

1

Implementation and Comparison of Serial and Parallel

algorithms of SAO in HEVC

THESIS UNDER THE GUIDANCE OF

 DR. K. R. RAO

Thesis by

Harsha Nagathihalli Jagadish

DEPARTMENT OF ELECTRICAL ENGINEERING

 UNIVERSITY OF TEXAS, ARLINGTON

2

Copyright © by Harsha Nagathihalli Jagadish 2017

All Rights Reserved

3

Acknowledgements

I would like to express the deepest appreciation and gratitude to my Professor, Dr. K. R. Rao

who has continually and convincingly conveyed a spirit of adventure in regard to research and

an excitement in regard to teaching. Without his guidance and persistent help this thesis would

not have been possible.

I thank Dr. Jonathan Bredow and Dr. Howard Russell for taking time to review my work and
accepting to be a part of my thesis defense committee.

I also would like to extend my thanks to CalAmp where I interned for 6 months. This research

was supported by my manager Somu Ramiah who is a Senior Principal Firmware Engineer at

CalAmp. He was always willing to help and give his best suggestions. I thank him for his

excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing

research.

I would like to thank my Multimedia Processing Lab mates- Ninad, Swaroop, Tuan and Shiba, for

providing valuable suggestions during my research work. Also a special thanks to my friends

Anuj, Anirudh, Anjana, Akhil who helped me be organized and gave moral support during the

thesis defence.

Most importantly, I wish to thank my loving and supportive parents, family and friends. Special

thanks to my parents, Mrs. B. S. Shantha Kumari and Mr. N. S. Jagadish whose love and

guidance are with me in whatever I pursue. They are the ultimate role models.

November 16, 2017

4

Abstract

Implementation and Comparison of Serial and Parallel algorithm of Sample

Adaptive Offset in HEVC

Harsha Nagathihalli Jagadish, M.S

The University of Texas at Arlington, 2014

Supervising Professor: K.R. Rao

The High Efficiency Video Coding (HEVC) standard is the latest video coding project developed

by the Joint Collaborative Team on Video Coding (JCT-VC) which involves the International

Telecommunication Union (ITU-T) Video Coding Experts Group (VCEG) and the ISO/IEC Moving

Picture Experts Group (MPEG) standardization organizations. HEVC also known as H.265

supports encoding videos with wide range of resolutions, starting from low resolution to

beyond High Definition i.e. 4k or 8k. The HEVC standard is an optimization of the previous

standard H.264/AVC (Advanced Video coding) which is a very well established and widely used

standard in industry and finds its applications in broadcast TV and multimedia telephony.

HEVC was preceded by H.264/AVC with the bit-rate reduction of about 50% at the same visual

quality.

The in-loop filters are an important part of HEVC video coding standard. They attenuate

discontinuities at the prediction and transform boundaries and also improves the quality by

attenuating the ringing artifacts and changes in the sample intensity depending on the

classification algorithm. The main advantage of these filters is it improves the subjective quality

of reconstructed video.

In HEVC, the size of motion predicted blocks varies from 8x4 and 4x8, to 64x64 luma samples,

while the size of block transforms and intra-predicted blocks varies from 4x4 to 32x32 samples.

5

These blocks can be coded independently from the neighboring blocks which allow scope for

parallelism. Various methods have been implemented serially to reduce the computational

complexity of sample adaptive offset. To improve the coding efficiency, an extra step is taken to

implement the code in parallel since the blocks can be coded independent of each other. The

technology is rapidly evolving and moving towards a world of parallelization so as to reduce the

amount of time spent of computation. Multi core and many core based computation and

design are the new trends in the market. As a result, in this thesis an attempt is made to map

the video coding algorithm on the GPU cores to accelerate the speed at which the execution

takes place. This is done using CUDA programming for SAO algorithm. SAO has many stages of

implementation. Each of these stages is implemented in parallel using NVIDIA GPUs. A

comparison of the results obtained in serial and parallel are evaluated using speedup metric

and the subjective quality is measured using PSNR (Peak Signal to Noise Ratio).

6

Table of Contents

Acknowledgements……………………………………………………………………………….…………….……….3

Abstract………………………………………………………………………………...4

1. Introduction………………………………………………...8

1.1. Evolution of Video Coding Standards………………………………………………................10

1.2. Need for Compression ………………………………………………......................................12

1.3. Basics of Video Coding Techniques………………………………………………...................13

2. High Efficiency Video Coding………………………………………………....................................17

2.1. Coding tree unit………………………………………………...20

2.2. Intra Picture Prediction………………………………………………......................................22

2.3. Inter Picture Prediction………………………………………………......................................23

2.4. Block Artifacts in Video Coding………………………………………………..........................26

3. Proposal in Detail………………………………………………..30

4. Sample Adaptive Offset………………………………………………...34

4.1. Edge Offset………………………………………………...35

4.2. Band Offset………………………………………………..38

4.3. Syntax Design………………………………………………...39

4.3.1. SAO Merging………………………………………………...40

4.3.2. SAO Type and Offsets………………………………………………..…..........................40

5. Serial Implementation of SAO………………………………………………….................................42

5.1. Fast Edge Offset Sample Classification…………………………..………………….….............42

5.2. Fast Band Offset Sample Classification……………………..……………………….…............42

5.3. Line Buffer Requirement……………………………………………………...............................43

5.4. Fast Distortion Estimation………………………………………..…………..............................43

5.5. Slice-Level On/Off Control…………………………………………………….............................45

5.6. Considerations for Right and Bottom Samples in the CTU……………………..….……..46

6. Parallel Implementation of SAO……………………………………………….................................47

7

6.1. Parallel Algorithm for Sample Classification and Statistics Collection…….…..48

6.2. Parallel Algorithm for obtaining the Best EO Parameters………………….…...….51

6.3. Parallel Algorithm for Obtaining the Best BO Parameters…………………….……..52

6.4. Parallel Algorithm for SAO Merging…………………………….....................................53

6.5. Parallel Algorithm for SAO filtering…………………………………................................55

7. Results and Conclusions………………………………………………………………………………….………56

7.1. Test Environment………………………………………………..56

7.1.1. HM Code 16.9………………………………………………..56

7.1.2. CUDA Toolkit………………………………………………..56

7.1.3. Visual Studio 2015………………………………………………...................................57

7.1.4. GPU hardware specification………………………………………………....................57

7.1.5. Intel processor………………………………………………...57

7.2. Test Sequences………………………………………………...57

7.3. Metrics used………………………………………………...58

7.4. Serial code results………………………………………………..58

7.5. Parallel code results………………………………………………...69

7.6. Conclusions and future work ………………………………...76

8. References………………………………………………...77

9. Acronyms………………………………………………..85

10. List of Illustrations………………………………………………………………………………………………….87

8

 CHAPTER 1

 Introduction

Uncompressed video signals generate a huge quantity of data, and video use has become more

and more ubiquitous. There is also a constant hunger for higher quality video like in the form of

higher resolutions, higher frame rates, and higher fidelity—as well as a hunger for greater

access to video content. Moreover, the creation of video content has moved from the being the

exclusive domain of professional studios toward individual authorship, real-time video chat,

remote home surveillance, and even “always on” wearable cameras. As a result, video traffic is

the biggest load on communication networks and data storage world-wide—a situation that is

unlikely to fundamentally change; although anything that can help ease the burden is an

important development. HEVC offers a major step forward in that regard.

Video content is produced daily through variety of electronic devices, however, storing and

transmitting video signals in raw format are impractical due to its excessive resource

requirement. Today popular video coding standards such as MPEG-4 visual [41], H.264/AVC [45]

and HEVC [2] are used to compress the video signals before storing and transmitting.

Accordingly, efficient video coding plays an important role in video communications. While

video applications become wide-spread, there is a need for high compression and low

complexity video coding algorithms that preserve the image quality.

There have been several video coding standards introduced by organizations like the

International Telecommunication Union - Telecommunication Standardization Sector (ITU-T),

Moving Picture Experts Group (MPEG) and the Joint Collaborative Team on Video Coding (JCT-

VC) [49] . Each standard is an improvement over the previous standard. With every standard,

the general thumb of rule has been to retain the same video quality by being able to reduce the

bit rate by 50%. MPEG-2 basically created the world of digital video television as we know it, so

9

while AVC was being developed, some people doubted that it could achieve a similar degree of

ubiquity when so much infrastructure had been built around the use of MPEG-2. Although it

was acknowledged that AVC might have better compression capability, some thought that the

entrenched universality of MPEG-2 might not allow a new non-compatible coding format to

achieve “critical mass”. AVC had about twice the compression capability of MPEG-2—i.e., one

can code video using only about half the bit rate while still achieving the same level of quality—

so that one can send twice as many TV channels through a communication link or store twice as

much video on a disc without sacrificing quality. Alternatively, the improved compression

capability can be used to provide higher quality or enable the use of higher picture resolution or

higher frame rates than would otherwise be possible. AVC also emerged at around the same

time that service providers and disc storage format designers were considering a transition to

offer higher resolution “HDTV” rather than their prior “standard definition” television services.

Once system developers realized that they needed to store and send twice as much data if they

were going to use MPEG-2 instead of AVC for whatever video service they were trying to

provide, most of them decided they needed to find a transition path to AVC. While MPEG-2

video remains a major presence today for legacy compatibility reasons, it is clearly fading away

in terms of importance. HEVC offers the same basic value proposition today that AVC did when

it emerged—i.e., a doubling of compression capability. It can compress video about twice as

much as AVC without sacrificing quality, or it can alternatively be used to enable delivery of

higher resolutions and frame rates—or other forms of higher quality, such as a higher dynamic

range or higher precision for improved color quality. It also comes at another time when new

video services are emerging—this time for UHDTV, higher dynamic range, and wider color

gamut. Compression capability—also known as “coding efficiency” or “compression

efficiency”—is the most fundamental driving force behind the adoption of modern digital video

compression technology, and HEVC is exceptionally strong in that area. It is this meaning from

which the High Efficiency Video Coding standard derives its name. However, it is also important

to remember that the standard only provides encoders with the ability to compress video

efficiently—it does not guarantee any particular level of quality, since it does not govern

whether or not encoders will take full advantage of the capability of the syntax design.

10

1.1 EVOLUTION OF VIDEO CODING STANDARDS

Major video coding standards have been developed by the International Standardization

organization / International Electro technical Commission (ISO/IEC) and the International

Telecommunication Union – Telecommunication Standardization Sector (ITU-T) [49]. Figure 1.1

shows a historical perspective for video coding standards development since the very first ITU-T

H.120. The emergence of H.264/AVC doubled the coding efficiency from that of the MPEG-4

simple profile and has therefore gained wide industrial acceptance recently [5]. Further

extensions of H.264/AVC include high profiles, scalable video coding (SVC) extension, and multi

view video coding (MVC) extension [49].

Back in 2005, the ITU-T Video Coding Experts Group (VCEG) considered the future work beyond

H.264/AVC [3]. Possible targets and scope of the standard were brainstormed and a software

known as Key Technology Area (KTA) was developed and released in 2008 [3]. In 2009, the

ISO/IEC Moving Picture Experts Group (MPEG) began a similar call for High-Performance Video

Coding (HVC) [49].

There have been several video coding standards introduced by organizations like the

International Telecommunication Union - Telecommunication Standardization Sector (ITU-T),

Moving Picture Experts Group (MPEG) and the Joint Collaborative Team on Video Coding (JCT-

VC). Each standard is an improvement over the previous standard. With every standard, the

general thumb of rule has been to retain the same video quality by being able to reduce the bit

rate by 50%. Figure 1.1 shows the evolution of video coding standards over the years.

11

Figure 1.1: Evolution of video coding standards [3] [4]

Many of the basic concepts of video coding such as transform coding, motion estimation and

compensation and entropy coding were developed in the 1970s and 1980s. MPEG-1 was

standardized on the early 1990s. MPEG-4 was developed in the late 1990s and soon after

H.263 was standardized. H.264/AVC was published in 2003 and Google released the VP8 video

coding format in 2010. 2013 saw the publication of the High Efficiency Video Coding (HEVC)

standard and Google’s VP9 format.

12

1.2 NEED FOR COMPRESSION

Videos take up a lot of space—just how much varies widely depending on the video format, the

spatial resolution and the number of frames per second you select. Uncompressed 1080 HD

video footage takes up about 10.5 GB of space per minute of video. If you use a smartphone to

shoot your video, 1080p footage takes up 130 MB per minute of footage, while 4K video takes

up 375 MB of space for each minute film. Because it takes up so much space, the video must be

compressed before it is put on the web. Compressed” just means that the information is

packed into a smaller space. There are two kinds of compression: lossy and lossless.

Lossy compression means that the compressed file has fewer data in it than the original file. In

some cases, this translates to lower quality files, because information has been “lost,” hence

the name. However, you can lose a relatively large amount of data before you start to notice a

difference. Lossy compression makes up for the loss in quality by producing comparatively small

files. For example, DVDs are compressed using the MPEG-2 [60] format, which can make files 15

to 30 times smaller, but viewers still tend to perceive DVDs as having high-quality pictures.

Most video that is uploaded to the internet uses lossy compression to keep the file size small

while delivering a relatively high-quality product.

Lossless compression is exactly what it sounds like, compression where none of the information

is lost. This is not nearly as useful as lossy compression because files often end up being the

same size as they were before compression. This may seem pointless, as reducing the file size is

the primary goal of compression. However, if the file size is not an issue, using lossless

compression results in a perfect-quality picture. For example, a video editor transferring files

from one computer to another using a hard drive might choose to use lossless compression to

preserve quality while he is working.

Lossless compression preserves the original quality so that after decompression the original

data is obtained, whereas, in lossy compression, while offering higher compression ratio, the

decompressed data is not equal to the original data.

https://www.lifewire.com/making-youtube-videos-1082488
https://www.lifewire.com/mpeg-file-2622031
https://www.lifewire.com/video-compression-overview-1082280

13

Real time video transmission requires huge amounts of data to be transmitted over a channel in

a very short period of time. A video sequence with fairly small resolution such as 352x288

pixels, having 24 bits/pixel (8 bits for each color component) with frame rate of 30 frames/sec

requires: 352x288x24x30 bits/sec, which is about 72.9 megabits/sec [1]. So, transmitting this

video over a multimedia channel requires very high bandwidth.

The high bit rates that result from the various types of digital video make their transmission

through their intended channels very difficult. High resolution videos captured by HD cameras

and HD videos on the internet would require bandwidth and storage space if used in the raw

format. It is true that both the storage and transmission capacities continue to increase.

However, an efficient and well-designed video compression system gives very significant

performance advantages for visual communication at both low and high transmission

bandwidths.

Even after meeting the bandwidth requirements, significant amount of processing will be

involved to exploit redundancies in the data. The advantage with data compression will be lost

if we cannot meet the data processing requirements. For example, a 30 frames/second video

requires a single frame to be processed in 33 milliseconds.

1.3 Basics of Video Coding Techniques

To reduce video bandwidth requirements compression methods are used. In general,

compression is defined as encoding data to reduce the number of bits required to present the

data. As discussed earlier, compression can be lossless or lossy. Video data is compressed and

decompressed with the techniques discussed under the term video coding, with compressor

often denoted as enCOder and decompressor as DECoder, which collectively form the term

CODEC. Therefore, a CODEC is the collection of techniques used to compress and decompress

digital videos. The general process of encoding and decoding of video signal in transmission

chain is given in Figure 1.2.

14

Figure 1.2: Flow of video coding process

The decoder inverses the operation performed by the encoder. The encoder and decoder are based

on the same underlining techniques. The encoder maximizes compression efficiency by exploiting

temporal, spatial, and statistical redundancies. A common encoder and decoder model is illustrated

in Figure 1.3.

Figure 1.3: Basic flow of a Video Codec process [75]

Video compression is the ability to exploit the temporal and spatial redundancies while sending the

images. The temporal redundancies are exploited by a technique called inter frame coding which

Video

Source

Compress

(Encoder)

Decompress

(Decoder)

Video

Display
Transmit or

store

15

generates all the P-frames or predictive frames and B-frames or bi-predictive frames. It compares the

current frame with a reference frame and sends only the change in the images. The spatial redundancies

are exploited by a technique called intra-frame coding. This technique takes advantage of the fact that

pixels tend to have intensities that are very close to the neighboring pixels. Intra-frame technique

generates all the I-frames. The three types of frames are shown in fig 1.4

I-Frames and P-Frames

In most of the videos, there is very little change from frame to another. Certain frames in a video are

designated as key frames and these frames are not compressed. Such frames are called as “Intra frames”

or simply “I-Frames”. For a macro block in the current frame, motion estimation tries to find the closest

matching macro block in a previous reference frame (i.e. I-Frame or P-Frame). If the video does not contain

any moving objects, then it is likely that the matching block also occur at the same position as the block

in the current frame. Then the current block need not be stored fully, but only the difference in the pixel

values (brightness and color), from the matching block in the IFrame is stored. Compression is achieved

because difference numbers are much smaller than actual values. This difference vector that is stored is

called as the “prediction vector”. Such frames that are stored as differences from a previous reference

frame are called as “P-Frames”. Note that the reference frame can be I-Frame or a P-Frame also, as long

as it occurs before the frame. Considering that the video contains moving objects, the matching block in

the reference frame might be at some other location as compared to the block in the current frame.

Therefore, we need to specify a “motion vector” also, that specifies where the current block, with

reference to the matching block is. For example, suppose the current block is at location (0, 0) and the

matching block in the reference frame is at location (2, 2), then the motion vector for the current block,

with respect to the reference frame would be (-2,-2). Using the motion-vector and the prediction-vector

of each block, we can reconstruct the entire P-Frame by knowing the pixel values in the reference frame

[76].

B-Frames

Video compression algorithms commonly encode frames in an order that is different from the order in

which frames are displayed. The encoder may skip several frames ahead and encode a future frame. Then,

it may go backwards and encode the next frame in the sequence. By doing this, the encoder can use the

16

encoded future frame as a reference frame. That is, it can perform motion estimation backward in time.

“B-Frames” are frames that are constructed by using both a previous frame and/or a future frame as a

reference. The typical sequence of I-Frame, P-Frame and B-Frame is shown in figure 1.4 [76]:

Figure 1.4: The I-frame, P-frame and B-frames [76]

In this chapter, the general description and the need for video compression is discussed. It also

shows the evolution of video coding standards and the basic steps involved in video coding. The

following chapter explains about the latest video coding technology called High Efficiency Video

Coding (HEVC).

17

 CHAPTER 2

 High Efficiency Video Coding

High Efficiency Video Coding (HEVC) [2] is an international standard for video compression

developed by a working group of ISO/IEC MPEG (Moving Picture Experts Group) and ITU-T

VCEG (Video Coding Experts Group). The main goal of HEVC standard is to significantly

improve compression performance compared to existing standards (such as H.264/Advanced

Video Coding [7]) in the range of 50% bit rate reduction at similar visual quality [2].

HEVC is designed to address existing applications of H.264/MPEG-4 AVC and to focus on two

key issues: increased video resolution and increased use of parallel processing architectures

[2]. It primarily targets consumer applications as pixel formats are limited to 4:2:0 8-bit and

4:2:0 10-bit. The next revision of the standard, finalized in 2014, enables new use-cases with

the support of additional pixel formats such as 4:2:2 and 4:4:4 as shown in figure 2.1 and bit

depth higher than 10-bit [8], embedded bit-stream scalability, 3D video [10] and multiview

video [9]. HEVC was designed to double the compression ratios of its predecessor H.264/AVC

with a higher computational complexity. After several years of developments, mature

encoding and decoding, solutions are emerging accelerating the upgrade of the video coding

standards of video contents from the legacy standards such as H.264/AVC [77]. With the

increasing needs of ultra-high resolution videos, it can be foreseen that HEVC has already

become the most important video coding standard.

18

Figure 2.1: 4:2:0, 4:2:2: and 4:4:4 sampling patterns for luminance and chrominance [45]

HEVC, the High Efficiency Video Coding standard, is the most recent joint video project of the

ITU-T VCEG and ISO/IEC MPEG standardization organizations, working together in a partnership

known as the Joint Collaborative Team on Video Coding (JCT-VC) [11]. The HEVC standard is

designed to achieve multiple goals: coding efficiency, transport system integration and data loss

resilience and as well as implementability using parallel processing architectures [12].The main

goal of the HEVC standardization effort is to enable significantly improved compression

performance relative to existing standards – in the range of 50% bit rate reduction for equal

perceptual video quality [13] [14].

The block diagram of HEVC encoder is shown in figure 2.2 [12]. The corresponding decoder block

diagram is shown in figure 2.3 [15].

19

 Figure 2.2. HEVC encoder block diagram [12]

The video coding layer of HEVC employs the same “hybrid” approach (inter-/intra-picture

prediction and 2D transform coding) used in all video compression standards since H.261 [12].

Some differences in HEVC are coding tree units instead of macro blocks, single entropy coding

methods-Context Adaptive Binary Arithmetic Coding (CABAC) and features like tiles , wave front

parallel processing and dependent slices to enhance parallel processing.

20

 Figure 2.3. HEVC decoder block diagram [15]

The residual signal of the intra or inter prediction, which is the difference between the original

block and its prediction, is transformed by a linear spatial transform [12]. The transform

coefficients are then scaled, quantized, entropy coded, and transmitted together with the

prediction information. The residual is then added to the prediction, and the result of that

addition may then be fed into one or two loop filters to smooth out artifacts induced by the

block-wise processing and quantization. The final picture representation (which is a duplicate of

the output of the decoder) is stored in a decoded picture buffer to be used for the prediction of

subsequent pictures [12].

 2.1 Coding tree unit

 HEVC has replaced the concept of macroblocks (MBs) by coding tree units. The coding tree unit

has a size selected by the encoder and can be larger than the traditional macroblocks. It consists

21

of luma coding tree blocks (CTB) and chroma CTBs. HEVC then supports a partitioning of the CTBs

into smaller blocks using a tree structure and quad tree-like signalling [12].

 The quadtree syntax of the CTU specifies the size and positions of its luma and chroma coding

blocks (CBs). One luma CB and ordinarily two chroma CBs, together with associated syntax, form

a coding unit (CU). Each CU has an associated partitioning into prediction units (PUs) and a tree

of transform units (TUs). Similarly, each CB is split into prediction blocks (PB) and transform

blocks (TB) [16].The decision whether to code a picture area using inter-picture or intra-picture

prediction is made at the CU level.

Figure 2.4 shows the division of a CTB into CBs and transform blocks TB [12].

 Figure 2.4. Subdivision of CTB into TB [12]

Figure 2.5 shows the sizes of CTU [17]

 Figure 2.5. Different sizes of CTU [17]

22

2.2 Intra Picture Prediction

Intra prediction in HEVC [46] is quite similar to H.264/AVC [16]. Samples are predicted from

reconstructed samples of neighboring blocks. The mode categories remain identical: DC, plane,

horizontal/vertical, and directional; although the nomenclature has somewhat changed with

planar and angular respectively corresponding to H.264/AVC’s plane and directional modes [16].

 For intra prediction, previously decoded boundary samples from adjacent PUs must be used.

Directional intra prediction is applied in HEVC, which supports 17 modes for 4x4 block and 34

modes for larger blocks, inclusive of DC mode [18]. Directional intra prediction is based on the

assumption that the texture in a region is directional, which means the pixel values will be smooth

along a specific direction [18].

The increased number of directions improves the accuracy of intra prediction, however it

increases the complexity and increased overhead to signal the mode [6].With the flexible

structure of HEVC, more accurate prediction, and other coding tools, a significant improvement

in coding efficiency is achieved over H.264/AVC [18]. HEVC supports various intra coding methods

referred to as Intra_Angular, Intra_Planar and Intra_DC. In [19], an evaluation of HEVC coding

efficiency compared with H.264/AVC is provided, which shows that the average bit rate saving

for random access high efficiency (RA HE) case is 39%, while for all intra high efficiency (Intra HE)

case this bit rate saving is 25%, which is also considerable but may not be as much as expected.

It seems that the improvement of intra coding efficiency is still desirable. Figure 2.6 shows

different intra prediction modes for HEVC [18].

23

 Figure 2.6. Intra prediction modes for HEVC [18]

Figure 2.7 shows different intra prediction modes for 4 x 4 blocks in H.264 [20].

 Figure 2.7. Intra prediction modes for 4 x 4 blocks in H.264 [20]

2.3 Inter Picture Prediction

 Inter picture prediction in HEVC is divided into prediction block partitioning, fractional

sample interpolation, motion vector prediction for merge and non-merge mode. HEVC supports

more PB partition shapes for inter-coded CBs. The samples of the PB for an inter-coded CB are

24

obtained from those of a corresponding block region in the reference picture identified by a

reference picture index, which is at a position displaced by the horizontal and vertical

components of the motion vector.

 HEVC only allows a much lower number of candidates to be used in the motion vector prediction

process for the non-merge case, since the encoder can send a coded difference to change motion

vector. Further, the encoder needs to perform motion estimation, which is one of the most

computationally expensive operations in the encoder, and complexity is reduced by allowing less

number of candidates [2]. When the reference index of the neighboring PU is not equal to that

of the current PU, a scaled version of the motion vector is used [2]. The neighboring motion

vector is scaled according to the temporal distances between the current picture and the

reference pictures indicated by the reference indices of the neighboring PU and the current PU,

respectively [2]. When two spatial candidates have the same motion vector components, one

redundant spatial candidate is excluded [2]. Figure 2.8 shows the motion estimation flow for

HEVC. [40]

 Figure 2.8. HEVC motion estimation flow [40]

25

Figure 2.9: Illustration of motion estimation process [47]

In multi-view video coding, both temporal and interview redundancies can be exploited by using

standard block based motion estimation (BBME) [21]. Due to its simplicity and efficiency [22],

BBME [23] has been adopted in several international video coding standards such as MPEG-x,

H.26x, AVS China and VC-1 [24] [25]. In BBME, the current frame is divided into NxN- pixel –size

macroblocks (MBs) and for each MB a certain area of the reference frame is searched to minimize

a block difference measure (BDM), which is usually a sum of absolute differences (SAD) between

the current MB and the reference MB [21]. The displacement within the search area (SA) which

gives the minimum BDM value is called a motion vector [21]. With the development of video

coding standards, the basic BBME scheme was extended by several additional techniques such

as sub-pixel, variable block size, and multiple reference frame motion estimation [23]. Figure 2.9

shows multiple frame reference frame motion [26].

26

 Figure 2.10. Multiple frame reference frame motion [26]

Figure 2.11 Variable block sizes in motion estimation [27].

 Figure 2.11. Variable block sizes in motion estimation HEVC [27]

2.4 Block Artifacts in Video Coding

In HEVC both the motion prediction and transform coding are block-based. The size of motion

predicted blocks varies from 4x8 and 8x4 to 64x64 luma samples, while the size of block

transforms and intra-predicted blocks varies from 4x4 to 32x32 samples. These blocks are coded

relatively independently from their neighboring blocks and approximate the original signal with

some degree of similarity. Since coded blocks only approximate the original signal, the difference

between the approximations may cause discontinuities at the prediction and transform block

27

boundaries. For example, motion prediction of the adjacent blocks may come from the non-

adjacent areas of a reference picture (see Fig. 2.12) or even from different reference pictures. In

case of non-overlapping block transforms, used in HEVC, coarse quantization can also create

discontinuities at the block boundaries.

Figure 2.12: Block artifact may be created when adjacent blocks are predicted from non-

adjacent areas in the reference picture [28]

The example of a block artifact in one dimension is shown in figure 2.13. The horizontal axis

shows the sample positions along a horizontal or vertical 1-D line, and the vertical axis shows

the sample values.

Figure 2.13. Example of block artifact in one dimension [29]

Deblocking filter attenuates the artifacts in the areas, where they are mostly visible, i.e. in the

smooth, uniform areas. The excessive filtering in the highly detailed areas should be avoided

since it can cause undesirable blurring. The artifacts in those areas are rarely noticed by the

human eye, while it is also more difficult to determine whether the discontinuity is caused by a

28

block boundary or belongs to the original signal. Therefore, an important part of the deblocking

filter is the deblocking filtering decisions, which determine whether a particular part of a block

boundary is to be filtered. In these decisions, the HEVC deblocking filter uses the mode and

motion information from the decoded bit stream as well as analyzes of the reconstructed values

samples on the sides of the block boundary. The strength of the deblocking filter can also be

adjusted by the encoder on the picture and the slice basis.

Block-based intra/inter prediction and transform coding are applied in HEVC. Therefore, artifacts

that are commonly seen in prior video coding standards at medium and low bitrates, such as

blocking artifacts, ringing artifacts, color biases, and blurring artifacts may still exist in HEVC. In

order to reduce these artifacts, HEVC also adopts in-loop filtering as in AVC. HEVC uses integer

DCTs ranging from 4 × 4 to 32 × 32, while AVC uses transforms no larger than 8 × 8. A larger

transform could introduce more artifacts including ringing artifacts that mainly come from

quantization errors of transform coefficients. Besides, HEVC uses 8-tap fractional luma sample

interpolation and 4-tap fractional chroma sample interpolation, while AVC uses 6-tap and 2-tap

for luma and chroma, respectively. A higher number of interpolation taps can also lead to more

serious ringing artifacts. Hence, it is necessary to incorporate new in-loop filtering techniques in

HEVC.

Coding standard Number of taps for Luma

sample interpolation

Number of taps for Chroma

sample interpolation

AVC 6 2

HEVC 8 4

Table 2.1: Interpolation taps for HEVC and AVC

First we have the deblocking filter which attenuates discontinuities at the transform block

boundaries followed by SAO at the output section of this deblocking filter. There is an advantage

of using the deblocking filter as an in-loop filter compared to a post filter because if it is used as

a post filter, block artifacts can be copied by motion estimation inside the blocks, which can make

the artifacts detection more difficult and increases deblocking complexity compared to in-loop

filtering which needs to be applied only to the block boundaries.

29

The main function of Sample Adaptive Offset (SAO) is to attenuate ringing artifacts which are

more likely to appear when larger transform sizes are used. The concept here is to classify

reconstructed pixels into different categories and then reduce the distortion by simply adding an

offset for each category of pixels. The pixel intensity and edge properties are used for pixel

classification. To further improve the coding efficiency, a picture can be divided into regions for

localization of offset parameters. A customized SAO encoder does not necessarily attempt to

minimize mean sample distortion but can use another criterion to generate SAO parameters.

This chapter describes an overview of HEVC. The various steps and techniques involved in

reconstructing the samples, difference between HEVC and previous standards, the reasons

behind blocking artifacts, In-loop filters and functions of SAO. In the next chapter, proposal is

discussed in detail that explains the use of CUDA programming to implement GPU algorithms for

SAO filter.

30

CHAPTER 3

 Proposal in Detail

In this thesis, parallel algorithm is designed for the SAO by exploiting GPU multi-core computing

ability, including parallel computation of sample classification and statistics collection for each

coding tree block (CTB), parallel calculation of the best offset values and minimum distortions

for each class of edge offset (EO) and each band of band offset (BO), parallel processing of the

SAO merging, and parallel implementation of SAO filtering in HEVC. All the parallel algorithms

are implemented on GPU programmed with CUDA language.

With the development of high definition (HD) and ultra-high definition (UHD) videos, video

applications have turned into the fields of digital video broadcast, mobile wireless video,

remote monitoring and portable photography etc. The tendency of diversity and high

definition of video applications brings up higher requirements to existing video coding

standards. Nowadays, computers are heading towards multi-core direction [1]. Multi-core

and many-core based parallel algorithm design and computation are the beginning stage.

Mapping video encoding algorithm onto GPU has been an important direction for

accelerating the execution speed [1]. The corresponding parallel algorithms for SAO

designed in [1] is implemented through CUDA programming. This is implemented on

GPU by fully exploiting GPU many-core computing ability to improve the encoding time.

Based on the proposals of JCT-VC, SAO was adopted into the working draft of HEVC in the

5th JCT-VC meeting [1]. SAO is an in-loop filtering tool which is newly adopted in HEVC and

provides superior image reconstruction performance at the cost of high computational

complexity. So far, some successful works have been conducted to reduce the

computational complexity of SAO. However, despite the improved methods (based on the

serial algorithm) have limits to improve the coding efficiency. So it is necessary to design

efficient parallel algorithms to satisfy the requirement of high computational complexity of

SAO.

31

This thesis focuses on designing the corresponding parallel algorithms for the SAO by exploiting

GPU multi-core computing ability, including parallel computation of sample classification and

statistics collection for each coding tree block (CTB), parallel calculation of the best offset

values and minimum distortions for each class of edge offset (EO) and each band of band offset

(BO), parallel processing of the SAO merging, and parallel implementation of SAO filtering. All

the parallel algorithms are implemented on GPU programmed with CUDA language.

CUDA is a parallel computing platform and application programming interface (API) model

created by NVIDIA [34] [48]. It allows software developers and software engineers to use a

CUDA-enabled graphics processing unit (GPU) for general purpose processing – an approach

termed GPGPU (General-Purpose computing on Graphics Processing Units). The CUDA

platform is a software layer that gives direct access to the GPU's virtual instruction set and

parallel computational elements, for the execution of compute kernels.

The CUDA platform is designed to work with programming languages such as C, C++,

and Fortran. This accessibility makes it easier for specialists in parallel programming to use

GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced

skills in graphics programming [48]. Also, CUDA supports programming frameworks such

as OpenACC and OpenCL. When it was first introduced by NVIDIA, the name CUDA was an

acronym for Compute Unified Device Architecture.

Driven by its power integrated with a massively-parallel and multithreaded many-core

architecture, many areas of science and technology have benefitted by the use of the GPU in

addressing their advanced computational problems, which were previously thought of as

challenging and not feasible [33] [34]. The GPUs are not well suited to solve all types of problems

[35], however there are many kinds of applications that have achieved quite significant speed-

up depending on the hardware platform [33][34]. Using GPU in computational environment

means combining multi-core CPU and many core GPU to form a computing environment [36].

Figure 3.1 shows problem decomposition for serial parts in a CPU and parallel parts in a GPU

[33].

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Software_engineer
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/GPGPU
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compute_kernel
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenCL

32

 Figure 3.1: Decomposition of the problem for serial parts to be executed on CPU and

parallel parts to be executed on the GPU [33]

CUDA is basically used to transfer the control to GPU from CPU where many threads are used

which share the same code and start executing in parallel. But it is important that the threads

should be organised such that they can execute independent of one another and the results do

not depend upon one another as shown in figure 3.2 [37][38].

 Figure 3.2: Threads grouped into block [38]

33

CUDA enhances the programmability and flexibility for general-purpose computation on GPU.

Experimental results also show that, with the assistance of GPU, the processing time is several

times faster than that of using CPU only [39].

The experimental results indicate that these parallel algorithms can provide a significant

improvement in the computation efficiency with an overall speed up ratio for high

definition video sequences, compared with the original serial algorithm implemented on

CPU.

This chapter has the proposal in detail for the implementation of SAO with the help of

CUDA programming. The next chapter throws light on the serial algorithm and explains the

two different types of SAO in detail.

34

CHAPTER 4

 Sample Adaptive Offset

SAO may use different offsets sample by sample in a region depending on the sample

classification. SAO parameters are altered and adapted from region to region. Two SAO types

that can satisfy the requirements of low complexity are adopted in HEVC. The two types are:

1. Edge Offset (EO) and

2. Band Offset (BO).

For EO, the sample classification is based on comparison between current samples and

neighboring samples.

For BO, the sample classification is based on sample values. Please note that each color

component may have its own SAO parameters [53]. To achieve low encoding latency and to

reduce the buffer requirement, the region size is fixed to one CTB. To reduce side information,

multiple CTUs can be merged together to share SAO parameters [54].

The best coding efficiency could be achieved by a picture-based region partitioning method

[78], which would, however, introduce additional encoding latency. In order to achieve low

encoding latency and reduce the buffer requirement, the size of the region can be fixed and set

as small as one coding tree unit (CTU). Multiple CTUs can share the same SAO parameters by

region merging [80] to reduce side information. In HEVC, a CTU consists of three coding tree

blocks (CTBs) of color components, and each color component can have its own SAO offsets and

share the same EO/BO type for chroma components [79]. Please also note that SAO not only is

useful in HEVC but also can be applied on top of AVC and other prior video coding standards.

Let us discuss how offsets are calculated using each of these types.

35

4.1 Edge Offset

A good design is when there is a reasonable balance between complexity and coding efficiency.

Edge offset uses four 1-D directional patterns for sample classification as shown in Fig. 4.1:

 Horizontal

 Vertical

 135° diagonal

 45° diagonal

Fig. 4.1: Four 1-D directional patterns for EO sample classification: horizontal (EO class = 0),

vertical (EO class = 1), 135° diagonal (EO class = 2), and 45° diagonal (EO class = 3). [29]

In Fig. 4.1 label “c” represents a current sample and the labels “a” and “b” represent two

neighboring samples. According to these patterns, four EO classes are specified, and each EO

class corresponds to one pattern. On the encoder side, only one EO class can be selected for

each CTB that enables EO. Based on rate-distortion optimization, the best EO class is sent in the

bit stream as side information. Since the patterns are 1-D, the results of the classifier do not

exactly correspond to extreme samples. For a given EO class, each sample inside the CTB is

classified into one of five categories. The current sample value, labeled as “c,” is compared with

its two neighbors along the selected 1-D pattern. The classification rules for each sample are

summarized in Table 4.1.

36

Table 4.1: Sample Classification Rules for Edge Offset [1]

Fig. 4.2: Classification of EO based on table 4.1. Positive offsets for EO categories 1 and 2

and negative offsets for EO categories 3 and 4 result in smoothing [29]

Categories 1 and 4 are associated with a local valley and a local peak along the selected 1-D

pattern, respectively. Categories 2 and 3 are associated with concave and convex corners along

the selected 1-D pattern, respectively. If the current sample does not belong to EO categories

37

1–4, then it is category 0 and SAO is not applied. The meanings of edge offset signs are

illustrated in Fig. 4.2 and explained as follows. Positive offsets for categories 1 and 2 result in

smoothing since local valleys and concave corners become smoother, while negative offsets for

these categories result in sharpening. On the other hand, the meanings are opposite for

categories 3 and 4, where negative offsets result in smoothing and positive offsets result in

sharpening.

Fig. 4.3 shows the well-known Gibbs phenomenon. It can be used to simulate a few video

compression artifacts, especially the ringing artifacts. The horizontal axis and the vertical axis

are not explicitly shown but are used to denote the sample position along a 1-D path and the

sample value, respectively. The dotted curve represents the original samples, while the solid

curve represents the reconstructed samples by discarding high frequencies of the original

samples. The local peaks, convex corners, concave corners, and local valleys are painted as solid

circles, while none-of-the-above samples are painted as empty circles. It can be seen that if we

apply negative offsets to local peaks and convex corners, and positive offsets to concave

corners and valleys, the distortion can be effectively reduced.

Figure 4.3: Gibbs Phenomenon where the dotted curve is the original samples and the solid

curves is the reconstructed samples [29]

38

4.2 Band Offset

BO implies one offset is added to all samples of the same band. The sample value range is

equally divided into 32 bands. For 8-bit samples ranging from 0 to 255, the width of a band is 8,

and sample values from 8k to 8k + 7 belong to band k, where k ranges from 0 to 31. The

average difference between the original samples and reconstructed samples in a band (i.e.,

offset of a band) is signaled to the decoder. There is no constraint on offset signs.

Only offsets of four consecutive bands and the starting band position are signaled to the

decoder [56], [57]. The number of signaled offsets in BO was decided to be reduced from 16 to

4 and is now equal to the number of signaled offsets in EO for reducing the line buffer

requirement, which will be described in Section 5.3. Another reason of selecting only four

bands is that the sample range in a region can be quite limited after the regions are reduced

from picture quad tree partitions to CTBs, especially for chroma CTBs, as an example shown in

Fig. 4.4.

Figure 4.4: Example of sample distribution in a CTB, where BO sends the offsets of four

consecutive bands. [29]

y-axis:

number of samples in bands

39

Figure 4.5 can be used to explain why BO works in a few circumstances. The horizontal axis and

the vertical axis are not explicitly shown but are used to denote the sample position and the

sample value, respectively.

Figure 4.5. Example of BO, where the dotted curve is the original samples and the solid

curve is the reconstructed samples. [29]

The dotted curve is the original samples, while the solid curve is the reconstructed samples,

which may be corrupted by quantization errors of prediction residues and phase shifts due to

coded motion vectors deviating from the true motions. In this example, the reconstructed

samples are shifted to the left of the original samples, which systematically results in negative

errors that can be corrected by BO for bands k, k + 1, k + 2, and k + 3.

4.3 Syntax Design

In the sequence parameter set (SPS), one syntax element, sample–adaptive−offset–enabled

−flag, is used to indicate whether SAO is enabled in the current video sequence. In the slice

header, two syntax elements, slice−sao−luma−flag and slice−sao−chroma−flag, indicate

whether SAO is enabled for luma and chroma, respectively, in the current slice. The current SAO

encoding algorithm can be configured as CTU-based for low-delay applications. Syntax-wise, the

basic unit for adapting SAO parameters is always one CTU. If SAO is enabled in the current slice,

40

SAO parameters of CTUs are inter leaved into the slice data. The SAO data of one CTU is placed

at the beginning of the CTU in the bitstream. The CTU-level SAO parameters contain SAO

merging information, SAO type information, and offset information.

4.3.1 SAO Merging

For each CTU, there are three options: reusing SAO parameters of the left CTU by setting the

syntax element sao−merge−left−flag to true, reusing SAO parameters of the above CTU by

setting the syntax element sao−merge−up−flag to true, or transmitting new SAO parameters.

Please note that the SAO merging information is shared by three color components. As shown

in Fig. 4.6, a CTU includes the corresponding luma CTB, Cb CTB, and Cr CTB. When the current

CTU selects SAO merge-left or SAO merge-up, all SAO parameters of the left or above CTU are

copied for reuse, so no more information is sent. This CTU-based SAO information sharing [19]

can reduce side information effectively.

Figure 4.6: CTU consists of CTBs of three color components, and the current CTU can reuse SAO

parameters of the left or above CTU.

4.3.2 SAO Type and Offsets

If a current CTU does not merge with a neighboring CTU, the rest SAO information of the

current CTU will be signaled, as shown in fig. 4.7. All luma syntax elements are first sent and

followed by all Cb syntax elements and then all Cr syntax elements. For each color component,

the SAO type is first transmitted (sao−type−idx−luma or sao−type−idx−chroma) to indicate EO,

BO, or OFF. If BO is selected, the starting band position (sao−band−position) is signaled; else if

41

EO is selected, the EO class (sao−eo−class−luma or sao−eo−class−chroma) is signaled. For both

BO and EO, four offsets are transmitted. Please note that Cb and Cr share the SAO type

(sao−type−idx−chroma) and EO class (sao−eo−class−chroma) to further reduce the side

information and to speed up SAO by achieving more efficient memory access in certain

platforms [20], so these syntax elements are coded for Cb only and do not have to be sent for

Cr.

Figure 4.7: Illustration of coding the rest CTU-level SAO information when the current

CTU is not merged with the left or above CTU.

This chapter describes in detail about the types of SAO- Edge Offset and Band Offset. It explains

the categorization and classification of Edge Offset and Band Offset. In the next chapter,

statistical estimation and finding the best offset for each of the categories and classification of

EO and BO. These steps will be discussed in both serial and parallel implementation.

42

CHAPTER 5

 Serial Implementation of SAO

There are six implementations to find the offset values. The first three are for both encoders

and decoders, while the rest are encoder-only. [29]

5.1 Fast Edge Offset Sample Classification

Although the sample classification rules of EO in Table 4.1 seem nontrivial, Table 4.1 is mainly

used for easy explanation of the concepts, and the EO sample classification does not need to

be implemented in that way. A fast algorithm can be described as follows [29]:

In (2), c is the current sample, and a and b are the two neighboring samples, as shown in

Figure 4.1 and Table 4.1. Besides the fast calculations in (1)–(4), data reuse between samples

can be further applied for the next sample classification. For example, assuming the EO class

is 0 (i.e., using 1-D horizontal pattern) and the samples in the CTB are processed in the raster

scan order, the sign3(c–a) of the current sample does not have to be calculated and can be

directly set to the −sign3(c–b) of the neighboring sample to the left. Likewise, the sign3(c–b)

of the current sample can be reused by the neighboring sample to the right.

5.2 Fast Band Offset Sample Classification

The sample range is equally divided into 32 bands in BO. Since 32 is equal to two to the power

of five, the BO sample classification can be implemented as using the five most significant bits

43

of each sample as the classification result. In this way, the complexity of BO becomes very

low, especially in hardware that only needs wire connections without logic gates to obtain

the classification result from the sample value.

5.3 Line Buffer Requirement

CTU-based processing is commonly adopted in practical implementations. CTUs are encoded

or decoded one by one in raster scan order. In Deblocking Filter, vertical filtering across a

horizontal boundary requires to read four luma samples, two Cb samples, and two Cr samples

and write three luma samples, one Cb sample, and one Cr sample on both sides of the

boundary. Hence, when a current CTU is being processed, DF has not finished processing the

bottom sample rows of the above CTU. Since SAO is after DF, the bottom sample rows of the

above CTU have not been processed by SAO either. In order to apply CTU-based processing,

DF and SAO need line buffers. Assume that DF uses N sample line buffers to store horizontally

deblocked samples of the bottom N rows in the above CTB, where N is four for luma and two

for Cb and Cr. Since the Nth row above the horizontal CTB boundary will not be modified by

the vertical deblocking, the SAO processes for the (N + 1)th row above the horizontal CTB

boundary can be done before the current CTB comes. However, the bottom N rows of the

above CTB still have to wait for the current CTB for applying DF and SAO. When the current

CTB comes and if the above CTB selects EO with the EO class larger than zero, the SAO

processes for the Nth row above the boundary needs to use the (N + 1)th row above the

boundary. Intuitively, we can store samples of the (N + 1)th row in the SAO line buffer.

5.4 Fast Distortion Estimation

During the rate-distortion optimization [29] on the encoder side, distortions between original

samples and reconstructed samples have to be calculated for many times. A straightforward

implementation for SAO would need to add offsets to pre-SAO samples to generate post-SAO

samples and then calculate the distortion between original samples and post-SAO samples.

To reduce the memory access and operations, a fast distortion estimation method [29] can

be implemented as follows. Let k, s(k), and x(k) be sample positions, original samples, and

44

pre-SAO samples, respectively, where k belongs to C and C is the set of samples that are

inside a CTB and belong to a specified SAO type (i.e., BO or EO), a specified starting band

position or EO class, and a specified band or category. The distortion between original

samples and pre-SAO samples can be described in the following equation [29]:

The distortion between original samples and post-SAO samples can be described in the

following equation:

 In (6), h is the offset for the sample set. The delta distortion is defined as follows:

In (7), N is the number of samples in the set, and E is the sum of differences between original

samples and pre-SAO samples as defined as follows [29]:

Please note that sample classification and (8) can be calculated right after pre-SAO samples

are available during the DF processes. Thus, N and E can be calculated only once and stored.

 Next, the delta rate-distortion cost is defined as follows [29]:

45

In (9), λ is the Lagrange multiplier, and R represents the estimated bits of side information.

For a given CTB with a specified SAO type (i.e., BO or EO), a specified starting band position or

EO class, and a specified band or category, a few h values (i.e., offsets) close to the value of E/N

are tested, and the offset that minimizes ΔJ will be chosen. After offsets of all bands or

categories are chosen, we can add up the ΔJ of each of the 32 bands for BO or each of the five

categories for EO to obtain the delta rate distortion cost of the entire CTB, where the

distortions of the BO bands using zero offsets implicitly and the EO category 0 can be

precalculated by (5) and stored for reuse. When the delta cost of the entire CTB is negative,

SAO can be enabled for the CTB. Similarly, the best SAO type and the best starting position or

EO class can be found using the fast distortion estimation.

5.5 Slice-Level On/Off Control

In the HEVC reference software common test conditions [30], hierarchical quantization

parameter (QP) settings for each group of pictures (GOP) are often used. As an example, in the

random access condition, the GOP size is eight. Any pictures with picture order count (POC, i.e.,

display order) equal to 8k belong to depth 0, any picture with POC equal to (8k + 4)belongs to

depth 1, any picture with POC equal to (8k +2) or (8k + 6) belongs to depth 2,and any picture with

POC equal to (8k + 1), (8k + 3), (8k + 5), or (8k + 7) belongs to depth 3,where k is a nonnegative

integer. A picture with a larger depth will be given a higher QP. A slice-level on/off decision

algorithm [31], [32] is provided as follows. For depth 0 pictures, SAO is always enabled in the slice

header. Given a current processing picture with a nonzero depth N, the previous picture is set to

the last picture of depth (N −1) in the decoding order. If the previous picture disables SAO for

more than 75% of CTBs, the current picture will early terminate the SAO encoding process and

disable SAO in all slice headers. Please note that luma and chroma can be turned on or off

independently in the slice header.

46

5.6 Considerations for Right and Bottom Samples in the CTU

In the reference software, SAO parameters are estimated for each CTU at the encoder. Since SAO

is after DF, the SAO parameters cannot be precisely estimated until the deblocked samples are

available. However, the deblocked samples of the right columns and the bottom rows in the

current CTU may be unavailable because the right CTU and the below CTU may have not yet been

reconstructed in a CTU-based encoder. In order to consider this fact for practical CTU-based

encoders, two options are provided. The first option [19] avoids using the bottom three luma

sample rows, the bottom one Cb sample row, the bottom one Cr sample row, the rightmost four

luma sample columns, the rightmost two Cb sample columns, and the rightmost two Cr sample

columns in the current CTU during SAO parameter estimation on the encoder side. It does not

suffer noticeable coding efficiency loss when the CTU size is 64×64 in luma. Nevertheless, when

the CTU size is smaller, the percentage of unused samples in the CTU becomes higher and might

cause considerable coding efficiency loss. Hence, the second option [32] uses predeblocked

samples to replace the unavailable deblocked samples in the current CTU during SAO parameter

estimation, which can reduce the coding efficiency loss caused by the first option for smaller CTU

sizes.

This chapter explained the classification and estimation of EO and BO. After classification the fast

distortion estimation is explained that finds the best offset for every category of every class in

EO or for every band in case of BO. This chapter also describes the line buffer requirement and

slice on/off control. In the next chapter, the parallel implementation of the same process in

explained in detail.

47

CHAPTER 6

 Parallel Implementation of SAO

GPU Implementation of SAO:

The overall parallel scheme for realizing the SAO process is illustrated in figure 6.1 that

includes five parallel processing modules corresponding to the five computational

processes described in chapter 5. The parallel algorithm will be described in detail in the

next few sections.

A. Parallel Algorithm for Sample Classification and Statistics Collection

B. Parallel Algorithm for obtaining the Best EO Parameters.

C. Parallel Algorithm for Obtaining the Best BO Parameters

D. Parallel Algorithm for SAO Merging

E. Parallel Algorithm for SAO filtering

Figure 6.1: The overall parallel scheme of SAO

48

6.1 Parallel Algorithm for Sample Classification and Statistics Collection

As pointed by Choi and Joo [58], sample classification and statistics collection dominate

the SAO encoding time. In order to significantly accelerate the process, a parallel sample

classification and statistics collection method is designed in this paper.

The sample classification and statistics collection of EO are based on comparison between

current and neighboring pre-SAO samples. This process can be operated on all CTBs

simultaneously. And since all EO classes are independent of each other, we can process all

the sample classifications on the EO class-level in parallel. In order to further accelerate this

process, we divide each CTB into Nsub-CTB sub-CTBs to perform the sample classification and

statistics collection for all the sub-CTBs simultaneously and then accumulate the results to

complete the process for each CTB. Let NCTB be the total number of CTBs in an image, NEO

the number of EO classes, and Num the number of samples in one sub-CTB, respectively.

The parallel algorithm for realizing the sample classification and statistics collection of EO is

given below.

49

Figure 6.2: Parallel Algorithm 6(a) [1]

In Parallel Algorithm (fig. 6.2), Nipq and Eipq are the number of samples and the sum of

differences of the q-th category for the p-th class in the i-th CTB, respectively. Nijkm and Eijkm

are the statistics of the corresponding each sub-CTB. We can see that this parallel algorithm

consists of two main steps. The first step has NCTBNsub-CTBNEO parallel branches with each

one for computing the statistics for each EO class of each sub-CTB in each CTB and the

parallel degree is NCTBNsub-CTBNEO. The second step contains 5NCTBNEO parallel branches

with each branch for completing the statistics computation for each CTB and the parallel

degree is 5 NCTBNEO. For 1920×1080 (i.e. HD) video sequences, if we set the size of CTB to

16×16 and Nsub-CTB to 16, NCTB is 8160, the parallel degree of the first step is 522240 and the

parallel degree of the second step is 163200.

50

In the same way as the design of Parallel Algorithm shown in fig. 6.2, the sample classification

and statistics collection of BO is also performed in parallel for each CTB. The parallel

algorithm for realizing this operation procedure is given below (where Nband denotes the

number of BO bands).

Figure 6.3: Parallel Algorithm 6(b) [1]

In Parallel Algorithm fig. 6.3, Nip and Eip are the number of samples and the sum of

differences of the p-th band in the i-th CTB, respectively and Nijk and Eijk are the statistics

of the corresponding each sub-CTB. We can see that this parallel algorithm also contains

two main computation steps. The first step has NCTBNsub-CTB parallel branches with each

branch for computing the BO statistics for each sub-CTB in each CTB and the parallel

degree is NCTBNsub-CTB. The second step contains NCTBNband parallel branches with each one

for completing the statistics computation for each CTB and the parallel degree is

NCTBNband.

51

6.2 Parallel Algorithm for Obtaining the Best EO Parameters

The objective of this subsection is to design a parallel algorithm to compute the best EO

parameters including the best offset values and corresponding distortions for each category

in different EO classes of each CTB parallelly. The parallel algorithm is presented below.

Figure 6.4: Parallel Algorithm 6(c) [1]

In Parallel Algorithm (fig.6.4), Mijk and M_bestijk represent the candidate and the best offset

value of the k-th category for the j-th EO class in the i-th CTB, respectively. We can see that

this algorithm contains three parallel computation processes: the first process contains

4NCTBNEO parallel branches with each one for computing the best offset value and

distortion for each category of an EO class in each CTB parallelly, the second process

contains NCTBNEO parallel branches with each one for calculating the total distortion of 4

52

categories for each EO class in each CTB, and the third process contains NCTB branches

with each one for obtaining the best EO parameters for each CTB parallelly. It is obvious

that, for the three parallel processes, the parallel degrees are 4NCTBNEO, NCTBNEO and

NCTB, respectively. For 1920×1080 video sequences, if we set the size of CTB to 16×16, NCTB

is 8160, and the parallel degrees are 130560, 32640 and 8160, respectively.

6.3 Parallel Algorithm for Obtaining the Best BO Parameters

Let Mij and M_bestij be the candidate and the best offset value of the j-th band in the i-th

CTB, respectively. The parallel algorithm for computing the best BO parameters is given

below under the condition that the sample classification and statistics collection of each BO

band in each CTB have been completed by using Parallel Algorithm as shown below.

Figure 6.5: Parallel Algorithm 6(d) [1]

It can be seen that there are three computation steps in Parallel Algorithm fig. 6.5. The

parallel degrees are NCTBNband, NCTB(Nband-3) and NCTB, respectively.

53

6.4 Parallel Algorithm for SAO Merging

After having obtained the best parameters of EO and BO by Parallel Algorithm 6(c) (fig. 6.4)

and Parallel Algorithm 6(d) (fig. 6.5), we can select the best SAO parameters for each color

component of the current CTU. Then the SAO merging can be adopted to allow the

current CTU to reuse SAO parameters of the left or up CTU for selecting the final best

SAO parameters. For performing the SAO merging, it is obvious that we cannot

determine the final best SAO parameters of the current CTU until the SAO parameters of

the left and up CTUs have been set. On the other hand, it can be seen that there is no

dependency between the CTUs located in the same diagonal direction. Therefore we can

process these CTUs in parallel. Here, a diagonal parallel scheme is designed to

implement the SAO merging. As shown in Fig. 6.6, the parallel algorithm is performed to

process the CTBs in the same diagonal direction iteratively as the label increases and the

total iteration number is computed by (10). For each iteration, the CTUs with the same

label are processed in parallel and the total number of CTUs processed at the i-th

iteration is computed by (12), where Wimage and Himage are the width and height of the

image; WCTU and HCTU are the width and height of the CTU. The Parallel Algorithm (fig.

6.7) is for realizing this parallel scheme as follows:

 (10)

 (11)

54

 (12)

Figure 6.6: The diagonal parallel algorithm for SAO merging

Figure 6.7: Parallel Algorithm 6(e) [1]

In Parallel Algorithm fig. 6.7, ΔJup and ΔJleft are the corresponding distortions when we

reuse the parameters of up and left CTUs on the current CTU. For the 1920×1080 video

sequences, if we set the size of CTU to 16×16, Ndiag is 187, the minimum parallel degree is

1 and the maximum parallel degree is 68. The average parallel degree is 43.64

55

6.5 Parallel Algorithm for SAO filtering

For each CTU, the best SAO parameters have been obtained by Parallel Algorithm 6(e)

(fig. 6.7). For a given luma or chroma CTB, the process of filtering for the current sample

is irrelevant to neighboring samples and this computation process can be realized

parallelly by using Parallel Algorithm (fig. 6.8) as described below.

Figure 6.8: Parallel Algorithm 6(f)

In Parallel Algorithm fig. 6.7, Nsample is the total number of samples in luma or chroma

CTB, Sample_recij and Sample_saoij are the pre-SAO and post-SAO sample values,

respectively, and Offsetij is the best offset value for the j-th sample in the i-th CTB. We

can see that the parallel degree in this parallel algorithm is NCTBNsample and the parallel

granularity is in pixel-level for an image.

This chapter describes the parallel implementation of SAO. The steps mentioned in

chapter 5 is rewritten in parallel using CUDA programming. The SAO filter has lot of

computational steps that are independent of the neighboring samples which allow

parallelism using GPUs. The pseudo code for these algorithms are explained in this

chapter. In the following chapter, the results for serial and parallel implementation is

compared and conclusions are drawn for the same.

56

CHAPTER 7

 Results and Conclusions

7.1 Test Environment:

A. HM Code 16.9

Refer [82] for complete description of the HM test model. All the definitions of structures,

enumerations and function declaration can be found in this documentation. Refer the

user manual [51] that comes along with the software to run the HM code. The syntax to

run the code in command prompt is given in readme files for both encoder and decoder.

B. CUDA Toolkit

This toolkit provides a development environment for creating high performance GPU-

accelerated applications. With the CUDA Toolkit, you can develop, optimize and deploy

your applications on GPU-accelerated embedded systems, desktop workstations,

enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit

includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler

and a runtime library to deploy your application [83].

GPU-accelerated CUDA libraries enable drop-in acceleration across multiple domains

such as linear algebra, image and video processing, deep learning and graph analytics. For

developing custom algorithms, we can use available integrations with commonly used

languages and numerical packages as well as well-published development APIs. CUDA

applications can be deployed across all NVIDIA GPU families available on the work station.

Using built-in capabilities for distributing computations across multi-GPU configurations,

scientists and researchers can develop applications that scale from single GPU

workstations to thousands of GPUs [83].

57

C. Visual Studio 2015

Microsoft Visual Studio is the Integrated Development environment (IDE) used to code, build and

run the HEVC encoder and decoder. It provides a feature called Nsight which helps in running the

code on GPUs. It provides profiling which helps us understand the memory usage, timing and

tracking of data structures. This helps the developers to optimize the code easily

D. GPU hardware specification

4K Ultra HD Resolution

Support

Yes

Cooling System Air

Featured Technology NVIDIA CUDA, NVIDIA G-SYNC, NVIDIA GameStream,

NVIDIA SLI, DirectX 12

GPU Clock Speed 1708 megaHertz

Graphics Processing Unit

(GPU)

NVIDIA GeForce GTX 1080

Video Memory Capacity 8 gigabytes

Video Memory Type GDDR5X

GPU Boost Clock Speed 1847 megaHertz

E. Intel i-5 processor, 8GB RAM, Windows 10-64bit [88]

7.2 Test Sequences [87]

1. BasketballPass_416x240_50.yuv

2. RaceHorses_832x480_30.yuv

3. SlideEditing_1280x720_30.yuv

58

7.3 Metrics used

 PSNR=20 log10
MAXf

√𝑀𝑆𝐸
 (13)

MAXf is the maximum value of the sample.

 The formula used for Y’CbCr

 (14)

 The format used is 4:2:0

 Speed up= (Encoding time in serial)/ (Encoding time in parallel) (15)

7.4 Serial code results

One of the reasons that HEVC provides better coding efficiency than prior standards is the

extended transform size, up to 32 × 32. A large size transform provides better energy compaction;

however, it tends to cause undesirable ringing artifacts. The following results show examples of

test sequence to highlight these effects. As shown in the figure, SAO significantly improves the

visual quality by suppressing the ringing artifacts near true edges.

The HM encoder is built based on a rate-distortion quantization process optimization. The JCT-

VC common test conditions introduced a few configurations for encoder to be applied in tests.

These configurations are [81]:

1. All intra (AI) All images are encoded with I slices.

2. Random access (RA): A pyramidal structure with a randomly selected picture

approximately every one second is used as a picture reordering. Mentioned configuration

simulates what we use in a broadcasting environment.

59

3. Low-delay with B slices (LB): In this mode, just the first frame is encoded using I slices and

random selection of pictures and picture reordering are not used. This configuration

simulates what we use in a videoconferencing environment.

7.4.1 BasketballPass_416x240_50.yuv

(Performed for 200 Frames)

QP Encoding time with

SAO Off (in

seconds)

Encoding time with

SAO On (in

seconds)

YUV- PSNR with

SAO Off (in dB)

YUV-PSNR with

SAO On (in dB)

27 494.327 495.279 37.3066 38.5323

32 370.083 371.423 34.2664 35.7813

37 340.875 344.548 31.5472 32.7192

 Table 7.1: Encoding time and PSNR of BasketballPass

Snapshot of frame 14

Fig. 7.1 BasketballPass_416x240_50.yuv Original Image

60

0

100

200

300

400

500

600

27 32 37

Ti
m

e
in

 s
ec

o
n

d
s

QP

BasketballPass_416x240.yuv

Time with SAO OFF(in
seconds)

Time with SAO ON(in
seconds)

Fig. 7.2 BasketballPass_416x240_50.yuv SAO=0 Fig.7.3 BasketballPass_416x240_50.yuv SAO=1

Figure 7.4: Graphical representation of Time vs QP for BasketballPass

61

Figure 7.5: Graphical representation of PSNR vs QP for BasketballPass

7.4.2 RaceHorses_832x480_30.yuv

QP Encoding time with

SAO Off (in

seconds)

Encoding time with

SAO On (in

seconds)

YUV- PSNR with

SAO Off (in dB)

YUV-PSNR with

SAO On (in dB)

27 2172.776 2207.137 34.7324 35.9245

32 1823.035 1904.508 32.8541 33.4520

37 1644.197 1675.346 29.9451 30.7209

 Table 7.2: Encoding time and PSNR of RaceHorses

0

5

10

15

20

25

30

35

40

45

27 32 37

P
SN

R
 in

 d
B

QP

BasketballPass_416x240.yuv

YUV-PSNR with SAO OFF(in dB)

YUV-PSNR with SAO ON(in dB)

62

Figure 7.6: Graphical representation of Time vs QP for RaceHorses

Figure 7.7: Graphical representation of PSNR vs QP for RaceHorses

0

500

1000

1500

2000

2500

27 32 37

Ti
m

e
in

 s
ec

o
n

d
s

QP

RaceHorses_832x480_30.yuv

SAO OFF

 SAO ON

26

27

28

29

30

31

32

33

34

35

36

37

27 32 37

P
SN

R
 in

 d
b

QP

RaceHorses_832x480_30.yuv

YUV-PSNR with SAO OFF(in dB)

YUV-PSNR with SAO ON(in dB)

63

RaceHorses_832x480_30.yuv sequences frame 1

Fig.7.8 RaceHorses_832x480_30.yuv Original Image

64

Fig.7.9 RaceHorses_832x480_30.yuv SAO=0

65

Fig.7.10 RaceHorses_832x480_30.yuv SAO=1

66

7.4.3 SlideEditing_1280x720_30

(For 200 frames)

QP Encoding time with

SAO Off (in

seconds)

Encoding time with

SAO On (in

seconds)

YUV- PSNR with

SAO Off (in dB)

YUV-PSNR with

SAO On (in dB)

27 2392.732 2625.679 42.3313 43.7979

32 2349.765 2462.828 37.9853 39.6725

37 2294.324 2423.639 33.4506 35.0188

 Table 7.3 Encoding time and PSNR of SlideEditing

Figure 7.11: Graphical representation of Time vs QP for SlideEditing

2100

2200

2300

2400

2500

2600

2700

27 32 37

Ti
m

e
in

 s
ec

o
n

d
s

QP

SlideEditing_1280x720.yuv

Time with SAO OFF(in
seconds)

Time with SAO ON(in
seconds)

67

Figure 7.12: Graphical representation of PSNR vs QP for SlideEditing

SlideEditing_1280x720_30 frame 100

 Fig. 7.13 SlideEditing_1280x720_30.yuv Original frame

0

5

10

15

20

25

30

35

40

45

50

27 32 37

P
SN

R
 in

 d
B

QP

SlideEditing_1280x720.yuv

YUV-PSNR with SAO OFF(in
dB)

YUV-PSNR with SAO ON(in
dB)

68

Fig. 7.14 SlideEditing_1280x720_30.yuv SAO=0

Fig.7.15 SlideEditing_1280x720_30.yuv SAO=1

69

7.5 Parallel code results

In order to test the performance of the parallel algorithms designed in the work, we use

speedup (SP) defined in (16) to evaluate the computation efficiency, where Ts represents

the running time of the original serial algorithm implemented on CPU and Tp represents

the running time of the proposed parallel algorithm implemented on GPU

 SP= Ts/ Tp (16)

7.5.1 BasketballPass_416x240_50.yuv

(Performed for 200 Frames)

QP Encoding time with

SAO On (in sec)

Encoding time with

SAO On using

GPU (in sec)

YUV-PSNR with SAO On using

GPUs (in dB)

SP

27 495.279 18.689 38.3379 26.45

32 371.423 14.230 35.6873 26.10

37 344.548 13.090 32.7812 26.32

Table 7.4: Encoding time of BasketballPass using GPUs

70

Figure 7.16 Frame of BasketballPass video sequence using serial algorithm

Figure 7.17 Frame of BasketballPass video sequence using parallel algorithm

71

7.5.2 RaceHorses_832x480_30.yuv

QP Encoding time with

SAO On (in sec)

Encoding time with

SAO On using

GPU(in sec)

GPU YUV-PSNR with SAO

On using GPUs(in dB)

SP

27 2207.137 81.109 38.8920 27.21

32 1904.508 70.746 36.1813 26.92

37 1675.346 61.820 32.6192 27.10

Table 7.5: Encoding time of RaceHorses using GPUs

Figure 7.18: Frame of RaceHorses video sequence using serial algorithm

72

Figure 7.19: Frame of RaceHorses video sequence using parallel algorithm

73

7.5.3 SlideEditing_1280x720_30

(For 200 frames)

QP Encoding time with

SAO On (in

seconds)

Encoding time with

SAO On using

GPU(in sec)

YUV- PSNR with SAO On

using GPUs (in dB)

SP

27 2625.679 92.780 42.7313 28.3

32 2462.828 88.083 38.1043 27.96

37 2423.639 86.066 33.6406 28.16

Table 7.6: Encoding time of SideEditing using GPUs

Figure 7.20: Frame from SlideEditing video sequence using serial algorithm

Figure 7.21: Frame from SlideEditing video sequence using parallel algorithm

74

75

76

7.6 Conclusions and future work

This thesis consists of implementation of serial and parallel algorithms to improve the

computation efficiency of the SAO in HEVC. The algorithm is implemented in parallel

using NVIDIA GPU platform programmed with CUDA language. Compared with the

original serial algorithm implemented on CPU, the experimental results show that parallel

algorithms can provide a significant improvement on the encoding time with an overall

more than 25x speedup for high definition video sequences.

Post processing methods can be used to further improve the quality of the video.

Implementing this post processing filter in parallel would be a much efficient way of

computation. A significant amount of time is spent in transferring data from host to device

and vice versa. In the future there is scope to decrease the overhead of pushing data to GPU

and CPU back and forth. Research on increasing parallel data throughputs for further

improving the encoding time can be a part of the future work.

77

8 References

1. W. Zhang and C. Guo, "Design and implementation of parallel algorithms for sample

adaptive offset in HEVC based on GPU," 2016 Sixth International Conference on

Information Science and Technology (ICIST), Dalian, China, June 2016, pp. 181-187.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7483407&isnumber=7

483373

2. G. J. Sullivan et al, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE

Trans. on Circuits and Systems for Video Technology, vol. 22, No. 12, pp. 1649-1668, Dec.

2012.

3. N. Ling, “High efficiency video coding and its 3D extension: A research perspective,”

Keynote Speech, ICIEA, pp. 2150-2155, Singapore, July 2012-

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6361087

4. Multimedia course website: http://www.uta.edu/faculty/krrao/dip/

5. A. Norkin, et al, CE12: Ericsson’s and MediaTek’s Deblocking Filter, ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11 document JCTVC-F118, Joint Collaborative Team on Video

Coding (JCTVC), Turin, Italy, July 2011.

6. Design and implementation of next generation video coding systems ppt:

http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/budagaviiscas2014ppt.pdf

7. JVT Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T Rec. H.264-ISO/IEC 14496-10 AVC), March 2003, JVT-G050 available

on http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT-G050.pdf

8. D. K. Kwon and M.Budagavi. “Combined scalable and multiview extension of High

Efficiency Video Coding (HEVC)", IEEE Picture Coding Symposium, pp. 414 - 417, Dec.

2013.

9. Information on ringing artifacts : https://en.wikipedia.org/wiki/Ringing_artifacts

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7483407&isnumber=7483373
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7483407&isnumber=7483373
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6361087
http://www.uta.edu/faculty/krrao/dip/
http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/budagaviiscas2014ppt.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT-G050.pdf
https://en.wikipedia.org/wiki/Ringing_artifacts

78

10. G. J. Sullivan et al, “Standardized Extensions of High Efficiency Video Coding (HEVC)”, IEEE

Journal of selected topics in Signal Processing, vol. 7, pp.1001-1016, Dec. 2013.

11. B. Bross et al, “High efficiency video coding (HEVC) text specification draft 8”, ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCTVC) document JCTVC-J1003, July

2012

12. F.Bossen, D.Flynn and K. Suhring, “HEVC reference software manual” http://phenix.int-

evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip

13. P. Hanhart et al, “Subjective quality evaluation of the upcoming HEVC video compression

standard”, SPIE Applications of digital image processing XXXV, vol. 8499, paper 8499-30,

Aug. 2012.

14. M. Horowitz et al, “Informal subjective quality comparison of video compression

performance of the HEVC and H.264/MPEG-4 AVC standards for low delay applications” ,

SPIE Applications of digital image processing XXXV , vol. 8499, paper 8499-31, Aug. 2012.

15. C. Fogg, “Suggested figures for the HEVC specification”, ITU-T/ISO/IEC Joint Collaborative

Team on Video Coding (JCT-VC) document JCTVC- J0292r1, July 2012.

16. F. Bossen, et al, "HEVC complexity and implementation analysis," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 22, pp.1685-1696, Dec. 2012.

17. Information about quad tree structure of HEVC

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

18. X. Cao, C. Lai and Y. He, “Short distance intra coding scheme for HEVC”, IEEE Picture

Coding Symposium, June 2012.

19. B. Li, G. J. Sullivan, and J. Xu, “Comparison of compression performance of HEVC working

draft 4 with AVC high profile,” JCTVC-G399, Nov. 2011.

20. Thesis by S. Gangavati on “complexity reduction of H.264 using parallel programming “.

This thesis describes the reduction of the motion estimation time in H.264 using CUDA

language which includes the usage of GPUs and CPUs, 2012. http://www-

ee.uta.edu/Dip/Courses/EE5359/Sudeep_Thesis_Draft_2.pdf

http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

79

21. M. Jakubowski and G. Pastuszak , “Block –based motion estimation algorithms - a

survey”, Opto-Electronics Review vol. 21, no. 1, pp. 86-102, 2013.

22. F. Dufaux and F. Moscheni, “Motion estimation techniques for digital TV – a review and a

new contribution”, Proc. IEEE, vol.83, pp. 858 – 876, June1995.

23. J. R. Jain and A .K. Jain , “ Displacement measurement and its application in interframe

image-coding” IEEE Transactions on Communications, vol.com -29, pp. 1799-1808, Dec.

1981.

24. I.E.G. Richardson, Video codec design : Developing image and video compression systems

, Wiley, Chichester, 2002.

25. J.B. Lee and H. Kalva , “The VC-1 and H.264 video compression standards for broadband

video Services,” Springer, New York, 2008.

26. Y. Su and M.-T. Sun, “Fast multiple reference frame motion estimation for H.264/AVC”,

IEEE Trans. on circuits and systems for video technology, vol. 16, pp. 447-452, March

2006.

27. M. E. Sinangil et al, “Memory cost vs coding efficiency trade-offs for HEVC motion

estimation engine ", IEEE International conference on image processing, pp. 1533-1536,

2012.

28. V. Sze, M. Budagavi and G.J. Sullivan (Editors), “High Efficiency Video Coding (HEVC):

Algorithms and Architectures”, Springer, 2014.

29. C-M. Fu et al, “Sample Adaptive Offset in the HEVC Standard,” IEEE Trans. on circuits and

systems for video technology, vol. 22, pp. 1755-1764, Dec. 2012.

30. F. Bossen, Common HM Test Conditions and Software Reference Configurations,

document JCTVC-J1100, July 2012.

31. N. Ahmed, R. Natarajan and K.R.Rao, “Discrete Cosine Transform”, IEEE Trans. on

computers, vol.C-23, pp.90-93, Jan.1974.

32. G. Laroche, T. Poirier, and P. Onno, Non-CE1: Encoder Modification for SAO Interleaving

Mode, JCTVC-I0184, Joint Collaborative Team on Video Coding, Apr. 2012.

80

33. M. A. F. Rodriguez, “CUDA: Speeding up parallel computing”, International Journal of

Computer Science and Security, Nov. 2010.

34. NVIDIA, NVIDIA CUDA Programming Guide, Version 3.2, NVIDIA, Sep. 2010.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

35. “http://drdobbs.com/high-performance-computing/206900471” Jonathan Erickson, GPU

Computing Isn’t Just About Graphics Anymore, Online Article, Feb.2008.

36. J. Nickolls and W. J. Dally, ” The GPU computing era” , IEEE Computer Society Micro-IEEE,

vol. 30, Issue 2, pp . 56 - 69, April 2010.

37. J. Sanders and E. Kandrot, “CUDA by example: an introduction to general-purpose GPU

programming” Addison-Wesley, 2010.

38. NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, White Paper,

Version 1.1, NVIDIA 2009.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Arc

hitecture_Whitepaper.pdf

39. W.-N. Chen, et al, “H.264/AVC motion estimation implementation on compute unified

device architecture (CUDA)” , IEEE International Conference on Multimedia and Expo,

pp. 697 – 700, 2008.

40. Thesis by J. Dubhashi on “Complexity reduction in H.265 Motion Estimation using

Compute Unified Device Architecture “. This thesis describes the reduction of the motion

estimation time in H.265 using CUDA language which includes the usage of GPUs and

CPUs, 2014. Use the link below and scroll down to the thesis section to find J. Dubhashi’s

thesis document

http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

41. K.R. Rao, D.N. Kim and J.J. Hwang, “Video Coding Standards: AVS China, H.264/MPEG-4

Part 10, HEVC, VP6, DIRAC and VC-1”, Springer, 2014

42. HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html
http://www.vcodex.com/h265.html

81

43. Video lectures from IITs and IISC: http://nptel.iitm.ac.in/

44. Useful tutorials on Video processing:

a. http://kohtoomaung.blogspot.com/p/blog-page_10.html

b. https://codesequoia.wordpress.com/2012/11/04/

45. I.E.G. Richardson, “The H.264 advanced video compression standard”, 2nd Edition,

Wiley, Hoboken, NJ, 2010.

46. J. Lainema et al, "Intra Coding of the HEVC Standard," in IEEE Trans. on Circuits and

Systems for Video Technology, vol.22,no.12,pp.1792-1801,Dec.2012.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6317153&isnumber=640

3920

47. N. Purnachand, L. N. Alves and A. Navarro, “Fast motion estimation algorithm for

HEVC, ” IEEE Second International Conference on Consumer Electronics - Berlin

(ICCE-Berlin), 2012.

48. Wikipedia URL: https://en.wikipedia.org/wiki/CUDA

49. T. Wiegand et al, "Overview of the H.264/AVC video coding standard," in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 560-576, July

2003.

50. K.R. Rao, D.N. Kim and J.J. Hwang, “High Efficiency Video Coding and other emerging

standards,” River publishers, 2017.

51. HEVC software manual-

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/doc/software-manual.pdf

52. JCT-VC DOCUMENTS can be found in JCT-VC document management system

http://phenix.int-evry.fr/jct. All JCT-VC documents can be accessed. [Online].

 Available:

 http://phenix.intevry.fr/jct/doc_end_user/current_meeting.php?id_meeting=154&type_or

der=&s ql_type=document_number

VCEG & JCT documents available from http://wftp3.itu.int/av-arch in the video-site and

jvt-site folders.

http://nptel.iitm.ac.in/
https://codesequoia.wordpress.com/2012/11/04/
https://codesequoia.wordpress.com/2012/11/04/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6317153&isnumber=6403920
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6317153&isnumber=6403920
https://en.wikipedia.org/wiki/CUDA
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/doc/software-manual.pdf
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/doc/software-manual.pdf
http://phenix.int-evry.fr/jct
http://phenix.int-evry.fr/jct
http://phenix.intevry.fr/jct/doc_end_user/current_meeting.php?id_meeting=154&type_order=&s
http://phenix.intevry.fr/jct/doc_end_user/current_meeting.php?id_meeting=154&type_order=&s
http://phenix.intevry.fr/jct/doc_end_user/current_meeting.php?id_meeting=154&type_order=&s
http://phenix.intevry.fr/jct/doc_end_user/current_meeting.php?id_meeting=154&type_order=&s

82

53. M. Wien, “High Efficiency Video Coding: Coding Tools and Specification”, Springer,

2014.

54. C.-M. Fu, et al, Sample Adaptive Offset for Chroma, document JCTVCF057, July 2011.

55. C.-M. Fu, et al, E8.a.3: SAO with LCU-Based Syntax, document JCTVC-H0273, Feb.

2012.

56. G. Laroche, T. Poirier, and P. Onno, On Additional SAO Band Offset Classifications,

JCTVC-G246, Joint Collaborative Team on Video Coding, Nov. 2011.

57. E. Maani and O. Nakagami, Flexible Band Offset Mode in SAO, document JCTVC-

H0406, Feb. 2012.

58. Y. Choi, J. Joo, “ Exploration of practical HEVC/H.265 sample adaptive offset encoding

policies”, Signal Processing Letters, vol. 22, pp.465 – 468, Apr. 2015.

59. ISO/IEC 11172-2, “Information technology coding of moving pictures and associated

audio for digital storage media at up to about 1. Mbit/s - part 2: Video”, 1993 [MPEG-1

Video]

60. ISO/IEC 13818-2, “Information technology: generic coding of moving pictures and

associated audio information: Video”, 1995 [MPEG-2 Video]

61. ISO/IEC 14996-2, “Information technology - coding of audio-visual objects - part-2:

Visual”, 1998 [MPEG- 4 Visual]

62. ISO/IEC 14996-10 and ITU-T Rec. H.264, “Advanced Video Coding”, 2003 [MPEG-4

part-10/H.264]

63. ITU-T Recommendation H.261, “Video CODEC for audiovisual services at px64 kbits/s”,

1988 [H.261]

64. http://www.itu.int/rec/T-REC-H.261-198811-S/en [H.261 document]

65. ITU-T Recommendation H.263, “Video coding for low-bit rate communications”,

Version-2, 1998 [H.263]

66. h.265/hevc: ITU-T Recommendation H.265, “Infrastructure of audiovisual services –

Coding of moving video: High efficiency video coding”, April 2013 [H.265]

67. Grois et al, “Performance Comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-

AVC Encoders”, IEEE Picture Coding Symposium 2013 (PCS 2013), San José, CA, USA,

Dec 8-11, 2013.

http://www.itu.int/rec/T-REC-H.261-198811-S/en

83

68. Ohm et al, “Comparison of the Coding Efficiency of Video Coding Standards—Including

High Efficiency Video Coding (HEVC)”, IEEE Trans. On Circuits and Systems for Video

Technology, vol. 22, pp. 1669-1684, Dec. 2012SMPTE 421M-2006,

69. SMPTE 421M-2006, "VC-1 Compressed Video Bitstream Format and Decoding Process",

2006 [VC-1]

70. WebM project blog: http://blog.webmproject.org

71. http://www.theora.org [Theora]

72. RFC-6386: VP8 Data Format and Decoding Guide, 2011. [VP8]

73. A VP9 Bitstream Overview: draft-grange-vp9-bitstream-00,

2013.http://tools.ietf.org/id/draft-grange-vp9-bitstream-00.txt [VP9]

74. https://www.xiph.org/daala/ [Daala]

75. HEVC tutorials on -- https://www.vcodex.com

76. Introduction to video compression

http://www.videsignline.com/howto/185301351;jsessionid=B2FYP22SRT0TEQSNDLOS

KHSCJUNN2JV N?pgno=1

77. S. Kwon, A. Tamhankar, and K. R. Rao, "Overview of the H.264/MPEG-4 part 10,"

Journal of Visual Communication and Image Representation, vol. 17, is. 9, pp. 186-216,

Apr. 2006.

78. Fu C-M, et al, Sample Adaptive Offset with LCU- independent decoding, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E049, Geneva, Mar.

2011

79. Fu C-M, et al, Sample adaptive offset in the HEVC standard. IEEE Trans Circuits Systems

Video Technology 22(12):1755–1764.

80. Fu C-M, et al, SAO with LCU-based syntax, Joint Collaborative Team on Video Coding

(JCT-VC), Document JCTVC-H0273, San Jose, Feb. 2012

81. F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and implementation

analysis,” Circuits and Systems for Video Technology, IEEE Transactions, vol. 22, no. 12,

pp. 1685–1696, 2012.

82. HM Test Model documentation: https://hevc.hhi.fraunhofer.de/HM-doc/index.html

83. Downloading CUDA Toolkit https://developer.nvidia.com/cuda-toolkit

http://blog.webmproject.org/
http://www.theora.org/
http://tools.ietf.org/id/draft-grange-vp9-bitstream-00.txt
https://www.xiph.org/daala/
https://www.vcodex.com/
https://hevc.hhi.fraunhofer.de/HM-doc/index.html
https://developer.nvidia.com/cuda-toolkit

84

84. W.-Y. Wei, “Deblocking Algorithms in Video and Image Compression Coding”, National

Taiwan University, Taipei, Taiwan, ROC

85. C-M Fu et al, “Sample Adaptive Offset in the HEVC Standard,” IEEE Trans. on Circuits

and Systems for Video Technology, Vol. 22, pp. 1755-1764, Dec. 2012.

86. Tutorials: https://classroom.udacity.com/me

87. Video Sequences: http://trace.eas.asu.edu/yuv/index.html

https://media.xiph.org/video/derf/

88. Windows Operating System: https://www.microsoft.com/en-us/windows/

https://classroom.udacity.com/me
https://classroom.udacity.com/me
https://classroom.udacity.com/me

85

ACRONYMS

AVC: Advanced Video Coding

API: Application Programming Interface

BO: Band Offset

BBME: Block Based Motion Estimation

BDM: Block Difference Measure

CABAC: Context Adaptive Binary Arithmetic Coding

CBs: coding blocks

CTB: coding tree block

CUDA: Compute Unified Device Architecture

DF: Deblocking Filter

EO: Edge Offset

GPU: Graphics Processing Unit

GPGPU: General-Purpose computing on Graphics Processing Units

GOP: Group of Pictures

KTA: Key Technology Area

HVC: High Performance Video Coding

HEVC: High Efficiency Video Coding

HD: High Definition

ISO: International Standardization Organization

IEC: International Electro-technical Commission

Intra HE: Intra high efficiency

IISc: Indian Institute of Science

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/GPGPU

86

IIT: Indian Institute of Technology

ITU-T: International Telecommunication Union – Telecommunication Standardization Sector.

JCT-VC: Joint Collaborative Team on Video Coding

QP: Quantization Parameter

MBs: Macroblocks

MVC: Multi view video coding

MPEG: Moving Picture Experts Group

PB: Prediction blocks

PUs: Prediction units

SA: Search Area

SAD: Sum of Absolute Differences

SAO: Sample Adaptive Offset

SVC: Scalable Video Coding

TB: Transform blocks

TUs: Transform units

UHD: Ultra-High Definition.

VCEG: Video Coding Experts Group.

87

LIST OF ILLUSTRATIONS

Figure 1.1: Evolution of video coding standards [3] [4] …………………………………………..……11

Figure 1.2: Flow of video coding process…………………………………………………..…………………….14

Figure 1.3: Basic flow of a Video Codec process [75]……………………………….………….…………..14

Figure 1.4: The I-frame, P-frame and B-frames [76]…………………………….……….………………..16

Figure 2.1: 4:2:0, 4:2:2: and 4:4:4 sampling patterns for

Luminance and Chrominance [45]…………………………………………………………..…………………….18

Figure 2.2. HEVC encoder block diagram [12]…………………………………………….…………………..19

Figure 2.3. HEVC decoder block diagram [15]……………………………………… ……………………..…20

Figure 2.4. Subdivision of CTB into TB [12]……………………………………….…………………………….21

Figure 2.5. Different sizes of CTU [17] ………………………………………………………………………...21

Figure 2.6. Intra prediction modes for HEVC [18]……………………………………………………..…….23

Figure 2.7. Intra prediction modes for 4 x 4 blocks in H.264 [20]…..……………………………….23

Figure 2.8. HEVC motion estimation flow [40]…………………………………………..……………………24

Figure 2.9: Illustration of motion estimation process [47]……………………………….…………..…25

Figure 2.10. Multiple frame reference frame motion [26]……………………………………………...26

Figure 2.11. Variable block sizes in motion estimation HEVC [27]……………………………….….26

Figure 2.12: Block artifact may be created when adjacent blocks are predicted from non-

adjacent areas in the reference picture [28]…………………………………………………………………..27

Figure 2.13. Example of block artifact in one dimension [29] ……………………………………...27

Figure 3.1: Decomposition of the problem for serial parts to be executed on CPU

and parallel parts to be executed on the GPU [33] ……………………………………………….……32

88

Figure 3.2: Threads grouped into block [38]…...……………………………………………………………32

Fig. 4.1: Four 1-D directional patterns for EO sample classification: horizontal

(EO class = 0), vertical (EO class = 1), 135° diagonal (EO class = 2), and 45°

diagonal (EO class = 3). [29] ………………………………………………………………………………………...35

Fig. 4.2: Classification of EO based on table 1. Positive offsets for EO categories

1 and 2 and negative offsets for EO categories 3 and 4 result in smoothing [29]……………..36

Figure 4.3: Gibbs Phenomenon where the dotted curve is the original samples

and the solid curves is the reconstructed samples [29]…………………………………………………...37

Figure 4.4: Example of sample distribution in a CTB, where BO send the offsets

of four consecutive bands. [29]……………………………………………………………………………………….38

Figure 4.5. Example of BO, where the dotted curve is the original samples and

the solid curve is the reconstructed samples. [29]…………………………………………………………..39

Figure 4.6: CTU consists of CTBs of three color components, and the current

CTU can reuse SAO parameters of the left or above CTU…………………………………………………40

Figure 4.7: Illustration of coding the rest CTU-level SAO information when the

current CTU is not merged with the left or above CTU…………………………………………………….41

Figure 6.1: The overall parallel scheme of SAO………………………………………………………….47

Figure 6.2: Parallel Algorithm 6(a)…………………………………………………………………………………..49

Figure 6.3: Parallel Algorithm 6(b) ………………………………………………….………………………..50

Figure 6.4: Parallel Algorithm 6(c) ……………………………………………………………………….…...51

Figure 6.5: Parallel Algorithm 6(d) ………………………………………………………………………………52

Figure 6.6: The diagonal parallel algorithm for SAO merging ………………………………………..54

Figure 6.8: Parallel Algorithm 6(f) ……………………………………………………………………………….55

Fig. 7.1 BasketballPass_416x240_50.yuv Original Image……………………………………………… 59

Fig. 7.2 BasketballPass_416x240_50.yuv SAO=0 …………………………………………………………..60

Fig.7.3 BasketballPass_416x240_50.yuv SAO=1…………………………………………………………….60

Fig.7.4 Graphical representation of Time vs QP for BasketballPass…………………………………..60

Fig.7.5 Graphical representation of PSNR vs QP for BasketballPass………………………………….61

89

Fig.7.6 Graphical representation of Time vs QP for RaceHorses………………………………………62

Fig.7.7 Graphical representation of PSNR vs QP for RaceHorses……………………………………..62

Fig.7.8 RaceHorses_832x480_30.yuv Original Image ……………………………………………………63

Fig.7.9 RaceHorses_832x480_30.yuv SAO=0 ………………………………………………………………..64

Fig.7.10 RaceHorses_832x480_30.yuv SAO=1 ………………………………………………………………65

Fig.7.11 Graphical representation of Time vs QP for SlideEditing……………………………………….66

Fig.7.12 Graphical representation of PSNR vs QP for SlideEditing………………………………………67

Fig.7.13 SlideEditing_1280x720_30.yuv Original frame ………….………….………….…….……..…...67

Fig.7.14 SlideEditing_1280x720_30.yuv SAO=0 ………………………………………………………….…….68

Fig.7.15 SlideEditing_1280x720_30.yuv SAO=1 …………………………………………………………….…..68

Figure 7.16 Frame of BasketballPass video sequence using serial algorithm …………………….70

Figure 7.17 Frame of BasketballPass video sequence using parallel algorithm ………………….70

Figure 7.18: Frame of RaceHorses video sequence using serial algorithm ………….………..…..71

Figure 7.19: Frame of RaceHorses video sequence using parallel algorithm ………….………….72

Figure 7.20: Frame from SlideEditing video sequence using serial algorithm………………………73

Figure 7.21: Frame from SlideEditing video sequence using parallel algorithm…………………..73

Figure 7.22: YUV-PSNR Comparison for BasketballPass………………………………………………………74

Figure 7.23: YUV-PSNR Comparison for RaceHorses…………………………………………………………..74

Figure 7.24: YUV-PSNR Comparison for SlideEditing…………………………………………………………..74

Figure 7.25: Encoding time………………………………………………………………………………………………...75

90

List of Tables

Table 2.1: Interpolation taps for HEVC and AVC………………………………………………………………….28

Table 7.1: Encoding time and PSNR of BasketballPass……………………………………….59

Table 7.2: Encoding time and PSNR of RaceHorses …………………………………………………………….60

Table 7.3 Encoding time and PSNR of SlideEditing ……………………………………………………………..64

Table 7.4: Encoding time of BasketballPass using GPUs ……………………………………………………. 65

Table 7.5: Encoding time of RaceHorses using GPUs ………………………………………………………….67

Table 7.6: Encoding time of SideEditing using GPUs …………………………………………………………..68

91

BIOGRAPHICAL INFORMATION

Harsha Nagathihalli Jagadish was born in Bengaluru, Karnataka, India. His Schooling was done in

Florence Public School, Bengaluru. He went on to pursue his Bachelor of Engineering in Electronics and

Communications from B.M.S. Institute of Technology (Affiliated to Visvesvaraya Technological

University).

Previously, he worked as a Programmer Analyst in Cognizant Technology Solutions, Chennai, India from

2014 to 2015. Harsha then enrolled in Masters in Electrical Engineering at the University of Texas at

Arlington in fall 2015. During the course of the Masters he nurtured his skills in the field of Multimedia and

Embedded Systems. He joined Multimedia Processing Lab under the guidance of Dr. K.R. Rao who is

one of the founders of Discrete Cosine Transform (DCT). He also worked as a Graduate Teaching

Assistant under Dr. Rao for Digital Image Processing and Digital Video Coding in Fall 2016 and Spring

2017. Harsha worked with CalAmp as a Software Engineer Intern in Summer 2017 and Fall 2017. His

research activities include areas of both Multimedia and Embedded systems. His recent research

activities include video coding standards, In-loop filters in HEVC, parallel algorithms, GPU based

optimization, CUDA programming, Infotainment and Internet of Things.

