
ON THE INFLUENCE OF SPATIO-TEMPORAL DATA ANALYSIS

ON CLUSTERING AND RECOMMENDATION

by

MADHURI DEBNATH

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy at

The University of Texas at Arlington

December, 2017

Arlington, Texas

SUPERVISING COMMITTEE:

Ramez Elmasri, Supervising Professor,

Leonidas Fegaras,

Gautam Das,

David Levine

Copyright c© by Madhuri Debnath 2017

All Rights Reserved

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my Ph.D. supervisor

Professor Ramez Elmasri. It has been a great honor to be his Ph.D. student. I

would like to thank him for his continuous support of my Ph.D. study and research.

His immense knowledge, motivation and guidance helped me in all the time of my

research. The enthusiasm he has for his research was the biggest motivation for

me, even during the tough times in the Ph.D. pursuit. I could not have imagined

having a better supervisor and mentor for my Ph.D. study. I would like to extend

my gratitude to the rest of my Ph.D. committee members Dr. Leonidas Fegaras, Dr.

Gautam Das and Mr. David Levine. I appreciate their interests in my research and

helpful comments throughout my Ph.D. journey.

I would like to thank the members of MAST (Mining and Analysis of Spatio-

Temporal Data) lab. Especially, I recall countless discussions with Dr. Praveen

Kumar Tripathi, which were really encouraging for me surviving through the tough

time of the Ph.D. track.

My time at UT Arlington was made more enjoyable due to many friends. My

heartiest gratitude to them for always being there in my happy time and hard time.

Special thanks to Mohammad Fakrul Islam for being the company in our most mem-

orable mountain hiking trips.

My heartiest gratitude to my father Ranjit Debnath and mother Beauty Deb-

nath for their unconditional love and encouragement. My sister Shimul Debnath and

my brother Rajib Debnath were always a great source of inspiration for me.

iii

Finally, my loving and caring husband, Dr. Ashis Kumer Biswas. You are my

best friend since we were freshmen at the University of Dhaka. I cannot thank you

enough for being the constant source of support and encouragement throughout the

half of my entire life. I strongly believe I am the luckiest person in the whole world

to have you in my life.

November 13, 2017

iv

To my parents.

RELATED PUBLICATIONS

• Madhuri Debnath, Praveen Kumar Tripathi, and Ramez Elmasri, “Preference-

Aware Successive POI Recommendation with Temporal and Spatial Influence”,

The 8th International Social Informatics Conference (SocInfo) 2016, Washing-

ton, USA, 2016

• Praveen Kumar Tripathi, Madhuri Debnath, and Ramez Elmasri, “A Direc-

tion Based Framework for Trajectory Data Analysis”, The 9th ACM Interna-

tional Conference on Pervasive Technologies Related to Assistive Environments

(PETRA), 2016, Corfu Island, Greece, June 29 - July 01, 2016.

• Madhuri Debnath, Praveen Kumar Tripathi, and Ramez Elmasri, “Preference-

Aware POI Recommendation with Temporal and Spatial Influence”, Proceedings

of the 29th International Florida Artificial Intelligence Research Society Con-

ference (FLAIR) (pp 548-553), Florida, USA, 2016.

• Praveen Kumar Tripathi, Madhuri Debnath, and Ramez Elmasri, “Direc-

tional Analysis of Trajectories Based on Trajectory Smoothing,” 5th Interna-

tional Workshop on Mobile Entity Localization and Tracking in GPS-less Envi-

ronment, MELT 2015, Seattle, WA, USA, 2015.

• Madhuri Debnath, Praveen Kumar Tripathi, and Ramez Elmasri, “K-DBSCAN:

Identifying Spatial Clusters with Differing Density Levels”, International Work-

shop on Data Mining with Industrial Applications, DMIA 2015., Paraguay,

September 14-16, 2015

• Praveen Kumar Tripathi, Madhuri Debnath, and Ramez Elmasri, “Extract-

ing Dense Regions from Hurricane Trajectory Data”, First International ACM

vi

Workshop on Managing and Mining Enriched Geo-spatial Data, GeoRich 2014.

5:1-5:6., UTAH, USA, 2014.

• Madhuri Debnath, Praveen Kumar Tripathi, and Ramez Elmasri, “A Novel

Approach to Trajectory Analysis using String Matching and Clustering”, ICDM

Workshops 2013: 986-993, Dallas, Texas, USA, 2013.

vii

ABSTRACT

ON THE INFLUENCE OF SPATIO-TEMPORAL DATA ANALYSIS ON

CLUSTERING AND RECOMMENDATION

Madhuri Debnath

The University of Texas at Arlington, 2017

Supervising Professor: Ramez Elmasri

In this dissertation, we propose efficient frameworks to analyze spatio-temporal

data. In the first part of the dissertation, we use a clustering based method to mine

useful information from trajectory data. Existing trajectory clustering algorithms

have focused on geometric properties and spatial features of trajectories. In contrast

to existing algorithms, we propose a new framework to cluster sub-trajectories based

on a combination of spatial and non-spatial features.

In the second part of dissertation, we propose a unified framework to build

recommendation systems by analyzing human movement data. We propose recom-

mendation frameworks to recommend POI locations and travel routes that use a

combination of spatial, temporal and content features. POI recommendation method

aims to provide users with a list of recommendation of POI locations within a geo-

spatial range that should match their temporal activities and categorical preferences.

In travel route recommendation method, we propose to recommend time-aware and

preference-aware travel routes consisting of a sequence POI locations with correspond-

viii

ing time information. This method helps users to plan the entire trip under a specific

time constraint. The recommended travel routes tell users where to visit and when to

visit. For all the problems, we provide extensive experiments with real world spatio-

temporal data available in public domains. The performance evaluation validates the

utility and the effectiveness of the proposed methods over baseline approaches.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

RELATED PUBLICATIONS . vi

ABSTRACT . viii

LIST OF FIGURES . xiv

LIST OF TABLES . xviii

Chapter Page

1. INTRODUCTION . 1

1.1 Spatio Temporal Data Analysis . 1

1.2 Dissertation Organization . 4

2. A Novel Approach to Trajectory Analysis Using String Matching and Clus-

tering . 8

2.1 Introduction . 8

2.2 Related Work . 10

2.3 PROPOSED FRAMEWORK . 12

2.3.1 Representation of Trajectory 12

2.3.2 Segmentation Algorithm . 16

2.3.3 Non-spatial feature extraction 18

2.3.4 Density-based Clustering . 18

2.4 Experiments and Result Evaluation 22

2.5 FUTURE WORK AND CONCLUSION 28

3. K-DBSCAN: Identifying Spatial Clusters With Differing Density Levels . . 30

3.1 Introduction . 30

x

3.2 Related Work . 32

3.3 Proposed Algorithm . 34

3.3.1 K-DBSCAN Phase 1 - K level Density Partitioning 34

3.3.2 K-DBSCAN Phase 2 - Density Level Clustering 42

3.4 Experiments and Comparison with other methods 45

3.4.1 Experiment 1 . 48

3.4.2 Experiment 2 . 52

3.4.3 Experiment 3: Population Dataset 54

3.4.4 Qualitative Measure of Clustering Results: 55

3.5 Practical Applications of K-DBSCAN 58

3.5.1 Analysis of Earthquake Data 58

3.5.2 Analysis of Crime Data . 61

3.5.3 Parameter K . 69

3.6 Conclusion . 71

4. Preference-Aware POI Recommendation With Temporal and Spatial Influence 72

4.1 Introduction . 72

4.2 Related Work . 74

4.3 Problem Definition . 76

4.3.1 User-based Collaborative Filtering 77

4.3.2 Preference-Aware Location Recommendation 77

4.4 Enhancement over Baseline By Incorporating Temporal Influence . . 80

4.4.1 Temporal Categorical Preference 81

4.4.2 Temporal Popularity . 82

4.5 Incorporating Spatial Influence by POI Clustering 82

4.5.1 Spatial-Aware Candidate Selection 84

4.5.2 Regional Popularity . 84
xi

4.6 POI Recommendation . 85

4.7 Experiments . 85

4.7.1 Dataset . 85

4.7.2 Evaluation Method . 86

4.7.3 Experimental Results . 87

4.8 Conclusion . 90

5. Preference-Aware Successive POI Recommendation With Spatial and Tem-

poral Influence . 91

5.1 Introduction . 91

5.2 Related Work . 94

5.3 Preliminaries . 96

5.3.1 Data Structure . 96

5.3.2 Data Analysis . 96

5.3.3 Problem Formulation . 99

5.3.4 User-based Collaborative Filtering 99

5.4 PLTSRS Framework . 100

5.4.1 Offiline Modeling . 101

5.4.2 Online Recommendation . 105

5.5 Experiments . 107

5.5.1 Dataset . 107

5.5.2 Experimental Results . 110

5.6 Conclusion . 111

6. Preference Aware Travel Route Recommendation with Temporal Influence 113

6.1 Introduction . 113

6.2 Related Work . 116

6.2.1 POI recommendation . 117
xii

6.2.2 Trip Recommendation . 118

6.3 Problem Statement . 119

6.3.1 Definition 1: Users . 120

6.3.2 Definition 2: POI locations . 120

6.3.3 Definition 3: Check-ins . 120

6.3.4 Definition 4: Travel Route . 120

6.3.5 Definition 5: Time-Aware Travel Route 120

6.3.6 Definition 6: Travel Time . 121

6.3.7 Definition 7: Stay Time . 121

6.3.8 Definition 8: Transition Time 121

6.3.9 Definition 9: Trip Time . 122

6.3.10 Definition 10: Time Constraints 122

6.3.11 Definition 11: Valid Route . 122

6.3.12 Problem Statement . 122

6.4 Proposed Framework . 123

6.4.1 Offline Modeling . 124

6.4.2 Personalized Temporal based Location Scoring 128

6.4.3 Online Travel Route Recommendation Algorithm 129

6.4.4 Brute-Force Approach . 130

6.5 Experiments . 136

6.5.1 Experimental Settings . 136

6.6 Conclusion . 140

7. CONCLUSIONS . 142

7.1 Summary of Contributions . 142

REFERENCES . 144

BIOGRAPHICAL STATEMENT . 153
xiii

LIST OF FIGURES

Figure Page

2.1 An example of two trajectories . 9

2.2 Trajectory T1 . 14

2.3 Longest Common Approximate Sub-trajectories 17

2.4 MBR of three trajectories . 18

2.5 Spatial distance between two sub-trajectories. 20

2.6 Clustering results considering spatial distance εs = 0.002, MinS = 7 . 24

2.7 Clustering results considering only spatial distance with εs = 0.00195,

MinS = 7 . 25

2.8 Clustering results considering only spatial distance with εs = 0.0018,

MinS = 7 . 26

2.9 Clustering results with εs = 0.002, εns = 0.2, MinS = 7 26

2.10 Clustering results with εs = 0.00195, εns = 0.15, MinS = 7 26

2.11 Clustering results with εs = 0.0018, εns = 0.15, MinS = 7 27

3.1 Points in different density regions . 34

3.2 One cluster surrounding another cluster 35

3.3 Sample dataset . 41

3.4 Sorted k-density values with 2 density level (K = 2) 41

3.5 Sorted l-density values with 3 density level (K = 3) 42

3.6 Datapoints with two density levels . 42

3.7 Neighbourhood of a Point . 43

3.8 K-DBSCAN clustering result, K = 2 47

xiv

3.9 K-DBSCAN clustering result, K = 3 47

3.10 DBSCAN clustering result, ε = 2 . 48

3.11 DBSCAN clustering result, ε = 4 . 49

3.12 SNN clustering result, k = 15 . 49

3.13 SNN clustering result, k = 30 . 50

3.14 SNN clustering result, k = 50 . 50

3.15 Reachability distance . 52

3.16 OPTICS clustering result . 52

3.17 Dataset-2 . 53

3.18 K-DBSCAN, K=2 . 54

3.19 DBSCAN, ε = 0.004 . 55

3.20 DBSCAN, ε = 0.009 . 56

3.21 SNN, k = 50 . 57

3.22 OPTICS . 58

3.23 Dataset-3 . 59

3.24 K-DBSCAN, K = 4 . 59

3.25 DBSCAN, ε=0.18 . 60

3.26 OPTICS . 61

3.27 SNN, k=50 . 62

3.28 K-DBSCAN clustering result, K = 3 64

3.29 DBSCAN clustering result with EarthQuake Data 65

3.30 K-DBSCAN result with theft Data, K = 3 66

3.31 K-DBSCAN result with theft Data, K = 4 66

3.32 DBSCAN result with theft Data, ε = 0.003 67

3.33 K-DBSCAN clustering result, K = 3 68

3.34 K-DBSCAN clustering result with Burglary Data, K = 4 68
xv

3.35 DBSCAN clustering result with Burglary Data, ε = 0.003 70

3.36 Mean of Squared Error with different value of K 71

4.1 User check-in distribution in NY City 83

4.2 Regions of POI locations . 83

4.3 Effects of time segment length, precision@N 87

4.4 Effects of time segment length, recall@N 87

4.5 Effects of time segment length, f-measure@N 88

4.6 Comparison with baseline methods, precision@N 88

4.7 Comparison with baseline methods, recall@N 88

4.8 Comparison with baseline methods, f-measure@N 89

5.1 Sequential check-in data of three users 92

5.2 Number of unique categories checked-in by users 97

5.3 Check-in frequency at different hour of the day 97

5.4 Time difference between two successive check-ins (in minutes) 98

5.5 Geographical distance between two successive check-ins 99

5.6 Personalized Transition Matrices of users 102

5.7 Factorized individual transition probability matrix 102

5.8 All POI locations in NY city . 106

5.9 Spatial-Aware candidate selection . 106

5.10 Precision and Recall . 109

5.11 Effects of different Tmax . 109

5.12 Pre@10 . 109

5.13 re@10 . 110

6.1 A time-aware travel route . 121

6.2 System Framework . 123

xvi

6.3 Given source, destination and 4 other visiting locations, building 3-

length trips . 132

6.4 Number of unique categories checked-in by users, (Number of users =

1083) . 132

6.5 Tour Precision . 135

6.6 Tour Recall . 135

6.7 Tour F-Score . 135

6.8 Effects of different Time Constraint length 138

6.9 Comparison of execution time with Brute-Force method 139

6.10 Comparison of execution time without time constraint pruning 140

xvii

LIST OF TABLES

Table Page

3.1 QMeasure for Dataset-1 . 60

3.2 QMeasure for Dataset-2 . 61

3.3 Qualitative Measure on Dataset-3 based on density variation and Noise 62

3.4 Total Qualitative Measure for Dataset-1 63

3.5 Total Qualitative Measure for Dataset-2 63

3.6 Total Qualitative Measure on Dataset-3 64

3.7 Point distribution of theft data, K = 3 65

3.8 Point distribution of theft data, K = 4 67

3.9 Point distribution of burglary data, K = 3 69

3.10 Point distribution of burglary data, K = 4 69

4.1 Location category hierarchy by Foursquare 77

xviii

CHAPTER 1

INTRODUCTION

1.1 Spatio Temporal Data Analysis

Spatio-temporal data deals with spatial and temporal aspects of data. Tra-

jectory data is an example of spatio-temporal data. A trajectory is a sequence of

time-stamped GPS locations (latitude, longitude). Due to the advances in location-

acquisition technologies, a massive amount of spatial trajectory data has been gen-

erated. This data represents the mobility of a diversity of moving objects, such as

humans, animals or vehicles. Such trajectories offer us a lot of useful information

to understand moving objects and locations. Analysing trajectory data has many

other applications such as managing the traffic pattern of vehicles, monitoring and

predicting weather conditions, examining wild animal behaviour and movement, as

well as analysing the spread of disease. A number of attempts have been made in

this domain to analyse these kinds of data sets.

Another example of spatio-temporal data is user check-in data collected by

mobile GPS. “Check-in” is a process by which a user posts his/her presence or arrival

to a physical location, Users’ movement data with location and time information

provide us better knowledge about their activities and interests. The availability

of such information opens up an array of new research problems and various real

world applications. POI recommendation systems and Travel Route recommendation

systems are the examples of such real world applications.

In this dissertation, we present novel frameworks and algorithms to analyze

spatio-temporal data. Here we provide a high level overview of our contributions:

1

2
1. A Novel Approach to Trajectory Analysis Using String Matching and

Clustering: Our first contribution is to propose a new framework to cluster

sub-trajectories based on a combination of their spatial and non-spatial fea-

tures. This algorithm combines techniques from grid-based approaches, spatial

geometry and string processing. Given a set of sub-trajectories, this framework

clusters the sub-trajectories to group them based on the combination of their

spatial and non-spatial features. In this work, we first convert each trajec-

tory into a representative sequence that captures the trajectory direction and

location. We identify common sub-trajectories from all the sequences using

a modified string matching algorithm. Then, we extract non-spatial features

from the common sub-trajectories. Finally, we present a density-based cluster-

ing algorithm to cluster the sub-trajectories. This work is presented in Chapter

2.

2. Identifying Spatial Clusters With Differing Density Levels: Spatial clus-

tering is a very important tool in the analysis of spatial data. In this con-

tribution, we propose a novel density based spatial clustering algorithm called

K-DBSCAN with the main focus of identifying clusters of points with similar

spatial density. This contrasts with many other approaches, whose main focus is

spatial contiguity. The strength of K-DBSCAN lies in finding arbitrary shaped

clusters in variable density regions. Moreover, it can also discover clusters with

overlapping spatial regions, but differing density levels. The goal is to differen-

tiate the most dense regions from lower density regions, with spatial contiguity

as the secondary goal. K-DBSCAN works in two phases: first, it divides all

data objects into different density levels to identify the different natural densi-

ties present in the dataset; then it extracts the clusters using a modified version

of DBSCAN. This work is presented in Chapter 3.

3
3. Preference-Aware POI Recommendation with Temporal and Spatial

Influence: POI recommendation is a very important application in Location

Based Social Network (LBSN) that provides users personalized location rec-

ommendation. It helps users to explore new locations and filters uninteresting

places that do not match with their interests. Multiple factors influence users

to choose a POI, such as user’s categorical preferences, temporal activities and

location preferences as well as the popularity of a POI. In this contribution,

we use user movement data and define a unified framework that takes all these

factors into consideration. This method aims to provide users with a list of

recommendation of POIs within a geospatial range that should match with

their temporal activities and categorical preferences. This work is presented in

Chapter 4.

4. Preference-Aware Successive POI Recommendation with Spatial and

Temporal Influence: Successive POI recommendation refers to the problem

of recommending users the very next location based on his current location

and the current time. Traditional POI recommendation cannot suggest where

a user may go the next day or next hour based on their current location or

status. In this contribution, we consider the task of personalized successive POI

recommendation, recommending to a user the very next location where he might

be interested to go next based on his current location. Multiple factors influence

users to choose a POI, such as user’s categorical preferences, temporal activities

and location preferences, the popularity of a POI as well as sequential patterns

of a user. In this work, we define a unified framework that takes all these factors

into consideration to build a better successive POI recommendation model. We

use a real-world user check-in dataset collected from Foursquare. This work is

presented in Chapter 5.

4
5. Preference Aware Travel Route Recommendation with Temporal In-

fluence: Travel route recommendation is one of the recent and most important

applications in the LBSN services. Travel route recommendation provides users

a sequence of POIs (Point of Interests) as a route to visit. In this contribution,

we propose to recommend time-aware and preference-aware travel routes con-

sisting of a sequence of POI locations with corresponding timestamps. It helps

users not only to explore interesting locations in a new city but also it will help

to plan the trip accordingly with those locations with timestamp information

in a specific time constraint. First, we find the interesting POI locations that

consider the following factors: User’s categorical preferences, temporal activi-

ties and popularity of location. Then, this work proposes an efficient solution

to generate travel routes with those locations. The travel routes will tell users

where to visit and when to visit. This work is presented in Chapter 6.

1.2 Dissertation Organization

In Chapter 2, we presented our method of clustering sub-trajectories [1]. In this

work, we aim to cluster trajectories considering both spatial features and non-spatial

features. The main motivation behind this is to find groups of spatial dense regions

of trajectories with similar non-spatial attribute behaviour. Our proposed framework

has 4 major phases: 1) dimension reduction, 2) trajectory segmentation, 3) non-

spatial feature extraction and 4) clustering. In the first phase, each trajectory is

mapped from high dimensional (usually 2 or 3) space to one-dimensional space. This

mapping simplifies trajectory representation and their comparison in later stages of

our framework. The second phase exploits the string matching concept to identify

common sub-trajectories among all trajectories. In this work we use a modified version

of Longest Common String Matching (LCS) algorithm. The third phase deals with

5
identifying significant non-spatial features from second phase. In the final phase, the

sub-trajectories are clustered using DBSCAN algorithm based on the combination

of spatial and non-spatial features. We performed experiments using our proposed

method with real world hurricane trajectory data. Experimental results show that

our framework correctly discovers groups of similar sub-trajectories with their similar

non-spatial features.

In Chapter 3, we present a new density-based spatial clustering algorithm K-

DBSCAN. The motivation of this algorithm is to analyse spatial data that can handle

data with different density levels. Unlike the DBSCAN [2] algorithm, it does not

depend on the global ε parameter to calculate neighbourhood, rather each data point

dynamically generates its own parameter to define its neighbourhood. Hence, it has

less sensitivity to the user specified parameter. Our proposed method works in two

major steps: 1) K Level Density Partitioning and 2) Density Level Clustering. In

the first phase, we calculate the density of each data point based on its distance

from its nearest neighbouring data points. Then we partition all the data points

into K groups based on their density value. In this phase, we introduce a modified

version of DBSCAN algorithm that works on different density levels. Our proposed

K-DBSCAN algorithm can be utilized in several applications. For example, it can be

used to find spatial clusters with differing population density levels, even when these

clusters are overlapping. We experimented the proposed method with both synthetic

data and real world data. Experimental results demonstrates the effectiveness of our

algorithm [3].

In Chapter 4, we present a preference-aware, location-aware and time-aware

POI recommendation system that offers a particular user a set of POI locations

incorporating time information and geo-spatial range. In this framework, we incorpo-

rate time dimension to model time-specific user preferences, so our recommendation

6
model aims to recommend POI locations that match the time-specific preferences of

individual user. We further exploit user’s spatial behaviour using location histories

to generate spatial-aware location preferences. Our recommendation model uses the

popularity factor of individual locations by calculating both time-specific popularity

and regional popularity. We model personal preferences of users based on the cate-

gory information of their location histories. We estimate the similarity between two

users by computing similarity between their personal preferences rather than using

user’s location vector. There are 2 main reasons behind this. First, it handles the

data sparsity problem of user-location matrix. Second, two users who do not visit the

exact same venue may still share common interest if their preferences are the same.

Then We evaluate our system with a real-world dataset collected from Foursquare.

The extensive experimental results with evaluation show that our method combining

multiple factors (temporal, spatial, popularity, preferences) provide users better and

effective recommendations than other baseline approaches.

In Chapter 5, we present a preference-aware, location-aware and time-aware

successive POI recommendation system. However traditional POI recommendation

systems consider all check-ins as a whole and generate recommendations [4, 5, 6, 7, 8].

They do not consider the users’ sequential movement information. Therefore, they

cannot suggest where a user may go in the next few hours based on their current

location or status. In this work, we consider the task of personalized successive POI

recommendation. Successive POI recommendation refers to the problem of recom-

mending users the very next location based on his current location and current time.

This task recommends those locations that a user may not visit frequently or before,

but he/she may like to visit at successive timestamps [9]. For example, successive POI

recommendation can suggest a user location to have fun after dinner, or a location for

outdoor activities in a nearby park after his work. We develope a successive POI rec-

7

ommendation model PLTSRS (Preference-Aware, Location-Aware and Time-Aware

Successive POI Recommendation System), which jointly considers user’s person-

alized sequential movement information, temporal categorical preferences, location

preferences and popularity of POIs.

In Chapter 6, we present an efficient framework to generate preference-aware

and time-aware travel route recommendation system. Our goal is to recommend

top-K travel routes with the combination of interesting locations that will match

with users’ time specific interests. Each location of a route will be associated with

the corresponding approximated time information. By this recommendation, the

user will know not only where to go, but also when to go. First, incorporate time

dimension to model time-specific user preferences. We estimate the similarity between

two users based on the user-preference vector rather than the user-location vector.

We build a model to estimate the uncertain transition time between two locations.

We propose a novel framework “PTTR-Reco” (Preference-Aware, Time-Aware Travel

Route Recommendation) to recommend top-K travel routes to users.

Finally, Chapter 7 summarizes the contributions made in this dissertation. It

also outlines several short-term and long-term research goals on the foundations de-

veloped in the dissertation.

CHAPTER 2

A Novel Approach to Trajectory Analysis Using String Matching and

Clustering

2.1 Introduction

Because of vast improvements in GPS and current sensor technologies, large

scale trajectory data are available. The data provided by the technologies are raw

data. Hence it becomes significant to discover important and meaningful informa-

tion by analysing them. Examples of trajectory data includes vehicle position data,

hurricane track data, animal or pedestrian movement tracking data, radio frequency

identification (RFID), among many other examples.

Trajectories are represented as a sequence of spatio-temporal points. Analysing

trajectory data has many other applications such as managing the traffic pattern

of vehicles, monitoring and predicting weather conditions, examining wild animal

behaviour and movement, as well as analysing the spread of disease. A number of

attempts have been made in this domain to analyse these kind of data sets. Some of

these analyses can be found in [10],[11],[12],[13],[14].

Existing trajectory clustering algorithms have focused on spatial proximity and

spatial features (latitude and longitude) of trajectories. Similarity of non-spatial

attributes of trajectories has not been considered. Example of non-spatial attributes

of trajectories include wind speed, length, area coverage, frequency of stops between

movements and so on. These attributes can be significantly different from each other.

For example, two hurricane trajectories or their sub-trajectories may have common

8

9
tracking patterns based on spatial location and direction, but they may have different

wind speed and wind pressure or time-span of two hurricane can be different.

Example

Figure 2.1: An example of two trajectories

Consider the two trajectories in Fig. 1. The trajectory data that we use it from

the hurricane dataset [15]. In this dataset, time points in a trajectory are 6 hours

apart. Trajectory that starts at t0 and ends at t4 has total duration of 24 hours.

Another trajectory starting at t0 and ending at t2 has total duration of 12 hours. It is

obvious that average wind speed of the second trajectory is higher than the first one,

because they have the same approximate length but a different number of points.

In this chapter, we aim to cluster trajectories considering both spatial features

and non-spatial features. The main motivation behind this is to find groups of spatial

dense regions of trajectories with similar non-spatial attribute behaviour. Here we

give one example to illustrate that discovering common sub-trajectories considering

both type of feature is useful.

1. Storm trajectory analysis has an important application in forecasting hurricane

landfall information [11]. Storms with high wind speed and intensity is more

significant than those of low speed and intensity value. So, analysing these

10
attributes will be useful to predict the storm locations with high wind speed

and intensity.

The rest of the chapter is organized as follows. In Section 2.2, we review some

related work. We describe our proposed algorithm in Section 2.3. Section 2.4 presents

experimental results of our algorithm. Finally, Section 2.5 concludes the chapter.

2.2 Related Work

In this section, we briefly describes some works that are most relevant to this

one. In [16], the authors proposed a model based clustering algorithm, where a set of

trajectories are represented using a regression mixture model. EM algorithm is used

to determine cluster membership. They consider the whole trajectory as a basic unit

of clustering.

In [11], the authors propose a partition and group framework to cluster trajec-

tories. In the partitioning phase, trajectories are divided into some line segments.

This division has been done using the notion of characteristic points which reflect the

most significant points in the trajectory. In the grouping phase, these line segments

are clustered using DBSCAN algorithm [17]. The obvious drawback of this algorithm

is that only the line segments are being clustered.

In [10], the authors proposed a modular approach to cluster sub-trajectories.

This approach is based on combination of techniques from computational geometry,

string processing and data mining.

In [18], the authors have proposed a technique for mining a spatio temporal

pattern called the flocking behaviour in an online fashion. The flocking patterns refer

to the set of the trajectories that remain close to each other for some reasonable

time interval. The authors consider both the time information along with the spatial

attributes in mining the flocking behaviour.

11

In [14], the authors propose a non-parametric approaches to cluster spatial tra-

jectories. This article deals with trajectory clustering and the post analysis of the

cluster results. In this approach, they propose a clustering algorithm that uses a

randomized hill climbing technique to find some local maxima of the density func-

tion. The clusters finally result when the trajectories belonging to the same local

maxima are grouped together. The post processing of the obtained spatial clusters is

performed to get more domain specific knowledge.

Another important analysis of sptio-temporal tracking data has been proposed

in [19]. The authors have given a framework for mining the sequential patterns from

the spatio temporal data. This task gets very important when studying the evo- lu-

tion of some phenomena in spatial and temporal domain. They proposed a sequence

index that is important in identifying the significant spatio-temporal sequential pat-

terns from the spurious ones. A novel algorithm called Slicing-STS-Miner has been

proposed to use the given sequence index in order to efficiently obtain the spatio-

temporal sequential patterns.

In [20], the authors extended their previous work on trajectory clustering [11]

and proposed a new algorithm of trajectory classification. They proposed two types

of clustering: 1) region-based clustering and 2) trajectory based clustering. The mo-

tivation is to arrive at the discriminative features, which are very vital in generating

the classifier model for the classification task. The first level of the clustering, which

is the region level, identifies the higher level, region based features of the trajecto-

ries, ignoring the movement based features at this stage. The second level of the

clustering identifies the lower level movement based features. These two clustering

collaboratively identify the high-quality features for the classification task.

12
2.3 PROPOSED FRAMEWORK

Our proposed framework has four phases which are, 1) dimension reduction, 2)

trajectory segmentation, 3) non-spatial feature extraction and 4) clustering.

In the first phase, we map each trajectory from high dimensional (usually 2 or

3) space to one-dimensional space. This mapping simplifies trajectory representation

and their comparison in later stages of our framework.

The second phase deals with the identification of common sub-trajectories

among the dataset. This phase exploits the string matching concept to identify com-

mon sub-trajectories among all trajectories. In this work we use a modified version

of Longest Common String Matching (LCS) algorithm [21].

In the third phase, we extract non-spatial features from the sub-trajectories

obtained from the second phase. Some examples of non-spatial features are wind

speed, trajectory length etc.

In the fourth phase, we cluster the sub-trajectories based on the combination

of their spatial and non-spatial features. We use DBSCAN algorthim for clustering.

2.3.1 Representation of Trajectory

Each trajectory is represented as a sequence of n spatial locations with time

information viz., (t0, l0), (t1, l1), (t2, l2), (t3, l3),(tn, ln). Here, n is the trajectory

length. Each location li is a 2-dimensional point. The length of one trajectory can

be different from another one. At the same time, the shape and movement of each

trajectory is different. We can consider one trajectory as n × 3 dimensional matrix,

where n = number of points in the trajectory.

13

Trajectory T1 =

t0 x0 y0

t1 x1 y1

t2 x2 y2

..

tn xn yn

In this phase of our algorithm, we focus on mapping a trajectory from two di-

mensional space to one dimensional space. There are several techniques to accomplish

this [22]. The most prominent ones include the Z-order, Gray Codes and Hilbert

Curve. In spatial database management systems, these mapping techniques are used

to store and index location information on disk, as disk storage is logical one dimen-

sional device [22]. In this chapter, we aim to simplify the trajectory data to facilitate

recognition of moving pattern and to compare it with other trajectory data. For this

task we propose our novel algorithm.

We divide the whole problem space domain into M ×N grid cells, where each

grid cell has equal length and width. We consider each grid cell as a spatial region.

Each region is identified with a unique identification number viz., id. The identifi-

cation number is assigned in row major order. For example, in the first row, 1..N

column is identified with numbers from 1 to N . In the second row, all columns are

identified with N + 1 to N +N and so on (see Algorithm 1).

2.3.1.1 Example

Let us consider the following example of one trajectory.

14

Trajectory T1 =

0 1.5 1.5

6 1.8 2.5

12 3.5 2.8

18 5.5 4.8

24 6.2 5.5

30 4.8 5.8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 10

11 20

21 30

31 40

41 50

51 60

61 70

71 80

81 90

91 100

Figure 2.2: Trajectory T1

Let us, divide the problem space domain into 10 × 10 square grid cells, with

each grid cell representing 1 spatial region. Now we assign each grid cell a unique

identification number from 1 to 100, as we have a total of 100 grid cells. In first row,

columns are identified from 1 to 10, in the second row, they are identified from 11

to 20. In order to map the trajectory T1 in this grid, it’s first point which is viz.,

(0, (1.5, 1.5)) is mapped to grid location number 12. Fig. 2 shows the first and last

grid cell number in each row.

We assume that the interval between two successive points is the same (as is

given in the dataset) [15]. For example, trajectory represented as T1 = (12, 22, 24, 46, 57, 55)

15

(see Fig. 2). Hence, a trajectory of length n is a sequence of T [n] = (l1, l2, l3.....ln),

where li is the grid location that approximately represent a trajectory point.

The advantage of this approach is its simplicity and it takes linear time to map

each point to an one-dimension space. We can also do the reverse mapping from grid

cell representation to approximate 2-D position of a point. For example, if grid id =

lo and we have N columns, then x coordinate can be retrieved as lo mod N and y

coordinate can be retrieved as dl0/Ne (see Algorithm 2). Note that, because of the

approximate mapping of the 2-D points to the grid ids the reverse mapping does not

guarantee the exact 2-D points, only approximate location.

For example, grid location l0 = 12 is mapped to 2-D point (2, 2) and l1 = 22

is converted to 2-D point (2, 3). To measure distance between two grid locations,

we measure euclidean distance between 2-D approximate points of two grid ids (see

Algorithm 3).

Algorithm 1 Transformation of 2-D point to 1-D value
Input: (i) x, (ii) y, (iii) N
1. p = ceil(x+ floor(y) ∗N)
2. return p

Algorithm 2 Transformation of 1-D value to approximate 2-D point
Input: (i) l0, (ii) N
1. x = l0 mod N

2. y = dl0/Ne
3. return (x, y)

16

Algorithm 3 Grid distance between two grid location
Input: (i) li, (ii) lj, (iii) N
1. < xi, yi >= Two-D-Transform (li,N)
2. < xj, yj >= Two-D-Transform (lj,N)
3. d =

√
(x2

i − x2
j) + (y2

i − y2
j)

4. return d

2.3.2 Segmentation Algorithm

In the previous section, we focused on the approximate and simplified represen-

tation of a trajectory. In this section, we define an approach to segment a trajectory

into sub-trajectories. We compare two trajectories and find the approximate common

segments between them. This idea originates from Longest Common Substring (LCS)

matching algorithm [21].

2.3.2.1 Longest Common Approximate Trajectory Segments (LCATS)

Given two trajectory sequence S of length m (s1,s2,s3,.....sm) and T of length n

(t1,t2,t3,......,tn). Let X (x1,x2,...,xp) be a sub-sequence of S and Y (y1,y2,..yp) be a sub-

sequence of T. X and Y are called approximate common trajectory segments of S and

T if for each points of X and Y, grid-distance(xi,yi) ≤ ε. In LCATS Problem, we wish

to find the longest common trajectory segments between two trajectories. We have

used dynamic programming approach to find the LCATS between two trajectories.

Example

Consider the following example (see Fig. 3). Here, S, T, V are three different

trajectories. (a, b, c, d) and (h, i, j, k) are LCATS of trajectory S and T. (m,n, o) and

(p, q, r) are LCATS of trajectory S and V.

17

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

T

S

V

a b

c d e

fg

h i

j k

l m n o

p q r

s

t

u

Figure 2.3: Longest Common Approximate Sub-trajectories

2.3.2.2 Identifying sub-trajectories

We consider all trajectories to find the common patterns with other trajecto-

ries. To reduce the cost of comparing a trajectory sequence with another trajectory

sequence, we come up with the idea to use the notion of Minimum Bound Rectangle

(MBR). MBR is a popular technique for indexing spatial objects. It is also used to

indicate approximate spatial positions of spatial objects.

2.3.2.3 Example

Consider the example in Fig. 4. Minimum bounding rectangle of trajectory

1 and 2 intersects with each other. So, there is a possibility that they have some

common segments between them. But MBR of trajectory 3 is not intersecting with

any one of them. So, we do not consider trajectory 3 to compare with trajectory 1

and 2.

18

1

3

2

Figure 2.4: MBR of three trajectories

2.3.3 Non-spatial feature extraction

After the segmentation phase described in the previous section, we obtain a set

of sub-trajectories. In this section, we identify some non-spatial features associated

with them. Non-spatial features are application dependent. In different application

domain, different non-spatial features provide significant information. For example,

In storm trajectory data some significant features are:

1. Average wind speed during the storm

2. Time-length of each storm

3. Wind pressure

4. storm intensity

5. Area coverage

2.3.4 Density-based Clustering

In this section, we present the sub-trajectory clustering algorithm to group them

based on the combination of their spatial and non-spatial features.

19

Algorithm 4 Identifying Sub-trajectories
Input: (i) T : a set of trajectories (T1, T2, ...Tn)

(ii) S : a set of sub-trajectories (s1, s2, ...sm)
1. S = ∅
2. for i = 1→ n do
3. for j = i+ 1→ n do
4. if MBR of Ti intersects MBR of Tj then
5. U =LCATS(Ti,Tj)
6. if is not Null then
7. S = {U}
8. end if
9. end if

10. end for
11. end for

The aim of density-based clustering algorithm is to identify dense regions that

are separated by low-density region. Two most important characteristics is that, they

can identify clusters with arbitrary shape and they can find outliers [17].

In this phase we consider two issues,

1. We define two different distance functions. First distance function dists aims

to find the spatial proximity between two sub-trajectories. The second distance

function distns is to find their non-spatial attribute similarity.

2. We cluster them considering both distance functions.

2.3.4.1 Distance function dists (spatial distance)

We define a new distance measure to find the spatial proximity of two sub-

trajectories. This distance function is based on the aggregated nearest neighbor dis-

tance between the points of the trajectories.

20

We are given two sub-trajectories Sa and Sb. Here |Sa| denotes the length of

Sa and |Sb| denotes the length of Sb. If |Sa| ≥ |Sb|, the spatial distance between two

sub-trajectories Sa and Sb is defined as

dists(Sa, Sb) =
|Sa|∑
i=1

min
j={1,2,··· ,|Sj |}

{
d(Sai, Sbj)

}
(2.1)

That is, for each point in Sa, we find the minimum distance to a point in Sb,

and then sum these distances.

Example

Consider the two sub-trajectories Sa and Sb in Figure 5. Here |Sa| ≥ |Sb|.

Hence,

dists(Sa, Sb) = d(sa1, sb1) + d(sa2, sb1) + d(sa3, sb1) + d(sa4, sb2) + d(sa5, sb3) +

d(sa6, sb3)

Figure 2.5: Spatial distance between two sub-trajectories.

21

2.3.4.2 Distance function distns (non-spatial distance)

In Section (C), we describe some non-spatial features. In this chapter, we use

euclidean distance method to measure non-spatial attribute similarity among sub-

trajectories.

Now we summarize the important notation required for density-based clustering

algorithm. This approach is inspired by ST-DBSCAN algorithm [23]. Let D denote

the set of all sub-trajectories in the database. This algorithm is based on three

threshold : εs, εns, MinS. The notations we used in the algorithm is:

εs-Neighborhood: The εs-Neighborhood of a sub-trajectory Nεs(Si) is defined

by {Sj ∈ D|dists(Si, Sj) ≤ εs }.

εns-Neighborhood: The εns-Neighborhood of a sub-trajectory Nεns(Si) is de-

fined by {Sj ∈ D|distns(Si, Sj) ≤ εns }.

Neighborhood: The Neighborhood of a sub-trajectory N(Si) is defined by

{Sj ∈ Nεs(Si) ∩Nεns(Si) }.

Core object: A sub-trajectory Si is considered as a core object if |N(Si)| ≥

MinS.

Border sub-trajectory: A sub-trajectory is considered as a border object if

it is not a core object but density reachable from at least one core object.

Directly-density-reachable: A sub-trajectory Si is directly-density-reachable

from another sub-trajectory Sj with respect to εs, εns and MinS if 1) Si ∈ N(Sj) and

2) |N(Sj)| ≥MinS.

Density-reachable: A sub-trajectory Si is density-reachable from another

sub-trajectory Sj with respect to εs, εns and MinS if there are a chain of objects

Sj, Sj−1,Sj−2,· · · · · · Si+1, Si ∈ D such that Sk is directly density reachable from Lk+1

with respect to εs, εns and MinS.

22
Density-connected: A sub-trajectory Si is density-connected to a sub-trajectory

Sj with respect to εs, εns and MinS if there is sub-trajectory Sk ∈ D such that both

Si and Sj are density reachable from Sk with respect to εs, εns and MinS.

Density-based cluster: A cluster C of sub-trajectories is a non-empty subset

of D satisfying the following condition:

• ∀Si,Sj: if Si ∈ C and Sj is density-reachable from Si, then Sj ∈ C.

• ∀Si, Sj ∈ C: Si is density-connected to Sj with respect to εs, εns and MinS.

2.3.4.3 Clustering Algorithm

In Algorithm 5, we present the clustering algorithm. Given a set D of sub-

trajectories, this algorithm generates a set of clusters based on three threshold values:

εs, εns andMinS. εs determines object’s spatial neighborhood area and εns determines

it’s non-spatial neighborhood area. Based on these two threshold, this algorithm

determines the neighbor sub-trajectories for each sub-trajectory.

2.4 Experiments and Result Evaluation

In this section, we evaluate the effectiveness of our clustering algorithm. We

use a real trajectory data set viz., hurricane tracking data [15]. The data comprises

Atlantic hurricanes from 1950 to 2000 (50 years). It contains 496 trajectories and

15,998 points. Each track in the data set consists of a sequence of hurricane data

sampled at 6-hours intervals. The sample for each instance in a particular trajectory

track has latitude, longitude, wind speed and wind pressure as its attributes. We did

the experiments using MATLAB because of its better visualization.

In our experiments we used latitude and longitude as spatial attributes, and

wind speed as non spatial attribute within a particular hurricane trajectory. The

23

Algorithm 5 Density-based Clustering
Input: (i) D: a set of trajectory segments

(ii)εs: Maximum distance to find spatial neighbor
(iii)εns: Maximum distance to find non-spatial neighbour
(iv)MinS : Minimum number of sub-trajectories necessary to form a cluster
(v) Output: C : a set of clusters

1. cId = 1
2. for i = 1→ n do
3. if Si is not visited and not clustered yet then
4. Mark Si as visited
5. X = GET-NEIGHBOUR(Si)
6. if |X| < MinS then
7. Si is marked as noise
8. else
9. assign clusterId to ∀S ∈ X

10. Insert all X into the Queue Q
11. while Q is not Empty do
12. pop the current object Sj
13. Y = getNeighbour(Sj)
14. if |Y | ≥ MinS then
15. for ∀s ∈ Y do
16. if Sj is not noise then
17. if Sj is not in Cluster then
18. assign Sj in CId
19. end if
20. end if
21. end for
22. end if
23. end while
24. Increment CId by 1
25. end if
26. end if
27. end for

24

Algorithm 6 GET-NEIGHBOUR
Input: (i) D: a set of trajectory segments

(ii)εs: Maximum distance to find spatial neighbor
(iii)εns: Maximum distance to find non-spatial neighbour
(iv)MinS : Minimum number of sub-trajectories necessary to form a cluster
(v) S : a set of sub-trajectories

1. X = Spatial Neighbours with respect to εs and MinS

2. Y = Non-spatial Neighbours with respect to εns and MinS

3. N = X ∩ Y
4. return N

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Figure 2.6: Clustering results considering spatial distance εs = 0.002, MinS = 7

first stage of our framework, which is identifying sub-trajectories, resulted in 4044

sub-trajectories.

For these sub-trajectories, the average wind speed for each sub-trajectory is

used as its non-spatial attribute. This is mainly motivated by the fact that wind

speed is a key characteristic of the storm.

Figs 2.6, 2.7 and 2.8 show the clustering results obtained using only the spatial

neighbourhood parameter (viz., εs), whereas the MinS parameter is 7 throughout

the experiments. The parameter εs determines the size of the spatial neighborhood

25

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Figure 2.7: Clustering results considering only spatial distance with εs = 0.00195,
MinS = 7

to be evaluated for the density of a particular point. From Figs 2.6 and 2.7 it can be

seen that changing the value of εs from 0.002 to 0.00195 did not change the clustering

result significantly. Whereas, it can be seen from the result in Fig 2.8 for the value of

εs = 0.0018, that the clustering result changed significantly from those in the Figs 2.6

and 2.7 respectively.

After the experiments with only the spatial neighbourhood parameter, we in-

corporated the non spatial neighbourhood parameter also. Figs 2.9, 2.10, 2.11 show

the results of our clustering algorithm using different parameter values of εs, εns.

Since we incorporate non spatial attributes also in the clustering process, we used

εns parameter corresponding to the non spatial attribute (viz., wind speed) for the

neighborhood criteria. These parameters are very vital for the performance of the

DBSCAN algorithm. For that reason we provide the results for three different sets of

these parameters. This parameter specifies the threshold for the dense regions, i.e.,

a data point will be considered core (dense) only if it has at least MinS = 7 data

points in its neighborhood.

26

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Figure 2.8: Clustering results considering only spatial distance with εs = 0.0018,
MinS = 7

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Figure 2.9: Clustering results with εs = 0.002, εns = 0.2, MinS = 7

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Figure 2.10: Clustering results with εs = 0.00195, εns = 0.15, MinS = 7

27

10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

50

55

Figure 2.11: Clustering results with εs = 0.0018, εns = 0.15, MinS = 7

Fig 2.9 uses εs = 0.002, εns = 0.2 and MinS = 7. For these set of parameters

the result shows four major clusters. The biggest cluster of the trajectories is shown in

red and is in the central position with respect to the other clusters. This signifies that

this particular region witnessed more hurricane activities. Other than this cluster we

can see the next significant cluster shown in green. The third most significant cluster

for this particular parameter set is the one in dark blue.

Fig 2.10 uses εs = 0.00195, εns = 0.15 and MinS = 7. For these set of

parameters the resulting clusters are very different from the ones given in Fig 2.9.

Here the number of clusters is more than the former case and also there is no clear

dominating clustering region. The clusters also seem to be overlapping to some extent.

Finally, Fig 2.11 uses εs = 0.0018, εns = 0.15 and MinS = 7. Now the resulting

clusters are looking better from the ones given in Fig 2.10. Here the number of clusters

is reduced and the clusters are also more concrete with comparatively less extent of

overlapping. Comparing this result with the one in Fig 2.9, it can be seen that the

number of clusters is more in Fig 2.11. Also, the size of the clusters is comparatively

smaller for the current set of parameters.

28
From the above set of experiments it can be seen that the results of the clustering

are very susceptible to the choice of the parameters for the clustering algorithm. The

changing behavior of the clustering result from Fig 2.6 to Fig 2.11 is natural as with

the reduction in the values of εs, as well as εns, we are restricting the size of the clusters

to include only the more dense regions. In particular, the drastic improvement in the

clustering result can be noticed between Fig 2.8 and Fig 2.9. This is because of

the incorporation of the non spatial neighbourhood parameter which results in more

compact clusters.

2.5 FUTURE WORK AND CONCLUSION

In this chapter, we have proposed a novel framework to cluster trajectories. In

the first phase, we map each trajectory to one-dimensional space. This dimension

reduction approach helps to simplify trajectories representation and reduce the cost

of comparison with other trajectories. In the second phase, we present our own

algorithm to identify all common sub-trajectories based on spatial proximity. In the

third phase, we extract significant non-spatial features from them. Finally, we present

a nearest neighbour based approach to measure spatial distance of sub-trajectories.

Then we cluster all sub-trajectories based on the combination of spatial and non-

spatial features.

We have performed our experiment on real life hurricane track data. We then

compared the clustering that combines the spatial and non spatial attributes, with

the clustering based on spatial attributes only.

Spatial datasets are quite large and it is an open research issue to handle big

data efficiently. In our future work, we plan to design an algorithm in a distributed

framework. We will analyse some other trajectory data sets like vehicle and animal

29
movement. In this approach we do not consider temporal information. We plan to

include temporal information during clustering.

CHAPTER 3

K-DBSCAN: Identifying Spatial Clusters With Differing Density Levels

3.1 Introduction

Clustering is the process of grouping a set of objects into classes or clusters so

that the similarity between the objects within the same cluster is maximized. For

researchers who work with geographical and other types of spatial data, data mining

has offered many useful and promising tools for data analysis. Spatial clustering is

one of these tools [24].

Spatial Clustering has a wide range of applications. Some of them include crime

hot-spot analysis, identification of similar land usage, earthquake analysis, agricul-

tural environment analysis and merging of regions with similar weather patterns.

Spatial databases have some unique challenges. So, in order to choose a clus-

tering algorithm that is suitable for a particular spatial application, some important

issues need to be considered [25].

• Clustering algorithms should identify irregular shapes. Partitioning algorithms

like K-means [26] or K-medoids [27] can discover clusters with spherical shapes

and similar size. Density-based clustering algorithms like DBSCAN [2] are more

suitable to find arbitrary shaped clusters.

• The algorithms should not be sensitive to the order of input. That means,

clustering results should be independent of data order. For example, cluster

quality and efficiency in K-means [26] depends on the choice of initial seeds,

while cluster results in DBSCAN [2] do not depend on the data order.

30

31
• Algorithms should handle data with outliers. Density-based algorithms like

DBSCAN [2] and OPTICS [28] can handle noise, while K-means [26] cannot.

• Algorithms should not be too sensitive to user specified parameter. For exam-

ple, existing density-based algorithms like DBSCAN [2], DENCLUE [29] and

OPTICS [28] need a careful choice of threshold for density, because they may

produce very different results even for slightly different parameter settings.

• Lastly, clustering algorithms should handle spatial data with varying density.

DBSCAN [2] fails to cluster this kind of data.

Motivated by these challenges, we propose a new density-based spatial cluster-

ing algorithm K-DBSCAN to analyse spatial data that can handle data with different

density levels. Unlike the DBSCAN [2] algorithm, it does not depend on the global ε

parameter to calculate neighbourhood, rather each data point dynamically generates

its own parameter to define its neighbourhood. Hence, it has less sensitivity to user

specified parameter.

Our proposed K-DBSCAN algorithm can be utilized in several applications.

For example, it can be used to find spatial clusters with differing population density

levels, even when these clusters are overlapping. Spatial analysis of regions based

on population has important application in urban planning, healthcare and economic

development. Population density levels of different regions are different.

The rest of the chapter is organized as follows. In Section 3.2, we review some

related works. We describe our proposed algorithm in Section 3.3. Section 3.4 presents

experimental results of our algorithm and compares the quality of the clustering

result with three other well-known algorithms. In Section 3.5, we present a practical

application of our algorithm with a real-world spatial dataset. Finally Section 3.6

concludes the chapter.

32
3.2 Related Work

Spatial Clustering algorithms can be partitioned into four general categories:

Partitioning, hierarchical, density-based and grid-based.

Partitioning algorithms divide the entire dataset into a number of disjoint

groups. Each disjoint group is a cluster. K-means [26], EM (Expectation Maxi-

mization) [30] and K-medoid [27] are three well-known partitioning based clustering

algorithms. These use an iterative approach and try to group the data into K clusters,

where K is a user specified parameter. The shortcoming of the algorithms is that they

are not suitable for finding arbitrary shaped clusters. Further, they are dependent on

the user specified parameter K.

Hierarchical clustering algorithms use a distance matrix as an input and gen-

erates a hierarchical set of clusters. This hierarchy is generally formed in two ways:

bottom-up and top-down [27]. The top-down approach starts with all the objects in

the same cluster. In each successive iteration a bigger cluster is split into smaller

clusters based on some distance measure, until each object is in one cluster itself.

The clustering level is chosen between the root (a single large cluster) and the leaf

nodes (a cluster for each individual object). The bottom-up approach starts with each

object as one cluster. It then successively merges the clusters until all the clusters

are merged together to form a single big cluster. The weakness of the hierarchical

algorithms is that they are computationally very expensive.

BIRCH [31] and CURE [32] are hierarchical clustering algorithms. In BIRCH,

data objects are compressed into small sub-clusters, then the clustering algorithm is

applied on these sub-clusters. In CURE, instead of using a single centroid, a fixed

number of well scattered objects are selected to represent each cluster.

Density-based methods can filter out the outliers and can discover arbitrary

shaped clusters. DBSCAN [2] is the first proposed density-based clustering algorithm.

33
This algorithm is based on two parameters: ε and MinPts. Density around each point

depends on the number of neighbours within its ε distance. A data point is considered

dense if the number of its neighbours is greater than MinPts. DBSCAN can find

clusters of arbitrary shapes, but it cannot handle data containing clusters of varying

densities. Further, the cluster quality in DBSCAN algorithm depends on the ability

of the user to select a good set of parameters.

OPTICS [28] is another density based clustering algorithm, proposed to over-

come the major weakness of DBSCAN algorithm. This algorithm can handle data

with varying density. This algorithm does not produce clusters explicitly, rather

computes an augmented cluster ordering such that spatially closest points become

neighbours in that order.

The DENCLUE [29] algorithm was proposed to handle high dimensional data

efficiently. In this algorithm density of a data object is determined based on the sum

of influence functions of the data points around it. DENCLUE also requires a careful

selection of clustering parameters which may significantly influence the quality of the

clusters.

The Shared Nearest Neighbour (SNN) [33] clustering algorithm was proposed

to find clusters of different densities in high dimensional data. A similarity measure is

based on the number of shared neighbours between two objects instead of traditional

Euclidean distance. This algorithm needs 3 parameters (k, ε, MinPt).

Grid-based clustering algorithm divides the data space into a finite number of

grid cells forming a grid structure on which operations are performed to obtain the

clusters. Some examples of grid based methods include STING [34], Wave-Cluster [35]

and CLIQUE [36]. The STING [34] algorithm calculates statistical information in

each grid cells. The Wave-Cluster [35] algorithm applies wavelet transformation to

the feature base. Input parameters include the number of grid cells for each dimen-

34

sion. This algorithm is applicable for low dimensional data space. The CLIQUE [36]

algorithm adopts a combination of grid-based and density-based approaches and this

algorithm can detect clusters in high-dimensional space.

3.3 Proposed Algorithm

In this section, we focus on the basic steps of our proposed algorithm. We

propose K-DBSCAN algorithm, which works in two phases.

• K Level Density Partitioning: In this phase, we calculate the density of each

data point based on its distance from its nearest neighbouring data points. Then

we partition all the data points into K groups based on their density value.

• Density Level Clustering: In this phase, we introduce a modified version of

DBSCAN algorithm that works on different density levels.

3.3.1 K-DBSCAN Phase 1 - K level Density Partitioning

In real world spatial datasets, different data objects may be located in different

density regions. So, it is very difficult or almost impossible to characterize the cluster

structures by using only one global density parameter [37].

Figure 3.1: Points in different density regions

35
Consider the example from Figure 3.1. In this example, points in clusters C1, C2

and C3 represents very dense neighbourhoods. Points in cluster C4 represents a less

dense region, while points in cluster C5 represent a sparse neighbourhood. Point P1

and P2 should be considered as noise or outliers. As different data points are located

in different density regions, it is impossible to obtain all the clusters simultaneously

using one global density parameter. Because, if we consider the density estimation

for points located in C1, we have to choose a smaller ε value and we will find clusters

C1, C2 and C3. All other points will be considered as outliers. However, if we want

to discover cluster C5, we have to choose a larger value of ε, but this may result in a

bigger cluster by including most of the data points as its neighbour (for example, C1

may merge with C5 forming a bigger cluster).

Consider another example in Figure 3.2. Here cluster C1 is surrounded by

another cluster C2. Points in C2 represent a less dense region, while points in C1 are

in a high density region. It is also difficult to identify both clusters using DBSCAN [2].

Figure 3.2: One cluster surrounding another cluster

36
To overcome these problems, we aim to partition all the data points based on

their density values. The density value of a point depends on the distance of the point

from its nearest neighbours.

There are different measures to find the density of a point. In DBSCAN [2],

density of a point is defined as the total number of neighbours within a given radius(ε)

of the point. But this does not work well in dataset with varying densities. A large

number of points may be considered as noise due to lack of significant neighbourhood,

in terms of global ε. SNN [33] clustering algorithm used the same definition for density

measure, but they did it in terms of shared nearest neighbour similarity, which is

relatively insensitive to variation of density. Still we have to estimate a global radius

parameter, ε.

In this chapter, we have defined a new measure to find density. Here we intro-

duce some important definitions required for this algorithm.

Definition 1: l-nearest neighbour distance

The l-nearest neighbour distance of a point P , denoted as distl(P) is the dis-

tance between the point P and its lth nearest neighbour. Where, l ≥ 1 . If l-set(P)

is the set of l closest neighbours of point P and di is the distance from point P to its

ith closest neighbour, then

distl(P) = max {di} (3.1)

Definition 2: l-density

The l-density of a point P, denoted as l-density(P) is defined as follows

l-density(P) = 1
l

l∑
i=1

di (3.2)

37
3.3.1.1 Partitioning

We divide the data points into K groups based on their density values. For

each point P, we calculate l-density(P) using equation (2). Let P = {p1, p2,pn}

be the set of n points. Let D = {d1, d2,dn} be the set of density values of the

data points, where l-density(pi) = di.

We use a V-optimal histogram based approach to partition the data points

into K groups. In Database System, Histogram is a popular method to represent

and summarize data. It also provides an estimation of the probability distribution

of a continuous variable. The most basic histogram is Equi-width histogram, where

each bucket represents the same range of values. V-Optimal histogram defines bucket

boundaries in an optimal way, where the main goal is to minimize the errors over all

point queries.

V-optimality is a partition rule which states that the bucket boundaries are

to be placed as to minimize the cumulative weighted variance of the buckets. A v-

optimal histogram is based on the concept of minimizing a quantity which is called

the weighted variance in this context. The objective function is defined as

W =
K∑
k=1

nkVk (3.3)

Here, K is the number of bins or buckets, nk is the number of items contained

in the k-th bin and Vk is the variance between the values associated with the items

in the k-th bin.

Given the number of buckets K, our goal is to find the bucket boundaries for

each bucket that will minimize the sum of weighted variances of the l-density values

of points in buckets. Computing V-Optimal histogram is more expensive than the

38
basic histogram. We use a greedy based approach to find the optimal histogram with

K buckets.

First, we sort the points based on their l-density values. Let P ′ = {p′1, p′2,p′n}

be the set of n points, where l-density(p′i) ≤ l-density(p′i+1). We maintain an addi-

tional array to keep track of the partitions. Let L = {χ1,χ2,...χK} be the set of K

partitions. Here, χi represents the i-th partition. For each i, χi ⊂ P ′.

39

Algorithm 7 V-OPTIMAL-PARTITION
Inputs:

D: a set of data points (P1, P2, P3,Pn)

K: number of buckets

Outputs:

L: set of partition (χ1, χ2,, χK)

Input: (i) D: a set of data points (P1, P2, P3,Pn)

(ii) K: number of buckets

(iii) Outputs: L: a set of partition (χ1, χ2,, χK)

1. L = [D] /*Initially L has one partition*/

2. for i=1 to (K − 1) do

3. /* Partition the dataset D into (i+ 1) partitions */

4. g = number of partitions in L

5. for j=1 to g do

6. χj = partitions that has maximum weighted variance

7. end for

8. [χj1][χj2] = Split χj into two groups

9. L = L - [χj]

10. L = L ∪ [χj1][χj2]

11. end for

Initially L has only one partition that includes all the points in set P ′ (Line

1). The algorithm takes (K-1) iteration to divide the dataset into K partitions (Line

2). At each iteration i, the algorithm divides the dataset into (i+1) partitions. For

example, at first iteration, P ′ is divided into two non-empty partitions χ1 and χ2.

40

Let χ1 = {p1, p2, ...px} and χ2 = {px+1, pi+2,pn} be the partition with minimum

weighted variance. Now L = {χ1, χ2}.

For each partition χi in L, we calculate their weighted variance Wi (Line 6). To

further divide the points into one more partition, we pick the partition that has the

maximum weighted variance among all. Let, W1 is the weighted variance of χ1 and

W2 is the weighted variance of partition χ2. If W1 ≥ W2, then we pick χ1 in next

iteration and further divide χ1 into 2 more partitions χ11 and χ12 (Line 8). Now L

contains three partitions L = {χ11, χ12, χ2}. Thus at (K-1) iterations, this process

will divide the whole data points into K partitions.

Split(χ) function divides a dataset into two optimal partitions where the sum-

mation of weighted variance is minimum. To find that, it iterates over the all points.

It considers all possible partitions and pick the partition where the summation of

weighted variance is minimum. Runtime of Split(χ) function is O(n2), where n is the

number of points in partition χ. V-OPTIMAL-PARTITION function takes (K-1)

iterations. So, the overall runtime of the partitioning algorithm is O(K.n2).

Definition 3: Density-Level

Density-Level of a point P , denoted by density-level(P) is an integer number,

labeled by partitioning algorithm described in Section 3.3.1.1. If a point pi is in j-th

partition, the density level of pi is labeled as j. For two points p and q, if they are

in the same partition, their density levels are same. Note that, density-level is only a

numerical value.

Consider the example of a sample dataset in Figure 3.3. We implement the

partitioning algorithm in the dataset with K = 2. The sorted l-density values of all

the points are shown in Figure 3.4 with two density levels.

41

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

Figure 3.3: Sample dataset

0 50 100 150 200 250 300

Data Points

0

10

20

30

40

50

60

70

k
-d

e
n
s
it
y Density Level 1

Density Level 2

Figure 3.4: Sorted k-density values with 2 density level (K = 2)

We use K = 3 and implement the V-OPTIMAL-PARTITION algorithm. Fig-

ure 3.5 shows the 3 partitions of the dataset.

We plot the datapoints based on the density levels in Figure 3.6. Different color

means different density levels. Smaller density level value indicates the points are in

the higher density regions. Blue points represents the points in high density region

(density level 1) and red points represent the points in lower density region (density

level 2).

42

0 50 100 150 200 250 300

Data Points

0

10

20

30

40

50

60

70

k
-d

e
n
s
it
y

Density Level 1

Density Level 2

Density Level 3

Figure 3.5: Sorted l-density values with 3 density level (K = 3)

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

Figure 3.6: Datapoints with two density levels

3.3.2 K-DBSCAN Phase 2 - Density Level Clustering

Step 1 partitions the data points into different density levels. Step 2 is a mod-

ified version of DBSCAN algorithm, which considers spatial distance as well as the

density level difference between points while clustering.

the K-DBSCAN algorithm does not depend on the single global parameter ε,

rather each point defines its neighbourhood region dynamically based on its density

value. We introduce the idea of Density level neighbourhood of a point. Density level

neighbours of a point Pi are the points that reside inside the neighbourhood region of

Pi and that have the same density level as that of Pi.

43
Consider the example in Figure 3.7. We assume that, density level of all points

in C1 is 1 and density level of all points in C2 is 2. So, point P1 is assigned with

density-value 2. Only the blue points inside P1’s neighbourhood radius are defined as

Density level neighbourhood of P1.

Figure 3.7: Neighbourhood of a Point

Definition 4: Neighbourhood radius of a point (εi)

The neighbourhood radius of a point Pi is defined as εi is εi = distl(Pi).

Definition 5: Density Level Neighbourhood of a point N(Pi)

This is defined by N(Pi) = {Q ∈ D | dist(Pi, Q) ≤ εi and density-level(Pi) =

density-level(Q)}.

The following definitions from 6 to 9 are similar to the DBSCAN definitions

except for the differences in neighbourhood that take density level into account in

definitions 6 and 7.

Definition 6: Directly density reachable

A point q is directly density reachable from point Pi wrt. εi if q ∈ N(Pi).

44
Definition 7: Density reachable

A point q is density reachable from point Pi if there is a chain of points

p1......pn, p1 = Pi and pn = q such that pk is directly density reachable from point

pk+1.

Definition 8: Density connected

A point P is density connected to point Q if there is an intermediate point o

such that both P and Q are density reachable from point o.

Definition 9: Cluster

A cluster C is a non-empty subset of the whole dataset of points satisfying the

following conditions:

1. ∀ p, q: if p ∈ C and q is density reachable from p, then q ∈ C.

2. if p, q ∈ C: p is density connected to q.

Definition 10: Outliers

A cluster must have at least MinPts, which is a user specified parameter. If

the number of points in a cluster is less than the threshold MinPts, we consider the

points as outlier, that do not belong to any cluster.

Clustering Algorithm

In this section, we present our density-based clustering algorithm. The structure

of K-DBSCAN algorithm is given in Algorithm 8, which invokes ExpandCluster (see

Algorithm 9) method and RegionQuery (see Algorithm 10) method. Input D is the

set of data points. Another input DL is an array containing the density-levels of all

45

points generated by a K-means [26] algorithm, that we described in the Partitioning

phase (see Section 3.1.1).

Algorithm 8 K-DBSCAN
Input: (i) D: a set of data points (P1, P2, P3,Pn)

(ii)DL: a set of density level of the corresponding data points (dl1, dl2, dl3....dln)
(iii)Output: CL: a set of clusters

1. C = 0 /* C is cluster id */
2. for each unvisited point Pi do
3. mark Pi as visited
4. Calculate εi /* see Definition 4 */
5. dli = DL[Pi]
6. NeighborP ts = regionQuery(Pi, dli, εi)
7. C = C + 1
8. ExpandCluster(Pi, NeighborP ts, C,DL)
9. end for

RegionQuery method returns all the density level neighbours of a point (see

Definition 5). ExpandCluster method does the cluster formation. If a point P is

assigned to a cluster C, its density level neighbours are also part of the same cluster

C. This process continues until all the density connected (see Definition 8) points are

found (see Algorithm 8).

3.4 Experiments and Comparison with other methods

In this section, we evaluate the effectiveness of our clustering algorithm. We

used three different datasets. Dataset-1 is a synthetic dataset, whereas, dataset-2 and

dataset-3 are real-world spatial datasets. We compare our method with three well

46

Algorithm 9 ExpandCluster
Input: (i) D: a set of data points (P1, P2, P3,Pn)

(ii)DL: a set of density level of the corresponding data points (dl1, dl2, dl3....dln)
(iii)Output: CL: a set of clusters

1. Assign Pi to Cluster C
2. for each point pj in Neighbor do
3. Calculate εj
4. dlj = DL[pj]
5. NeighboursP tsj = regionQuery(pj, dlj, εj)
6. for all points pk in NeighbourPtsj do
7. if DL[Pi] = DL[pk] then
8. NeighbourPts = NeighbourPts ∪ pk
9. end if

10. end for
11. if pj is not yet assigned to any cluster then
12. assign pj to cluster C
13. end if
14. end for

Algorithm 10 RegionQuery
Input: (i) Pi: i-th data point

(ii)dli: density level of point Pi
(iii)εi: Neighbourhood radius of point Pi
(iv)Outputs: S: a set of neighbour points

1. Return all points within Pi’s εi-neighbourhood (including Pi) and that has the
same density-level as dli

47

Figure 3.8: K-DBSCAN clustering result, K = 2

Figure 3.9: K-DBSCAN clustering result, K = 3

known density based clustering algorithm, DBSCAN [2], Shared Nearest Neighbour

(SNN) [33] and OPTICS [28].

48

65 70 75 80 85 90 95
50

55

60

65

70

75

Figure 3.10: DBSCAN clustering result, ε = 2

3.4.1 Experiment 1

Dataset-1 is a synthetic dataset, that was also used in [37] (see Figure 3.3). We

use K = 2 (2 density levels) and MinPts = 5. The result of K-DBSCAN is shown in

Figure 3.8. In this result, different colors indicate different clusters. We get 5 clusters.

cluster C5 is the big cluster with lower density level that surrounds the other clusters

C1, C2, C3, C4.

We change the value of K to 3 (3 density levels). Figure 3.9 shows the result.

Here we get 8 clusters. Cluster C8 represents the lowest density level. Cluster C4, C5

and C6 and C7 are at the middle density level. Whereas cluster C1, C2 and C3 are at

the highest density level.

Figure 3.10 shows the result of DBSCAN algorithm with parameters ε = 2 and

MinPts = 5. We got 3 clusters here (red, blue and green points). A large number of

points are not being clustered as they are considered as outliers. We change the value

of ε = 4 and Figure 3.11 shows the result. We get only one big cluster (red points).

Obviously one big cluster does not contain any meaningful information.

49

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

Figure 3.11: DBSCAN clustering result, ε = 4

65 70 75 80 85 90 95
20

30

40

50

60

70

80

90

Figure 3.12: SNN clustering result, k = 15

Figure 3.12, Figure 3.13 and Figure 3.14 show the results of Shared Nearest

Neighbour [33] algorithm on the same dataset. In this algorithm, the value nearest

neighbour list size, k, is important to determine the granularity of clusters. If k is

too small, even a uniform cluster will be broken up into multiple clusters, and the

50

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

Figure 3.13: SNN clustering result, k = 30

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

Figure 3.14: SNN clustering result, k = 50

algorithm will produce a large number of small clusters. On the other hand, if k is

too large, the algorithm will generate only a few, well separated clusters [33]. We use

3 different values for k and compare the results with our algorithm.

51
Figure 3.12 shows the result of SNN algorithm with k = 15. Here this algorithm

produces 37 small clusters, with a lot outliers.

Figure 3.13 shows the clustering result with k = 30. We get 18 clusters. We can

see that cluster C3 (From Figure 3.10) has been broken into multiple different clusters.

Similarly, cluster C5 (From Figure 3.10) has also been broken down into multiple

clusters. Also, we find the points in different density levels are mixed together and

form a single cluster.

Figure 3.14 shows the result with k = 50. Here, we get 8 clusters. But still one

of the dense clusters (Cluster C1 from Figure 3.9) has been broken into multiple small

sized clusters. Further, some points from different density levels are merged together

to form a single cluster.

Now, we compare our method with OPTICS [28] algorithm. From a set of

points, OPTICS [28] generates an ordering of points and corresponding reachability

values [28]. Using the reachability plot, clusters of different densities can be obtained.

Figure 3.15 shows the reachability plot obtained by OPTICS algorithm for Dataset-1.

In this plot, x-axis displays the order in which OPTICS visits the points. Whereas, y-

axis displays the reachability distance of corresponding points. Each valley represents

a cluster. The deeper the valley, the more dense the cluster.

Extracting clusters can be done manually by selecting a threshold on the y-

axis. We can clearly see the threshold value = 4.5 will give us a good result. Figure

3.16 shows the clustering result. It is clear that, clusters contain points of varying

densities, but the big overlapping cluster is missing here (cluster C5 from Figure 3.8).

52

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

cluster order of the objects

R
e

a
c
h

a
b

ili
ty

 d
is

ta
n

c
e

Figure 3.15: Reachability distance

65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

Figure 3.16: OPTICS clustering result

3.4.2 Experiment 2

In the second experiment, we use a real-world spatial dataset (Dataset-2), gen-

erated from OpenStreetMap1, which covers a small area of Dhaka city in Bangladesh
1http://www.openstreetmap.org

53

(see Figure 3.17). We parsed all house or apartment locations in this region. This

dataset contains 325 points. Figure 3.18 shows the K-DBSCAN clustering result us-

ing K = 2 (2 density levels). Our algorithm generates a total of 8 clusters. Cluster

C1 to C7 are the most dense clusters, whereas cluster C8 represents the lower density.

90.32 90.34 90.36 90.38 90.4 90.42 90.44 90.46
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

23.84

Figure 3.17: Dataset-2

To compare with DBSCAN, we first use value ε = 0.004 and MinPts = 5 (see

Figure 3.19). Points that formed cluster C8 in our algorithm (see Figure 3.18) are not

being clustered using these parameters, because they are considered as outliers. We

increase the value of ε to 0.009 and implement DBSCAN again (see the result in Fig-

ure 3.20). Here we find the same cluster(magenta points) as cluster C8 (Figure 3.18),

but clusters C1 to C5 merged together to form a single cluster (red points).

We implement Shared Nearest Neighbour (SNN) [33] algorithm on dataset 2.

We use nearest neighbour size k = 50. Figure 3.21 shows the result. We get a total

of 8 clusters. Points that formed cluster C8 in our algorithm (see Figure 3.18) are not

being clustered in this result.

54

90.35 90.4 90.45
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

C1

C2

C3

C8

C4

C5

C6

C7

Figure 3.18: K-DBSCAN, K=2

Next we implement OPTICS [28] algorithm on dataset 2. We get a total of 4

clusters. Still the points that formed cluster C8 in our algorithm (see Figure 3.18)

are not being clustered in this result (see Figure 3.22).

3.4.3 Experiment 3: Population Dataset

We have used a real world geographical dataset Dataset-3. This dataset gives

the population density for Texas state for year 1990. The dataset is gridded with

0.25 × 0.25 degree resolution. Each grid cell contains the count of the number of

people inside it. For the experiments in this chapter, we represent each population

count of 50 persons by 1 point. Within each grid, if there were n people residing in

it, we generated n/50 locations (latitude, longitude) so that each point represents 50

persons.

We use K-DBSCAN algorithm on dataset-3. We use density level K = 4. We

obtain total 69 clusters (see Figure 3.24). There are 16 clusters, that represents the

highly densely populated area (highest density level). Whereas, 29 clusters are in

55

90.35 90.4 90.45
23.71

23.72

23.73

23.74

23.75

23.76

23.77

23.78

23.79

23.8

Figure 3.19: DBSCAN, ε = 0.004

second highest density levels. In third highest density level (2nd lowest density level)

has 17 clusters and 7 clusters are in the lowest density levels. Note that, we get some

overlapping clusters, that surrounds other dense clusters.

Figure 3.25 shows the result of DBSCAN algorithm on the same dataset. This

algorithm generates total 29 clusters.

Figure 3.26 shows the result of OPTICS algorithm on the same dataset. This

algorithm generates total 18 clusters.

Figure 3.27 shows the result of SNN algorithm on the same dataset. This

algorithm generates total 123 clusters.

3.4.4 Qualitative Measure of Clustering Results:

We attempt to measure the qualitative measure of clustering result of K-DBSCAN

algorithm. Our goal is to differentiate the most dense regions from lower density re-

gions. Motivated by this goal, we define a cluster quality measure that is based on

density variation of the points in the clusters. First, we calculate the average density

56

90.35 90.4 90.45
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

23.84

Figure 3.20: DBSCAN, ε = 0.009

of all points of a cluster. Then we get the standard deviation of density values of that

cluster. In addition to this, we consider the noise penalty to penalize an excessive

number outliers. The formulas for these density quality measures are given in (3.4) -

(3.8).

ai = 1
|Ci|

∑
x∈Ci

density(x) (3.4)

σi =

√√√√√
∑
x∈Ci

(ai − density(x))2

|Ci|
(3.5)

NoiseP = Total number of outliers
Total number of Points (3.6)

MDV = 1
numcluster

numcluster∑
i=1

σi (3.7)

QMeasure = MDV +NoiseP (3.8)

Table 3.1 compares the qualitative measure of our clustering algorithm on

Dataset-1 with the other different algorithms, whereas, Table 3.2 and Table 3.3 show

the qualitative measure on Dataset-2 and Dataset-3. The lower the QMeasure value,

57

90.32 90.34 90.36 90.38 90.4 90.42 90.44 90.46
23.7

23.72

23.74

23.76

23.78

23.8

23.82

Figure 3.21: SNN, k = 50

the better the result. We can clearly see that, our algorithm performs better on all

three cases than all other algorithms.

We then incorporate a measure of spatial contiguity of clusters in addition to

the density and noise measures, by using SSE (Sum of squared error) [38], normalized

to 0 to 1 range, (3.9) and (3.10).

SSE =
numcluster∑

i=1

 1
2|C|

∑
x∈Ci

∑
y∈Ci

dist(x, y)2

 (3.9)

Total = MDV +NoiseP + SSE (3.10)

Table 3.4, 3.5 and 3.6 show the results for Dataset-1, Dataset-2 and Dataset-3

respectively. Smaller value indicates better result. Dataset-1 gives us better result

for K = 3 or K = 4. With 2 density levels (K = 2), we get one big overlapping

cluster (see Figure 3.8). That is why we get a larger value of SSE. As the density

levels increase, the big overlapping cluster is broken into multiple well separated clus-

ters, which gives us a better result (see Figure 3.9). Qualitative results of DBSCAN

58

90.35 90.4 90.45
23.7

23.72

23.74

23.76

23.78

23.8

23.82

Figure 3.22: OPTICS

change dramatically for change of parameter values. Whereas, our method gives

comparatively consistent results when changing the parameter value (K).

Our method gives us the best result in Dataset-2. As there are no overlapping

clusters, we get 8 well separated clusters (see Figure 3.18). Our method gives us

better results for Dataset-3 also. In this result we get both well separated clusters and

overlapping clusters. DBSCAN and SNN ends up with large number of outliers (larger

value of NoiseP). Whereas OPTICS creates clusters merging points from various

density levels (larger value of MDV).

3.5 Practical Applications of K-DBSCAN

3.5.1 Analysis of Earthquake Data

In order to illustrate the practicability of our K-DBSCAN method, we use a

real-world spatial dataset of earthquakes. The data used in this chapter is obtained

from Northern California Earthquake Data Center (NCEDC), which is located at the

Berkeley Seismological Laboratory. The data center is a joint project of Berkeley

59

−101 −100 −99 −98 −97 −96 −95 −94 −93 −92
25

26

27

28

29

30

31

32

33

34

35

Figure 3.23: Dataset-3

−101 −100 −99 −98 −97 −96 −95 −94 −93 −92
25

26

27

28

29

30

31

32

33

34

35

Figure 3.24: K-DBSCAN, K = 4

Seismological Laboratory and U.S. Geological Survery (USGS). The dataset is acces-

sible for public use since 1992. We collect data from 1990 to 2015. The earthquake

locations that has magnitude equal to or larger than 3 are considered as complete

earthquakes in this chapter. We only use the complete earthquakes in this experiment.

The clustering results of earthquake data can benefit us to recognize the active

faults or understanding the changing trend of earthquakes. In this chapter, we im-

plement K-DBSCAN method in this earthquake dataset to find clusters in different

density levels. Clusters in the highest density level indicates the regions are more

60

−101 −100 −99 −98 −97 −96 −95 −94 −93 −92
25

26

27

28

29

30

31

32

33

34

35

Figure 3.25: DBSCAN, ε=0.18

Algorithm MDV NoiseP QMeasure
K-DBSCAN (K=2) 0.3503 0.0037 0.354
K-DBSCAN (K=3) 0.3080 0.029 0.337
K-DBSCAN (K=4) 0.2451 0.085 0.330
SNN (k=15) 0.4354 0.263 0.699
SNN (k=30) 0.4966 0.103 0.597
SNN (k=50) 0.7328 0 0.733
OPTICS 0.6364 0.222 0.859
DBSCAN (ε = 0.2) 0.2278 0.333 0.561
DBSCAN(ε = 0.4) 0.8861 0.0111 0.897

Table 3.1: QMeasure for Dataset-1

prone to earthquakes. DBSCAN and other spatial clustering algorithms failed to do

that because they find clusters only in single density level.

Figure 3.28 shows the result of K-DBSCAN algorithm with density level K = 3.

The algorithm generates 18 clusters. We get 6 clusters in high density levels. There

are 8 clusters in the second highest density levels and 4 clusters in the lowest density

levels.

We compare this result with DBSCAN method. We use ε = 0.25 and MinPts

= 5 (see Figure 3.29). We choose this value for ε based on the k-distance heuristic

method that was proposed in [2]. It generates 4 clusters. We can see that, it generates

a big cluster (red color) combining most of the points in the dataset.

61

−101 −100 −99 −98 −97 −96 −95 −94 −93 −92
25

26

27

28

29

30

31

32

33

34

35

Figure 3.26: OPTICS

Algorithm MDV NoiseP QMeasure
K-DBSCAN(K=2) 0.00083 0.0565 0.0573
SNN(k=50) 0.0017 0.0598 0.0615
OPTICS 0.0011 0.664 0.675
DBSCAN(ε = 0.004) 0.0006 0.698 0.6986

Table 3.2: QMeasure for Dataset-2

3.5.2 Analysis of Crime Data

Crime dataset is a classic example of spatial data. Determination of clustered

crime region can be utilized to recognize crime hot spot regions. It may help police

departments to plan the investigation against crime. Crime data analysis may also

benefits police to predict crime. People may utilize the analysis result to find a safe

neighborhood.

The crime data we used in this chapter is obtained from Chicago data por-

tal.This dataset is provided by Chicago city police. It reflects reported incidents of

crime that occurred in city of Chicago. Data is extracted from the Chicago Police

62

−101 −100 −99 −98 −97 −96 −95 −94 −93 −92
25

26

27

28

29

30

31

32

33

34

35

Figure 3.27: SNN, k=50

Algorithm MDV NoiseP QMeasure
K-DBSCAN (K=4) 0.0350 0.0379 0.0729
SNN (k=50) 0.0224 0.2014 0.2238
OPTICS 0.0511 0.0727 0.1238
DBSCAN (ε = 0.2) 0.0387 0.1518 0.1905

Table 3.3: Qualitative Measure on Dataset-3 based on density variation and Noise

Department’s CLEAR (Citizen Law Enforcement Analysis and Reporting) system.

Data is accessible for public use.

In this chapter, we implement K-DBSCAN algorithm in real world crime dataset

to find clusters in different density levels. Our motivation behind implementing K-

DBSCAN algorithm in this dataset is to discover the crime hotspot regions. Instead

of finding hotspots in a single density level, our algorithm can generate crime hotspots

regions in multiple density levels. Some regions have higher crime rate, whereas some

regions have lower crime rate. Identifying regions based on crime rate density can

benefit police department, because they may increase enforcement in higher density

crime regions rather than lower density crime regions. So, it is important to identify

the crime zone in different levels.

63

Algorithm MDV NoiseP SSE Total
K-DBSCAN (K=2) 0.350 0.004 0.404 0.758
K-DBSCAN (K=3) 0.308 0.029 0.299 0.636
K-DBSCAN (K=4) 0.245 0.085 0.273 0.603
SNN (k=15) 0.435 0.263 0.004 0.703
SNN (k=30) 0.497 0.103 0.0512 0.649
SNN (k=50) 0.733 0 0.0512 0.784
OPTICS 0.636 0.222 0.0570 0.916
DBSCAN (ε = 0.2) 0.228 0.333 0.024 0.585
DBSCAN (ε = 0.4) 0.887 0.011 0.511 1.401

Table 3.4: Total Qualitative Measure for Dataset-1

Algorithm MDV NoiseP SSE Total
K-DBSCAN (K=2) 0.0008 0.057 0.020 0.078
SNN (k=50) 0.0017 0.059 0.045 0.106
OPTICS 0.0011 0.664 0.021 0.697
DBSCAN (ε = 0.004) 0.0006 0.698 0.131 0.830

Table 3.5: Total Qualitative Measure for Dataset-2

In this dataset, the crime incidents are classified into 13 types. Theft and

Burglary are one of the most occurred crime incident. In this chapter, we use theft

crime data and burglary crime data for our experiment.

3.5.2.1 Theft Data

The Theft dataset reflects the geolocations of reported incidents of theft crime

of Chicago city. We use the data from January to April of year 2014. Dataset used

in this chapter contains 17, 108 geo-location points (latitude, longitude).

In the first experiment with theft dataset, we use density level parameter K =

3. Point distribution in different density levels are shown in Table 3.7. Table shows

number of points, number of clusters and maximum k-distance (in km) in each density

level. Figure 3.30 shows the K-DBSCAN clustering result. our method generates 83

clusters. The algorithm identifies 39 crime hot spot regions as the highest density

64

Algorithm MDV NoiseP SSE Total
K-DBSCAN (K=4) 0.0350 0.0379 0.049 0.122
SNN (k=50) 0.0224 0.2014 0.0023 0.226
OPTICS 0.0511 0.0727 0.0023 0.126
DBSCAN (ε = 0.2) 0.0387 0.1518 0.0069 0.197

Table 3.6: Total Qualitative Measure on Dataset-3

-135 -130 -125 -120 -115 -110 -105

32

34

36

38

40

42

44

Figure 3.28: K-DBSCAN clustering result, K = 3

regions. In the second highest density level, there are 32 clusters. We find 12 clusters

are in the lowest density level.

In the second experiment, we change the value of density level parameter K to

4. Point distribution and the number of clusters in each density levels are shown in

table 3.8. We can see from the result that, the highest dense region from Figure 3.30

has been divided into two density level regions. Figure 3.31 shows the result. Method

generates 116 clusters. It identifies 45 hot spots in highest density level regions, 4 in

second highest density levels. There are 62 clusters in the third highest density level

and 5 hot spots in the lowest density level.

65

-130 -125 -120 -115 -110

32

34

36

38

40

42

44

Figure 3.29: DBSCAN clustering result with EarthQuake Data

Density Level Total Points No. of clusters k-distance(km)
1 7245 39 6.7055
2 2411 32 12.3478
3 5978 12 22.5335

Table 3.7: Point distribution of theft data, K = 3

We compare our results with DBSCAN method. DBSCAN Algorithm generates

only clusters with one density level. Figure 3.32 shows the DBSCAN clustering result

with Theft data. We use ε = 0.003, MinPt = 10. We get 34 clusters. Algorithm

generates 1 big cluster (blue cluster). In this experiment, we choose the value for ε by

using a k-distance graph. We plot the distance to the k = 5 nearest neighbor ordered

from the largest to the smallest value. Good values of ε are where this plot shows an

elbow.

66

-88.2 -88.1 -88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4 -87.3

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.30: K-DBSCAN result with theft Data, K = 3

-88.2 -88.1 -88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4 -87.3

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.31: K-DBSCAN result with theft Data, K = 4

67

Density Level Total Points No. of clusters k-distance(km)
1 7245 45 6.7055
2 2411 4 12.3478
3 5978 62 22.5335
4 1471 5 186.3751

Table 3.8: Point distribution of theft data, K = 4

-88.2 -88.1 -88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4 -87.3

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.32: DBSCAN result with theft Data, ε = 0.003

3.5.2.2 Burglary Data

The burglary dataset reflects the location of reported burglary incident of

Chicago city. In this chapter, we use burglary data of year 2014. Dataset used

in this chapter contains 14, 194 geo-location points (latitude and longitude).

In the first experiment with this data, we use the value of density level parameter

K = 3. Point distribution and number of clusters in different density levels are shown

in Table 3.9. Algorithm generates 215 clusters. 113 clusters represent the region in

the highest density level. There are 83 clusters in the second highest density level.

There are 19 clusters are in the lowest density level. Figure 3.33 shows the result.

68

-88.2 -88.1 -88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4 -87.3 -87.2

41.6

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.33: K-DBSCAN clustering result, K = 3

-88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.34: K-DBSCAN clustering result with Burglary Data, K = 4

69

Density Level Total Points No. of clusters k-distance (km)
1 3703 113 10.1338
2 6589 83 16.3056
3 3112 19 25.0108

Table 3.9: Point distribution of burglary data, K = 3

Density Level Total Points No. of clusters k-distance (km)
1 3703 33 10.1338
2 6589 106 16.3056
3 3112 85 25.0108
4 790 20 117.5724

Table 3.10: Point distribution of burglary data, K = 4

Next we change the value of K = 4. Point distribution and number of clusters

in all density levels are shown in Table 3.10. We see that the points in the level

1 (from Table 3.9) has been divided into 2 density levels. 33 clusters represent the

regions in the highest density level and there are 106 clusters generated in the second

highest density level.

We compare our result with DBSCAN clustering algorithm. We choose param-

eter ε = 0.003 and MinPt = 10. Algorithm generates 25 clusters. All clusters are in

a single density level. Figure 3.35 shows the result. Here algorithm generates 2 big

clusters.

3.5.3 Parameter K

In this algorithm, parameter K defines the number of density levels in the

dataset. In each density level, clusters are generated based on the spatial distance

between each points. Clustering result of this algorithm differ with different value of

K. Note that, if we use K = 1, the result will be similar to DBSCAN algorithm.

Value of K depends on the distribution of points in the dataset in different

density level. But user can choose the value of K based on their desired clustering

70

-88.1 -88 -87.9 -87.8 -87.7 -87.6 -87.5 -87.4 -87.3 -87.2

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

Figure 3.35: DBSCAN clustering result with Burglary Data, ε = 0.003

result. For example, with population data users may want to get the regions only two

density levels: regions which is high population and regions with low population. In

this case, users need to use K = 2 and they will get their desired clustering result.

In this section, we propose a heuristic approach to find a good value of density

level parameter K. We divide the data points into different density groups based on

their density value. Given the number of density level, our goal is to assign the data

points into the level so that the density variation of the points in each level is nearly

similar. In other words, we want to minimize the density variation of points in each

level.

We use the motivation of elbow method to determine the value of K. The idea

behind the method is, we should choose the number of density levels so that adding

another density level doesn’t give us much better quality of the clustering result. We

plot the value of K against the mean of density variation of clustering results for the

value of K. Figure 3.36 shows the result. We see that with value of K = 6 does not

71

2 3 4 5 6 7 8 9 10

K

0.5

0.6

0.7

0.8

0.9

1

1.1

M
e
a
n
 o

f
S

q
a
u
re

d
 E

rr
o
r

Figure 3.36: Mean of Squared Error with different value of K

give much better than the result with K = 5. After K = 7, cluster quality remains

almost similar. In this scenario, K = 5 identifies the good value of K.

3.6 Conclusion

In this chapter, we propose a density-based clustering algorithm which can han-

dle arbitrary shaped clusters and datasets with varying densities. We did experiments

on both synthetic data and real-world spatial data. Unlike the DBSCAN algorithm,

K-DBSCAN does not depend on a single global density threshold ε, which is difficult

to determine. Rather, we have to find a threshold for density level K, which can be

easily determined from the points density distribution. Experimental results show

that our algorithm can correctly cluster the data points that have different density

levels and different shapes. We compared the clustering quality of our algorithm with

3 other well known algorithms. We illustrated the practicability of our algorithm

using two real world spatial datasets.

CHAPTER 4

Preference-Aware POI Recommendation With Temporal and Spatial

Influence

4.1 Introduction

There have been vast advances and rapid growth in Location based social net-

working (LBSN) services in recent years. Foursquare1, Yelp2 and Facebook Places3

are a few of the examples of LBSN services. LBSNs allow users to share their life

experiences via mobile devices. A user posts his/her presence or arrival to a physical

location, which is known as a process of “Check-in”. She can also share her experiences

by leaving comments or tips on that location. A Point of Interest (POI) location can

be a “Restaurant”, “Travel spot”, “Park” and so on.

The task of POI recommendation is to provide personalized recommendation

of POI locations to mobile users. Both LBSN users and POI owners can exploit

the benefit from the recommendation service. Users can find better POIs and have

better user experiences via the right recommendation. A POI owner could exploit

this service to acquire more target customers [4]. So, a POI recommendation system

is a very important application in LBSN services.

User’s movement data with location information provide us better knowledge

about their activities and interests. For example, people who often visit a gym, must

be interested in physical exercise. Also, people who visit the same place may share
1www.foursquare.com
2www.yelp.com
3www.facebook.com/places

72

73
the same interest. Location histories and opinions of one user can be exploited to

recommend an unvisited location to another user if they share the same interest.

A POI recommendation system provides users with list of locations that should

match their personal interests within a geospatial range [39]. Here are some factors

that may influence a user to make a decision to choose a POI.

1) Personal preferences: Personal preferences of different users are different.

For example, a food lover is more likely to be interested in exploring better quality

restaurants, whereas, a health conscious user may be interested in finding a better

place for walking or running.

2) Spatial Influence: Geographical position of a POI location plays an important

role. People often tend to visit nearby places. The probability of a user visiting a

place is inversely proportional to the geographical distance of the POI from the current

location of the user [6].

3) Temporal Influence: User activities are significantly influenced by time [6].

For example, users are more likely to visit a restaurant rather than a bar at noon.

Parks or other recreational places attract a lot of visitors in the weekend rather than

weekdays.

4) Popularity: Choosing a POI can be influenced by the popularity or rank of

a POI. People may visit a far away place if the place is very popular.

In this chapter, we propose a preference-aware, location-aware and time-aware

POI recommendation system that offers a particular user a set of POI locations in-

corporating time information and geo-spatial range. The contribution of this chapter

can be summarized as follows:

1) We incorporate time dimension to model time-specific user preferences, so

our recommendation model aims to recommend POI locations that match the time-

specific preferences of individual user.

74

2) We further exploit user’s spatial behaviour using location histories to generate

spatial-aware location preferences.

3) Our recommendation model uses the popularity factor of individual locations

by calculating both time-specific popularity and regional popularity.

4) We model personal preferences of users based on the category information of

their location histories. We estimate the similarity between two users by computing

similarity between their personal preferences rather than using user’s location vector.

There are 2 main reasons behind this. First, it handles the data sparsity problem of

user-location matrix. Second, two users who do not visit the exact same venue may

still share common interest if their preferences are the same.

5) We evaluate our system with a real-world dataset collected from Foursquare.

The extensive experimental results with evaluation show that our method combining

multiple factors (temporal, spatial, popularity, preferences) provide users better and

effective recommendations than other baseline approaches.

The rest of the chapter is organized as follows. In Section 4.2, we review some

related work. We present the basic Preference-Aware location recommendation model

in Section 4.3. In Section 4.4, we proposed a method to incorporate time influence

in basic preference-aware location recommendation. In Section 4.5, we describe the

method of utilizing spatial influence for further enhancement of our method. Section

4.6 presents experimental results of our algorithm. Finally, Section 4.7 concludes the

chapter.

4.2 Related Work

There have been many studies to design POI recommendation algorithms. Two

popular approaches are Collaborative Filtering algorithm and Non-Negative Matrix

Factorization algorithm.

75

Collaborative Filtering (CF) algorithms are divided into two major categories.

1) Memory-based CF and 2) Model-based CF. Memory-based CF methods are further

divided into two categories. 1) User-based CF and 2) Item-based CF.

In [40], the User-based CF approach considers a combination of social influence

and spatial influence. Their experiments report that geographical influence has a

significant impact on the accuracy of POI recommendation, whereas the social friend

link contributes little. Their results also indicate that user-based CF works much

better than Item-based CF. In [6], the authors exploit spatial influence as well as

temporal influence for building a recommendation model. They incorporate time

factors in the basic CF based model by computing similarity between two users by

considering check-in information at a specific time t, rather than that of all times.

User similarity is computed based on check-in location history of two users.

User’s categorical preferences have not been considered in these works. In general,

two users who do not visit the same venue may have similar preferences. Also, the

large scale of user-location data suffered from data sparsity problem, which is a big

challenge for CF based algorithm.

In [7], authors explore user preferences with social and geographical influence

for POI recommendation. They model user preferences using predefined categorical

information of location data. In [4], the authors propose a geographical probabilistic

factor analysis framework for recommendation that takes various other factors into

consideration, viz. user-item preferences, POI popularity and geographical prefer-

ences of individual users. In [41], the authors proposed a friendship based collabora-

tive filtering (FCF) approach for POI recommendation.

76
4.3 Problem Definition

The problem of personalized POI recommendation is to recommend a set of

POIs to a user. In this chapter we used four key data structures: 1) User, 2) POI

location, 3) Check-in and 4) Category hierarchy.

1) Each user u is represented by a unique id. Let U = {u1, u2, u3,un} be a

set of users.

2) Each POI location is associated with a unique POI id, geographical position

(latitude and longitude) and category information. Let L = {l1, l2, l3,, lm} be set

of POI locations.

3) “Check-in” is a process by which a user u announces his physical arrival

or presence at a venue in location based social network. Let Chij = {ui, lj, t} be a

check-in tuple, which represent that user ui checked in POI lj at time t.

4) Each POI location is associated with a category which represent its func-

tionality. For example, a location can be a “Restaurant”, “Museum”, or “School” etc.

In this chapter, we use two level category hierarchy obtained from Foursquare4. In

Foursquare, there are 8 primary categories. Each primary category includes other

sub-categories. For example, “Food” is a primary category, it includes 78 sub-

categories, such as “Chinese Restaurant”, “Indian Restaurant”, “Cafe” etc. Let CT =

{ct1, ct2,, ct8} be a list of primary categories. Let SCT = {sct1, sct2, sct3,sctk}

be a list of sub-categories. Each scti is associated with only one primary category

ctm. Each POI location lj is associated with exactly one primary category and one

sub-category.

Table 4.1 shows the location category hierarchy defined by Foursquare [42].
4https://developer.foursquare.com/categorytree

77

Primary Category Number of sub-categories
Arts and Entertainments 17
College and University 23

Food 78
Great Outdoors 28

Home, Work, Other 15
Nightlife Spot 20

Shop 45
Travel Spot 14

Table 4.1: Location category hierarchy by Foursquare

4.3.1 User-based Collaborative Filtering

User-based CF first finds similar users based on their interests or ratings on

items using a similarity measure. Then the recommendation score for an item is

computed by the weighted combination of historical ratings on the item from similar

users [43].

Given a user u ∈ U , the recommendation score that u will check-in a POI l

that she has not visited yet is computed with the following equation,

Ru(l) =

∑
v∈U

wuv

|v|
(4.1)

Here v ∈ U are list of users who has visited the same location l and wuv is the

similarity score between u and v.

4.3.2 Preference-Aware Location Recommendation

Large-scale check-in data often faces data sparsity problem, as a user only vis-

its a limited number of locations [44]. For example, in user location matrix of NYC

Foursquare data, data sparsity is 99.46%. To overcome the data sparsity problem, au-

thors proposed Preference-Aware location recommendation in [7]. In this chapter, we

78
leverage the temporal properties on LBSNs with baseline Preference-Aware Location

Recommendation method.

Preference-Aware location recommendation method works in three major steps.

4.3.2.1 Step 1: Personal Preference Discovery

In this step, we learn each individual user’s categorical preferences from his/her

check-in history and predefined Category Hierarchy. Categorical preference of a user u

is a numerical score, denoted as CPu,c′ . It represents u’s affinity as well as willingness

to visit a venue with category c′. As we have two level Category Hierarchy, we

calculate user’s preference on two levels (Primary categories and their sub-categories).

In [7], authors used TF-IDF approach to calculate user preference. TF-IDF

(Term Frequency-Inverse Document Frequency) is widely used in text mining, which

reflects how important a word is in a corpus of documents [45]. Motivated by this

idea, we use the approach, where user’s location history is regarded as a document

and categories are considered as terms in the document. We denote this approach as

CF-ILF (Category Frequency-Inverse Location Frequency).

CF (c′, u.L) is the measure of how many times user u has visited the locations

with a category c′. Intuitively, a user would visit more locations belonging to a

category if he likes it. Here u.L is the location set visited by u. ILF handles the Rare-

Item problem [45]. Some locations are not visited by a user very often. For example,

the number of visits to a restaurant is generally more than that of a museum. If a

user visits location of a category that is rarely visited by other users, it means that

the user could like this category more prominently [7].

CF is calculated using eq. (4.2) and ILF is calculated using eq. (4.3).

79

CF (c′, u.L) = |{u.li
: li.c = c′}|
|u.L|

(4.2)

ILF (c′, L) = log |U |
|{uj.l ∈ L : lj.c = c′}|

(4.3)

Here, |{u.li : li.c = c′}| is user u’s number of visits in category c′, |u.L| is the

total number of user’s visit in all locations. |U | is the number of total users in the

system. |uj.l ∈ L : lj.c = c′| is the number of users who visit category c′ among all

users in U .

CPu,c′ is generated using following equation:

CPu,c′ = CF (c′, u.L)× ILF (c′, L) (4.4)

Then, we generate User-Preference matrix. We generate the first matrix A ∈

IRN×|CT| based on primary category, with Aij be the CP (ui, pctj), preference of user ui

on primary category pctj. We generate the second matrix based B ∈ IRN×|SCT| based

on sub-categories, with Bij be the CP (ui, sctj) preference of user ui on sub-category

sctj. Here, N is the number of users in the system. Here, |CT | = 8 and |SCT | =

240.

4.3.2.2 Step 2: User Similarity

We use Cosine Similarity [46] to find the similarity (wuv) between two users

u and v based on their categorical preferences. Let ~pu be the preference vector of u

over primary category and pu,ct be the element of pu. User similarity between u and

v based on primary categorical preference is calculated as:

80

w(pc)
uv =

|CT |∑
ct=1

pu,ctpv,ct√
|CT |∑
ct=1

p2
u,ct

√
|CT |∑
ct=1

p2
v,ct

(4.5)

Let ~su be the preference vector of u over sub-category and su,sct be the element of

su. User similarity between u and v based on sub-categorical preference is calculated

as:

w(sc)
uv =

|SCT |∑
sct=1

su,sctsv,sct√
|SCT |∑
sct=1

s2
u,sct

√
|SCT |∑
sct=1

s2
v,sct

(4.6)

User similarity between u and v is calculated as:

wuv = 1
2 ∗

{
w(pc)
uv + w(sc)

uv

}
(4.7)

4.3.2.3 Step 3: Preference-Aware Recommendation

Given a user u, the recommendation score that u will visit location l that he

has not visited yet is computed with the following equation:

Ru(l) =

∑
v∈U

wuv

|v|
× pu,pcl

× su,scl
(4.8)

Here v is list of users who also visited l. pcl is primary category of location l

and pu,pcl
is the preference score of u and pcl. scl is sub-category of location l and

su,scl
is the preference score of u and scl.

4.4 Enhancement over Baseline By Incorporating Temporal Influence

Human movement is significantly influenced by time [47]. For example, people

tend to arrive at office at morning, check-in at restaurant for lunch at noon. Again

81
movement pattern on weekend is usually different than that of weekdays. For example,

people generally go to a travel spot on weekend, whereas people go to school or

office on weekday. It is obvious that personal preference of a user is influenced by

time dimension. So a recommendation model should consider time dimension for

generating efficient recommendations.

To incorporate temporal influence, we introduce the time dimension to generate

time-specific User-Preference matrix. We split a day into multiple equal time intervals

(ts) based on hour. Then we generate temporal preference of individual user on each

time segment (ts).

4.4.1 Temporal Categorical Preference

Given a user u, time segment ts, category c′, temporal preference of user u on

category c′, denoted as CP (ts)
u,c′ is calculated using following equation:

CP
(ts)
u,c′ = CF (ts)(c′, u.L(ts))× ILF (c′, L(ts)) (4.9)

Here CF (ts)(c′, u.L(ts)) is the Category Frequency of user u for category c′ at

time segment ts. u.L(ts) is the location set visited by u at ts. ILF (c′, L(ts)) is the

Inverse Location Frequency for category c′. L(ts) is the list of all locations that has

been visited at ts by all users.

CF (ts)(c′, u.L(ts)) = |{u.l
(ts)
i : l(ts)

i .c = c′}|
|u.L(ts)|

(4.10)

ILF (c′, L(ts)) = log |U (ts)|
|{uj.l ∈ L(ts) : lj.c = c′}|

(4.11)

Here, |{u.l(ts)
i : l(ts)

i .c = c′}| is the number of visits by user u at category c′ at

time segment ts. |u.L(ts)| is total visits by user u at time ts. |U (ts)| is the total number

82

of unique users in the system that has checked-in at time ts. |uj.l ∈ L(ts) : lj.c = c′|

is the total number of unique users that visit at category c′ at time ts.

For each time segment, we generate two User-Categorical Preference Matrix.

One is based on primary category A(ts) ∈ IRN×|CT| and the second one is based on

sub-categories B(ts) ∈ IRN×|SCT|. Here, N is the number of users in the system.

User similarity between two users is calculated based on the temporal categorical

preference. If two users prefer to check in a POI with the same category during the

same time, similarity between them will be high.

4.4.2 Temporal Popularity

Popularity of a location plays a significant role to attract users. People tend

to visit a more popular POI for better satisfaction. However, popularity also varies

over time. For example, a bar is more popular at night, whereas people tend to visit

a museum during morning or afternoon. For better recommendation, we intend to

calculate popularity score of each POI on each time segment. Popularity of a POI l

at time ts is calculated using following equation:

P (ts)(l) = 1
2 ∗

 |U (ts)(l)|
|U(l)| + |Chk

(ts)(l)|
|Chk(l)|

 (4.12)

Here |U (ts)(l)| is the number of users that visited l at time ts, |U(l)| is the total

number of users visited l. |Chk(ts)(l)| is the number of check-ins at l at time ts and

|Chk(l)| is the total number of check-ins at location l.

4.5 Incorporating Spatial Influence by POI Clustering

Geographical position of a POI plays a significant role to attract users [40][6].

People tend to visit nearby places. The propensity of a user to choose a POI de-

83

−74.2 −74.1 −74 −73.9 −73.8 −73.7 −73.6 −73.5
40.55

40.6

40.65

40.7

40.75

40.8

40.85

40.9

40.95

41

41.05

Figure 4.1: User check-in distribution in NY City

creases as the distance between user and POI increases [4]. Consider the example in

Figure 4.1. Black points represent all the POI locations of NY City. Red points are

the check-in distribution of a single user. It is obvious that, one person does not move

all over the city, rather his movement data is limited to some geographical regions.

−74.2 −74.1 −74 −73.9 −73.8 −73.7 −73.6 −73.5
40.55

40.6

40.65

40.7

40.75

40.8

40.85

40.9

40.95

41

41.05

Figure 4.2: Regions of POI locations

84
4.5.1 Spatial-Aware Candidate Selection

To incorporate spatial influence, we cluster all the POI locations into M number

of regions. we use a modified version of DBSCAN [48] algorithm for clustering.

DBSCAN is a density based clustering algorithm. It requires two parameters: ε and

MinPts. Density of a point is defined as the total number of neighbours within a

given radius (ε) of the point. A data point is considered dense if the number of its

neighbours is greater than MinPts.

The drawback of this algorithm is that, it is too sensitive to parameter ε. If

ε is small, DBSCAN generates small sized clusters with a lot of outliers. If ε is big,

a large number of points may merge together to form a big cluster. To overcome

this problem, we used a modified version of DBSCAN algorithm. We introduced

one extra parameter maxD. maxD defines the possible maximum diameter of a

cluster. Figure 4.2 shows the result of this algorithm on POI locations of NY City

(see Figure 5.8). Algorithm generates 44 regions.

Let G = {g1, g2, g3,gm} be the list of all regions. Each region gi is a collection

of POI locations. Let G(u) = {g1, g2, ...gk} be the list of regions in which user u have

visited. For each user, we project his check-in locations to G to generate G(u). All

POI locations of G(u) are selected as a candidate POI locations for recommendation

of u.

4.5.2 Regional Popularity

In this section, we intend to calculate popularity score of a location at the

regional level. Two locations with the same terms can be rated differently in different

85

region [4]. We calculate regional popularity of POI location l, denoted as P (g)(l) using

following equation:

P (g)(l) = 1
2 ∗

 |Ul|
maxl∈g{Ul}

+ |Chkl|
maxl∈g{Chkl}

 (4.13)

Here, Ul is the number of people visited location l, maxl∈g{Ul} is the maximum

number of people visited in a location in region g. Chkl is the number of total check-

ins in location l and maxl∈g{Chkl} is the maximum number of check-ins in a location

in region g.

4.6 POI Recommendation

Given a user u and check-in history of u, we first generate spatial-aware can-

didate location list G(u). Given time segment ts, we calculate recommendation score

R(ts)
u (l) for each candidate location l ∈ G(u) using the following equation:

R(ts)
u (l) =

∑
v∈U

w(ts)
uv

|v|
× p(ts)

u,pcl
× s(ts)

u,scl
× P (ts)(l)× P (g)(l) (4.14)

Here v is the list of users who also visited the location l at time ts.

4.7 Experiments

4.7.1 Dataset

We use the real-world check-in dataset from Foursquare5. Dataset includes

227, 428 check-in data from New York City, USA. The dataset has data from 12 April

2012 to 16 February 2013 (10 months). Each check-in Chij contains user (ui), location

id (lj) and time (t). Each location id lj is associated with geographical position

(lat,lon), primary category (pclj) and sub-category (sclj). It contains check-in data

of 1, 083 users and 38, 383 locations. To get more effective results, we removed POIs
5www.foursquare.com

86
that have lower than 5 check-ins. After preprocessing, the dataset contains 4, 597

locations and 164, 307 check-ins. For each user, we randomly mark off 50% of his

location histories as a training set to learn his temporal categorical preferences and

location preferences. The other 50% is used as a test set.

4.7.2 Evaluation Method

To evaluate our proposed method, we use two well-established metrics: precision

and recall [49]. We denote them as Pre@N and rec@N respectively.

pre@N = number of recovered ground truths
total number of recommendations (N) (4.15)

rec@N = number of recovered ground truths
total number of ground truths (4.16)

Here, N is the number of recommendation results. We use 3 values of N in

our experiments: 5,10 and 20. Ground truth refers to the set of locations where

user has visited. So, pre@N measures how many POIs in the top-N recommended

POIs correspond to the ground truth POIs. rec@N measures how many POIs in the

ground truths were returned as top-N recommendation. These two measures can be

used together to evaluate the result, which is known as f-measure.

f-measure = 2 ∗ Precision ∗Recall
Precision+Recall

(4.17)

Given time segment ts, precision and recall for ts are denoted as precision(ts)

and recall(ts) respectively. The overall precision and recall are calculated by averaging

the value over all time slots. Here, T is the number of time slots.

precision = 1
T

∑
ts∈T

precision(ts) (4.18)

87

5 10 20

N

0

0.1

0.2

0.3

0.4

P
re

c
is

io
n

3 hours

4 hours

6 hours

12 hours

Figure 4.3: Effects of time segment length, precision@N

5 10 20

N

0

0.2

0.4

0.6

R
e

c
a

ll

3 hours

4 hours

6 hours

12 hours

Figure 4.4: Effects of time segment length, recall@N

recall = 1
T

∑
ts∈T

recall(ts) (4.19)

4.7.3 Experimental Results

In this experiment, we use different time slot length to study how the experi-

mental results change on varying time slot length. The length of time slot controls the

granularity of time-aware recommendations. A larger value of time slot length means

that the result will be less time-specific. Figure 4.3, 4.4, 4.5 shows the Precision@N,

Recall@N and f-measure@N with varying time slot length. We use three values of N

(i.e., 5, 10, 20) in our experiments.

88

5 10 20

N

0

0.1

0.2

0.3

0.4

f-
m

e
a

s
u

re

3 hours

4 hours

6 hours

12 hours

Figure 4.5: Effects of time segment length, f-measure@N

5 10 20

N

0

0.1

0.2

0.3

0.4

P
re

c
is

io
n

PLT

PL

P

Figure 4.6: Comparison with baseline methods, precision@N

5 10 20

N

0

0.2

0.4

0.6

R
e

c
a

ll

PLT

PL

P

Figure 4.7: Comparison with baseline methods, recall@N

89

5 10 20

N

0

0.1

0.2

0.3

0.4

f-
m

e
a

s
u

re

PLT

PL

P

Figure 4.8: Comparison with baseline methods, f-measure@N

We can see from results that, as time slot length increases, precision value

decreases slightly in most of the cases (see Figure 4.3). But recall value drops dra-

matically with the higher time slot length (see Figure 4.4). The reason is, with the

lower value of time slot length, the recommendation method generates more focused

and correct time-specific results. As, precision depends on N , precision gets slightly

better. Because in most of the cases the number of time-specific ground truth value

is less than N . But recall value gets a lot better as the length of time slot decreases.

Figure 4.5 shows the f-measure@N value that combines precision and recall value.

We can see that, for all length of N , f-measure value is better with lower time slot

length.

We evaluate the effectiveness of our preference-aware, location-aware and time-

aware (PLT) method by comparing with two other methods: 1) Preference-aware (P)

method, and 2) Preference-aware, location-aware (PL). Preference-aware (P) method

is the base-line preference-aware recommendation method that has been described in

Section (4). Preference-aware, location-aware (PL) method combines the method

discussed in Section (4) and Section (6).

90
Figure 4.6, 4.7 and 4.8 shows the precision, recall and f-measure value of three

methods with N = 5, 10 and 20. We can see from results that, incorporating spatial

influence gives us better results than baseline method (P) for all values of N . But the

results of incorporating temporal influence with spatial influence (PLT) outperforms

both of them (PL and P).

4.8 Conclusion

This chapter presents a time-aware, location-aware and preference-aware rec-

ommendation system, which provides a user time-specific location recommendation

based on user’s personal categorical preferences and spatial preferences. This method

also considers a combination of regional popularity and temporal popularity of a

particular POI. To the best of our knowledge, this is the first work that combines

all the 4 factors (temporal, spatial, categorical preferences, popularity) together to

generate recommendations. Experimental results show that our method combining

multiple factors is better than other baseline approaches. In the future, we plan to

incorporate other time dimensions (day of the week, month/season of the year) in

POI recommendation.

CHAPTER 5

Preference-Aware Successive POI Recommendation With Spatial and

Temporal Influence

5.1 Introduction

In recent years, location based social network (LBSN) services have gained a

vast amount of attention and popularity among users. Foursquare 1, Yelp [50] and

Facebook Places2 are a few of the examples of LBSN services. LBSNs allow users to

share their life experiences via mobile devices. “Check-in” is a process by which users

post their arrival to a location. They also share their experiences by leaving comments

or tips on that location. A Point of Interest (POI) location can be a “Restaurant”,

“Travel spot”, “Park” and so on.

It was reported that there are over 30 million registered users in Foursquare.

The number of check-ins posted by them by January 2013 was over 3 billion [51].

The “check-ins” contain abundant information about their daily activities as well as

their preferences among the POIs. For example, people who often visit a gym must

be interested in physical exercise. Also, people who visit the same place may share

similar interests. Location histories and opinions of one user can be exploited to

recommend an unvisited location to another user if they share a similar interest.

The task of POI recommendation is to provide personalized recommendation

of POI locations to mobile users. The recommended locations should match their

personal interests within a geospatial range [39]. Recently, POI recommendation in
1https://foursquare.com
2https://www.facebook.com/places/

91

92

LBSNs has attracted much attention in both research and industry [40], [52]. How-

ever traditional POI recommendation systems consider all check-ins as a whole and

generate recommendations [4, 5, 6, 7, 8]. They do not consider the users’ sequential

movement information. Therefore, they cannot suggest where a user may go in the

next few hours based on their current location or status.

In this work, we consider the task of personalized successive POI recommenda-

tion. Successive POI recommendation refers to the problem of recommending users

the very next location based on his current location and current time. This task rec-

ommends those locations that a user may not visit frequently or before, but he/she

may like to visit at successive timestamps [9]. For example, successive POI recom-

mendation can suggest a user location to have fun after dinner, or a location for

outdoor activities in a nearby park after his work.

The essential difference between traditional recommendation system and suc-

cessive POI recommendation system is that the performance of successive recommen-

dation tasks is largely influenced by users’ current visiting locations [53]. Also the

shift from one location to another location depends on their categorical preferences

and periodic patterns. One may go to a coffee shop to grab a cup of coffee first, then

head to work or university. On a weekend people often go to shopping, then go to a

restaurant for dinner or lunch.

Figure 5.1: Sequential check-in data of three users

93
Figure 5.1 gives examples of sequential check-in data of three users. User 1 goes

to dinner from the office. User 3 goes to a bar after office. If user 1 and user 3 share

similar interests, user 1 also may become interested to go to a bar after office. Thus

collaborative information shared by the users can be used to recommend them the

possible next locations based on their current location.

In [54], we proposed a preference-aware, location-aware and time-aware POI rec-

ommendation system. The method used User-based Collaborative Filtering method

for POI recommendation while incorporating four other factors: 1) Categorical pref-

erences, 2) Temporal influence, 3) Geographical preferences and 4) Popularity of

POIs. In this chapter, we extend this work and propose a preference-aware succes-

sive POI recommendation system with incorporating spatial and temporal influence

(PLTSRS) that offers a particular user a set of POI locations based on his current

location, current time and his personal interests. The contribution of this chapter

can be summarized as follows:

• We model personal preferences of users based on the category information of

their location histories. We further analyse the temporal influence on their ac-

tivities. We incorporate time dimension to model time-specific user preferences.

• We mine sequential patterns from check-in location of each user. Then, we con-

struct personalized Category-To-Category transition probability matrix using

first order markov chain [55].

• We analyze users’ spatial behavior and incorporate spatial influence to generate

spatial-aware location recommendations.

• Our recommendation model uses popularity factor of individual location by

calculating time-specific popularity.

• We develope a successive POI recommendation model PLTSRS (Preference-

Aware, Location-Aware and Time-Aware Successive POI Recommendation System),

94
which jointly considers user’s personalized sequential movement information,

temporal categorical preferences, location preferences and popularity of POIs.

To best of our knowledge, this is the first work that uses all the factors together

to build a successive POI recommendation model.

• We evaluate our proposed framework with one large scale LBSN dataset from

foursquare3.

The rest of the chapter is organized as follows. In Section 5.2, we review some

related works. In Section 5.3, we discuss the data structure and data analysis results.

Section 5.4 presents our proposed method in details. We present our experimental

results in Section 5.5. Section 5.6 concludes the chapter.

5.2 Related Work

With the easy availability of users’ check-in data in LBSN, many studies have

been conducted for POI recommendation. In this section, we briefly introduce two

lines of research related to our task: 1) Traditional POI recommendation, 2) Succes-

sive POI recommendation.

Traditional POI recommendation systems have been extensively studied in the

last several years. Two popular approaches have been used to generate recommenda-

tion model: Collaborative Filtering algorithm and Non-Negative Matrix Factorization

algorithm.

In [40], the User-based CF approach considers a combination of social influence

and spatial influence. Their experiments report that geographical influence has a

significant impact on the accuracy of POI recommendation, whereas the social friend

link contributes little. Their results also indicate that user-based CF works much

better than Item-based CF. In [6], the authors exploit spatial influence as well as
3https://foursquare.com

95
temporal influence for building a recommendation model. They incorporate time

factors in the basic CF based model by computing similarity between two users by

considering check-in information at a specific time t, rather than that of all times.

In [7], the authors explore user preferences with social and geographical influence

for POI recommendation. They model user preferences using predefined categorical

information of location data.

In [4], the authors propose a geographical probabilistic factor analysis frame-

work for recommendation that takes various other factors into consideration, viz.

user-item preferences, POI popularity and geographical preferences of individual

users. In [41], the authors propose a friendship based collaborative filtering (FCF)

approach for POI recommendation.

In [54], the authors propose a User Based Collaborative Filtering method based

framework which combines 4 factors: categorical preferences, temporal influence, spa-

tial influence and popularity of a location. They incorporate time factors by generat-

ing time specific categorical preferences. Clustering method has been used to model

location preference of each user. Popularity of each location has been calculated by

combining both regional factor and temporal factor.

Lately a few successive POI recommendation works have been conducted. In [52],

the authors propose a probabilistic model to integrate category transition probabil-

ity and POI popularity to solve the problem. But they did not incorporate spatial

influence here.

In [56], the authors propose a Factorized Personalized Markov Chain (FPMC)

model for next-item recommendation. In [9], the authors propose FPMC-LR model

by extending FPMC model with localized region constraint to solve successive POI

recommendation task. They divide the geographical space into a grid. Locations of

the grid cell the user is currently visiting and its surrounding 8 grid cells are used

96

as candidate locations. This condition is called Localized Region Constraint. In [57],

the authors propose a personalized metric embedding method (PRME) to model

personalized check-in sequences for next new POI recommendation.

5.3 Preliminaries

5.3.1 Data Structure

In this chapter, we use one real-world LBSN dataset from Foursquare. This

dataset has three key data structure: 1) User, 2) POI location and 3) Check-in.

1) Each user u is represented by a unique id. Let U = {u1, u2, u3,un} be the

set of users.

2) Each POI location has a unique POI id and geographical position (latitude

and longitude). Let L = {l1, l2, l3,, lm} be the set of POI locations. Each location

l is also associated with category information, which represents its functionality. In

Foursquare, there are 8 primary categories (“Food”, “Arts and Crafts” etc.). Each

primary category includes other sub-categories. In this chapter, we only consider

the sub-category information of a location for simplicity. The word category and

sub-category will be used interchangeably throughout the chapter.

3) “Check-in” is a process by which a user u announces his physical arrival

or presence at a venue in location based social network. Let Chij = {ui, lj, t} be a

check-in tuple, which represents that user ui checked in POI lj at time t.

5.3.2 Data Analysis

In this section, we present some data analysis results to see how different factors

(Spatial, Temporal, Preference) influence a user to choose a location to visit.

97

0 500 1000 1500

User

0

20

40

60

80

100

120

140

#
 o

f
c
a
te

g
o
ri
e
s
 c

h
e
c
k
e
d
 b

y
 u

s
e
r

Figure 5.2: Number of unique categories checked-in by users

5.3.2.1 Categorical Preference Constraints

Personal preference plays an important rule for a user to choose a POI. They

prefer to visit a location only if the category of that location matches their interests.

To have a better idea, we count the number of unique categories visited by users. We

sort the users based on the count and plot the result (see Figure 5.2). We have a total

of 252 categories. We see that the number of categories visited by most of the users

is less than 60. Users generally do not visit locations of all categories, they visit a

location only if they like the category. So a good POI recommendation system must

recommend a location to a user that matches with his preferences.

0 5 10 15 20 25

Hour of the day

0

1000

2000

3000

4000

5000

6000

C
h

e
c
k
-i
n

 F
re

q
u

e
n

c
y

Arts & Crafts

College

Food

Outdoors

Work/Office/Home

Nightlife

Shop

Travel

Figure 5.3: Check-in frequency at different hour of the day

98

0 200 400 600 800 1000

Time difference between successive check-ins

(in minutes)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
r[

X
<

=
x
]

Figure 5.4: Time difference between two successive check-ins (in minutes)

5.3.2.2 Temporal Influence

User activities are significantly influenced by time [6]. We count the check-in

frequency of 8 primary categories at different hours of the day (see Figure 5.3). Result

shows that category “Shop” is more active from 3 pm to until 12 am. On the other

hand, category “Nightlife” starts after 10 pm and continues until 5 am.

We have done analysis to see how frequently people visit locations. We plot the

Cumulative Distribution Function (CDF) of the time differences between successive

check-in data (see Figure 5.4). Result shows that 90% of successive check-ins have a

time difference less than 200 minutes.

5.3.2.3 Spatial Influence

Geographical position of a POI location plays an important role. Figure 5.5

shows the Cumulative Distribution Function (CDF) of geographical distance between

two successive check-ins. Result shows that about 90% of successive check-ins have a

geographical distance less than 20 km.

99

0 20 40 60 80 100

Successive check-in distance (in km)

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r[

X
<

=
x
]

Figure 5.5: Geographical distance between two successive check-ins

5.3.3 Problem Formulation

Let U be the set of users and P be the set of locations. Lu denotes the check-in

histories of user u. Given a user u(u ∈ U), his check-in histories Lu, his currently

visiting POI lnow(lnow ∈ L) and corresponding visiting timestamp tnow, the task is to

recommend a new POI lnext(lnext /∈ Lu) to u to visit within time range tnow to tnext.

Here, (tnext - tnow) ≤ Tmax. Here, Tmax is a user defined time interval parameter.

5.3.4 User-based Collaborative Filtering

User-based CF first finds similar users based on their interests/ratings on items

using a similarity measure. Then the recommendation score for an item is computed

by the weighted combination of historical ratings on the item from similar users [43].

Given a user u ∈ U , the recommendation score that u will check-in a POI l

that she has not visited yet is computed with the following equation,

Ru(l) =

∑
v∈U

wuv

|v|
(5.1)

100
Here v ∈ U are list of users who have visited the same location l and wuv is the

similarity score between u and v.

5.4 PLTSRS Framework

Our proposed framework is comprised of two major steps. 1) Offline Modeling

and 2) Online Recommendation.

The Offline Modeling step has 3 components. 1) Learning User’s Categori-

cal Transition Probabilities, 2) Time-specific Personal Preference Discovery and 3)

Calculating Time-Specific Popularity of Locations.

In the first component, we learn each user’s categorical transition probability

denoted by Tu(ci, cj). Tu(ci, cj) is calculated using first order markov chain that in-

dicates the probability of user u to move from a location of category ci to location

with category cj. In the second component, we learn each user’s personal categor-

ical preference on category c denoted as Pu(c). As preference depends on time, we

learn time-specific categorical preference on category c at time segment ts denoted

as P (ts)
u (c). In the third component, we calculate the time-specific popularity of each

POI location l denoted as ρ(ts)(l).

The Online Recommendation has two components. 1) Spatial-Aware Candidate

Selection and 2) Successive Location Recommendation. The first component selects a

set of candidate locations based on u’s current location lnow. This component improves

the efficiency of the approach significantly as the number of candidate locations is

much smaller than the total number of locations. Given a user u, his current location

lnow and current time tnow, the second component calculates the location ratings of

all candidate locations based on the factors mentioned above. The top-K locations

are recommended to user u.

101
5.4.1 Offiline Modeling

5.4.1.1 Categorical Transition Probability

In this step, for each user u, we first extract the successive location pairs from

his check-in sequences. A location pair (li, lj) is a successive pair if the time difference

between u’s visit at location li and location lj is less than the time interval threshold

Tmax. Then, we map the locations of the successive location pairs with corresponding

category information to mine the successive category pairs (cx, cy). Here, cx is the

category of li and cy is the category of lj. We build a Category-To-Category transition

probability matrix of user u denoted as Tu. The transition matrix Tu ∈ [0, 1]|C|×|C|,

Tu(i, j) specifies the probability for a user u to move from location with category ci

to a location with category cj. Transition probability Tu(i, j) is calculated as:

Tu(i, j) = |{(l
(u)
1 , l

(u)
2) : l(u)

1 ∈ Ci ∩ l(u)
2 ∈ Cj}|

|{(l(u)
1 , l

(u)
2 : l(u)

1 ∈ Ci}|
(5.2)

Figure 5.6 shows the transition matrices of individual users. Entries with “?”

refers to missing values as there is no data to estimate probabilities. A single user

generally does not visit all categories, so there may be a lot of missing values in

his transition matrix. To solve this problem, we use low-rank non-negative matrix

factorization [58] algorithm to factorize each transition probability matrix Tu into two

low rank matrices Wu ∈ IRk×|C| and Hu ∈ IR|C|×k, with k << |C| being the number of

latent factors. After obtaining Wu and Hu, the probability matrix Tu is approximated

as T̄u, T̄u(i, j) being the approximated probability of transition from category ci to

category cj (see Figure 5.7).

102

Us
er

0.5 0.00.0 0.5 0.0

0.00.60.00.30.1

? ? ? ? ?

1.00.00.00.00.0

? ? ? ? ?

1.0 0.0 0.0 0.0 0.0

? ? ? ? ?

0.5 0.5

0.5 0.5

? ?

? ? ? ? ?

? ? ?

0.1 0.9 0.0 0.0 0.0

0.5 0.5

0.1 0.1

Category

C
a
te
g
o
ry

Figure 5.6: Personalized Transition Matrices of users

Figure 5.7: Factorized individual transition probability matrix

5.4.1.2 Personal Preference Discovery

In this step, we model each individual user’s categorical preferences from his/her

check-in history. Categorical preference of a user u denoted as Pu(c) represents u’s

affinity to visit a location with category c. Pu(c) is generated using following equa-

tion [54].

Pu(c) = CF (c, Lu)× ILF (c, L) (5.3)

103

Here CF (c, Lu) is the measure of how many times user u has visited the locations

with a category c. Intuitively, a user would visit more locations belonging to a

category if he likes it. Here Lu is the location set visited by u. ILF handles the Rare-

Item problem [45]. Some locations are not visited by a user very often. For example,

the number of visits to a restaurant is generally more than that of a museum. If a

user visits location of a category that is rarely visited by other users, it means that

the user could like this category more prominently [7].

CF is calculated using eq. (5.4) and ILF is calculated using eq. (5.5).

CF (c, Lu) = |{u.li
: li ∈ c}|
|Lu|

(5.4)

ILF (c, L) = log |U |
|{uj.l ∈ L : lj.c ∈ uj.C}|

(5.5)

Here, |{u.li : li ∈ c}| is user u’s number of visits in category c, |Lu| is the total

number of user’s visit in all locations. |U | is the number of total users in the system.

|{uj.l ∈ L : lj.c ∈ uj.C}| is the number of users who visit category c among all

users in U . User similarity between two users is calculated based on their categorical

preferences. We use Cosine Similarity [46] to find the similarity between two users u

and v denoted as wuv.

5.4.1.3 Temporal Categorical Preference

As categorical preference may vary over time, we intend to find time-specific

categorical preferences of each user. We divide the whole day into equal length of

time segment (ts). In this chapter, we use time slot length = 1 hour. So the whole

day is divided into 24 time segments. Given a user u, time segment ts, category c,

104

temporal preference of user u on category c, denoted as P (ts)
u (c) is calculated using

following equation [54].

P (ts)
u (c) = CF (ts)(c, L(ts)

u)× ILF (c, L(ts)) (5.6)

Here CF (ts)(c, L(ts)
u) is the Category Frequency of user u and category c at time

segment ts. L(ts)
u is the location set visited by u at ts. ILF (c, L(ts)) is the Inverse

Location Frequency for category c. L(ts) is the list of all locations that has been visited

at ts. CF (ts)(c, L(ts)
u) and ILF (c, L(ts)) are calculated using following equations.

CF (ts)(c, L(ts)
u) = |{u.l

(ts)
i : l(ts)

i ∈ c}|
|L(ts)

u |
(5.7)

ILF (c, L(ts))) = log |U (ts)|
|{uj.l ∈ L : lj.c ∈ uj.C}|

(5.8)

Here, |{u.l(ts)
i : l(ts)

i ∈ c}| is the number of visits by user u at category c at time

segment ts. |L(ts)
u | is total visits by user u at time ts. |U (ts)| is the total number of

unique users in the system that has checked-in at time ts. |{uj.l ∈ L : lj.c ∈ uj.C}| is

the total number of unique users that visit at category c at time ts.

5.4.1.4 Temporal Popularity Of a Location

Popularity of a location plays a significant role to attract user. People tend

to visit a more popular POI for better satisfaction. However, popularity also varies

over time. For example, a bar is more popular at night, whereas people tend to visit

a museum during morning or afternoon. For better recommendation, we intend to

calculate popularity score of each POI on each time segment. Popularity of a POI l

at time ts is calculated using following equation [54].

105

ρ(ts)(l) = 1
2 ∗

 |U (ts)(l)|
|U(l)| + |Chk

(ts)(l)|
Chk(l)

 (5.9)

Here |U (ts)(l)| is the number of users that visited l at time ts, |U(l)| is the total

number of users visited l. |Chk(ts)(l)| is the number of check-ins at l at time ts and

Chk(l) is total number of check-ins at location l.

5.4.2 Online Recommendation

5.4.2.1 Spatial-Aware Candidate Selection

Geographical position of a POI plays a significant role to attract users [40, 6].

People tend to visit nearby places. The propensity of a user to choose a POI decreases

as the distance between the user and the POI increases [4]. Consider the example

in Figure 5.8. Black points represent all the POI locations of NY City. Red points

are the check-in distribution of a single user. It is obvious that, this person does

not move all over the city, rather his movement data is limited to some geographical

regions. We have borrowed this example from [54]. Also Figure 5.5 indicates that

90% of successive check-ins have distance less than 20 km.

To incorporate spatial influence, we divide the whole problem space into square

grids whose side length is d km. Locations of the grid cell the user is currently

visiting and it’s surrounding 8 adjacent grid cells are used as the candidate grid

cells. The locations of the candidate grid cells are used as the candidate locations for

recommendation (see Figure 5.9). Distance between two points are calculated using

Haversine Formula [59].

106

−74.2 −74.1 −74 −73.9 −73.8 −73.7 −73.6 −73.5
40.55

40.6

40.65

40.7

40.75

40.8

40.85

40.9

40.95

41

41.05

Figure 5.8: All POI locations in NY city

d

Figure 5.9: Spatial-Aware candidate selection

5.4.2.2 Successive Location Recommendation

Given a user u, his current location lnow with category cnow, we first generate

spatial-aware candidate location list S(u)(L). Let the current time be tnow. In this

section, we present the method to rank the candidate locations. Tmax is a user-defined

time interval parameter. Top-K locations are recommended to user u that he may

want to visit within time range tnow to tnext, where (tnext − tnow) ≤ Tmax.

Let, the recommended location be lnext. Category of lnext is cnext. In Offline

method, we have calculated time-specific categorical preference of user u at category

107

c denoted as P (ts)
u (c). Given the time interval Tmax, we find the preference of u for

cnext from time range tnow to tnext defined as P (tnow,tnext)
u (cnext).

P (tnow,tnext)
u (cnext) = max{P (ts)

u (cnext)} (5.10)

Where ts ≥ tnow and ts ≤ tnext. For example, let tnow = 10 am, Tmax = 6

hours. so, tnext = 4 pm. So u’s preference for cnext from time range 10 am to 4 pm is

calculated as max{P (t10)
u (cnext), P (t11)

u (cnext), ...P (t16)
u (cnext)}

We find the popularity of location lnext at time range tnow to tnext denoted as

ρ(tnow,tnext)(lnext)

ρ(tnow,tnext)(lnext) = max{ρ(ts)(lnext)} (5.11)

Where ts ≥ tnow and ts ≤ tnext.

The rating of location l for user u, denoted as Rtnext
u (lnext) is calculated as:

Rtnext
u (lnext) =

∑
v∈U

wuv

|v|
∗ P (tnow,tnext)

u (cnext) ∗ T̄u(cnow, cnext) ∗ ρ(tnow,tnext)(lnext) (5.12)

Here, v ∈ U are the list of users who also visited the same location lnext at

specified time range tnow to tnext.

5.5 Experiments

5.5.1 Dataset

We use the real-world check-in dataset from Foursquare. The dataset includes

227,428 check-in data from New York City, USA. The dataset has data from 12 April

2012 to 16 February 2013 (10 months). We obtain this dataset from [60]. Each

check-in Chij contains user (ui), location id (lj) and time (t). Each location id lj is

108

associated with geographical position (latitude, longitude) and category c. It contains

check-in data of 1, 083 users and 38, 383 locations. To get more effective results, we

removed POIs that have lower than 10 check-ins. After preprocessing, the dataset

contains 4, 597 locations and 164, 307 check-ins.

For experiment, we use the data of first 8 months as training set. The train-

ing data is used to learn the users’ temporal categorical preferences and categorical

transition probability and popularity of POIs. The rest of the data is used as a test

set.

5.5.1.1 Evaluation Method

To evaluate our proposed method, we use two well-established metrics: precision

and recall [49]. Precision and recall are calculated using the following equations.

pre@N = number of relevant recommendations
N (5.13)

re@N = number of relevant recommendations
total number of ground truths (5.14)

Here, N is the number of recommendation results. Ground truth refers to the

set of locations where user has truly visited within the specified time range. So,

Pre@N measures how many POIs in the top-N recommended POIs correspond to

the ground truth POIs. re@N measures how many POIs in the ground truths has

returned as top-N recommendation.

109

10 15 20

N

0

0.1

0.2

0.3

0.4

0.5

Precision

Recall

Figure 5.10: Precision and Recall

6 hours 9 hours 12 hours

Time interval parameter length

0

0.1

0.2

0.3

0.4
Precision

Recall

Figure 5.11: Effects of different Tmax

POP-L UCF PCF NMF PLTSRS

N = 10

0

0.05

0.1

0.15

P
r
e

c
is

io
n

Figure 5.12: Pre@10

110

POP-L UCF PCF NMF PLTSRS

N = 10

0

0.1

0.2

0.3

0.4

R
e

c
a

ll

Figure 5.13: re@10

5.5.2 Experimental Results

We have used d = 10 km for grid cell size in all our experiments. Figure 5.10

shows the precision and recall value of our proposed method. We show the results for

N = 10, 15 and 20. In this result we use Tmax = 6 hours.

We compare our method with the four following baseline approaches,

1) Popularity-Based Recommendation Method (Pop-L): This is a spatial-

aware popularity based recommendation method. Based on the current location, it

first generates spatial aware candidate locations. Candidate locations are ranked

based on their popularity.

2) Location-Based Collaborative Filtering (UCF): This method applies

Collaborative Filtering method directly over locations. This baseline utilizes the

users’ location histories with a user-location matrix. User similarity is calculated

using the location vector of users. Finally the locations are ranked using CF method.

We consider the current location as a query location and generates spatial-aware

candidate locations first to adapt this model for successive recommendation.

3) Preference-Based Collaborative Filtering (PCF): This method is the

baseline Preference-Aware approach. This method first generates users’ categorical

111
preferences from their location histories. Then it generates user-preference matrix.

Similarity between two users is calculated using their preference vector. Finally CF

method is used to rank the candidate locations.

4) Non-negative Matrix Factorization (NMF): This is the base-line low

rank non-negative matrix facorization based recommendation method. This method

first generates user-location matrix using their location histories. User-location matrix

is factorized into two low rank matrices W and H.

Note that all methods use the current location as query location. We find spatial

aware candidate locations first to adapt them for successive location recommendation.

Figure 5.12 and Figure 5.13 show the precision and recall values respectively. UCF

works better than Pop-L. PCF approach works better than UCF as PCF can handle

the data sparsity problem. NMF approach works better than PCF, but our proposed

method PLTSRS outperforms all other baseline approaches.

We change the value of Tmax to see how the value of Tmax affects the results.

Figure 5.11 shows the precision and recall of our algorithm for Tmax = 6 hours, 9

hours and 12 hours. Tmax = 6 hours gives us the best result.

5.6 Conclusion

In this chapter, we present a novel approach for successive POI recommendation

task. This approach recommends to a user a set of locations where he might be inter-

ested to visit next based on his current location and time. This method considers a

combination of users’ time-specific categorical preferences, categorical transition pat-

terns, spatial influences and popularity of POIs. To the best of our knowledge, this

is the first work that combines all the factors (temporal, user-preferences, categorical

transition patterns, spatial and popularity) for successive POI recommendation task.

Experimental results show that our method outperforms other baseline approaches.

112
In future work, we plan to incorporate social relationships to strengthen our recom-

mendation model.

CHAPTER 6

Preference Aware Travel Route Recommendation with Temporal

Influence

6.1 Introduction

There have been vast advances and rapid growth in Location based social net-

working (LBSN) services in recent years. Foursquare1, Yelp2 and Facebook places3

are a few examples of LBSN services. LBSNs allow users to share their life experiences

via mobile devices. Users post their presence or arrival to a physical location, also

known as Point of Interests (POIs). The process is known as “Check-in”. Users can

also share their experiences by leaving comments or tips on that location. A Point of

Interest (POI) location can be a “Restaurant”, “Travel spot”, “Park” and so on.

Users movement data with location and time information provide us better

knowledge about their activities and interests. The availability of such information

opens up an array of new research problems and various real world applications. POI

recommendation systems and Travel Route recommendation systems are examples of

such real world applications.

In this work, we focus on the travel route recommendation problem. Traveling

is one of the most important entertainment activities in modern society. Traveling in

an unfamiliar city requires knowledge about the interesting and popular attractions of

that city. Also the movement sequence from one location to another location should
1www.foursquare.com
2www.yelp.com
3https://www.facebook.com/places

113

114
be planned effectively so that it maximizes user satisfaction under a specific time

constraint.

A travel route recommendation problem has two major steps: a) How to find

interesting attractions for a user in an unfamiliar city, b) How to plan the set of

attractions as a travel route based on specific time constraints.

Finding interesting locations has the following challenges:

1) Personal Preferences: Personal preferences of different users are different.

For example, a food lover is more likely to be interested in exploring better quality

restaurants, while others may have interest in exploring art museums or historical

places. A user visiting an unfamiliar city may not know which interesting POIs are

available there to visit. The recommendation system should recommend POIs that

match the user’s personal interests.

2) Temporal Influences: User activities are significantly influenced by time [6].

For example, users are more likely to visit a restaurant rather than a bar at noon.

Some people often want to visit a beach at noon, some may prefer to visit during late

afternoon. So recommended POI locations should match with user’s time specific

personal interests.

3) Popularity: Choosing a POI can be influenced by the popularity or rank

of a POI. People may visit a far away place if the place is very popular.

The second step of travel route recommendation is to plan the set of locations

with corresponding time information such that it maximizes user satisfaction. This

step has the following challenges:

1) Sequences of locations: A set of locations are ordered to build a travel

route. The order of the locations is important. One may go to a coffee shop to grab

a cup of coffee first, then head to visit museum or other POIs. On a weekend people

often go shopping, then go to a restaurant for dinner or lunch.

115

2) Transition time from one location to another location: A travel

route is a sequences of locations with the corresponding check-in time information.

In our model, the transition time between two locations indicates the traveling time

between the first location to second location plus the staying time at the first location.

But Check-in data does not have this detailed information. It contains only the

information of arriving time (check-in) of a user at a particular location. It does not

tell us when the user has left from that location. So it is necessary to predict the

transition time of a location pair, as the user has a certain time constraint.

3) Large Search Space: It is very important to plan a travel route efficiently,

because the dataset has a large number of POI locations. Generating a k-length

route with sequences of locations using brute-force search is not an efficient solution.

For example, with 100 POIs in total, the number of trips that consists of 5 POIs

can reach billions. Most of these candidate trips will not follow the time constraint

budget. Also the locations of these trips may not match with user preferences. So,

an efficient strategy to generate travel routes based on user preferences and time

constraint budget is essential for such applications.

In this chapter, we propose a novel algorithm to generate preference-aware and

time-aware travel route recommendation system. Our goal is to recommend top-

K travel routes with the combination of interesting locations that will match with

users’ time specific interests. Each location of a route will be associated with the

corresponding approximated time information. By this recommendation, the user

will know not only where to go, but also when to go. The contribution of the chapter

can be summarized as follows:

1) We incorporate time dimension to model time-specific user preferences, so

our recommendation model aims to recommend the trips with the POI locations that

match the time-specific preferences of individual user.

116

2) We estimate the similarity between two users based on the user-preference

vector rather than the user-location vector. There are 3 main reasons behind this.

First, it handles the data sparsity problem of user-location matrix. Second, two

users who do not visit the exact same venue may still share common interest if their

preferences are the same. Third, as users may visit an unfamiliar city, the dataset

may not have any check-in information of the locations of that city for the user. In

that case, user similarity based on user-location matrix will completely fail.

3) Our recommendation model uses the popularity factor of individual locations

by calculating time-specific popularity.

4) We build a model to estimate the uncertain transition time between two

locations.

5) We propose a novel framework “PTTR-Reco” (Preference-Aware, Time-

Aware Travel Route Recommendation) to recommend top-K travel routes to users.

6) We evaluate our proposed framework with one large scale LBSN dataset from

Foursquare.

The rest of the chapter is organized as follows. We review the related work

in Section 6.2. In Section 6.3, we present the definitions and formulate our problem

statement. In Section 6.4, we present our proposed framework in detail. Section 6.5

describes the experimental results. Finally, Section 6.6 concludes the chapter.

6.2 Related Work

Recommendation system in Location Based Social Network can be categorized

into two categories. 1) POI recommendation system, 2) Trip recommendation system.

117
6.2.1 POI recommendation

The first step of travel planning is to find the popular or interesting POI loca-

tions for users. There have been a number of studies that focus on POI recommen-

dation.

In [40], the User-based CF approach considers a combination of social influence

and spatial influence. In [6], User-based CF method is used. They exploit spatial

influence as well as temporal influence for building recommendation model. In [7],

authors explore user preferences, social influence and geographical influence for POI

recommendation. They model user preferences using predefined categorical informa-

tion of location data.

In [4], authors propose an geographical probabilistic factor analysis framework

for recommendation that takes various factors into consideration, viz. user-item pref-

erences, POI popularity and geographical preferences of individual user. In [41],

authors proposed friendship based collaborative filtering (FCF) approach for POI

recommendation based on common visited check-ins of friends. In [54], the authors

propose a User Based Collaborative Filtering method based framework which com-

bines 4 factors: categorical preferences, temporal influence, spatial influence and

popularity of a location.

Lately a few successive POI recommendation works have been conducted. In [61],

authors extended the work from [54] to recommend the next POI location based on

the current location and current time. They incorporate personal preference, tempo-

ral and spatial influence and categorical transition probability to solve the problem.

In [52], the authors propose a probabilistic model to integrate category transition

probability and POI popularity to solve the problem. In [56], the authors propose

a Factorized Personalized Markov Chain (FPMC) model for next-item recommenda-

118

tion. In [9], the authors propose FPMC-LR model by extending FPMC [62] model

with localized region constraint to solve successive POI recommendation task.

6.2.2 Trip Recommendation

The purpose of trip recommendation is to plan the popular locations accordingly

with a time sequence.

In [63] authors proposed an Hypertext Induced Topic Search-based (HITS) infer-

ence model [64] to build a travel recommendation framework. In this work, authors

used GPS trajectory data. The HITS model is based on the assumption that, the

interesting places might be visited by the more experienced travel experts, and the

experienced tourists might visit more interesting places. However, GPS trajectory

data is comparatively difficult to obtain. Also mining interesting locations from GPS

trajectory data is not straightforward.

In [65] authors proposed an ontological travel recommendation system for Tainan

city. In this work, authors first find the top three POI locations and top five restau-

rants. Then they plan the optimal trip based on those eight locations by ant colony

optimization algorithm [66]. The main drawback of this method is that, the number

of location is restricted to 8, where 5 of them are restaurants.

In [67], authors evaluated the quality of a trip using 4 metrices: Elapsed Time

Ratio (ETR), Stay Time Ratio (STR), Interest Density Ratio (IDR) and Classical

Travel Sequence Ratio (CTSR). Candidate travel routes are ranked using Euclidean

distance and CSTR.

In [68], authors used geo-tagged photos to extract features and topics of the

attractions. First they find the similarity between location feature and user profile.

Then three approximate methods are proposed to generate the travel route. The

approximate methods they proposed are: d-LOA, v-LOA, GOA.

119

In [69], authors also used Panoramio geo-tagged photos to plan the trip. In this

paper, authors used a dynamic programming method to generate the optimal trip.

However, they did not consider efficiency of the algorithm.

In [70], authors consider an additional constraint POI category visiting order

(e.g., restaurant → park → shopping → restaurant) to evaluate travel route. In [71],

authors consider two constraints, 1) POI availability where a POI may be available

only a certain time window and 2) Uncertain traveling time where the traveling time

between two locations is uncertain. Then they proposed an efficient solution to gen-

erate an optimal trip which is based on two pruning strategies.

In [72], authors propose to utilize users’ check-in patterns to recommend popu-

lar, time sensitive trips. They proposed that a good route should be evaluated based

on 4 features, 1) popularity of locations, 2) the proper time to visit a place 3) the

amount of time required to transit from one place to another and 4) visiting order of

places. Then they proposed a greedy solution to generate the optimal k-length trip.

The drawback of this method is that, they did not consider user preferences. Also

the length of route is a user defined parameter.

In [73], authors present a Personalized Trip Recommendation (PTR) framework

which recommended personalized arrangement of visit to venues, given a predefined

budget(e.g. time, money).

6.3 Problem Statement

In this section, we first define some terms used in this work. Then we present

the problem statement of travel route recommendation problem.

120
6.3.1 Definition 1: Users

Each user u is represented by a unique id. Let U = {u1, u2, u3,un} be a set

of users.

6.3.2 Definition 2: POI locations

Let L = {l1, l2, l3,lm} be the set of m locations. Let C = {c1, c2, c3,}

is a set of categories. Each location l ∈ L is associated with geographical position

(latitude, longitude) and category information. Let c(l) be the category of location l.

6.3.3 Definition 3: Check-ins

“Check-in” is a process by which a user u announces his physical arrival or

presence at a venue in location based social network. Let Chij = {ui, lj, t} be a

check-in tuple, which represent that user ui checked in POI lj at time t.

6.3.4 Definition 4: Travel Route

A travel route is a sequence of locations ordered by timestamps. A travel route

r = l1 → l2 → ... → ln is a n-length route. Here n indicates the number of POI

locations.

6.3.5 Definition 5: Time-Aware Travel Route

A time-aware travel route is a sequence of locations with the corresponding

visiting time information. Let TR = {tr1, tr2,} be a set of routes. A time-aware

travel route tr ∈ TR is defined as tr = {(x, t0) → (l1, t1) → → (lk, tk) → (y, te)}.

Here x is the source and y is the destination. l1, l2,...lk are the k visiting locations in

tr. The departure time of trip is t0 and the end time is te. Here, length of the route

is n = k + 2.

121

x

y

c

ba

10:00 am

10:30 am 11:30 am

1:00 pm

2:00 pm

Figure 6.1: A time-aware travel route

Consider the example in Figure 6.1. Here a user starts his travel from x on

10:00 am. He visited 3 locations a, b and c. He reaches at a on 10:30 am. He might

stay at a for some time and then arrives at b on 11:30 am. After staying some time

at b, he arrives at c on 1:00 pm. Finally he reaches his destination on 2:00 pm.

6.3.6 Definition 6: Travel Time

Travel Time between two locations l1 and l2, denoted as τ(l1, l2) is the time it

takes to travel from l1 and l2. Here, we only consider traveling by car to simplify the

model.

6.3.7 Definition 7: Stay Time

Stay Time of location l1, denoted as σ(l1) is the amount of time a person stays

at location l1.

6.3.8 Definition 8: Transition Time

Transition Time between two locations l1 and l2, denoted as Γ(l1, l2) represents

the amount of time the user stays at location l1 plus the time it takes to travel from

l1 to l2. Γ(l1, l2) is defined as equation(1).

122

Γ(l1, l2) = σ(l1) + τ(l1, l2) (6.1)

6.3.9 Definition 9: Trip Time

Trip Time of a trip represents the total time required to complete a trip. In a

trip, starting from source location, user travels from one visiting location to another

visiting location as well as staying at the visiting locations for a specific time period.

Finally they returned to the destination. Trip time of a trip tr = {(x, t0)→ (l1, t1)→

(l2, t2)→,→ (lk, tk)→ (y, te)}, denoted as

T (tr) = τ(x, l1) + (
k−1∑
i=1

Γ(li, li+1)) + Γ(lk, y) (6.2)

6.3.10 Definition 10: Time Constraints

Time constraint TC defines the total time the user u has to complete a trip.

6.3.11 Definition 11: Valid Route

A travel route tr is called valid route if Trip Time of a route Time T (tr) is less

than or equal to Time Constraint TC.

6.3.12 Problem Statement

Given a user u, source location x, destination location y, departure time t0, time

constraint TC, our goal is to find top-K travel routes under the following constraints:

1) Route starts at location x, 2) Route ends at location y and 3) Travel time of route

≤ than TC. Here TC is a user-defined parameter.

123

Time-specific Preference

Location Popularity

Modeling Transition time

Personalized

Location

Score

Start Location

End location

Departure time

Time Contraint

Travel Route

Recommendation
Top-K Travel Routes

Offline Modeling

Check-in

histories

of all users

Online Trip Route Recommendation

User Query

Figure 6.2: System Framework

6.4 Proposed Framework

In this section, we first describe our proposed system framework of Preferece-

Aware, Time-Aware Travel Route Recommendation (PTTR-Reco) system. Our pro-

posed framework has two major steps: 1) Offline Modeling, 2) Online Travel Route

Recommendation.

The offline modeling has 3 components. 1) Time-specific Personal Preference

Discovery, 2) Calculating Popularity of Locations and 3) Modeling Transition Time

between the Location Pairs.

In the first component, we learn each user’s personal categorical preference on

category c denoted as Pu(c). As preference depends on time, we learn time-specific

categorical preference on category c at time segment ts denoted as Pu(ts)(c).

In the second component, we calculate the popularity of each POI location l

denoted as ρ(l). POI locations for each user will be evaluated based on the two

components: user’s time specific categorical preference and location popularity.

124
In the third component, we model the uncertain transition time between two

locations. Transition time depends on the time user is staying at a location and the

traveling time between two locations. Check-in information only contains the time

user has arrived at a location. It does not have the information how much time the

user stays at a location. In this component, we model and pre-compute the estimated

transition time between the location pairs. Note that, the offline components are

calculated only once and will be used in online trip recommendation algorithm.

The second step is Online Travel Route Recommendation. In this step, user will

input a source location (x), destination (y), departure time (t0) and time constraint

(TC). Based on the user input, our system will generate a set of travel routes that

follows the specific time constraint. Each route tr is a sequence of POI locations,

where each POI location is associated with the corresponding visiting timestamp.

Each route is evaluated based on the locations recommended to the user. Finally

top-K travel routes are recommended to user u.

6.4.1 Offline Modeling

The offline modeling has 3 components. 1) Time-specific Personal Preference

Discovery, 2) Calculating Popularity of Locations and 3) Modeling Transition Time

between the Location Pairs.

6.4.1.1 Modeling User Preference

In this step, we model each individual user’s categorical preferences from his/her

check-in history. Categorical preference of a user u denoted as Pu(c) represents u’s

affinity to visit a location with category c. Pu(c) is generated using following equa-

tion [54].

125

Pu(c) = CF (c, Lu)× ILF (c, L) (6.3)

Here CF (c, Lu) is the measure of how many times user u has visited the locations

with a category c. Intuitively, a user would visit more locations belonging to a

category if he likes it. Here Lu is the location set visited by u. ILF handles the Rare-

Item problem [45]. Some locations are not visited by a user very often. For example,

the number of visits to a restaurant is generally more than that of a museum. If a

user visits location of a category that is rarely visited by other users, it means that

the user could like this category more prominently [7].

CF is calculated using eq. (6.4) and ILF is calculated using eq. (6.5).

CF (c, Lu) = |{u.li
: li ∈ c}|
|Lu|

(6.4)

ILF (c, L) = log |U |
|{uj.l ∈ L : lj.c ∈ uj.C}|

(6.5)

Here, |{u.li : li ∈ c}| is user u’s number of visits in category c, |Lu| is the total

number of user’s visit in all locations. |U | is the number of total users in the system.

|{uj.l ∈ L : lj.c ∈ uj.C}| is the number of users who visit category c among all users

in U .

6.4.1.2 Modeling Time-specific User Preference

As categorical preference may vary over time, we intend to find time-specific

categorical preferences of each user. We divide the whole day into equal length of

time segments (ts). In this chapter, we use time segment length = 1 hour. So the

whole day is divided into 24 time segments. Given a user u, time segment ts, category

126

c, temporal preference of user u on category c, denoted as P (ts)
u (c) is calculated using

following equation [54].

P (ts)
u (c) = CF (ts)(c, L(ts)

u)× ILF (c, L(ts)) (6.6)

Here CF (ts)(c, L(ts)
u) is the Category Frequency of user u and category c at time

segment ts. L(ts)
u is the location set visited by u at ts. ILF (c, L(ts)) is the Inverse

Location Frequency for category c. L(ts) is the list of all locations that has been visited

at ts. CF (ts)(c, L(ts)
u) and ILF (c, L(ts)) are calculated using following equations.

CF (ts)(c, L(ts)
u) = |{u.l

(ts)
i : l(ts)

i ∈ c}|
|L(ts)

u |
(6.7)

ILF (c, L(ts))) = log |U (ts)|
|{uj.l ∈ L : lj.c ∈ uj.C}|

(6.8)

Here, |{u.l(ts)
i : l(ts)

i ∈ c}| is the number of visits by user u at category c at time

segment ts. |L(ts)
u | is total visits by user u at time ts. |U (ts)| is the total number of

unique users in the system that has checked-in at time ts. |{uj.l ∈ L : lj.c ∈ uj.C}| is

the total number of unique users that visit at category c at time ts.

6.4.1.3 Modeling Uncertain Transition Time

Transition time between two locations Γ(li, lj) indicates the traveling time be-

tween li and lj plus the stay time at li. Check-in data cannot explicitly give us the

both two individual components: stay time and travel time. Hence, for simplicity, we

treat the time difference between two successive check-in locations (li, lj) as the sum

of stay time at li and travel time between li and lj.

To estimate the transition time between a location pair, we first find all the

consecutive location pairs with their corresponding timestamp from the historical

127

data. Given a location pair {(li, ti), (lj, tj)}, transition time is TTij = tj− ti. For each

location pair (li, lj), we get a set of different transition times as the timestamp for

the same location pair can be different. Let δ = {δ1, δ2.......δp} is a set of p transition

time for (li, lj) generated from historical data.

To avoid noisy data, we first removed the outliers from δ. We use the interquar-

tile range [74] method to find the outliers from δ. The interquartile range (IQR) is a

measure of variability, based on dividing a data set into quartiles. Quartiles divide a

sorted data set into four equal parts. The values that divide each part are called the

first quartile(Q1), second quartile(Q2), and third quartile(Q3). Data values that fall

below Q1 − 1.5(IQR) or above Q3 + 1.5(IQR) are considered as outliers.

Let ξ = {ξ1, ξ2,ξq} is a set of q outliers generate from δ. Transition time

Γ(li, lj) is estimated using following equation:

∆ = δ − ξ

Γ(li, lj) = E[∆]
(6.9)

6.4.1.4 Learning Popularity of Locations

Popularity of a location plays a significant role to attract users. People tend

to visit a more popular POI for better satisfaction. However, popularity also varies

over time. For example, a bar is more popular at night, whereas people tend to visit

a museum during morning or afternoon. For better recommendation, we intend to

calculate popularity score of each POI on each time segment. Popularity of a POI l

at time ts is calculated using following equation [54].

ρ(ts)(l) = 1
2 ∗

 |U (ts)(l)|
|U(l)| + |Chk

(ts)(l)|
Chk(l)

 (6.10)

128

Here |U (ts)(l)| is the number of users that visited l at time ts, |U(l)| is the total

number of users visited l. |Chk(ts)(l)| is the number of check-ins at l at time ts and

Chk(l) is total number of check-ins at location l.

6.4.2 Personalized Temporal based Location Scoring

For each POI location, the travel route recommendation algorithm needs to

understand how interesting the POI location is for a specific user at the specific time

to visit. This task is called the Personalized Location Scoring.

6.4.2.1 Definition 12: Personalized Location Score

Given a user u, time t, the personalized location score of l is denoted as

LS(u, t, l). LS is the measure of how interesting a location is for u at time t. We

used Preference-Aware User-based Collaborative Filtering [54] method to measure

LS(u, t, l).

Given a user u, the location score that u will visited location l at time t is given

below

LS(u, ts, l) =

∑
v∈U

wuv

|v|
× P ts

u (cl)× ρts(l) (6.11)

Here v is list of users who also visit l. cl is the category of location l and P ts
u (cl)

is the preference score of u and cl at time ts. ρts(l) is the popularity score of location

l at time segment ts.

6.4.2.2 Definition 13: Travel Route Score

Travel Route Score, denoted as TS(u, tr) is a measure of how interesting the

route tr is for user u. Travel route score depends on the visiting locations of the routes.

129

Given a travel route tr = {(x, t0)→ (l1, t1)→ (l2, t2)→,→ (lk, tk)→ (y, te)} and

user u, travel route score TS(u, tr) is defined as:

TS(u, tr) =
k∑
i=1

LS(u, li, ti) (6.12)

6.4.3 Online Travel Route Recommendation Algorithm

In this section, we present an Apriori-based [75] travel route generation algo-

rithm. Given a user u, source location x, destination y, Time Constraint TC, this

algorithm will generate top-K travel routes dynamically. The basic idea of our route

generation algorithm is to extend a k-length route (trk) to (k + 1)-length (trk+1)

gradually by inserting a new location into the route.

6.4.3.1 Definition 14: Baseline Route

Given source x, and destination y, we define the 2-length baseline route as

tr2 = {(x, t0)→ (y, te)} (6.13)

Here t0 is the departure time and te is the end time of tr2. Trip Time of tr2 is

denoted as T (tr2) = te - t0. Here, trip time is the same as the travel Time τ(x, y).

tr2 is valid, if the T (tr2) ≤ TC (Definition 11).

We intend to generate a 3-length route by extending the baseline route. In order

to do that, we insert a new location li just before the destination, and right after the

source location. For example, a 3-length trip tr3 = {(x, t0)→ (li, ti)→ (y, te)}. Here,

li is the visiting location and ti is the visiting time of location li. A similar procedure

will continue to generate (k + 1)-length route using k-length route.

130
The simplest approach to implement this algorithm is the Brute-Force method.

We first discuss the Brute-Force strategy to solve the route generation algorithm.

Then we discuss computational complexity of the Brute-Force approach.

6.4.4 Brute-Force Approach

For the travel route generation problem, the simplest approach is to address the

issue using Brute-Force strategy. With Brute-Force strategy, we will consider all the

locations in the dataset and generate all the possible travel routes. For each route,

we check whether the route is valid or not. Then we will calculate the score for all

the valid routes. Finally top-K routes will be recommended to the user.

6.4.4.1 Complexity of Brute-Force approach

Let n be the number of POI locations. Given source x, destination y, the

number of possible trips using the other (n-2) POI locations is formulated as

Complexity = 1 +
n−2∑
i=1

(Cn−2
i × i!) (6.14)

Proof Baseline route can be constructed in one way. Having the source and

destination fixed, the other (n-2) visiting locations will be used to build the routes.

For each route of length i, the number of combination is Cn−2
i . Again, for each

combination of route of length i can be permuted in different i! ways. So, number of

possible routes of length i is the number of combinations multiplied by the number

of permutations (Cn−2
i × i!).

Consider an example that, we have source x, destination y and other 4 visiting

POI locations a, b, c and d. Based on the Equation 14, total number of possible route

131

is 65 (including the baseline route), where the total number POI location is only 6

(including source, destination).

6.4.4.2 PTTR-Reco Algorithm

In this section, we present our proposed travel route recommendation frame-

work, “PTTR-Reco”(Preference-Aware, Time-Aware Travel Route Recommendation)

that finds the top-K travel routes in location based social network service. In order to

improve efficiency over Brute-Force method, we propose two new strategy: 1) Prefer-

ence Aware Candidate Location Set Generation and 2) Time Constraint Based Travel

Route Pruning.

6.4.4.3 Preference-Aware Candidate Location Set Generation

The Brute-Force considers all locations in the dataset and generate all possible

travel routes. But our goal is to find the travel routes with the locations that match

with user’s personal categorical preference. Consider the example in Figure 6.3. To

build a 3-length trip using baseline 2-length routes, Brute-Force method will consider

all visiting locations (a,b,c and d) as a next location of source x. So, this method will

generate total 4 3-length routes. At the same way, these 4-length routes will generate

total 12 5-length routes.

In this chapter, we focus on to recommending Preference-Aware and Time-

Aware travel routes with the combination of location sequences that will match users’

personal interests. Personal preference plays an important role for a user to choose

POI. To have a better idea, we count the number of unique categories visited by users.

We sort the users based on the count and plot the result (see Fig. 6.4). We see that

the number of categories visited by most of the users is less than 60. Users generally

132

x

a b c d

y

Figure 6.3: Given source, destination and 4 other visiting locations, building 3-length
trips

do not visit the locations of all categories, they visit a location only if they like the

category.

0 500 1000 1500

User

0

20

40

60

80

100

120

140

#
 o

f
c
a

te
g
o

ri
e
s
 c

h
e

c
k
e
d

 b
y
 u

s
e
r

Figure 6.4: Number of unique categories checked-in by users, (Number of users =
1083)

Another criteria to choose a POI location is the sequences of locations. People

often follow a periodic patterns. One may go to a coffee shop to grab a cup of coffee

first, then head to work or university.

Motivated by the two properties, we propose a method to generate candidate

locations as a next location. Given a current location li, to select the next location, we

find all the continuous location pairs starting with li from historical check-in dataset.

Let L = (li, lj),(li, lk),(li, lp),......(li, ls) be the location pairs of li. The location set

133
that follows li immediately in the dataset are considered as candidate locations as the

next location of li.

Consider the k-length route be trk = x →li → y, where li be (k-1)th lo-

cation. To build a (k + 1)-length trip trk+1, we insert a location right before the

destination location y and right after the location li. Instead of considering all the lo-

cations in the dataset, we consider only the candidate location set Cli = {lj, lk,ls}.

We further reduced the Candidate Location set based on Preference Criteria.

We only consider those locations if the user’s categorical preference of that location

is greater than a certain threshold (θ).

Preference Aware Candidate Location Set Generation method reduces the com-

putation cost effectively. Still, the computation cost will depend on the number of

candidate locations. We further use another pruning strategy to reduce the compu-

tation cost.

6.4.4.4 Time Constraint Based Travel Route Pruning

We recall the Definition (11), A travel route tr is called valid route if Travel

time of a route Time T (tr) is less than the Time Constraint value (TC). In other

words, a travel route is invalid if T (tr) > TC.

In this section, we prove that a super route of an invalid route is invalid. In

other words, given an invalid trip trinv, any super-trip that contains trinv must be an

invalid trip. Hence all the super-trip of trinv can be pruned.

Proof Consider an invalid trip trinv = x → p → y. As trinv is invalid,

T (trinv) > TC

now, T (trinv) = τ(x, p) + Γ(p, y) or, T (trinv) = τ(x, p) + σ(p) + τ(p, y) > TC

Consider a super trip of trinv is tr′inv by adding a new POI q into it. tr′inv =

x→ p→ q → y. We want to prove that T (tr′inv) > TC. We have,

134

T (tr′inv) = τ(x, p) + Γ(p, q) + Γ(q, y)

T (tr′inv) = τ(x, p) + σ(p) + τ(p, q) + σ(q) + τ(q, y)

In order to proof T (tr′inv) > TC, we have to prove that, τ(p, q)+σ(q)+τ(q, y) ≥

τ(p, y).

Given any 3 locations a, b and c, and their corresponding distances be dab, dbc,

dac. They must follow the triangular inequality [76] concept. Hence, the sum of the

distance between two routes must be greater than or equal to the third route.
dab + dbc ≥ dac

dac + dcb ≥ dab

dbc + dca ≥ dba

As travel time is directly proportionate to the distance (to simplify our model,

we do not consider traffic issue), the same inequality holds for travel time between 3

locations.
τ(a, b) + τ(b, c) ≥ τ(a, c)

τ(a, c) + τ(c, b) ≥ τ(a, b)

τ(b, c) + τ(c, a) ≥ τ(b, a)
It proves that, τ(p, q) + τ(q, y) ≥ τ(p, y).

so, τ(p, q) + σ(q) + τ(q, y) > τ(p, y), as σ(q) ≥ 0.

Based on this pruning strategy, if we find a route that cannot be finished in a

time budget, we prune that route and it is not necessary to extend the route further.

6.4.4.5 Algorithm

We present an Apriori-based algorithm PTTR-Reco in Algorithm 11. In the

offline method, we calculated Time-specific Category Preference (Pu), Location Pop-

ularity (ρ), Set of Location Pair with estimated Transition Time (LP). These results

are calculated only once. The user input query to build trip is Q = (u, x, y, t0, TC),

135

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

P
re

c
is

io
n

PTTR-Reco

Nearest
Based

Popularity
Based

Forward
Heuristic

Most Preferred
Based

Figure 6.5: Tour Precision

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

R
e
c
a
ll

PTTR-Reco

Nearest
Based

Popularity
Based

Forward
Heuristic

Most Preferred
Based

Figure 6.6: Tour Recall

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

F
-S

c
o
re

PTTR-Reco

Nearest
Based

Popularity
Based

Forward
Heuristic

Most Preferred
Based

Figure 6.7: Tour F-Score

136
which are user id, source, destination, departure time and Time Constraint respec-

tively.

6.5 Experiments

In this section, we describe the settings of our experiments that includes dataset

and method of evaluation of our proposed method. Then, we present the experimental

results of our method.

6.5.1 Experimental Settings

6.5.1.1 Dataset

We use one real-world check-in datasets from Foursquare. Dataset includes

227, 428 check-in data from New York City, USA. The dataset has data from 12 April

2012 to 16 February 2013 (10 months). Each check-in data Chij contains a user (ui),

a location id (lj) and the corresponding time (t). Each location id lj is associated with

geographical position (latitude,longitude), category (cj). It contains check-in data of

1, 083 users and 38, 383 locations. To get more effective results, we removed POIs

that have lower than 5 check-ins. After preprocessing, the dataset contains 4, 597

POI locations and 164, 307 check-ins. For each user, we randomly mark off 50% of

his location histories as a training set to learn his temporal categorical preferences

and location preferences. The other 50% is used as a test set.

6.5.1.2 Evaluation Methods

We use three measures to evaluate the results of our experiments: Tour recall,

Tour Precision and Tour F-measure. They were also used in [77] for travel route

137
evaluation. Let Pr be the set of POIs recommended in a travel route tr and Pv be

the set of POIs the user has visited in real life.

1. Tour Recall (Trec): Tour Recall is the ratio of user’s real life visited POIs

that were also recommended in the travel routes. Tour recall is defined as TRec(tr)

= |Pr∩Pv |
|Pv | .

2. Tour Precision (TPre): Tour precision is the ratio of POIs recommended

in route tr that were also visited by user in real life. Tour Precision is defined as

TPre(tr) = |Pr∩Pv |
|Pr| .

3. Tour F1 Score (TF): Tour F1 score is defined as TF (tr) = 2×Trec(tr)×TPre(tr)
Trec(tr)+TPre(tr) .

6.5.1.3 Baseline approaches

We use the following baseline approaches to evaluate the effectiveness of our

framework. These approaches use fixed transition time model, where transition time

between two location li and lj is fixed.

1. Nearest POI Approach This method chooses the nearest POI to the cur-

rent location as a next location. Haversine [78] formula is used to measure the distance

between two locations. Each POI location is evaluated based on the distance from the

current location. Trip score is measured using the equation TS(tr) = (∏n
i=1

1
d(li,li+1))

1
n .

2. Popular POI Based Approach This method chooses the most popular

POI to visit as a next location. But as we have time constraint, it is not feasible to

choose the popular POI if it is far away. So, this method first chooses the 10 nearest

POI, then it chooses the most popular one among them. Trip score is measured using

the equation TS(tr) = ∑n
i=1 ρ

(ts)(l).

3. Most Preferred POI Based Approach This method chooses his most

preferred POI as a next location to visit. Route is evaluated based on the user’s time-

138

specific categorical preference. Trip score is measured using the equation TS(tr) =∑n
i=1 P

(ts)(cl).

4. Forward Heuristic Approach This approach chooses a location li that

has the highest transition probability with the previous location P (li|li−1). Trip score

is measured using the equation: TS(tr) = ∑n−1
i=1 P (li|li−1).

We generate the travel route with the highest score using our framework (PPTR-

Reco). All other 4 baseline approaches also generate one travel routes at a time. We

use different current time and average the results. We use TC = 5h in all approaches.

Figure 6.5, 6.6, 6.7 shows the tour precision, tour recall and tour fscore value

of our proposed method and other 4 baseline methods. We see that, PTTR-Reco

outperforms all other baseline approaches.

The nearest POI based method generates second best precision value. The

reason is many users generally prefer to visit the nearest locations. The most preferred

based method generates the third best results. The popularity based method performs

worse among all.

6.5.1.4 Effects of different value of Time Constraint

5 5.5 6 6.5 7 7.5 8

Time Constraint (In hour)

0.22

0.24

0.26

0.28

0.3

0.32
Precision
Recall
F-Measure

Figure 6.8: Effects of different Time Constraint length

139
This experiment analyzes the evaluation results of our proposed framework with

different Time Constraint value. We use TC = 5h, 6h, 7h and 8h. Figure 6.8 shows

the result. We see that smaller value of TC gives us better results.

6.5.1.5 Runtime

20 40 60 80 100

Number of POIs

0

10

20

30

40

50

60

70

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Brute-Force

PTTR-Reco

Figure 6.9: Comparison of execution time with Brute-Force method

This experiment analyzes the execution time our proposed framework. Fig-

ure 6.9 shows the comparison of executing time between Brute-Force approach and

our proposed framework. We changed the number of location 10 to 100 to generate

travel routes. Y -axis shows the average execution time. Brute-Force approach takes

around 67 seconds to generate travel routes when the number of location is 20. With

this approach run time increases exponentially with the number of locations. It takes

more than 3000 seconds with 30 POI locations. It does not work when number of

POI location is more than 30.

We analyze the execution time of our proposed framework with the framework

without time constraint pruning. Figure 6.10 shows the result. Without the time con-

140
straint pruning, execution time increases rapidly as the number of location increases.

But with the time constraint pruning, the method performs significantly better.

20 40 60 80 100

Number of POIs

0

2

4

6

8

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
) Without Time Constraint Pruing

With Time Constraint Pruing

Figure 6.10: Comparison of execution time without time constraint pruning

6.6 Conclusion

In this chapter, we present a novel and efficient framework to recommend time-

aware and preference-aware travel routes. This method considers user’s personal

categorical preference, temporal preference and popularity of a location to find inter-

esting POIs. Then this method presents an efficient solution to generate top-K time

aware travel routes. Each POI location of the recommended travel routes is associ-

ated with corresponding visiting time information, by which the recommended travel

routes will tell us where to visit and when to visit. We experimented our method

with other baseline approaches. Experimental results show that our method performs

significantly better than other baseline methods.

Our future plan to extend the work is to add the financial budget constraint in

addition to time constraint. Our another plan is to incorporate categorical diversity

constraint to generate better travel route recommendation.

141

Algorithm 11 PTTR-Reco
Input: (i) u: User, (ii)x: Source Location, (iii)y: Destination Location, (iv)t0: Departure Time,

(v)TC: Time Constraint, (vi)Output: TR: a set of trip routes with trip score
1. TR = {}
2. te = τ(x, y)
3. TR2 = {(x, t0)→ (y, te)}
4. TR3 = {}
5. Cl2 = Generate Candidate Locations of x
6. k = 3
7. for each lc ∈ Cl2 do
8. tc = τ(x, lc)
9. te = Γ(lc, y)

10. tr = {(x, t0)→ (lc, tc)→ (y, te)}
11. if tr is a Valid Route then
12. str = Calculate Trip Score
13. TR3 = {TR3} ∪ (tr, str)
14. end if
15. end for
16. TR = {TR} ∪ {TR3}
17. while No (k + 1)-length trips are found do
18. for each tr ∈ TRk do
19. lk−1 = (k-1)th location of tr
20. Clk = Generate candidate location of lk−1

21. for each lc ∈ Clk do
22. tk = Γ(lk−1, lc)
23. te = Γ(lc, y)
24. trk+1 = {(x, t0)→(lk−1, tk−1)
25. → (lc, tc)→ (y, te)}
26. if trk+1 is Valid then
27. strk+1 = Trip score of trk+1

28. TRk+1 = {TRk+1} ∪ (trk+1, strk+1)
29. end if
30. end for
31. end for
32. TR = {TR} ∪ {TRk+1}
33. end while
34. Return top-K travel routes

CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

In this dissertation, we present novel frameworks and algorithms to analyze

spatio-temporal data. We use two types of spatio-temporal data, trajectory data and

check-in data. In the first part of dissertation, we use a clustering based method to

mine useful information from trajectory data. In chapter 2, we have proposed a novel

framework to cluster trajectories. We use a combination of spatial and non-spatial

features. In chapter 3, we propose a density-based spatial clustering algorithm which

can handle arbitrary shaped clusters and datasets with varying densities.

In the next three chapters, we use check-in data in the location-based social

network service. Check-in data contains user movement data along with time in-

formation. Analyzing check-in data benefits us with many real-world applications.

Recommendation system is one of them. In chapter 4, we present a time-aware,

location-aware and preference-aware recommendation system, which provides a user

time-specific location recommendation based on user’s personal categorical prefer-

ences and spatial preferences. In chapter 5, we present a novel approach for suc-

cessive POI recommendation task. This approach recommends to a user a set of

locations where he might be interested to visit next based on his current location and

time. This method considers a combination of users’ time-specific categorical pref-

erences, categorical transition patterns, spatial influences and popularity of POIs.

In chapter 6, we present a novel and efficient framework to recommend time-aware

and preference-aware travel routes. This method considers user’s personal categorical

142

143
preference, temporal preference and popularity of a location to find interesting POIs.

Then this method presents an efficient solution to generate top-K time aware travel

routes.

REFERENCES

[1] M. Debnath, P. K. Tripathi, and R. Elmasri, “A novel approach to trajec-

tory analysis using string matching and clustering,” in Data Mining Workshops

(ICDMW), 2013 IEEE 13th International Conference on. IEEE, 2013, pp.

986–993.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in KDD, vol. 96, 1996,

pp. 226–231.

[3] M. Debnath, P. K. Tripathi, and R. Elmasri, “Kdbscan: Identifying spatial clus-

ters with differing density levels,” in Data Mining with Industrial Applications

(DMIA), 2015 International Workshop on. IEEE, 2015, pp. 51–60.

[4] B. Liu, Y. Fu, Z. Yao, and H. Xiong, “Learning geographical preferences for

point-of-interest recommendation,” in Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 2013,

pp. 1043–1051.

[5] T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for personalized

poi recommendations in mobile environments,” in Applications and the Internet,

2006. SAINT 2006. International Symposium on. IEEE, 2006, pp. 6–pp.

[6] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann, “Time-aware point-of-

interest recommendation,” in Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval. ACM, 2013,

pp. 363–372.

144

145

[7] J. Bao, Y. Zheng, and M. F. Mokbel, “Location-based and preference-aware

recommendation using sparse geo-social networking data,” in Proceedings of the

20th International Conference on Advances in Geographic Information Systems.

ACM, 2012, pp. 199–208.

[8] H. Gao, J. Tang, X. Hu, and H. Liu, “Content-aware point of interest recom-

mendation on location-based social networks,” in Proceedings of the 29th AAAI

Conference on Artificial Intelligence, 2015.

[9] C. Cheng, H. Yang, M. R. Lyu, and I. King, “Where you like to go next: Suc-

cessive point-of-interest recommendation.” in IJCAI, 2013.

[10] J. Gudmundsson, A. Thom, and J. Vahrenhold, “Of motifs and goals: mining tra-

jectory data,” in Proceedings of the 20th International Conference on Advances

in Geographic Information Systems. ACM, 2012, pp. 129–138.

[11] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-and-

group framework,” in Proceedings of the 2007 ACM SIGMOD international con-

ference on Management of data. ACM, 2007, pp. 593–604.

[12] J. Hsieh, S.-L. Yu, and Y.-S. Chen, “Trajectory-based video retrieval by string

matching,” in Image Processing, 2004. ICIP’04. 2004 International Conference

on, vol. 4. IEEE, 2004, pp. 2243–2246.

[13] Y. Yanagisawa, J.-i. Akahani, and T. Satoh, “Shape-based similarity query for

trajectory of mobile objects,” in Mobile data management. Springer, 2003, pp.

63–77.

[14] C.-S. Chen, C. F. Eick, and N. J. Rizk, “Mining spatial trajectories using non-

parametric density functions,” in Machine Learning and Data Mining in Pattern

Recognition. Springer, 2011, pp. 496–510.

[15] http://weather.unisys.com/hurrricane/atlantic/index.html.

146

[16] S. Gaffney and P. Smyth, “Trajectory clustering with mixtures of regression

models,” in Proceedings of the fifth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 1999, pp. 63–72.

[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise.” Kdd, 1996.

[18] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of flock patterns

in spatio-temporal data,” in Proceedings of the 17th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems. ACM,

2009, pp. 286–295.

[19] Y. Huang, L. Zhang, and P. Zhang, “A framework for mining sequential patterns

from spatio-temporal event data sets,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 20, no. 4, pp. 433–448, 2008.

[20] J.-G. Lee, J. Han, X. Li, and H. Gonzalez, “Traclass: trajectory classification

using hierarchical region-based and trajectory-based clustering,” Proceedings of

the VLDB Endowment, vol. 1, no. 1, pp. 1081–1094, 2008.

[21] D. Gusfield, Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge University Press, 1997.

[22] S. Shekhar and S. Chawla, Spatial databases: a tour. Prentice Hall Englewood

Cliffs, 2003, vol. 2003.

[23] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal

data,” Data & Knowledge Engineering, vol. 60, no. 1, pp. 208–221, 2007.

[24] J. Han, M. Kamber, and A. K. H. Tung, “Spatial clustering methods in data

mining: A survey,” in Geographic Data Mining and Knowledge Discovery,

Research Monographs in GIS. Taylor and Francis, 2001. [Online]. Available:

http://www-faculty.cs.uiuc.edu/∼hanj/pdf/gkdbk01.pdf

147

[25] E. Kolatch, “Clustering algorithms for spatial databases: A survey,” PDF is

available on the Web, 2001.

[26] J. MacQueen et al., “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, vol. 1, no. 281-297. California, USA, 1967, p. 14.

[27] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to

cluster analysis. John Wiley & Sons, 2009, vol. 344.

[28] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering

points to identify the clustering structure,” in ACM SIGMOD Record, vol. 28,

no. 2. ACM, 1999, pp. 49–60.

[29] A. Hinneburg and D. A. Keim, “An efficient approach to clustering in large

multimedia databases with noise,” in KDD, vol. 98, 1998, pp. 58–65.

[30] A. P. Dempster, N. M. Laird, D. B. Rubin, et al., “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the Royal statistical Society,

vol. 39, no. 1, pp. 1–38, 1977.

[31] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering

method for very large databases,” in ACM SIGMOD Record, vol. 25, no. 2.

ACM, 1996, pp. 103–114.

[32] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algorithm for

large databases,” in ACM SIGMOD Record, vol. 27, no. 2. ACM, 1998, pp.

73–84.

[33] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different sizes,

shapes, and densities in noisy, high dimensional data.” in SDM. SIAM, 2003,

pp. 47–58.

[34] W. Wang, J. Yang, and R. Muntz, “Sting: A statistical information grid approach

to spatial data mining,” in VLDB, vol. 97, 1997, pp. 186–195.

148

[35] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: a wavelet-based

clustering approach for spatial data in very large databases,” The VLDB Journal,

vol. 8, no. 3-4, pp. 289–304, 2000.

[36] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace

clustering of high dimensional data for data mining applications. ACM, 1998,

vol. 27, no. 2.

[37] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan, “A local-density based spatial

clustering algorithm with noise,” Information Systems, vol. 32, no. 7, pp. 978–

986, 2007.

[38] J. Han and M. Kamber, “Data mining: Concepts and techniques.”

[39] Y. Zheng and X. Zhou, Computing with spatial trajectories. Springer Science &

Business Media, 2011.

[40] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee, “Exploiting geographical influence for

collaborative point-of-interest recommendation,” in Proceedings of the 34th in-

ternational ACM SIGIR conference on Research and development in Information

Retrieval. ACM, 2011, pp. 325–334.

[41] M. Ye, P. Yin, and W.-C. Lee, “Location recommendation for location-based so-

cial networks,” in Proceedings of the 18th SIGSPATIAL International Conference

on Advances in Geographic Information Systems. ACM, 2010, pp. 458–461.

[42] https://developer.foursquare.com/categorytree.

[43] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”

Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[44] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo, “Socio-spatial properties

of online location-based social networks.” ICWSM, vol. 11, pp. 329–336, 2011.

[45] K. Sparck Jones, “A statistical interpretation of term specificity and its applica-

tion in retrieval,” Journal of documentation, vol. 28, no. 1, pp. 11–21, 1972.

149

[46] P.-N. Tan and M. Steinbach, “Vipin kumar, introduction to data mining,” 2006.

[47] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement

in location-based social networks,” in Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 2011,

pp. 1082–1090.

[48] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,

1996, pp. 226–231.

[49] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informed-

ness, markedness and correlation,” 2011.

[50] https://yelp.com.

[51] http://statspotting.com/foursquare-statistics-20-million-users-2-billion-check-ins/.

[52] J. Sang, T. Mei, J.-T. Sun, C. Xu, and S. Li, “Probabilistic sequential pois recom-

mendation via check-in data,” in Proceedings of the 20th International Confer-

ence on Advances in Geographic Information Systems. ACM, 2012, pp. 402–405.

[53] W. Zhang and J. Wang, “Location and time aware social collaborative retrieval

for new successive point-of-interest recommendation,” in Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management.

ACM, 2015, pp. 1221–1230.

[54] M. Debnath, P. K. Tripathi, and R. Elmasri, “Preference-aware poi recommen-

dation with temporal and spatial influence,” in Florida Artificial Intelligence

Research Society Conference. AAAI, 2016, pp. 548–553.

[55] A. A. Markov, “An example of statistical investigation of the text eugene onegin

concerning the connection of samples in chains,” Science in Context, vol. 19,

no. 04, pp. 591–600, 2006.

150

[56] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized

markov chains for next-basket recommendation,” in Proceedings of the 19th in-

ternational conference on World wide web. ACM, 2010, pp. 811–820.

[57] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, “Personalized

ranking metric embedding for next new poi recommendation,” in Proc. IJCAI,

2015.

[58] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization.”

[59] H. Goodwin, “The haversine in nautical astronomy,” in US Naval Institute Pro-

ceedings, vol. 36, 1910, pp. 735–746.

[60] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activity preference

by leveraging user spatial temporal characteristics in lbsns,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 129–142, 2015.

[61] M. Debnath, P. K. Tripathi, and R. Elmasri, “Preference-aware successive poi

recommendation with spatial and temporal influence,” in International Confer-

ence on Social Informatics. Springer, 2016, pp. 347–360.

[62] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized

markov chains for next-basket recommendation,” in Proceedings of the 19th in-

ternational conference on World wide web. ACM, 2010, pp. 811–820.

[63] Y. Zheng and X. Xie, “Learning travel recommendations from user-generated

gps traces,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 2, no. 1, p. 2, 2011.

[64] H. Schütze, “Introduction to information retrieval,” in Proceedings of the in-

ternational communication of association for computing machinery conference,

2008.

151

[65] C.-S. Lee, Y.-C. Chang, and M.-H. Wang, “Ontological recommendation multi-

agent for tainan city travel,” Expert Systems with Applications, vol. 36, no. 3,

pp. 6740–6753, 2009.

[66] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony

of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[67] H. Yoon, Y. Zheng, X. Xie, and W. Woo, “Smart itinerary recommendation based

on user-generated gps trajectories,” in International Conference on Ubiquitous

Intelligence and Computing. Springer, 2010, pp. 19–34.

[68] C. Zhou and X. Meng, “Sts: complex spatio-temporal sequence mining in flickr,”

in International Conference on Database Systems for Advanced Applications.

Springer, 2011, pp. 208–223.

[69] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zhang, “Photo2trip: generating

travel routes from geo-tagged photos for trip planning,” in Proceedings of the

18th ACM international conference on Multimedia. ACM, 2010, pp. 143–152.

[70] A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi, “Customized tour recommen-

dations in urban areas,” in Proceedings of the 7th ACM international conference

on Web search and data mining. ACM, 2014, pp. 313–322.

[71] C. Zhang, H. Liang, K. Wang, and J. Sun, “Personalized trip recommendation

with poi availability and uncertain traveling time,” in Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management.

ACM, 2015, pp. 911–920.

[72] H.-P. Hsieh, C.-T. Li, and S.-D. Lin, “Exploiting large-scale check-in data to

recommend time-sensitive routes,” in Proceedings of the ACM SIGKDD Inter-

national Workshop on Urban Computing. ACM, 2012, pp. 55–62.

152

[73] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng, “Personalized trip recommendation

with multiple constraints by mining user check-in behaviors,” in Proceedings

of the 20th International Conference on Advances in Geographic Information

Systems. ACM, 2012, pp. 209–218.

[74] G. Upton and I. Cook, Understanding statistics. Oxford University Press, 1996.

[75] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules,” in

Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, 1994, pp. 487–499.

[76] M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and fixed point

theory. John Wiley & Sons, 2011, vol. 53.

[77] K. H. Lim, J. Chan, C. Leckie, and S. Karunasekera, “Personalized tour recom-

mendation based on user interests and points of interest visit durations,” Under

Submission, 2015.

[78] H. Goodwin, “The haversine in nautical astronomy,” in US Naval Institute Pro-

ceedings, vol. 36, 1910, pp. 735–746.

BIOGRAPHICAL STATEMENT

Madhuri Debnath was born in Narsingdi, Bangladesh. She received her Bachelor

degree in Computer Science and Engineering from University of Dhaka, Bangladesh,

in 2007. In 2008, she joined as a software engineer in Cention AB, Dhaka, Bangladesh.

She joined as a Ph.D. student in the University of Texas at Arlington in 2012 under

the supervision of Professor Ramez Elmasri. Her major research interests include

data mining, machine learning, spatio-temporal data analysis.

153

