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Abstract 

 
THE EFFECTS OF TRAVEL TIME DELAY ON VEHICLE MILES TRAVELED AND 

TRAVEL MODE CHOICE BEHAVIOR: AN EMPIRICAL ANALYSIS  

OF THE SEATTLE METROPOLITAN AREA 

 

Reza Sardari, PhD 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Jianling Li  

Traffic congestion is a crucial factor for understanding travel behavior. The 

scientific evidence has shown that traffic congestion affects air quality, public health, and 

economic development, but empirical studies about the effects of travel time delays on 

travel behavior are limited. This research aims to address this gap by developing a time-

related mobility measure, or “delay score,” and analyzing its impact on VMT and 

commuters’ mode choices within a comprehensive framework that incorporates the built 

environment, demographics, and residential preference/self-selection factors. In this 

framework, VMT per household and travel mode choice were examined using SEM and 

GSEM techniques, respectively. 

This study used travel survey data from the 2015 Puget Sound Regional Council 

to analyze household daily VMT and commuter mode choice. Using GPS-based travel 

survey data combined with spatial analysis techniques, secondary data sources were 

considered in the analysis to examine factors such as VMT, non-motorized travel, and 

transit use. Built environment variables were measured at both the origins and 

destinations of trips. The study also incorporated socioeconomic and residential self-
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selection variables. Subsequently, factor analysis was used to represent residential self-

selection and the land use density dimension of the built environment. 

The findings indicate that higher travel time delay is associated with lower VMT 

per household, as doubling delay is associated with a 20 percent decrease in household 

VMT. The findings provide support for policies and regulations aiming to increase density 

and mixed-use development, reduce road capacity, and improve walkability and access 

to transit. Increasing the cost of driving relative to other modes is one strategy supported 

by smart growth policies to reduce VMT and encourage taking public transit or choosing 

non-motorized modes of travel. The findings suggest that access to free parking at 

workplaces encourages workers to drive alone, whereas providing free transit passes 

encourages them to take transit. Additionally, the results indicate that vehicle 

ownership—as a mid-term indicator—is more related to socioeconomic factors, whereas 

daily VMT—as a short-term indicator—is more related to built environment factors and 

residential self-selection.  

Future research should examine the effects of traffic congestion longitudinally 

and attempt to analyze disaggregated data at the national level to further our 

understanding of traffic congestion and its impacts on travel behavior. 
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Chapter 1 

Introduction 

Travel behavior is a broad subject that can be examined from multiple 

perspectives. Over the last several decades, numerous studies have examined the 

determinants of travel behavior and influential factors, addressing built environment 

attributes, urban form, residential self-selection, and travelers’ socioeconomic 

characteristics (Bento, Cropper, Mobarak, & Vinha, 2005; Bhat & Guo, 2007; Cervero & 

Kockelman, 1997; Cervero & Murakami, 2010; Ewing, Hamidi, Gallivan, Nelson, & Grace, 

2013; Sarzynski, Wolman, Galster, & Hanson, 2006). Researchers who analyzed the built 

environment have summarized its relationship to travel behavior through a series of “D” 

factors: Density, Diversity, Design, Destinations, Destination Accessibility, Distance to 

Transit, Development Scale, and Demographics (Cervero & Kockelman, 1997; Ewing & 

Cervero, 2010, 2001). In addition to the built environment, other research has focused on 

travelers’ socioeconomic characteristics, with results indicating that gender, race, income, 

and age affect travel behavior (Bagley & Mokhtarian, 2002; Blumen, 1994; Hecht, 1974; 

Kitamura, Mokhtarian, & Laidet, 1997; Manaugh, Miranda-Moreno, & El-Geneidy, 2010; 

Mauch & Taylor, 1997; Trowbridge & McDonald, 2008; Zax, 1990).  

Travel behavior comprises several elements. Studies of travel behavior typically 

focus on person miles traveled (PMT), vehicle miles traveled (VMT), mode split, route 

choice, and trip frequency (Boarnet & Crane, 2001; Ewing & Cervero, 2010a; Kockelman, 

1997). Due to the broad context of travel behavior, previous studies have each analyzed 

only a subset of travel behavior elements. A review of these studies indicates that built 

environmental factors such as land use diversity, density, and urban design influence 

travel behavior outcomes such as travel mode choice, vehicle trips (VT), and VMT 

(Handy, Lee, Maiss, Walters, & Parker, 2012). Each element of travel behavior has a 
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different relationship with socioeconomic and built environment factors. For example, 

according to Ewing and Cervero (2010), VMT depends on factors such as built 

environment, trip frequencies, trip lengths, and individuals’ travel preferences (Ewing & 

Cervero, 2010). A study by Diao and Ferreira Jr. (2014, p. 3004) found that VMT is more 

strongly correlated with built environment factors such as accessibility to work and non-

work destinations, transit accessibility, and connectivity than with demographic factors. 

Likewise, according to Handy (2005, p. 21), “…characteristics of the built environment 

are significant predictors of VMT, which is the outcome of the combination of trip lengths, 

trip frequencies, and mode split.” However, Ewing and Cervero (2001), in their 

comprehensive synthesis, discussed socioeconomic characteristics and the built 

environment separately. Their results can be summarized as follows:  

• The socioeconomic characteristics of travelers are the primary factors that affect 

trip frequency.  

• The built environment characteristics of the neighborhood is the primary factor 

influencing trip length and VMT. 

• Both socioeconomic characteristics of travelers and the characteristics of the 

built environment affect mode choice, though socioeconomic characteristics are 

arguably the more important factor. 

Other elements of travel behavior include mode of travel and automobile ownership, 

which are dependent on long-term decisions such as residential location. To examine 

these elements, Lerman (1976) developed a joint choice model that includes factors such 

as location, housing, automobile ownership, and mode to work. This study noted that 

household location, as a long-run decision, strongly influences choices such as auto 

ownership and mode to work. Considering car ownership and mode choice, Næss (2006) 

considered the important role of income and home locations. By analyzing data in the 
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Copenhagen Metropolitan Area, this study found that areas with high car ownership are 

mostly located in the suburbs, where higher income levels are also found.  

Another key but understudied factor that may impact travel behavior—especially 

VMT and mode choice—is traffic congestion. While the socioeconomic characteristics of 

commuters and built environment factors influence individuals’ mobility patterns, the 

reliability of traffic conditions affects individuals’ travel behaviors, including their daily 

VMT, trip frequencies, mode choices, and route choices. According to Ben-Akiva and 

Lerman (1985), traffic congestion is an impedance that increases travel times and travel 

costs. Due to the negative impacts of traffic congestion, commuters might change their 

travel behaviors to avoid traffic congestion; for instance, commuters within congested 

regions might change their departure times—by choosing off-peak hours for their daily 

trips—or switch to public transit for their daily commutes.  

Traffic congestion plays an important role in residents’ access to jobs and affects 

their quality of life. Traffic congestion can be considered an impedance for job 

accessibility, as it increases travel times and travel costs. Furthermore, understanding the 

effects of traffic congestion on travel behavior is critical for travel demand models and 

highway improvements studies. Nevertheless, there is a lack of strong evidence 

regarding the influence of traffic congestion on travel behavior.  

During the last decade, extensive efforts have been made to measure traffic 

congestion while others have explored the relationship between the built environment 

and travel behavior (Boarnet, Kim, & Parkany, 1998; Chatman, 2003; Pratt, 2013; Saka, 

2009). However, these efforts have involved little overlap; as such, these studies have 

not clearly presented how traffic congestion influences commuter travel patterns such as 

VMT, number of trips per day, and mode choice. According to Ewing et al. (2014, p. 

3094), congestion is a factor that can affect travel behavior, though this relationship has 
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not been adequately analyzed in previous studies, primarily because measuring traffic 

congestion requires extensive data with detailed information about the transportation 

network, road capacity, and traffic volumes. However, recent technological advances in 

GPS and cellphone data collection have provided new data sources for transportation 

agencies to measure traffic congestion based on speed and travel time.  

Another limitation of travel behavior studies is related to data aggregation. 

According to Cervero and Murakami (2010, p. 403), data aggregation by metro area can 

lead to aggregation biases and inconsistent conclusions. Likewise, Ben-Akiva and 

Bierlaire (2003) noted that the analysis of travel behavior is typically disaggregated 

analysis (p.5). As a result, analyzing the effect of traffic congestion on travel behavior 

requires detailed information at small geographic levels. However, the only widely used 

measure of congestion is developed by Texas A&M Transportation Institute (Urban 

Mobility Report) at the urbanized area level; a valid and reliable measure of congestion at 

a smaller scale has not been developed. The present research benefits from using travel 

time estimates extracted from the Google Maps Distance Matrix Application 

Programming Interface (API). In this approach, travel time delay (i.e., delay score) is 

calculated using peak and off-peak travel times. In addition to the disaggregated travel 

time data, a travel behavior study requires disaggregated household survey data that 

presents individuals’ travel patterns within urban areas or neighborhoods. To overcome 

data aggregation biases, the Puget Sound Regional Council (PSRC) is used in the 

present study to analyze the travel patterns and the socioeconomic characteristics of 

individual commuters within the Seattle metro area. The PSRC household survey was 

completed in 2015 and includes the geocoded home, work, and trip locations of 2,442 

households and 18,712 trips. Using these disaggregated data, this study investigates the 

effects of congestion on VMT per household individuals' travel choice behaviors. 
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Research Objectives  

The primary focus of this research is to examine time-related mobility measures 

and the effects of travel time reliability on vehicles miles traveled (VMT) and commuter 

mode choice. Time-related mobility measures are easier to understand and provide a 

more accurate indicator of congestion than network-based measures such as the 

volume-over-capacity ratio (VOC) or level of service (LOS) (Schrank, Eisele, & Lomax, 

2005). However, these time-mobility measures have not always been used because of 

data limitations. This research presents the process of using GIS and the Google Maps 

Distance Matrix API to quantify travel time reliability and suggests a process to implement 

travel time data for travel behavior studies.  

Considering congestion, built environment variables, and demographic factors, 

this research examined different aspects of individuals’ travel behaviors. For example, 

this study examined the effects of local congestion on household daily VMT and 

estimated the likelihood of carpooling, walking, biking, or taking public transit to commute 

to work for commuters with higher travel time delays between their home and workplace. 

For this purpose, this study first developed time-related mobility measures and 

investigated their impact on household daily VMT within the Seattle Metropolitan Area 

using structural equation modeling (SEM). Second, this research investigated the 

influence of traffic congestion on mode choice by using generalized structural equation 

modeling (GSEM).  

In addition to the traffic congestion factor, built environment factors, 

socioeconomic variables, and residential self-selection factors are considered in both 

VMT and mode choice models. According to Cervero (2002), many past studies have 

investigated the effects of densities, walkability, and other built-environment factors on 
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modes of travel; however, these studies “failed to account for the simultaneous influences 

of factors like travel times and motoring prices” (p.266). The present study examined the 

interactions between travel behavior and a variety of built environment and demographic 

factors while focusing on the potential influence of traffic congestion.  

With a focus on quantifying traffic congestion and analyzing VMT and mode of 

travel, the main questions examined in this research are summarized as follows: 

• What is an improved methodology for measuring traffic congestion?  

• How does household VMT associate with traffic congestion near home locations?   

• How does commuting mode choice relate to travel time delay between the origin and 

destination of trips?   

• How does the built environment affect household VMT and commuting mode choice?  

• How does residential preference affect household VMT and commuting mode 

choice?   

Driven by these research questions, this study tested the following hypotheses: 

• Higher traffic congestion near home locations suppresses household daily VMT.  

• Travelers who experience higher travel time delays when driving (1) prefer transit or 

non-motorized transport as their mode of travel and (2) avoid driving alone and prefer 

sharing their ride with others.  

• Residential preferences based on access to transit or neighborhood walkability 

mitigate household VMT and increase the likelihood of non-motorized modes of 

travel.  

• Residential preferences based on access to highways increase household daily VMT 

and decrease the likelihood of non-motorized modes of travel. 

Testing these hypotheses can provide important information for improving travel 

demand models, especially activity-based models. Also, understanding travelers’ 
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reactions to traffic congestion can provide modeling estimates to aid future studies of 

land use planning, toll roads studies, and HOV/managed lane projects. 

 

 Empirical Analysis 

Data 

This study incorporated travel survey data from the Puget Sound Regional 

Council (PSRC) completed in April and June of 2015. The sample comprises 2,442 

households in the Seattle Metropolitan area with geocoded home, workplace, and all 

other trip-end locations. Several factors such as population density, road density, and 

transit accessibility were extracted from land use and built environment data using a 

geographic information system (GIS). In addition to socioeconomic and built environment 

data, the Google Maps Distance Matrix Service API was used to calculate travel time 

delays and quantify a delay score.  

 

Statistical Approach  

This research adopted a comprehensive framework for analyzing travel behavior 

by including time-related mobility measures and self-selection factors in addition to the 

built environment and socioeconomic variables. It involved using an improved time-

related travel delay measure and implementing SEM, a statistical technique also known 

as correlation structure analysis and covariance structure analysis. SEM is a powerful 

statistical method for considering the direct and indirect effects of observed variables and 

calculating the covariance or correlation between two variables as functions of the 

parameters of the model. One advantage of SEM for the present study is that multiple 

statistical tools such as equations, path diagrams, and matrices can be integrated into a 
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single framework that is appropriate for analyzing built environment factors, which are 

generally correlated with one another.  

The SEM technique was used to investigate the association between household 

daily VMT and factors such as density, demographics, and residential self-selection. As 

VMT—the outcome variable—is a continuous factor, it meets the requirements for 

analysis via SEM. However, the mode choice analysis—with discrete outcomes—cannot 

be modeled by SEM. To model discrete outcomes, GSEM was used to estimate the 

effect of various built environment characteristics on mode choice, implementing both 

multinomial logit (MNL) and structural equation (SE) models. This approach allows for 

simultaneous analysis of all the variables in a model that considers a system of related 

regression equations. 

 

Applications of Research 

This study evaluated two major outcomes of travel behavior—VMT and mode 

choice—by analyzing the influence of traffic congestion, the built environment, and 

socioeconomic characteristic on commuters’ travel behavior. By including time-related 

mobility measures, particularly travel time delay, the effects of traffic congestion on VMT 

and mode choice can be evaluated and implemented in travel demand models. Using the 

Google Maps Distance Matrix Service, this research enhances our understanding of 

household daily VMT as well as individual travel choice behaviors based on traffic 

congestion between home and work locations. Ultimately, this research provides 

evidence supporting the hypothesis that traffic congestion affects particular facets of 

travel behavior such as VMT and mode choice.  
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Thesis Organization 

The primary focuses of this research are to explore the impact of traffic 

congestion on VMT and mode choice and describe how to properly quantify congestion. 

To achieve these goals, the thesis is divided into six chapters. Chapter 1, the current 

chapter, briefly introduced the objectives, hypotheses, and applications of this research.  

Chapter 2 provides background regarding theories relevant to travel behavior by 

discussing transport economics theories, social theories, the theory of planned behavior, 

utility maximization theory, and the rational-choice paradigm. The second part of this 

chapter discusses behavioral models and the limitation of activity-based models. 

Ultimately, this chapter summarizes the theoretical framework of the present research.  

Chapter 3 provides a literature review, addressing empirical results on how the 

built environment and socioeconomics affect travel demand. This chapter begins with a 

review of related studies investigating the interaction between land use and 

transportation systems. Then, the relationships between socioeconomic characteristics, 

residential self-selection, and travel behavior are explored. In general, this chapter 

addresses the question of how to quantify traffic congestion and examines the basic 

requirements for properly measuring traffic congestion.    

Chapter 4 focuses on this study’s methodology and the process of data 

integration. This chapter describes the data that were collected, extracted, and integrated 

in this research. The data integration section presents a summary of socioeconomic and 

built environment data, traffic congestion, and the process of cleaning and extracting 

household travel survey data. Then, this chapter examines how descriptive, exploratory, 

and statistical methods, such as SEM and GSEM, were applied to analyze the 

relationships between the explanatory variables. Additionally, this chapter introduces the 
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selected method for quantifying traffic congestion and describes how to calculate a delay 

score using the Google Maps Distance Matrix API. 

Chapter 5 begins by describing the results of the VMT model that was developed 

via SEM. Then, this chapter provides a summary of the criteria for model validation and 

describes the ways in which the analyzed variables vary. The second part of Chapter 5 

describes the results of the mode choice model using MNL estimates via GSEM. This 

chapter also describes the process of validating the mode choice model and explains the 

coefficient estimates in terms of the likelihood of selecting each travel mode. 

Chapter 6 summarizes the major results of this study and discusses the 

limitations of the present research, its contribution to the literature, avenues for future 

research, and implications for policies and regulations. This chapter concludes with a 

discussion of what to do about traffic congestion and how policies can be implemented to 

reduce VMT and encourage non-motorized mode of travel.  
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Chapter 2 

Theories Relevant to Travel Behavior 

In scientific research, the term “theory” refers to a set of assumptions, general 

laws, or accepted facts that attempt to provide predictions and plausible explanations of 

causal relationships between a group of observed events. Travel behavior has been 

examined through several theoretical frameworks such as social theories, urban 

economics, and behavioral science. This chapter begins with theories of transport 

geography and urban economics such as central place theory (Christaller, 1966), bid rent 

theory, and the monocentric model of urban form developed by Alonso (1964). This 

chapter then reviews travel behavior based on social theories such as utility-maximizing 

theory, the theory of planned behavior, social-cognitive theory, and critical realism. 

Finally, this chapter provides more details regarding behavioral models, such as the 

activity-based approach, and their limitations.  

 

Transport Economics Theories    

Debate over central places, urban structure, and market interactions between 

firms and households can be traced at least as far back as Hotelling’s Law. In 1929, 

Hotelling argued that businesses with higher profits are located close to competitors in 

the center of a region (i.e., central place). According to Hotelling’s Law, there is an 

“undue tendency for competitors to imitate each other in quality of goods, in location, and 

in other essential ways” (Hotelling, 1929: 41).  

Hotelling’s model has been improved by the inclusion of price competition and a 

bid-rent framework. Alonso (1964) presented the concept of bid-rent theory and the 

influence of distance to central places on land rent and transportation costs. The bid-rent 

framework implies that central places with a higher density of activities are expensive, 
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and high-income groups or firms will be located in these areas. Based on the bid-rent 

framework, individuals who can choose their preferred residential location must have 

enough income to outbid competitors. This mechanism causes higher land prices at 

central places, with building heights in central locations increasing exponentially.   

The bid-rent framework utilizes a function associated with multiple factors. This 

complex function can be examined by variables such as income, density, and distance to 

facilities, among others. Accessibility between activities and residential locations provides 

the key connection between origins and destinations. Accessibility to central places is the 

main reason for agents to compete for land. According to O’Sullivan (2009), the 

willingness to pay for land depends on its accessibility within urban areas because of 

reduced travel cost.  

Firms from various sectors and households are allocated to different locations 

based on land prices and willingness to pay. That is, manufacturing firms are attracted 

toward highways that connect the city to consumers, whereas households are attracted 

to areas near employment with lower commuting costs. In response to high land prices, 

tall buildings are oriented toward central places and land is allocated to the highest 

bidder. The bid-rent theory explains that firms and households have limited resources 

and they compete with one another to obtain the optimal location that minimizes their 

respective costs. Furthermore, households consider the exchange between land rent and 

transportation costs when choosing residential locations, whereas firms attempt to 

minimize the cost of production by reducing their transportation costs in the production 

process (Giuliano, 1989). Based on this framework, available land is assigned to the 

highest bidder who gains the most benefits from that location. This competition among 

households and firms shapes urban structure and influences commuting patterns.  
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Choosing workplace and residential locations is a fundamental component of the 

bid-rent theory. The commuting of workers between activity centers is associated with 

supply and demand for labor at each location, and it is associated with accessibility to, 

the proximity of, and the density of activities. Also, travel time causes costs for each 

commuter. This relationship between workplace and residential locations originates from 

the bid-rent framework of the Alonso-Mills-Muth model. According to this bid-rent model, 

increasing distance from central places will raise trip costs as workers need to spend 

extra time commuting instead of working or being with their family. For this reason, all 

other things being equal, workers typically prefer to minimize their travel time. 

Another component of the bid-rent theory is density, which is related to the 

concept of so-called “agglomeration.” Agglomeration benefits are key to understanding 

not only why cities exist but the form of urban spatial structures in general. Higher density 

provides more profit for firms and households, as it reduces distances and trip costs 

between activities. According to O'Sullivan (2009), economic forces push firms and 

businesses to be located close to one another in clusters. A higher density of economic 

activity can be seen in central business districts (CBD) or marketplaces because more 

producers and more consumers prefer to visit central places due to their proximity and 

lower transportation costs. According to Maddison et al. (1997), the concept of “distance 

decay” defines the attractions of central places. The empirical evidence indicates that 

central places have developed not only to benefit businesses but also to benefit 

households, since living near central places reduces trip costs and facilitates 

consumption.  

The importance of CBDs and their impact on urban structure is another subject of 

considerable debate. CBDs have a notable role in traditional urban theory (i.e., the 

Alonso-Mills-Muth model). However, according to Anas et al. (1998), “edge cities” (i.e., 
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subcenters) have been developing as populations and places of employment shift from 

central urban areas into suburbs. The term of “edge cities” was introduced and 

popularized by the book “Edge City,” in which Garreau (1991) describes edge cities as 

areas with diverse employment centers and amenities that have developed near highway 

intersections, freeways, major airports, and intermodal transport facilities to easily 

connect them to CBDs. Although a large portion of the population and businesses moved 

to the edge cities, as Glaeser et al. (1992) stated, central places are still vital as many 

firms and businesses choose to locate their corporate headquarters in CBDs and their 

production facilities outside of cities. CBDs are still dominant and exhibit the highest 

population and employment densities with higher land prices, even after the rapid 

suburbanization process. The accessibility between CBDs and subcenters highlights that 

CBDs and subcenters are strongly connected, with subcenters serving a complementary 

role rather than competing with CBDs.  

The relationships between travel behavior, urban form, urban structure, and 

residential/employment locations have been the main subject of several urban economic 

studies (Anas, Arnott, & Small, 1998; R. Dubin, 1991; Giuliano & Narayan, 2003; Giuliano 

& Small, 1993; Gordon, Kumar, & Richardson, 1989; Gordon, Richardson, & Jun, 1991; 

Hamilton & Röell, 1982; Horner, 2002; Small & Song, 1992; Thaler, 2017; Waddell, 1993; 

White, 1986, 1988; M. Zhang, 2004). However, in addition to urban structure and land 

use patterns, the characteristics of travelers influence travel behavior. The next section 

describes the connection between human behavior and the environment through a 

review of relevant social theories.   
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Social Theories  

Building a theory of general human behavior is a unique difficulty, as there are 

problems associated with assuming rational actors, identifying rational criteria, and 

determining the “fundamental laws” of psychology (Chadwick-Jones, 1976). Therefore, 

social theories commonly explore the mechanisms determining—and the factors 

influencing—specific categories of behavior, including travel behavior. Nevertheless, 

several foundational theories of human behavior were developed throughout the 20th 

century, which continue to be debated and refined today. 

The general concepts of human motivation, self-adjustment, self-actualization, 

and social adjustment were introduced by philosophers such as Abraham Maslow and 

Carl Rogers (Maslow, 1943; Rogers, 1959). Considering the self and the mind in terms of 

a social process, George Herbert Mead presented a detailed explanation of human 

behavior and its interaction with the environment (Ganter & Yeakel, 1980; Mead, 1934). 

Trait Theory is another example of theorizing that investigates the internal determinants 

of behavior (Allport, 1966; Cattell, 1966). These ideas presented that there are various 

ways of perceiving the world based on experience and social environment, and these 

influence human behavior (Adams, 1973). According to Bandura (1986), the concept that 

people can change their own motivation and actions by exercising self-influence is 

presented by theorists who view humans as possessing capabilities for self-direction. 

While classical sociologists focused on individuals and their relationship with 

society and understanding social realities, modern social theories were developed based 

on the agency-structure framework. According to Krasner (1969) , human behavior can 

be influenced by any situation that includes government, education, religion, or other 

social and cultural structures in their interaction. The connection between structure and 

agents is one of the most debated topics in social theory. Talcott Parsons (1977 as cited 
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in Mouzelis, 2008), who is considered the father of modern sociological theory, places 

emphasis on systems and structures that can be assessed by two basic axes: the micro-

macro and action-system dimensions (Mouzelis, 2008; Parsons, 1977). The main 

contribution of Parsons towards the construction of a structural functionalism is linking the 

macroscopic and microscopic levels of analysis. His conceptualization of social systems 

and subsystems can be applied to empirical studies addressing social behaviors at the 

macroscopic, mesoscopic, and microscopic levels.  

On the other hand, Anthony Giddens, who developed the concept of structuration 

suggests perspectives on human behavior based on a synthesis of structure and agency 

effects known as the “duality of structure.” (Giddens, 1979). According to Mouzelis (2008, 

p. 35), Giddens rejected the actor/social-structure dualism found in the conventional 

social sciences—i.e., the idea of actors being constrained by social structures external to 

them. In the process of structuration, actors and structures are inextricably connected 

and there is not an externality or distance between actors and structures. In contrast to 

Gidden’s Structuration Theory, social theories such as the Theory of Action (Alexander, 

1982), Social Cognitive Theory (Bandura, 1986), Critical Realism (Bhaskar, 1989) , and 

the Theory of Planned Behavior (Ajzen, 1991) have examined the effects of human 

characteristics on behavior, addressing cultural, social, and personality factors. The 

Theory of Action, developed by Alexander, presents human action as the outcome of 

three systems: the cultural, social, and personality systems. According to Alexander 

(1982), the cultural and personality systems are internal to the actor while the social 

system/environment is external. Alexander (1998) argues that action is formulated by the 

cultural environment and motivated by ‘personalities.’  

Social Cognitive Theory, introduced by Bandura (1986), describes human 

behavior via a model of triadic reciprocal relationships in which behavioral, 
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environmental, cognitive, and other personal factors all serve as cooperating 

determinants of each other. In this framework of reciprocal determinism, which is 

illustrated schematically in Figure 1, human behavior can be explained based on 

“reciprocal relationships” between the individual’s characteristics, the individual’s 

behavior, and the environment. (Bandura 1986; Handy 2005). In this triadic reciprocal 

determinism, the term “reciprocal” denotes the mutual action between causal factors 

(Bandura, 1986, p. 23). In other words, “this concept does not mean perfect symmetry in 

the strength of the influences between each pair of components, nor does it mean that 

the interactions happen simultaneously” (Handy 2005, p. 14).  

 
Figure 1. Reciprocal Determinism  

Source: Handy, 2005 (adapted from Bandura, 1986) 

 

Critical Realism is another fundamental framework that presents the relationship 

between structure and actors. In contrast to Social Cognitive Theory, Critical Realism 

argues in favor of simultaneous interactions between structures and agents. Critical 

Realism was inspired by Marx’s view of science and introduced by the philosopher Roy 

Bhaskar (Bhaskar, 1989). It provides a framework that explains human action (including 

travel behavior) and its association with structural conditions such as land use, transport 

systems, and patterns of development. The theory of Critical Realism also contrasts 
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Structuration Theory in terms of the connection between structure and agent. Gidden’s 

(1984) Structuration Theory claimed that “agency and structure are mutually constitutive 

and cannot be united.” (Næss, 2006, p.12). In contrast to Giddens theory, Critical 

Realism claims that “both structures and agents have particular properties and causal 

powers” (Næss, 2006, p.14).  

According to Næss (2006), the built environment around us is socially 

constructed. The “construct” includes both physical aspects and immaterial structures. 

The physical aspects of the structures include roads and buildings, whereas the 

immaterial structures include cultural traditions, economic conditions, and dominant belief 

systems. In terms of Critical Realism, the structures are being simultaneously modified 

and transformed by human actions. Such transformations most often proceed slowly and 

gradually, but some happen rapidly (Næss, 2006, p.13).  

Critical Realism is based on the assumption that both agents and structures have 

specific characteristics and causal powers (Archer, 2000; Danermark, Ekstrom, & 

Jakobsen, 2001; Næss, 2006; Sayer, 1992). In this framework, causality is not restricted 

to monocausal relationships. Instead, causes are rather considered as “tendencies” that 

may or may not occur. Therefore, the situation of multiple causes should be considered 

when explaining behaviors such as the travel behavior of commuters. Sayer (1992, 

p.117) presented causal powers as “structure” utilizing the Critical Realism framework; as 

shown in Figure 2, the structure (causal powers) has the potential to impact events 

(observable phenomena) through several mechanisms (Næss, 2006). 

 



 

33 

 

Figure 2. Structures, Mechanisms, and Events in Critical Realism  

Source: Næss, 2006 (based on Sayer, 1992) 

 

Many researchers have emphasized the importance of a necessary or sufficient 

condition when analyzing the term “cause” in relation to the causes of travel behavior. As 

explained by the Critical Realism framework, there are various contributory factors that 

influence individual travel behavior. However, it is important to note that certain 

conditions are required to activate the mechanism. Although environmental structure 

affects travel behavior, sometimes those factors are not sufficient to influence some 

aspects of travel behavior. In other words, the combination of mechanisms in particular 

conditions is required to cause an event.  

Addressing “causes and conditions,” Mackie (1965, as cited in Næss, 2006) 

introduced the concept of an “INUS condition” that is, “Insufficient but Necessary parts of 

a condition which is itself Unnecessary but Sufficient” (Næss, 2006, p. 14) According to 

Næss (2006), the effects of the built environment could be examined as INUS conditions. 

The condition of the built environment cannot be attributed the status of a sufficient 

condition for certain travel behaviors, such as walking or taking public transit. 

Accordingly, several other circumstances will influence this behavior, such as the wishes 

and preferences of the traveler, health status, and access to means of transport. Higher 
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density may be necessary for creating a walkable place, but density itself is not sufficient 

to determine the commuter’s mode choice behavior. A resident who lives downtown may 

choose to make a short trip by walking in the morning because this action, according to 

the person’s beliefs, is the most reliable means to reach the workplace in time. Based on 

the concept of INUS condition, the commuter’s mode choice is the outcome or result of 

various contributory causes. Factors such as the short distance between home and the 

workplace are a necessary and sufficient condition for commuters to walk from home to 

work in order to reach their destination on time.  

 

The Theory of Planned Behavior 

Another framework that can be used to understand travel behavior is the Theory 

of Planned Behavior (TPB), which is an extension of the Theory of Reasoned Action 

(TRA) developed by Ajzen and Fishbein in 1975. According to Azjen (1991), “Attitudes 

toward the behavior, subjective norms with respect to the behavior, and perceived control 

over the behavior are usually found to predict behavioral intentions with a high degree of 

accuracy. In turn, these intentions, in combination with perceived behavioral control, can 

account for a considerable proportion of variance in behavior.” (p. 206). Azjen’s (1991, as 

cited in Karash et al., 2008) framework includes these components of human behavior: 

• Attitude Toward the Behavior: An individual’s own evaluation of an action, such as 

driving alone from home to work or taking public transit for a day.  

• Subjective Norm: An individual’s perception of what others will think if he/she 

takes an action (e.g., what colleagues will think if he/she takes public transit). 

• Perceived Behavioral Control or Self-Confidence: An individual’s assessment of 

his/her ability to take an action, such as taking public transit (Karash et al., 2008, 

p. 6).  
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As shown in Figure 3, TPB argues that intentions, attitudes (beliefs about a 

behavior), and subjective norms (beliefs about others' attitudes toward a behavior) 

determine behavior (Ajzen, 1991, 2011; Ajzen, Heilbroner, Fishbein, & Thurow, 1980; 

Fishbein & Ajzen, 1975) In this framework, Azjen distinguishes between behavior beliefs, 

normative beliefs, and control beliefs, which impact attitudes, subjective norms, and 

perceived behavioral control, respectively (Handy, 2005). Based on the theory of planned 

behavior, each person has different reactions and thresholds to response based on these 

three elements. Additionally, attitude, subjective norm, and self-confidence all contribute 

to an individual’s intent to carry out a behavior. (Karash et al., 2008).  

 

Figure 3. Theory of Planned Behavior   

Source: Karash et al., 2008 

 

The Extended Theory of Planned Behavior considers two additional components, 

as illustrated in Figure 4. According to Karash et al. (2008), life cycle has a great 

influence on an individual’s attitudes about choices. The life cycle includes various factors 

addressing age, gender, marriage, and other socioeconomic/demographic 



 

36 

characteristics. For example, young teens, as compared to older adults, may be more 

influenced by others’ mindsets. 

  

 

Figure 4. The Extended Theory of Planned Behavior  

Source: Karash et al., 2008 

 

According to Stopher et al. (1981), there are two main constraints that can limit 

one’s choice set: externally imposed and self-imposed constraints. Externally imposed 

constraints are linked to the characteristics of the alternative and other external factors. 

The self-imposed constraints are associated with life cycle and personal attitudes toward 

the behavior. According to Stopher et al. (1981, p. 198) , “…a distinction should be made 

between externally imposed and self-imposed constraints. Car availability may be 

externally imposed but in some cases is a self-imposed constraint that to some extent 

may rest on a reversible decision”. From a psychological theoretical basis, TPB should be 
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examined to identify these constraints. For example, in a car ownership choice set model, 

constraints imposed by each individual’s and household’s circumstances limit the 

commuter’s ability to own a car. For car ownership and mode choice, the main constraint 

can be defined by income or budget constraints. 

 

 The Rational Choice Paradigm 

Rational Choice Theory constitutes another important paradigm based on the 

economic concept of consumers making choices on the basis of maximization or 

optimization criteria. This idea, in both Marxist and non-Marxist frameworks, presents a 

useful conceptual framework with an emphasis on agency and the rational behavior of 

actors (Mouzelis, 2008, p. 19). The concept of “utility-maximizing behavior” originated 

from economics and psychology and was introduced into travel behavior research by 

McFadden (1974) in his Nobel prize-winning work. The theory focuses on individual 

choice behavior and indicates that people will choose the alternative which maximizes 

their benefits and provides the largest utility. As explained in bid-rent theory, households 

and firms compete for land, which is ultimately occupied by the highest bidder. The utility-

maximization concept is a proper framework to explain how households choose their 

location and their travel mode, as well as how much a household bids for land in a 

specific location.  

Travel behavior has both continuous and discrete outcomes. Trip frequencies, 

VMT, and PMT are continuous outcomes that can be examined by well-known methods 

such as linear regression. On the other hand, travel choice analysis—such as travel 

mode and route choice—is based on discrete choice modeling through methods such as 

multinomial logit models.  
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A key assumption of discrete choice analysis is that each person is going to 

make a single choice—from a finite set of alternatives—that maximizes his or her 

benefits. In the choice set, the probability of selecting a specific alternative is based on 

the utility of this alternative relative to the utilities of all the available alternatives (Van 

Acker & Witlox, 2007). Each one of these alternatives has its own characteristics such as 

cost, comfort, travel time, and other factors. Each commuter has a different way of joining 

these characteristics into a ranking, or “utility function.” The utility function can be defined 

as a linear function of the choice alternatives’ characteristics and individual 

socioeconomic characteristics such as age, income, and gender. Commuters have 

different preferences. One commuter might consider delay travel time but not comfort, 

and consequently choose to take the bus. Others might consider comfort but not travel 

time, and they'll choose to take a car. These are called “commuter’s preferences,” and 

individuals have different preferences which can be expressed by the utility function.  

Discrete choice models use data on the characteristics of commuters, attributes 

of alternatives, and market shares to examine commuters’ preferences over different 

alternatives. According to Ben-Akiva and Lerman (1985), the discrete choice framework 

includes four components: decision-maker, alternatives, attributes of alternatives, and 

decision rule. The decision-maker can be an individual, a household, or a firm, for 

example. This component also considers the decision-maker’s relevant socioeconomic 

characteristics, such as age, gender, and income. Alternatives are the options composing 

the choice set, from which a decision-maker can select one. The third component of 

discrete choice is the attributes of alternatives such travel time and cost. These factors 

affect a decision maker’s choice. The last component of discrete choice is the decision 

rule, or the individual’s willingness to choose one alternative. The decision rule can be 
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modeled based on dominance, satisfaction, and utility function. The utility of any choice 

depends on the characteristics of the individual and the characteristics of that choice.   

Short-term and long-term decisions affect travel behavior. According to Handy 

(2002), individuals’ choices can be classified as long-term choices, mid-term choices, and 

short-term choices. For example, daily travel behavior, such as travel mode, destination 

choice, and route choice might depend on long-term decisions such as residential and 

job location. There are various factors affecting commuters’ choices, such as built 

environment factors and socioeconomic characteristics. Figure 5 presents an example of 

those choices and other influential factors. Thus, Rational Choice Theory and the concept 

of utility maximization provide a conceptual framework in which relationships exist 

between several choices. This framework is based on the assumption that individuals 

make rational choices among a set of alternatives to maximize their net benefit or 

personal utility (Ben-Akiva & Lerman, 1985; Cervero, 2002; Domencich & McFadden, 

1975; Small & Winston, 1999). 

 

Figure 5. Choice Sets  

Source: Adapted from Handy, 2002 
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Behavioral Models: Activity-Based Approach  

Following the theoretical models explained in the previous section, the 

connections between travel behavior, land use, and the socioeconomic characteristics of 

commuters have been examined from a variety of perspectives. Since the 1950s, 

different models have been developed to understand and simulate individual travel 

behavior. The first generation of travel demand models emerged in the 1950s, commonly 

referred to as traditional or “four-step” models. Four-step travel demand models are trip-

based models developed in the context of insufficient computational capability and 

aggregated travel survey data (de Dios Ortúzar & Willumsen, 2011; Muro-Rodríguez, 

Perez-Jiménez, & Gutiérrez-Broncano, 2017; Rasouli & Timmermans, 2014; Stopher et 

al., 1981). 

Traditional four-step models are based on aggregated households grouped into 

Transportation Analysis Zones (TAZ). In traditional models, trips are generated from 

TAZs and each trip is independent of every other trip’s generation, distribution, mode 

choice, and timing. Four-step models are based on person-trips, which do not capture 

any dependency between members of the same household (Oppenheim, 1995; Stopher 

et al., 1981).  

To overcome the limitation of trip-based models, behavioral models such as 

activity-based models emerged in the 1970s and have progressively developed along 

with computing power and the increasing availability of disaggregated travel survey 

datasets (Rasouli & Timmermans, 2014). In behavioral models, travel is a derived 

demand that results from the need of people to engage in activities outside the home 

(Næss, 2006). According to Rasouli and Timmermans (2014), the key concept of activity-

based modeling is based on economic location theories (e.g., Central Place Theory) and 

the profit-maximization behavior of commuters (e.g., Rational Choice Theory).  
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Activity-based travel models simulate individual mobility based on behavioral 

decision-making theory. In these models, households are considered in a disaggregated 

form, individual choices are simulated, and individual activities, trips, and tours are 

generated and scheduled in different sub-models. In activity-based models, trips are 

chained and modeled as part of tours, sub-tours, and larger daily activity patterns.  

The integration of models and sub-models is a key advantage of activity-based 

modeling. In four-step models, travel demand is not affected by accessibility or the built 

environment, whereas built environment factors, accessibility measures, and the starting 

and ending times of activities are integrated into activity-based models. Also, activity-

based models integrate travel throughout the day—considering how decisions are 

made—and are sensitive to cost, time, demographics, and policies (Rasouli & 

Timmermans, 2014). The behavioral study of individuals is another advantage of activity-

based models, as they allow for greater spatial and temporal details to track individuals’ 

travel behaviors rather than relying on the averages of aggregated zones (Rasouli & 

Timmermans, 2014).  

In an activity-based model, each travel behavior is based on how people make 

decisions. As Schönfelder and Axhausen (2010) have indicated, in an activity-based 

model, travel behavior is modeled consistently throughout the process, including trip 

chaining. Temporal, spatial, and interpersonal restrictions are also considered in activity-

based models. Time is a key component in activity-based models, since it allows for 

travel time and cost to be included in higher level components of the model such as auto 

ownership and trip generation.  

Another advantage of activity-based modeling is their ability to analyze 

performance measures. Behavioral models can be used to determine sensitivities to 

policies and conduct more intuitive analyses than traditional models. Activity-based 
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models produce performance measures that are not possible with traditional methods. 

This makes them better suited than trip-based models to address policies that affect how 

people make travel decisions. The raw output of activity-based models includes 

disaggregated trip records, with important identifying attributes such as purpose, start 

and end times, primary travel mode, location, tour purpose, and primary location. This 

allows the decision-maker to summarize the system’s performance by various 

dimensions. For example, activity-based models provide travel behavior metrics such as 

mode share, trips per tour, shopping trip frequencies, and the number of tolls paid.  

Other advantages of behavioral models include their capacity for detailed spatial 

analysis and temporal analysis. Activity-based models can be developed at a highly 

detailed levels, ranging from parcels and census blocks to households and individuals. 

This increased spatial detail provides more analytical precision than is possible with 

traditional models. Regarding temporal analysis, activity-based models can estimate 

time-of-day intervals of 30 minutes or even 5 minutes, whereas traditional four-step 

models are estimated based on average peak hours and off-peak hours. In an activity-

based model, the time chosen for travel is represented by the complex demands of 

household members, work, and school schedules.   

 

Limitations of Behavioral Models 

Despite their strengths, behavioral models do have limitations and have faced 

criticism in recent years. The main criticism from social psychologists and micro-

sociologists is that “homo rationalis” is a fiction. They argue that people do not behave in 

a perfectly rational way, as the model suggests or simulates (Mouzelis, 2008). According 

to Muro-Rodríguez (2017), “Most of the models used for travel behavior applications are 

based on utility theory. This concept presents strong limitations for practical applications, 
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since the complexity of human behavior suggests that the decision rule must include a 

probabilistic dimension” (p. 2).  

One limitation of activity-based models is that they estimate static models to 

simulate the travel patterns of a typical day. According to Rasouli and Timmermans 

(2014), activity-based models should become time-dependent as a function of 

dynamically changing needs, specific events, weather and season (p. 48). Also, attempts 

to expand the scope of these models to “problems of joint decisions, group (e.g. social 

networks) decisions, and dynamic choice problems should be applauded” (Rasouli & 

Timmermans, 2015, p. 26).  

Another limitation of activity-based models is related to the route choice algorithm 

and the lack of integrity between the network assignment algorithm and sub-models such 

as the time-dependent origin-destination (OD) matrices. Although activity-based models 

have improved the integrity between sub-models, the integration of demand generation 

and network assignment needs fundamental improvement to simulate the time-

dependent OD matrices (Rasouli & Timmermans, 2014, p. 49).  

Another limitation of activity-based modeling is assessing transportation policies. 

Although activity-based modeling has improved the process of analyzing performance 

measures, current models are focused on typical performances indicators such as VMT. 

They need to be extended to other measures such as air quality, emissions, health-

related indicators, and quality of life. In addition to policy performance analysis, activity-

based models are not intensively integrated with recent advanced technology. According 

to Rasouli and Timmermans (2014), the linkage between Information and Communication 

Technology (ICT) and behavioral models is not well developed in current activity-based 

models. With new technologies, such as smartphone data and mobile computing 
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sources, comprehensive activity-based models of travel demand should be updated by 

considering activities and travel episodes together.  

Another limitation of activity-based models is that current choice models do not 

properly consider the complexity and nonlinearity of human decision-making. According 

to Rasouli and Timmermans (2014), current choice models, such as the utilitarian 

approach, should be improved by using a hybrid choice model or other approaches such 

as SEM. Decision making under uncertainty is another shortcoming of activity-based 

models; according to Krishnamurthy and Kockelman (2003), there are many uncertainties 

with respect to the predictions and accuracy of travel demand models due to model 

misspecification, imperfect input information, and the innate randomness of events and 

behaviors. As activity-based models are based on individual decision-making, it is 

necessary to consider short-term changes in activity-based travel patterns, group 

decision-making, and family decision-making with a focus on social networks and the 

dynamic impact of social influences. Modeling intra-household interactions requires 

complex models such as SEM and more computational time to demonstrate how travel is 

coordinated among household members.  

Finally, behavioral models are not widely adopted by transportation planning 

agencies for these reasons: First, decision-making under uncertainty with a lack of 

empirical evidence is the main reason for not adopting behavioral models in planning 

practices. Second, activity-based models are dependent on the level of detail, quality, 

and completeness of the data. These data should consider not only individuals’ behaviors 

but also explore institutional constraints, such as opening and closing hours for stores 

and businesses. Finally, the validation and calibration of behavioral models are impacted 

by uncertainty since they are based on various choice alternatives and probabilistic 

forecasts with their own uncertainties and assumptions (Rasouli & Timmermans, 2014).  
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The utility function is based on “unbounded rationality,” assuming that peoples’ 

preferences are consistent and that they can reliably select the optimal alternative that 

maximizes their utility. However, according to Simon (1982), it is not practical to simulate 

human choices via a utility function. Therefore, Simon introduced “bounded rationality” as 

a concept opposed to unbounded rationality, highlighting that people make decisions in 

an uncertain world.  

Bounded rationality is typically intended as a warning for interpreting the 

deterministic outcomes of utility functions, as we cannot predict human behavior by 

setting up an abstract model. According to Simon (1982), the actual choices people make 

are different from ideal choices in economics because all alternatives are not known by 

the decision-maker. Our ability to choose the optimal solution is constrained by the 

amount of information available, environmental factors, and even physical ability. In other 

words, consumers are rationally bound with biases and errors due to cognitive limitations.  

Simon (1956) referred to “satisficing” instead of “optimizing” and studied how 

people make a decision when optimization is out of reach in an uncertain world. He 

believed that people follow simplified guidelines (i.e., heuristics) that can lead to 

satisfactory solutions, but not necessarily optimal solutions. Moreover, according to 

Andrew Lo (2017), humans do not maximize and do not optimize; rather, they simply 

engage in heuristics that are good enough or satisfactory. As Lo (2004, 2017) stated, 

people do not know when the “optimal” has arrived, and they simply behave through trial 

and error heuristics that typically make them satisfied.   

Considering bounded rationality, it is possible that household circumstances can 

limit an individual’s ability to respond to congestion. As Rasouli and Timmermans (2015) 

noted: 
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 …choice behavior in the real world may be guided by principles of bounded 

rationality as opposed to typically assumed fully rational behavior, based on the 

principle of utility-maximization. Under such circumstances, conventional rational 

choice models cannot capture the decision processes. (p. 95)  

 

Subsequently, Rasouli and Timmermans (2015) concluded:  

…trip makers do not recognize each alternative equally. Due to the incomplete 

information, the consideration of different alternatives on the choice utility might 

not be equal. In other words, individuals may show an unequal and asymmetrical 

evaluation about different alternatives in the choice process. (p.59)  

 

Although the utilitarian approach has its limitations, discrete choice theory has 

provided a practical framework for examining the causal relationship between land use 

and travel behavior (Handy, 1996). For this reason, utility functions are considered 

appropriate to implement in travel behavior studies.  

 

Utility Maximization Theory 

Travel behavior has been explained by a variety of theories, as presented 

throughout this chapter. Utility Maximization Theory (Ben-Akiva & Lerman, 1985; 

Domencich & McFadden, 1975; Train, 1986; Horowitz, 1980; Walker & Ben-Akiva, 2002), 

which is based on microeconomics theory, is the primary theoretical framework of the 

present research to explain the effects of traffic congestion on commuter choices. In 

studying travel behavior, Utility Maximization Theory—utilizing discrete choice analysis—

was first introduced by Domencich and McFadden (1975) and was further developed by 

Ben-Akiva and Lerman (1985) and Train (1986). In this approach, travel behavior can be 
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altered and changed based on the transportation system and its alternatives. Traveling 

from each location to other destinations can be achieved by various alternatives such as 

public transit, walking, or driving. Each possible choice provides a certain “utility” or value 

to the individual, who tries to maximize his or her utility, which includes minimizing travel 

time for traveling between locations (Handy, 2005, p. 20).  

The challenge for transportation planners is to understand the relationship between 

an individual’s trip-making activity and built environment factors. According to theories of 

transport geography and transport economics, the demand for moving between activities 

generates trips (Handy, 2002; Næss, 2006; Stern, Salomon, & Bovy, 2002). As Næss 

(2006) indicated, trip generation is the need to engage in an activity at a different place, 

and demand for travel is the result of activities determined by land use patterns. Næss 

(2006) considers urban structure as a contributory cause of travel behavior within a multi-

causal framework based on Critical Realism. As Næss (2006, p. 14) explains, “Causality 

is not limited to mono-causal relationships and Causes are rather seen as tendencies.” 

According to Næss (2006), travel behavior is a multi-causal phenomenon with a number 

of contributory causes. Figure 6 illustrates the multi-causal relationship between 

transportation behavior, land-use patterns, and individuals’ characteristics. 
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Figure 6. Travel Behavior as A Function of Individual’s Characteristics and Land Use  

Source: Næss, 2006, p. 11 

 
Analyzing the connection between urban structure and agents is a primary 

question in social theories and behavioral studies regarding travel behavior (Næss, 2006, 

p. 12). As shown in Figure 6, modal split is a travel behavior outcome that is affected by 

various factors such as the built environment, transportation systems, and individual 

characteristics. Based on Næss’s framework, the present research represents a 

behavioral study for three reasons: First, in this study, individuals’ characteristics are 

examined using disaggregated household survey data, which is a key element of 

behavioral analysis. Second, built environment factors and the geographical distribution 

of activities are investigated in this study. Third, this study considers decision-making 

under congestion, which is missing from traditional four-step models (Stern, 2002). 

According to Donnelly et al. (2010), analyzing the effects of congestion was one of the 

reasons for developing behavioral models.  
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The main purpose of this study is to analyze the effects of traffic congestion on 

travel behavior. As shown in Næss’ framework, congestion is one of the main elements of 

the transportation system that affect travel behavior. Ultimately, based on the three 

reasons described above, this research could be considered as a behavioral study, 

addressing both urban structure and individuals’ characteristics as contributory causes of 

individual travel choice behavior. 

 

Summary 

This chapter covered the theoretical background of travel behavior studies and 

summarized relevant theoretical frameworks, including social theories, transport 

economics theories, the rational choice paradigm, and the Theory of Planned Behavior. 

The next chapter shifts from theoretical discussions to the application of these 

frameworks in the research literature, providing an overview of previous studies and 

addressing their methodologies, data types, variables considered, and the results of their 

statistical analyses.  
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Chapter 3 

Literature Review 

As mentioned in the previous chapter, travel behavior is a complex phenomenon 

associated with factors such as individual preferences, attitudes, and urban structures. 

Understanding travel behavior is necessary for planners and transportation modelers to 

estimate future travel demand. A considerable literature has been published examining 

travel behavior and its association with other factors. The following chapter reviews this 

literature, beginning with a description of the fundamental framework of the interaction 

between land use and transportation systems. This literature review also covers the 

ongoing debate about the relative influences of the built environment and the 

socioeconomic status of travelers on travel behavior, and whether the relationships 

between these variables are correlative or causal. Ultimately, this literature review 

provides the framework for the methodology and the selection of explanatory variables in 

the present study.  

This chapter summarizes the literature based on key elements, addressing (1) 

the built environment, (2) demographics, (3) self-selection, and (4) traffic congestion and 

their effects on travel behavior. Although traffic congestion play an important role in 

influencing individuals' travel choice behavior, it has frequently been disregarded in 

previous studies. The present study builds upon the existing literature by providing 

additional evidence that factors such as traffic congestion may play an important role in 

affecting travel behavior.  
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The Interaction Between Land Use and Transportation System 

One of the requirements for developing an integrated land use and transportation 

model is understanding the interconnections between land use and transportation 

systems. This understanding helps planners and transportation modelers predict travel 

demand and provide information for decision makers. In addition to traffic forecasting, 

these models assist decision makers in considering a variety of scenarios and “what if” 

questions.  

Several models have been developed to simulate the relationship between land 

use and transportation systems. The first generation of integrated land use and 

transportation models was known as DRAM\EMPAL (Putman, 1983). Putman’s model is 

based on Lowry’s (1964) model, which is a gravity model focusing on flows between 

different locations. DRAM\EMPAL consists of two key components: a Disaggregate 

Residential Allocation Model (DRAM) and an Employment Allocation Model (EMPAL). In 

Putman’s Integrated Transportation and Land-Use Package (ITLUP), DRAM allocates 

households based on the attractiveness of a zone and the accessibility of a zone’s 

workers to jobs in other zones. In EMPAL, employment during the previous time period 

and the attractiveness of the zone for households are the principal factors affecting the 

allocation of employment within the region (Krishnamurthy & Kockelman, 2003). Other 

examples of land use and transportation models are TRANUS (De la Barra, 1989), 

MEPLAN (Echenique et al., 1988) MUSSA (Martínez, 1996), and G-LUM (Kockelman et 

al., 2010).    

The integrated land use and transportation models were developed based on 

several theories of transport geography, urban economics, and behavioral theories  

(Hanson & Giuliano, 2004; Newman & Kenworthy, 1996). Eliasson and Mattsson (2000) 
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summarized these theories into three groups: urban economics, spatial interaction (or 

gravity) models, and discrete choice based on random utility theory.  

With a focus on city functioning, the core of urban economics is the trade-off 

between land price and commuting cost, which is described in the bid rent or monocentric 

model of urban form proposed by Alonso (1964). The origins of the monocentric model of 

household location can be traced back to the Von Thunen model of land use (also called 

location theory) in 1826 in a book called "The Isolated State" (Von Thunen, 1826). Based 

on bid-rent theory, proximity to the workplace and other activities influences the choices 

of  households and firms as they are assumed to maximize their utility (Alonso, 1964). In 

this framework, firms attempt to locate their businesses next to consumers, resulting in a 

long-term equilibrium between residential and employment locations. This cost-benefit of 

external forces is an example of spatial-interdependence between consumers and firms 

(R. Dubin, 1991; Lucas & Rossi–Hansberg, 2002; Næss, 2006).  

The gravity model provides the framework for how distance or proximity 

influences the distribution of activities and the location of firms and households. 

According to the spatial interaction (or gravity) models, travel distances and the 

attractiveness of the destination/activity influence daily trips. As activities and buildings 

are distributed within the region, the distance between activities results in costs for 

commuting from one location to another. Since trips are costly, commuters attempt to 

reduce their trip costs and reside near workplaces.  

According to Næss (2006), the urban structure defines the distance between 

activities and provides facilities for different modes of travel. Therefore, changing the 

distance between activities can either facilitate or discourage some aspects of travel 

behavior. Næss (2006) discussed that inner-city dwellers have shorter traveling distances 

and a higher level of non-motorized trips. This pattern of travel behavior can be explained 
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by the high concentration of jobs, shops, and other activities. This concentration of 

activities can be explained in several ways, for example via Central Place Theory 

introduced by Walter Christaller (Christaller, 1966). The agglomeration benefits 

businesses within the central city, which is related to proximity and lower transportation 

costs between activities. Local or regional public transport also offer reliable transit 

services at the central parts of large cities. The concentration of activities in the inner-city 

area also increases the probability of choosing non-motorized options, taking public 

transit, and a lower proportion of car travel.  

Ultimately, discrete choice models can be used to describe the interaction 

between land use and transportation systems based on Utility Maximization Theory (Ben-

Akiva & Lerman, 1985; Domencich & McFadden, 1975; McFadden, 1974). Traditional 

travel demand models implement discrete choice models to predict decisions by 

addressing four steps: whether to travel, destination choice, mode choice, and route 

choice (de Dios Ortúzar & Willumsen, 2011). The third step, mode choice, examines 

which mode commuters use to travel between their origins and destinations. Based on 

the defined utility function, the model estimates whether people take their own car, a 

carpool, or public transit to and from work or another destination.  

Wegener (2004) presented the interaction between land use and transportation 

and their impacts on individual choices as a two-way interaction loop, arguing that the 

relationship between land use and transportation is dynamic. This recursive loop 

presents a dynamic relationship between land use, transport systems, accessibility, and 

travel behavior (p.130). Figure 7 demonstrates details of the land use/transport feedback 

cycle. As shown, providing more roads lead to higher accessibility, and accessibility 

shapes the land use pattern. That is, improving accessibility attracts businesses and 

households who search for places that are easily accessible. This recursive association 
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is the primary motivation for analyzing the relationship between land use and travel 

behavior.  

 

 

Figure 7. The Land-Use Transport Feedback Cycle  

Source: Wegener, 2004 

 

Several other studies have also suggested that this two-way interaction in 

transportation system (e.g., increasing accessibility or reducing travel cost) affects both 

land use and travel patterns (Bhiromkaew, 2006; Hanson, 1982; Hanson & Giuliano, 

2004). Similar to Wegener (2004), Rose and Martínez (2007) described this association 
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as a recursive relationship, stating that the urban spatial structure defines activity 

locations and influences travel patterns while travel patterns affect the activity locations.  

Modeling individuals’ choices is an important component of travel demand 

models. As illustrated in Figure 7, individual choices can be affected by factors such as 

accessibility, distance to facilities, and travel times or costs. Also, trip-related choices, 

including car ownership, trip decision, destination choices, mode choices, and route 

choices can be influenced by long-term decisions such as residential location. To 

overcome the limitation of choice models, Lerman (1976), and Dubin and McFadden 

(1984) developed methods for estimating joint models for continuous/discrete situations. 

Several joint (mixed) choice models have been developed to consider the impact of 

household location choice and car ownership (Lerman, 1976; Suel & Polak, 2017; Tran, 

Zhang, Chikaraishi, & Fujiwara, 2016; Waddell, 1993; Z. Zhang et al., 2017). Other 

studies have applied cross-nested logit models as joint choice models for simultaneously 

modeling residential location choice, travel mode, and car ownership (Lemp, Kockelman, 

& Damien, 2010; Yang, Zheng, & Zhu, 2013).  

Ultimately, it should be considered that the unit of analysis for built environment 

characteristics is a controversial topic in travel behavior studies, because built 

environment factors at different geographical scales can influence the empirical findings. 

For example, Cervero and Gorham (1995) observed that mode choice is mostly affected 

by the characteristics of neighborhoods rather than regional land-use patterns. On the 

other hand, Boamet and Sarmeinto (1998) and Boamet and Greenwald (2000) found that 

employment and retail density at a larger scale (i.e., census tracts) have a significant 

impact on travel behavior.   
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Built Environment and Travel Behavior   

The relationship between the built environment and travel behavior has been the 

subject of various debates. The study of this topic can be traced to the book “Urban 

Traffic: A Function of Land Use” by Mitchell and Rapkin (1954). This study was an early 

attempt to demonstrate how land use patterns affect travel behavior. Mitchell and Rapkin 

classified the characteristics of traffic movements into a framework, giving particular 

attention to land-use-based projection techniques. It was the first attempt to explain the 

basic elements involved in the analysis of land use patterns and the movement of people 

and goods within urban areas (Chapin, 1955).  

Built environment factors that are frequently studied include density, land use 

diversity, urban form and street patterns, accessibility to jobs, job-housing balance, and 

distance to facilities such as transit and bike stations (Cervero & Gorham, 1995; Ewing & 

Cervero, 2001; Greenwald & Boarnet, 2001; Krizek, 2000; Levine, 1998; Newman & 

Kenworthy, 1989, 1996; Van Acker, Mokhtarian, & Witlox, 2014). Many empirical studies 

have examined urban structure and found that the built environment, land-use patterns, 

and urban form can influence travel behavior (Anderson, Kanaroglou, & Miller, 1996; 

Bagley & Mokhtarian, 2002; Boarnet & Crane, 2001; Cervero, 2002; Cervero & 

Kockelman, 1997; Chatman, 2003; Ewing & Cervero, 2001; Giuliano & Small, 1993; 

Golob & Brownstone, 2005; Handy, 1996; Holtzclaw, Clear, Dittmar, Goldstein, & Haas, 

2002; Schwanen, Dieleman, & Dijst, 2004).  

The potential influences of built environment factors have been found in both 

aggregate (Cervero & Murakami, 2010; Transportation Research Board, 2009) and 

disaggregate approaches (Cervero & Duncan, 2003; Cervero & Gorham, 1995; Cervero 

& Kockelman, 1997; Handy, 1996; Kockelman, 1997). A review of previous studies 

revealed that certain built environment factors affect travel mode choice, trip frequency, 
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and VMT (Handy et al., 2012). The relationship between the built environment and travel 

behavior has also been summarized as a series of “D” factors, including density, 

diversity, design, destination accessibility, and distance to transit (Cervero & Kockelman, 

1997; Ewing & Cervero, 2010, 2001). Ewing and Cervero (2010) conducted a 

comprehensive meta-analysis of the relationship between built environments and travel 

behavior. Based on the five “D’s,” this meta-analysis provided elasticities for VMT, 

walking, and transit use, as listed in Table 1. “Elasticity” represents the percentage 

change in a dependent variable with respect to a given percentage change in the relevant 

independent variable (de Dios Ortúzar & Willumsen, 2011, p. 43).  

Travel distance, such as VMT, is one of the outcomes of travel behavior 

associated with urban structures. By analyzing travel distances of commuters in the 

Copenhagen Metropolitan Area, Næss (2006) found that residents who live in the 

suburbs with a low density of activities tend to travel longer distances with a higher rate of 

car use than residents located near the city center. As shown in Table 1, “destination 

accessibility” generally has the greatest influence on VMT, and its elasticity indicates that 

residents within high-accessibility neighborhoods have lower VMT.  
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Table 1. Travel Behavior Elasticities with Respect to Built Environment Factors 

Variables 

Weighted Average Elasticity of: 

VMT (e) Walking (e) Transit Use (e) 

Density 

Household/population density  -0.04 0.07 0.07 

Job Density 0 0.04 0.01 

Commercial floor area ratio - 0.07 - 

Diversity       

Land use mix (entropy index)  -0.09 0.15 0.12 

Jobs-housing balance −0.02 0.19 - 

Distance to a store   0.25 - 

Design       

Intersection/street density  -0.12 0.39 0.23 

% 4-way intersections  -0.12 -0.06 0.29 

Destination Accessibility       

Job accessibility  -0.2 0.15   

Job accessibility by transit  -0.05 - - 

Distance to downtown  -0.22 - - 

Distance to Transit       

Distance to nearest transit stop  -0.05 0.15 0.29 

       Source: Ewing & Cervero, 2010 

Walking as a means of transport can be influenced by built environment factors, 

especially by mixed-use and compact development. As noted in Table 1, land use 

diversity, accessibility, and distance to public transit are the main built environment 

factors affecting walking as a means of transport. Kockelman (1997) analyzed the effects 

of the built environment on vehicle choice and walk/bike choice based on binary 

dependent variables integrated with logit model assumptions. The results indicate that 

higher land use balance and higher land use diversity increase the probability of 

walking/biking among residents (Kockelman, 1997).  
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Næss (2006) observed that residents within high-density local areas had greater 

dependence on non-auto modes of transport than residents who live in the suburbs with 

lower density and land use diversity. He also found that the location of the residence 

relative to central Copenhagen is the only effective urban structure variable that 

influences the distance traveled by bike or by foot on weekdays. Additionally, he found 

that respondents who live in the areas closest to downtown Copenhagen travel an 

average of 12 miles by non-motorized modes during the weekdays, compared to 

approximately 8 miles among respondents living 24–28 miles away from downtown. This 

research indicates that walking/biking is approximately 50 percent higher among 

residents in the city center.  

Transit use is another mode of transport that is influenced by built environment 

factors. According to a meta-analysis by Ewing and Cervero (2010), transit use is 

influenced primarily by local densities and secondarily by the degree of land use mixing. 

The meta-analysis indicates that distance to public transit and design factors such as 

road and intersection density increase transit use probability. Cervero (2002) examined 

mode choice decision by developing discrete choice models and testing built environment 

factors at both residential and employment locations. His findings indicate that non-

motorized travel mode choice is dependent on density and land use mix at both origins 

and destinations. Using data from Boston and Hong Kong, Zhang (2004) found that 

commuter mode choice is more dependent on the built environment characteristics of the 

destination than those of the origin. Also, Bhat (1997) developed a joint model of work 

mode choice and number of stops during the work commute by integrating a multinomial 

logit model with an ordered-response formulation. This study, which used data from an 

activity travel survey conducted in the Boston Metropolitan area, indicates that high 

employment density at the workplace reduces the probability of choosing to drive alone. 
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Bhat (1997) also found that people who choose to use transit tend to make less non-work 

stops than those who choose to drive alone.  

Similar to the analysis of factors affecting travel distances, Næss (2006) found 

that residents who live close to the city center have higher rates of choosing non-

motorized modes. However, he then showed that the influences of urban structure factors 

are significantly lower than the effects of car ownership and transport attitude. Not 

surprisingly, Næss (2006) found that respondents with car-oriented attitudes had higher 

rates of car ownership, and the proportion of non-motorized travel was lower for these 

respondents.   

 
Density. Density is one of the built environment factors that is frequently investigated in 

empirical studies. Density can be examined in terms of population, residence, and jobs. 

As urban centers are recognized by high rise buildings and mixed-use developments, the 

degree of urbanization can also be represented by density. Highly dense areas in general 

are associated with better accessibility to facilities, greater levels of congestion, and 

transit services. Given these multiple interrelationships, the impact of density on travel 

behavior has been explored in several studies (Bento, Cropper, Mobarak, & Vinha, 2005; 

Cervero & Murakami, 2010; Ewing & Cervero, 2010; Gomez-Ibanez et al., 2009). These 

studies found that density has a negative relationship with automobile use. Also, the 

modes people choose for travel can be significantly influenced by compact and mixed-

use development (Cervero, 2002). By analyzing gross density at both the origins and 

destinations of trips, Cervero (2002) found that higher gross densities reduced the odds 

of solo-commuting, especially at the trip destination. According to Brueckner (2000), 

residents within dense areas with proximity to activities might be encouraged to use 

available alternative modes such as walking or transit instead of driving.  
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Auto ownership is another factor affected by density. For instance, Zhang (2005) 

found that higher population density reduces the probability of auto ownership in Portland 

and Boston areas. Using disaggregated data from the 1990 National Personal 

Transportation Study (NPTS), Bento et al. (2005) found that population centrality, an 

indicator of urban form, has a significant impact on auto ownership. Dunphy and Fisher 

(1996) and Ross and Dunning (1997) found that residents within high-density areas had 

higher rates of transit use with fewer and shorter auto trips. Similarly, Næss (2006) 

observed that areas located close to the city center and high-rise suburban housing with 

a moderate distance from the inner-city area are more car-dependent, while areas with 

high car ownership are typically situated in the suburbs of the Copenhagen Metropolitan 

Area. He also found that the use of public transit is clearly related to density, with 

residents of dense local areas tending to more extensively use public transit.  

Other studies have explored the impact of density on VMT (Bento, Cropper, 

Mobarak, & Vinha, 2005; Cervero & Murakami, 2010; Ewing & Cervero, 2010; Gomez-

Ibanez et al., 2009). These studies have presented an inverse relationship between VMT 

and density, concluding that residents in dense areas with compact development usually 

have lower VMT. However, the magnitude of the effect is small in many studies. A meta-

analysis by Ewing and Cervero (2010) showed that the elasticity of VMT with respect to 

residential density is -0.04. This result indicates that VMT is insensitive to density once 

other socioeconomic and built environment variables are controlled for. In contrast, the 

National Research Council (2009) found that, on average, doubling residential density is 

associated with VMT reductions that range from 5 percent to 12 percent. Overall, 

according to Boarnet and Handy (2014), analyzing the impact of density on VMT implies 

that doubling density is associated with VMT reductions ranging from 4 to 19 percent.  
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Diversity. Diversity represents the mixture of land use associated with the 

distribution of work and non-work activities in a given area (Ewing & Cervero, 2010). 

Numerous studies indicate that diversity has an important influence on travel mode 

choice, VMT, and vehicle trips (Boarnet, Nesamani, & Smith, 2003; Cervero & 

Kockelman, 1997; Chao & Qing, 2011; Ewing, 2008; Ewing & Cervero, 2010; Lin & Yang, 

2009). For instance, Ewing and Cervero (2010) found a negative relationship between 

VMT and land use diversity. Kockelman (1997) investigated mode choice and VMT with 

factors such as density, entropy index (land use balance), dissimilarity index of land use 

(mix index), and accessibility. Her findings indicate that accessibility, density, and land 

use mix are associated with mode choice decisions, especially for non-motorized modes. 

A study by McCormack, Giles-Corti, and Bulsara (2008) identified that shorter distance 

between activities enhances walkability within neighborhoods and decreases VMT. Diao 

and Ferreira Jr. (2014) found the same result, indicating that diversity and the spatial 

distribution of non-work activities are significantly associated with vehicle usage. 

Design. Design represents street network characteristics such as street density, 

sidewalk coverage, and intersection density. Previous studies of design indicate that it is 

a critical factor influencing household VMT by affecting either the number of miles each 

car is driven or the number of cars owned (Boarnet et al., 2003; Chatman, 2003; Ewing & 

Cervero, 2010; Gomez-Ibanez et al., 2009). According to Ewing and Cervero (2010), 

after the accessibility factor, street design is the most important factor affecting VMT.  

Some studies have defined “design” by measuring the shape of the city (i.e., 

circularity or linearity). For example, analyzing disaggregated household travel survey 

data in 114 urban areas showed that households in circular cities have lower annual VMT 

(Bento et al., 2005, p. 475). Walkability is another indicator of design and is most strongly 

related to measures of intersection density, sidewalk coverage, and the number of 
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destinations within walking distance. According to Diao and Ferreira Jr. (2014), improving 

the pedestrian environment and providing safe and comfortable sidewalks can decrease 

VMT and vehicle usage. 

In addition to walkability, road density and network connectivity are critical factors 

that have been investigated in previous studies (Cervero & Kockelman, 1997; Cervero & 

Murakami, 2010; Diao & Ferreira Jr, 2014). According to Diao and Ferreira Jr. (2014), 

good connectivity often means a street network provides multiple route alternatives 

between origins and destinations. Therefore, higher connectivity is associated with lower 

vehicle usage. Diao and Ferreira Jr. (2014) showed that a good pedestrian environment 

is related to lower VMT per household and VMT per capita, while its influence on VMT 

per vehicle is insignificant (2014, p. 3004).  

Destination Accessibility. Destination accessibility represents the ease of 

access to activities, which can be measured by travel time or distance between trip 

origins and destinations. Kockelman (1997) analyzed travel behavior as a function of 

accessibility, land use mixing, and land use balance. She used linear models and logit 

functions to explore vehicle kilometers traveled (VKT), automobile ownership, and mode 

choice. Then, she examined accessibility by counting the total sales and service jobs 

within a travel time of 30 minutes. Her findings indicate that accessibility is a far better 

indicator of VKT and mode choice than density. However, population density was a better 

factor in Kockelman’s (1997) models of automobile ownership. Likewise, a meta-analysis 

by Ewing and Cervero (2010) argued that regional accessibility is the most important built 

environment factor affecting travel behavior, and that VMT/vehicle hours traveled (VHT) 

is primarily a function of regional accessibility. The meta-analysis indicates a negative 

elasticity of VMT with respect to measures of destination accessibility (i.e., VMT 

decreases as destination accessibility improves). The main reason for this negative 
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relationship is low levels of auto ownership and auto dependence at central locations. 

Also, Ewing and Cervero (2001) found that increasing accessibility or density reduced the 

trip length of home end trips and non-home end trips.  

Accessibility to retail, shopping centers, and other non-work locations affects 

travel behavior. Crane (1996) observed that short distances to relevant destinations 

increase trip frequencies due to higher accessibility and lower travel times between 

origins and destinations. In contrast, when people are faced with a longer distance 

between their residential location and their destination, they might change their trip plan 

because they consider the trip to be expensive, cumbersome, and time-consuming 

(Næss, 2006). Whereas Crane (1996) presented a positive relationship between 

accessibility to retail and trip frequency, Cervero and Murakami (2010) found that local 

retail accessibility and access to basic employment reduce VMT. However, they suggest 

that this relationship is not as strong as population density. In line with Ewing and 

Cervero (2014), Cervero and Murakami (2010) found that regional accessibility is the 

most important factor affecting VMT. Furthermore, Diao and Ferreira Jr. (2014, p. 3000) 

examined accessibility by measuring connectivity, claiming that “good connectivity can 

improve the connection of people and places and cause shorter local trips, thereby 

reducing vehicle usage.” According to their results, VMT per vehicle, VMT per household, 

and VMT per capita all increase when the distance to non-work destinations increases.  

Distance to Public Transit. Distance to public transit measures the shortest 

distance from transit stations to home or work locations. Bento et al. (2005) found that 

increasing rail route miles reduces annual VMT in cities with railroads. Diao and Ferreira 

Jr. (2014) found a positive relationship between VMT and the “inaccessibility to transit 

and jobs” factor, concluding that increased distance to public transit increases VMT per 

vehicle, VMT per household, and VMT per capita.  
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Ridership is another element of travel behavior that might be influenced by the 

built environment. For example, Cervero, Ferrell, and Murphy (2002) showed that living 

and working near transit stations correlates with higher ridership. Næss (2006) found that 

residents within the suburbs of the Copenhagen Metropolitan Area had the longest 

commuting distances, the highest car ownership rates, the highest amounts of travel, and 

the most extensive car use compared to residents located close to the city center.  

 

Socioeconomic Characteristics and Travel Behavior  

While most studies have linked travel behavior to land use patterns, other studies 

have considered the effects of socioeconomics and residential self-selection (Handy, 

2005; Walters, Breiland, Jimenez, & Lee, 2012). These studies aimed to examine how 

individuals perceive the built environment and how their socioeconomic characteristics 

influence their travel behavior. Some studies have argued that socioeconomic factors 

have a stronger impact on travel behavior outcomes such as mode choice (Handy, 2005; 

Cervero, Ferrell, & Murphy, 2002). For example, Handy (2015) claims that the 

socioeconomic status of commuters is the most important factor affecting commuters’ 

mode choices. In this study, attitudinal variables impacted travel behavior the most 

among the explanatory variables analyzed (Handy, 2005).  

As socioeconomic factors influence travel behavior, they should be considered 

as control variables in travel demand models. However, gathering travel survey data 

along with detailed socioeconomic data is expensive and sometimes limited to specific 

regions. Due to this data limitation, many studies have failed to consider different aspects 

of socioeconomic characteristics. According to Ewing et al. (1996), omitting 

socioeconomic factors as control variables results in inaccurate conclusions regarding 

the actual effects of land use on travel behavior. In other words, this could lead to biased 
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results with either underestimates or overestimates in the statistical analysis (Boarnet & 

Crane, 2001). Properly considering theoretically relevant variables in the statistical 

analysis is one solution to such bias (Crown, 1998; Steiner, 1994). 

Income is one of the socioeconomic factors that influences individuals’ travel 

mode choices. For low-income workers who do not have access to private cars, public 

transit is the main mode of transportation (Tilahun & Fan, 2014). Bento et al. (2005) 

showed that income is positively associated with VMT, with higher income groups 

exhibiting higher annual VMT. In addition, Diao and Ferreira Jr. (2014) found interesting 

results related to income; their research found that higher levels of wealth were 

associated with lower VMT per vehicle but higher VMT per household and VMT per 

capita. This result is explained by households in wealthier neighborhoods tending to own 

more cars but driving each car less compared to households in other neighborhoods 

(Diao & Ferreira Jr., 2014). Furthermore, Brownstone and Golob (2009) showed that fuel 

usage and household annual mileage have a positive linear relationship with income. 

They suggest that higher income is associated with higher VMT because of choosing a 

lower density residential location, greater total driving distances, and the lower impact of 

fuel price on the household budget. Næss (2006) found that neighborhoods with high 

income levels had substantially higher rates of car ownership than low income areas.   

The life cycle has a significant impact on travel behavior as well. Brownstone and 

Golob (2009) presented evidence that retired two-person households and households 

with older children have higher annual VMT because they prefer to live in lower density 

areas and distance to work is not a concern. In addition, they found that non-retired 

single-person households had lower annual mileage and fuel consumption, as this group 

prefers to live in higher-density areas and closer to their workplace. According to Polzin 

(2006), larger households have a higher likelihood of carpooling, which results in 
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additional person trips without additional vehicle trips. According to this research, the 

VMT of single person households is half that of two-person households. This may be a 

result of the fact that “many single person households are elderly persons living alone 

who are not very mobile and other individuals who have chosen a more solitary lifestyle” 

(Polzin, 2006, p. 9).  

Education has also been shown to affect travel behavior. For example, 

Brownstone and Golob (2009) found that households headed by an individual with a 

college degree or postgraduate degree have higher annual VMT and fuel usage. 

Furthermore, Brownstone and Golob (2009) found that the number of household drivers 

has a strong impact on household annual mileage as well as fuel consumption. They also 

showed that household annual mileage increases with the number of children. 

Household size, number of children, and the number of working adults are 

statistically significant predictors of VMT and mode choice in most studies (Bento et al., 

2005; Brownstone & Golob, 2009; Diao & Ferreira Jr, 2014). For example, Bento et al. 

(2005, p. 475) confirmed that the number of persons and working adults in a household 

has a significant impact on annual VMT per vehicle. They also found that households 

with children (age less than 16) had higher annual VMTs. Additionally, their research 

indicated that race (white or black household) was not a statistically significant predictor 

of VMT. Another study by Diao and Ferreira Jr. (2014) showed that the number of 

children in the household is positively associated with household VMT. However, they 

found that the impact of children on VMT per vehicle and VMT per capita is insignificant. 

One explanation they posited for this result is that households tend to buy more vehicles 

as household size grows, but the usage of each vehicle does not change significantly. In 

contrast to the number of children, their study found that working status had a strong 

impact on VMT per vehicle, VMT per household, and VMT per capita.  
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Age, gender, race, and ethnicity are additional socioeconomic factors that can 

affect travel behavior  (Basarić, Vujičić, Simić, Bogdanović, & Saulić, 2016; Brownstone & 

Golob, 2009; Tilley & Houston, 2016). According to Brownstone and Golob (2009), Black, 

Hispanic, and Asian households tend to settle in higher-density areas than White 

households, resulting in lower fuel consumption and vehicle usage for these groups. 

Gender and age differences in travel behavior have also been investigated in various 

studies (Bagley & Mokhtarian, 2002; Cao, Mokhtarian, & Handy, 2009; Kitamura et al., 

1997; Sánchez & González, 2016; Tilley & Houston, 2016; Van Acker et al., 2014). Using 

descriptive analysis, Tilley and Houston (2016) investigated mobility trends between the 

mid-1990s and the mid-2000s by age group, gender, and birth cohort. Their results 

indicate that younger cohorts of women travel farther as they age. 

Immigration status is another socioeconomic factor that has been investigated in 

several studies (Chatman & Klein, 2013; Tal & Handy, 2010). Employing 2001 National 

Household Travel Survey (NHTS) data, Tal and Handy (2010) investigated the correlation 

between travel behavior and immigrant characteristics measured by year of immigration 

to the U.S. and place of birth. Controlling for spatial and socio-demographic variables, Tal 

and Handy (2010) found that:   

…socio-demographic variables have different effects on car ownership 

for some of the immigrant groups: household size, households with no children, 

and retired households have negative effects on auto ownership for immigrants 

from Central and South America and from East Asia. All three effects may relate 

to lower need for a car relative to others in the same immigrant group but also 

suggest greater constraints on car ownership than for respondents with the same 

demographic characteristics in other immigrant groups (p.90). 
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Residential Self-Selection 

Decisions, such as residential self-selection, have recently come under critical 

observation as important potential contributors to influencing individuals’ travel behaviors. 

Several studies have been conducted to examine the effects of built environment 

characteristics on travel behavior. However, the study of how individuals’ attitudes and 

perceptions affect their travel behaviors is a controversial topic. As mentioned in the land-

use transport feedback cycle (Wegener, 2004), travel behavior is associated with 

interrelated decisions such as choosing a residential location and car ownership. Several 

studies have argued that individuals’ decisions for choosing a specific residential location 

or owning a car could influence their modes of travel (Boarnet & Crane, 2001; Bohte, 

Maat, & Wee, 2007; Lerman, 1976; Schwanen & Mokhtarian, 2005; Srinivasan & 

Ferreira, 2002; J. Zhang & Van Acker, 2017).  

To reduce the uncertainty of land use and transportation models, it is necessary 

to consider individuals’ decisions and separate out the self-selection bias from the 

analysis. Schwanen and Mokhtarian (2005) argued that travel behavior studies could 

lead to biased and inconsistent results if built environment attributes were investigated 

without considering the effects of self-selection issues. According to Handy (2005, p. 23), 

“Attitudinal variables have the greatest impact on travel behavior among all of the 

explanatory variables and residential location type has little impact on travel behavior”. 

Handy (2005) concluded that the connection between travel behavior and residential type 

is better explained by self-selection, as residents with certain attitudes are moving to 

certain kinds of neighborhoods. Based on a qualitative study of several interviewees 

living in inner-city locations in the Copenhagen Metropolitan Area, Næss (2006) observed 

that these residents chose to use the bikes as their main mode of travel and have even 

chosen not to own a car. Næss (2006) explained that for these interviewees, saving time, 
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saving money, maintaining physical stamina, and maintaining local social contacts are 

the main reasons for limiting travel distances.  

Due to the availability of data, most empirical studies have disregarded the 

important role of long-term decisions such as residential location choice. Using 

disaggregated data, several studies have examined attitudinal factors toward residential 

and workplace locations (Bagley & Mokhtarian, 2002; Cao et al., 2009; Ettema & 

Nieuwenhuis, 2017; Lerman, 1976; Van Wee, 2009). Analyzing residential self-selection 

requires specific data that present the complex interdependencies of travel behavior 

outcomes, lifestyle decisions, and attitudes towards travel and residential location (Van 

Acker et al., 2014). According to Van Acker et al. (2014), travel behavior should be 

examined within a hierarchy of choices while investigating the motivational background of 

these decisions. This interrelationship causes the complicated issue of self-selection.  

Various cross-sectional studies have noted that residential self-selection 

influences travel behavior (Bagley & Mokhtarian, 2002; Boarnet, 2011; Cao et al., 2009; 

Chatman, 2003; Handy, Cao, & Mokhtarian, 2005; Handy & Clifton, 2001). These studies 

attempted to determine whether individual preferences influence choosing neighborhoods 

within cities and whether neighborhood characteristics affect travel behavior. Different 

approaches can be used to consider the impact of residential location choices. For 

example, studies have incorporated demographic and land use variables combined with 

instrumental variables (Boarnet & Greenwald, 2000; Boarnet & Sarmiento, 1998; 

Greenwald & Boarnet, 2001), attitudinal factors (Ettema & Nieuwenhuis, 2017; Kitamura 

et al., 1997; Kuppam, Pendyala, & Rahman, 1999; J. Zhang & Van Acker, 2017), and 

longitudinal travel data or panel data (Beige & Axhausen, 2017; Handy et al., 2005; 

Krizek, 2000; Srinivasan & Ferreira, 2002). Besides the variety of data, these studies 

have also implemented different statistical methods such as nested logit models (Cervero 
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& Duncan, 2003; Eliasson & Mattsson, 2000; Peng, Dueker, & Strathman, 1996) and the 

SEM approach (Bagley & Mokhtarian, 2002; Van Acker et al., 2014) to address 

residential location choices with travel demand models. Using SEM, Van Acker et al. 

(2014) found a significant direct effect of residential neighborhood on car ownership. 

Ultimately, Cao and Mokhtarian (2005) summarized the methodologies best suited for 

attitudinal self-selection analysis into nine categories: instrumental variable models, direct 

questioning, statistical control, sample selection models, joint discrete choice models, 

SEM, propensity scores, mutually-dependent discrete choice models, and longitudinal 

designs. In addition to residential selection, some studies have considered the effects of 

other decisions such as car ownership. For instance, Small and Winston (1999) 

discussed that mode choice and car use might be associated by the number of 

automobiles owned by a household.  

There are two types of empirical approaches frequently used in travel behavior 

studies; aggregation and disaggregation approaches. Aggregating travel survey data by 

geographical areas such as TAZs, neighborhoods, and urban areas leads to the 

possibility of overlooking residential self-selection. Aggregation approaches assume 

homogeneity among individual and built environment attributes. They do not allow 

variation across different observed individuals and elements of built environment 

characteristics within geographical zones (Bhiromkaew, 2006). In contrast, the use of 

disaggregation approaches provides information about individuals’ travel behaviors that 

aid researchers in capturing more variability in their analyses. However, understanding 

residential self-selection is not a straightforward process due to various uncertainties and 

unobserved variables.  

One approach to understanding residential self-selection is designing a 

questionnaire that includes questions that capture the preferences, attitudes, and 
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behaviors of commuters (Bagley & Mokhtarian, 2002; Kitamura et al., 1997). For 

example, Bagley and Mokhtarian (2002, p. 281) surveyed individuals’ responses to 39 

statements measuring attitudes toward private automobile use, ridesharing, public 

transportation, housing preferences, and economic policies to understand household 

attitudes. They ultimately found that when attitudinal, lifestyle, and socio-demographic 

variables were accounted for, neighborhood type had little influence on travel behavior. 

Furthermore, Kitamura et al. (1997) concluded that: 

“… attitudes are certainly more strongly, and perhaps more directly, associated 

with travel than are land use characteristics. This suggests that land use policies 

promoting higher densities and mixtures may not alter travel demand materially 

unless residents’ attitudes are also changed” (p.156). 

Previous studies have often been criticized for the lack of investigation into 

whether a causal relationship exists between urban structure and travel behavior. 

According to Handy (1996), there are several limitations with aggregated data that 

prevent identifying the mechanisms of how built environment characteristics influence 

travel decisions. One of the limitations of aggregated data is that they cannot indicate 

causal relationships (Handy, 1996, 2005).  

On the other hand, disaggregation approaches provide an opportunity to 

examine the effects of personal attitudes and preferences on travel outcomes. The 

benefit of using disaggregated data is the ability to associate socioeconomic 

characteristics of commuters with travel outcomes. With the use of personal 

characteristics and built environment factors on smaller scales, the primary focus of the 

disaggregate approach is to explain unobserved factors which are not considered in 

aggregation approaches. As the estimated coefficients are directly related to individuals, 
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the findings from disaggregated data can be used to determine causality among variables 

(Handy, 1996).   

 

Urban Structure, Travel Time, and Congestion 

Congestion is considered one of the major problems of urban transportation, as it 

has grown not only in the largest cities but in cities of every size. Over the last several 

decades, commuters have been challenged with increasing travel times, inconvenience, 

stress, and expenses for fuel and taxes (to fund possible solutions to congestion). In 

1990, the report “Effects of Congestion On Mobility In New Jersey” presented by Senator 

Lautenberg highlighted congestion as a serious problem that requires serious efforts by 

the federal government, state governments, local governments, and the private sector 

(U.S. Senate, Subcommittee on Transportation and Related Agencies, 1990). Congestion 

and delays have a straightforward effect on travel time and speed, which planners and 

decision makers evaluate for long-term projects. Changes in suburban development, 

automobile use, and high-speed highway infrastructure have encouraged auto 

dependency in the United States, with negative outcomes such as increasing traffic 

congestion across urban areas. According to the Federal Highway Administration 

(FHWA), congestion is the result of seven root causes that are interrelated: traffic 

incidents, work zones, weather, fluctuations in normal traffic (demand), special 

events (demand), traffic control devices, and physical bottlenecks (capacity) (U.S 

Department of Transportation, Federal Highway Administration, 2015) In addition to these 

factors, urban form and land use patterns influence the level of traffic congestion.  

The impact of urban structure on travel time and congestion has been widely 

investigated in previous studies (Brinkman, 2016; Kuzmyak, 2012; Sarzynski et al., 2006; 

Schwanen, Dijst, & Dieleman, 2001). The conventional wisdom about congestion and 
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land use considers suburbanization as the stimulating engine which increases traffic 

congestion. According to this wisdom, a low density of housing and workplaces 

encourages longer commutes with higher trip frequencies, thereby imposing a higher 

level of traffic congestion (Downs, 1992). On the other hand, it has been argued that 

suburbanization results in shorter trips and lower VMT with higher average speeds, which 

leads to less traffic congestion (Gordon et al., 1991).  

Sarzynski et al. (2006) examined the conventional wisdom and the effects of land 

use on traffic congestion using aggregated urbanized data. In contrast to conventional 

wisdom, they found that denser urban areas with a cluster of activities have higher auto 

volumes and traffic delays. In this study, Sarzynski et al. (2006) showed that urban areas 

with higher densities and housing centrality tend to have more traffic congestion.   

Considering urban structure, Bovy and Salomon (2002) explained traffic 

congestion based on supply and demand by addressing multiple interrelated factors such 

as economic factors, transport supply, socio-demographics, and urban spatial structure. 

As presented in Figure 8, spatial structure and transport supply influence car use, and car 

use directly affects traffic congestion. Also, socioeconomic factors, transport supply, and 

spatial structure indirectly influence traffic congestion by their direct impacts on car use. 

This framework defined traffic congestion as a self-reinforcing process with short-term 

and long-term feedback loops influencing car use (Bovy & Salmon, 2002). Based on this 

framework, the congestion/land use feedback loop can be interpreted as the same as the 

Land-use transport feedback cycle (Wegener, 2004). Additionally, Bovy and Salomon 

(2002) discussed that suburbanization provides lower housing costs, which increases 

travel distances and population growth, causing a higher number of trips within the 

region. These two factors have resulted in growing demand for road space and have 

necessitated improvements or extensions of the current transport system. 
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Simultaneously, the roadway improvements provide higher accessibility, which leads to 

lower car costs per VMT and increased car ownership. In this dynamical system, traffic 

congestion increases the demand for roads and providing more roads is directly 

associated with higher accessibility and land use development. Figure 8 explicitly 

demonstrates a simplified dynamic model of endogenous and exogenous factors 

contributing to congestion. 

 

Figure 8. Main External Factors Affecting Congestion  

Source: Bovy & Salomon, 2002  
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Congestion and Travel Behavior 

Understanding traffic congestion and its impact on commuter travel behavior is a 

critical factor in transportation planning. Traffic congestion influences different aspects of 

travel behavior, including VMT, VHT, PMT, and mode choice. In addition to travel 

behavior, traveling within a region with a congested road is associated with increased 

stress, low physical activity, and infant health problems (Currie & Walker, 2011; Levy, 

Buonocore, & Von Stackelberg, 2010; U. S. General Accounting Office, 1989). 

Congestion and delays are often defined as the “impedance” for the movement of people 

and goods, which can be measured in terms of travel distance, travel time, and speed. 

Traffic congestion increases travel times and travel costs, therefore influencing 

commuter’s travel behavior. Based on Utility Maximization Theory (Ben-Akiva & Lerman, 

1985; Domencich & McFadden, 1975; McFadden, 1974), commuters try to minimize 

these costs and maximize benefits by changing the timing of their trips, selecting different 

modes, or canceling their unnecessary trips. 

To investigate the effects of traffic congestion on commuters’ choices, it is useful 

to consider a system dynamics model presented by Bovy and Salomon (2002). Figure 9 

demonstrates a simplified system dynamics model of land use, transport, and 

demographic factors contributing to car use, car ownership, and mode choice. As shown, 

car use and car ownership are the components of this system dynamics model and are 

affected by income and other factors such as economic activities and land use patterns. 

In this system, congestion affects the efficiency of transport by increasing both travel 

times and trip costs. According to Utility Maximization Theory, maximizing comfort and 

minimizing travel time and cost and are the key determinants of motorized travel 

(Committee on Physical Activity, Health, Transportation, and Land Use, Transportation, 
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2005). That is, commuters prefer non-auto options to minimize their trip costs within 

congested areas.  

 

Figure 9. System Dynamics Model of Factors Contributing to Mode Choice and Car 

Ownership 

Source: Bovy & Salomon, 2002, p. 149 
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Although traffic congestion is an important factor that affects travel behavior, only 

a few studies have quantified the impact of congestion on travel behavior (Davis, 2004; 

Kuzmyak, 2012; Litman & Colman, 2001; Næss, 2006; Sweet & Chen, 2011). These 

empirical studies presented that monetary costs and reduced time consumption are 

effective factors that influence commuters’ choice of travel. For example, Litman and 

Colman (2001) found that reducing traffic congestion generates traffic and encourages 

more vehicle travel by reducing the generalized cost of driving. Sweet and Chen (2011) 

investigated the effects of traffic congestion on taking public transit and found that higher 

traffic congestion and unreliable auto travel conditions induce mode switching to public 

transit when service by train is already faster than by car. Næss (2006) observed the 

same results in Copenhagen, with some interviewees choosing to take a train during rush 

hours to avoid spending time in traffic congestion and choosing to drive by car to 

downtown when commuting during off-peak hours. Næss (2006) also noted that several 

inner-city interviewees selected a bike as their means of transport because it is faster 

than car to reach destination up to 4 miles from their home location. By investigating four 

Phoenix transportation corridors, Kuzmyak (2012) found that residents in higher-density 

neighborhoods with traffic congestion on adjacent streets make substantially shorter trips. 

This research also indicated that average trip length for home-based trip is about 7.4 

miles in higher-density neighborhoods compared to 10.7 miles in suburban 

neighborhoods. To examine the impact of traffic congestion on household behavior, 

Davis (2004) focused on commuting time as the outcome of joint residential and 

employment decisions. This study indicates that congestion plays an important role in 

affecting travel behavior by influencing household’s decisions for the selection of 

residential location.  
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Traffic congestion might suppress vehicle usage because of higher travel times 

and costs. A recent study by Ewing et al. (2017) investigated the relationship between 

compact development, VMT, and traffic congestion. Although their research explored the 

relationship between VMT and total delay (as a measure of traffic congestion), the 

findings did not present individuals’ travel behaviors, as it was based on aggregated total 

delay and total VMT for urbanized areas. Using disaggregated 2009 NHTS data, Sardari, 

Hamidi, and Pouladi (2018) found an inverse relationship between VMT and traffic 

congestion around household home locations.  

Measuring the effects of traffic congestion on travel behavior is critical for 

determining the relationship between highway capacity improvements and traffic 

congestion. According to Diao and Ferreira Jr. (2014, p. 3000), decreasing the cost of 

personal vehicle travel by providing higher speed limits or widening roads can increase 

vehicle usage. In addition to highway capacity improvements, the relationship between 

congestion pricing and travel behavior has been investigated in several studies 

(Brinkman, 2016; Deakin, 1994; Harvey, 1994; Linn, Wang, & Xie, 2016; W. Zhang & 

Kockelman, 2016). For instance, Zhang and Kockelman (2016) developed land use 

models, based on the bid-rent theory, to simulate the impact of congestion pricing 

scenarios on firm and household location choices and rent distributions. The results of 

the model indicate that road pricing policies have significant impacts on households and 

firms' equilibrium distributions (W. Zhang & Kockelman, 2016).   

The following section presents the methodology of calculating time-related 

mobility measures and developing a generalized SE model to explore the relationship 

between traffic congestion and travel mode choice for journey to work trips.   
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Measuring Traffic Congestion 

Measuring traffic congestion is the first step to examining a transportation system 

and its performance within urban areas. Several performance measures have been 

developed to measure and track traffic congestion. Mobility analysis can be conducted by 

examining the travel time index, travel rate index, total delay, and accessibility as primary 

measures (Cambridge Systematics, Inc., 2005; Lomax & Schrank, 2002; Lomax, Turner, 

& Shunk, 1997; Schrank et al., 2005; Turner, Lomax, & Levinson, 1996). According to the 

National Cooperative Highway Research Program (NCHRP) report 398, travel-time-

based measures are a reliable and preferable approach to estimating and presenting 

mobility and congestion information. However, the main issue of travel time measures is 

“where are the data?”(Lomax et al., 1997). Conventional level of service (LOS) measures 

use road characteristics, such as number of lanes, facility type, and area type, to 

measure capacity and LOS. With new techniques and data such as GPS and cell phone 

data, using travel time data helps to enhance analyses of real-time transportation 

performance. As reported in the NCHRP Report 398, the measurement of mobility can be 

implemented in seven categories, which are presented in Table 2. 

. 
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Table 2. Different Scale of Using Mobility Measurement 

Geographic 
Scope 

Intersection/Interchange 

Location 

CBD Core, CBD Fringe 

Facility Segment Central City 

Route/Corridor Suburbs 

Sector/Subregion Suburban Fringe 

Region Seasonal/Resort 

State/Nation 
Stadium, Arena or 
Sports Complex 

Transportation 
Mode 

Roadways 

Roadway 
Type 

Freeways and Toll 
Roads 

HOV or Bus-Only Lanes 
Expressways and 
Super Arterials 

HOT Lanes, Managed Lanes Principal Arterials 

Car Pools, Buses Minor Arterials 

Rail in Roadway or Median Collectors 

Exclusive Guideway Transit Local Streets 

Time of Day / 
Day of Week 

Morning Peak, Afternoon 
Peak, Noon Peak 

Planning 
Context 

Existing Conditions 

Midday, Evening 
Existing 
Demand/Modified 
Supply 

Daily Average 
Future Demand/Existing 
Supply 

Weekday Average Future Year Conditions 

Special Events, Holiday or 
Weekend  

 
Level of 
Detail 

  

Policy, Planning, 
Design, Operations  

Note: HOV: High-Occupancy Vehicle; HOT: High-Occupancy Toll Lane  
Source: Lomax et al., 1997 
 

Mobility can be assessed by analyses of speed and travel rates. Although travel 

time and speed information are the most reliable measures of transportation 

performance, these data are not always available. According to Schrank et al. (2005), 

congestion performance measures must be based on measurements of travel time. In 

contrast to LOS and VOC indices, travel time data can be easily interpreted by different 

groups or audiences. Figure 10 presents how travel times can be measured from 

different data and analytical methods.  
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According to Schrank et al. (2005), the best methods for calculating travel times 

between origins and destinations are based on direct measurements of travel time, either 

through probe vehicles (e.g., toll tags and cellular telephones) or the “floating car” method 

(as a traditional approach). Figure 10 illustrates how travel times can be transformed into 

a variety of performance measures such as travel time index, buffer time index, and 

planning time index.  

 
 

Figure 10. Time-Related Mobility Measures  
Source: Turner et al., 1996 
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Travel time and speed are key components to measuring the performance of a 

transportation system. As shown in Figure 10, travel-time-based performance measures 

can be classified into two groups: 1) absolute measures and 2) relative measures. 

Absolute measures include factors such as actual speed and travel time, whereas 

relative measures require comparison to the basic conditions such as posted speed limit 

or “free-flow” conditions (Turner et al., 1996).  

Transportation performance measures can be categorized into two levels: 

individual measures and area mobility measures. Individual measures are related to the 

individual traveler, whereas area measures present congestion by geographic level (e.g., 

a corridor or region). Congestion can be expressed by travelers’ waste time due to 

congestion or extra traffic volume on road segments within high demand regions such as 

CBDs. Some measures of traffic congestion consider individual commuters and their total 

delay and extra travel time spent during their trips. According to Schrank et al. (2005), the 

calculation of individual measures is often based on the Transportation Research Board’s 

(TRB) current Highway Capacity Manual (HCM) analysis techniques, vehicle density 

measures calculated from detectors in the pavement, or aerial surveys, Also, roadway 

characteristics and/or speed data from available traffic volumes can be used to estimate 

individual measures. As mentioned before, collecting travel time and speed data are 

somewhat more difficult than collecting traffic volume counts (Schrank et al., 2005). As a 

result, most transportation performance measures are calculated based on traffic volume 

counts. Table 3 summarizes these measures by level of analysis. The definitions of 

transportation performance measures are reported in Appendix A. 
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Table 3. Transportation Performance Measures 

Performance Measure Geographic Area 

Delay per Traveler Region, Sub-Area, Section, Corridor  

Travel Time Index Region, Sub-Area, Section, Corridor  

Buffer Index  Region, Sub-Area, Section, Corridor  

Total Delay Region, Sub-Area, Section, Corridor  

Congested Travel Region, Sub-Area 

Percentage of Congested Travel Region, Sub-Area 

Congested Roadway Region, Sub-Area 

Accessibility Region, Sub-Area 

       Source: Lomax et al., 1999 

 

Comparison of Mobility Measures   

As mentioned earlier, there are different mobility measures which can be 

investigated at different geographic levels. According to previous studies, using time-

related measures and speed data are the best sources for measuring mobility (Schrank 

et al., 2005). Schrank et al. (2005) classified the usage of mobility measures by several 

types of analyses and area sizes. As shown in Table 4, transportation performance 

measures such as travel time and travel rate are beneficial for analyses up to the corridor 

level, while delay and accessibility measures are useful for analyses at higher levels. 

According to Schrank et al. (2005), total delay, delay per person, and travel time 

difference are practical measures for small-scale analyses.  
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Table 4. Recommended Mobility Measures  

  Mobility Measures* 

Analysis Area T
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Individual locations S   P P P P       

Short roadway sections P P P P P P       

Long roadway sections   S P P P P       

Corridors   S S P P P     S 

Sub-areas   S   P P P P P P 

Regional network   S   P P P P P P 

Multimodal analysis   S S P P P     P 

*Note: P = Primary mobility measure; S = Secondary mobility measure 
Measures with delay components can be calculated relative to free-flow or posted speed 
conditions. 

 Sources: Schrank et al., 2005 

  

Summary 

This chapter provided an overview of previous studies addressing their 

methodologies, data, variables, and statistical results. Specifically, this chapter reviewed 

literature with a focus on the interaction between land use and transportation systems, 

and the effects of socioeconomic characteristics and residential self-selection on travel 

behavior. In addition, this chapter discussed the process of measuring traffic congestion 

and compared different mobility measures. Comparing mobility measures presented that 

using time-related measures and speed data are the best sources for measuring mobility. 

The next chapter reviews the statistical approach of this study and covers the process of 

data integration.  
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Chapter 4 

Methodology and Data 

Introduction  

Measuring and monitoring traffic congestion is a vital aspect of 

transportation performance management. Transportation planners and agencies are 

interested in knowing about the effects of traffic congestion on mobility and how to 

develop plans based on future demand. From a modeling perspective, travel 

demand modelers are interested in understanding the effects of congestion on 

travel behavior. This understanding helps them improve travel demand models such 

as activity-based models and enhanced mode choice models. However, analyzing 

the effects of congestion on travel behavior is associated with several limitations, as 

described below. 

The first issue is associated with data aggregation. Examining travel 

behavior requires detailed data about individuals and their preferences and daily 

commute patterns. To overcome data aggregation bias, the present study used 

disaggregated travel survey data with detailed information about the origins and 

destinations of commuters. 

High correlations between the independent variables is the second 

limitation of travel behavior studies. Built environment factors tend to be highly 

correlated to one another when they are all included in a model. This study attempts 

to address this issue by using structural equation modeling (SEM) to deal with the 

high correlation of land use characteristics. 

The third issue is related to the discrete choice analysis in the structural equation 

(SE) model. The outcome variables in an SE model should be continuous variables. In 



 

87 

this study, the generalized structural equation modeling (GSEM) method was used to 

develop choice models with discrete outcomes.  

The fourth problem of travel behavior studies is related to the effects of long-term 

and mid-term decisions on short-term decisions. The reciprocal relationship between 

mode choice decisions and other decisions might influence the commuter’s mode choice.  

For example, residential location choice (as a long-term decision) and car ownership (as 

a mid-term decision) influence mode choice decisions. This effect is the so-called “self-

selection” problem. To avoid a biased analysis, it is necessary to investigate the effects of 

long-term, mid-term, and short-term decisions and consider the interrelationship between 

mode choice, car ownership, and residential location choice. This study has the 

advantage of using residential preference data extracted from the PSRC travel survey.    

The fifth issue relates to the absence of time-related mobility measures when 

modeling VMT or travel mode choice, thereby leaving the effects of congestion on VMT 

or mode choice unexplained. Analyzing time-related or speed-related mobility data during 

the off-peak and peak periods is the missing factor of previous studies. The volume-over-

capacity (V/C) ratio is one measure that can be used as a proxy for the level of traffic 

congestion. However, this factor does not directly represent actual travel time delay. New 

technologies such as cellphone data and GPS data provides an opportunity to analyze 

population mobility at small geographic levels and investigate the effects of congestion on 

commuter travel behavior. The present study has the advantage of using travel time 

delay data extracted from the Google Maps Distance Matrix API. Google Maps travel 

time data are based on GPS and cellular telephones, presenting historical traffic 

condition and measuring travel time directly.   

This chapter begins with a description of the present study’s statistical 

framework, which explains the modeling techniques used to analyze VMT and travel 
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modes along with residential self-section factors. This section reviews the fundamental 

frameworks of structural models and discrete choice modeling, which are then extended 

to GSEM.  

The second section of this chapter describes the process of data gathering, 

cleaning, and integration. In this section, the explanatory variables in the VMT and mode 

choice models are explained along with their descriptive statistics derived from built 

environment and travel survey data. Figure 11 summarizes the statistical approaches and 

data integration described in this chapter.  

 

 

Figure 11. Methodology and Data   

 

Statistical Approaches 

To examine the potential interactions between the built environment and travel 

behavior, empirical studies have applied various methodologies ranging from simple 

regression models to advanced techniques such as SE models. In order to examine the 

Statistical Approaches 
Methodology

•Structural Equation Modelling (SEM)

•Multinomial Logit (MNL) Model

•Generalized Structural Equation Modelling (GSEM)

Data Integration
Data

•Household Travel Survey Data

•Residential Preference

•Built Environment Data 

•Travel Time Delay Data
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travel behavior of individuals, classical linear regression models are the most common 

method used. Classical linear regression with ordinary least squares estimation is 

commonly implemented to analyze continuous travel outcomes such as VMT, trip 

frequency, and PMT. To analyze discrete outcomes such as mode choice, multinomial 

logit (MNL) and nested logit (NL) models are the primary techniques for exploring the 

probability of choosing a specific mode over other alternatives. MNL and NL models have 

been used in various studies to estimate discrete choices involving routes, destination, 

modes, and residential location choices (Bhiromkaew, 2006; Cervero, 2002; Cervero & 

Duncan, 2006; J. Chen & Li, 2017; Fatmi & Habib, 2017; Peng et al., 1996; Schwanen & 

Mokhtarian, 2005; Soltani, 2017; Srinivasan & Ferreira, 2002; Yang et al., 2013; Zaman, 

2010).  

The econometric theory of random utility maximization is the main framework of 

discrete choice analysis as implemented in various travel choice studies (Ben-Akiva & 

Bierlaire, 2003; Cervero, 2002; C. Chen, Gong, & Paaswell, 2007; Horowitz, 1980; Hsu, 

2013; Xu, 2011). According to Koppelman and Bhat (2006), utility is an indicator of value 

to an individual. The utility maximization rule assumes that an individual will choose the 

alternative from his/her set of available alternatives that maximizes his or her utility level 

(p. 14). The rule also indicates that “there is a function containing attributes of 

alternatives and characteristics of individuals that describes an individual’s utility 

valuation for each alternative” (p.14).  

The utility function can be classified into components that are (1) completely 

related to the attributes of alternatives, (2) fully related to the characteristics of the 

decision maker, and (3) represent interactions between the attributes of alternatives and 

the characteristics of the decision maker (Koppelman & Bhat, 2006). Each alternative has 

different attributes that influence an individual’s decision to select an alternative. These 
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attributes include measures such as travel time, travel cost, the reliability of on-time 

arrival, walk access distance, distance to public transit, and others. 

The MNL model is the main component of discrete choice models. However, it 

assumes the independence of irrelevant alternatives (IIA). The IIA property results from 

the assumptions about the random component in the MNL model. In the MNL model, the 

random component is supposed to be independent and identically distributed (IID) (Ben-

Akiva & Lerman, 1985). IID indicates that the random components describing each 

alternative are not correlated between all the pairs of alternatives and that the variances 

of the random component are equal (Louviere et al., 2000, p. 15). 

The assumption of IIA implies that the probability ratio of any two alternatives is 

unchanged by the addition of other alternatives (Ben-Akiva & Lerman, 1985; Greene, 

2000; Sobel, 1980). In other words, the IIA property indicates that the relative probability 

of the alternative being selected does not depend on the availability of unavailable 

alternatives. For example, if driving alone is preferred over taking transit within the choice 

set {drive alone, transit}, introducing a third option such as carpooling or expanding the 

choice set to {drive alone, transit, carpooling} should not make transit preferable 

to driving alone. As travel decisions are commonly interrelated or jointly made with other 

decisions, the IIA assumption is the main limitation of MNL models. (Small & Winston, 

1999).  

As mentioned in the literature review, the travel mode choice decision is 

interrelated or jointly associated with mid-term decisions (such as car ownership) and 

long-term decisions (such as residential location choice or residential self-selection). As a 

result, the violation of the IIA property would result in incorrect and biased estimates in 

MNL models with an inaccurate prediction of mode share (Cervero & Duncan, 2002; 

Forinash & Koppelman, 1993; Louviere et al., 2000). If the IIA property is violated, the NL 
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model is an alternative to the MNL model. However, the main limitation of NL models is 

that they cannot capture the direct and indirect effects between explanatory variables and 

outcome variables.  

In traditional modeling techniques, highly correlated variables should be 

recognized and excluded from the model to avoid multicollinearity. Built environment 

factors are generally correlated with one another. In order to develop a model with 

correlations between independent variables, a different approach was implemented in the 

present study: a structural equation model. SEM is a powerful statistical technique for 

considering the direct and indirect effects of observed variables and incorporating the 

covariance or correlation between two variables as functions of the parameters of the 

model. However, developing an SE model requires a continuous, normally distributed 

outcome variable. Since mode choice and residential selection choice are either 

dichotomous measures, these variables do not meet the basic assumptions of linear 

relationships. According to Rabe-Hesketh, Skrondal, and Pickles (2004), GSEM is 

another approach that can be used to develop an SE model with discrete outcomes and 

include multilevel factors and even latent variables. Additionally, with GSEM, variables 

that do not fit the characteristics of a normal distribution can be estimated with 

generalized models. GSEM also provides a framework for developing structural models 

with both continuous and categorical outcome variables (B. Muthén, 1984; Rabe-Hesketh 

et al., 2004; StataCorp, 2017).  

In this study, SEM is used to analyze daily VMT per household. To develop a 

multilevel discrete choice model with SEM techniques, GSEM was selected to examine 

the probability of individuals’ commute mode choices at the trip level.    
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Structural Equation Modeling (SEM)  

SEM is a statistical technique also known as correlation structure analysis and 

covariance structure analysis. Several common multivariate techniques—including 

regression analysis, analysis of variance (ANOVA), multivariate analysis of variance 

(MANOVA), correlation analysis, and factor analysis—are incorporated in SEM (Bollen, 

1989; Cheung, 2015). With SEM, multiple statistical techniques such as equations, path 

diagrams, and matrices can be integrated in a single framework. For example, factor 

analysis in psychology, path analysis in biology and sociology, and simultaneous 

equation models in economics can be combined using SEM (Bollen, 1989; Cheung, 

2015; Goldberger & Duncan, 1973; Hoyle, 2012; Kaplan, 2000). SEM has been used in 

econometrics and social science for solving systems of interrelated regression equations.  

SEM is rooted in the path-analysis diagrams introduced by Wright (1921) to 

specify relationships among observed variables. Wright’s approach in the path-analysis 

diagrams developed the methodology for analyzing systems of structural equations and 

laid the foundation for SEM.  

SEM represents the hybrid of two separate statistical techniques. The first 

technique is factor analysis, developed in the field of psychology and traced to the work 

of Galton (1869) and Pearson (Pearson and Lee, 1904) tackling the problem of 

inheritance of genetic traits. However, the common factor models can be credited to 

Spearman’s (1904) work on the underlying structure of mental abilities (Kaplan, 2000).  

The second technique of SEM is simultaneous equation modeling, which was established 

primarily in econometrics but is originally rooted in the discipline of genetics (Kaplan, 

2000). Economists such as Goldberger and Duncan (Goldberger, 1964, 1972; 

Goldberger & Duncan, 1973) proposed SE models with the purpose of investigating the 

interrelationships between variables (Cohen & Cohen, 1983).  
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Work by researchers such as Jöreskog (1967), Jöreskog and Lawley (1968), and 

Lawley and Maxwell (1962) led to the development of the maximum likelihood approach 

to factor analysis (Kaplan, 2000). The maximum likelihood approach allows researchers 

to examine the hypothesis that a specified number of factors are present to account for 

the intercorrelations among variables. Minimization of the maximum likelihood fitting 

function led directly to the likelihood ratio chi-square test of the hypothesis that a 

proposed model fits the data (Kaplan, 2000). A generalized least squares approach was 

later developed by Jöreskog and Goldberger (1971).  

The calculation of SE models involves solving a set of equations—one for each 

“response” or “endogenous variable” in the model. Variables that are solely predictors of 

other variables are termed “influences” or “exogenous variables.” According to Kaplan 

(2000), the first SEM package on the market was developed by Jöreskog (1969, 1970, 

1978), who integrated techniques such as equations and path diagrams into a single 

platform named LISREL (Jöreskog & Sörbom, 1993). Parallel with LISREL, a program 

called EQS was introduced by Bentler (1985, 1995). The development of applications 

such as LISREL and EQS popularized the implementation of SEM in various fields such 

as the social and behavioral sciences. Several recent powerful and user-friendly SEM 

packages, such as Mplus, AMOS, and STATA, have been developed and are available 

for researchers (Huber, 2013; L. Muthén & Muthén, 2012; Pallant, 2013).  

Path analysis with endogenous and endogenous variables is a practical 

technique to investigate the interrelationship between land use and travel behavior.  

Various studies have used SE models to examine different outcomes of travel behavior 

such as VMT, trip frequencies, and vehicle ownership, addressing the endogenous 

causal effects between VMT and vehicle ownership (Bagley & Mokhtarian, 2002; 
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Brownstone & Golob, 2009; Dillon, 2017; Golob & Brownstone, 2005; Van Acker, Witlox, 

& Wee, 2007).   

 

Generalized Structural Equation Modelling (GSEM) 

The generalized linear model (GLM) framework of McCullaugh and Nelder (1989) 

has been applied commonly in biostatistics. GLM estimators include the normal 

(Gaussian) and inverse Gaussian for continuous data, Poisson and negative binomial for 

count data, Bernoulli for binary data (including logit and probit), and Gamma for duration 

data (Baum, 2016). Considering SEM and GLM techniques, GSEM is the combination of 

SEM’s modeling capabilities with the GLM estimation framework to build models with 

latent variables as well as response variables that are not continuous. Whereas in SEM 

responses are continuous and models are linear regressions, in GSEM responses are 

continuous or binary, ordinal, count, or multinomial. In other words, GSEM techniques 

represent an extended model of SEM with the purpose of developing multilevel models 

with discrete outcomes (StataCorp, 2017). To develop a model with discrete outcomes, 

GSEM implements a variety of techniques such as logit, probit, ordinal logit, ordinal 

probit, and multinomial logit (StataCorp, 2017).  

 

Modeling Framework 

The modeling framework of this research includes two approaches: SEM and 

GSEM. First, an SE model with household-level travel survey data provides an 

opportunity to investigate continuous travel behavior outcomes such as VMT. As 

presented in Figure 12, this framework presents the effects of socioeconomic 

characteristics, built environment factors, and residential self-selection on the number of 

vehicles in household and VMT. In this figure, causal paths between two variables are 
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illustrated by an arrow. A variable is endogenous when an arrow points to it. Exogenous 

variables are those with arrows only departing from them. In this framework, it is first 

assumed that the number of vehicles in households is affected by the built environment, 

socioeconomic characteristics of households, and their residential preferences. Second, 

it is assumed that VMT is directly influenced by the number of vehicles and is directly and 

indirectly affected by the built environment, socioeconomic characteristics, and residential 

preference.   

 

Figure 12. Conceptual Framework of VMT Model Using SEM  

 

The second framework is based on the trip-level data that examines the 

probability of choosing modes of travel. The trip-level model was developed using GSEM 

with a logit-link function to handle discrete dependent variables. To explain factors that 

influence the choice of travel modes, a recursive GSEM with a logit link function was 
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specified. This model includes explanatory variables addressing residential self-selection, 

built environment factors, and the socioeconomic characteristics of commuters. The 

outcome variables in this model include four modes of travel: drive-alone, carpooling 

(rideshare), transit (bus or train), and non-motorized (walking or biking). The conceptual 

model of this research is presented in Figure 13. All causal paths are directed towards 

the mode choices, representing a recursive model of mode choice behavior.  

 

Figure 13. Conceptual Framework of Mode Choice Model Using GSEM  
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Data Integration 

Data integration is a key aspect of this research methodology. In this study, 

datasets were gathered from several secondary sources including the U.S Census, the 

American Community Survey (ACS), the Longitudinal Employer-Household Dynamics 

(LEHD) program, the Transit-Oriented Development (TOD) database, the General Transit 

Feed Specification (GTFS), the National Historical Geographic Information System 

(NHGIS), Google Maps API, and Walk Score API. These datasets were collected, 

cleaned, and combined into a comprehensive dataset for further analysis.  

To overcome the issue of aggregation bias, the present study incorporated 

disaggregated travel data from the Puget Sound Regional Council (PSRC). The PSRC 

Household Travel Survey data include disaggregated data with details regarding home, 

work, and trip end locations as gathered by GPS and other applications such as rSurvey 

and rMove. Figure 14 illustrates the details of data integration and presents the process 

of creating household-level and trip-level datasets.  
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Figure 14. Data Integration Process  

 

The next section presents the analysis of household travel survey data and 

explains the criteria applied to select the correct population sample from the PSRC travel 

survey and remove outliers from the household-level and trips-level datasets.  

 

Household Travel Survey Data 

The present study used the 2015 Puget Sound Regional Council (PSRC) Travel 

Behavior Survey to investigate the potential effects of traffic congestion on commuting 

mode choice. The survey was conducted in July and April of 2015 within two metropolitan 

areas in the state of Washington: the Seattle-Tacoma-Bellevue metropolitan area and the 

Bremerton-Silverdale metropolitan area.  
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The PSRC travel survey data were selected for two main reasons: First, it was 

recently completed household travel survey data at the time the present study was 

conducted. Second, it provides disaggregated travel survey data that includes the 

geocoded location of home, workplace, and all other trip-end locations. An advantage of 

a disaggregated travel survey over aggregated data is that the daily travel behavior of 

each household member can be identified and used for analysis.  

In collaboration with the PSRC and with permission, restricted travel survey data 

with geocoded information were obtained for further analysis. These travel survey data 

include various groups such as low-income households, households without a vehicle, 

and households who frequently make transit or non-motorized trips within the Puget 

Sound region. The 2015 Travel survey data represent a 24-hour weekday-period activity 

diary that provides disaggregated information regarding households and individuals’ 

characteristics and their trip patterns within the Puget Sound region.  

The 2015 PSRC travel survey dataset includes completed data for 4,786 persons 

from 2,442 households with 18,712 records of trips for each household member. The 

advantage of using PSRC travel survey data is that the survey was completed in 2015 

and recorded the exact geospatial location of trip origins and destinations using 

applications such as GPS, rMove, and rSurvey (Resource Systems Group (RSG), 2015). 

That is, trip origins and destinations can be precisely geocoded in GIS and combined with 

built environment datasets such as residential and employment locations. PSRC travel 

survey data include four separate datasets presenting vehicle information, individual 

surveys, household surveys, and daily (travel day) trip data. Appendix B provides a 

summary of the key questions in 2015 Travel Survey Program. The following section 

briefly summarizes each travel survey dataset.  
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Vehicle-Level Dataset  

The vehicle-level dataset includes information about vehicle make, model, year, 

and fuel type. To compare with other datasets, the vehicle-level dataset is limited to a few 

questions about available vehicles in the household. In this study, the number of vehicles 

in the households were extracted from the vehicle-level dataset and joined with the 

household-level dataset.   

Personal and Household-Level Datasets 

PSRC travel survey data include the characteristics of individuals and 

households in separate datasets. Personal and household-level datasets contain several 

demographic factors which were selected to be appended to the sample. Also, these 

datasets were combined with other built environment variables to create the finalized 

sample dataset. The person-level file includes information for each household member 

age 5 and over in the sampled household. The person-level dataset covers factors 

addressing age, gender, license status, education, and employment type. The 

household-level dataset contains information about the sampled household, such as 

income, household size, number of adults, number of vehicles in the household, and 

home or work location. The household income question was measured on an ordinal 

scale. Also, the survey offered respondents the option to select “Prefer not to answer.” 

The person-level data also contain the main reasons that each person did not complete 

trips on a travel day.  

Figure 15 shows the locations of the 2,442 households that participated in the 

2015 Household Travel Survey. 
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Figure 15. Households Home Locations in PSRC 2015 Travel Survey  

 
Filters Applied to the Household-Level Data 

Once the PSRC travel survey data were received, the datasets were cleaned, 

merged, and geocoded in ArcGIS and reorganized in Microsoft Access and Excel. The 

full dataset consists of 2,419 households within the PSRC area. Based on the purpose of 

the present research, four criteria were implemented for selecting the proper sample and 

removing outliers from the PSRC dataset: 

- Selecting samples with reported trips during the weekdays. Households who did 

not report their trip are excluded from the sample. 

- Selecting households with total travel miles fewer than 310 miles. According to 

the FHWA, households with more than 310 miles per day should be considered 
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outliers (U.S. Department of Transportation, Federal Highway Administration, 

2009). Therefore, only households that reported VMTs of fewer than 310 miles 

were included in the sample. 

- Selecting households with fewer than 20 trips per day. According to the FHWA, 

households with more than 20 trips per day should be considered outliers (U.S. 

Department of Transportation, Federal Highway Administration, 2009). 

Therefore, only households that reported fewer than 20 trips per day were 

included in the sample. 

The final household-level dataset used to estimate the VMT model consists of 

1,729 households. For this study, all continuous variables were transformed by taking 

natural logarithms, which reduces the impact of outliers and provides parameter 

estimates as elasticities. Table 5 through Table 7 provide summaries of demographics, 

their daily trips, and income groups from the selected samples at the household level.  

 

Table 5. Descriptive Statistics of Household Demographic for the Selected Sample 

SE Variables N Minimum Maximum Mean 
Standard 
Deviation 

HH Size 1,729 1.00 6.00 2.06 0.98 

Number of Adults 1,729 1.00 5.00 1.78 0.64 

Number of Children 1,729 0.00 4.00 0.28 0.65 

Number of Workers 1,729 0.00 5.00 1.12 0.84 

HH Vehicle Counts 1,729 1.00 10.00 1.79 0.95 

 
  



 

103 

Table 6. Descriptive Statistics of Households’ Daily Trips at the Selected Sample 

SE Variables N Minimum Maximum Mean 
Standard 
Deviation 

HH Number of Trips 1,729 1.00 20.00 7.93 4.38 

HH Vehicle Miles Traveled 1,729 0.1 309.7 41.47 43.4 

 

Table 7. Descriptive Statistics of Household Income at the Selected Sample  

Income Group Frequency Percent 
Cumulative 

Percent 

Under $10,000 31 1.8 1.8 

$10,000-$24,999 145 8.4 10.2 

$25,000-$34,999 131 7.6 17.8 

$35,000-$49,999 205 11.9 29.6 

$50,000-$74,999 302 17.5 47.1 

$75,000-$99,999 358 20.7 67.8 

$100,000-$149,999 321 18.6 86.4 

$150,000-$199,999 121 7.0 93.3 

$200,000-$249,999 61 3.5 96.9 

$250,000 or more 54 3.1 100.0 

Total 1,729 100.0  

 

Trip-Level Dataset  

In the trip-level dataset, each trip has a unique record ID representing household, 

person, and trip number. The trip-level dataset provides a summary of activities that were 

completed between origin and destination, including variables such as trip purpose, time 

of day, trip duration, and travel mode. Figure 16 presents an example of 18,712 trips with 

their origins and destinations.  
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Figure 16. Desire Line of Trips in PSRC 2015 Travel Survey Data 

 

Filters Applied to the Trip-Level Data 

The full trip-level dataset consists of 18,712 trips covering a variety of travel 

modes taken by commuters 5 years of age or older. Based on the purpose of the mode 

choice model, four criteria were applied to select the proper sample and remove outliers 

from the PSRC dataset: 

 
- Selecting reported mode of travel conducted during the weekdays. Commuters 

who did not report their mode of travel were excluded from the sample. 

- Selecting typical travel modes by automobile, transit, and walk or bike. Other 

modes such as ferry and airplane were excluded. 
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- Selecting trips conducted by adults over 16 years of age. In the mode choice 

model, it is assumed that commuters are not dependent on others due to their 

age. As a result, reported trips for commuters younger than 16 years old were 

removed from the trip-level dataset.  

The final trip-level dataset used to estimate the mode choice model consists of 

14,619 trips conducted by 3,374 adults over 16 years old. The trip-level dataset includes 

four main modes of travel: driving alone, carpooling, transit, and non-motorized mode 

(walking\biking). Driving and carpooling were recognized as commuters using a private 

vehicle to drive to work or traveling in the same vehicle with other household members or 

other people who were not in the household. The transit mode was recognized as a 

person taking either a bus or train. Ultimately, walking and biking alternatives were 

combined into the non-motorized category. Table 8 presents the descriptive statistics of 

travel mode from the selected sample at the trip level.   

 

Table 8. Descriptive Statistics of Travel Mode at the Trip-Level 

Travel Modes Frequency Percent 
Cumulative 

Percent 

Drive Alone  6,355 43.5 43.5 

Carpooling  3,892 26.6 70.1 

Transit (Bus\Train) 1,225 8.4 78.5 

Non-Motorized (Walk\Bike) 3,147 21.5 100.0 

Total 14,619 100.0  

 

Table 9 through Table 11 provide summary statistics of trips and the 

socioeconomic characteristics of commuters, including level of education and income.  
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Table 9. Distribution of Trips by Demographic Factors of Commuters  

SE Variables Frequency Percent 
Cumulative  

Percent  

Age 

16-17 143 1.0 1.0 

18-24 536 3.7 4.6 

25-34 2,505 17.1 21.8 

35-44 2,582 17.7 39.4 

45-54 2,396 16.4 55.8 

55-64 3,008 20.6 76.4 

65-74 2,452 16.8 93.2 

75-84 845 5.8 99.0 

85 or older 152 1.0 100.0 

Total 14,619 100.0  

Gender 

Male 8,235 56.3 56.3 

Female 6,384 43.7 100.0 

Total 14,619 100.0  

Household Size   

1 3,677 25.2 25.2 

2 6,457 44.2 69.3 

3 2,198 15.0 84.4 

4 1,673 11.4 95.8 

5 454 3.1 98.9 

6 122 .8 99.7 

7 38 .3 100.0 

Total 14,619 100.0  

 

Table 10. Distribution of Commuter Trips by Level of Education  

Level of Education Frequency Percent 
Cumulative 

Percent 

Less than high school 325 2.2 3.2 

High school graduate 917 6.3 8.5 

Some college 2,165 14.8 23.3 

Vocational/technical training 486 3.3 26.6 

Associate degree 948 6.5 33.1 

Bachelor’s degree 5,520 37.8 70.9 

Graduate/post-graduate 
degree 

4,258 29.1 100.0 

Total 14,619 100.0  
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Table 11. Distribution of Commuter Trips by Household Income Level 

HH Income Level  Frequency  Percent Cumulative Percent 

Under $10,000 423 2.9 2.9 

$10,000-$24,999 1,309 9.0 11.8 

$25,000-$34,999 974 6.7 18.5 

$35,000-$49,999 1,488 10.2 28.7 

$50,000-$74,999 2,337 16.0 44.7 

$75,000-$99,999 2,962 20.3 124.1 

$100,000-$149,999 2,822 19.3 84.2 

$150,000-$199,999 1,115 7.6 91.9 

$200,000-$249,999 575 3.9 95.8 

$250,000 or more 614 4.2 100.0 

Total 14,619 100.0  

 
 

Residential Preference Data 

The PSRC travel survey includes nine questions about factors influencing 

residential preferences and their importance when choosing one’s current home location. 

These questions addressed the following factors: change in family size or marital/partner 

status; affordability; quality of schools (K-12); having a walkable neighborhood and being 

near local activities; having space and separation from others; being close to family or 

friends; being close to public transit; being close to the highway; and being within a 30-

minute commute to work. The list of questions in the PSRC travel survey program are 

presented in Appendix B. The summary of participants’ responses to these questions is 

presented in Table 12. 
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Table 12. Distribution of Households by Their Residential-Preference  

Residential 
Preference  

Frequency Percent Frequency Percent Frequency Percent 

A Change in Family Size or 
Marital/Partner Status 

Having Space & 
Separation from 

Others 

Having a Walkable 
Neighborhood 

Very Unimportant 486 28.1 153 8.8 106 6.1 

Somewhat 
Unimportant 

93 5.4 184 10.6 133 7.7 

Neither or N/A 710 41.1 318 18.4 211 12.2 

Somewhat 
Important 

228 13.2 603 34.9 607 35.1 

Very Important 212 12.3 471 27.2 672 38.9 

Total 1,729 100.0 1,729 100.0 1,729 100.0 

Quality of Schools 
Being Close to 

Family or Friends 
Being Close to 
Public Transit 

Very Unimportant 527 30.5 228 13.2 317 18.3 

Somewhat 
Unimportant 

114 6.6 168 9.7 215 12.4 

Neither or N/A 438 25.3 399 23.1 370 21.4 

Somewhat 
Important 

290 16.8 591 34.2 473 27.4 

Very Important 360 20.8 343 19.8 354 20.5 

Total 1,729 100.0 1,729 100.0 1,729 100.0 

Affordability 
Within a 30-Minute 
Commute to Work 

Being Close to the 
Highway 

Very Unimportant 77 4.5 192 11.1 190 11.0 

Somewhat 
Unimportant 

61 3.5 114 6.6 260 15.0 

Neither or N/A 116 6.7 298 17.2 378 21.9 

Somewhat 
Important 

481 27.8 376 21.7 674 39.0 

Very Important 994 57.5 749 43.3 227 13.1 

Total 1,729 100.0 1,729 100.0 1,729 100.0 
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Residential Preference at Household-Level Data 

In the household VMT model, residential preferences are summarized in three 

categories: pro-environment, pro-family, and pro-highway. Based on the input of six self-

reported residential preferences, two latent factors—pro-environment and pro-family—

were extracted using principal component analysis (PCA). As shown in Table 13, the pro-

environment factor was constructed based on three variables: walkability, transit 

accessibility, and distance to workplace. The pro-family factor is a combination of 

residential preferences based on school quality, changes in household status, and 

proximity to family or friends. In addition to these two factors, the pro-highway factor was 

directly extracted based on the household’s response to the question of how highway 

access affected their current home location selection. 

The adequacy of pro-environment and pro-family variables were examined using 

Bartlett’s test of sphericity. Bartlett’s test rejected the null hypothesis (Χ2 = 964.3, df = 

15), indicating that there is a high level of intercorrelation among the variables, allowing 

us to reduce the number of variables. Multicollinearity was investigated using the Kaiser-

Meyer-Olkin (KMO) statistic to determine sampling adequacy. The KMO statistic ranges 

from 0 to 1, with small values indicating that the variables do not have enough in 

common. The analysis resulted in a KMO value of 0.671, which is greater than the 

threshold of 0.6. Additionally, the reliability of the PCA was investigated with Cronbach’s 

alpha test, which has a maximum value of 1. The resulting Cronbach’s alpha value of 

0.653 is greater than the threshold of 0.6 (Sangkapichai & Saphores, 2009). To simplify 

the interpretation, the residential selection variables were normalized (to be between 0 

and 1, where 1 represents stronger preferences.  
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Table 13. Loading Factors  

Reasons for 
Residential Selection 

Component 

1:  
pro-environment 

2:  
pro-family 

Having a Walkable Neighborhood .831  

Being Close to Public Transit .754  

Within a 30-Minute Commute to Work .650  

Quality of Schools  .783 

A Change in Family Size or 
Marital/Partner Status 

 .746 

Being Close to Family or Friends  .481 
Note: Extraction Method: Principal Component Analysis; Rotation Method: Promax 
with Kaiser Normalization; Rotation converged in three iterations. 

 

The normalization was completed using Equation 1. 

 

zi =
 𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
     

(1) 

 

Residential Preference at the Trip Level 

The data for residential preference include three residential factors directly 

related to the mode of travel: neighborhood walkability, proximity to public transit, and 

proximity to highways. Therefore, the effects these factors are considered in the mode 

choice model. Table 14 presents residential preferences at the trip level.   

 

Table 14. Distribution of Trips Based on Commuters’ Residential Preferences 

Residential Preference Frequency Percent Cumulative % 

Having a Walkable Neighborhood 

Very Unimportant 839 5.7 5.7 

Somewhat Unimportant 943 6.5 12.2 

Neither or N/A 1,504 10.3 22.5 

Somewhat Important 4,736 32.4 54.9 

Very Important 6,597 45.1 100.0 

Total 14,619 100.0  
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       Table 14—Continued 

Residential Preference Frequency Percent Cumulative % 

 Being Close to Public Transit 

Very Unimportant 2,311 15.8 15.8 

Somewhat Unimportant 1,530 10.5 26.3 

Neither or N/A 2,695 18.4 44.7 

Somewhat Important 3,788 25.9 70.6 

Very Important 4,295 29.4 100.0 

Total 14,619 100.0  

Being Close to the Highway 

Very Unimportant 2,092 14.3 14.3 

Somewhat Unimportant 2,363 16.2 30.5 

Neither or N/A 3,344 22.9 53.3 

Somewhat Important 5,111 35.0 88.3 

Very Important 1,709 11.7 100.0 

Total 14,619 100.0  

 

Trip Purpose Data 

At the trip level, trip purposes are classified based on five major groups: Home-

Based Work (HBW), Home-Based Other trips (HBO), Non-Home-Based (NHB), Shopping 

trips (SHOP), and Social and Recreational trips (SOCREC). Home-based trips include 

trips in which either the origin or destination is the respondent’s home. 

For all SHOP trips, one end had a trip purpose of grocery shopping or other 

shopping such as a mall or pet store. SOCREC trips represent trips where one end of the 

trip involves going to a restaurant, a gym, a social or recreational event, or going to a 

religious, community, or volunteer activity. HBO trips include a trip in which one end is 

home and the other end is none of the above categories. Other trips in which the home is 

not the origin or destination are classified as NHB. Table 15 presents the percent 

distribution of trip purposes. As expected, the distribution varies by trip purpose. HBW, 

HBO, and SOCREC trips comprise 17.1, 18.2, and 19.8 percent of trips, respectively, 
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whereas only 12.4 percent of trips are SHOP trips. NHB trips account for 32.13 percent of 

person trips in the selected sample from the PSRC travel survey.  

 

Table 15. Trip Purposes in Trip-Level Data   

Trip Purpose  Frequency  Percent 

Home-based Work (HBW) 2,505 17.13 

Home-based Other (HBO) 2,663 18.21 

Non-Home Based (NHB) 4,733 32.37 

Shopping (SHOP) 1,823 12.47 

Social and Recreational (SOCREC) 2,895 19.80 

 Total 14,619 100.0 

 

Built Environment Data 

Characteristics of the built environment around households’ home and work 

locations were derived from several secondary sources, including U.S. Census data, the 

ACS, the Highway Performance Monitoring System (HPMS), the GTFS, the NHGIS, and 

the LEHD. The built environment dataset includes information about job/population 

balance, population density, employment density, activity density, road density, and 

access to public transit. Using ArcGIS software, built environment datasets were 

summarized around each persons’s home location, workplace, and other trip-end 

locations. Additional information related to walkability and transit services was obtained 

from Walk Score and Transit Score APIs. These data provide information about the 

number of transit routes as well as transit score and walk score near home and work 

locations. Built environment data were placed in two datasets, as explained below. 

Figure 17 presents an example of using the ArcGIS network analyst tool to 

generate 2-mile and half-mile network buffers around home, work, and trip-end locations. 
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Figure 17. Street-Network Buffers Using ArcGIS Network Analyst  

 

Built Environment Data Near Home Locations  

For the household VMT model, built environment data were collected at 2-mile 

network buffers around households’ home locations. It is necessary to note that previous 

studies commonly considered a half-mile buffer to summarize built environment data. 

However, with a focus on traffic congestion analysis, a previous study by Sardari, Hamidi, 

and Pouladi (2018) found that 2- to 5-mile buffers are the optimal thresholds to examine 

traffic congestion and its effects on VMT. This threshold is related to the fact that traffic 

congestion mostly occurs on highways, major arterials, and main roads. To be consistent 

with the level of congestion data, built environment data were extracted within 2-mile 

network buffers.  
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Concerning density relative to unprotected areas, protected areas within the 

network buffers were calculated using the Protected Areas Database of the United States 

(PAD-US) (U.S. Geological Survey, Gap Analysis Program (GAP), 2016). Using this 

database, unprotected land was calculated by subtracting protected land from total land 

within network buffers. The road density and intersection density were calculated based 

on the public release of HPMS geospatial data in the shapefile format. Equations 2 

through 7 present the formulas for calculating each built environment factor within a 2-

mile network buffer. 

 

Job Density =  
Total Job 

Unprotected Land (acre) 
   (2) 

Population Density =  
Total Population 

Unprotected Land (acre) 
   (3) 

Activity Density =  
Employment + Housing Units 

Unprotected Land (acre) 
   (4) 

Road Density =  
Total Lane Miles of Roads 

Unprotected Land (acre) 
   (5) 

Intersection Density =  
Number of Intersections 

Unprotected Land (acre) 
   (6) 

Job/Population Balance = 1 −   ABS (
(Ji−Jp∗Pi)

(Ji+JP∗Pi )
 )  

Where: 
i= Household home location number  
J= Total jobs near home location 
P= Total population near home location 
JP= Average Job per person in the Puget Sound region  

(7) 

 

The job/population balance ratio can range from 0 to 1. A value of 0 represents 

areas with only jobs or residents within the 2-mile buffer, but not both. A value of 1 

indicates areas with the same ratio of jobs-to-residents within the 2-mile buffer as within 
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the metropolitan area as a whole. Table 16 provides a summary statistics of built 

environment data within a 2-mile network buffer from home locations.  

 

Table 16. Summary Statistics of Built Environment Data Near Home Location 

Built Environment 
Attributes 

N Minimum Maximum Mean 
Std.  

Deviation  
Source 

Job Density (acre) 1,729 0.00 35.79 4.99 7.81 LEHD 

Population Density 
(acre) 

1,729 0.05 18.52 6.48 3.28 Census 

Activity Density 
(job + housing 
units /acre) 

1,729 0.06 45.74 8.11 9.57 Census 

Road Density  
(sq. mile) 

1,729 .80 41.9 20.3 9.0 HPMS 

Intersection 
Density (sq. mile) 

1,729 0.1 98.8 27.3 26.4 HPMS 

Job Population 
Balance 

1,729 0.06 .98 0.65 0.23 
Census 
- LEHD 

Number of Transit 
Stations  

1,729 0.00 624 131.3 22.28 GTFS 

 

 
Principal Component Analysis for Density Score 

As the density factors of the built environment are highly correlated, four density 

factors were combined into one density score. Using PCA, a density score was extracted 

based on four built environment factors representing population density, employment 

density, road density, and intersection density. From the loadings, it is noted that the 

component of these four variables accounts for 92 percent of the total variation, 

representing a density factor. The results indicate a KMO equal to .798, which indicates a 

good measure of adequacy. The reliability of the density factor was investigated by 

Cronbach’s alpha test, resulting in a significant value of .89, which exceeds the threshold 

of 0.6.  
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Figure 18. Example of Built Environment Data Near Home Locations  

 

Built Environment Data at the Trip Level 

For the mode choice trip-level model, built environment data were extracted 

within 0.5-mile network buffers around the origin and destination of trips. This threshold is 

based on a previous study presented by Cervero and Ewing (2010). In their study, they 

found that 0.5 miles is an appropriate threshold for mode choice and accessibility 

analysis.  

According to Cervero (2002), mode choice is associated with the characteristics 

of points A (origins) and B (destinations). Therefore, it is necessary to consider the 
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potential effects of built environment factors around both trip origins and destinations. 

Table 17 provides summary statistics of built environment data near the origins and 

destinations of trips. The formulas of activity density and job/population balance are 

presented in Equation 4 and 7, respectively. The Walk Score and Transit Score were 

obtained from Walk Score API, and trip distances are directly reported in the PSRC 

household travel survey dataset.  

 

Table 17. Summary Statistics of Built Environment Data Near Origins and Destinations 

Built 
Environment 

Attributes 
Location N Minimum Maximum Mean 

Standard 
Deviation 

Activity Density  
(per acre) 

Origin 14,619 0.1 188.9 16.48 33.05 

Destination 14,619 0.1 277.9 16.51 33.31 

Job/Population 
Balance 

Origin 14,619 0.0 1.00 0.48 0.29 

Destination 14,619 0.0 1.00 0.48 0.29 

Walk Score 
Origin 14,619 0.0 100.0 62.11 28.90 

Destination 14,619 0.0 100.0 62.07 28.90 

Transit Score 
Origin 14,619 0.0 100.0 43.99 29.22 

Destination 14,619 0.0 100.0 43.96 29.21 

Trip Distance  
(miles)  

O-D 14,619 0.0 110.20 5.21 8.00 

 

Figure 19 and Figure 20 present the activity density and job/population balance, 

respectively, near the origins and destinations of trips. As shown, higher activity densities 

and job/population balances are located at downtown Settle, Redmond, Kent, and 

Tacoma.   
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Figure 19. Activity Density Near Origins and Destinations of Trips 

 

Figure 20. Job/Population Balance Near Origins and Destinations of Trips 
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Walk Score and Transit Score Near Origins and Destinations  

Walk Score® and Transit Score® data were used to measure the level of 

walkability and access to public transit near the origins and destinations of trips. For each 

location, the Walk Score investigates the walking routes to nearby amenities within a 5-

minute walk, or 0.25 miles. Using a distance decay function, the Walk Score quantifies 

pedestrian friendliness by exploring population density and transportation network 

metrics such as intersection density and block length. The Walk Score is based on a 

variety of data sources including the U.S. Census, Google, Education.com, Open Street 

Map, and Localeze.1 The Walk Score methodology was developed by the Walk Score 

Advisory Board and has been validated by academic researchers (Duncan, Aldstadt, 

Whalen, Melly, & Gortmaker, 2011). In a study by Duncan et al. (2011), Walk Score data 

were validated within four U.S. metropolitan areas, and it was determined that the Walk 

Score is a valid indicator of examining neighborhood walkability in multiple geographic 

locations and at different spatial scales.  

The Transit Score is another measure that quantifies access to public transit and 

indicates how well a location is served by public transit. The Transit Score is based on 

GTFS data released in a standard format by public transit agencies. The Transit Score is 

estimated based on transit frequency, type of transit (bus or rail), and distance to the 

nearest stop on the route.2  Table 18 summarizes the Walk Score and Transit Score 

classifications, ranked from 0 to 100.  

 

  

                                                 
1 See www.walkscore.com/methodology.shtml 
2 See www.walkscore.com/transit-score-methodology.shtml 
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Table 18. Classification of Walk Score and Transit Scores  

Walk Score® Description Transit Score® Description 

90–100 
Walker's Paradise;  
Daily errands do not 
require a car. 

90–100 
Rider's Paradise; 
World-class public 
transportation. 

70–89 
Very Walkable; 
Most errands can be 
accomplished on foot. 

70–89 
Excellent Transit; 
Transit is convenient 
for most trips. 

50–69 
Somewhat Walkable; 
Some errands can be 
accomplished on foot. 

50–69 
Good Transit; 
Many nearby transit 
options. 

25–49 
Car-Dependent; 
Most errands require a 
car. 

25–49 
 

Some Transit; 
A few nearby transit 
options. 

0–24 
Car-Dependent; 
Almost all errands 
require a car. 

0–24 
Minimal Transit; 
0 Value presents No 
Nearby Transit 

   Source: WalkScore.com  

The Walk Score website provides an API tool that allows users to input their 

address and receive the Walk Score and Transit Score assigned to that location. In this 

study, the Walk Score and Transit Score of trip origins and destination were obtained by 

adding the longitude and latitude of trip origins and destinations into the API, with scores 

then returned by the API calls. Appendix C presents the requirements for the API tool. 

Table 19 and Table 20 provide summary statistics of the Walk Score and Transit Score, 

respectively, near the origins and destinations of trips.  

 

Table 19. Summary Statistics of Walk Score Near Origin and Destination 

Walkability Score 
Origin Destination 

Frequency Percent Frequency Percent 

Car-Dependent 4,586 31.4 4,597 31.4 

Somewhat Walkable 3,296 22.5 3,297 22.6 

Very Walkable 3,535 24.2 3,534 24.2 

Walker's Paradise 3,202 21.9 3,191 21.8 

Total 14,619 100.0 14,619 100.0 
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Table 20. Summary Statistics of Transit Score Near Origin and Destination 

Transit Score  
Origin Destination 

Frequency Percent Frequency Percent 

No Nearby Transit 2,358 16.1 2,361 16.2 

Minimal Transit 1,193 8.2 1,197 8.2 

Some Transit 5,074 34.7 5,072 34.7 

Good Transit 3,371 23.1 3,366 23.0 

Excellent Transit 1,129 7.7 1,137 7.8 

Rider's Paradise 1,494 10.2 1,486 10.2 

Total 14,619 100.0 14,619 100.0 

 

Figure 21 and Figure 22 show the spatial patterns of the Walk Score and Transit 

Score, respectively, near the origins and destinations of trips.  

 

Figure 21. Walk Score Near Origins and Destinations of Trips  
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Figure 22. Transit Score Near Origins and Destinations of Trips 

 

Traffic Congestion Data 

Developing a time-related mobility measure is a practical approach to examining 

the effects of congestion on mode choice. As mentioned in the literature review, 

developing a time-related mobility measure requires a massive amount of traffic data 

including the details of actual travel times and speeds during peak and off-peak hours. As 

mentioned in the previous chapter, travel time delay is the recommended time-related 

mobility measure and can be calculated based on peak and off-peak travel time data.  

This study has the advantage of analyzing travel time data from peak and off-

peak periods extracted from the Google Maps API. Appendix D presents the 

requirements for the Google Maps API. In this study, a delay score was calculated as the 
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primary indicator of traffic congestion. It is important to note that Google travel time data 

are based on historical data that are not allocated to a specific year. Google’s traffic 

model returns driving duration considering time spent in traffic, which is predicted based 

on historical averages. Therefore, integrating these historical data into the household 

travel survey dataset provides an ideal travel time indicator. 

The following section describes how congestion was quantified in two ways to be 

used in the VMT model and mode choice model. 

 

 
Travel Time Delay Score  

For the VMT model, traffic congestion was measured by a travel time delay 

score, which was calculated using time-related data from the Google Maps API. The 

Google Maps Distance Matrix provides the opportunity to obtain travel time data between 

each origin and destination by time of day. This information derived from Google Maps 

provides a significant resource for measuring small-scale traffic congestion. 

Google’s Terms of Service allow users or developers to implement data for limited 

amounts of content if it is temporarily and securely used in the application (Google LLC, 

2018). In this application, Google travel time data for a distance of 2 miles around home 

locations were temporarily obtained for peak and off-peak hours during weekdays. Then, 

the delay score around each home location was calculated based on average travel time 

during peak and off-peak hours within the 2-mile network buffer. Once off-peak and peak 

travel times within 2 miles were gathered, the delay score was calculated. Equation 8 

presents the formula for calculating the delay score.  

 

Delay Score = (1 − 
Average Free Flow Travel Time (Weekdays) 

Average Travel Time During Peak Periods (Weekdays) 
 ) ∗ 100 

(8) 

https://developers.google.com/maps/terms
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Table 21 presents the descriptive statistics of the average travel time delay within 

the 2-mile network buffer.  

 
Table 21. Descriptive Statistics of Travel Time Delay  

Variable Minimum Maximum Mean 
Standard 
Deviation 

Average travel time delay 
within 2-mile network 
buffer (Minutes) 

0.05 
 

14.45 
 

3.43 
 

3.27 
 

 
Figure 23 illustrates the neighborhoods with higher levels of travel time delays, 

as calculated within a 2-mile network buffer. Higher levels of traffic congestion are 

located at downtown Seattle, Bellevue, and Redmond. 

 

 

Figure 23. Delay Score Within 2 Miles from Home Locations 
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Average Travel Time Delay Between Origin and Destination 

At the trip level for the mode choice model, traffic congestion was quantified 

based on the extra time required to conduct a trip during peak hours. As the Google 

Maps API provides travel times over the selected period between every point pair within a 

region, travel time delay was calculated to examine the travel time delay when a 

particular trip took place. For this study, the Google Maps API was used to calculate 

travel time between individuals’ trips origins and destinations based on the time of the 

trip. Once travel time by time of day was gathered, travel time delay was quantified as a 

time-related mobility measure addressing the average travel time during peak and off-

peak periods on weekdays.  

Figure 24 presents travel time delay in minutes between the origins and 

destinations of trips. The travel time delay is a continuous measure that examines traffic 

congestion. This continuous congestion measure has an advantage over discrete factors 

because it can be easily measured, and it has a straightforward interpretation. Table 22 

summarizes the descriptive statistics of total delay at the trip level. Figure 24 illustrates 

the desire lines of trips and their average travel time delays in minutes. 

 

Table 22. Descriptive Statistics of Total Delay at Trip-Level  

Factor  N Minimum Maximum Mean 
Standard 
Deviation 

 
Travel Time Delay 
between Origin and 
Destination of Trips  

 

14,619 .00 38.56 5.21 5.07 
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Figure 24. Average Travel Time Delay in Minutes at Trip-Level  

 

Summary 

This chapter summarized the present study’s statistical approaches and data 

integration. Subsequently, this chapter provided summary statistics of the selected 

sample population from the household travel survey data. Using ArcGIS for data 

construction, this chapter explained the process of quantifying traffic congestion and 

measuring built environment factors such as density and job/population density.  

The next chapter explains the explanatory variables used via SEM and GSEM, 

model specifications, model fit, and the results of the VMT and mode choice models.  
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Chapter 5 

Empirical Analysis 

This chapter reviews the results of two models that adopted comprehensive 

frameworks for the present investigation and included congestion and self-selection 

factors in addition to the built environment and socioeconomic variables. First, the 

chapter discusses the VMT model, with its explanatory variables analyzed via SEM. 

Then, the interpretations of estimated coefficients are explained in detail. Using 

SPSS AMOS software, model fit statistics and maximum likelihood estimates of the 

model parameters are provided in this section.  

The next section introduces the mode choice model and the process of 

developing and validating GSEM in STATA. Also, this phase summarizes a list of 

variables implemented via GSEM followed by the results of probabilities for 

selecting each mode of travel. This section comprises five separate models, 

building from a simple model with only demographic factors to the full model with all 

variables. The first model includes only socioeconomic characteristics. In the 

second model, variables related to residential preference are added to the first 

model. The third model comprises the second model and trip purpose variables. 

The fourth model includes the third model plus the built environment factor, transit 

score, and walk score. By using walk score and transit score data, the 

characteristics of the built environment and transit service at residential and 

employment locations are also examined in the model. The fifth model, the full 

model, contains the fourth model plus the travel time delay variable. The effects of 

adding variables to the model were analyzed using the Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC). The results of these models are 

explained in the corresponding sections of this chapter.  
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VMT Model Using SEM 

This phase implements SEM—a statistical technique also known as correlation 

structure analysis and covariance structure analysis—to analyze VMT per household. As 

mentioned in Chapter 3, several common multivariate techniques such as regression 

analysis, analysis of variance (ANOVA), multivariate analysis of variance (MANOVA), 

correlation analysis, and factor analysis can be classified as special models of SEM 

(Bollen, 1989; Kaplan, 2000). SEM is a powerful statistical technique for considering the 

direct and indirect effects of observed variables and calculating the covariance or 

correlation between two variables as functions of the parameters of the model. One 

advantage of SEM is that multiple statistical tools such as equations, path diagrams, and 

matrices can be integrated into a single framework that is appropriate for analyzing built 

environment factors, which are generally correlated with one another. Since excluding 

correlated variables raises questions about analytical bias, SEM provides a practical 

technique to develop a model that includes the correlations between explanatory 

variables.  

Following the theories developed and used in previous studies, this study 

considers factors across three main categories:  

(1) socioeconomic characteristics of households,  

(2) built environment features of residential locations and workplaces, and  

(3) household preferences for residential locations.  

It is hypothesized that when controlling for socioeconomic and built environment factors, 

higher travel time delay will mitigate daily household VMT. 
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VMT Model Variables 

VMT is associated with a variety of variables such as socioeconomic, residential 

self-section, and built environment factors. As mentioned in the literature review, the 

influences of socioeconomic factors on travel behavior have been discussed in theories 

such as the Theory of Planned Behavior (Fishbein & Ajzen, 1975) and tested in previous 

studies (Bento et al., 2005; Ewing & Cervero, 2010a; Hanson & Hanson, 1981; T. Lin, 

Wang, & Guan, 2017; Tilahun & Fan, 2014). For instance, studies have concluded that 

VMT is positively and significantly correlated with household size, number of children, 

and the number of working adults (Bento et al., 2005; Brownstone & Golob, 2009; Diao & 

Ferreira Jr, 2014). The life cycle has a significant impact on travel behavior as well. 

Brownstone and Golob (2009) presented evidence that retired two-person households 

and households with older children have higher annual VMT. Income is another 

socioeconomic factor that influences travel behavior. Tilahun and Fan (2014) presented 

that public transit is the main mode of transportation for low-income workers who do not 

have access to private cars. Also, Bento et al. (2005) presented that income is positively 

associated with VMT and higher income groups had higher annual VMT.  

Based on the relevant theories, previous studies, and the model fit, the final VMT 

model includes the following socioeconomic factors: household size; number of 

household workers; number of children in the household; household income; and living in 

rental homes, which is used as a dummy variable. (The descriptive statistics of the 

socioeconomic variables are presented in the second section of Chapter 4.)  

Other control variables in travel behavior studies are long-term and mid-term 

decisions. Residential selection and vehicle ownership can be considered long-term and 

mid-term decisions, respectively. Endogenous decisions such as residential self-selection 

have recently came under critical observation as an important potential contributor to 
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travel behavior. Several studies have discussed that individuals’ decisions for choosing a 

specific residential location or owning a car could influence their modes of travel (Boarnet 

& Crane, 2001; Bohte et al., 2007; Lerman, 1976; Schwanen & Mokhtarian, 2005; 

Srinivasan & Ferreira, 2002; J. Zhang & Van Acker, 2017). Using PCA, three factors were 

considered as an indicator of residential self-selection: Pro-Highway, Pro-Environment, 

and Pro-Family. The details of these factors are explained in the second section of 

Chapter 4.  

In addition to socioeconomic factors and residential preferences, other studies 

have analyzed the effects of the built environment and urban form, commonly measured 

as the “D” factors: density, diversity, design, destination accessibility, distance to transit, 

development scale, and demographics (Cervero & Kockelman, 1997; Ewing & Cervero, 

2010a). Density is one of the built environment factors that is frequently investigated in 

empirical studies (Bento, Cropper, Mobarak, & Vinha, 2005; Cervero & Murakami, 2010; 

Ewing & Cervero, 2010; Gomez-Ibanez et al., 2009).These studies presented an inverse 

relationship between VMT and density, concluding that residents in dense areas with 

compact development usually have lower VMT. For instance, by analyzing the travel 

distances of commuters in the Copenhagen Metropolitan Area, Næss (2006) found that 

residents who live in the suburbs with a low density of activities tend to travel longer 

distances with a higher rate of car use than residents located near the city center with 

higher density (p. 60).  

Diversity is another built environment factor; it represents the mixture of land use. 

This measure is associated with the distribution of work and non-work activities in a given 

area (Ewing & Cervero, 2010). According to Ewing and Cervero (2010), there is a 

negative relationship between VMT and land use diversity. In a study by Kockelman 

(1997), mode choice and VMT are examined while considering control variables such as 
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density, entropy index (land use balance), dissimilarity index of land use (mix index), and 

accessibility.  

Understanding traffic congestion and its feedback on commuters’ travel 

behaviors is another critical factor that has been mostly neglected in previous studies. 

Congestion and delays are often defined as the “impedance” for the movement of people 

and goods, which can be measured in terms of travel distance, travel time, and speed. 

Traffic congestion increases travel times and travel costs, which thereby influence 

different aspects of commuter travel behavior including VMT, VHT, PMT, and mode 

choice. In the present study, a delay score is used as a control variable for traffic 

congestion.  

In the VMT model, built environment factors are represented by the following 

variables: access to free-parking at workplace, density-score, job/population balance 

score, transit score, and delay score. The process of calculating built environment factors 

and the corresponding descriptive statistics are discussed in Chapter 4.  

Number of household vehicles is another factor that is affected by density. In the 

VMT model, number of household vehicles is considered an endogenous variable that is 

influenced by exogenous variables and directly affects VMT. The variables included in 

the SE model are defined in Table 23. In the VMT model, variables were grouped into 

three categories: 

• Outcome variable: VMT per household.  

• Exogenous variables: Explanatory factors comprising socioeconomic variables, 

self-selection variables, and built environment variables.  

• Endogenous variables: Number of vehicles for each household, which can be 

influenced by other socioeconomic factors such as income and lifestyle. Table 

23 presents the exogenous and endogenous variables used in VMT model.  
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Table 23. Variables Included in the VMT Model 

Variables Definition 

Outcome Variable 

hh-vmt Vehicle miles traveled per household 

Exogenous Variables 

Socioeconomic Factors 

hh_size Household size 

hh_workers Number of household workers 

hh_child Number of children in household  

hh_income Household income 

home-rent Living in rental homes (dummy variable) 

Self-Selection Factors 

pro_hwy Residential selection because of access to highway 

pro-env 
Residential selection because of access to public transit, 
walkability, or 30-minute travel time to workplace    

pro-family 
Residential selection because of school, changes in 
household, or close to friends and families 

Built Environment Factors 

free-parking 
Number of HH members with access to free parking at 
workplace 

density-score 
Combines population density, employment density, road 
density, and intersection density 

Job/pop-score Job/population balance 

delay-score Travel time delay  

transit-score Number of public transit routes 

Endogenous Variable 

hh-vehicles Number of household vehicles 

  
 

VMT Model Specification  

Analyzing traffic congestion and its interrelationship with land use requires 

consideration of exogenous and endogenous variables. The present research addresses 

this issue by using SEM—instead of single-equation models—to represent complex 
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relationships between variables. SEM involves solving a set of equations, one for each 

“response” (i.e., endogenous variable) in the model. Variables that are solely predictors 

of other variables are termed “influences,” or exogenous variables (Lei & Wu, 2007).  

To estimate relationships in SEM, the Amos software package and maximum 

likelihood procedures were used to develop model specifications. Figure 25 presents the 

path diagram generated in SPSS AMOS for the best-fitting model. A path diagram is a 

visual representation of a system of simultaneous equation. In this diagram, the observed 

variables are enclosed in boxes. A straight, single-headed arrow represents a causal 

relationship between the variables connected by the arrow. A curved, two-headed arrow 

represents an association between two variables. The variables may be related for any of 

a number of reasons; the relationship may be due to both variables depending on some 

third factor(s), or the variables may have a causal relationship, but this remains 

unspecified (Bollen, 1989).  
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Figure 25. Causal Path Diagram Explaining VMT Per Household 

 
SE Model Fit 

Developing a well-defined measurement model is the purpose of statistical 

techniques that support creating a reliable model. There are different indices for 

evaluating an SE model’s goodness-of-fit, as presented in Table 24. The most widely 

calculated measure is the Χ2 value relative to the degrees of freedom. This is often 

referred to as the chi-square test. A significant chi-square result indicates an 
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unsatisfactory model fit. According to Hox and Bechger (2007), hypothesized models can 

be rejected with a high chi-square value, which translates to a significant p-value. In other 

words, If the p-value associated with the value of Χ2 is below .05, the hypothesized model 

should be rejected (Kaplan, 2000). In the present study’s VMT SE model, the likelihood 

ratio chi-square results indicate a good model fit (Χ2 = 22.29, df = 17, p = 0.173). Both the 

low ratio of chi-square to degrees of freedom and the p-value greater than .05 are 

indicators of the model’s goodness of fit.  

The likelihood ratio chi-square test is strongly sensitive to sample size. To 

overcome this limitation, researchers have focused on the development of alternative 

indices such as the Normed Fit Index (NFI), the Tucker- Lewis Index (TLI), the 

Comparative Fit Index (CFI), and the Parsimony-NFI (PNFI) (Kaplan, 2000). These 

indices provide relatively different perspectives on the fit of SE models. The details of 

these measures are beyond the scope of this research, though a comprehensive review 

of these indices can be found in Hu and Bentler (1995). According to Kaplan (2000), 

these indices are typically scaled to lie between 0 and 1, with 1 indicating perfect fit 

relative to the baseline model (p.107). The usual rule of thumb for these indices is that 

0.95 is indicative of good fit relative to the baseline model. NFI and TLI, as well as other 

indices, utilize the likelihood ratio chi-square and assume that the model fits perfectly (p. 

114).  

Kaplan (2000) argues that these measures are too restrictive and that it is better 

to evaluate the approximate fit of the model. Root Mean Square Error of Approximation 

(RMSEA) is another measure that evaluates the approximate fit of a model. According to 

Kaplan (2000), on the basis of prior empirical examples, Steiger (1989) and Browne and 

Mels (1990) noted a “close fit” as a RMSEA value less than or equal to 0.05, while values 
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between 0.08 and 0.1 are indicative of a mediocre fit. In the present study’s VMT model, 

RMSEA is 0.013, which is within the 0.05 threshold.  

These additional goodness-of-fit indices further indicate a good fit for the present 

study’s VMT SE model. Table 24 presents the goodness-of-fit indices, with their 

corresponding cutoff values indicated in parentheses.  

Table 24. SE Model Fit Results  

Indicators Value 
Accepted 

Cutoff 
Values 

Chi-square 22.29 - 

Degrees of freedom  17 - 

Probability level  0.174 > 0.05 

Comparative Fit Index (CFI) 0.98 > 0.90 

Normed Fit Index (NFI) 0.97 > 0.95 

Non-Normed Fit Index (NNFI) (or the Tucker-
Lewis Index: TLI)  

0.98 > 0.90 

Root Mean Square Error of Approximation 
(RMSEA) 

0.013 < 0.05 

 
 

Assessment of Multivariate Normality 

According to Gao, Mokhtarian, and Johnston (2008), one of the main concerns in 

SEM is whether the sample data have a multivariate normal distribution. Using SPSS 

Amos, univariate and multivariate normalities are examined. As mentioned in the second 

section of Chapter 4, outliers were removed from the sample and the variables were 

transformed by taking the natural logarithm. This approach reduces the multivariate 

skewness and kurtosis of all variables collectively by reducing the univariate skewness 

and kurtosis of each individual variable. Table 25 presents the results of the analysis of 

the univariate normality for each variable and the multivariate normality of the selected 

sample (N = 1,729). As shown, when the critical ratio of multivariate kurtosis is smaller 
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than 1.96, the absolute values of univariate kurtosis for all variables are equal to or 

smaller than 1 but are not necessarily 0. In this respect, according to Gao, Mokhtarian, 

and Johnston (2008), considering only multivariate kurtosis may be good enough for the 

purpose of assessing multivariate normality. As shown in Table 26, the critical ratio falls 

at the 1.96 cutoff value. 

 

Table 25. Assessment of Normality in SEM   

Variables  Skewness C.R. Kurtosis C.R. 

Socioeconomic Factor 

hh-vehicles 0.42 6.784 -0.881 -7.115 

hh-size -0.104 -1.686 -1.036 -8.369 

hh-workers 0.851 13.745 -0.972 -7.849 

hh-income -0.47 -7.59 -0.122 -0.982 

hh-child 0.779 12.581 0.092 0.74 

Self-Selection Factor 

pro-environment  -0.8 -12.923 0.239 1.93 

pro-highway -1.237 -19.975 0.622 5.021 

pro-family -0.204 -3.293 -0.539 -4.356 

Built Environment Factor 

delay-score 0.086 1.393 -1.048 -8.461 

density-score 0.619 9.998 0.109 0.881 

free-parking 0.976 15.765 0.002 0.015 

job/pop-score -1.207 -19.486 1.095 8.842 

transit-score 0.388 6.263 -0.589 -4.754 

Multivariate   1.426 1.249 

 
 

VMT Model Results 

Maximum likelihood was originally proposed as a method of estimation for 

econometric simultaneous equation models by Koopmans, Rubin, and Leipnik (1950). 

Substantially, Jöreskog (1969, 1970) explained the maximum likelihood technique for 
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estimating a linear structural equation system and a general approach to confirmatory 

maximum likelihood factor analysis. The software program AMOS (Arbuckle, 2009) was 

used for this analysis. The main finding is that the level of traffic congestion—measured 

by delay score—is a significant predictor of VMT. Maximum likelihood estimates of the 

model parameters are provided in Table 26. This table includes unstandardized 

coefficients (B), standardized coefficients (Beta), standard error (SE), critical values (CR), 

and the resultant p values. The Unstandardized coefficient represents the amount by 

which the dependent variable changes if the explanatory variable is changed by 1 unit 

while keeping other variables constant. The standardized coefficient is measured in units 

of standard deviation. Standardizing coefficients indicate the relative importance of each 

coefficient in a regression model (Arbuckle, 2009). The following section provides the 

interpretations of percentage changes based on the unstandardized coefficients.  
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Table 26. Maximum Likelihood Estimates and Statistics for Direct Effects in SEM  

Variables 
Un-Std. 
Est. (B) 

Std. Est. 
(Beta) 

S.E. C.R. p 

Socioeconomic Factor          

hh-vehicles <--- hh-size 0.358 0.352 0.026 13.78 *** 

hh-vehicles <--- hh-workers 0.135 0.102 0.03 4.515 *** 

hh-vehicles <--- hh-income 0.091 0.141 0.013 6.88 *** 

hh-vehicles <--- hh-child -0.246 -0.11 0.047 -5.263 *** 

hh-vehicles <--- home-rent -0.145 -0.135 0.021 -6.941 *** 

Self-Selection Factor           

hh-vehicles <--- pro-environment  -0.077 -0.126 0.013 -6.022 *** 

hh-vehicles <--- pro-highway 0.030 0.053 0.011 2.834 ** 

hh-vehicles <--- pro-family 0.063 0.029 0.043 1.461 0.144 

Built Environment Factor          

hh-vehicles <--- delay-score -0.085 -0.085 0.026 -3.311 *** 

hh-vehicles <--- density-score -0.077 -0.128 0.017 -4.606 *** 

hh-vehicles <--- free-parking 0.047 0.066 0.014 3.336 *** 

hh-vehicles <--- job/pop-score -0.084 -0.085 0.018 -4.718 *** 

hh-vehicles <--- transit-score -0.034 -0.094 0.009 -3.604 *** 

Socioeconomic Factor           

hh-vmt <--- hh-vehicles 0.191 0.09 0.058 3.319 *** 

hh-vmt <--- hh-size 0.343 0.16 0.065 5.25 *** 

hh-vmt <--- hh-workers -0.022 -0.008 0.072 -0.302 0.763 

hh-vmt <--- hh-income 0.149 0.109 0.032 4.638 *** 

hh-vmt <--- hh-child -0.026 -0.006 0.113 -0.234 0.815 

hh-vmt <--- home-rent 0.036 0.016 0.051 0.719 0.472 

Self-Selection Factor          

hh-vmt <--- pro-environment -0.156 -0.121 0.031 -5.089 *** 

hh-vmt <--- pro-highway 0.148 0.124 0.025 5.809 *** 

hh-vmt <--- pro-family 0.037 0.008 0.103 0.362 0.718 

Built Environment Factor          

hh-vmt <--- delay-score -0.199 -0.094 0.062 -3.23 *** 

hh-vmt <--- density-score -0.216 -0.17 0.04 -5.384 *** 

hh-vmt <--- free-parking 0.197 0.131 0.034 5.832 *** 

hh-vmt <--- job/pop-score -0.174 -0.083 0.043 -4.055 *** 

hh-vmt <--- transit-score -0.052 -0.068 0.023 -2.311 ** 

Note: Unstandardized Estimate (Un.Std. Est); Standardized Estimate (Std. Est);  
Standard Error (SE); Critical Value (CV).  
*** p<0.001, ** p<0.01, * p<0.05 
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Vehicle Ownership 

The results of the vehicle ownership model (see Table 27) indicate that all 

socioeconomic and residential preference factors, except for the pro-family factor, have a 

direct impact on vehicle ownership. Based on the standardized coefficients, household 

size is the most influential factor that increases the number of vehicles in a household 

(Beta = 0.358). Considering the unstandardized coefficient, a 1-unit increase in 

household size (i.e., 1 person) would lead to a 35.2 percent increase in the number of 

vehicles in a household.  

As expected, number of workers has a positive impact on vehicle ownership 

while the number of children reduces the number of vehicles in a household. Adding one 

worker in a household would lead to a 13.5 percent increase in the number of vehicles in 

a household. In contrast, adding one child in a household would lead to a 24.6 percent 

decrease in the number of vehicles in a household.  

The results suggest that the status of home ownership significantly affects the 

number of vehicles in a household. The coefficients of living at rental homes present a 

negative relationship between home ownership and car ownership. Considering the 

unstandardized coefficient estimates, living in a rental home is related to a 14.5 percent 

decrease in the number of vehicles in a household. 

The model results also indicate that household income positively increases the 

number of vehicles in a household (Β = 0.091). The coefficient of income indicates that a 

rise of 10 percent in income will produce a corresponding 0.9 percent increase in the 

number of vehicles in a household. The model outputs of residential preference indicate 

that households with pro-environmental attitudes tend to own fewer vehicles (Β = -0.077). 

This observation is reinforced by the positive coefficient of the pro-highway factor (Β = 

0.03). Although the model coefficient shows the expected relationship between the pro-
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family factor and vehicle ownership, the result is not statistically significant at the .05 

level.  

The negative coefficients of density present a negative relationship between 

density and car ownership. For example, a 10 percent increase in density score is 

associated with a 0.7 percent decline in the number of vehicles in a household. As 

expected, households living in congested areas tend to own fewer vehicles than 

households living in uncongested areas. A rise of 10 percent in the delay score 

decreases the quantity of vehicles in a household by 0.8 percent. Likewise, there is a 

negative relationship between the job/population balance and the number of cars owned 

by a household (B = -0.084). The results also indicate that households located in areas 

with higher transit scores have fewer cars in their households (Β = -0.034).  

The effect of access to free parking on vehicle ownership presents an important 

finding for policy-making, especially in transportation planning. As shown in Table 26, 

households who have access to free parking are likely to own more vehicles than those 

that do not (Β = 0.047). Ultimately, the model results indicate that household 

socioeconomic characteristics influence household vehicle ownership more than built 

environment factors. 

 

VMT 

Both socioeconomic and built environment factors influence daily VMT. As shown 

in Table 26, household size and income have a positive impact on VMT (Β = 0.343 and 

0.149, respectively). As presented in Table 26, the results were not statistically significant 

at the .05 level for socioeconomic factors addressing number of workers, number of 

children, and the status of home ownership.  
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The effect of vehicle availability in the household is positively associated with 

daily VMT per household (B = 0.191). This positive coefficient implies that by adding one 

automobile in a household, VMT will be increased by 19.1 percent. It should be noted 

that this variable is marginally over the cutoff at the 95% confidence level. 

Residential preference is another significant factor that affects VMT. Households 

who selected their residential locations because of access to highways have higher 

VMTs (Β = 0.148). In contrast, the pro-environment factor is another influential factor 

suppressing daily household VMT (Β = -0.156).  

Density factor is an important variable that mitigates household VMT (B = -

0.216). The findings suggest that doubling the density score is associated with a VMT 

reduction of 21.6 percent. This elasticity is higher than the elasticity of -0.179 found in the 

study by Kim and Brownstone (2013) and it is lower than the elasticity of -0.24 found in 

the study by Ewing, Tian, and Lyons (2014). These elasticities showed negative impacts 

on VMT; however, the differences in elasticities are related to factors such as data 

aggregation and the methodology of calculating compactness or sprawl indices.  

The sign on the coefficient of travel time delay is negative (B = -0.199). This 

implies that higher travel time delay is associated with lower VMT per household. In 

terms of percentage change, doubling travel time delay is associated with a 19.9 percent 

decrease in household VMT. Likewise, job/population balance shows a negative 

relationship with daily VMT in the household (Β = -0.174). This value notes that a rise of 

10 percent in job/population balance causes a corresponding 1.7 percent decrease in 

VMT per household; that is, households within areas with a higher density of activities 

and greater job/population balance have lower VMTs.  

Access to public transit, measured by transit score, is another factor that 

decreases daily VMT per household. The results indicate that households located within 
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areas with higher transit scores have moderately lower daily household VMT (B = -

0.052). This value indicates that doubling the transit score results in a corresponding 5.2 

percent decrease in VMT per household. In contrast, households with access to free 

parking at the workplace have a higher daily VMT (Β = 0.197). This means that adding 

one person who has access to free parking increases the level of VMT per household by 

19.7 percent. This provides evidence for transportation demand management to develop 

a public/private partnership with major employers to encourage the use of public transit 

and reduce access to free parking at the workplace.  

Ultimately, these results suggest that daily VMT is more influenced by built 

environment variables and residential preferences, whereas a mid-term indicator such as 

vehicle ownership is highly associated with socioeconomic characteristics of households 

after controlling for self-selection and built environment factors. The results also indicate 

that vehicle ownership is another factor that increases household daily VMT while being 

dependent on various socioeconomic and built environment factors.   

 

Total, Direct, and Indirect Effects 

SEM distinguishes three types of effects: direct, indirect, and total effects. Direct 

effects refer to the influence of one variable on another unmediated by any other 

variables in the path model. The indirect effects of a variable are mediated by at least one 

intervening variable (Bollen, 1989). The sum of the direct and indirect effects is the total 

effect.  

The direct and indirect effects of variables on one another and the total effects of 

different variables on VMT per household are summarized in Table 27. Based on the 

standardized estimates, household size and density factor have the strongest total effects 

on VMT (Beta = 0.192 and -0.182, respectively). Considering the direct effects, the 
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density score has the highest direct impact on VMT (Beta = 0.17), followed by household 

size (Beta = 0.16) and access to free workplace parking (Beta = 0.131). Job/population 

balance and transit score have negative impacts on VMT, both directly (Beta = -0.083 

and -0.068, respectively) and indirectly (Beta = -0.008). This implies that increasing job-

population balance or transit score mitigate VMT per household. The pro-environment 

factor also has a significant total effect on VMT (Beta = -0.132). In contrast to the pro-

environment factor, both direct and indirect effects of pro-highway groups were positive 

(Beta = 0.124 and 0.005, respectively), indicating that residential preference based on 

access to highways encourages households to drive more.  

 

Table 27. Direct, Indirect, and Total Effects of Variables on VMT per Household - 

Standardized Estimates 

Variables Direct Effect Indirect Effect Total Effect 

Socioeconomic Factors     

hh-vehicles 0.090 0.00 0.090 

hh-Size 0.160 0.032 0.192 

hh-num-workers -0.008 0.009 0.001 

hh-income 0.109 0.013 0.122 

hh-num-children -0.006 -0.010 -0.016 

Self-selection Factor    

pro-environment -0.121 -0.011 -0.132 

pro-highway 0.124 0.005 0.129 

pro-family 0.008 0.003 0.011 

Built Environment Factors    

free-parking 0.131 0.006 0.137 

home-rent 0.016 -0.012 0.004 

delay-score -0.094 -0.008 -0.102 

density-score -0.170 -0.012 -0.182 

job/pop-score -0.083 -0.008 -0.091 

transit-score -0.068 -0.008 -0.076 
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Mode Choice Model Using GSEM 

The mode choice model is based on trip level-data and examines the probability 

of choosing modes of travel. Analyzing disaggregated data provides an opportunity to 

examine not only the travel behavior of households or individuals but also to analyze 

travel behavior at the trip level. The trip-level model was developed by using GSEM with 

a logit-link function to handle discrete dependent variables. As mentioned in the previous 

chapter, GSEM is the combination of SEM capabilities with a GLM estimation framework 

to build models with response variables that are not continuous measures. Whereas in 

SEM responses are continuous and models are linear regressions, in GSEM responses 

are continuous or binary, ordinal, count, or multinomial. In other words, GSEM techniques 

are an extension of SEM with the purpose of  developing multilevel models with discrete 

outcomes (StataCorp, 2017). In this research, recursive GSEM with causality paths 

directed at mode choices was developed to examine the association between mode 

choice and other factors such as demographics, the built environment, and level of traffic 

congestion. The following section explains the variables used in the mode choice model, 

discusses the model fit, and explores the model results.  

 

Mode Choice Model Variables 

The mode choice model comprises discrete outcome variables and multiple 

explanatory factors. The outcome variables in this model include four modes of travel 

addressing driving alone, carpooling (rideshare), transit (bus or train), and non-motorized 

(walk or bike) modes. In this analysis, driving alone is considered the reference variable 

in the logit models, and the probability of other modes is compared to this reference 

variable. Table 28 presents the four mode choice outcomes that were tested in the mode 
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choice model. Using GSEM with a logit function, the probability of each mode of travel is 

estimated as follows:   

• Probability of driving alone relative to other modes 

• Probability of carpooling relative to driving alone  

• Probability of using public transit (bus or train) relative to driving alone. 

• Probability of using a non-motorized mode (walk or bike) relative to driving alone 

 

Table 28. Mode Choice Alternatives 

Mode Splits  Definition Source 

Drive Alone Commuters drove PSRC 2015 

Carpooling  Shared trip with others PSRC 2015 

Transit (bus\train) Commuters took public transit PSRC 2015 

Non-Motorized 
(walking\biking) 

Walking\biking to the destination PSRC 2015 

 

To determine the factors that influence the choice of travel mode, a recursive 

model with a logit link function was specified. This model includes explanatory variables 

such as residential self-selection, built environment factors, and socioeconomic 

characteristics of commuters. The explanatory factors were selected based on relevant 

theories, previous experimental studies, and model fits. Table 29 displays a list of 

explanatory variables and their original sources. These factors were used in the model 

specifications.  

As discussed in the previous section, the utility function includes an essential set 

of explanatory variables. These variables are based on theory and prior studies, as well 

as time-related mobility measures which are important for individuals' travel choice 

behaviors. To examine the effects of socioeconomic factors, several utility equation 

structures were tested using the demographic variables from the travel survey data. 
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Factors such as gender, age, and individual preferences for selecting home locations 

were examined in this study.   

Table 29. Variables Included in the Mode Choice Models 

Variable Definition Source 

Trip-Maker Attribute 

age Age of commuter PSRC 2015 

male (Y N)  If the individual is male  PSRC 2015 

hh_income Natural log of household income PSRC 2015 

hh_vehicles Number of vehicles in household  PSRC 2015 

hh_size Household size PSRC 2015 

Full time (Y N) Full-time employed  PSRC 2015 

Education Level of education  PSRC 2015 

Residential-Location Preferences   

How important when choosing current home:   

res_factors_transit Being close to public transit PSRC 2015 

res_factors_hwy Being close to highway PSRC 2015 

res_factors_walk 
Having a walkable neighborhood and being 
near local activities 

PSRC 2015 

Trip Purpose     

tp_hbw (Y N) Home-based-work trip PSRC 2015 

tp_shop (Y N) Shopping trip PSRC 2015 

tp_nhb (Y N) Non-home-based trip PSRC 2015 

tp_socrec (Y N) Social or recreational trip PSRC 2015 

Built Environment Attributes   

delay_od 
Natural log of the amount of travel time 
delay (minutes) 

Google Maps 
API 

density_origin. 
Natural log of activity density at origin (total 
housing units + employment per acre)  

LEHD, 
Census 

density_destin. 
Natural log of activity density at destination 
(total housing units + employment per acre)  

LEHD, 
Census 

jobpop_origin. 
Natural log of job/population balance at 
origin 

LEHD, 
Census 

jobpop_destin. 
Natural log of job/population balance at 
destination 

LEHD, 
Census 

distance_od Natural log of distance to destination Google Maps 
API 

walkscore_origin. Natural log of walk score at origin Walk Score 
API 

walkscore_destin. Natural log of walk score at destination Walk Score 
API 

transitscore_origin. Natural log of transit score at origin Transit Score 
API 

transitscore_destin. Natural log of transit score at destination Transit Score 
API 



 

148 

In the mode choice model, the effects of the following socioeconomic factors are 

tested in the model specifications: age; gender; income; number of vehicles in 

households; Household size; Employment status, and Level of education. Details of 

socioeconomic variables and descriptive statistics of these variables are reported in the 

second section of Chapter 4. In addition to socioeconomic factors, the effects of trip-

purpose on selecting each model of travel is considered in the GSEM model addressing 

these trip purposes: home-based work (HBW), non-home-based (NHB), shopping trips 

(SHOP), and social and recreational trips (SOCREC).  

The characteristics of the built environment are also important factors that 

influence travel behavior. As shown in Table 29, built environment factors are considered 

at the origin and destination of trips and address activity density, job/population balance, 

walk score, and transit score. Additionally, travel time delay and trips distance for each 

trip were tested in the mode choice model.  

Using GSEM with a logit function, the variables described above were examined 

in the mode choice model to test potential interactions with the travel time coefficients 

and to determine whether respondents’ trips or personal characteristics significantly 

influenced their choices. After reviewing the significance of each variable, the final model 

specification was chosen based on model fit, the intuitiveness and reasonableness of the 

model coefficients, and the expected application of the model results.  

 

Mode Choice Model Specification  

The mode choice model comprises five sub-models that separately investigated 

the influence of socioeconomic factors, residential preference, and built environment 

variables on the probability of carpooling, non-motorized trips, and transit usage. The first 

model, the base model, includes only socio-demographic characteristics of commuters. 
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The second model includes the first model plus the influence of residential preferences 

on selecting specific modes of travel. In the third model, the effects of trip purpose are 

added to the second model. The trip purpose factors are represented by HBW, SHOP, 

NHB, and SOCREC trips. The forth model includes the third model plus built environment 

factors that are represented by activity density, transit score, walk score, and 

job/population balance at the near-origin and near-destination of trips. In the fifth model 

(i.e., the full model; see Figure 26), travel time delay is added to test the effects of 

congestion on travel mode choice and how travel time delay influences model fit.  

 

Figure 26. GSEM Diagram Explaining Commuter’s Mode Choice  

 

GSEM Model Fit  

Most of the statistics such as CFI, NFI, and RMSEA that are reported for SEM 

are not available after developing GSEM because of the type of estimation that it uses 

(Baum, 2016). These statistics are a function of the model chi-square test. The model 
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chi-square test involves an estimate of the variances and covariances 

of observed exogenous variables. GSEM in STATA 15 does not estimate these 

parameters for the observed exogenous variables when fitting models with 

GSEM. Therefore, GSEM cannot estimate the model chi-square test and other statistics 

that are functions of this test. However, the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) can be calculated to compare different models. 

Therefore, AIC and BIC were used to examine model fit.  

The mathematical underpinning of AIC and BIC are beyond the scope of and 

focus of this research. However, the broad outlines of AIC and BIC can be explained as 

follows: To begin, AIC and BIC try to balance good fit with parsimony using penalized 

likelihood criteria, where BIC penalizes complexity more heavily depending on sample 

size. In contrast, AIC’s penalty for complexity does not depend on sample size. The use 

of the AIC and BIC requires fitting several competing models (Kaplan, 2000, p. 117). The 

model with the lowest AIC or BIC value among the competing models is deemed to fit the 

data best from a predictive point of view. Table 30 indicates the results of model fit 

examined via AIC and BIC.  

Table 30. Model Fit Indices 

Model 
Specifications 

Model 1 Model 2 Model 3 Model 4 Model 5 

Base 
Res. 

Preference 
Trip 

Purpose 
Built 
Env. 

Travel 
Time Delay 

Model Fit Indices           

Log-Likelihood 
[df] 

-15,792.8 
[30] 

-15,586.0 
[33] 

-14,483.6 
[45] 

-7,759.2  
[64] 

-7,624.6  
[67] 

AIC 31,645.64 31,238.08 29,057.37 15,646.48 15,383.34 

BIC 31,873.35 31,488.55 29,398.92 16,132.25 15,891.87 

 

In analyzing the effects of travel time delay on mode choice, Model 5—which 

specifies travel time delay—reports both the lowest AIC and BIC values. The first and 
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simplest model does not perform well despite being limited to socioeconomic variables 

(BIC ranks 5th, AIC ranks 5th). Model 4 shows that adding built environment factors, 

including density, walk score, and transit score have an important role in reducing AIC 

and BIC values. This suggests that extending the model by including the built 

environment factors provides a more reliable model. The following section describes the 

results of the full model and interprets the coefficient estimates and corresponding odds 

ratios.  

 

GSEM Mode Choice Model Results 

The estimated logit coefficients of the full model are presented in Table 31  

through Table 33. These coefficients can be used to predict carpooling, transit, and non-

motorized mode choices relative to drive-alone travel. The majority of estimated 

parameters were statistically significant at the 95% confidence level.  
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Table 31. Coefficients of Multinomial Logit Model for Predicting Carpooling Mode Choice 

Relative to Drive-Alone Travel 

Variables Coef. 
Std. 
Err. 

z P>|z| 
[95% Conf. 

Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 2: Carpooling 

age -0.01 0.02 -0.61 0.54 -0.06 0.03 

male 0.02 0.06 0.34 0.73 -0.10 0.14 

education -0.14 0.02 -8.00 0.00 -0.18 -0.11 

hh_size 0.81 0.03 23.65 0.00 0.74 0.88 

hh_workers -0.62 0.05 -13.54 0.00 -0.70 -0.53 

hh_income -0.05 0.05 -1.07 0.28 -0.14 0.04 

hh_vehicles 0.32 0.04 8.75 0.00 0.25 0.39 

access_free_transit -0.03 0.11 -0.29 0.77 -0.25 0.18 

access_free_parking -0.15 0.07 -1.99 0.05 -0.29 0.00 

res_factors_hwy -0.03 0.02 -1.39 0.16 -0.07 0.01 

tp_hbw -2.39 0.12 -19.81 0.00 -2.62 -2.15 

tp_shop -0.07 0.08 -0.93 0.35 -0.22 0.08 

tp_nhb -0.54 0.07 -8.04 0.00 -0.67 -0.41 

tp_socrec 0.74 0.07 10.32 0.00 0.60 0.89 

density_origin 0.60 0.02 24.38 0.00 0.55 0.65 

density_destin 0.77 0.03 29.59 0.00 0.72 0.82 

jobpop_origin 0.27 0.04 6.64 0.00 0.19 0.35 

jobpop_destin 0.67 0.05 13.58 0.00 0.57 0.77 

distance_od -0.13 0.05 -2.87 0.00 -0.23 -0.04 

delay_od 0.65 0.05 12.49 0.00 0.54 0.75 

_cons -3.18 0.52 -6.06 0.00 -4.21 -2.15 

    Note: Coefficient (Coef.); Standardized Error (Std. Err.)  
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Table 32. Coefficients of Multinomial Logit Model for Predicting Transit Mode Choice 

Relative to Drive-Alone Travel 

Variables Coef. 
Std. 
Err. 

z P>|z| 
[95% Conf. 

Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 3: Transit (bus\train) 

age 0.03 0.04 0.98 0.33 -0.04 0.11 

male 0.11 0.10 1.06 0.29 -0.09 0.31 

education -0.31 0.03 -9.68 0.00 -0.38 -0.25 

hh_size 0.58 0.06 9.38 0.00 0.46 0.70 

hh_workers -0.41 0.09 -4.78 0.00 -0.58 -0.24 

hh_income -0.39 0.08 -5.08 0.00 -0.55 -0.24 

hh_vehicles -0.59 0.08 -7.46 0.00 -0.74 -0.43 

access_free_transit 1.24 0.14 9.05 0.00 0.97 1.51 

access_free_parking -1.60 0.17 -9.67 0.00 -1.93 -1.28 

res_factors_transit 0.24 0.04 5.62 0.00 0.16 0.33 

tp_hbw -0.68 0.16 -4.34 0.00 -0.98 -0.37 

tp_shop -0.33 0.15 -2.24 0.03 -0.62 -0.04 

tp_nhb -0.79 0.13 -6.15 0.00 -1.04 -0.54 

tp_socrec 0.26 0.14 1.94 0.06 0.00 0.53 

density_origin 0.88 0.04 19.84 0.00 0.80 0.97 

density_destin 0.86 0.04 19.50 0.00 0.77 0.95 

jobpop_origin 0.37 0.08 4.49 0.00 0.21 0.54 

jobpop_destin 0.26 0.08 3.12 0.00 0.10 0.42 

transitscore_origin 1.23 0.18 6.68 0.00 0.87 1.60 

transitscore_destin 1.11 0.17 6.50 0.00 0.77 1.44 

distance_od 0.74 0.11 7.01 0.00 0.54 0.95 

delay_od 0.53 0.12 4.36 0.00 0.29 0.76 

_cons -12.47 1.16 -10.73 0.00 -14.75 -10.19 

    Note: Coefficient (Coef.); Standardized Error (Std. Err.) 
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Table 33. Coefficients of Multinomial Logit Model for Predicting Non-Motorized Mode 

Choice Relative to Drive-Alone Travel 

Variables Coef. 
Std. 
Err. 

z P>|z| 
[95% Conf. 

Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 4: Non-Motorized (walking\biking) 

age -0.05 0.03 -1.81 0.07 -0.11 0.00 

male -0.40 0.08 -4.87 0.00 -0.57 -0.24 

education -0.03 0.03 -1.28 0.20 -0.08 0.02 

hh_size 0.41 0.05 8.44 0.00 0.31 0.50 

hh_workers -0.29 0.06 -4.55 0.00 -0.42 -0.17 

hh_income -0.06 0.06 -0.90 0.37 -0.18 0.07 

hh_vehicles 0.08 0.06 1.44 0.15 -0.03 0.19 

access_free_transit 0.62 0.13 4.85 0.00 0.37 0.87 

access_free_parking -0.53 0.11 -5.02 0.00 -0.74 -0.32 

res_factors_walk 0.12 0.04 3.38 0.00 0.05 0.19 

tp_hbw -0.15 0.15 -1.02 0.31 -0.45 0.14 

tp_shop -0.78 0.12 -6.76 0.00 -1.01 -0.56 

tp_nhb -1.25 0.10 -12.83 0.00 -1.44 -1.06 

tp_socrec 1.53 0.10 15.22 0.00 1.34 1.73 

density_origin 0.74 0.04 18.93 0.00 0.67 0.82 

density_destin 0.72 0.04 18.13 0.00 0.64 0.80 

jobpop_origin 0.24 0.08 3.10 0.00 0.09 0.40 

jobpop_destin 1.04 0.09 11.82 0.00 0.87 1.22 

walkscore_origin 0.37 0.10 3.59 0.00 0.17 0.57 

walkscore_destin 0.53 0.11 4.97 0.00 0.32 0.74 

distance_od -1.92 0.06 -30.01 0.00 -2.05 -1.80 

delay_od 0.79 0.07 11.22 0.00 0.65 0.93 

_cons -7.38 0.79 -9.39 0.00 -8.92 -5.84 

    Note: Coefficient (Coef.); Standardized Error (Std. Err.) 
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Table 34 through Table 36 present the odds ratio of the variables in the full 

model addressing carpooling, transit, and non-motorized modes relative to driving alone 

(as the reference variable). An odds ratio indicates the effects of a variable on the 

probability of an event; it is a ratio of the probability of one event to the probability of 

another event (Crown, 1998). The odds ratio can be obtained by exponentiating the 

coefficient of each variable. For the odds ratio, a coefficient of 1 leaves the odds 

unchanged, a coefficient greater than 1 increase the odds, and a coefficient less than 1 

decreases the odds (Pampel, 2000). It is necessary to note that a 1-unit increase in a log 

transformed variable translates to a 172 percent increase in a non-transformed variable. 

So, the interpretation of transformed variables is adjusted based on this relationship.  
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Table 34. Probability of Carpooling Mode Choice Relative to Drive-Alone Travel 

Variables exp(b) 
Std. 
Err. 

z P>|z| 
[95% Conf. 

Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 2: Carpooling 

age 0.99 0.02 -0.61 0.54 0.95 1.03 

male 1.02 0.06 0.34 0.73 0.91 1.15 

education 0.87 0.02 -8.00 0.00 0.84 0.90 

hh_size 2.25 0.08 23.65 0.00 2.10 2.40 

hh_workers 0.54 0.02 -13.54 0.00 0.49 0.59 

hh_income 0.95 0.04 -1.07 0.28 0.87 1.04 

hh_vehicles 1.38 0.05 8.75 0.00 1.28 1.48 

access_free_transit 0.97 0.11 -0.29 0.77 0.78 1.20 

access_free_parking 0.86 0.06 -1.99 0.05 0.75 1.00 

res_factors_hwy 0.97 0.02 -1.39 0.16 0.93 1.01 

tp_hbw 0.09 0.01 -19.81 0.00 0.07 0.12 

tp_shop 0.93 0.07 -0.93 0.35 0.80 1.08 

tp_nhb 0.58 0.04 -8.04 0.00 0.51 0.66 

tp_socrec 2.11 0.15 10.32 0.00 1.83 2.43 

density_origin 1.82 0.04 24.38 0.00 1.73 1.91 

density_destin 2.16 0.06 29.59 0.00 2.05 2.27 

jobpop_origin 1.32 0.05 6.64 0.00 1.21 1.43 

jobpop_destin 1.96 0.10 13.58 0.00 1.77 2.15 

distance_od 0.87 0.04 -2.87 0.00 0.80 0.96 

delay_od 1.91 0.10 12.49 0.00 1.72 2.11 

_cons 0.04 0.02 -6.06 0.00 0.01 0.12 
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Table 35. Probability of Using Transit Mode Choice Relative to Drive-Alone Travel 

Variables exp(b) 
Std. 
Err. 

z P>|z| 
[95% Conf. 

Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 3: Transit (bus\train) 

age 1.04 0.04 0.98 0.33 0.97 1.11 

male 1.12 0.11 1.06 0.29 0.91 1.36 

education 0.73 0.02 -9.68 0.00 0.68 0.78 

hh_size 1.79 0.11 9.38 0.00 1.58 2.02 

hh_workers 0.66 0.06 -4.78 0.00 0.56 0.79 

hh_income 0.67 0.05 -5.08 0.00 0.58 0.78 

hh_vehicles 0.55 0.04 -7.46 0.00 0.47 0.65 

access_free_transit 3.47 0.48 9.05 0.00 2.65 4.54 

access_free_parking 0.20 0.03 -9.67 0.00 0.15 0.28 

res_factors_transit 1.28 0.06 5.62 0.00 1.17 1.39 

tp_hbw 0.51 0.08 -4.34 0.00 0.37 0.69 

tp_shop 0.72 0.11 -2.24 0.03 0.54 0.96 

tp_nhb 0.45 0.06 -6.15 0.00 0.35 0.58 

tp_socrec 1.30 0.18 1.94 0.05 1.00 1.70 

density_origin 2.42 0.11 19.84 0.00 2.22 2.64 

density_destin 2.36 0.10 19.50 0.00 2.17 2.58 

jobpop_origin 1.45 0.12 4.49 0.00 1.23 1.71 

jobpop_destin 1.29 0.11 3.12 0.00 1.10 1.52 

transitscore_origin 3.44 0.63 6.68 0.00 2.39 4.93 

transitscore_destin 3.03 0.52 6.50 0.00 2.17 4.23 

distance_od 2.10 0.22 7.01 0.00 1.71 2.59 

delay_od 1.69 0.20 4.36 0.00 1.34 2.14 

_cons 0.00 0.00 
-

10.73 0.00 0.00 0.00 
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Table 36. Probability of Selecting Non-Motorized Mode Choice Relative to Drive-Alone 

Travel 

Variables exp(b) 
Std. 
Err. z P>|z| 

[95% Conf. 
Interval] 

Mode 1: Drive Alone (base outcome) 

Mode 4: Non-Motorized (walking\biking) 

age 0.95 0.03 -1.81 0.07 0.89 1.00 

male 0.668 0.06 -4.87 0.00 0.57 0.79 

education 0.97 0.02 -1.28 0.20 0.92 1.02 

hh_size 1.50 0.07 8.44 0.00 1.37 1.65 

hh_workers 0.75 0.05 -4.55 0.00 0.66 0.85 

hh_income 0.95 0.06 -0.90 0.37 0.84 1.07 

hh_vehicles 1.08 0.06 1.44 0.15 0.97 1.21 

access_free_transit 1.86 0.24 4.85 0.00 1.45 2.39 

access_free_parking 0.59 0.06 -5.02 0.00 0.48 0.72 

res_factors_walk 1.13 0.04 3.38 0.00 1.05 1.21 

tp_hbw 0.86 0.13 -1.02 0.31 0.64 1.15 

tp_shop 0.46 0.05 -6.76 0.00 0.36 0.57 

tp_nhb 0.29 0.03 -12.83 0.00 0.24 0.35 

tp_socrec 4.64 0.47 15.22 0.00 3.81 5.65 

density_origin 2.10 0.08 18.93 0.00 1.95 2.27 

density_destin 2.05 0.08 18.13 0.00 1.90 2.22 

jobpop_origin 1.28 0.10 3.10 0.00 1.09 1.49 

jobpop_destin 2.84 0.25 11.82 0.00 2.39 3.38 

walkscore_origin 1.45 0.15 3.59 0.00 1.18 1.77 

walkscore_destin 1.70 0.18 4.97 0.00 1.38 2.09 

distance_od 0.15 0.01 -30.01 0.00 0.13 0.17 

delay_od 2.20 0.16 11.22 0.00 1.92 2.53 

_cons 0.00 0.00 -9.39 0.00 0.00 0.00 
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Effects of Socioeconomic Variables on Mode Choice    

Among the socioeconomic factors, vehicle availability, household size, number of 

workers, and subsidies for free transit or free parking are the influential predictors of 

carpooling, transit usage, and non-motorized mode. 

Age exceeds the significance level of .05 when comparing carpooling relative to 

drive-alone mode. Addressing transit and non-motorized modes, the coefficients of age 

are negative, indicating that older commuters are more likely to drive alone relative to 

walking\biking or taking transit.  

The coefficient for the male dummy variable was found to be negative and 

statistically significant for the non-motorized mode (B = -0.40). The odds ratio 

suggests that males are 1.49 times more likely to drive alone than walking\biking. In 

terms of percent change, the odds of men driving alone are 49 percent higher than for 

women relative to non-motorized modes. The coefficients of gender were not statistically 

significant for carpooling and transit usage. 

The results indicate that level of education is negatively associated with 

carpooling (B = -0.14) and taking public transit (B = -0.31). For people with a higher level 

of education, the probability of carpooling and taking transit are 0.87 and 0.73 times lower 

than driving alone, respectively.  

At the 95% confidence level, household size is positively associated with 

carpooling (B = 0.81), transit usage (B = 0.58), and non-motorized modes (B = 0.41). 

These positive coefficients indicate that a larger household size is associated with a 

higher likelihood of carpooling, using transit, and choosing non-motorized modes relative 

to driving alone. For example, a one-person increase in household size would lead to a 

125 percent increase in choosing carpooling relative to driving alone. The odds of taking 

transit is 1.79 times greater than the odds of driving alone mode for a one-person 
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difference in household size. Considering non-motorized mode choice, the odds ratio 

indicates that commuters with a one-person increase in their household size are 1.5 

times more likely to choose a non-motorized mode of travel. 

At the 95% confidence level, the number of workers is negatively associated with 

carpooling (B = -0.62), taking public transit (B = -0.41), and choosing a non-motorized 

mode (B = -0.29). These findings suggest that commuters with a higher number of 

workers in the household are more likely to drive alone relative to all other modes. For 

example, a one-worker increase in a household would lead to an 85 percent increase in 

driving alone compared to carpooling. The odds of driving alone are 1.50 times greater 

than the odds of taking transit with one additional worker in a household. The odds ratio 

indicates that commuters with one additional worker in the household are 1.34 times 

more likely to choose driving alone over a non-motorized mode of travel. 

The coefficient of income is negative (B = -0.39) and statistically significant in 

explaining transit usage at the 95% confidence level. The odds ratio indicates that the 

probability of driving alone is 1.48 times greater than taking transit for a 1-unit increase in 

log of income. Income was not statistically significant in explaining carpooling and non-

motorized modes.  

 

Effects of Vehicle Ownership on Mode Choice  

The findings present an unexpected result with a positive relationship between 

the number of vehicles and the probability of carpooling (B = 0.32). This positive 

coefficient indicates that commuters with more vehicles in their household have a higher 

probability of carpooling relative to driving alone. The reason might be related to other 

factors such as income, household size, and the number of adults with an active driver’s 

license in the household. As a result, some families might own several cars but share 
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rides because of age limitations, physical ability, or having household members without 

driver’s licenses.    

As expected, vehicle availability is negatively associated with taking transit (B = -

0.59). Based on the logit coefficient, a higher number of vehicles is associated with a 

lower likelihood of taking public transit relative to driving alone (OR = 0.55). This odds 

ratio indicates that an increase of one automobile would lead to an 80.3 percent increase 

in the probability of driving alone relative to taking transit (OR = 1/0.55). This implies that 

taking public transit is the least preferred option when more automobiles are available.  

The effects of number of vehicles in the household on non-motorized modes is 

not statistically significant at the 95% confidence interval in the full model. In fact, the 

effect of vehicle ownership lost its significance after including built environment variables. 

In the basic models, the negative coefficients indicate that commuters with more vehicles 

in their household have a lower probability of choosing non-motorized modes relative to 

driving alone. 

 

Effects of Residential Preferences on Mode Choice  

Among residential preference variables, access to a highway exceeds the 

significance level of .05. Considering transit and walkability, the result of residential 

preference is aligned with expectations. The results show that there is a positive 

relationship between choosing a non-motorized mode and selecting residential location 

based on walkability (B = 0.12). The odds ratio indicates that those groups are 1.13 times 

more likely to choose walking\biking than driving alone (OR = 1.13). Similarly, those who 

selected their residential location because of access to transit have a higher probability of 

choosing transit modes (B = 0.24). The odds ratio indicates that the likelihood of taking 
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transit is 1.28 times greater than driving alone for those who selected their residential 

location because of access to transit (OR = 1.28).  

 

Effects of Transportation Subsidy on Mode Choice  

As mentioned previously, having a free transit pass and access to free parking at 

the workplace were investigated in the mode choice model. Considering transit subsidy, 

the results show that having a free transit pass is positively and strongly associated with 

taking transit (B = 1.24). The odds ratio suggests that the likelihood of taking transit is 3.5 

times greater than driving alone for those who have access to a free transit pass (OR = 

3.47). The results also indicate that access to free transit not only increases the 

probability of taking transit but also increases the likelihood of choosing a non-motorized 

mode relative over driving alone (B = 0.62). The odds ratio indicates that the likelihood of 

choosing a non-motorized mode is 1.86 times greater than driving alone for those who 

have free transit pass (OR = 1.86).  

In contrast, commuters with access to free parking at their workplace have a 

higher probability of choosing to drive alone over all other modes. The results show that 

access to free parking at the workplace is negatively associated with carpooling (B = -

0.15), taking public transit (B = -1.60), or choosing a non-motorized mode (B = -0.53) 

relative to driving alone. Based on the odds ratio, the probability of driving alone is 1.16 

times greater than carpooling for commuters who have access to free parking at the 

workplace (OR = 1/ 0.86). Also, the probability of driving alone is 1.69 times greater than 

walking\biking for commuters who have access to free parking at the workplace (OR = 1/ 

0.59). Similarly, the probability of driving alone is 5 times greater than taking transit for 

commuters who have access to free parking at the workplace (OR = 1/ 0.2). This higher 

odds ratio implies the importance of policies that support parking pricing, transit 
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subsidies, and encourage employers and workers to use public transit or charge fees for 

facilities such as access to parking at the workplace. Note that causality could be the 

other way—commuters who prefer public transit might prefer employers with transit 

benefits or request a transit subsidy from their employer. Analyzing this causality requires 

further investigation beyond the scope of this research.  

 

Effects of Trip Purpose on Mode Choice  

The signs of the home-based-work trip coefficients are negative for taking transit 

(B = -0.68), and carpooling (B = -2.39). This implies that the likelihood of carpooling or 

taking transit decreases relative to driving alone when commuters conduct home-based-

work trips. The likelihood of driving alone is 10.8 (OR = 1/ 0.09) times greater than 

carpooling for those who conducted home-based-work trips. This high odds ratio 

indicates that carpooling is the least preferred choice for commuters when conducting 

home-based-work trips. Also, the probability of driving alone is 1.97 (OR = 1/ 0.51) times 

greater than taking transit for commuters who conducted home-based-work trips. The 

effects of home-based-work trips on non-motorized trips was not statistically significant at 

the .05 level.  

At the 95% confidence level, the sign of the non-home-based trip coefficients are 

negative for carpooling (B = -0.54), taking transit (B = -0.79), and non-motorized modes 

(B = -1.25). This implies that the likelihood of driving alone increases relative to all other 

modes for commuters who conducted non-home-based trips. The odds ratio of 

conducting non-home-based trips suggests that the probability of driving alone is 1.72, 

2.2, and 3.49 times greater, respectively, than carpooling, taking transit, and 

walking/biking.  
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Similarly, conducting shopping trips decreases the likelihood of taking transit (B = 

-0.33) and walking\biking (B = -0.78) relative to driving alone. For commuters who 

conducted shopping trips, the odds ratios suggest that the probability of driving alone is 

1.39 and 2.19 times greater, respectively, than taking transit and walking/biking. The 

effect of shopping trips was not statistically significant on carpooling.  

At the 95% confidence level, the signs of the social and recreational trip 

coefficients are positive for carpooling (B = 0.74) and walking\biking (B = 1.53). The odds 

ratio indicates that commuters who conducted social and recreational trips are 2.11 times 

more likely to choose carpooling relative to driving alone. The probability of walking\biking 

is 4.64 times greater than driving alone for those who conducted social and recreational 

trips. The effects of social and recreational trips on taking transit were marginally past the 

cutoff at the 95% confidence level. 

 

Effects of Built Environment on Mode Choice 

Regarding built environment factors, activity density (i.e., the total of population 

and employment per acre) at the near-origin of trips is positively associated with 

carpooling (B = 0.60), transit mode (B = 0.88), and non-motorized modes (B = 0.74). 

Considering activity density at the near-origin of trips, the odds ratios indicate that the 

probability of carpooling, taking transit, and walking/biking is 1.82, 2.42, and 2.10 times 

greater, respectively, than driving alone for a 1-unit increases in the log of activity density 

at the near-origin of trips. That means by doubling the activity density at the near-origin of 

trips, the probability of carpooling, taking transit, and walking/biking is 1.51, 1.84, and 

1.67 times greater, respectively, than driving alone.  

Similarly, activity density at the near-destination of trips is positively associated 

with carpooling (B = 0.77), transit mode (B = 0.86), and non-motorized modes (B = 0.72). 
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Addressing activity density at near-destinations, the odds ratios indicate that the 

probability of carpooling, taking transit, and walking/biking are 2.16, 2.36, and 2.05 times 

greater, respectively, than driving alone for a 1-unit increases in the log activity density at 

the near-destination of trips. That means by doubling the activity density at the near-

destinations of trips, the probability of carpooling, taking transit, and walking/biking is 

1.70, 1.81, and 1.64 times greater, respectively, than driving alone. 

The model also indicates that a higher job/population balance at the near-origin 

or near-destination of trips decreases the probability of driving alone relative to all other 

modes. At the 95% confidence level, job-population balance at the near-origin of trips is 

positively associated with carpooling (B = 0.27), transit mode (B = 0.37), and non-

motorized modes (B = 0.24). The odds ratios indicate that the probability of carpooling, 

taking transit, and walking/biking are 1.32, 1.45, and 1.28 times greater, respectively, 

than driving alone for a 1-unit increase in the log of job/population balance at the near-

origin of trips. That means by doubling the job/population balance at the near-origin of 

trips, the probability of carpooling, taking transit, and walking/biking is 1.21, 1.29, and 

1.18 times greater, respectively, than driving alone.  

Likewise, job/population balance at the near-destination of trips is positively 

associated with carpooling (B = 0.67), taking transit (B = 0.26), and non-motorized modes 

(B = 1.04). Addressing job/population balance at near-destinations, the odds ratios 

indicate that the probability of carpooling, taking transit, and walking/biking is 1.96, 1.29, 

and 2.84 times greater, respectively, than driving alone for a 1-unit increase in the log of 

job/population balance at the near-destination of trips. That means by doubling the 

job/population balance at the near-destination of trips, the probability of carpooling, taking 

transit, and walking/biking is 1.59, 1.19, and 2.06 times greater, respectively, than driving 

alone. 



 

166 

Considering transit availability, the results indicate that a higher transit score 

significantly decreases the probability of driving alone. The coefficients of transit scores 

were found to be positive at the origins (B = 1.23) and destinations (B = 1.11) of trips. 

The odds ratio indicates that the probability of taking transit is 3.44 times greater than 

driving alone for a 1-unit increase in the log of the transit score at the origin of trips. 

Likewise, the probability of walking\biking is 3.03 times greater than driving alone for a 1-

unit increase in the log of the transit score at the destination of trips.  

The coefficients of walkability scores were found to be positively associated with 

choosing walking/biking at the origins (B = 0.37) and destinations (B = 0.53) of trips. The 

odds ratio indicates that the probability of walking\biking is 1.45 times greater than driving 

alone for a 1-unit increase in the log of the walk score at the origin of trips. Likewise, the 

probability of walking\biking is 1.70 times greater than driving alone for a 1-unit increase 

in the log of the walk score at the destination of trips. These results of the walk score and 

transit score align with a previous study conducted within Southern California using a 

subsample of the 2009 National Household Travel Survey (Dillon, 2017). 

 

Effects of Trip Distances on Mode Choice 

The signs of trip distance coefficients are negative for carpooling (B = -0.13) and 

non-motorized modes (B = -1.92) and positive for taking transit (B = 0.74). The odds 

ratios indicate that the probability of driving alone is 1.14 and 6.8 times greater than 

carpooling and walking\biking, respectively, for a 1-unit increase in the log of trip 

distance. The results indicate that non-motorized modes are negatively and strongly 

associated with trip distance. In other words, increasing trip distance decreases the 

probability of choosing non-motorized modes. This is because people prefer short trips 

for choosing non-motorized modes with a distance threshold of 0.5 to 1 mile. The results 
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also indicate that longer trip distances increase the likelihood of choosing public transit 

when public transit is available. The odds ratio indicates that the probability of taking 

transit is 2.1 times greater than driving alone for a 1-unit increase in the log of trip 

distances.  

 

Effects of Traffic Congestion on Mode Choice 

Travel time delay, as a measure of traffic congestion, represents the cost 

imposed upon each commuter’s utility. Based on utility maximization, the more travel time 

delay between the origin and destination, the less likely that driving alone will be chosen. 

The present findings also indicate the same relationship. In the full model, travel time 

delay was found to be significantly and positively associated with carpooling, choosing 

non-motorized modes, and taking public transit relative to driving alone. The results 

indicate that travel time delay has a strong effect on carpooling, with a positive coefficient 

(B = 0.65) at the 95% confidence level. The odds ratio indicates that the probability of 

carpooling is 1.91 times greater than driving alone for a 1-unit increase in the log of travel 

time delay. That means by doubling travel time delay, the probability of carpooling is 1.56 

times greater than driving alone. This implies that with higher travel time delays, 

commuters are more likely to share their rides with others.   

As expected, higher travel time delays increase the likelihood of taking public 

transit relative to driving alone. Travel time delay has a strong effect on choosing transit, 

with a positive coefficient (B = 0.53) at the 95% confidence level. The odds ratio indicates 

that the probability of taking transit is 1.69 times greater than driving alone for a 1-unit 

increase in the log of travel time delay. That means by doubling travel time delay, the 

probability of taking transit is 1.44 times greater than driving alone.  
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Likewise, travel time delay has a positive effect on the probability of choosing 

non-motorized modes over driving alone (B = 0.79). The odds ratio indicates that the 

probability of walking\biking is 2.2 times greater than driving alone for a 1-unit increase in 

the log of travel time delay. That means by doubling travel time delay, the probability of 

walking\biking is 1.73 times greater than driving alone. 

 
Summary 

This chapter provided the results of the VMT and mode choice models developed 

via SEM and GSEM, respectively. The first section of this chapter described the process 

of developing the VMT model in the SPSS Amos software package. The results of 

maximum likelihood estimations and the direct and indirect effects of explanatory 

variables were discussed in detail. The second section of this chapter presented the 

process of developing the mode choice model using GSEM in STATA. This section 

provided details about model validation and interpreted the results of the odds ratios and 

the probability of choosing each mode of travel.  

The next chapter presents the conclusions of the present research, discussing 

the idea of examining traffic congestion and its effect on travel behavior and providing a 

summary of policy recommendations and requirements for future studies.  
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Chapter 6 

Conclusions 

This research presented a comprehensive framework that investigated the 

impacts of socioeconomic characteristics, residential self-selection, the built environment, 

and traffic congestion on VMT and mode choice. Using SEM and GESM techniques, 

travel behavior was examined with a focus on daily VMT per household and mode 

choices addressing driving alone, carpooling, taking transit, and non-motorized modes. 

Analyzing the effects of traffic congestion on VMT and mode choice was the main goal of 

this study. Scholars have discussed the effects of traffic congestion on greenhouse gas 

emissions, environmental justice, toxic air exposure, public health, and physical activities. 

However, among these studies, only a few researchers have considered the effects of 

congestion on travel behavior (AmoahNyarko, 2014; Bovy & Salomon, 2002; Litman, 

2014; Stern et al., 2002).  

In the VMT model, SEM was used to investigate VMT per household and its 

association with socioeconomic factors and built environment factors. The results of the 

VMT model indicated that both socioeconomic and built environment factors influence 

daily VMT per household. According to the results, the strongest predictors of VMT—in 

order of strength—are household size, density score, status of home ownership, and 

access to free parking at the workplace. Residential preference is another significant 

factor that affects VMT. The results indicate that density factor is an important variable for 

explaining household VMT. The findings suggest that doubling density score is 

associated with a VMT reduction of 21.6 percent. This is consistent with previous studies 

(Ewing, Tian, & Lyons, 2018; Kim & Brownstone, 2013). 

Similarly, the results imply that higher travel time delay is associated with lower 

VMT per household. In terms of percentage change, the model shows that doubling 



 

170 

travel time delay is associated with a 19.9 percent decrease in household VMT. The 

results of the VMT model suggest that daily VMT is mostly influenced by built 

environment variables and residential preferences, whereas a mid-term indicator such as 

vehicle ownership is highly associated with socioeconomic characteristics of households 

after controlling for self-selection and built environment factors. The results also indicate 

that vehicle ownership is another factor that increases household daily VMT, though it is 

dependent on various socioeconomic and built environment factors.   

The mode choice model was based on trip-level data and examined the 

probability of choosing modes of travel, with a focus on driving alone, carpooling, taking 

transit, and non-motorized modes. Studying PSRC disaggregated data provided an 

opportunity to examine not only the travel behavior of households or individuals but also 

to analyze the characteristics of trip origins and destinations. The mode choice model 

was developed via GSEM with a logit-link function to handle discrete outcomes. The 

explanatory factors are selected based on relevant theories, previous experimental 

studies, and model fits. The mode choice model comprises five sub-models that 

separately investigated the influences of socioeconomic factors, residential preference, 

and built environment variables on the probability of carpooling, non-motorized trips, and 

transit usage.  

The findings indicate that vehicle availability, residential preference, and transit 

subsidies strongly influence commuters’ travel modes. For example, access to free transit 

not only increases the probability of taking transit but also increases the likelihood of 

choosing non-motorized modes relative to driving alone. In contrast, commuters with 

access to free parking at their workplace have a higher probability of choosing to drive 

alone over walking\biking or taking transit.  
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The results also indicate that trip purpose matters. For example, the likelihood of 

carpooling or taking transit is higher when commuters conduct home-based-work trips.   

Regarding built environment factors, the results show that higher activity density 

and higher job/population balance at the near-origin and near-destination of trips 

decrease the probability of choosing to drive alone relative to all other modes. The results 

indicate that the non-motorized mode is highly associated with the distance between a 

trip’s origin and destination. In the full model, travel time delay—as a measure of 

congestion—was found to be significantly and positively associated with carpooling, 

taking public transit, or choosing a non-motorized mode relative to driving alone.  

Ultimately, the key findings of this study can be summarized as follows: 

- Traffic congestion was found to be an influential factor that suppresses VMT per 

household and encourages commuters to choose carpooling, taking transit, and 

non-motorized modes of travel.  

-  Both the origins and destinations of trips are important determinants of travel 

mode choice. Those within areas with a higher density of activities and 

job/population balance are less likely to drive alone over all other available 

modes. 

- Strong impacts were found in terms of residential preferences. Holding all other 

variables constant, those who selected their home location because of access to 

transit or the walkability of the neighborhood are less likely to drive alone and 

have a lower daily VMT. 

  



 

172 

Implications for Policies  

The findings of this study can be applied to transportation planning and decision 

making as tools to reduce VMT and encourage non-motorized modes of travel. The goal 

of reducing VMT is an official goal of U.S. Government policy, as expressed in the 

President Clinton’s 1993 Climate Change Action Plan (CCAP), in sections of the Clean 

Air Act (CAA), and in the Congestion Mitigation Air Quality Improvement Program 

(CMAQ) included in both the Transportation Equity Act for the 21st Century (TEA-21), 

U.S.C. 23, Section 149 and the Intermodal Surface Transportation Efficiency Act (ISTEA)  

(Byars, Wei, & Handy, 2017; U.S. Department of Transportation Federal Highway 

Administration, 2014).  

The results of this research present evidence for policies and regulations that are 

related to land use development, pricing, investments in transit, investments in biking or 

walking, and travel demand management programs. Increasing density, infill 

development, and mixed-use development are examples of land use policies that can 

reduce VMT. The present findings indicate that higher density or increasing land use 

diversity (job/population balance) reduce daily VMT per household and encourage 

carpooling or selecting public transit or non-motorized modes. These findings provide 

some evidence of the importance of shorter distances between origins and destinations 

in carpooling, transit usage, and non-motorized commuting. This suggests that MPOs 

and municipalities should consider mixed use developments with more compact 

communities. This pattern of land use reduces distances between activities and 

encourages residents to decrease their daily VMT and consider transit or non-motorized 

modes instead of driving alone. Reducing the distance between origins and destinations 

is one of the strategies supported by smart growth policies that reduce total VMT in the 

long-term and facilitate non-motorized modes of travel. 
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Investments in public transit and walking/biking amenities are other key factors 

that influence commuters’ mode choices. Improving safety, convenience, and network 

connectivity are useful strategies to increase mobility by alternative modes of 

transportation. The “complete streets” policy is an example of a policy that can be 

implemented to provide safe mobility for commuters and encourage them to reduce drive-

alone travel and consider other modes. States and local agencies can apply this concept 

to provide alternative modes of travel by inclusion of facilities for transit vehicles, 

pedestrians, and bicycles. The results of this research show that higher walkability 

increases the probability of choosing walking/biking or taking transit relative to driving. 

Also, the results indicate that households located within areas with greater access to 

transit have moderately lower daily household VMT.  

Increasing the cost of driving—relative to other modes—is another smart growth 

strategy for reducing VMT. The cost of driving can be influenced by many different factors 

such as gas price, taxes, parking charges, and travel time delays. While results are 

preliminary, this research indicates the importance of travel time delay in mitigating VMT 

and promoting carpooling, taking transit, or choosing non-motorized modes of travel. This 

is a key point for promoting policies that support increasing the cost of driving and 

investing in public transit.  

It has been argued that developing highways and adding/widening roads is not 

the only solution to overcoming traffic congestion. In fact, developing highways and 

freeways causes another issue referred to in economics as “induced demand” (de Dios 

Ortúzar & Willumsen, 2011). This concept suggests that developing new roads and 

increasing road capacity encourages auto dependency and spreading activities 

throughout low density suburbs. In contrast, it has been argued that investment in public 

transit and congestion pricing may better address traffic congestion; not only does it 
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provide more reliable and sustainable means of transportation, but it also encourages 

people in the long run to consider carpooling or taking transit instead of driving alone.  

Transportation demand management (TDM) programs can be implemented to 

reduce VMT and encourage commuters to choose options other than driving alone. TDM 

includes a variety of strategies such as telecommuting programs, parking management, 

and employer-based trip reduction (EBTR) programs. The results of this research 

indicate that households with access to free parking have higher daily VMT. This finding 

provides evidence for TDM to develop a Public-Private Partnership (P3) to encourage the 

use of public transit or participate in carpooling programs.  

 

Research Advantages and Limitations 

This research presents results on how traffic congestion influences travel 

behavior. The methodology of this research offers several advantages. First, it presents 

the process of quantifying traffic congestion at a sub-area level and developing a “delay 

score” as the additional “D” factor in travel behavior studies. Using time-related mobility 

measures at a local level can help planners and decision-makers uncover the 

interrelationships between congestion and factors such as VMT, trip frequency, mode 

choice, route choice, and other travel behavior outcomes. In addition to transportation 

planning studies, a time-related mobility measure such as travel time delay can be used 

in public health studies to examine the effects of higher travel time delays on physical 

activity, obesity, and other health-related factors.  

In this study, the delay score was calculated using the Google Maps Distance 

Matrix API. With this computation, the implemented methodology can be used in other 

fields/analyses such as public health and travel demand modeling. Another advantage of 

this study was conducting the analysis at the household level and trip level with built 



 

175 

environment factors at near-origins and near-destinations. Using disaggregated 

household travel survey data provides a key contribution to the literature by exploring 

individuals’ mobility patterns and improves the process of understanding travel behavior 

without the problem of aggregation bias.  

There are also some limitations of the present research that should be addressed. 

Due to the nature of the research questions and the availability of GPS-based travel 

survey data, this research was limited to analyzing data from the Seattle metropolitan 

area. This research was conducted prior to 2017 NHTS data being published at the 

disaggregated level. Analyzing disaggregated data at the national level could enhance 

our understanding of traffic congestion and its impact on travel behavior.  

This research examined travel behavior in the context of VMT and mode choice 

while other aspects, such as route choice and destination choice, were not explored. 

Route choice and destination choice analyses require specific data that were not 

gathered in the PSRC travel survey program. Ultimately, this research used cross-

sectional travel survey data gathered in 2015. Applying panel data or longitudinal travel 

survey data would improve our understanding of travel behavior and the effects of 

congestion between two time periods.  

The limitations of this study point towards topics to be considered in future 

research. The following topics are a few potential areas for future research:  

- How does traffic congestion between home and work influence commuters’ 

departure times, their route choices, and the distance to work?  

- How does relocating (job or residential) affect mode of travel when travel time 

delay between home and work is decreased or increased? 

- How does travel time delay influence health-related factors such as physical 

activity or obesity? 
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Appendix A 

Transportation Performance Measures  
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Definitions of Transportation Performance Measures 

The travel time (in minutes) is the time needed to complete a trip and move from the 

origin to the destination. There are different ways to measure travel time. For example, it can be 

calculated directly using archived data from official traffic management agencies or by 

conducting field survey studies. Also, it can be calculated using empirical relationships with 

roadway characteristics and traffic volume, validated travel demand models, or the projected 

effects of improvements (Schrank et al., 2005). 

The peak-hour period (rush hour) can be defined as follows: 

 …part of the day during which traffic congestion on roads and crowding on public 

transport is at its highest. Normally, this happens twice every weekday—once in the 

morning and once in the afternoon or evening, the times during which the most people 

commute (Wikipedia).  

According to Schrank et al. (2005), historical traffic count data such as annual average daily 

traffic (AADT) and average daily traffic (ADT) cannot be used to calculate the travel time index 

(TTI) or the Buffer Index. Using daily traffic volume data in the TTI is not meaningful because 

the measure is meant to compare off-peak and peak travel conditions, whereas ADT data 

cannot provide these details.  

Total delay (in person- or vehicle-hours) is the total extra time wasted due to traffic 

congestion. The total delay can be considered for both transit and roadway segments. 

According to Schrank et al. (2005), “delay” can be quantified as a ratio of actual travel time to 

the free-flow or posted speed limit. Equation A-1 presents the calculation of delay in person-

hours. In addition to the total delay, the delay per person or delay per peak period traveler can 

be calculated by daily minutes or annual hours, which is easily interpretable for non-technical 

audiences. 
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𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑙𝑎𝑦
(𝑝𝑒𝑟𝑠𝑜𝑛 − ℎ𝑜𝑢𝑟𝑠)

 = 

 

(A-1) 

[
𝐴𝑐𝑡𝑢𝑎𝑙

Travel Time
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

− 
𝐹𝐹𝑆 𝑜𝑟 𝑃𝑆𝐿

Travel Time   
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

] ×
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠)
×

 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠)

×
1 ℎ𝑜𝑢𝑟

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

 

 
The total delay in an urban area or a corridor is calculated as the total of individual 

segment delays (Schrank et al., 2005). The aggregated total delay within urban areas can be 

used by transportation planning agencies to evaluate the impact of major highway 

improvements on transportation systems and provides useful information for economic or 

benefit/cost analyses. 

The Travel Time Index (TTI) is a dimensionless measure that presents the ratio of 

peak-period travel time to free-flow travel time. The TTI implies commuters’ perceptions of travel 

time on the roadway. This indicator presents the length of extra time wasted during a trip in the 

transportation system. For example, a TTI of 1.3 means that a trip that takes 30 minutes during 

the off-peak period will be 30 percent longer and will take 39 minutes during the peak period.  

New technologies in traffic congestion have enhanced the estimation of the TTI. Texas 

A&M Transportation Institute changed the methodology of calculating TTI in 2015. Equation A-2 

presents the previous formula for the TTI. In the previous method, time periods were weighted 

by VMT using volume estimates derived from FHWA's Highway Performance Monitoring 

System (HPMS).  
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(A-2) 

The current methodology for calculating the TTI is based on travel time (Equation A-3 

and A-4). According to FHWA, this measure is calculated for the AM peak period (6 am to 9 am) 

and PM peak period (4 pm to 7 pm) on weekdays.3  

 

Travel Time Index =    
𝑃𝑒𝑎𝑘  𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝑂𝑓𝑓 𝑃𝑒𝑎𝑘  𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
                             

 

(A-3) 

Travel Time Index =    
𝐷𝑒𝑙𝑎𝑦 𝑇𝑖𝑚𝑒  + 𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤  𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤  𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
       

 

(A-4) 

The Travel Rate Index (TRI) is a dimensionless measure, similar to the TTI, that 

compares traffic conditions during the peak period to traffic conditions during free-flow or posted 

speed limit conditions. The difference between TRI and TTI is the implementation of traffic 

incident data. Traffic incidents are not considered in the TRI, whereas the TTI considers the 

effects of incidents on travel time using continuous traffic count data streams.   

The Buffer Index (BI) implies trip reliability, indicating the amount of extra “buffer” time 

required to be on time for 95 percent of trips. For example, this index provides an estimate of 

extra time needed to avoid being late for work one day per month. The index can be explained 

as “a traveler should allow an extra BI percent travel time due to variations in the amount of 

                                                 
3 https://ops.fhwa.dot.gov/perf_measurement/ucr/documentation.htm 
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congestion delay on that trip” (Schrank et al., 2005, p. 30). According to Schrank et al. (2005), 

the BI and delay measures could also be beneficial in the off-peak period within locations with a 

higher density of traffic or congestion during off-peak hours. 

With continuous data, the BI creates a time- and distance-neutral measure estimated 

for each road or transit route segment. According to Schrank et al. (2005), a weighted average 

of BI can be estimated using VMT or PMT as a weighting factor. Schrank et al. (2005) stated 

that travel rates for approximately 5-mile sections of roadway provide reliable data to measure 

congestion for a corridor or sub-area. BI can also be aggregated for a sub-area by implementing 

a weighted average for more than one roadway and using VMT or PMT on each roadway 

section. To calculate the BI within a region, the actual minute values could be obtained from an 

individual traveler for a particular trip length or specific origin-destination pair within 5-mile 

buffers. Equation A-5 presents the calculation of the BI, which can be implemented for each 

road segment or particular system element.  

𝐵𝑢𝑓𝑓𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 (%) =    (A-5) 

                           

[
 
 
 
 
 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 

95 𝑡ℎ 
Travel Time
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

− 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒
Travel Time   
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

]
 
 
 
 
 

× 100% 

According to Schrank et al. (2005), the buffer time concept provides basic information 

for travelers to make decisions. Schrank et al. (2005) listed different questions which 

commuters consider when making a trip. These questions include, “When should I leave?”, 

“How far is it?”, “When do I need to arrive?”, “How much time do I need to allow?”, and “How 

bad is the traffic?”, among others. Conceptually, considering the level of traffic congestion and 

extra time required to spend on the transportation system, commuters will have different 

reactions. Based on the extra time that has to be allowed for uncertainty in travel conditions, 

travelers make different decisions based on their “time allowance” stage and other 

socioeconomic factors.   
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 Traffic congestion and the extra time of travel could be related to various factors such 

as weather, incidents, holidays or special events, construction zones, or other traffic 

irregularities (Schrank et al., 2005)  

Congested Travel is a measure that represents the total level of congested roads 

within a geographic area. It quantifies the sum of the congested corridor that is influenced by 

the high level of traffic volumes. Equation A-6 illustrates the calculation of congested travel in 

vehicle-miles as the product of the congested segment length and the vehicle volume summed 

across all congested segments (Schrank et al., 2005). 

 

 
𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑚𝑖𝑙𝑒𝑠)

  

= ∑ [ 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑
Segment Length   

(𝑚𝑖𝑙𝑒𝑠)
×

𝑉𝑒ℎ𝑖𝑐𝑙𝑒
Volume   
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠)

] 

(A-6) 

 

The Percent of Congested Travel is similar to congested travel, but this measure 

considers more factors—such as speed and occupancy data—to estimate the extent of 

congestion. It is calculated as the ratio of the congested segment person-hours of travel to the 

total person-hours of travel. Equation A-7 illustrates the calculation of the percent of congested 

travel (Schrank et al., 2005). 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 =  (A-7) 
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Congested Roadway is another transportation performance measure that calculates 

the extent of congestion within a region. It is the sum of the mileage of roadways that operate 

under free-flow or posted speed limit conditions. This is shown in Equation A-8 (Schrank et al., 

2005). 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑅𝑜𝑎𝑑𝑤𝑎𝑦 
(𝑚𝑖𝑙𝑒𝑠)

  

=   𝛴 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑆𝑒𝑔𝑚𝑒𝑛𝑡

 𝐿𝑒𝑛𝑔𝑡ℎ (𝑚𝑖𝑙𝑒𝑠)  

(A-8) 

According to the Urban Mobility Report, the VOC ratio can be used to calculate the total 

mileage of congested roads. This ratio is often used as a measure of the sufficiency of existing 

or proposed capacity. The VOC ratios for each segment can be calculated by dividing the 

volume by the capacity using FHWA’s HPMS dataset and the HCM. Additionally, the volume 

and network inventory data from HPMS geospatial GIS files can be used to calculate VMT and 

VMT per lane‐mile, which indicates the traffic density.  

The Road Congestion Index (RCI) is transportation performance measure that 

represents a higher level of traffic congestion if the index value is greater than or equal to 1.0. 

Using the average capacity of highways and principal arterials, Equation A-9 presents the 

formula for calculating the RCI. The resulting ratio presents a higher level of congestion if the 

index value is greater than or equal to 1.0.   

 

𝑅𝑜𝑎𝑑 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = (A-9) 

 

  
𝑃𝑟𝑖𝑛. 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑉𝑀𝑇 (𝑝𝑒𝑟 𝑙𝑛.𝑚𝑖)   ×   𝑃𝑟𝑖𝑛. 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑉𝑀𝑇 + 𝐹𝑟𝑒𝑒𝑤𝑎𝑦𝑠 𝑉𝑀𝑇 (𝑝𝑒𝑟 𝑙𝑛.𝑚𝑖)  ×  𝐹𝑟𝑒𝑒𝑤𝑎𝑦 𝑉𝑀𝑇

5,000    ×    𝑃𝑟𝑖𝑛. 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑉𝑀𝑇   +      14,000    ×    𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑠 𝑉𝑀𝑇
 

 
 

Accessibility is another transportation performance measure that often represents 

mobility measures. It examines how many different opportunities can be reached during 

different times of the day. In addition to job accessibility, the “opportunity” can refer to 

accessibility to a transit station or other activities of interest. Accessibility is satisfied if the travel 
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time to perform the desired activity is less than or equal to the target travel time, as indicated in 

Equation A-10.  

(A-10) 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 
(𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠)

  

𝛴 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑙𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 

(e.g., jobs), Where 
Travel Times ≤ Target Travel Time 
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Appendix B 

PSRC Household Travel Survey Program 
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Puget Sound Travel Survey Program 

Example of Questions in 2015 Travel Survey Program1:  

1. Please tell us about the vehicles in your household: Year, Make, Model, Fuel 

type. Does this vehicle have a disability license plate or parking pass? When did 

your household purchase/obtain this vehicle? 

2. How many total people (including yourself) currently live in your household? 

3. Please tell us about yourself.  

• Initials or nickname;  

• Gender;  

• Age;  

• Primary type of employment [if employed full/part/self];  

• Number of jobs;  

• Highest level of education completed;  

• Has a valid driver’s license;  

• Vehicle used most often; Currently a student?  

• How often typically travels on a toll road or toll bridge in the Puget Sound 
Region? 

• Adult: Student status 

• Household size 

• Number of adults in household age 18+ (derived) 

• Number of children in household under 18 (derived) 

• Number of workers in household 
 

4. How many motor vehicles (in working order) are there in your household? 

5. How many months of the year do you live at your current residence (the 

residence where we sent your invitation to participate in this study)? 

6. How long have you lived at your current residence? 

7. Do you rent or own your current residence?   

8. What type of place is your current residence? 

9. How important were each of these factors when choosing to move to where you 

live now:  

• A change in family size or marital/partner status  

                                                 
1 Source: https://www.psrc.org/travel-surveys-2015-household-survey 
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• Affordability  

• Quality of schools (K-12)  

• Having a walkable neighborhood and being near local activities  

• Having space & separation from others  

• Being close to family or friends  

• Being close to public transit Being close to the highway  

• Being within a 30-minute commute to work 
 

10. Please share where your home is located. 

11. In 2014, what was your household’s total annual income (from all sources) before 

taxes or other deductions from pay? 

12. What type and model of smartphone do members of your household have? 

13. Number of trips made on travel day (derived) 

14. Where started\ ended (travel day) 

15. Transit Subsidy: Employer or school pays for part or all of transit pass or E-purse 

value 

16. Work: How often commute to primary workplace 

• If commutes: Typical commute mode 
17. Work benefit:  

• Flextime (can adjust schedule as long as work the right number of total 
hours) 

• Free or subsidized parking 

• Free or subsidized transit use 
 

18. Main purpose of trip (derived) 

19. Travel Mode: Main way traveled on trip 

20. Total number of travelers on trip including self (derived) 

21. Car, motorcycle or vanpool: Vehicle used on trip 

22. Transit: Access\ Egress mode: Walked or jogged; Rode a bike; Drove and 

parked a car (e.g. a vehicle in my household); Drove and parked a carshare 

vehicle (e.g. ZipCar, Car2Go); Got dropped off; Got picked up; Took a taxi (e.g. 

Yellow Cab, Lyft)
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Appendix C: 

Walk Score and Transit Score API  
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API Parameters and Requirements 

The Walk Score and Transit Score APIs from the Walk Score website 

(walkscore.com) allow users to obtain information about the walkability and access to 

public transit for places in the U.S and other countries. The Walk Score measures the 

walkability of places and the Transit Score measures access to public transit. This API 

returns the value of the Walk Score and Transit Score rated from 0 to 100. The higher 

value indicates more pedestrian friendliness or better access to public transit within a 

walkable distance (Kocher & Lerner, 2018). Table C- 1 presents the list of required and 

optional parameters in the API.  

Table C- 1. List of Parameters in the Walk Score and Transit Score APIs 

Parameter Description Required 

Walk Score 

lat The latitude of the requested location. Yes 

lon The longitude of the requested location. Yes 

address The URL encoded address. Yes 

wsapikey Your Walk Score API Key. Yes 

transit Set transit=1 to request Transit Score (if available). No 

bike Set bike=1 to request Bike Score (if available). No 

format Return results in XML or JSON (defaults to XML). No 

Transit Score 

lat The latitude to score. Yes 

lon The longitude to score. Yes 

city The name of the city where the address is located. Yes 

state 

A two-letter USPS state code for the city. You must supply 
this parameter for cities in the United States; for all other 
cities, you should instead use the country parameter. 

Yes 

country 

A two-letter ISO-3166 country code for the city. You must 
supply this parameter for cities outside of the United 
States; for cities in the United States, use 
the state parameter instead. 

No 

research 

If yes, the Transit API bypasses validating the city, state, 
and country parameters. When set to yes, transit scores 
are considered experimental. 

No 

Source: Kocher & Lerner, 2018 

The result of API calls and their descriptions are shown in Table C- 2. 
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Table C- 2. List of The API returns 

Result Description 

Walk Score 

status 
Status code of the result (see information below). 

walkscore 
The Walk Score of the location. 

description An English description of the Walk Score. e.g., Somewhat 
Walkable. 

updated 
When the Walk Score was calculated. 

logo_url 
Link to the Walk Score logo. 

more_info_icon 
Link to question mark icon to display next to the score. 

more_info_link 
URL for the question mark to link to. 

ws_link 
A link to the walkscore.com score and map for the point. 

help_link 
A link to the "How Walk Score Works" page. 

snapped_lat All points are "snapped" to a grid (roughly 500 feet wide per grid 
cell). This value is the snapped latitude for the point. 

snapped_lon 
The snapped longitude for the point. 

Transit Score 

transit_score 
The score, an integer between 0 and 100 inclusive. 

description An English description of the Transit Score suitable for display to 
users. e.g., Rider's Paradise. 

summary An English summary of the number of routes used to compute this 
transit score. 

ws_link 
A link to the Transit Score page for this address on walkscore.com. 

logo_url 
Link to the Walk Score logo. 

help_link 
A link to the walkscore.com page for how scoring works. 

Source: Kocher & Lerner, 2018 
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API Calls with R Package 

In this study, the R programming was utilized to obtain the Walk Score and 

Transit Score from the API. R provides a collection of functions to perform API calls 

associated with the Walk Score website (www.walkscore.com). These functions can be 

used to query the Walk Score and Transit Score database for a wide variety of 

information using R scripts (Whalen, 2015). Every function in R package requires the use 

of a Walk Score API key number, entered as a parameter. The key is free to obtain with 

limited use and can be requested here: http://www.walkscore.com/professional/api.php.  

The easiest way to enter the key is to store the string as a variable and enter that variable 

as a parameter for the function calls (Whalen, 2015). 

Walk Score API Call 

getWS: A function to perform the basic Walk Score API call. 

Usage: getWS(x, y, key) 

Arguments: 

x longitude of query location (numeric) 

y latitude of query location (numeric) 

key Walk Score API key (string) 

Value: 

Returns an object of class WalkScore, basically a list of the following elements: 

status Status code of the request. Status of 1 indicates 
a successful call. See the Walk Score API page 
for interpretation of other codes. 

walkscore Walk Score of query location. 
description Qualitative description of location. 
updated Date and time of most recent update to this 

location’s Walk Score. 
snappedLong grid point longitude to which the input was 

snapped to. 
snappedLat grid point latitude to which the input was 

snapped to. 
Example: getWS(-73.98496,40.74807,"your key") 

http://www.walkscore.com/professional/api.php
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Transit Score API Call 

getTS: A function to perform the basic Transit Score API call. 

Usage: getTS(x, y, city, state, key) 

Arguments: 

x longitude of query location (numeric) 

y latitude of query location (numeric) 

city name of core city where the query location is located 

(string) 

state postal abbreviation of query location’s state (string) 

key Walk Score API key (string) 

Value: 

Returns an object of class TransitScore, basically a list of the following elements: 

transitscore Transit Score of query location 

url Link to Walk Score page associated with your 

query. 

description Qualitative description of query location 

regarding transit. 

summary Summary of nearby routes and stops. 

Example: getTS(-73.98496,40.74807,"New York","NY","your key")  
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Appendix D 

The Google Distance Matrix API 
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API Parameters and Requirements 

The Distance Matrix API is a service from Google Maps that provides travel 

distance and time for a matrix of origins and destinations.5  The API returns travel time 

and distance information that consists of rows containing duration and distance values for 

each O-D pair (Google LLC, 2018). Table D- 1 presents the list of parameters in the 

Distance Matrix API. 

Table D- 1. List of Parameters in The Distance Matrix API 

Parameter Description 

Required  

origins  The starting point for calculating travel distance and time.  

Destinations  One or more locations to use as the finishing point for calculating 
travel distance and time.  

key   The application's API key. This key identifies your application for 
purposes of quota management. 

Optional  

mode  

Driving (default) indicates distance calculation using the road 
network. 
Walking requests distance calculation for walking via pedestrian 
paths & sidewalks (where available). 
Bicycling requests distance calculation for bicycling via bicycle 
paths & preferred streets (where available). 

language  The language in which to return results. 

region  The region code, specified as a ccTLD (country code top-level 
domain) two-character value.  

avoid  The following restrictions are supported: 
avoid=tolls; avoid=highways; avoid=ferries; avoid=indoor 

units  units=metric (default) returns distances in kilometers and meters. 
units=imperial returns distances in miles and feet. 

arrival_time Specifies the desired time of arrival for transit requests, in seconds 
since midnight, January 1, 1970 UTC. 

departure_time The desired time of departure. You can specify the time as an 
integer in seconds since midnight, January 1, 1970 UTC. 

traffic_model  best_guess (default), pessimistic, and optimistic.  

transit_mode Bus; subway; train; tram (light rail); rail 

Source: The Google Maps API 

                                                 
5 https://developers.google.com/maps/documentation/distance-matrix/intro 

https://en.wikipedia.org/wiki/CcTLD
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API Calls with R Package  

In this study, R programming software was utilized to obtain Google travel times 

and calculate travel time delays. The R function gmapsdistance uses the Google Maps 

Distance Matrix API in order to compute the distance(s) and time(s) between two points 

(Melo, Rodriguez, & Zarruk, 2018). In order to be able to use the function, users will need 

an API key and enable the Distance Matrix API in the Google Developers Console. The R 

function ‘gmapsdistance’ provides distance and travel time between two points from 

Google Maps, including four possible modes of transportation: bicycling, walking, driving 

and public transportation (Melo et al., 2018).  

Table D- 2. List of Arguments in the R Package ‘gmapsdistance’ 

Arguments  Description  

origin A string or vector of strings containing the description of the starting 
point(s). 

destination A string or vector of strings containing the description of the end point(s). 

mode A string containing the mode of transportation desired. Should be inside 
of double quotes (",") and one of the following: "bicycling", "walking", 
"transit" or "driving". 

key In order to use the Google Maps Distance Matrix API it is necessary to 
have an API key 

avoid When the mode is set to "driving", the user can find the time and distance 
of the route by avoiding tolls, highways, indoor and ferries 

departure The time and distance can be computed at the desired time of departure. 

dep_date Instead of using the departure option, the user can set the departure date 
and time using dep_date and dep_time options 

dep_time Instead of using the departure option, the user can set the departure date 
and time using dep_date and dep_time options. 

traffic_model When the mode is set to "driving", the user can find the times and 
distances using different traffic models. Should be a string and one of the 
following: "optimistic", "pessimistic", "best_guess" or "None" (default). 

arrival The time and distance can be computed to arrive at a predetermined 
time.  

arr_date Instead of using the arrival option, the user can set the arrival date and 
time using arr_date and arr_time options. 

arr_time Instead of using the arrival option, the user can set the arrival date and 
time using arr_date and arr_time options. The user cannot input both 
departure and arrival times 

Source: Melo, Rodriguez, & Zarruk, 2018 
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Mode Choice Results  
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Table E- 1. Comparison of Logit Models and Probability of Carpooling Mode Relative to 

Drive Alone Mode of Travel 

Model Specifications 

Model 1 
exp(b) 

Model 2 
exp(b) 

Model 3 
exp(b) 

Model 4 
exp(b) 

Model 5 
exp(b) 

Base 
Res. 

Preference 
 Trip 

Purpose 
Built 

Environment 
Travel Time 

Delay 

Mode 1: Drive Alone (base outcome) 

Mode 2: Carpooling 

age 0.924*** 0.923*** 0.905*** 0.973 0.987 

male 1.090** 1.089** 0.996 1.014 1.020 

education 0.946*** 0.946*** 0.935*** 0.874*** 0.869 

hh_size 1.647*** 1.643*** 1.660*** 2.195*** 2.245*** 

hh_workers 0.669*** 0.669*** 0.745*** 0.568*** 0.540*** 

hh_income 1.071** 1.074** 1.045 0.957 0.951 

hh_vehicles 0.884*** 0.884*** 0.852*** 1.365*** 1.380*** 

access_free_transit 1.615*** 1.604*** 1.775*** 0.973 0.969 

access_free_parking 0.586*** 0.590*** 0.677*** 0.853** 0.863** 

res_factors_hwy n/a 0.991 0.995 0.977 0.972 

tp_hbw n/a n/a 0.1591*** 0.100*** 0.092*** 

tp_shop n/a n/a 0.811*** 0.878* 0.932 

tp_nhb n/a n/a 1.009 0.603*** 0.582*** 

tp_socrec n/a n/a 1.727*** 2.008*** 2.105*** 

density_origin n/a n/a n/a 1.928*** 1.818*** 

density_destin n/a n/a n/a 2.414*** 2.160*** 

jobpop_origin n/a n/a n/a 1.314*** 1.315*** 

jobpop_destin n/a n/a n/a 1.926*** 1.955*** 

distance_od n/a n/a n/a 1.440*** 0.874** 

delay_od n/a n/a n/a n/a 1.906*** 

_cons 0.679 0.693 1.074 0.0239*** 0.041*** 

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the 

model. 
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Table E- 2. Comparison of Logit Models and Probability of Taking Transit Mode Relative 

to Drive Alone Mode of Travel 

Model Specifications 

Model 1 
exp(b) 

Model 2 
exp(b) 

Model 3 
exp(b) 

Model 4 
exp(b) 

Model 5 
exp(b) 

Base 
Res. 

Preference 
Trip 

Purpose 
Built 

Environment 
Travel Time 

Delay 

Mode 1: Drive Alone (base outcome) 

Mode 3: Transit (bus\train) 

age 0.916*** 0.930*** 0.972 1.022 1.036 

male 0.867** 0.856** 0.881* 1.113 1.115 

education 0.931*** 0.918*** 0.902*** 0.735*** 0.730*** 

hh_size 1.033 1.028 1.083* 1.748*** 1.788*** 

hh_workers 1.392*** 1.313** 1.151** 0.694*** 0.664*** 

hh_income 0.925 0.924 0.879** 0.674*** 0.674*** 

hh_vehicles 0.252*** 0.319*** 0.305*** 0.553*** 0.554*** 

access_free_transit 9.235*** 8.147*** 7.782*** 3.494*** 3.468*** 

access_free_parking 0.127*** 0.129*** 0.111*** 0.197*** 0.2017*** 

res_factors_transit n/a 1.539*** 1.583*** 1.277*** 1.276*** 

tp_hbw n/a n/a 2.336*** 0.537*** 0.507*** 

tp_shop n/a n/a 0.488 0.680*** 0.717** 

tp_nhb n/a n/a 1.071 0.471*** 0.453*** 

tp_socrec n/a n/a 1.054 1.249* 1.300* 

density_origin n/a n/a n/a 2.529*** 2.421*** 

density_destin n/a n/a n/a 2.568*** 2.363*** 

jobpop_origin n/a n/a n/a 1.444*** 1.453*** 

jobpop_destin n/a n/a n/a 1.273*** 1.294*** 

transitscore_origin n/a n/a n/a 3.397*** 3.435*** 

transitscore_destin n/a n/a n/a 3.128*** 3.026*** 

distance_od n/a n/a n/a 3.167*** 2.101*** 

delay_od n/a n/a n/a n/a 1.690*** 

_cons 4.047** 0.621 0.812 0.00*** 0.00*** 

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the 

model. 
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Table E- 3. Comparison of Logit Models and Probability of Choosing Non-Motorized 

Mode Relative to Drive Alone Mode of Travel 

Model Specifications 

Model 1 
exp(b) 

Model 2 
exp(b) 

Model 3 
exp(b) 

Model 4 
exp(b) 

Model 5 
exp(b) 

Base 
Res. 

Preference 
 Trip 

Purpose 
Built 

Environment 
Travel Time 

Delay 

Mode 1: Drive Alone (base outcome) 

4.Mode: Non-Motorized (walking\biking) 

age 0.853*** 0.859*** 0.845*** 0.933** 0.947* 

male 0.836*** 0.829*** 0.780*** 0.656*** 0.667*** 

education 1.081*** 1.065*** 1.039** 0.973 0.968 

hh_size 0.986 0.997 1.042 1.464*** 1.499*** 

hh_workers 1.151*** 1.125*** 1.230*** 0.785*** 0.745*** 

hh_income 1.023 0.982 0.938* 0.939 0.945 

hh_vehicles 0.4176*** 0.463*** 0.438*** 1.077 1.085 

access_free_transit 3.106*** 3.193*** 3.473*** 1.911*** 1.862*** 

access_free_parking 0.340*** 0.335*** 0.362*** 0.570*** 0.589*** 

res_factors_walk n/a 1.438*** 1.446*** 1.124*** 1.127*** 

tp_hbw n/a n/a 0.451*** 0.937 0.858 

tp_shop n/a n/a 0.728*** 0.429*** 0.457*** 

tp_nhb n/a n/a 0.799*** 0.299*** 0.286*** 

tp_socrec n/a n/a 3.922*** 4.511*** 4.638*** 

density_origin n/a n/a n/a 2.290*** 2.104*** 

density_destin n/a n/a n/a 2.364*** 2.052*** 

jobpop_origin n/a n/a n/a 1.289*** 1.275*** 

jobpop_destin n/a n/a n/a 2.775*** 2.843*** 

walkscore_origin n/a n/a n/a 1.356*** 1.447*** 

walkscore_destin n/a n/a n/a 1.598*** 1.697*** 

distance_od n/a n/a n/a 0.256*** 0.146*** 

delay_od n/a n/a n/a n/a 2.203*** 

_cons 3.362*** 1.039 1.391 0.001*** 0.001*** 

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the 

model. 
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