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ABSTRACT

NUMERICAL SOLUTION OF SADDLE POINT PROBLEMS BY PROJECTION

Gul Karaduman, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Ren-Cang Li

In this thesis, we work on iterative solutions of large linear systems of saddle

point problems of the form

A B1
T

B2 0


x
y

 =

f
0

 ,
where A ∈ Rn×n, B1, B2 ∈ Rm×n, f ∈ Rn, and n ≥ m. Many applications in

computational sciences and engineering give rise to saddle point problems such as

finite element approximations to Stokes problems, image reconstruction, tomography,

genetics, statistics and model order reduction for dynamical systems. Such problems

are typically large and sparse.

We develop new techniques to solve the saddle point problems depending on the

rank of B2. First, we deal with the case when B2 has full row rank, i.e., rank(B2) = m.

The key idea is to construct a projection matrix and transform the original problem

to a least squares problem then solve the least squares problem by using one of the

iterative methods such as LSMR. In most applications B2 has full rank, but not

always. Next, we turn to the saddle point systems with the rank-deficient matrix

v



B2. Similarly we construct a new projection matrix by using only maximal linearly

independent rows of B2. By using this projection matrix, the original problem can

still be transformed into a least squares problem. Again, the new system can be

solved by using one of the iterative techniques for least squares problems. Numerical

experiments show that the new iterative solution techniques work very well for large

sparse saddle point systems with both full rank and rank-deficient matrix B2.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A saddle point system is a linear system with the following 2-by-2 block

structure:

A

x
y

 =

A B1
T

B2 −C


x
y

 =

f
g

 , (1.1)

where A ∈ Rn×n is a square matrix of order n, B1 and B2 ∈ Rm×n are rectangular

matrices with n ≥ m, and C ∈ Rm×m is a square matrix of order m. Vectors f ∈ Rn

and g ∈ Rm are right-hand side vectors and x ∈ Rn and y ∈ Rm are the solution

vectors. The 2 × 2 block coefficient matrix A is called a saddle point matrix. The

coefficient matrix of the saddle point system is usually large and sparse. ‘KKT

problem’ which stand for Karush-Kuhn-Tucker problem is also used as an alternate

name for the saddle point problem in some sources. Benzi, Golub, and Liesen [1]

gave a definition of a saddle point problem as the constituent blocks A,B1, B2 and C

satisfy one or more of the following conditions:

(i) A is symmetric;

(ii) The symmetric part of A, H = 1
2
(A+ AT ) is positive semidefinite;

(iii) B1 = B2 = B;

(iv) C is symmetric and positive definite;

(v) C = 0.

1



In this work, our focus is on the solution of the system (1.1) when condition

(v) is satisfied and g is a zero vector. Therefore the subject of this thesis is to solve

the saddle point system of the form

A BT
1

B2 0


x
y

 =

f
0

 or Az = b, (1.2)

where A ∈ Rn×n, B1 ∈ Rm×n, B2 ∈ Rm×n, and f ∈ Rn. Some applications give rise to

such saddle point problems have very large saddle point matrices, e.g., n+m ≈ 105

or larger. Also, most of the entries of these matrices are zero. Such matrices are

called sparse matrices.

In this system, no assumption is required for matrices A and B1. The (2,1)-block

matrix A ∈ Rn×n can be any large and sparse square matrix with size n×n. Similarly,

the (1,2)-block matrix B1
T ∈ Rn×m can be any large and sparse rectangular matrix

with size n×m. The right-hand side vector f ∈ Rn is also any vector. The solution

technique will have different form according to the rank of the (2,1)-matrix B2.

The system (1.2) often arises from the first order optimality conditions for the

following equality constrained quadratic programming problem

minimize h(x) = xTAx+ xTB1
Ty − fTx

subject to B2x = 0,

where A ∈ Rn×n, B1 ∈ Rm×n and B2 ∈ Rm×n are sparse matrices and f ∈ Rn. We

define the corresponding Lagrangian function

L(x, y) ≡ h(x) + yTB2x

= xTAx+ xTB1
Ty − fTx+ yTB2x

= xTAx+ xTB1
Ty + yTB2x− xTf

2



=

x
y


T A B1

T

B2 0


x
y

−
x
y


T f

0

 ,

where the variable y represents the vector of Lagrangian multipliers. Any solution

(x∗, y∗) of (1.2) is a saddle point (optimal solution) for the Lagrangian L(x, y).

To find the saddle points of L(x, y), we need to solve the following system

5L(x, y) = 0.

This explains why the name saddle point problem is given to the system (1.2). For

more information on the quadratic programming problems, we suggest Nocedal and

Wright [2].

An efficient and stable numerical solution for such a large class of problem

is one of the fundamental duties in the numerical linear algebra. The goal of this

thesis is to develop effective and efficient methods for the solution of (1.2). We only

consider the problems that have large and sparse real coefficient matrices.

In this thesis, we developed new solution techniques to solve the saddle point

matrix equation Az = b in (1.2), depending on the rank of matrix B2. The idea can

be straight forwardly extended to complex coefficient matrices. First, we deal with

the case when B2 has full row rank, i.e., rank(B2) = m. The key idea is to construct a

projection matrix and transform the original problem to a least squares problem then

solve the least squares problem by using one of the iterative methods such as LSMR.

In most applications, the (2,1)-block matrix in the saddle point problem has full rank,

but not always. Next, we turn to the saddle point systems with the rank-deficient

matrix B2, i.e., rank(B2) < m. Similarly we construct a new projection matrix by

using only maximal linearly independent rows of B2. By using this projection matrix,

the original problem can still be transformed into a least squares problem. Again, the

3



new system can be solved by using one of the iterative techniques for least squares

problems. For both cases, the number of rows in matrix B2 is much smaller than the

number of columns in B2, i.e., m ≤ n.

1.2 Applications

In past years, large linear systems of saddle point problems arise frequently in

a number of areas including computational science and engineering. For this reason,

quite an amount of work has been on solving saddle point problems. We list some of

the fields where saddle point systems are used when the block matrices A,B1, B2,

and C satisfy some or all the conditions:

• Optimal control [21, 14, 24, 16],

• Computational fluid dynamics [30, 18, 19],

• Constrained optimization [20, 22],

• Least squares estimation [5],

• Electromagnetism [23],

• Mixed formulations of elliptic PDEs [25],

• Model order reduction for dynamical systems [36],

• Finite element discretization [27],

• Metal deformation [28],

• Image reconstruction, tomography [29],

4



• Finance [33, 13],

• Mesh analysis in computer graphics [17],

• Economics [35, 26],

• Linear elasticity [42],

• Domain decomposition [38].

We refer a survey of numerical solution techniques for saddle point problems

by Benzi, Golub, and Liesen [1] for an extensive list of the fields where saddle point

problems arise, together with some of the references.

The remainder of this thesis is organized as follows. In Chapter 2, we review

some important properties of the saddle point matrix A, give an overview of existing

solution algorithms for saddle point problems, and emphasize the importance of the

Krylov subspace approximation techniques for large-scale systems. Then we give a

brief overview of the two Krylov subspace iterative methods: Generalized Minimal

Residual which is known as GMRES [9] and Least Square Minimal Residual which is

known as LSMR [12]. We also list some of the major preconditioning methods in the

literature for saddle point problems.

In Chapter 3, we begin describing the general theory of the solution method

for saddle point problem by using a projection matrix when B2 is a full rank matrix

i.e., rank(B2) = m. In this solution technique, we assume that m is small. For

this solution technique, we construct a projection matrix and transform the original

problem into a least squares problem then solve the least squares system by using one

of the iterative methods such as LSMR. Then we present the algorithmic framework

of the method.

5



Chapter 4 focuses on the solution method for the saddle point problem when B2

is rank-deficient. Since B2 ∈ Rm×n does not have full rank, we need to form a different

projection matrix by using the linearly independent rows of B2. Our discussion will

focus on how to construct the projection matrix and solve the transformed problem

by using an iterative method. At the end of the chapter, we present an algorithmic

framework of the method.

In Chapter 5, we give our numerical results to show the performances of our

projected method for saddle point problems. All the testing matrices are taken

from SuiteSparse matrix collection, formerly the University of Florida sparse matrix

collection [47].

Finally, we make conclusions and an outlook to our future work for the solution

of saddle point systems in Chapter 6.

6



CHAPTER 2

BACKGROUND

This chapter contains reviews of the fundamental properties of the saddle

point matrix A, the existing solution approaches, Krylov subspace methods includ-

ing two common used iterative methods, GMRES and LSMR, and surveys some

preconditioning methods in the literature for generalized saddle point problems.

2.1 Properties of Saddle Point Matrices

In this section, we introduce the fundamental properties of the saddle point

matrices, such as factorizations and invertibility of the saddle point matrix A. We

start with the definition of the Schur complement of a matrix block.

Definition 2.1.1 (Schur Complement). Let the block matrices K1, K2, K3 and K4

be respectively p× p, p× q, q × p and q × q matrices, and suppose K1 is invertible.

Let

M =

K1 K2

K3 K4

 ,
so that M is a (p+ q)× (p+ q) matrix. Then the Schur complement of the block K1

in the block matrix M is M/K1 := K4 −K3K1
−1K2.

7



2.1.1 Block Factorizations of a Saddle Point Matrix

In this section, we will show a few block factorizations of the saddle point

matrix A. Assume that A is a nonsingular matrix. Then A admits the following

block triangular factorization

A =

A B1
T

B2 −C

 =

A 0

B2 S


I A−1B1

T

0 I


=

 I 0

B2A
−1 I


A B1

T

0 S


=

 I 0

B2A
−1 I


A 0

0 S


I A−1B1

T

0 I

 , (2.1)

where S = −(C +B2A
−1B1

T ) is the Schur complement of A in the block matrix A.

2.1.2 Inverse of a Saddle Point Matrix

Assume that the (1,1) block A ∈ Rn×n of the saddle point coefficient matrix A

is nonsingular. Then A is nonsingular if and only if the Schur complement matrix

S = −(C +B2A
−1B1

T ) is nonsingular. Based on the last factorization (2.1) we find

the following expression for the inverse

A B1
T

B2 −C


−1

=

I A−1B1
T

0 I


−1 A−1 0

0 S−1


 I 0

B2A
−1 I


−1

=

A−1 + A−1B1
TS−1B2A

−1 −A−1B1
TS−1

−S−1B2A
−1 S−1

 .
8



2.2 Solution Approaches

Algorithms for the saddle point problems can be categorized into two types

of segregated and coupled methods. Segregated methods include direct methods,

iterative methods or the combination of these two. On the other hand, coupled

methods can be either direct or iterative method. More details will be given in the

later sections for segregated and coupled methods. Now, we will briefly explain what

we mean by the direct and iterative methods.

Direct methods calculate solutions of the systems in a prescribed, finite number

of steps. These methods produce the exact result in the absence of rounding error.

If the system is of reasonable size, these methods are good for use. However, if the

system is a large-scale linear system, a direct method requires a huge memory storage

and large computational times which make the method unfavorable.

On the other hand, iterative methods provide an approximated solution of the

systems. These systems can be quite large. Iterative methods are very useful for very

large systems, where direct methods would be prohibitively expensive even impossible

in some cases.

2.2.1 Krylov Subspace Methods

Krylov subspace methods are among the most popular methods in numerical

linear algebra. These methods are iterative techniques for the solution of large and

sparse linear systems. Krylov subspace methods are matrix-free iterative methods

which means they only require matrix-vector multiplications. These methods solve

linear systems of the form Ms = t, where M ∈ Rm×n is a large and sparse matrix,

t ∈ Rm is a real vector and s ∈ Rn is a real vector. Krylov subspace methods converge

to the exact solution in a finite number of iterations by solving an iterative sequence

of minimization problems.
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To briefly explain the methods, we consider for example m = n. Krylov subspace

methods produce an approximate solution si of Ms = t, at every iteration i such that

si ∈ s0 +Ki {M, r0} , (2.2)

where s0 is an arbitrary initial guess to the solution, r0 = t−Ms0 and Ki {M, r0} is

the i-th Krylov subspace of M on r0

Ki(M, r0) = span
{
r0,Mr0,M

2r0, ...,M
i−1r0

}
. (2.3)

These subspaces form a nested sequence, i.e.,

K1(M, r0) ⊂ K2(M, r0) ⊂ ... ⊂ Kd(M, r0) = ... = Km(M, r0),

where d ≡ dim Km(M, r0) ≤ m.

The corresponding residual for the approximate solution si is ri = t−Msi. To

determine si we force that ri satisfies the Petrov-Galerkin condition, that is the i-th

residual ri = t−Msi is orthogonal to an i-dimensional space Di,

ri ⊥ Di, (2.4)

where Di is a constraint space and belongs to another set of nested subspaces.

Different Krylov subspace methods can be constructed by choosing different

nested subspaces Di.

10



Krylov subspace methods can be categorized according to the size of the

coefficient matrix of the linear system of the form Ms = t. There are two main class

of Krylov subspace methods: methods which solve Ms = t when M is square (m = n)

and the methods that solve Ms = t when M is either rectangular (m < n or m > n)

or square matrix.

In the next subsections, we introduce the Arnoldi [6] procedure which is used

for the solution of square systems and the Golub-Kahan [46] procedure which is used

for rectangular or square systems.

2.2.2 Arnoldi Process

In this section, we focus on nonsymmetric linear systems. The Arnoldi process

[6] transforms a nonsymmetric square matrix M into an upper Hessenberg matrix

Hk. The process was proposed by Arnoldi in 1951 [6]. We summarize the process as

in Algorithm 2.1.

The process can be expressed as

MVk = VkHk + vk+1hk+1,ke
T
k

= Vk+1Ȟk, (2.5)

Vk
TMVk = Hk,

where the columns of Vk+1 =

[
Vk vk+1

]
with Vk =

[
v1 v2 . . . vk

]
having or-

thonormal columns and both Ȟk =

 Hk

βk+1ek
T

 and

11



Hk =



h11 h12 · · · · · · h1k

β2 h22 · · · · · · h2k

0 β3 · · · · · · h3k
...

. . . . . .
...

...

0 · · · 0 βk hkk


are upper Hessenberg matrices. Arnoldi vectors {v1, v2, ..., vk+1} span the Krylov

subspace Kk+1(M, t). In the Arnoldi process, all Arnoldi vectors must be kept in

order to generate the next vector.

Algorithm 2.1 Arnoldi Process

Given any square matrix M and a vector t, this algorithm construct an upper

Hessenberg matrix Hk and an orthogonal transformation Vk such that Vk
TMVk =

Hk.

1: β =
∥∥t∥∥

2
, v1 = t/β

2: for k = 1, 2, ..., n do

3: w = Mvk

4: for i = 1, 2, ..., k do

5: hik = wTvi

6: w = w − hikvi

7: end for

8: βk+1 =
∥∥w∥∥

2

9: vk+1 = w/βk+1

10: end for
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2.2.3 GMRES

Generalized Minimal Residual (GMRES) [9] method was discovered by Saad

and Schultz in 1986 for solving Ms = t when M is a square matrix. Algorithm 2.2 is

the summary of the Generalized Minimal Residual method.

GMRES uses the Arnoldi process to find an upper Hessenberg matrix Hk and

an orthonormal matrix Vk = [v1, v2, ..., vk] in particular v1 = r0/β where β =
∥∥r0∥∥2.

Let

s = s0 + ŝ, (2.6)

where s0 is an initial guess and ŝ ∈ Kk(M, r0). Any ŝ ∈ Kk(M, r0) can be written as

ŝ = Vkŷ (2.7)

for some ŷ ∈ Rk. We also have the equality in (2.5). Then the residual vector can be

expressed as

r = t−Ms = t−M(s0 + ŝ) = r0 −Mŝ

= r0 −MVkŷ

= r0 − Vk+1Ȟkŷ

= Vk+1(βe1 − Ȟkŷ).

Since the column vectors of Vk+1 are orthonormal,

min
ŝ∈Kk(M,r0)

∥∥t−M(s0 + ŝ)
∥∥
2

= min
ŷ∈Rk

∥∥βe1 − Ȟŷ∥∥2,
where β =

∥∥r0∥∥2. Once the optimal solution ŷ is solved from the last minimization

problem s can be obtained by s = s0 + Vkŷ.
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Algorithm 2.2 GMRES

Given any initial solution guess s0 ∈ Rn, this algorithm computes a generalized

minimal residual solution to the linear system Ms = t.

1: β =
∥∥t∥∥

2
, v1 = t/β

2: for k = 1, 2, ..., n do

3: w = Mvk

4: for i = 1, 2, ..., k do

5: hik = wTvi

6: w = w − hikvi

7: end for

8: βk+1 =
∥∥w∥∥

2

9: vk+1 = w/βk+1

10: end for

11: Form the solution sk = s0 + Vkŷ where ŷ minimizes
∥∥βe1 − Ȟy∥∥2

2.2.4 Golub-Kahan Process

The Golub-Kahan bidiagonalization process partially transforms [t,M ] to an

upper bidiagonal form [β1e1, Nk] by constructing orthonormal matrices Uk and Vk.

The process was proposed by Golub and Kahan in 1965 [46]. We summarize the

process as in Algorithm 2.3.

1. Set β1 = ‖t‖2, u1 = t/β1, v̂1 = MTu1, α1 = ‖v̂1‖2, v1 = v̂1/α1.

2. For k = 1, 2, · · · ,

ûk+1 = Mvk − αkuk, βk+1 = ‖ûk+1‖2, uk+1 = ûk+1/βk+1
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v̂k+1 = MTuk+1 − βk+1vk, αk+1 = ‖v̂k+1‖2, vk+1 = v̂k+1/αk+1.

After k steps, we have

MVk = Uk+1Nk, M
TUk+1 = VkN

T
k + αk+1vk+1e

T
k+1,

where Vk =

[
v1 v2 · · · vk

]
, Uk =

[
u1 u2 · · · uk

]
,

Nk =



α1

β2 α2

. . . . . .

βk αk

βk+1


, UT

k Uk = I, V T
k Vk = I.

Algorithm 2.3 Golub-Kahan Process

Given any matrix M and a vector t, this algorithm constructs orthonormal

matrices Uk and Vk to partially transform [t,M ] to an upper bidiagonal matrix

[β1e1, Nk]

1: β1 = ‖t‖2, u1 = t/β1, v̂1 = MTu1, α1 = ‖v̂1‖2, v1 = v̂1/α1.

2: for k = 1, 2, ...n do

3: ûk+1 = Mvk − αkuk,

4: βk+1 = ‖ûk+1‖2

5: uk+1 = ûk+1/βk+1

6: v̂k+1 = MTuk+1 − βk+1vk

7: αk+1 = ‖v̂k+1‖2

8: vk+1 = v̂k+1/αk+1

9: end for
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2.2.5 LSMR

Least Squares Minimal Residual (LSMR) [12] is an iterative method for com-

puting a solution s to either of the following problems.

Linear system

Ms = t. (2.8)

Least squares problem

min
∥∥Ms− t

∥∥
2
. (2.9)

Here M ∈ Rm×n is a square or rectangular matrix and t ∈ Rm is a vector. LSMR

was presented by Fong and Saunders in 2011 [12]. The method LSMR is based on

the Golub-Kahan bidiagonalization process [46].

Suppose that k steps of Bidiagonalization have been taken. The k-th approxi-

mate solution sk, such that sk = Vkyk where Vk =

[
v1 v2 · · · vk

]
and for some yk,

is sought in the Krylov subspace

span (Vk) = Kk
(
MTM,MT t

)
= span

(
MT t,MTM(MT t), · · · , (MTM)k−1(MT t)

)
.

For LSMR we wish to minimize
∥∥MT rk

∥∥
2
, where rk = t−Msk is the residual for the

approximate solution sk.

Since

MT rk = MT t−MTMsk = β1α1v1 −MTMVkyk

and

MVk = Uk+1Nk, M
TUk+1 = VkN

T
k + αk+1vk+1e

T
k+1,
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we have

MT rk = β1α1v1 −MTUk+1Nkyk

= β1α1v1 − (VkN
T
k + αk+1vk+1e

T
k+1)Nkyk

= β1α1v1 − Vk+1

 NT
k

αk+1e
T
k+1

Nkyk

= Vk+1

β1α1e1 −

 NT
k Nk

αk+1βk+1e
T
k

 yk
 .

Since Vk+1
TVk+1 = Ik+1,

min
sk

∥∥MT rk
∥∥
2

= min
yk

∥∥∥∥∥∥∥β̄1e1 −
NT

k Nk

β̄k+1e
T
k

 yk
∥∥∥∥∥∥∥
2

,

where β̄k = αkβk and β̄1 = α1β1. LSMR uses the double QR decomposition on NT
k Nk

to iteratively minimize
∥∥MT rk

∥∥
2
.

We may use

∥∥MT rk
∥∥
2

=
∥∥MT (t− sk)

∥∥
2

= |ζk+1| < tol (2.10)

as a stopping criterian for both (2.8) and (2.9), where tol is 10−8.

The LSMR algorithm is summarized in Algorithm 2.4. More details can be

found in [12].
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Algorithm 2.4 LSMR

Given any initial guess s0 ∈ Rn, this algorithm computes a minimal residual

solution to the linear system Ms = t a least squares problem min
∥∥Ms− t

∥∥
2
.

1: β1 = ‖t‖2, u1 = t/β1, v̂1 = MTu1, α1 = ‖v̂1‖2, v1 = v̂1/α1, ᾱ1 = α1, ζ̄1 = α1β1,

ρ0 = 1, ρ̄0 = 1, c̄0 = 1, s̄0 = 1, h1 = v1, h̄0 = 0, x̄0 = 0

2: for k = 1, 2, ..., do

3: ûk+1 = Mvk − αkuk,

4: βk+1 = ‖ûk+1‖2

5: uk+1 = ûk+1/βk+1

6: v̂k+1 = MTuk+1 − βk+1vk

7: αk+1 = ‖v̂k+1‖2

8: vk+1 = v̂k+1/αk+1

9: ρk =
√
ᾱ2 + β2

k+1

10: ck = ᾱk/ρk

11: sk = β̄k+1/ρk

12: θk+1 = skαk+1

13: ᾱk+1 = ckαk+1

14: θ̄k = s̄k−1ρk

15: ρ̄ =
√

(c̄k−1ρk)2 + θ2k+1

16: c̄k = c̄k−1ρk/ρ̄k

17: s̄k = θk+1/ρ̄k

18: ζk = c̄kζ̄k

19: ζ̄k+1 = −s̄kζ̄k

20: h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1
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21: xk = xk−1 + (ρk/(ζk−1ζ̄k))h̄k

22: hk+1 = vk+1 − (θk+1/ρk)hk

23: If |ζk+1| small enough then stop

24: end for

2.2.6 Segregated Methods

Since the meaning of the word “segregated” is “separated”, segregated methods

starts dividing the problem into two subproblems. Namely, it solves the two unknown

vectors x and y separately. Segregated methods reduce the whole problem to two

smaller ones, i.e., two linear systems of sizes smaller than n + m that is the size

of the whole problem. This is why the smaller size system is called a reduced

system. These methods solve one of the two unknown vectors first, then perform the

back-substitution into the original system to obtain the remaining solution vector.

One of the main representatives of the segregated approach is the Schur comple-

ment reduction. In the next subsection, we will briefly review the solution method.

2.2.7 Schur Complement Reduction

Consider the saddle point system (1.2). Assume that A and the Schur comple-

ment matrix S = BA−1BT are nonsingular. Then we know that A is also nonsingular.

Now we can consider the block LU factorization of the saddle point matrix A,

A =

A B1
T

B2 0


=

 I 0

B2A
−1 −I


A B1

T

0 B2A
−1B1

T

 .
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Then the system (1.2) becomes,

 I 0

B2A
−1 −I


A B1

T

0 B2A
−1B1

T


x
y

 =

f
0

 . (2.11)

Multiply both sides of (2.11) by

 I 0

B2A
−1 −I

 to get

 I 0

B2A
−1 −I


 I 0

B2A
−1 −I


A B1

T

0 B2A
−1B1

T


x
y

 =

 I 0

B2A
−1 −I


f

0

 .
(2.12)

Since

 I 0

B2A
−1 −I


 I 0

B2A
−1 −I

 =

I 0

0 I

, the equation (2.12) becomes

A B1
T

0 B2A
−1BT


x
y

 =

 f

B2A
−1f

 . (2.13)

This block upper triangular system can be solved by block substitution. It will lead

to the following two reduced systems,

a.

B2A
−1B1

Ty = B2A
−1f, (2.14)

a reduced system of order m for y involving the (negative) Schur complement −S =

B2A
−1B1

T . Part solution vector y∗ is computed by solving the system (2.14)

b.

Ax = f −B1
Ty∗, (2.15)
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a reduced system of order n for x involving the matrix A. Once the solution has

been computed from system (2.14) the unknown x∗ can be obtained by solving (2.15).

If both approximate solutions xk and yk are computed in parallel as a solution of

Axk = f − B1
Tyk then the Schur complement method can be seen as a coupled

method.

These two systems can be solved either directly or iteratively.

Schur complement method has some disadvantages. Some of the major disad-

vantages are

• A needs to be an invertible matrix to form the Schur complement S =

−B2A
−1B1

T .

• Computing the Schur complement matrix may be expensive.

• Numerical instabilities may occur when forming S when A is an ill-conditioned

matrix.

2.2.8 Coupled Methods

Unlike segregated methods, coupled methods solve the whole problem together.

These methods compute x and y or the approximations of them simultaneously.

Coupled methods can be either direct methods based on triangular factorizations of

the coefficient matrix A or iterative methods like Krylov subspace methods applied

to the whole system (1.2).

2.2.9 Preconditioning Methods

Preconditioning has been the most active research area for the solution of

linear systems especially for the numerical solution of saddle point problems. In

the literature, many preconditioners were introduced to improve convergence of the
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iterative methods for the saddle point problems in the last several years. The main

idea of the preconditioning technique is to find an invertible matrix P such that

Krylov subspace method applied to the preconditioned system

P−1Az = P−1b (2.16)

will converge faster than otherwise. A fast convergence for the Krylov subspace

methods depends on the clustered spectrum of P−1A. Preconditioning usually

improves the spectral properties of the system matrix. If the eigenvalues of P−1A are

clustered enough then the convergence of the iterative method most likely is faster.

Unfortunately, finding an effective preconditioner is not easy. A preconditioning

matrix must be easy to compute and evaluating its inverse must be cheap.

For an extensive review of preconditioning techniques for the saddle point

problems we refer the reader to [1, 48, 50]

We list some of the preconditioning techniques which arise from different appli-

cations of saddle point problems:

1. Constraint preconditioning [31, 32],

2. Augmented Lagrangian based approach [54],

3. Multigrid methods [7],

4. Hermitian/skew-Hermitian Splitting [43, 53, 8],

5. Schur complement-based method,

• Block diagonal preconditioning [51, 34],

22



• Block triangular preconditionin [15, 52],

• Uzawa preconditioning [44].
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CHAPTER 3

SADDLE POINT PROBLEMS WITH FULL RANK (2,1)-BLOCK MATRIX

This chapter is devoted to the solution of the saddle point linear system of the

form

Az = b,

where A ∈ R(n+m)×(n+m) is a large and sparse matrix with the 2-by-2 block structure,

b ∈ Rn+m is the right hand side vector and the vector z ∈ Rn+m is the solution vector.

The saddle point system can be written as

A B1
T

B2 0


x
y

 =

f
0

 , (1.2)

where A ∈ Rn×n is a large and sparse matrix, B1 ∈ Rm×n and B2 ∈ Rm×n are

rectangular matrices with n ≥ m. The vector f ∈ Rn is the right hand side vector

and the vectors x ∈ Rn and y ∈ Rm are the solution vectors of the saddle point

system.

In most cases, the fast convergence of the iterative methods depends on the

spectral properties of the coefficient matrix A. For example, Krylov subspace methods

generally converge rapidly if the coefficient matrix of the linear system has clustered

eigenvalues. For some other cases, the inverse matrix of the block matrix A is

necessary for the solution of the system (1.2). The purpose of this chapter is to solve

a linear system of the form (1.2) with a low computational cost even the spectral

properties of A is not nice or the inverse of A is not available.
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In this chapter, we are interested in the solution of the saddle point systems

when the (2,1)-block, B2 ∈ Rm×n is a full row rank matrix, i.e., rank(B2) = m and

the number of rows in B2 is rather small compared to the number of columns in

B2. These two conditions are the only conditions for the method we present in this

chapter.

3.1 General Theory

In this section, we will give the theoretical explanation of the solution method

when the (2,1)-block, B2 ∈ Rm×n is of full rank and m is relatively small to n.

Theorem 3.1.1. (Rank-Nullity Theorem). Let B2 be an m× n matrix. Then

rank(B2) + null(B2) = n. (3.1)

Proof. [55]

Theorem 3.1.2. An m ×m square matrix B2B2
T is invertible, if B2 ∈ Rm×n is a

full row rank matrix (i.e., rank(B2) = m).

Proof. Suppose B2 ∈ Rm×n is a full row rank matrix. We want to prove that B2B2
T is

invertible. It suffices to show that if B2B2
Tx = 0 for some vector x, then x = 0. Since

rank(B2) = m, then the rank of B2
T is also m, i.e., rank(B2

T ) = m. By Theorem

3.1.1

null(B2
T ) = m− rank(B2

T )

= m−m

= 0. (3.2)
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If B2B2
Tx = 0, then

0 = xTB2B2
Tx = (B2

Tx)T (B2
Tx)

= 〈B2
Tx,B2

Tx〉

=
∥∥B2

Tx
∥∥.

If
∥∥B2

Tx
∥∥ = 0, then B2

Tx = 0. We also know that null(B2
T ) = 0 by (3.2). Then x is

a zero vector. Hence B2B2
T ∈ Rm×m is an invertible matrix.

The previous theorem will allow us to construct the projection matrix that we

need for the solution of the saddle point system.

Theorem 3.1.3. A vector x ∈ Rn is in the null space of B2 ∈ Rm×n if and only if it

can be written as

x = Qz, (3.3)

where Q = I −B2
T (B2B2

T )−1B2 ∈ Rn×n and z ∈ Rn.

Proof. (⇒) Assume that x ∈ Rn is in the null space of B2 ∈ Rm×n. Then

B2x = 0. (3.4)

Also every x ∈ Rn can be written as

x = x−B2
T (B2B2

T )−1B2x+B2
T (B2B2

T )−1B2x

= [I −B2
T (B2B2

T )−1B2]x+B2
T (B2B2

T )−1B2x.

By (3.4) we have

x = [I −B2
T (B2B2

T )−1B2]x

= Qx,
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where Q = I −B2
T (B2B2

T )−1B2 ∈ Rn×n.

(⇐) Suppose that x ∈ Rn takes the form

x = Qz,

where Q = I −B2
T (B2B2

T )−1B2 ∈ Rn×n and z ∈ Rn. Then

B2x = B2Qz

= B2[I −B2
T (B2B2

T )−1B2]z

= [B2 −B2B2
T (B2B2

T )−1B2]z

= (B2 −B2)z

= 0.

Hence x is in the null space of B2. This completes the proof of the theorem.

Now we turn to the problem itself.

The saddle point system (1.2) can be written as

Ax+B1
Ty = f,

B2x = 0.

Since x is in the null space of B2, by Theorem 3.1.3 x takes the form

x = Qz.

Once we substitute x = Qz into the saddle point problem, we obtain

A B1
T

B2 0


Qz
y

 =

f
0

 .
Since B2Qz = 0, we only need to write the first block equation,
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AQz +B1
Ty = f,

which can be expressed by

[
AQ B1

T

]z
y

 = f.

Therefore the saddle point problem is turned into

min
z,y

∥∥∥∥∥∥∥
[
AQ B1

T

]z
y

− f
∥∥∥∥∥∥∥
2

, (3.5)

which is a least squares problem whose coefficient matrix is in Rn×(n+m). By solving

the least squares problem the solution vectors z and y will be obtained. Once the

solution z is obtained, x can be computed from the equation x = Qz.

Next we solve the underdetermined least squares problem (3.5) by using one of

the Krylov subspace methods, i.e., LSMR. LSMR is an iterative solution technique for

sparse least squares problems. It is based on the Golub-Kahan bidiagonalization [46].

The Golub-Kahan process is a recursive procedure which transforms

[
f [AQ B1

T ]

]
to upper-bidiagonal form

[
β1e1 Fk

]
by constructing orthogonal matrices U and V

as follows:

UT

[
f [AQ B1

T ]

]1

V

 =



∗ ∗

∗ . . .

. . . ∗

∗


.
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It is equivalent to the following

[
f [AQ B1

T ]V

]
= U

[
β1e1 F

]
,

where F is a lower bidiagonal matrix. In the Golub-Kahan procedure we need to

calculate the multiplication of the coefficient matrix in the problem and a vector and

the multiplication of the transpose of the coefficient matrix and a vector. Namely,[
AQ B1

T

]
v and

QAT
B1

u are calculated for some vectors u and v.

In order to solve the problem efficiently, we need to perform the following two

actions efficiently:

1. w ←

QAT
B1

u,

w0 = ATu

w = w0 −BT
2 [(B2B2

T )−1(B2w0)]

w =

 w

B1u

 .

2. w ←
[
AQ B1

T

]
v. Let

v =

v1
v2

 ,
where v1 ∈ Rn and v2 ∈ Rm. Then
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[
AQ B1

T

]
v =

[
AQ B1

T

]v1
v2


= AQv1 +BT

1 v2

w = Qv1

w = w −B2
T [(B2B2

T )−1(B2v1)]

w = Aw +B1
Tv2,

Algorithm 3.1 Full Rank Saddle Point Problem (FRSPP)

Given any initial guess

z0
y0

 ∈ Rn+m, this algorithm computes a minimal residual

solution to the least squares system min

∥∥∥∥∥∥∥
[
AQ B1

T

]z
y

− f
∥∥∥∥∥∥∥
2

and computes

the solution vector x ∈ Rn such that x = Qz for the saddle point systemA B1
T

B2 0


x
y

 =

f
0

 .
1: Compute Q = I − B2

T (B2B2
T )−1B2 in form (i.e., not actually formulate Q

explicitly)

2: Solve min

∥∥∥∥∥∥∥
[
AQ B1

T

]z
y

− f
∥∥∥∥∥∥∥
2

by LSMR

3: x← Qz
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CHAPTER 4

SADDLE POINT PROBLEMS WITH RANK-DEFICIENT (2,1)-BLOCK MATRIX

In the previous chapter, we presented a solution method to solve the saddle

point problem of the form (1.2) when the (2,1)-block matrix B2 is of full rank. In this

chapter, our focus is on the solution of the saddle point problem (1.2) when B2 is a

rank-deficient matrix. For most saddle point problems, B2 is a full rank matrix but

not all the time. Our main task here is to solve the system (1.2) with rank-deficient

B2 by using a projection matrix. Since B2 is a rank-deficient matrix we are no longer

able to use the same projection matrix that we used in Chapter 3. The main idea

here is to construct a new projection matrix by using maximal linearly independent

rows of B2 and solve the system.

4.1 General Theory

Suppose that B2 is not a full rank matrix and its rows can be permuted into

the following partition

PB2 =

B21

B22

 ∈ Rm×n, (4.1)

where P ∈ Rm×m is a permutation matrix, B21 ∈ Rl×n is a full rank matrix and

rank(B2) = l ≤ m. In particular, the rows of B21 are linearly independent.

Theorem 4.1.1. Suppose that B2 is not a full rank matrix. Permute B2 as in (4.1),

where P ∈ Rm×m is a permutation matrix, B21 ∈ Rl×n has full row rank such that

rank(B2)=rank(B21) = l < m and B22 ∈ R(m−l)×n. Then every row of B22 can be
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written as a linear combination of B21’s rows. This implies that there exists a matrix

C ∈ R(m−l)×l such that B22 = CB21.

Proof. Let

B21

B22

 =



[ b1 ]

[ b2 ]

...

[ bl ]

[ bl+1 ]

[
... ]

[ bm ]


where {b1, b2, ..., bl} are the the row vectors of B21 and {bl+1, bl+2, ..., bm} are the

row vectors of B22. Since {bl+1, bl+2, ..., bm} are linearly dependent on the rows of

B21 every row vector of B22 can be written as a linear combination of the vectors

{b1, b2, ..., bl}. Then there exist scalars cl+1,1, cl+1,2, ..., cl+1,l, cl+2,1, cl+2,2, ..., cl+2,l ,...,

cm,1, cm,2, ..., cm,l such that

bl+1 = cl+1,1b1 + cl+1,2b2 + ...+ cl+1,lbl,

bl+2 = cl+2,1b1 + cl+2,2b2 + ...+ cl+2,lbl,

...

...

bm = cm,1b1 + cm,2b2 + ...+ cm,lbl.

32



Equivalently,

B22 =


cl+1,1 cl+1,2 . . . cl+1,l

...
...

...

cm,1 cm,2 . . . cm,l





[ b1 ]

[ b2 ]

...

[ bl ]


= CB21.

Hence, we have proved the claim.

Theorem 4.1.2. An l× l square matrix B21B21
T is invertible, if B21 ∈ Rl×n is a full

row rank matrix (i.e., rank(B21) = l).

Proof. Similar to the proof of Theorem 3.1.2.

Theorem 4.1.3. A vector x ∈ Rn is in the null space of B2 ∈ Rm×n if and only if it

can be written as

x = Q̂ẑ (4.2)

where Q̂ = I −B21
T (B21B21

T )−1B21 ∈ Rn×n and ẑ ∈ Rn.

Proof. (⇒) Assume that x ∈ Rn is in the null space of B2 ∈ Rm×n. Then

B2x = 0. (4.3)

Multiply both sides of (4.3) by permutation matrix P ∈ Rm×m. Then we have

PB2x = 0. (4.4)

By (4.1)

0 = PB2x =

B21

B22

x (4.5)
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=

B21x

B22x

 . (4.6)

Hence

B21x = 0 and B22x = 0. (4.7)

Also every x ∈ Rn can be written as

x = x−B21
T (B21B21

T )−1B21x+B21
T (B21B21

T )−1B21x

= (I −B21
T (B21B21

T )−1B21)x+B21
T (B21B21

T )−1B21x.

By (4.7) we have

x = (I −B21
T (B21B21

T )−1B21)x

= Q̂x,

where Q̂ = I −B21
T (B21B21

T )−1B21 ∈ Rn×n.

(⇐) Suppose that x ∈ Rn takes the form

x = Q̂ẑ,

where Q̂ = I − B21
T (B21B21

T )−1B21 ∈ Rn×n and ẑ ∈ Rn. We also know that

B22 = CB21 for some C ∈ R(m−l)×l by Theorem 4.1.1. Then

PB2Q̂z =

B21

B22

 Q̂z (4.8)

=

 B21

CB21

[I −B21
T (B21B21

T )−1B21

]
z (4.9)

=

 B21I −B21B21
T (B21B21

T )−1B21

CB21I − CB21B21
T (B21B21

T )−1B21

 z (4.10)
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=

 B21 − (B21B21
T )(B21B21

T )−1B21

CB21 − C(B21B21
T )(B21B21

T )−1B21

 z (4.11)

=

 B21 −B21

CB21 − CB21

 z (4.12)

= 0z (4.13)

= 0. (4.14)

Hence x is in the null space of B2. This completes the proof of the theorem.

Remember that the saddle point system (1.2) can be written as

Ax+B1
Ty = f,

B2x = 0.

By Theorem 4.1.3 the solution vector x ∈ Rn can be written as

x = Q̂ẑ. (4.15)

Substituting x = Q̂ẑ in Ax+B1
Ty = f , we obtain

AQ̂ẑ +B1
Ty = f,

which can be expressed by

[
AQ̂ B1

T

]ẑ
y

 = f.

Therefore the saddle point problem is turned into
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min
ẑ,y

∥∥∥∥∥∥∥
[
AQ̂ B1

T

]ẑ
y

− f
∥∥∥∥∥∥∥
2

, (4.16)

which is a least squares problem whose coefficient matrix is in Rn×(n+m). By solving

the least squares problem the solution vectors ẑ and y will be obtained. Once the

solution ẑ is obtained, x can be computed from the equation x = Q̂ẑ.

Algorithm 4.1 Rank-Deficient Saddle Point Problem (RDSPP)

Given any initial solution

ẑ0
y0

 ∈ Rn+m, this algorithm computes a minimal

residual solution to the least squares system min

∥∥∥∥∥∥∥
[
AQ̂ B1

T

]ẑ
y

− f
∥∥∥∥∥∥∥
2

and

computes the solution vector x ∈ Rn such that x = Q̂ẑ for the saddle point

system A B1
T

B2 0


x
y

 =

f
0


1: Find B21

2: Compute Q̂ = I − B21
T (B21B21

T )−1B21 in form (i.e., not actually formulate Q

explicitly)

3: Solve min

∥∥∥∥∥∥∥
[
AQ̂ B1

T

]ẑ
y

− f
∥∥∥∥∥∥∥
2

by LSMR

4: x← Q̂ẑ
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4.2 Finding B21

In this section we briefly explain how to find linearly independent rows of

(2,1)-block matrix B2. For a matrix B2 with rank l , the first l rows of B2 may not

be linearly independent. To find out the linearly independent rows of B2, we use the

QR factorization of B2
T with column pivoting [5].

The QR factorization of B2
T with column pivoting computes the factorization

B2
TPπ = Q

R11 R12

0 0

 (4.17)

=

[
b̂1 . . . b̂m

]
, (4.18)

where Q ∈ Rn×n is an orthogonal matrix, R11 ∈ Rl×l is a nonsingular and upper

triangular matrix and, Pπ ∈ Rm×m is a permutation matrix.

Suppose that for some k, Householder matrices H1, . . . , Hk−1 and permutation

matrices Pπ1 , . . . , Pπk−1
are computed such that

(Hk−1 . . . H1)B2
T (Pπ1 . . . Pπk−1

) = R(k−1) (4.19)

=

R11
(k−1) R12

(k−1)

0 R22
(k−1)

 , (4.20)

where R11
(k−1) is a nonsingular and upper triangular matrix. Suppose that

R22
(k−1) =

[
uk

(k−1), . . . , um
(k−1)

]
(4.21)

is a column partitioning and let i ≥ k be the smallest index such that

∥∥ui(k−1)∥∥2 = max
{∥∥uk(k−1)∥∥2 , . . . ,∥∥um(k−1)∥∥

2
.
}

(4.22)
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If
∥∥ui(k−1)∥∥2 = 0, we should stop the calculation. If

∥∥ui(k−1)∥∥2 > 0, we

determine the permutation matrix Pπ ∈ Rm×m by swapping the p-th and k-th

columns and determine Householder matrix Hk such that R(k) = HkR
(k−1)Pπk then

R(k)(k + 1 : n, k) = 0. Once we finish calculating the k-th step, we check if |ukk||u11| <tol,

where tol(tolerance) is 10−12. If |ukk||u11| >tol, b̂k is a column of B21
T . Then the matrix

B21
T will be

B21
T =

[
b̂1 b̂2 . . . b̂k−1 b̂k

]
, (4.23)

where b̂1, b̂2, ... , b̂k−1, b̂k are linearly independent columns of B21
T . Then the matrix

B21 will be

B21 =



[ b̂T1 ]

[ b̂T2 ]

...

[ b̂Tk−1 ]

[ b̂Tk ]


. (4.24)
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, we show some numerical results that illustrate the performances

of the projected method for saddle point problems. The numerical experiments show

the comparison of the convergence of GMRES applied to the whole problem and

LSMR applied to the least squares problem after using projection matrices for both

full rank B2 and rank-deficient B2.

The linear system has the form

A B1
T

B2 0


x
y

 =

f
0

 ,
where A ∈ Rn×n, B1, B2 ∈ Rm×n, f ∈ Rn with n ≥ m. Initial guess is taken to be

the zero vector for all tests.

All numerical results shown in this chapter were run using Matlab version

R2017b (9.3.0). We have taken all the testing matrices from SuiteSparse matrix

collection, formerly the University of Florida sparse matrix collection [47]. These

matrices with their generic properties are shown in Table 5.1 and Table 5.2. These

two tables give, for each matrix, m the number of rows in B2, n the number of

columns in B2, number of nonzero entries and their sources.

First, we will discuss the results for full rank B2 and then the results of rank-

deficient B2.
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5.1 Full Rank B2

In this section, we show some numerical results that illustrate the convergence

of GMRES and LSMR applied to the least squares problem after using the projection

matrix for the full row rank case. We report the relative residual∥∥b−Az∥∥
2∥∥b∥∥

2

for Algorithm 3.1, where the system is solved after using projection matrix and for

Algorithm 2.2 where the original system Az = b is solved. Some of the examples

in this section have singular coefficient matrices. We check the consistency of the

system Az = b by calculating the rank of the coefficient matrix, A and the rank of

the augmented matrix [A, b]. In all our examples, rank(A)=rank([A, b]).

The example matrices in Table 5.1 have the form

A =

A B1
T

B2 0


and n represents the number of columns in B2 and m is the number of the rows in

B2. m is relatively small to n for each example. The size of each testing matrix is

(n+m)× (n+m). The (2,1)-block matrix B2 for each testing matrix has full row

rank.
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Matrix n m nonzero application

lshape1 353 98 3807 statistics

maxwell3 1504 48 8474 electromagnetic

maxwell4 6080 198 34698 electromagnetic

lshape4 7544 238 44652 statistics

navierstokesN16 1472 51 36352 incompressible flow

stokesN8 352 27 3256 computational fluid dynamics

dynamicSoaringProblem 1 363 284 5367 optimal control

ncvxqp1 7110 73 44398 optimization problem

Table 5.1. Testing Matrices with Full Rank B2
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Figure 5.1. Sparsity pattern of A formed by lshape1. Size: 451× 451, n=353, m=98,
number of nonzero entries=3807, condition number=6.3461e+03, rank(B2)=98.

Figure 5.2. Relative residual vs. iteration number for lshape1. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares
problem after using the projection matrix for full rank B2.
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Figure 5.3. Sparsity pattern of A formed by maxwell3. Size: 1552 × 1552,
n=1504, m=48, number of nonzero entries=8474, condition number=2.9829e+21,
rank(B2)=48.

Figure 5.4. Relative residual vs. iteration number for maxwell3. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares problem
after using the projection matrix for full rank B2.
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Figure 5.5. Sparsity pattern of A formed by maxwell4. Size: 6278× 6278, n=6080,
m=198, number of nonzero entries=34698, condition number=Inf, rank(B2)=198.

Figure 5.6. Relative residual vs. iteration number for maxwell4. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares problem
after using the projection matrix for full rank B2.
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Figure 5.7. Sparsity pattern of A formed by lshape4. Size: 7782× 7782, n=7544,
m=238, number of nonzero entries=44652, condition number=Inf, rank(B2)=238.

Figure 5.8. Relative residual vs. iteration number for lshape4. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares
problem after using the projection matrix for full rank B2.
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Figure 5.9. Sparsity pattern of A formed by navierstokesN16. Size: 1523× 1523,
n=1472, m=51, number of nonzero entries=36352, condition number=7.4027e+04,
rank(B2)=51.

Figure 5.10. Relative residual vs. iteration number for navierstokesN16. Conver-
gence of GMRES applied to the whole problem and LSMR applied to the least squares
problem after using the projection matrix for full rank B2.
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Figure 5.11. Sparsity pattern ofA formed by stokesN8. Size: 379×379, n=352, m=27,
number of nonzero entries=3256, condition number=7.5977e+04, rank(B2)=27.

Figure 5.12. Relative residual vs. iteration number for stokesN8. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares problem
after using the projection matrix for full rank B2.
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Figure 5.13. Sparsity pattern of A formed by dynamicSoaringProblem 1. Size: 647×
647, n=363, m=284, number of nonzero entries=5367, condition number=3.0853e+05,
rank(B2)=284.

Figure 5.14. Relative residual vs. iteration number for dynamicSoaringProblem 1.
Convergence of GMRES applied to the whole problem and LSMR applied to the least
squares problem after using the projection matrix for full rank B2.
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Figure 5.15. Sparsity pattern of A formed by ncvxqp1. Size: 7183 × 7183,
n=7110, m=73, number of nonzero entries=44398, condition number=5.5473e+22,
rank(B2)=73.

Figure 5.16. Relative residual vs. iteration number for ncvxqp1. Convergence of
GMRES applied to the whole problem and LSMR applied to the least squares problem
after using the projection matrix for full rank B2.
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5.2 Rank-Deficient B2

In this section, we show some numerical results that illustrate the convergence

of GMRES and LSMR applied to the least squares problem after using the projection

matrix for the rank-deficient case. We report the relative residual∥∥b−Az∥∥
2∥∥b∥∥

2

for the method, LSMR, where the system is solved after using projection matrix

and for the method, GMRES, where the original system Az = b is solved. Since the

system is rank-deficient we check if it has a solution. We check the consistency of the

system Az = b by calculating the rank of the coefficient matrix, A and the rank of

the augmented matrix [A b]. In all our examples, rank(A)=rank([A b]).

The example matrices in Table 5.2 represent the (2,1)-block matrix B2. In this

table n represents the number of columns in B2 and m is the number of the rows in

B2. We assign random sparse matrices for A ∈ Rn×n and B1 ∈ Rn×m to form the

saddle point matrix

A =

A B1
T

B2 0

 .
Here, m is relatively small to n for each example. The size of each testing matrix A is

(n+m)× (n+m). The (2,1)-block matrix B2 for each testing matrix is rank-deficient.

The rank of each matrix B2 is given in the sparsity pattern of A in each figure.
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Matrix n m nonzero application

Maragal 1 31 14 234 least squares problem

Maragal 2 555 350 4582 least squares problem

Maragal 3 1690 860 20130 least squares problem

GL6 D 6 469 201 2642 combinatorial problem

GL7d11 1019 60 1678 combinatorial problem

GL7d26 2798 305 8273 combinatorial problem

Table 5.2. Rank-Deficient Testing Matrices B2
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Figure 5.17. Sparsity pattern of A formed by random matrix A ∈ R32×32, random
matrix B1 ∈ R32×14 and Maragal 1=B2 ∈ R14×32. Size: 46 × 46, n=32, m=14,
number of nonzero entries=234, condition number= Inf, rank(B2)=10.

Figure 5.18. Relative residual vs. iteration number for A formed by random A,B1

and Maragal 1=B2. Convergence of GMRES applied to the whole problem and
LSMR applied to the least squares problem after using the projection matrix to the
system with rank-deficient B2.
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Figure 5.19. Sparsity pattern of A formed by random matrix A ∈ R555×555, random
matrix B1 ∈ R555×350 and Maragal 2=B2 ∈ R350×555. Size: 905×905, n=555, m=350,
number of nonzero entries=4582, condition number= Inf, rank(B2)=172.

Figure 5.20. Relative residual vs. iteration number for A formed by random A,B1

and Maragal 2=B2. Convergence of GMRES applied to the whole problem and
LSMR applied to the least squares problem after using the projection matrix to the
system with rank-deficient B2.
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Figure 5.21. Sparsity pattern of A formed by random matrix A ∈ R1690×1690, random
matrix B1 ∈ R1690×860 and Maragal 3=B2 ∈ R860×1690. Size: 2550 × 2550, n=1690,
m=860, number of nonzero entries=20130, condition number= Inf, rank(B2)=613.

Figure 5.22. Relative residual vs. iteration number for A formed by random A,B1

and Maragal 3=B2. Convergence of GMRES applied to the whole problem and
LSMR applied to the least squares problem after using the projection matrix to the
system with rank-deficient B2.
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Figure 5.23. Sparsity pattern of A formed by random matrix A ∈ R469×469, random
matrix B1 ∈ R469×201 and GL6 D 6=B2 ∈ R201×469. Size: 670× 670, n=469, m=201,
number of nonzero entries=2642, condition number= Inf, rank(B2)=156.

Figure 5.24. Relative residual vs. iteration number for A formed by random A,B1

and GL6 D 6=B2. Convergence of GMRES applied to the whole problem and LSMR
applied to the least squares problem after using the projection matrix to the system
with rank-deficient B2.
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Figure 5.25. Sparsity pattern of A formed by random matrix A ∈ R1019×1019, random
matrix B1 ∈ R1019×60 and GL7d11=B2 ∈ R60×1019. Size: 1079× 1079, n=1019, m=60,
number of nonzero entries=1678, condition number= Inf, rank(B2)=59.

Figure 5.26. Relative residual vs. iteration number for A formed by random A,B1

and GL7d11=B2. Convergence of GMRES applied to the whole problem and LSMR
applied to the least squares problem after using the projection matrix to the system
with rank-deficient B2.
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Figure 5.27. Sparsity pattern of A formed by random matrix A ∈ R2798×2798, random
matrix B1 ∈ R2798×305 and GL7d26T = B2 ∈ R305×2798. Size: 3003 × 3003, n=2798,
m=305, number of nonzero entries=8273, condition number= Inf, rank(B2)=273.

Figure 5.28. Relative residual vs. iteration number for A formed by random A,B1

and GL7d26T = B2. Convergence of GMRES applied to the whole problem and LSMR
applied to the least squares problem after using theprojection matrix to the system
with rank-deficient B2.
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Our experiments show that our projection method for both full rank and rank-

deficient B2 has very good convergence. Our method works even for singular A and A.

As illustrated in the results the system does not have to have a full rank to get good

results by using our method. We did not use re-orthogonalization or preconditioning

for solving the problem. Using a preconditioning is our future research for solving

the saddle point system.
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CHAPTER 6

CONCLUSION

In this thesis, we have investigated the iterative solutions of large and sparse

saddle point systems of the form (1.2) by using a projection technique. The main

contribution of this thesis is the that the presented technique can be applied to large

class of saddle point problems. In other words, the technique does not necessarily

require a specific form of block matrices except the (2,2)-block matrix in the saddle

point matrix being 0-matrix.

In Chapter 3, we presented a solution method for full rank B2. The main

idea of the chapter was constructing a projection matrix by using full row rank

matrix B2 and then transforming the original problem into a least squares problem.

Since the number of rows in B2 is relatively small compared to the number columns

in B2 applying a projection matrix Q = I − B2
T (B2B2

T )−1B2 is not an expensive

calculation. By using this technique the original problem is transformed into a least

squares problem. Then the least squares problem is solved by using LSMR which is

one of the Krylov subspace iterative method for solving the underdetermined systems.

Numerical results show that the projection method converges faster than GMRES.

In Chapter 4, we worked on the rank-deficient B2. Since B2 is a rank-deficient

matrix, B2B2
T is not an invertible matrix. Therefore, we cannot construct the same

projection matrix that we use in Chapter 3. To build a different projection matrix

we use only the maximal number of linearly independent rows of B2, which we call

B21. Applying the projection matrix Q̂ = I −B21
T (B21B21

T )−1B21 is not numerically

expensive since the number of rows of B21 is very small. We use the projection
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matrix to transform the original problem to a least squares problem, then we solve

the system by LSMR. It is numerically shown that our method is faster than the

GMRES applied to the original system in numerical experiments.

It has been demonstrated that the projection method for saddle point systems

with full rank or rank-deficient (2,1)-block has very good convergence in comparison

to GMRES applied to the whole system.
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