
i

ApproxML: Efficient Approximate Ad-Hoc ML Models

Through Materialization and Reuse

By Faezeh Ghaderi

Supervising Professor: Dr. Gautam Das

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2019

ii

 Copyright © by Faezeh Ghaderi 2019

All Rights Reserved

iii

Acknowledgements

I would like to express my deepest appreciation and gratitude to my Advisor, Dr. Gautam

Das, for giving me the opportunity to work with him and for his constant support and

guidance throughout my Master thesis. I feel extremely honored to be a part of DBXLAB,

where I have had the opportunity to explore new horizons, which I never knew existed. I

am also extremely grateful to Dr. Ramez Elmasri and Dr. Sharma Chakravarthy for

accepting to be on the thesis committee.

I sincerely appreciate the efforts of Ms. Sona Hasani of DBXLAB for her remarkable

guidance and support throughout this project. It was wonderful working with all the

members of the lab throughout my time as a DBXLAB member and I am extremely

grateful for that.

Finally, a huge thank you to my parents and my husband Mahdi for their moral support

and encouragement in the graduation days and also GOD, for his grace in me.

December 3, 2019

iv

Abstract

Machine Learning (ML) has become an essential tool in answering complex predictive

analytic queries. Model building for large scale datasets is one of the most time-

consuming parts of the data science pipeline. Often data scientists are willing to sacrifice

some accuracy in order to speed up this process during the exploratory phase. In this

report, we aim to demonstrate ApproxML, a system that efficiently constructs approximate

ML models for new queries from previously constructed ML models using the concepts

of model materialization and reuse. ApproxML supports a wide variety of ML models such

as generalized linear models for supervised learning and K-Means and Gaussian Mixture

model for unsupervised learning. The Implementation is compatible with different

datasets and ML algorithms, as it is a cost-based optimization framework that identifies

best reuse strategy at query time.

v

Table of Contents

Acknowledgements .. iii

Abstract.. iv

List of Illustrations .. vi

Chapter 1: Introduction ... 8

Chapter 2: Architecture ...10

Chapter 3: Technical Background ...12

2.1. Dataset and queries ...12

3.2. Pre-Materialized Models ...13

3.3. Machine Learning algorithms ..13

3.3.1. K-means ..13

3.3.2. Gaussian Mixture Models (GMM) ...14

3.3.3. Generalized Linear Models (GLM) ...15

Chapter 4: Methodologies ...17

4.1. K-Means ..18

4.1.1. Model Merging ...18

4.2. GMM ..21

4.2.1. Model Merging ...21

4.2.2. Coreset construction for GMM ...23

4.3. Generalized Linear Models (GLM) ...24

4.3.1 Model merging ...24

4.3.2. Coreset construction ..24

4.4. Combining the coreset points ...26

4.5. Optimization Consideration ...27

4.5.1. Choosing ml model to reuse ...27

4.5.2. Selecting Models for Prebuilding ..28

Chapter 5: User interface ..30

5.1. building approximate models ..30

5.2. building partial models ..35

5.3. System Implementation ..36

Chapter 6: Conclusion ... 37

vi

List of Illustrations

Figure 1 System overview ..11

Figure 2 Maximum-margin hyperplane and margins for an SVM trained with samples from two

classes ..16

Figure 3 Merging of K-Means centroids...19

Figure 4 Merging of GMM ...22

Figure 5 Main user interface of ApproxML ...30

Figure 6 ApproxML: building approximate models configuration for flight dataset31

Figure 7 ApproxML: building approximate models configuration for Santander dataset32

Figure 8 ApproxML: results for approximate models ...32

Figure 9 list of prebuilt models in repository ..33

Figure 10 demonstration of prebuilt models in the chart ..34

Figure 11 models have been used in building the specified model ..35

Figure 12 building partial models section ..36

vii

8

 Chapter 1: Introduction

 Machine Learning has undergone a phase transition from a pure academic endeavor to

being one of the main drivers of modern commerce and science. However, when it comes

to very big dataset, the capabilities of statistical machine learning methods are limited by

the computing time rather than the sample size. Even though there has been extensive

work from the ML community on developing faster algorithms, building an ML model is

often a major bottleneck and consumes a lot of time due to the sheer size of the datasets

involved. In this report, the feasibility of building faster ML models for a popular class of

analytic queries has been demonstrated by leveraging two fundamental concepts from

database optimization materialization and reuse [1].

Generally, data science is about analysis of different types of data and one of the most

interesting approaches is ad-hoc analytics on ML models. The process of ad hoc analysis

is to answer one specific business question. This type of analysis may be done in

response to an event, like a decrease in sales. It can provide a report that isn’t part of any

other teams, or it can dig deeper into an existing report to get more detail. This process

consists of retrieving data, building an ML model and using the model for analytic

processing which consumes a large amount of workflow.

The queries in most businesses are usually aligned with the OLAP hierarchies of the

company based on some explicit domain required in the scope of the business for

example regional or monthly queries. On the other hand, ML models in most of

exploratory analysis are one time used, means that a model won’t be reused in other

parts of the queries. With these in mind and the fact that for explanatory models we can

sacrifice a small amount of accuracy, the new method of materialization and reuse of ML

models have been used and implemented.

https://paperpile.com/c/9SOAQM/CQPJ

9

There are two phases in the main workflow. In the first phase which is pre-processing

phase, we store ML models along with a small amount of additional meta-data and

statistics in the repository; During the second phase of runtime phase, we identify the

relevant ML models to reuse and quickly construct an approximate ML model from them

[2]. We selected some ML models based on their popularity among supervised and

unsupervised ML models. In supervised learning, we consider Generalized Linear Models

(GLMs) that subsumes many popular classifiers such as logistic regression and linear

SVMs. In unsupervised learning, we consider two canonical clustering approaches: K-

Means and Gaussian Mixture Models (GMMs).

In the process of storing ML models in the repository, two orthogonal approaches have

been used. In this part, let us briefly explain two different approaches:

• Model Merging:

In this method, after construction of some ML models and storing their metadata in

repository in the pre-processing phase, we select and combine the relevant prebuilt

ML models for specific queries and construct a complete ML model without consuming

time on going back to original data and building the model from scratch in run-time

phase. This approach has a number of appealing properties such as: (a) orders of

magnitude faster than building the model from scratch; (b) provable guarantees on

approximation; (c) minimal sacrifice of model accuracy.

• Coresets:

Coresets are succinct, small summaries of large data sets, so that the solutions

found on the summary are provably competitive with solution found on the full data set

[3]. During the pre-processing phase, one can construct coresets for each pre-built

model. During the run-time phase, we build the ML model from the union of coresets

in a fraction of time.

https://paperpile.com/c/9SOAQM/gHsY
https://paperpile.com/c/9SOAQM/EHs6

10

Chapter 2: Architecture

ApproxML enables the user to build approximate model for popular supervised and

unsupervised ML models for a given analytic query and a set of materialized models.

There are several challenges to tackle in order to build efficient approximate ML models

such as a) If we have access to a set of pre-built models, would it be possible to combine

them in a few milliseconds to construct an approximate model instead of spending

minutes/hours to build a model from scratch? b)How can we efficiently identify the

relevant models among many possible choices? c)What information should be

materialized for each model to make it reusable in future? ApproxML generates

approximate ML models in a two- phase approach. During ”pre-processing phase”, the

model passively stores the ML models built by the data analyst to a model DB along with

small amount of additional meta-data such as the data used and parameters; During the

“run- time phase", for a new query, it identifies the relevant and reusable pre-built ML

models and efficiently constructs an approximate ML model from them. ApproxML offers

two orthogonal methods for generating approximate ML models, a) model merging

approach, and b) coreset-based approach. Figure 1 demonstrates the system overview

of ApproxML.

During the run-time phase, we assume we have access to a repository of the pre-built

models. The user submits an analytic query through the front-end. Front-end will parse

the information about the dataset, the intended ML algorithm, the approximation method

(model merging, coreset-based), etc. and will pass them to the cost-based optimizer in

the back-end. The optimizer will retrieve all pre-built models relevant to the given analytic

query from the pre-built model repository. It will identify which of the retrieved pre-built

models should be reused and what additional partial models have to be built from scratch.

11

Then these partial models are passed to the "Approximate model builder" component to

be combined efficiently to get the final approximate model.

Figure 1 System overview

In the pre-processing phase, a set of models are built and stored in the pre-built model

repository. These models are selected to be reused for the future queries in the best way

using a workload or analytic query logs from the past. To identify the best models to

materialize, first, the list of possible ML models to build for a given workload history is

enumerated. In the next step a greedy algorithm is applied to identify the models with the

highest benefit for the given workload. These selected models are materialized and stored

in the pre-built model repository.

In the pre-processing phase, exact ML models are built for several partitions of data and

their corresponding meta data is stored in a repository. These pre-built models may

contribute to future approximate models. For model merging approach the parameters of

the models are materialized while for coreset-based approach the coresets and their

corresponding weights are recorded. In the model merging scenario for K-means,

ApproxML stores K centroids and the weight associated with each cluster. In GMM, it

stores the mean vector and covariance matrix of each component along with their relative

weights. For Logistic regression it stores the coefficients and for SVM it stores the

coefficients of the separating hyper plane.

12

Chapter 3: Technical Background

In this part, we elaborate the technical background for enabling interactive ad-hoc

analytics on ML models. For a given query among all the dataset, we should know some

definitions about the dataset attribute and different type of queries and basic concepts of

materialization of the models. Some required explanation about ML models that we

implement in this project will be explained below. The used algorithms include K-Means,

Gaussian Mixture Models and Generalized Linear Models.

2.1. Dataset and queries

Let’s say a dataset D consists of n tuples which have d attributes A = {A1, A2, …, Ad}. We

partition the schema A into X and Y where X is the set of predictor/independent attributes

and Y the predicted/dependent attribute(s). The schema also has a set of dimension

attributes Z = {Z1, Z2, …, Zg} that are associated with pre-defined dimensional hierarchies

such as city.

Each tuple ti is also associated with a unique identifier tid that imposes a total ordering in

D. As an example, tid could be an automatically incrementing sequence or timestamp

indicating when the tuple was created.

Query Model: Let q be the analytic query specified on D that returns a result set Dq over

which the ML model is built. We consider the following types of queries that subsumes

most queries used for model building.

• Range based predicate: These queries are specified by an attribute Xi and range

[a, b] such that they filter all tuples with value of Xi falling between a and b.

• Dimension based predicate: These queries filter tuples that have specific values

for one or more dimensional attributes.

13

• Arbitrary Predicates: These queries use complex query predicates (including a

combination of range and dimension based) to select relevant data.

 In this project, based on selected dataset we just focused on the first type, ranged based

predicate.

3.2. Pre-Materialized Models

We denote the exact model built on Dq as M(Dq) while its approximation as M’(Dq). We

assume the availability of pre-materialized exact models {M1,M2, …, MR} built from

previous analytic queries. Each of these models is annotated with relevant information

(such as State = `Texas'). Given an arbitrary query q, let Mq be the set of pre-built models

that could be used to answer it approximately where |Mq| = r.

Example: Consider a database D = {1, … ,1000} where we have a set of built ML models

{M1, … ,M10} over ranges {P1 = [1; 100]; P2 = [101; 200], … , P10 = [901; 1000]}. Given a

query q1 = [101; 500], then Mq1 = {M2, M3, M4, M5}. If necessary, one can build

appropriate models for tuples from Dq for which no pre-built models exist. Given a query

q2 = [51; 550], the set of models to answer them will be Mq2 = {M([51; 100] [501; 550]),

M2, M3, M4, M5}

3.3. Machine Learning algorithms

3.3.1. K-means

K-means clustering is one of the simplest and most popular unsupervised machine

learning algorithms. Typically, unsupervised algorithms make inferences from datasets

using only input vectors without referring to known, or labelled, outcomes[4].

A cluster refers to a collection of data points aggregated together because of certain

similarities. We will define a target number k, which refers to the number of centroids

needed in the dataset. A centroid is the imaginary or real location representing the center

of the cluster. Every data point is allocated to each of the clusters through reducing the

https://paperpile.com/c/9SOAQM/rlmb

14

in-cluster sum of squares. Given a set of points X∈ Rd, the K-Means clustering seeks to

find cluster centers in Rd (centroids) such that the sum of squared errors (SSE) is

minimized. Given a set of data points X and centroids C, the SSE is defined as:

In other words, the K-means algorithm identifies k number of centroids, and then allocates

every data point to the nearest cluster, while keeping the centroids as small as possible.

Clustering with K-Means objective is known to be a NP-Complete problem, there are a

number of efficient heuristics and approximation algorithms. The most popular heuristic

algorithm is Lloyd's algorithm. This algorithm starts with a first group of randomly selected

centroids, which are used as the beginning points for every cluster, and then performs

iterative (repetitive) calculations to optimize the positions of the centroids

It halts creating and optimizing clusters when either:

• The centroids have stabilized, there is no change in their values because the

clustering has been successful.

• The defined number of iterations has been achieved.

3.3.2. Gaussian Mixture Models (GMM)

Gaussian mixture (GM) is defined as a convex combination of Gaussian densities. A

Gaussian density in a d-dimensional space, characterized by its mean m ∈ Rd and d×d

covariance matrix [5].

Gaussian mixture model is parameterized by two types of values, the mixture component

weights, and the component means and variances/covariances. For a Gaussian mixture

model with K components, the kth component has a mean of µk and variance of ∑ for the

univariate case and a vector of mean of μk and covariance matrix of Σk for the multivariate

case. Noted that the total probability distribution normalizes to 1.

https://paperpile.com/c/9SOAQM/IeTm

15

GMMs have been used for feature extraction from speech data and have also been used

extensively in object tracking of multiple objects, where the number of mixture

components and their means predict object locations at each frame in a video sequence.

Suppose we are given a set of d-dimensional data points X = {x1, x2, … , xn}. We fit X as

Gaussian mixture model parameterized by = [(w1, µ1, ∑1), (w2, µ2, ∑2), … , (wk, µk, ∑k),]

where the i-th mixture component is a d-dimensional multivariate Gaussian (wi, µi, ∑i) with

wi being its prior probability. Note that the prior probabilities of the components sum up to

1. Given the data X, GMM estimates the parameters that maximizes the likelihood through

the Expectation-Maximization (EM) algorithm.

3.3.3. Generalized Linear Models (GLM)

Among many classes of GLM we focused on the most popular ones, including logistic

regression (LR) and support vector machines (SVM). Logistic regression method

calculates the probabilities for classification problems with two possible outcomes. It’s an

extension of the linear regression model for classification problems. Instead of fitting a

straight line or hyperplane (in linear regression model), the logistic regression model uses

the logistic function to squeeze the output of a linear equation between 0 and 1. The

logistic function is defined as:

Logistic regression is the appropriate regression analysis to conduct when the dependent

variable is binary. Like all regression analyses, logistic regression is a predictive analysis.

SVM is a supervised machine learning algorithm which can be used for classification or

regression problems. In this project, we'll focus on using SVM for classification. A

hyperplane is a line that splits the input variable space. In SVM, a hyperplane is selected

to best separate the points in the input variable space by their class, either class 0 or

16

class 1. In two-dimensions you can visualize this as a line and let’s assume that all our

input points can be completely separated by this line.

The distance between the line and the closest data points is referred to as the margin.

The best or optimal line that can separate the two classes is the line that as the largest

margin. This is called the Maximal-Margin hyperplane.

The margin is calculated as the perpendicular distance from the line to only the closest

points. Only these points are relevant in defining the line and in the construction of the

classifier. These points are called the support vectors. They support or define the

hyperplane (Figure 2).

Figure 2 Maximum-margin hyperplane and margins for an SVM trained with samples from two classes

While we restrict our attention to popular supervised ML models, we would like to note

that our methods described in this section can be easily adapted for other GLMs such as

linear regression and other log-linear models.

17

 Chapter 4: Methodologies

In this part, we will elaborate the main idea of implementation Approximation ML models.

It consists of two main types: approximation by model merging and approximation by

coreset points.

In model merging, we merge prebuilt (exact) ML models for a query and the result will

approximate the exact model which is built for that query. The advantage is that we can

generate a model without retrieving the data. Suppose we have data D and the exact ML

model M(D). we have also n number of pre-built models for a specific algorithm in range

of D, which are needed to be merged and generate an approximation of M(D). For each

algorithm, the relevant parameters of pre-built models must be materialized. The models

are used and merged with help of reusing the parameters which have been stored in the

repository. Each algorithm has its own method for merging pre-built models which will be

elaborated later in this chapter.

When we want to train the model on a smaller number of data points, we can candidate

a portion of the original points that can provide accurate enough model compared to the

model built from scratch. The candidate points and their associated weights should be

selected in a way that the model which is built on top of them have enough accuracy.

A coreset is a weighted subset of the data such that an ML model built on the coreset

very closely approximates one built on the entire data [6]. Specifically, a weighted set C

is said to be a coreset for dataset D, if where

corresponds to the objective function of a model - such as Sum of Squared Errors (SSE)

for K-Means. The SSE for the cluster centroids obtained by running K-Means algorithm

on the coreset is within a factor of (1 + 𝜀) of SSE obtained by running K-Means on the

entire data.

For selecting the coreset points, the natural approach of uniform sampling often does not

work well in practice or requires very large sample size for sufficient approximation. So,

https://paperpile.com/c/9SOAQM/bDnS

18

for each ML algorithm, we explain the method than can be leveraged to get the best points

as the data points coresets.

Coresets are a natural solution to the problem of obtaining ML models with tunable

approximation – by varying the value of epsilon (), we can achieve coresets with higher

or lower approximation. Naturally, lower requires a larger size coreset.

These two approaches enable a data analyst to tradeoff performance and model

approximation. The merging-based approach is often extremely fast but does not provide

tunable approximation of the objective function. On the other hand, the coreset based

approach might take more time (though much less than re-training from scratch) but is

more flexible and allows one to approximate the objective function within a factor of (1+ 𝜀)

of SSE obtained by running K-Means on the entire data.

4.1. K-Means

4.1.1. Model Merging

Given an arbitrary query q, our objective is to efficiently output K centroids Cq such that

SSE for Cq is close to SSE of Cq where Cq is the set of centroids obtained by running K-

Means algorithm from scratch on the entire Dq. We seek to do this by only using the

information (Mi) - the cluster centroids and the number of data points assigned to it. K-

Means++ [4] is one of the most popular algorithms for solving K-Means clustering. It

augments the classical Lloyd's algorithm with a careful randomized seeding procedure

and results in O(logK) approximation guarantee.

Due to its simplicity and speed, K-Means++ has become the default algorithm of choice

for K-Means clustering. Hence, we assume that all the cluster centroids were

obtained through the K-Means++ algorithm. Let Cw represent the union of all cluster

centroids from all the models Mi Mq. As before, if there were some tuples in Dq that were

not covered by models Mq, one can readily run K-Means on those tuples and add those

cluster centroids to Cw. For each centroid cj Cw, we assign the number of data points

https://paperpile.com/c/9SOAQM/rlmb

19

associated with it in the original partition as its weight w(j). We then run the weighted

variant of K-Means++ algorithm on Cw and return the K cluster centroids as the output. If

the centroids were obtained using some other algorithm, our algorithm proposed below

still works as an effective heuristic but does not provide any provable approximation

guarantees. Algorithm 1 provides the pseudocode of the approach while Figure 3

provides an illustration. The time complexity of the algorithm is to store the cluster

centroids for each of the partition which is O(Kd) in which k is the number of clusters and

d is the number of features of dataset..

Figure 3 Merging of K-Means centroids

4.1.2. coreset approximation

Coresets are compact representations of data sets and models trained on a coreset

points are provably competitive with models trained on the full data set. The coreset

construction is based on important sampling. Let q(x) be any probability distribution on X

and Q any set of k centers in Rd. Then the quantization error may be rewritten as:

20

The quantization error can hence be approximated by sampling m points from X using

q(x) and assigning them weights inversely proportional to q(x). Olivier Bachem et.al.

suggested the following proposal distribution [7]:

 The resulting coreset construction is provided as pseudo code in Algorithm 2 and is

extremely simple and practical: One calculates the mean of the data and then uses it to

compute the importance sampling distribution q(x). Finally, m points are sampled with

probability q(x) from X and assigned the weight 1/(m·q(x)). The algorithm only requires

two full passes through the data set resulting in a total computational complexity of O(nd).

There is no additional linear dependence on the number of clusters k as in previous

constructions which is crucial in the setting where k is even moderately large.

https://paperpile.com/c/9SOAQM/rrjF

21

4.2. GMM

4.2.1. Model Merging

In this part we will discuss about how to merge to models which are GMM type. Given

a query q, we assume the availability of pre-built ML models Mq = M1, …, Mr that are

parameterized by (Mj) = [(wj1, µj1, ∑j1), (wj2, µj2, ∑j2), …, (wjk, µjk, ∑jk)]. We seek to post-

processes the Gaussian mixtures obtained from each partition to approximate the

GMM on Dq. There are totally Kr Gaussian components that we must process to just

K components. The output of GMM is a Gaussian mixture where each Gaussian

distribution in it is parameterized by mean vector, covariance matrix and a prior

probability, so we cannot use the method of model merging for K-Means models which

were parametrized by the vector of centroids. Given a set of data points, GMM works

by estimating the parameters of a Gaussian mixture that maximizes the likelihood.

Instead, we used another approximate method for merging in the easy, yet with a good

enough accuracy as follows: We begin by normalizing the prior probabilities of all the

Gaussian mixtures by wji =wji /Z where . We can consider the problem

of obtaining GMM for Dq as analogous to constructing a mixture of Gaussian mixture

models. This can be achieved by iteratively merging two Gaussian components till

only K of them are left. Algorithm 3 provides the pseudocode and Figure 4 an

illustration.

22

Figure 4 Merging of GMM

Selecting Components to Merge: One of the key steps in Algorithm 3 is the selection

of two Gaussian components to merge. There has been extensive work in statistical

community about appropriate measures to select components for merging [8].

Intuitively, one seeks to select two distributions that are very similar to each other. In

our work, we use the Bhattacharyya dissimilarity measure for this purpose and choose

the pair of components with least distance between them. Given two multivariate

Gaussian distributions N1(µ1, ∑1) and N2(µ2, ∑2), their Bhattacharyya distance is

computed as:

Merging Gaussian Components: Once the two components with the least

Bhattacharyya distance has been identified, we merge them into a single Gaussian

component while taking into account their respective mixing weights, mean vectors

and covariance matrices. Given two multivariate Gaussian distributions N1(µ1, ∑1) and

N2(µ2, ∑2) with mixing weights w1 and w2, the merged component is described by

N(µ,∑) with mixing weights w where,

https://paperpile.com/c/9SOAQM/aNSn

23

4.2.2. coreset construction for GMM

The method for selecting the candidate points in GMM model is a simple procedure

which iteratively samples a small number of points and removes half of the data set

closest to the sampled points, provides a sufficiently accurate first approximation B for

this purpose. This initial clustering is then used to sample the data points comprising

coreset C according to probabilities which are roughly proportional to the squared

distance to the set B. This non-uniform random sampling can be understood as an

importance-weighted estimate of the log-likelihood L(Dj), where the weights are

optimized in order to reduce the variance[9]. The pseudocode for obtaining the

approximation B, and for using it to obtain coreset C is given in Algorithm 4. This

algorithm can be achieved in O(ndk).

https://paperpile.com/c/9SOAQM/oqEL

24

4.3. Generalized Linear Models (GLM)

4.3.1 Model merging

Algorithm 4 shows the pseudocode for the approach. Given a set of pre-built ML

models, we average their corresponding model parameters and return that as the

model Mq. This surprisingly simple algorithm works extremely well for most ML models

and especially so for GLMs[2]. This approach can be considered as analogous to

distributed statistical inference where we partition the data into a number of chunks,

build optimal models for each individually and then in a single round of communication

average the parameters.

4.3.2. Coreset construction

For Logistic regression :

In logistic regression, the covariates are real feature vectors Xn 𝜖 RD, the observations

are labels , and the likelihood is defined as:

Huggins has designed coreset construction algorithm and proved its correctness using

a quantity σn(θ) called the sensitivity [3], which quantifies the redundancy of a

particular data point n. the larger the sensitivity, the less redundant. In the setting of

logistic regression, we have that the sensitivity is

https://paperpile.com/c/9SOAQM/gHsY
https://paperpile.com/c/9SOAQM/EHs6

25

Intuitively, σn(θ) captures how much influence data point n has on the log-likelihood

Ln(θ) when varying the parameter 𝜃𝜖𝜗 , and thus data points with high sensitivity

should be included in the coreset. Evaluating σn(𝜗) exactly is not tractable, however,

so an upper bound mn ≥ σn(𝜗) must be used in its place. Thus, the key challenge is

to efficiently compute a tight upper bound on the sensitivity. The upper bound of

sensitivity for any k clustering is proven to be:

Which can be calculated in O(k) time. The size of the coreset depends on the mean

sensitivity bound, the desired error. Combining these pieces we obtain Algorithm 5,

which constructs an 𝜀-coreset.

For svm:

The algorithm is based on the idea that for any given dataset P, we assign an

importance 𝛾(pi) to each data point pi and then sample from the dataset according to

the multinomial distribution emerging from this procedure. The crucial insight to this

method is how we assign the importance. In particular, we use an over approximation

of the sensitivity s(pi) of each point, i.e., 𝛾(pi), to assign importance, which are obtained

from the analysis from the previous section. Following the sampling of points, we

26

further assign weights u(pi) to each data points, which are proportional to the number

of times the point has been sampled.

 The overall method to compute the desired coreset is outlined in Algorithm 6. Given

a set of input data P, an error parameter 𝜀, and the desired failure probability 𝛿, the

algorithm returns an 𝜀 -coreset (S, u) from the query space F with probability at least

1- 𝛿 . In Line 2 we compute the importance of a point, i.e., the upper bound on the

sensitivity s(pi) of a point pi. In Line 4, we compute the necessary number of samples

to include in (S, u), and we then sample from the resulting multinomial distribution,

see Line 5. More details are in [10].

4.4. Combining the coreset points

Our approach consists of two phases. In the pre-processing phase, we compute C

coreset points for each of the pre-built models. In the runtime phase, we identify the

set of partitions Pq that could be used to answer q. We construct a coreset for all the

tuples that were not covered by pre-existing partitions. For combining the points,

coreset compression method is implemented. We select the topmost weighted points

from each partition is selected and the number of points is proportional to the number

https://paperpile.com/c/9SOAQM/mulN

27

of data points which has been used for the model construction to the total number of

data points in all the partitions. Finally, we do a union of all the relevant coresets and

run an appropriate ML model on it and provide the resulting model as an

approximation. Noted that in this method the final number of coreset points after

combination will be C.

4.5. Optimization Consideration

4.5.1. Choosing ml model to reuse

After building the pre-process models and store them in the repository, we need to

identify an optimal execution strategy. In other words, we need to build an approximate

ML model efficiently from set of materialized models and an analytic query.

We formulate the problem of finding the optimal execution strategy as finding the

shortest path in a graph with minimum weight. Our approach involves three steps.

First, we retrieve a set of materialized models that can be used to answer q. A model

built on [lb0, ub0] is considered relevant if it is a subset of q = [lb, ub]. For example, for

q = [250K, 1M], the model M1= [1, 100] is not relevant. Second, we collect the set of

distinct lb, ub values from the relevant models including q. As an example, it will be V

= {250K, 300K, 500K, 900K, 1M}. Third, we construct an execution strategy graph - a

weighted, directed and complete graph - that succinctly encodes all possible execution

strategies to solve q. We build two graphs - one to identify the best execution strategy

using the coreset approach and another for the merging approach. Informally, each of

the distinct lb, ub values collected in Step 2 form the nodes. A directed edge eij exists

between nodes vi and vj if vi < vj . If there exists a model with lb and ub corresponding

to vi and vj , then weight(eij) = CMerge(vi , vj). This corresponds to the cost of directly

using this model. If not, weight(eij) = CBuild([250K, 300K]) for the merging approach and

weight(eij) = Ccoreset([250K, 300K]) for coreset based approach. This corresponds to

the cost of directly building an ML model for this range or building a coreset for this

range and building an ML model over the coreset. Once the graph is constructed, the

minimum cost execution strategy can be obtained by identifying the shortest path

28

between the nodes corresponding to lb and ub - say by using Dijkstra's algorithm.

Each edge eij = (vi, vj) in the shortest path either corresponds to a pre-existing ML

model built on (vi, vj) or requires one to build one between (vi, vj). Algorithm 7 provides

the pseudocode for this approach.

4.5.2. Selecting Models for Prebuilding

Suppose we are given a set of queries Q that is representative of the ad-hoc analytic

queries that could be issued in the future. These could be obtained from a workload

or analytic query logs from the past. In this subsection, we consider the problem of

selecting L models to materialize so as to maximize the number of queries in Q that

can be speed up through model reuse. We then briefly discuss the case where

workload Q is not available. We address this problem in two stages. In the candidate

generation step, we enumerate the list of possible ML models to build. In the candidate

selection step, we propose a metric to evaluate the utility of selecting a model and use

it to pick the best L models.

Candidate Generation: Given a workload Q = {q1 = [lb1; ub1], q2 = [lb2; ub2] , … qM

= [lbM, ubM]} , our objective is to come up with L ranges such that they could be used

to answer Q. Note that we are not limited to selecting ranges from Q. As an example,

one could identify a sub-range that is contained in multiple queries to materialize. We

generate the set of candidate models as follows. First, we select the list of all distinct

29

lb, ub values. We then consider all possible ranges (l, u) such that l < u and there

exists at least one query in Q that contains the range (l, u). This ensures that we

consider all possible ranges that could be reused to answer at least one query in Q.

Candidate Selection: In this step, we design a simple cost metric to compare two sets

of candidate models. We can see that the cost of not materializing any model is

equivalent to the traditional approach of building everything from scratch. So, we

have . This gives us a natural method to evaluate a

candidate set. We assume the availability of the corresponding models and compute

the cost of answering Q. We use Algorithm 7 to estimate the optimal cost of building

a given query. The difference between Cost({}) and Cost({ri1, ri2 , …}) provides the

utility of choosing models ri1 , ri2 , … to materialize. Given this setup, one can use a

greedy strategy to select the L models with highest utility. At each iteration, we pick a

range ri such that it provides the largest reduction in cost of answering all queries in

Q. If the workload information is not available, one could use some simple strategies

to choose which models to materialize.

The equi-width strategy creates L partitions by splitting the range [1, n] into L equal

sized parts. For example, if one of the dimensions is Country, then one could choose

to pre-build models for the L largest countries.

30

Chapter 5: User interface

As it is shown in Fig. 5, the user interface of ApproxML consists of two main sections:

building partial models and building approximate models. Each section is described in

detail as follows.

Figure 5 Main user interface of ApproxML

5.1. building approximate models

In this section the user can submit an analytic query and customize the following options

for approximate ML model.

Dataset: The user will select a dataset in this section. Each dataset based on the

datatypes and labels is assigned to a suitable ML model category i.e. classification and

clustering. For any selected dataset, appropriate query range options for customizing the

query becomes available. For example for Flights dataset, the user can customize the

analytic query range by specifying the FROM and TO parameters with min and max of 1

and 365, respectively, as day of the year (Figure 6).

31

Figure 6 ApproxML: building approximate models configuration for flight dataset

ML algorithm: The user can choose between Logistic Regression and Linear SVM for

classification task and K-means and Gaussian Mixture Model for clustering task. If

clustering option is chosen, the number of clusters should be specified as well.

 Approximation method: The user has the option to select between the approximate and

exact models. If she chooses the exact solution, the entire data for the given analytic

query will be retrieved from the selected dataset, and the exact model will be built on the

entire data from scratch. If Approx-merging or Approx-coreset-construction is selected,

the user can then choose between model merging and coreset-based methods. Model

merging/Coreset-based: Based on the user's input in this section, the approximate model

will be built using either model merging or the coreset-based methods. If coreset-based

method is chosen, a coreset size should also be selected. Figure 4 shows the

configuration for building a K-means clustering model on the Flight (Clustering) dataset

using exact and coreset-based approach with coreset size of 200 for the data between 1

and 365. As another example, Figure 7 illustrates the configuration panel for building an

SVM classifier on Santander (Classification) dataset using the data from 5.43 to 17.00

through a model merging approach and exact model.

32

Figure 7 ApproxML: building approximate models configuration for Santander dataset

Functionalities:

There is a total of 6 option that can be selected after setting the criteria. The first one is

for ‘building models’ based on the range and criteria selected in previous paragraphs. In

the results section of ApproxML, quantitative measures of the generated ML model are

reported to the user. For classifier, accuracy as well as time of building the model are

reported to the user. In clustering scenario, accuracy in terms of Adjusted Rand Index

(ARI) and likelihood are shown for K-means and GMM respectively. Figure 8 illustrates

an example for the result, when all the options for approximation method have been

selected.

Figure 8 ApproxML: results for approximate models

33

The second option is ‘dataset info’ which shows general information about the dataset

selected.

The ‘existing model’ option demonstrate a table containing all the prebuilt models that

have been built between the range selected in the configuration and their meta data exists

in the repository. The table shows important information about the data such as ML model

information as well as date and time of their generation (Fig. 9).

Figure 9 list of prebuilt models in repository

The prebuilt models in the repository can be visually demonstrated in another option of

Model Chart. As it is shown in Figure 10, the horizontal axis represents the selected

feature of the dataset and the models have been built in the different ranges are colored

blocks in the specified ranges. Each ML algorithm has its own color. By moving the curser

on each block, it will show the information including ML algorithm and the range of that

block.

34

Figure 10 demonstration of prebuilt models in the chart

In the graph show option, the user can see which pre-built models are retrieved from the

pre-built model repository and reused for this particular approximate ML model. Figure 8

shows an example of graph for an ApproxML system. As it is explained in the legend,

each color of the edges and nodes have a specific meaning. The colored edges are

selected among all the edges with the shortest path methods (Dijkstra in our project) and

building the model on the query from 2.87 to 11.55 will have minimum cost with the

colored path illustrated in figure 11.

35

Figure 11 models have been used in building the specified model

5.2. building partial models

In this section, the user can select a dataset, method of approximation and customize the

parameters of an ML model. There are three different way for setting the partitions that

models will be built on top of them. These three ways are : workload, partition and range.

User can select workload and upload the workload file of desired ranges for model

construction. The data is then retrieved from the dataset, partitioned into optimum

partitions, the exact model is built for each partition, and the corresponding meta data for

the models are saved in the ML model repository. For partition section the user selects

the number of partitions k. Data will be divided into k equal partitions and exact model is

built for each partition, and the corresponding meta data for the models are saved in the

ML model repository. For range section, range of one partition in the slide bar can be

selected. The exact model is built for the partition, and the corresponding meta data for

the model are saved in the ML model repository. Figure 12 shows an example of this

section.

36

Figure 12 building partial models section

5.3. System Implementation

ApproxML's backend is implemented in Python 3.6. Scikit- Learn (version 0.19.1) was

used to train the ML models. Pandas library was used to save the query results in data

frames. We used Flask for session management and database connection tools.

Datasets: For classification, we used Santander datasets from the UCL repository which

includes 10500 rows and 200 features and Flight dataset with one attribute as a label.

For evaluating clustering algorithms, we used Flight dataset with 580000 rows and 32

features.

37

Chapter 6: Conclusion

We demonstrate ApproxML, a system that efficiently constructs approximate ML models

for new queries from previously constructed ML models by leveraging the concepts of

model materialization and reuse. In order to generate approximate ML models, ApproxML

takes a two-phase approach. In the pre-processing phase it partitions the data and builds

exact ML models on each partition and stores their meta data in a pre-built model

repository. During the run-time phase, it reuses the pre-built models and combines them

efficiently to create an approximate model for a new analytic query.

38

Reference :

1. Hasani S, Ghaderi F, Hasan S, Thirumuruganathan S, Asudeh A, Koudas N, et al. ApproxML:
Efficient Approximate Ad-Hoc ML Models Through Materialization and Reuse. Proceedings
VLDB Endowment. 12. Available: http://www.vldb.org/pvldb/vol12/p1906-hasani.pdf

2. Hasani S, Thirumuruganathan S, Asudeh A, Koudas N, Das G. Efficient Construction of
Approximate Ad-hoc ML Models Through Materialization and Reuse. Proceedings VLDB
Endowment. 2018;11: 1468–1481.

3. Huggins J, Campbell T, Broderick T. Coresets for scalable Bayesian logistic regression.
Advances in Neural Information Processing Systems. 2016. pp. 4080–4088.

4. Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding. Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics; 2007. pp. 1027–1035.

5. Verbeek JJ, Vlassis N, Kröse B. Efficient greedy learning of gaussian mixture models. Neural
Comput. 2003;15: 469–485.

6. Agarwal PK, Har-Peled S, Varadarajan KR. Geometric approximation via coresets.
Combinatorial and computational geometry. 2005;52: 1–30.

7. Bachem O, Lucic M, Krause A. Scalable K -Means Clustering via Lightweight Coresets.
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. New York, NY, USA: ACM; 2018. pp. 1119–1127.

8. Hennig C. Methods for merging Gaussian mixture components. Adv Data Anal Classif. 2010;4:
3–34.

9. Feldman D, Faulkner M, Krause A. Scalable Training of Mixture Models via Coresets. In:
Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in Neural
Information Processing Systems 24. Curran Associates, Inc.; 2011. pp. 2142–2150.

10. Baykal C, Liebenwein L, Schwarting W. Training Support Vector Machines using Coresets.
arXiv [cs.DS]. 2017. Available: http://arxiv.org/abs/1708.03835

http://paperpile.com/b/9SOAQM/CQPJ
http://paperpile.com/b/9SOAQM/CQPJ
http://paperpile.com/b/9SOAQM/CQPJ
http://www.vldb.org/pvldb/vol12/p1906-hasani.pdf
http://paperpile.com/b/9SOAQM/gHsY
http://paperpile.com/b/9SOAQM/gHsY
http://paperpile.com/b/9SOAQM/gHsY
http://paperpile.com/b/9SOAQM/EHs6
http://paperpile.com/b/9SOAQM/EHs6
http://paperpile.com/b/9SOAQM/rlmb
http://paperpile.com/b/9SOAQM/rlmb
http://paperpile.com/b/9SOAQM/rlmb
http://paperpile.com/b/9SOAQM/IeTm
http://paperpile.com/b/9SOAQM/IeTm
http://paperpile.com/b/9SOAQM/bDnS
http://paperpile.com/b/9SOAQM/bDnS
http://paperpile.com/b/9SOAQM/rrjF
http://paperpile.com/b/9SOAQM/rrjF
http://paperpile.com/b/9SOAQM/rrjF
http://paperpile.com/b/9SOAQM/aNSn
http://paperpile.com/b/9SOAQM/aNSn
http://paperpile.com/b/9SOAQM/oqEL
http://paperpile.com/b/9SOAQM/oqEL
http://paperpile.com/b/9SOAQM/oqEL
http://paperpile.com/b/9SOAQM/mulN
http://paperpile.com/b/9SOAQM/mulN
http://arxiv.org/abs/1708.03835

