza et al. 2012). This probably explains why the pasture 

microbiome has higher capacity for nitrogen fixation, which may contribute to the fitness 

of the microbial community following deforestation. We detected an interesting pattern in 

nitrogen reduction processes between forest and pasture microbiomes. The forest sample 

is enriched in genes engaged in energy-yielding denitrification, a pattern that 

predominates in oligotrophic habitats and leads to the production of nitrous oxide and 
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nitrogen gases (Tiedje 1988, Yoon et al. 2015). In contrast, the pasture sample has higher 

representation in genes engaged in dissimilatory nitrate reduction to ammonia (DNRA), a 

pattern that relates to a copiotrophic and anaerobic habitat such as the bovine rumen. The 

difference in genes for DNRA in this study, which did not achieve statistical significance, 

does not support the previous report (Paula et al. 2014). DNRA is not an energy 

generation process but it probably helps reduce the further loss of the nitrogen from 

pasture soil in gaseous forms. On the other hand, forest-to-pasture conversion shifts the 

predominance of genes from methane oxidation to methane generation. KEGG pathway 

analysis therefore shows that ecosystem conversion potentially turns the soil ecosystem 

from a sink of methane to a source of it. It is noteworthy that methanogenesis is entirely 

carried out by strictly anaerobic archaea belonging to the Euryarchaeota (Dridi et al. 

2012, Liu et al. 2008, Paul et al. 2012), although we did not notice a substantial increase 

of this group of archaea by forest-to-pasture conversion (Supplementary Figure 4-1). 

Methanogens may increase the efficiency of fermentation by removing one of its 

products, acetate. Livestock, which contributes about 37% of global methane emission 

(Steinfeld et al. 2006), may represent a potential source of this archaeal group in 

pastureland. This study therefore showed that strategies for anaerobic respiration in both 

soil types have the potential to produce important greenhouse gases (methane, nitrous 

oxide) and our findings are in line with previous studies conducted in Amazon (Davidson 

et al. 2012, Melillo et al. 2001, Neill et al. 2005, Steudler et al. 1996). 

Although soil samples were collected after the rainy season, the better draining 

capacity of sandy loam forest soil prevents persistent waterlogging, which contributes to 

better aeration in the active layer of soil. Therefore forest habitats potentially support the 
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growth of microbial communities of diverse physiologies. In contrast, pasture soil of our 

study site is classified as sandy clay loam (Neill et al. 1997a). A better water-retaining 

capacity of this type of soil would eventually make the soil habitat more anaerobic, which 

is aided by the soil compaction during cattle grazing.  Therefore cattle may not only 

disperse microbes to the land, but also maintain reduced state suitable for anaerobic 

processes to take place such as DNRA, nitrogen fixation, fermentation, and 

methanogenesis. Thus we hypothesize that forest-to-pasture conversion shifts the 

microbial energy harvest strategy towards more anaerobic.   

 

4.6.4 Possible mechanisms for subsisting other environmental challenges in the Amazon 

The differences in genes involved in amino acid metabolism between forest and 

pasture microbiomes can also be related to the observed differences in environmental 

features, which can play important role in the adaptation of microbiome in their habitats 

(Fierer et al. 2012, Mary et al. 2008, Greenblum et al. 2012). For instance, amino acid 

metabolism produces putrescine, which offers resistance to acidic pH (Konings et al. 

1997, Griswold et al. 2006). The genes encoding enzymes for putrescine production are 

overrepresented in forest microbiome, hinting that it may contribute substantially in the 

adaptation of microbial community to the acidic soil habitats. More importantly, higher 

biosynthetic capacity of amino acids (Supplementary Table 4-3) from acidic amino acids 

might be advantageous for the forest microbiome in their oligotrophic habitat. Another 

forest-enriched enzyme, homospermidine synthase (EC2.5.1.44), which is probably 

involved in protecting plant community from herbivores (Ober et al. 1999).  

It is conceivable that pasture microbial communities had to endure the slash-and-

burn process and then adapt a lifestyle that is different from pristine forest. Despite the 
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increased carbon content, the deforestation process and subsequent loss of essential 

elements including nitrogen might have led to the selective enrichment of small group of 

microbial communities with special structures, such as flagella and endospores, which 

help adapt to the altered ecosystem. Our finding is in line with previous studies, where 

forest-to-pasture conversion increased relative abundance of known endospore-formers 

such as Firmicutes (Rodrigues et al. 2013, Chapters 2 and 3). Several authors have 

demonstrated that the ability of motile microbial species to move towards the gradients of 

chemoattractants enhances their ability to establish colonization in the rhizosphere (Ames 

and Bergman 1981, Bais et al. 2006, Caetano-Anolle ́s et al. 1988), which enables 

bacteria to respond quickly to ecosystem alteration, especially those that are not part of 

native soil microbiota. 

 

4.7 Final remarks 

Microbial diversity in soils has a great influence on ecosystem functions. 

Anthropogenic activities such as deforestation alter microbial communities, which 

thereafter lead to the alteration of functional attributes. Since the pristine Amazon soil 

harbors a major portion of microbial community, many of the microbial species remain 

undefined based on our current knowledge. While defined, biology of many of them is 

not fully understood, which challenges us to explore and compare their complete 

ecological roles. This study attempted to overcome this limitation. Metagenome datasets 

used in this study are of sufficient quality to allow the identification of KEGG orthology 

genes and quantity to obtain the full extent of genomic diversity. The identification of 

genes, which were differentially abundant between forest and pasture, offers insights for 
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the strategies of microbial communities in their ecosystems, which may contribute to of 

adaptation. Such information is essentially important for environments like Amazon soils, 

where the basic ecology and microbiology are mostly inconspicuous. We found that 

ecosystem conversion altered microbial lifestyle strategies, which in turn alters 

ecologically relevant biochemical pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	  
84 

Chapter 5 

Conclusions, caveats, and future directions 

 

5.1 Conclusion 

Microbial diversity in soils has a great influence on ecosystem functions. 

Biodiversity study in microbial ecology traditionally demonstrates mainly abundances 

and species richness and ignores the microbial interactions, which could be more 

important to understand ecosystem processes with central importance. I used co-

occurrence network approaches to analyze the microbial communities of Amazon forest 

and pasture. My studies showed how altered microbial communities lead to the alteration 

of co-occurrence patterns and topological properties of networks. In addition to the 

network properties, the association of soil properties, especially carbon and nitrogen 

content with the topological properties of co-occurrence networks provided valuable 

insights about microbial associations with ecosystem functions, which are consistent with 

the results that I observed with metagenome analyses. In addition, the analyses in my 

research projects attest to the previously observed alteration of functions caused by 

forest-to-pasture conversion. Transcriptomic and proteomic approaches are also widely 

used in studying the ecosystem functions. However, they are more expensive and may 

not always provide better comprehension about the microbial roles in ecosystem 

functions. Many microbial genes are only expressed in a certain situation, for example 

nitrogenase genes are only expressed during nitrogen fixation. Our approach, however, 

may require further validation using other approaches and an integration of 

metagenomics, cultivation and lab experiments should be conducted in order to link the 

functional genes with microbial taxa (Fuhrman 2009). Nonetheless, network analysis 
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provides us with the starting point in understanding the ecology of these microorganisms. 

Such information is essentially important for environments like Amazon soils, where the 

basic ecology and microbiology are mostly inconspicuous. Therefore, this network 

strategy can guide us to identify habitat affinities of microbial groups, and potentially 

their shared physiologies that could govern more focused studies and design experimental 

settings accordingly.  

 

5.2 Caveats 

Despite the usefulness of co-occurrence networks, we have to be very careful in 

inferring microbial interactions from network analysis as they only demonstrate the 

association based on their relative abundance pattern. Since the abundance patterns of 

microorganism are a result of complex biotic and abiotic interactions, co-occurrence 

patterns therefore do not prove true ecological interactions. Nevertheless, the novel 

strategy that I described in my study may increase the probability of identifying co-

occurring microorganisms with physical and physiological interactions. In addition, 

networks described here provide a snapshot of the co-occurring microbial communities at 

a given time, which may not explain some important phenomena, for example, responses 

to perturbation, succession etc. On the other hand, we have to be very cautious in 

coupling ecological attributes and taxonomy for several reasons. First, lateral gene 

transfer allows microbes to gain and lose genes rapidly, and it is common in microbial 

lineages that share similar ecologies (Smillie et al. 2011). The high degree of genomic 

plasticity in microbial communities therefore promotes functional convergence within 

distantly related microbial species (Tettelin et al. 2008). Ecosystem conversion probably 
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triggers this process to adapt microbial communities to new habitats. Second, since the 

pristine Amazon soil harbors novel microorganisms, many of the operational taxonomic 

units (OTUs) remain undefined based on our current knowledge. When defined, the 

biology of many of them is not fully understood, which challenges us to explore and 

compare the complete ecological roles. Therefore we cannot predict if any contribution 

played by a forest OTU, which remains undetected in pasture can be rescued by currently 

undefined member in pasture. 

 

5.3 Future directions 

5.3.1 Study of microbial dynamics 

My study has broadened our understanding of microbial co-occurrence patterns 

and functional attributes, and impact on them by ecosystem conversion in the Amazon. 

However, it focused on the effect of spatial variability and ignored that of temporal 

variability, which could be more important for understanding molecular mechanisms in 

successional shifts and the stability of microbial communities, and the projection of 

ecological consequences due to ecosystem conversion. In the future, I propose to collect 

samples from Amazon forest and pasture soils at both spatial and temporal scales. While 

we can follow the same sampling strategy across ecosystems, I propose to collect samples 

at four different seasons of a year for at least three consecutive years. This sampling 

scheme is designed to offer sufficient replications at both spatial and temporal scales 

such that statistically rigorous techniques could be used to determine the response of 

microbial taxonomic and functional diversities to seasonal variability in both 

ecosystems. Microbial networks can be constructed with datasets of multiple time points 
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that would contribute to understand a dynamic structure of microbial communities, and 

may reveal true ecological interactions between microbial species. The incorporation of 

environmental factors to the co-occurrence networks would guide us to unearth the 

impact of these factors in shaping the co-occurrence patterns. In addition, this approach 

will identify a core set of microbial species and their co-occurrents that are consistent 

with temporal variation, which may guide us to identify the microbial species and 

conservation of the ecological community relationships required for adaptations and 

homeostasis. Later, supervised classification of KEGG pathways and individual KEGG 

ECs can be performed, for example using a randomForest classifier (Knights et al. 2011). 

This approach will identify a core set of functional genes that are not differentially 

abundant and significantly discriminatory across different time points. The integration of 

functional genes in the analysis can consolidate our understanding of molecular 

mechanisms of syntrophy between microbial species for adaptation in terrestrial 

ecosystem, which therefore exhibit their ecological significance, and response of their 

adaptation strategy to anthropogenic activities.  

 

5.3.2 Secondary metabolites and bioremediation 

Since the majority of Amazon soil microbial species is currently undefined, it is 

reasonable to expect the presence of novel genes and pathways, which are involved in the 

degradation of recalcitrant chemical compounds, and in the synthesis of commercially 

and medically important compounds. My metagenome analyses attest to the possibility to 

discover novel secondary metabolites and microbial species involved in bioremediation 

of recalcitrant compounds. Previously, the Amazon Rainforest Microbial Observatory 

(ARMO) team has successfully isolated 260 species belonging to Burkholderia, a 
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betaproteobacterial genus, with the ability of pollutant degradation. On the other hand, it 

is imperative to discover new antibiotic class as medically important microbial species 

have already become resistant to most of the major antibiotic classes discovered to date. 

The last novel class of antibiotics was discovered in 1987 (Silver 2011). In my study, I 

have estimated high frequencies of Actinobacteria, Firmicutes and Proteobacteria in 

Amazon soil samples. While the former two phyla are known as major antibiotic 

producers (de Lima et al. 2012, Silo-Suh et al. 1994, Pichard et al. 1995, Laland and 

Zimmer 1972), the latter taxon is known for having species, especially belonging to 

Betaproteobacteria and Gammaproteobacteria, for bioremediation of recalcitrant 

compounds (Bell et al. 2013, Lors et al. 2010). Therefore Amazon soil samples provide 

an ideal opportunity to explore microbial species involved in antibiotic production and 

bioremediations. Also, since the biology of members belonging to Verrucomicrobia and 

Acidobacteria are mostly unstudied, and they comprise major fractions of microbial 

communities in Amazon soils, they may also have candidate species of interest.  
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Supplementary Material for Chapter 2 
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Supplementary Figure 2-1. Evenness values for members comprising taxonomic 

networks (P > 0.05) in forest (green) and pasture (red). Error bars represent standard 

error. 

                     

Supplementary Figure 2-2. Relative abundance of 10 major genera observed in forest 

(green) and (red) pasture networks. Error bars represent standard error. Symbols (*), (**), 

and (***) indicate significance values of P < 0.05, P < 0.01, P < 0.001, respectively, 

which were calculated using two-sample t-test. 
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Supplementary Figure 2-3. Procrustes analyses of two different OTU-picking algorithms: 

(A) de novo vs. closed-reference, and (B) closed-reference OTUs vs. PICRUSt predicted 

KEGG Orthology gene profiles. Clustering patterns were statistically significant (P < 

0.01) with goodness of fit (M2) values of = 0.009 and 0.307, respectively. Forest samples 

are represented by green dots and pasture samples are represented by red dots in both 

panels. Forest samples are represented by green dots and pasture samples are represented 

by red dots in both panels. The white ends of each connector line connect to the OTU 

data derived by de novo OUT-picking method (A), and functional annotation data (B), 

whereas the blue ends connect to the OTU data derived by closed-reference OTU-picking 

method. The length of the connector lines is inversely proportional to the overall 

concordance between taxonomic and functional gene datasets. 
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Supplementary Table 2-1. Quantitative PCR conditions for each primer set used in this 

study and their approximate amplicon length.  

 

 

 

 

Supplementary Table 2-2. Standard curve properties for each taxon determined by 

quantitative PCR. 
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Supplementary Material for Chapter 3 
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Supplementary Table 3-1. Major topological properties of 49 site-wise networks  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site ρ- cutoff Degree distribution 
(r-values, P<0.05) 

Node 
counts 

Edge 
counts 

Modularity Average  
path length 

F1A001 0.8 -0.89 669 3387 0.903 7.926 
F1A01 0.8 -0.85 560 2294 0.897 8.782 
F1A1 0.8 -0.87 650 2904 0.834 7.227 
F1A10 0.8 -0.87 646 3016 0.787 6.568 
F1A100 0.83 -0.95 656 1566 0.983 1.563 
F1B1 0.8 -0.82 656 3064 0.86 7.181 
F1B10 0.8 -0.88 632 2958 0.801 6.61 
F1B100 0.8 -0.85 713 4061 0.9 7.647 
F1C01 0.82 -0.92 578 1620 0.969 2.632 
F1C1 0.82 -0.87 1119 4831 0.969 12.191 
F1C10 0.82 -0.81 1015 4411 0.972 11.179 
F1C100 0.8 -0.94 483 1753 0.826 7.728 
F2A01 0.8 -0.96 427 1495 0.835 9.06 
F2A1 0.8 -0.94 547 2151 0.79 7.1 
F2A100 0.8 -0.96 422 1368 0.834 8.318 
F2B1 0.8 -0.98 435 1445 0.815 8.247 
F2B10 0.8 -0.88 623 2623 0.883 7.863 
F2C1 0.8 -0.88 546 2130 0.832 7.441 
F3A001 0.8 -0.94 253 623 0.893 9.476 
F3A01 0.8 -0.95 382 1208 0.913 11.121 
F3A1 0.8 -0.94 440 1460 0.811 7.854 
F3A100 0.8 -0.78 666 4250 0.921 9.128 
F3B1 0.81 -0.8 768 3398 0.951 16.54 
F3B10 0.8 -0.84 699 3113 0.841 7.305 
F3C01 0.8 -0.92 271 731 0.871 5.787 
F3C10 0.79 -0.88 312 1084 0.949 4.914 
P1A1 0.81 -0.9 770 2948 0.921 9.78 
P1A10 0.8 -0.77 788 4944 0.917 8.353 
P1A100 0.8 -0.75 889 5569 0.868 6.684 
P1B1 0.8 -0.78 1011 7181 0.855 6.132 
P1B10 0.82 -0.92 1158 5182 0.964 13.355 
P1B100 0.81 -0.84 910 3606 0.926 10.848 
P1C01 0.81 -0.85 1038 5280 0.934 8.87 
P1C1 0.8 -0.91 699 3363 0.762 6.653 
P1C10 0.8 -0.9 803 4365 0.745 6.102 
P1C100 0.8 -0.93 455 1791 0.887 7.509 
P2A001 0.8 -0.77 1012 7976 0.868 6.224 
P2A1 0.8 -0.93 596 2558 0.806 7.026 
P2A10 0.81 -0.87 859 3343 0.915 9.753 
P2A100 0.8 -0.95 574 2270 0.785 7.026 
P2B1 0.8 -0.72 1028 8080 0.886 6.665 
P2B10 0.82 -0.9 1103 4519 0.962 14.146 
P2C1 0.8 -0.91 941 5937 0.738 5.97 
P3A01 0.8 -0.96 684 3312 0.767 6.183 
P3A1 0.8 -0.95 572 2218 0.843 7.853 
P3A10 0.8 -0.92 651 2703 0.807 7.102 
P3A100 0.8 -0.96 482 1832 0.792 7.477 
P3B10 0.8 -0.72 996 7230 0.849 6.29 
P3C01 0.8 -0.87 781 4075 0.845 6.724 
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Supplementary Table 3-2. Comparison of environmental variables between forest and 

pasture soils. Symbols (*), (**), and (***) indicate significance values of P < 0.05, P < 

0.01, P < 0.001, respectively; NS, non-significant.  

Soil variable Unit Forest (CI, 
95%) 

Pasture (CI, 
95%) 

P-value (two-sample t-
test) 

Aluminum (Al) mmolc dm-3 0.88±0.56 1.00±0.62 NS 

Base saturation (V) % 50.35±6.77 40.00±6.41 * 

Calcium (Ca) mmolc dm-3 22.27±6.25 19.04±7.62 NS 

Carbon (C) - 1.20±0.16 1.91±0.33 *** 

C/N N/A 12.31±0.43 12.74±0.35 NS 

Cation Exchange Capacity (CEC) mmolc dm-3 58.89±6.03 64.03±9.49 NS 

Magnesium (mg) mmolc dm-3 6.77±0.79 7.74±1.35 NS 

Moisture % 14.03±0.89 17.62±2.03 ** 

Nitrogen (N) - 0.10±0.01 0.15±0.03 *** 

pH (in CaCl2) N/A 4.3±0.24 4.5±0.19 NS 

Phosphorus (P) mg dm-3 8.42±1.03 9.13±2.68 NS 

Potassium (K) mmolc dm-3 2.54±0.96 1.77±0.51 NS 

Proton (H+) mmolc dm-3 27.31±2.88 35.48±2.75 ** 

Sulfur (S) mg dm-3 4.08±0.43 4.04±0.44 NS 
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Supplementary Table 3-3. Taxonomy of generalist nodes, and their average topological 

values in forest networks. 

Forest Generalist Closest known 
representative 

Avg. betweenness Avg. degree Number of co-occurring 
networks 

Acidobacteria Chloracidobacteria 0.0022 8.09 23 
 Acidobacteria-5 0.0014 5.91 23 
 Acidobacteria-5 0.0014 6.09 22 
 Acidobacteria-5 0.0013 7.2 20 
 Acidobacteria-6 0.0035 8.27 22 
 Acidobacteria-6 0.0007 5.71 21 
 Acidobacteria-6 0.0006 5.83 23 
 Acidobacteria-6 0.0009 6.55 22 
 Koribacteraceae 0.0005 5.39 23 
 Koribacteraceae 0.0018 7.4 20 
 Candidatus Koribacter 0.0014 6.08 24 
 Candidatus Koribacter 0.0008 5 26 
 Koribacteraceae 0.0004 6.43 23 
 Ellin6513 0.0028 7.9 20 
 Ellin6513 0.001 5.64 22 
 Candidatus Solibacter 0.0013 5.6 25 
 Candidatus Solibacter 0.0012 6.92 24 
 Candidatus Solibacter 0.0012 6.82 22 
 Candidatus Solibacter 0.001 7.62 21 
 Candidatus Solibacter 0.0012 4.8 25 
Actinobacteria Actinomycetales 0.0003 5.64 22 
 MB-A2-108 0.0002 5.09 22 
Alphaproteobacteria Beijerinckiaceae 0.0006 6.69 26 
 Hyphomicrobiaceae 0.0003 5.64 22 
 Rhodospirillaceae 0.0008 5.62 26 
 Rhodoplanes 0.0013 7.14 21 
 Rhodospirillaceae 0.0008 7.14 21 
 Methylocystaceae 0.0006 7.3 20 
 Rhodospirillaceae 0.0003 5.12 25 
 Rhodospirillaceae 0.0013 6.78 23 
 Rhodospirillaceae 0.0013 6.35 23 
 Caulobacteraceae 0.001 6.4 20 
 Bradyrhizobiaceae 0.0012 6.7 23 
 Rhodoplanes 0.001 7.27 22 
Betaproteobacteria Betaproteobacteria 0.0051 7 20 
Chloroflexi Ktedonobacteria 0.0018 5.71 21 
Deltaproteobacteria Syntrophobacteraceae 0.0009 5.9 20 
 Syntrophobacteraceae 0.0014 6.86 21 
 Entotheonellaceae 0.0002 5.6 20 
 Syntrophobacteraceae 0.0013 5.31 26 
GAL15 GAL15 0.0006 5.64 22 
Gemmatimonadetes Gemm-1 0.0015 6.57 21 
 Gemm-1 0.0009 6.3 20 
 Gemm-1 0.001 6.38 26 
 Ellin5290 0.0006 4.83 24 
 Gemmatimonadetes 0.0029 5.82 22 
 Ellin5290 0.0009 7.05 21 
 Ellin5290 0.0006 5.17 24 
Nitrospirae Nitrospirales 0.0008 5.69 26 
 Nitrospirales 0.0002 4.91 22 
 Nitrospirales 0.0017 5.52 25 
Planctomycetes Pirellulaceae 0.0003 5.13 23 
 Gemmataceae 0.0008 6 21 
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Supplementary Table 3-4. Taxonomy of generalist nodes, and their average topological 

values in pasture networks. 

Pasture Generalist Closest known 
representative 

Avg. betweenness Avg. degree Number of co-
occurring networks 

Acidobacteria RB41 0.0009 6.36 22 
 Chloracidobacteria 0.0009 7.71 21 
 Acidobacteria-6 0.0014 11.00 18 
 Acidobacteria-6 0.0004 6.00 19 
 Candidatus 

Koribacter 
0.0012 7.81 21 

 Koribacteraceae 0.0016 8.38 21 
 Koribacteraceae 0.0011 9.16 19 
 Micromonosporaceae 0.0008 9.00 18 
 Nocardioides 0.0012 8.78 18 
 Nocardioidaceae 0.0016 9.81 21 
 Gaiellaceae 0.0004 6.10 21 
 Solirubrobacteraceae 0.0008 8.00 20 
 Gaiellaceae 0.0012 8.17 23 
 Solirubrobacterales 0.0010 8.00 20 
Alphaproteobacteria Rhodospirillaceae 0.0012 10.63 19 
 Labrys 0.0008 9.00 20 
 Rickettsiales 0.0014 10.22 18 
 Alphaproteobacteria 0.0008 7.67 18 
 Rhodospirillaceae 0.0007 9.68 19 
 Rhodospirillaceae 0.0010 8.00 18 
 Rhodoplanes 0.0011 8.67 18 

Betaproteobacteria Betaproteobacteria 0.0008 9.44 18 
 Betaproteobacteria 0.0009 7.68 19 
 Betaproteobacteria 0.0019 9.05 19 
 Comamonadaceae 0.0006 12.22 18 
 Betaproteobacteria 0.0006 8.21 19 
 Betaproteobacteria 0.0009 6.26 23 

Deltaproteobacteria Myxococcales 0.0010 8.29 21 
 Myxococcales 0.0010 10.60 20 
 Syntrophobacteraceae 0.0018 10.30 20 
 Syntrophobacteraceae 0.0009 6.70 20 
 Deltaproteobacteria 0.0009 8.82 22 
 Deltaproteobacteria 0.0009 13.00 18 
 Anaeromyxobacter 0.0004 7.16 19 

Firmicutes Bacillales 0.0010 6.55 22 
 Bacillales 0.0003 8.70 20 
 Bacillus cereus 0.0013 8.19 21 
 Alicyclobacillus 0.0004 6.10 21 
 Bacillus 0.0009 9.44 18 
 Solibacillus 0.0010 7.58 19 
 Planococcaceae 0.0008 7.55 22 
 Clostridium 0.0006 6.87 23 
 Veillonellaceae 0.0007 8.11 18 
 Clostridiales 0.0007 8.00 20 

Gammaproteobacteria Piscirickettsiaceae 0.0007 9.33 18 
Gemmatimonadetes Gemmatimonadetes 0.0005 7.44 18 
WS3 PRR-12 0.0016 7.48 23 
 PRR-12 0.0005 6.36 22 
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Supplementary Table 3-5. Taxonomy of shared generalist nodes, and their average 

topological values in forest and pasture networks. 

Shared generalist Closed known 
representative 

Avg. betweenness 
 

Avg. degree No of co-occurring 
networks  

  Forest Pasture Forest Pasture Forest Pasture 
Acidobacteria Acidobacteria-5 0.0023 0.0006 4.77 5.5 26 20 
 Acidobacteria-5 0.0007 0.0004 5.54 7.39 26 23 
 Acidobacteria-5 0.0021 0.0006 6.72 8.44 25 18 
 Acidobacteria-6 0.0014 0.0009 7.42 7.55 24 22 
 Acidobacteria-6 0.0015 0.0008 5.54 11.11 26 18 
 Acidobacteria-6 0.0009 0.0006 7 6.8 24 20 
 Acidobacteria-6 0.0006 0.0016 5.23 9.04 26 23 
 Acidobacteria-6 0.0014 0.0007 6.24 6.64 25 22 
 Edaphobacter 

modestus 
0.001 0.0006 5.92 7.89 24 18 

 Koribacteraceae 0.0023 0.0007 5.84 9.78 25 18 
 Koribacteraceae 0.0006 0.0013 5.46 7.52 26 21 
 iii1-8 0.0002 0.0012 5.2 7.18 25 22 
 Candidatus Solibacter 0.0012 0.0004 5.69 6.17 26 23 
 Candidatus Solibacter 0.0029 0.0007 5.92 6.35 26 23 
Actinobacteria Acidimicrobiia 0.0012 0.0007 6.61 7.2 23 20 
 Actinomycetales 0.0032 0.001 5.52 9.89 21 18 
 Gaiellaceae 0.0017 0.0011 6 7.48 23 23 
 Conexibacteraceae 0.0004 0.0012 5.62 7.91 26 22 
 Gaiellaceae 0.0007 0.0006 7 8.11 20 19 
 Gaiellaceae 0.0007 0.0013 6.6 9.1 20 20 
Alphaproteobacteria Rhizobiales 0.0012 0.0004 7 6.55 20 22 
 Rhodoplanes 0.0031 0.0008 6.46 8.44 26 18 
 Phenylobacterium 0.0007 0.0008 7 7.18 26 22 
 Rhodoplanes 0.0013 0.0008 6.08 7.39 26 23 
 Bradyrhizobiaceae 0.0002 0.0005 5.62 9.22 26 23 
 Alphaproteobacteria 0.0007 0.0003 5.85 5.57 26 23 
 Rhodoplanes 0.0006 0.0009 5.92 6.35 25 23 
 Hyphomicrobiaceae 0.0015 0.0004 7.13 6.26 23 23 
 Rhodospirillaceae 0.0005 0.0012 5.9 9.26 21 19 
 Rhodoplanes 0.0009 0.001 5.31 8.17 26 23 
 Pedomicrobium 0.0026 0.0004 6 5.64 26 22 
 Rhodoplanes 0.0024 0.0005 5.84 8.21 25 19 
 Hyphomicrobiaceae 0.0034 0.0006 7.39 7.79 23 19 
 Rhodoplanes 0.0004 0.0006 5.54 5.22 26 23 
Chloroflexi Ellin6529 0.0008 0.0013 6.67 7.57 21 23 
 Ktedonobacteria 0.002 0.0005 5.08 6.09 26 22 
 B07_WMSP1 0.0037 0.0019 6.73 8.1 22 21 
Deltaproteobacteria Myxococcales 0.0002 0.0006 6.4 6.61 20 23 
 Syntrophobacteraceae 0.0046 0.0008 6 7.09 26 22 
 Syntrophobacteraceae 0.0005 0.0006 5.85 7.3 26 23 
 Syntrophobacteraceae 0.0008 0.0005 5.91 9.2 22 20 
 Syntrophobacteraceae 0.0009 0.0006 5.54 6.78 26 23 
Firmicutes Bacillus 0.0021 0.0007 7.81 7.83 21 23 
 Bacillus 0.0015 0.0006 7.14 6.17 21 23 
Gammaproteobacteria Sinobacteraceae 0.0016 0.0009 6.08 8.84 26 19 
Gemmatimonadetes Ellin5290 0.0025 0.0011 6.6 8.22 20 18 
Nitrospirae Nitrospirales 0.0013 0.0006 5.77 6.17 26 23 
 Nitrospirales 0.0007 0.0005 6.6 8.63 20 19 
 Nitrospirales 0.0016 0.0007 6.85 7.43 26 21 
Planctomycetes Pla4 0.001 0.0007 6.24 6.09 25 22 
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 Supplementary Figure 4-1. Relative abundances of taxonomic distribution at phylum and 

class levels in the shotgun metagenomes obtained from the Amazon forest (green) and 

pasture (red). Error bars represent standard error. Symbols (*), (**), and (***) indicate 

significance values of P < 0.05, P < 0.01, P < 0.001, respectively, which were calculated 

using two-sample t-test.  

 

 

 

 

 

 

 



	  

	  
101 

 

Supplementary Figure 4-2. Rarefaction curves of taxonomic (A) and functional (B) 

distributions of metagenomes obtained from Amazon forest (green) and pasture (red) soil 

samples, where species richness was used as alpha-diversity index. Each line connects an 

average number of observed OTUs (A) and KOs (B) at each rarefaction depth.  
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Supplementary Figure 4-3. Rarefaction curves of 16S rRNA gene amplicons obtained 

from a recently published Amazon forest (green) and pasture (red) soil samples (Chapter 

2), where species richness was used as alpha-diversity index. Each line connects an 

average number of observed OTUs at each rarefaction depth. 
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Supplementary Figure 4-4. Response of soil ecosystem conversion to taxonomic 

diversities in shotgun metagenomes. (A) Alpha diversity (Shannon, H’), P < 0.01; (B) 

Beta diversity (Hellinger), P < 0.01. Means (n = 5 for alpha diversity, n = 10 for pair-

wise similarity as beta diversity) are depicted, standard error. Error bars represent 

standard error. 
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Supplementary Figure 4-5. Response of soil ecosystem conversion in the differential 

representation of genes encoding ECs involved in the starch and sucrose metabolism 

(carbohydrate metabolism). Arrows indicate the enzyme-mediated steps in the pathway, 

where green arrows indicate genes enriched in forest, red arrows indicate genes enriched 

in pasture, and black arrows indicate genes that were not estimated differentially 

abundant between forest and pasture. 
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Supplementary Figure 4-6. Response of soil ecosystem conversion in the differential 

representation of genes encoding ECs involved in monosaccharide metabolism 

(carbohydrate metabolism). Arrows indicate the enzyme-mediated steps in the pathway, 

where green arrows indicate genes enriched in forest, red arrows indicate genes enriched 

in pasture, and black arrows indicate genes that were not estimated differentially 

abundant between forest and pasture. 
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Supplementary Figure 4-7. Response of soil ecosystem conversion in the differential 

representation of genes encoding ECs involved in the TCA cycle (carbohydrate 

metabolism). Arrows indicate the enzyme-mediated steps in the pathway, where green 

arrows indicate genes enriched in forest, and black arrows indicate genes that were not 

estimated differentially abundant between forest and pasture. 
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Supplementary Figure 4-8. Response of soil ecosystem conversion in the differential 

representation of genes encoding ECs involved in benzoate metabolism. Arrows indicate 

the enzyme-mediated steps in the pathway, where green arrows indicate genes enriched 

in forest, and black arrows indicate genes that were not estimated differentially abundant 

between forest and pasture. 
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Supplementary Table 4-1. Frequencies of genes involved in carbohydrate metabolism 

between forest and pasture. The positive values of log2foldchange indicate the extent of 

increased genes frequencies in forest and negative values of log2foldchange indicate the 

extent of increased genes frequencies in pasture. 

KO ID EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 
K01903 EC:6.2.1.5 0.1481 (±0.0042) 0.1478 (±0.0022) 0.003 TCA cycle Succinyl-coa synthetase beta subunit 
K01902 EC:6.2.1.5 0.1173 (±0.003) 0.1157 (±0.0042) 0.02 TCA cycle Succinyl-coa synthetase alpha subunit 
K01676 EC:4.2.1.2 0.0869 (±0.007) 0.084 (±0.0051) 0.049 TCA cycle Fumarate hydratase, class I 
K00241 unknown 0.0211 (±0.001) 0.0193 (±0.0011) 0.129 TCA cycle Succinate dehydrogenase cytochrome b556 subunit 
K01959 EC:6.4.1.1 0.0134 (±0.001) 0.0115 (±0.0006) 0.215 TCA cycle Pyruvate carboxylase subunit A 
K00242 unknown 0.0082 (±0.0005) 0.0065 (±0.0003) 0.344 TCA cycle Succinate dehydrogenase membrane anchor subunit 
K01960 EC:6.4.1.1 0.0092 (±0.001) 0.0055 (±0.0008) 0.746 TCA cycle Pyruvate carboxylase subunit B 
K01648 EC:2.3.3.8 0.0028 (±0.0004) 0.001 (±0.0002) 1.447 TCA cycle ATP citrate (pro-S)-lyase 
K01182 EC:3.2.1.10 0.0034 (±0.0003) 0.0078 (±0.0007) -1.207 Galactose metabolism Oligo-1,6-glucosidase 
K01193 EC:3.2.1.26 0.0022 (±0.0005) 0.0044 (±0.0003) -1.042 Galactose metabolism Beta-fructofuranosidase 
K00883 EC:2.7.1.58 0.0011 (±0.0004) 0.0024 (±0.0003) -1.101 Galactose metabolism 2-dehydro-3-deoxygalactonokinase 
K00927 EC:2.7.2.3 0.1479 (±0.0037) 0.1472 (±0.0023) 0.007 Glycolysis / Gluconeogenesis Phosphoglycerate kinase 
K01810 EC:5.3.1.9 0.1862 (±0.0092) 0.1818 (±0.0056) 0.035 Glycolysis / Gluconeogenesis Glucose-6-phosphate isomerase 
K00172 EC:1.2.7.1 0.0021 (±0.0003) 0.0054 (±0.0008) -1.391 Glycolysis / Gluconeogenesis Pyruvate ferredoxin oxidoreductase, gamma subunit 
K03841 EC:3.1.3.11 0.0206 (±0.003) 0.0197 (±0.0014) 0.065 Glycolysis / Gluconeogenesis Fructose-1,6-bisphosphatase I 
K00886 EC:2.7.1.63 0.0285 (±0.0022) 0.0259 (±0.0016) 0.136 Glycolysis / Gluconeogenesis Polyphosphate glucokinase 
K01623 EC:4.1.2.13 0.1264 (±0.0044) 0.1099 (±0.0027) 0.201 Glycolysis / Gluconeogenesis Fructose-bisphosphate aldolase, class I 
K01610 EC:4.1.1.49 0.1087 (±0.0037) 0.0927 (±0.0017) 0.23 Glycolysis / Gluconeogenesis Phosphoenolpyruvate carboxykinase (ATP) 
K00150 EC:1.2.1.59 0.0022 (±0.0003) 0.0012 (±0.0001) 0.835 Glycolysis / Gluconeogenesis Glyceraldehyde-3-phosphate dehydrogenase (NAD(P)) 
K00616 EC:2.2.1.2 0.166 (±0.0061) 0.1543 (±0.0051) 0.106 Pentose phosphate pathway Transaldolase 
K00615 EC:2.2.1.1 0.4277 (±0.0141) 0.3979 (±0.0073) 0.104 Pentose phosphate pathway Transketolase 
K00090 EC:1.1.1.215 0.0099 (±0.0005) 0.0095 (±0.0004) 0.063 Pentose phosphate pathway Gluconate 2-dehydrogenase 
K01783 EC:5.1.3.1 0.0731 (±0.0017) 0.0652 (±0.0015) 0.165 Pentose phosphate pathway Ribulose-phosphate 3-epimerase 
K05774 EC:2.7.4.23 0.0018 (±0.0004) 0.0015 (±0.0002) 0.21 Pentose phosphate pathway Ribose 1,5-bisphosphokinase 
K01807 EC:5.3.1.6 0.0302 (±0.0026) 0.0271 (±0.0017) 0.16 Pentose phosphate pathway Ribose 5-phosphate isomerase A 
K01053 EC:3.1.1.17 0.1457 (±0.0071) 0.1109 (±0.0037) 0.394 Pentose phosphate pathway Gluconolactonase 
K00034 EC:1.1.1.47 0.0481 (±0.0057) 0.0319 (±0.002) 0.591 Pentose phosphate pathway Glucose 1-dehydrogenase 
K00115 EC:1.1.99.10 0.0063 (±0.0007) 0.0041 (±0.0005) 0.623 Pentose phosphate pathway Glucose dehydrogenase (acceptor) 
K06152 EC:1.1.99.3 0.0119 (±0.0008) 0.0076 (±0.0007) 0.638 Pentose phosphate pathway Gluconate 2-dehydrogenase gamma chain 
K06151 EC:1.1.99.3 0.0848 (±0.0083) 0.0505 (±0.0045) 0.748 Pentose phosphate pathway Gluconate 2-dehydrogenase alpha chain 
K00117 EC:1.1.5.2 0.1525 (±0.0099) 0.0984 (±0.0054) 0.633 Pentose phosphate pathway Quinoprotein glucose dehydrogenase 
K00101 EC:1.1.2.3 0.0864 (±0.0056) 0.0718 (±0.0029) 0.267 Pyruvate metabolism L-lactate dehydrogenase (cytochrome) 
K00116 EC:1.1.5.4 0.0291 (±0.0049) 0.0194 (±0.001) 0.581 TCA cycle Malate dehydrogenase (quinone) 
K01067 EC:3.1.2.1 0.0032 (±0.0002) 0.0101 (±0.0016) -1.641 Pyruvate metabolism Acetyl-coa hydrolase 
K01225 EC:3.2.1.91 0.001 (±0.0003) 0.0024 (±0.0005) -1.184 Starch and sucrose metabolism Cellulose 1,4-beta-cellobiosidase 
K01199 EC:3.2.1.39 0.0002 (±0.0001) 0.0004 (±0.0001) -1.264 Starch and sucrose metabolism Glucan endo-1,3-beta-D-glucosidase 
K00706 EC:2.4.1.34 0.0001 (±0.0001) 0.0009 (±0.0003) -2.649 Starch and sucrose metabolism 1,3-beta-glucan synthase 
K05343 EC:5.4.99.16/ 

3.2.1.1 
0.2363 (±0.0133) 0.223 (±0.0051) 0.084 Starch and sucrose metabolism Maltose alpha-D-glucosyltransferase/ alpha-amylase 

K00697 EC:2.4.1.15 0.1141 (±0.0047) 0.0979 (±0.0036) 0.221 Starch and sucrose metabolism Trehalose 6-phosphate synthase 
K01178 EC:3.2.1.3 0.0404 (±0.0026) 0.0331 (±0.0032) 0.288 Starch and sucrose metabolism Glucoamylase 
K01194 EC:3.2.1.28 0.0159 (±0.0011) 0.0128 (±0.0015) 0.307 Starch and sucrose metabolism Alpha,alpha-trehalase 
K01196 EC:2.4.1.25/ 

3.2.1.33 
0.0002 (±0.0001) 0.0007 (±0.0003) -2.221 Starch and sucrose metabolism Glycogen debranching enzyme 

K00690 EC:2.4.1.7 0.0013 (±0.0002) 0.0037 (±0.0003) -1.478 Starch and sucrose metabolism Sucrose phosphorylase 
K00695 EC:2.4.1.13 0.0001 (±0) 0.0007 (±0.0002) -2.846 Starch and sucrose metabolism Sucrose synthase 
K10118 unknown 0.0021 (±0.0005) 0.0046 (±0.0004) -1.127 ABC transporters Multiple sugar transport system permease protein 
K10232 unknown 0.0028 (±0.0008) 0.0067 (±0.001) -1.239 ABC transporters Alpha-glucoside transport system substrate-binding protein 
K10553 unknown 0.0035 (±0.0008) 0.0074 (±0.0002) -1.094 ABC transporters Fructose transport system permease protein 
K10240 unknown 0.0019 (±0.0005) 0.0053 (±0.001) -1.512 ABC transporters Cellobiose transport system substrate-binding protein 
K10117 unknown 0.0008 (±0.0002) 0.0018 (±0.0002) -1.186 ABC transporters Multiple sugar transport system substrate-binding protein 
K10241 unknown 0.0024 (±0.0007) 0.0061 (±0.0011) -1.344 ABC transporters Cellobiose transport system permease protein 
K10242 unknown 0.0023 (±0.0007) 0.0064 (±0.0012) -1.503 ABC transporters Cellobiose transport system permease protein 
K10984 EC:2.7.1.69 0 (±0) 0 (±0) -2.388 Phosphotransferase system 

(PTS) 
PTS system, galactosamine-specific IIB component 

K10986 unknown 0 (±0) 0 (±0) -2.574 Phosphotransferase system 
(PTS) 

PTS system, galactosamine-specific IID component 

K02790 EC:2.7.1.69 0 (±0) 0.0002 (±0.0001) -1.893 Phosphotransferase system 
(PTS) 

PTS system, maltose and glucose-specific IIB component 

K02791 unknown 0 (±0) 0.0002 (±0.0001) -2.145 Phosphotransferase system 
(PTS) 

PTS system, maltose and glucose-specific IIC component 

K02761 unknown 0.0003 (±0.0001) 0.001 (±0.0001) -1.525 Phosphotransferase system 
(PTS) 

PTS system, cellobiose-specific IIC component 

K02794 EC:2.7.1.69 0.0003 (±0.0001) 0.0009 (±0.0001) -1.535 Phosphotransferase system 
(PTS) 

PTS system, mannose-specific IIB component 

K02795 unknown 0.0004 (±0.0001) 0.0011 (±0.0002) -1.56 Phosphotransferase system 
(PTS) 

PTS system, mannose-specific IIC component 

K02793 EC:2.7.1.69 0.0122 (±0.0008) 0.0088 (±0.0005) 0.472 Phosphotransferase system 
(PTS) 

PTS system, mannose-specific IIA component 

K02760 EC:2.7.1.69 0 (±0) 0.0002 (±0) -2.418 Phosphotransferase system 
(PTS) 

PTS system, cellobiose-specific IIB component 

K02757 unknown 0.0002 (±0) 0.0009 (±0.0003) -2.124 Phosphotransferase system 
(PTS) 

PTS system, beta-glucosides-specific IIC component 

K02756 EC:2.7.1.69 0.0002 (±0.0001) 0.0009 (±0.0003) -2.114 Phosphotransferase system 
(PTS) 

PTS system, beta-glucosides-specific IIB component 

K02755 EC:2.7.1.69 0.0002 (±0) 0.0009 (±0.0003) -2.157 Phosphotransferase system PTS system, beta-glucosides-specific IIA component 
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(PTS) 
K02768 EC:2.7.1.69 0.0067 (±0.0019) 0.0191 (±0.0013) -1.518 Phosphotransferase system 

(PTS) 
PTS system, fructose-specific IIA component 

K11198 EC:2.7.1.69 0 (±0) 0.0001 (±0) -2.807 Phosphotransferase system 
(PTS) 

PTS system, 2-O-A-mannosyl-D-glycerate-specific IIA component 

K11199 EC:2.7.1.69 0 (±0) 0.0001 (±0) -2.756 Phosphotransferase system 
(PTS) 

PTS system, 2-O-A-mannosyl-D-glycerate-specific IIB component 

K11200 unknown 0 (±0) 0.0001 (±0) -2.721 Phosphotransferase system 
(PTS) 

PTS system, 2-O-A-mannosyl-D-glycerate-specific IIC component 

K02796 unknown 0.0003 (±0.0001) 0.0013 (±0.0003) -2.009 Phosphotransferase system 
(PTS) 

PTS system, mannose-specific IID component 

K02777 EC:2.7.1.69 0.0002 (±0.0001) 0.0009 (±0.0001) -1.856 Phosphotransferase system 
(PTS) 

PTS system, glucose-specific IIA component 

K02798 EC:2.7.1.69 0.0003 (±0) 0.0013 (±0.0002) -2.107 Phosphotransferase system 
(PTS) 

PTS system, mannitol-specific IIA component 

K02800 unknown 0.0006 (±0.0001) 0.0026 (±0.0006) -2.244 Phosphotransferase system 
(PTS) 

PTS system, mannitol-specific IIC component 

K02799 EC:2.7.1.69 0.0004 (±0.0001) 0.0023 (±0.0005) -2.428 Phosphotransferase system 
(PTS) 

PTS system, mannitol-specific IIB component 

K02745 EC:2.7.1.69 0 (±0) 0.0001 (±0) -4.79 Phosphotransferase system 
(PTS) 

PTS system, N-acetylgalactosamine-specific IIB component 

K02769 EC:2.7.1.69 0.0011 (±0.0003) 0.0047 (±0.0006) -2.035 Phosphotransferase system 
(PTS) 

PTS system, fructose-specific IIB component 

K02770 unknown 0.0011 (±0.0002) 0.0046 (±0.0005) -2.048 Phosphotransferase system 
(PTS) 

PTS system, fructose-specific IIC component 

K02764 EC:2.7.1.69 0.0003 (±0.0001) 0.0018 (±0.0003) -2.629 Phosphotransferase system 
(PTS) 

PTS system, D-glucosamine-specific IIB component 

K02765 unknown 0.0003 (±0.0001) 0.0018 (±0.0003) -2.65 Phosphotransferase system 
(PTS) 

PTS system, D-glucosamine-specific IIC component 

K02763 EC:2.7.1.69 0.0003 (±0.0001) 0.0018 (±0.0003) -2.647 Phosphotransferase system 
(PTS) 

PTS system, D-glucosamine-specific IIA component 

K02809 EC:2.7.1.69 0.0001 (±0) 0.0008 (±0.0002) -2.899 Phosphotransferase system 
(PTS) 

PTS system, sucrose-specific IIB component 

K02810 unknown 0.0001 (±0) 0.0008 (±0.0002) -2.936 Phosphotransferase system 
(PTS) 

PTS system, sucrose-specific IIC component 

K03475 unknown 0 (±0) 0.0004 (±0.0001) -3.331 Phosphotransferase system 
(PTS) 

PTS system, ascorbate-specific IIC component 

K02818 EC:2.7.1.69 0 (±0) 0.0006 (±0.0002) -3.795 Phosphotransferase system 
(PTS) 

PTS system, trehalose-specific IIB component 

K02819 unknown 0 (±0) 0.0006 (±0.0002) -3.687 Phosphotransferase system 
(PTS) 

PTS system, trehalose-specific IIC component 

K02778 EC:2.7.1.69 0.0007 (±0.0002) 0.0043 (±0.0006) -2.729 Phosphotransferase system 
(PTS) 

PTS system, glucose-specific IIB component 

K02779 unknown 0.0006 (±0.0002) 0.0044 (±0.0006) -2.743 Phosphotransferase system 
(PTS) 

PTS system, glucose-specific IIC component 

K01192 EC:3.2.1.25 0.0062 (±0.0019) 0.0133 (±0.0009) -1.112 Lysosome Beta-mannosidase 
K00031 EC:1.1.1.42 0.1644 (±0.0144) 0.1575 (±0.011) 0.062 TCA cycle Isocitrate dehydrogenase 
K04565 EC:1.15.1.1 0.0156 (±0.0014) 0.0128 (±0.0011) 0.287 Peroxisome Superoxide dismutase, Cu-Zn family 
K04564 EC:1.15.1.1 0.136 (±0.0038) 0.1103 (±0.0029) 0.302 Peroxisome Superoxide dismutase, Fe-Mn family 
K00019 EC:1.1.1.30 0.058 (±0.0024) 0.0571 (±0.0019) 0.022 Butanoate metabolism 3-hydroxybutyrate dehydrogenase 
K01040 EC:2.8.3.12 0.0399 (±0.0043) 0.0343 (±0.0025) 0.22 Butanoate metabolism Glutaconate coa-transferase, subunit B 
K01615 EC:4.1.1.70 0.0001 (±0) 0.0002 (±0) -1.881 Butanoate metabolism Glutaconyl-coa decarboxylase 
K05973 EC:3.1.1.75 0.0357 (±0.0024) 0.0319 (±0.003) 0.164 Butanoate metabolism Poly(3-hydroxybutyrate) depolymerase 
K01039 EC:2.8.3.12 0.058 (±0.0058) 0.0471 (±0.0039) 0.301 Butanoate metabolism Glutaconate coa-transferase, subunit A 
K01799 EC:5.2.1.1 0.0086 (±0.002) 0.0072 (±0.0004) 0.265 Butanoate metabolism Maleate isomerase 
K01575 EC:4.1.1.5 0.0028 (±0.0003) 0.0021 (±0.0003) 0.404 Butanoate metabolism Acetolactate decarboxylase 
K00634 EC:2.3.1.19 0.0035 (±0.0008) 0.0092 (±0.0006) -1.381 Butanoate metabolism Phosphate butyryltransferase 
K00929 EC:2.7.2.7 0.0002 (±0.0001) 0.0025 (±0.0006) -3.999 Butanoate metabolism Butyrate kinase 
K03416 EC:2.1.3.1 0.0004 (±0.0001) 0.0012 (±0.0004) -1.476 Propanoate metabolism Methylmalonyl-coa carboxyltransferase 
K01908 EC:6.2.1.17 0.1042 (±0.0079) 0.0908 (±0.0038) 0.199 Propanoate metabolism Propionyl-coa synthetase 
K01720 EC:4.2.1.79 0.0463 (±0.0018) 0.04 (±0.002) 0.211 Propanoate metabolism 2-methylcitrate dehydratase 
K11264 EC:4.1.1.41 0.0006 (±0.0001) 0.0023 (±0.0002) -1.903 Propanoate metabolism Methylmalonyl-coa decarboxylase 
K01574 EC:4.1.1.4 0.0374 (±0.0032) 0.0235 (±0.0019) 0.674 Propanoate metabolism Acetoacetate decarboxylase 
K01605 EC:4.1.1.41 0 (±0) 0.0002 (±0.0001) -2.719 Propanoate metabolism Methylmalonyl-coa decarboxylase alpha chain 
K00101 EC:1.1.2.3 0.0864 (±0.0056) 0.0718 (±0.0029) 0.267 Pyruvate metabolism L-lactate dehydrogenase (cytochrome) 
K01067 EC:3.1.2.1 0.0032 (±0.0002) 0.0101 (±0.0016) -1.641 Pyruvate metabolism Acetyl-coa hydrolase 
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Supplementary Table 4-2. Frequencies of genes involved in energy metabolism between 

forest and pasture. The positive values of log2foldchange indicate the extent of increased 

genes frequencies in forest and negative values of log2foldchange indicate the extent of 

increased genes frequencies in pasture. 

KO ID EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 
K00401 EC:2.8.4.1 0 (±0) 0 (±0) -3.828 Methane metabolism Methyl-coenzyme M reductase beta subunit 
K01070 EC:3.1.2.12 0.0115 (±0.0009) 0.0109 (±0.0004) 0.085 Methane metabolism S-formylglutathione hydrolase 
K00436 EC:1.12.1.2 0.0036 (±0.0002) 0.0099 (±0.0018) -1.455 Methane metabolism Hydrogen dehydrogenase 
K03396 EC:4.4.1.22 0.024 (±0.0034) 0.0147 (±0.0015) 0.706 Methane metabolism S-(hydroxymethyl)glutathione synthase 
K04480 EC:2.1.1.90 0.0001 (±0) 0.0004 (±0.0001) -2.264 Methane metabolism Methanol---5-hydroxybenzimidazolylcobamide Co-

methyltransferase 
K03388 EC:1.8.98.1 0.0013 (±0.0003) 0.0057 (±0.002) -2.133 Methane metabolism Heterodisulfide reductase subunit A 
K14126 EC:1.12.99.- 0.0001 (±0) 0.0011 (±0.0004) -3.625 Methane metabolism F420-non-reducing hydrogenase subunit A 
K00198 EC:1.2.99.2 0.0001 (±0) 0.0033 (±0.0006) -5.054 Methane metabolism Carbon-monoxide dehydrogenase catalytic subunit 
K00372 EC:1.7.99.4 0.06 (±0.0015) 0.0555 (±0.001) 0.114 Nitrogen metabolism Nitrate reductase catalytic subunit 
K04561 EC:1.7.2.5 0.0607 (±0.0046) 0.0499 (±0.0055) 0.285 Nitrogen metabolism Nitric oxide reductase subunit B 
K00366 EC:1.7.7.1 0.0737 (±0.0059) 0.0602 (±0.0032) 0.293 Nitrogen metabolism Ferredoxin-nitrite reductase 
K00376 EC:1.7.2.4 0.0195 (±0.0031) 0.0146 (±0.0023) 0.421 Nitrogen metabolism Nitrous-oxide reductase 
K00360 EC:1.7.1.1 0.0249 (±0.0026) 0.0157 (±0.0014) 0.671 Nitrogen metabolism Nitrate reductase (NADH) 
K00368 EC:1.7.2.1 0.0475 (±0.004) 0.0229 (±0.0025) 1.051 Nitrogen metabolism Nitrite reductase (NO-forming) 
K02586 EC:1.18.6.1 0.0001 (±0) 0.0125 (±0.0018) -6.541 Nitrogen metabolism Nitrogenase molybdenum-iron protein alpha chain 
K02588 EC:1.18.6.1 0.0001 (±0) 0.0062 (±0.0011) -6.084 Nitrogen metabolism Nitrogenase iron protein nifh 
K02591 EC:1.18.6.1 0.0001 (±0) 0.0148 (±0.0023) -6.635 Nitrogen metabolism Nitrogenase molybdenum-iron protein beta chain 
K00343 EC:1.6.5.3 0.1607 (±0.0048) 0.1518 (±0.0058) 0.082 Oxidative 

phosphorylation 
NADH-quinone oxidoreductase subunit N 

K00333 EC:1.6.5.3 0.2334 (±0.0067) 0.2191 (±0.0013) 0.091 Oxidative 
phosphorylation 

NADH-quinone oxidoreductase subunit D 

K03885 EC:1.6.99.3 0.1813 (±0.0188) 0.158 (±0.0126) 0.199 Oxidative 
phosphorylation 

NADH dehydrogenase 

K02276 EC:1.9.3.1 0.0863 (±0.0022) 0.0771 (±0.0032) 0.163 Oxidative 
phosphorylation 

Cytochrome c oxidase subunit III 

K02828 EC:1.10.3.12 0.0003 (±0.0001) 0.0009 (±0.0003) -1.615 Oxidative 
phosphorylation 

Cytochrome aa3-600 menaquinol oxidase subunit III 

K02297 EC:1.10.3.- 0.0143 (±0.0014) 0.0116 (±0.0013) 0.298 Oxidative 
phosphorylation 

Cytochrome o ubiquinol oxidase subunit II 

K05587  0.0016 (±0.0003) 0.004 (±0.0004) -1.316 Oxidative 
phosphorylation 

Bidirectional 

K00356 EC:1.6.99.3 0.0351 (±0.002) 0.0291 (±0.0014) 0.269 Oxidative 
phosphorylation 

NADH dehydrogenase 

K02300 unknown 0.0077 (±0.0006) 0.0059 (±0.0007) 0.391 Oxidative 
phosphorylation 

Cytochrome o ubiquinol oxidase operon protein cyod 

K05586 unknown 0.001 (±0.0001) 0.0029 (±0.0003) -1.475 Oxidative 
phosphorylation 

Bidirectional 

K05588 unknown 0.0024 (±0.0002) 0.007 (±0.0006) -1.563 Oxidative 
phosphorylation 

Bidirectional 

K02258 unknown 0.0149 (±0.0011) 0.0105 (±0.0006) 0.506 Oxidative 
phosphorylation 

Cytochrome c oxidase assembly protein subunit 11 

K02124 EC:3.6.3.14 0.0012 (±0.0003) 0.0009 (±0.0001) 0.44 Oxidative 
phosphorylation 

V-type H+-transporting ATPase subunit K 

K02299 EC:1.10.3.- 0.0212 (±0.0013) 0.0145 (±0.0014) 0.542 Oxidative 
phosphorylation 

Cytochrome o ubiquinol oxidase subunit III 

K01535 EC:3.6.3.6 0.0229 (±0.0031) 0.0143 (±0.002) 0.686 Oxidative 
phosphorylation 

H+-transporting ATPase 

K02298 EC:1.10.3.- 0.0833 (±0.0099) 0.0569 (±0.0057) 0.551 Oxidative 
phosphorylation 

Cytochrome o ubiquinol oxidase subunit I 

K13378 EC:1.6.5.3 0.0148 (±0.0005) 0.0097 (±0.0003) 0.602 Oxidative 
phosphorylation 

NADH-quinone oxidoreductase subunit C/D 

K02118 EC:3.6.3.14 0.0079 (±0.0006) 0.0048 (±0.0004) 0.704 Oxidative 
phosphorylation 

V-type H+-transporting ATPase subunit B 

K02117 EC:3.6.3.14 0.0089 (±0.0009) 0.0053 (±0.0006) 0.745 Oxidative 
phosphorylation 

V-type H+-transporting ATPase subunit A 

K02123 EC:3.6.3.14 0.0025 (±0.0007) 0.0015 (±0.0002) 0.768 Oxidative 
phosphorylation 

V-type H+-transporting ATPase subunit I 

K02120 EC:3.6.3.14 0.0011 (±0.0003) 0.0005 (±0.0001) 1.085 Oxidative 
phosphorylation 

V-type H+-transporting ATPase subunit D 

K06019 EC:3.6.1.1 0.0002 (±0.0001) 0.0011 (±0.0003) -2.458 Oxidative 
phosphorylation 

Pyrophosphatase ppax 

K02706 unknown 0 (±0) 0.0002 (±0) -1.654 Photosynthesis Photosystem II P680 reaction center D2 protein 
K02690 unknown 0.0001 (±0) 0.0004 (±0.0001) -1.493 Photosynthesis Photosystem I P700 chlorophyll a apoprotein A2 
K02689 unknown 0 (±0) 0.0002 (±0.0001) -2.583 Photosynthesis Photosystem I P700 chlorophyll a apoprotein A1 
K08906 unknown 0 (±0) 0.0001 (±0) -4.307 Photosynthesis Cytochrome c6 
K02705 unknown 0 (±0) 0.0001 (±0) -3.946 Photosynthesis Photosystem II CP43 chlorophyll apoprotein 
K02634 unknown 0 (±0) 0.0001 (±0) -3.797 Photosynthesis Apocytochrome f 
K02704 unknown 0 (±0) 0.0001 (±0) -5.497 Photosynthesis Photosystem II CP47 chlorophyll apoprotein 
K08912 unknown 0 (±0) 0 (±0) -3.095 Photosynthesis - antenna 

proteins 
Light-harvesting complex II chlorophyll a/b binding 
protein 1 

K00958 EC:2.7.7.4 0.0609 (±0.005) 0.0539 (±0.0041) 0.178 Sulfur metabolism Sulfate adenylyltransferase 
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K00381 EC:1.8.1.2 0.0841 (±0.0042) 0.0709 (±0.0026) 0.247 Sulfur metabolism Sulfite reductase (NADPH) hemoprotein beta-component 
K00380 EC:1.8.1.2 0.0469 (±0.003) 0.0333 (±0.0018) 0.496 Sulfur metabolism Sulfite reductase (NADPH) flavoprotein alpha-component 
K00394 EC:1.8.99.2 0.0114 (±0.0005) 0.0078 (±0.0007) 0.552 Sulfur metabolism Adenylylsulfate reductase, subunit A 
K00395 EC:1.8.99.2 0.0052 (±0.0005) 0.0028 (±0.0004) 0.89 Sulfur metabolism Adenylylsulfate reductase, subunit B 
K01919 EC:6.3.2.2 0.05 (±0.0043) 0.0454 (±0.002) 0.139 Glutathione metabolism Glutamate--cysteine ligase 
K00383 EC:1.8.1.7 0.0531 (±0.0026) 0.0344 (±0.0012) 0.627 Glutathione metabolism Glutathione reductase (NADPH) 
K04565 EC:1.15.1.1 0.0156 (±0.0014) 0.0128 (±0.0011) 0.287 Peroxisome Superoxide dismutase, Cu-Zn family 
K04564 EC:1.15.1.1 0.136 (±0.0038) 0.1103 (±0.0029) 0.302 Peroxisome Superoxide dismutase, Fe-Mn family 
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Supplementary Table 4-3. Frequencies of genes involved in amino acid metabolism 

between forest and pasture. The positive values of log2foldchange indicate the extent of 

increased genes frequencies in forest and negative values of log2foldchange indicate the 

extent of increased genes frequencies in pasture. 

KO ID EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 

K11358 EC:2.6.1.1 0.006 
(±0.0013) 

0.0053 
(±0.0008) 

0.165 Alanine, aspartate and 
glutamate metabolism 

Aspartate aminotransferase 

K01755 EC:4.3.2.1 0.1227 
(±0.0026) 

0.1237 
(±0.0023) 

-0.011 Alanine, aspartate and 
glutamate metabolism 

Argininosuccinate lyase 

K01425 EC:3.5.1.2 0.0405 
(±0.0032) 

0.0393 
(±0.0012) 

0.044 Alanine, aspartate and 
glutamate metabolism 

Glutaminase 

K01940 EC:6.3.4.5 0.1568 
(±0.0088) 

0.1525 
(±0.0079) 

0.04 Alanine, aspartate and 
glutamate metabolism 

Argininosuccinate synthase 

K01956 EC:6.3.5.5 0.1385 
(±0.0046) 

0.1297 
(±0.0026) 

0.094 Alanine, aspartate and 
glutamate metabolism 

Carbamoyl-phosphate synthase small subunit 

K01953 EC:6.3.5.4 0.3205 
(±0.0235) 

0.2759 
(±0.0203) 

0.216 Alanine, aspartate and 
glutamate metabolism 

Asparagine synthase (glutamine-hydrolysing) 

K09758 EC:4.1.1.12 0.0122 
(±0.0016) 

0.0074 
(±0.0009) 

0.709 Alanine, aspartate and 
glutamate metabolism 

Aspartate 4-decarboxylase 

K01581 EC:4.1.1.17 0.0617 
(±0.0063) 

0.0495 
(±0.0035) 

0.318 Arginine and proline 
metabolism 

Ornithine decarboxylase 

K02626 EC:4.1.1.19 0.0199 
(±0.001) 

0.011 
(±0.0008) 

0.854 Arginine and proline 
metabolism 

Arginine decarboxylase 

K00548 EC:2.1.1.13 0.4064 
(±0.0141) 

0.3977 
(±0.009) 

0.031 Cysteine and 
methionine metabolism 

5-methyltetrahydrofolate--homocysteine methyltransferase 

K01760 EC:4.4.1.8 0.0512 
(±0.002) 

0.0463 
(±0.0015) 

0.144 Cysteine and 
methionine metabolism 

Cystathionine beta-lyase 

K00641 EC:2.3.1.31 0.1426 
(±0.0086) 

0.1165 
(±0.0029) 

0.293 Cysteine and 
methionine metabolism 

Homoserine O-acetyltransferase 

K00549 EC:2.1.1.14 0.3282 
(±0.0256) 

0.2153 
(±0.0173) 

0.608 Cysteine and 
methionine metabolism 

5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase 

K00133 EC:1.2.1.11 0.1173 
(±0.003) 

0.1148 
(±0.001) 

0.031 Glycine, serine and 
threonine metabolism 

Aspartate-semialdehyde dehydrogenase 

K01733 EC:4.2.3.1 0.2224 
(±0.0067) 

0.1993 
(±0.005) 

0.158 Glycine, serine and 
threonine metabolism 

Threonine synthase 

K12524 EC:2.7.2.4 
1.1.1.3 

0.0137 
(±0.0018) 

0.0119 
(±0.0007) 

0.204 Glycine, serine and 
threonine metabolism 

Bifunctional aspartokinase / homoserine dehydrogenase 1 

K02204 EC:2.7.1.39 0.0294 
(±0.0023) 

0.0236 
(±0.0009) 

0.321 Glycine, serine and 
threonine metabolism 

Homoserine kinase type II 

K00808 EC:2.5.1.44 0.0509 
(±0.004) 

0.0317 
(±0.0017) 

0.681 Tropane, piperidine and 
pyridine alkaloid 
biosynthesis 

Homospermidine synthase 

K10004 EC:3.6.3.- 0.0156 
(±0.0014) 

0.0152 
(±0.0008) 

0.039 ABC transporters Glutamate/aspartate transport system ATP-binding protein 

K10001 unknown 0.0331 
(±0.0032) 

0.0287 
(±0.0016) 

0.207 ABC transporters Glutamate/aspartate transport system substrate-binding 
protein 

K01995 unknown 0.5088 
(±0.046) 

0.4425 
(±0.0249) 

0.201 ABC transporters Branched-chain amino acid transport system ATP-binding 
protein 

K01998 unknown 0.5033 
(±0.0363) 

0.4271 
(±0.0209) 

0.237 ABC transporters Branched-chain amino acid transport system permease 
protein 

K10013 unknown 0.0003 
(±0.0001) 

0.001 
(±0.0003) 

-1.555 ABC transporters Lysine/arginine/ornithine transport system substrate-
binding protein 

K01996 unknown 0.5373 
(±0.0485) 

0.4497 
(±0.0246) 

0.257 ABC transporters Branched-chain amino acid transport system ATP-binding 
protein 

K01997 unknown 0.5097 
(±0.0398) 

0.4263 
(±0.0213) 

0.258 ABC transporters Branched-chain amino acid transport system permease 
protein 

K10003 unknown 0.0163 
(±0.0017) 

0.0133 
(±0.0004) 

0.288 ABC transporters Glutamate/aspartate transport system permease protein 

K10002 unknown 0.018 
(±0.0021) 

0.0146 
(±0.0003) 

0.299 ABC transporters Glutamate/aspartate transport system permease protein 

K01999 unknown 0.7108 
(±0.0619) 

0.5694 
(±0.0202) 

0.32 ABC transporters Branched-chain amino acid transport system substrate-
binding protein 

K09972 EC:3.6.3.- 0.0244 
(±0.0016) 

0.0198 
(±0.0017) 

0.3 ABC transporters General L-amino acid transport system ATP-binding 
protein 

K11076 unknown 0.0267 
(±0.0016) 

0.0208 
(±0.0008) 

0.358 ABC transporters Putrescine transport system ATP-binding protein 

K09969 unknown 0.0422 
(±0.0036) 

0.0322 
(±0.0027) 

0.393 ABC transporters General L-amino acid transport system substrate-binding 
protein 

K09970 unknown 0.0265 
(±0.0016) 

0.0198 
(±0.0009) 

0.418 ABC transporters General L-amino acid transport system permease protein 

K09971 unknown 0.0275 
(±0.0021) 

0.0202 
(±0.0008) 

0.443 ABC transporters General L-amino acid transport system permease protein 

K02071 unknown 0.004 
(±0.0009) 

0.0106 
(±0.0014) 

-1.429 ABC transporters D-methionine transport system ATP-binding protein 

K11075 unknown 0.0236 
(±0.0016) 

0.0165 
(±0.0008) 

0.515 ABC transporters Putrescine transport system permease protein 

K11074 unknown 0.019 
(±0.0015) 

0.0126 
(±0.0008) 

0.593 ABC transporters Putrescine transport system permease protein 

K11073 unknown 0.0275 
(±0.0027) 

0.018 
(±0.0017) 

0.612 ABC transporters Putrescine transport system substrate-binding protein 
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K02072 unknown 0.0008 
(±0.0002) 

0.004 
(±0.0008) 

-2.298 ABC transporters D-methionine transport system permease protein 

K02073 unknown 0.0011 
(±0.0004) 

0.0057 
(±0.0011) 

-2.382 ABC transporters D-methionine transport system substrate-binding protein 

K02234 unknown 0.0232 
(±0.0023) 

0.0158 
(±0.0012) 

0.554 Porphyrin and 
chlorophyll metabolism 

Cobalamin biosynthesis protein cobw 

K09882 EC:6.6.1.2 0.0316 
(±0.0044) 

0.0215 
(±0.0022) 

0.555 Porphyrin and 
chlorophyll metabolism 

Cobaltochelatase cobs 

K09883 EC:6.6.1.2 0.0395 
(±0.0035) 

0.0266 
(±0.0011) 

0.567 Porphyrin and 
chlorophyll metabolism 

Cobaltochelatase cobt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	  
114 

Supplementary Table 4-4. Frequencies of genes involved in xenobiotic metabolism 

between forest and pasture. The positive values of log2foldchange indicate the extent of 

increased genes frequencies in forest and negative values of log2foldchange indicate the 

extent of increased genes frequencies in pasture. 

KO ID        EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 

K01781 EC:5.1.2.2 0.0085 (±0.0012) 0.0079 (±0.0007) 0.108 Aminobenzoate degradation Mandelate racemase 

K09461 EC:1.14.13.40 0.0823 (±0.0057) 0.0693 (±0.002) 0.249 Aminobenzoate degradation Anthraniloyl-coa monooxygenase 

K01576 EC:4.1.1.7 0.0457 (±0.0027) 0.0375 (±0.0015) 0.285 Aminobenzoate degradation Benzoylformate decarboxylase 

K08295 EC:6.2.1.32 0.0523 (±0.0041) 0.0409 (±0.0017) 0.354 Aminobenzoate degradation 2-aminobenzoate-CoA ligase 

K08710 EC:3.5.99.4 0.0009 (±0.0001) 0.0008 (±0.0001) 0.175 Atrazine degradation N-isopropylammelide 
isopropylaminohydrolase 

K01821 EC:5.3.2.- 0.0085 (±0.0005) 0.0083 (±0.0005) 0.031 Benzoate degradation 4-oxalocrotonate tautomerase 

K00481 EC:1.14.13.2 0.0591 (±0.0026) 0.0538 (±0.0022) 0.135 Benzoate degradation p-hydroxybenzoate 3-monooxygenase 

K01857 EC:5.5.1.2 0.0386 (±0.0028) 0.0337 (±0.0024) 0.196 Benzoate degradation 3-carboxy-cis,cis-muconate cycloisomerase 

K01607 EC:4.1.1.44 0.0492 (±0.0025) 0.0392 (±0.0023) 0.327 Benzoate degradation 4-carboxymuconolactone decarboxylase 

K04101 EC:1.13.11.8 0.0276 (±0.0023) 0.0213 (±0.0012) 0.374 Benzoate degradation Protocatechuate 4,5-dioxygenase, beta chain 

K07823 EC:2.3.1.174 0.0232 (±0.002) 0.0164 (±0.0008) 0.497 Benzoate degradation 3-oxoadipyl-CoA thiolase 

K01032 EC:2.8.3.6 0.0126 (±0.0008) 0.0092 (±0.0005) 0.453 Benzoate degradation 3-oxoadipate CoA-transferase, beta subunit 

K05550 EC:1.14.12.10 
1.14.12.- 

0.0007 (±0.0001) 0.0006 (±0) 0.391 Benzoate degradation Benzoate/toluate 1,2-dioxygenase subunit beta 

K10220 EC:4.2.1.83 0.0503 (±0.0028) 0.0352 (±0.0018) 0.516 Benzoate degradation 4-oxalmesaconate hydratase 

K10221 EC:3.1.1.57 0.0204 (±0.0016) 0.0135 (±0.0007) 0.597 Benzoate degradation 2-pyrone-4,6-dicarboxylate lactonase 

K04108 EC:1.3.7.9 0.0302 (±0.0045) 0.015 (±0.0022) 1.012 Benzoate degradation 4-hydroxybenzoyl-CoA reductase subunit 
alpha 

K01856 EC:5.5.1.1 0.0061 (±0.0014) 0.0059 (±0.0005) 0.065 Chlorocyclohexane and chlorobenzene 
degradation 

Muconate cycloisomerase 

K03384 EC:1.14.12.- 0.0129 (±0.0012) 0.0109 (±0.0006) 0.238 Chlorocyclohexane and chlorobenzene 
degradation 

Unknown 

K03380 EC:1.14.13.7 0.0167 (±0.0018) 0.0132 (±0.0013) 0.338 Chlorocyclohexane and chlorobenzene 
degradation 

Phenol 2-monooxygenase 

K01561 EC:3.8.1.3 0.0451 (±0.0044) 0.0341 (±0.0022) 0.407 Chlorocyclohexane and chlorobenzene 
degradation 

Haloacetate dehalogenase 

K03381 EC:1.13.11.1 0.0268 (±0.0021) 0.0206 (±0.001) 0.38 Chlorocyclohexane and chlorobenzene 
degradation 

Catechol 1,2-dioxygenase 

K01061 EC:3.1.1.45 0.1451 (±0.0054) 0.1081 (±0.0054) 0.425 Chlorocyclohexane and chlorobenzene 
degradation 

Carboxymethylenebutenolidase 

K01560 EC:3.8.1.2 0.057 (±0.005) 0.038 (±0.0034) 0.584 Chlorocyclohexane and chlorobenzene 
degradation 

2-haloacid dehalogenase 

K00480 EC:1.14.13.1 0.0654 (±0.0071) 0.0476 (±0.0045) 0.458 Dioxin degradation Salicylate hydroxylase 

K07519 EC:1.14.12.7 0.0026 (±0.0004) 0.0022 (±0.0002) 0.248 Polycyclic aromatic hydrocarbon 
degradation 

Phthalate 4,5-dioxygenase 

K11948 EC:1.13.11.38 0.0007 (±0.0002) 0.0004 (±0.0001) 0.802 Polycyclic aromatic hydrocarbon 
degradation 

1-hydroxy-2-naphthoate dioxygenase 

K04102 EC:4.1.1.55 0.0651 (±0.0091) 0.0344 (±0.0047) 0.921 Polycyclic aromatic hydrocarbon 
degradation 

4,5-dihydroxyphthalate decarboxylase 

K07546 EC:4.2.1.- 0.0002 (±0.0001) 0.0002 (±0) 0.448 Toluene degradation E-phenylitaconyl-CoA hydratase 

K10619 EC:1.14.12.- 0.0027 (±0.0002) 0.0023 (±0.0001) 0.236 Xylene degradation p-cumate 2,3-dioxygenase subunit alpha 
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Supplementary Table 4-5. Frequencies of genes involved in sporulation between forest 

and pasture. The positive values of log2foldchange indicate the extent of increased genes 

frequencies in forest and negative values of log2foldchange indicate the extent of 

increased genes frequencies in pasture. 

KO ID EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 
K13533 EC:2.7.13.3 0.0002 (±0.0001) 0.0008 (±0.0002) -1.96 Two-component system Sporulation sensor kinase E 

K07699 unknown 0.0002 (±0) 0.0013 (±0.0003) -2.54 Two-component system Response regulator, stage 0 sporulation protein A 

K07697 EC:2.7.13.3 0.0002 (±0) 0.0013 (±0.0004) -2.99 Two-component system Sporulation sensor kinase B 

 

 

 

 

Supplementary Table 4-6. Frequencies of genes involved in cell motility between forest 

and pasture. The positive values of log2foldchange indicate the extent of increased genes 

frequencies in forest and negative values of log2foldchange indicate the extent of 

increased genes frequencies in pasture. 

KO ID EC  Forest Pasture log2foldchange KEGG Level 3 EC Annotation 

K02402 unknown 0.0004 (±0.0003) 0.0012 (±0.0002) -1.44 Flagellar assembly Flagellar transcriptional activator flhc 

K02396 unknown 0.0055 (±0.0021) 0.0117 (±0.0006) -1.09 Flagellar assembly Flagellar hook-associated protein 1 flgk 

K03408 unknown 0.0084 (±0.0026) 0.0176 (±0.0014) -1.07 Bacterial chemotaxis Purine-binding chemotaxis protein chew  

K02406 unknown 0.0105 (±0.0051) 0.0254 (±0.0022) -1.28 Flagellar assembly Flagellin 

K05874 unknown 0.0018 (±0.0009) 0.0046 (±0.0007) -1.33 Bacterial chemotaxis Methyl-accepting chemotaxis protein I, serine sensor receptor  

K03406 unknown 0.0452 (±0.015) 0.1134 (±0.0159) -1.33 Bacterial chemotaxis Methyl-accepting chemotaxis protein  

K05875 unknown 0.0004 (±0.0002) 0.0011 (±0.0002) -1.53 Bacterial chemotaxis Methyl-accepting chemotaxis protein II, aspartate sensor receptor  

K03411 EC:3.5.1.44 0.0017 (±0.0008) 0.0051 (±0.0003) -1.58 Bacterial chemotaxis Chemotaxis protein ched  

K13820 unknown 0.0001 (±0) 0.0003 (±0) -1.93 Flagellar assembly Flagellar biosynthetic protein flir/flhb 

K02422 unknown 0.0004 (±0.0002) 0.0014 (±0.0002) -1.82 Flagellar assembly Flagellar protein flis 
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Supplementary Table 4-7. Frequencies of genes involved in the biosynthesis of other 

secondary metabolites between forest and pasture. The positive values of log2foldchange 

indicate the extent of increased genes frequencies in forest and negative values of 

log2foldchange indicate the extent of increased genes frequencies in pasture. 

KO ID EC #Forest! Pasture log2foldchange  EC Annotation 

K11632 unknown 0 (±0) 0.0006 
(±0.0004) 

-3.571 ABC transporters Bacitracin transport system permease protein 

K11631 unknown 0.0001 (±0) 0.0004 
(±0.0002) 

-2.294 ABC transporters Bacitracin transport system ATP-binding protein 

K11629 EC:2.7.13.3 0 (±0) 0.0003 
(±0.0002) 

-3.218 Two-component system OmpR family, bacitracin resistance sensor histidine kinase BceS 

K11630 unknown 0 (±0) 0.0003 
(±0.0002) 

-3.288 Two-component system OmpR family, bacitracin resistance response regulator BceR 

K01434 EC:3.5.1.11 0.0461 
(±0.0028) 

0.0442 
(±0.0028) 

0.06 Penicillin and cephalosporin 
biosynthesis 

Penicillin amidase 

K01790 EC:5.1.3.13 0.0512 
(±0.0029) 

0.0514 
(±0.0009) 

0 Streptomycin biosynthesis dTDP-4-dehydrorhamnose 3,5-epimerase 
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