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Abstract 

 

Machine Learning (ML) has become an essential tool in answering complex predictive 

analytic queries. Model building for large scale datasets is one of the most time-

consuming parts of the data science pipeline. Often data scientists are willing to sacrifice 

some accuracy in order to speed up this process during the exploratory phase. In this 

report, we aim to demonstrate ApproxML, a system that efficiently constructs approximate 

ML models for new queries from previously constructed ML models using the concepts 

of model materialization and reuse. ApproxML supports a wide variety of ML models such 

as generalized linear models for supervised learning and K-Means and Gaussian Mixture 

model for unsupervised learning. The Implementation is compatible with different 

datasets and ML algorithms, as it is a cost-based optimization framework that identifies 

best reuse strategy at query time. 
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 Chapter 1: Introduction 
 

 Machine Learning has undergone a phase transition from a pure academic endeavor to 

being one of the main drivers of modern commerce and science. However, when it comes 

to very big dataset, the capabilities of statistical machine learning methods are limited by 

the computing time rather than the sample size. Even though there has been extensive 

work from the ML community on developing faster algorithms, building an ML model is 

often a major bottleneck and consumes a lot of time due to the sheer size of the datasets 

involved. In this report, the feasibility of building faster ML models for a popular class of 

analytic queries has been demonstrated by leveraging two fundamental concepts from 

database optimization materialization and reuse [1]. 

Generally, data science is about analysis of different types of data and one of the most 

interesting approaches is ad-hoc analytics on ML models. The process of ad hoc analysis 

is to answer one specific business question. This type of analysis may be done in 

response to an event, like a decrease in sales. It can provide a report that isn’t part of any 

other teams, or it can dig deeper into an existing report to get more detail. This process 

consists of retrieving data, building an ML model and using the model for analytic 

processing which consumes a large amount of workflow. 

The queries in most businesses are usually aligned with the OLAP hierarchies of the 

company based on some explicit domain required in the scope of the business for 

example regional or monthly queries. On the other hand, ML models in most of 

exploratory analysis are one time used, means that a model won’t be reused in other 

parts of the queries. With these in mind and the fact that for explanatory models we can 

sacrifice a small amount of accuracy, the new method of materialization and reuse of ML 

models have been used and implemented.  

https://paperpile.com/c/9SOAQM/CQPJ
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There are two phases in the main workflow. In the first phase which is pre-processing 

phase, we store ML models along with a small amount of additional meta-data and 

statistics in the repository; During the second phase of runtime phase, we identify the 

relevant ML models to reuse and quickly construct an approximate ML model from them 

[2]. We selected some ML models based on their popularity among supervised and 

unsupervised ML models. In supervised learning, we consider Generalized Linear Models 

(GLMs) that subsumes many popular classifiers such as logistic regression and linear 

SVMs. In unsupervised learning, we consider two canonical clustering approaches: K-

Means and Gaussian Mixture Models (GMMs). 

In the process of storing ML models in the repository, two orthogonal approaches have 

been used. In this part, let us briefly explain two different approaches: 

• Model Merging: 

In this method, after construction of some ML models and storing their metadata in 

repository in the pre-processing phase, we select and combine the relevant prebuilt 

ML models for specific queries and construct a complete ML model without consuming 

time on going back to original data and building the model from scratch in run-time 

phase. This approach has a number of appealing properties such as: (a) orders of 

magnitude faster than building the model from scratch; (b) provable guarantees on 

approximation; (c) minimal sacrifice of model accuracy. 

• Coresets: 

Coresets are succinct, small summaries of large data sets, so that the solutions 

found on the summary are provably competitive with solution found on the full data set 

[3]. During the pre-processing phase, one can construct coresets for each pre-built 

model. During the run-time phase, we build the ML model from the union of coresets 

in a fraction of time. 

  

 

 

https://paperpile.com/c/9SOAQM/gHsY
https://paperpile.com/c/9SOAQM/EHs6
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Chapter 2: Architecture 
 

 

ApproxML enables the user to build approximate model for popular supervised and 

unsupervised ML models for a given analytic query and a set of materialized models. 

There are several challenges to tackle in order to build efficient approximate ML models 

such as a) If we have access to a set of pre-built models, would it be possible to combine 

them in a few milliseconds to construct an approximate model instead of spending 

minutes/hours to build a model from scratch? b)How can we efficiently identify the 

relevant models among many possible choices? c)What information should be 

materialized for each model to make it reusable in future? ApproxML generates 

approximate ML models in a two- phase approach. During ”pre-processing phase”, the 

model passively stores the ML models built by the data analyst to a model DB along with 

small amount of additional meta-data such as the data used and parameters; During the 

“run- time phase", for a new query, it identifies the relevant and reusable pre-built ML 

models and efficiently constructs an approximate ML model from them. ApproxML offers 

two orthogonal methods for generating approximate ML models, a) model merging 

approach, and b) coreset-based approach. Figure 1 demonstrates the system overview 

of ApproxML. 

During the run-time phase, we assume we have access to a repository of the pre-built 

models. The user submits an analytic query through the front-end. Front-end will parse 

the information about the dataset, the intended ML algorithm, the approximation method 

(model merging, coreset-based), etc. and will pass them to the cost-based optimizer in 

the back-end. The optimizer will retrieve all pre-built models relevant to the given analytic 

query from the pre-built model repository. It will identify which of the retrieved pre-built 

models should be reused and what additional partial models have to be built from scratch. 
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Then these partial models are passed to the "Approximate model builder" component to 

be combined efficiently to get the final approximate model. 

 

 
Figure 1  System overview 

In the pre-processing phase, a set of models are built and stored in the pre-built model 

repository. These models are selected to be reused for the future queries in the best way 

using a workload or analytic query logs from the past. To identify the best models to 

materialize, first, the list of possible ML models to build for a given workload history is 

enumerated. In the next step a greedy algorithm is applied to identify the models with the 

highest benefit for the given workload. These selected models are materialized and stored 

in the pre-built model repository. 

In the pre-processing phase, exact ML models are built for several partitions of data and 

their corresponding meta data is stored in a repository. These pre-built models may 

contribute to future approximate models. For model merging approach the parameters of 

the models are materialized while for coreset-based approach the coresets and their 

corresponding weights are recorded. In the model merging scenario for K-means, 

ApproxML stores K centroids and the weight associated with each cluster. In GMM, it 

stores the mean vector and covariance matrix of each component along with their relative 

weights. For Logistic regression it stores the coefficients and for SVM it stores the 

coefficients of the separating hyper plane.  
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Chapter 3: Technical Background 
 

In this part, we elaborate the technical background for enabling interactive ad-hoc 

analytics on ML models. For a given query among all the dataset, we should know some 

definitions about the dataset attribute and different type of queries and basic concepts of 

materialization of the models. Some required explanation about ML models that we 

implement in this project will be explained below. The used algorithms include K-Means, 

Gaussian Mixture Models and Generalized Linear Models. 

2.1. Dataset and queries 

Let’s say a dataset D consists of n tuples which have d attributes A = {A1, A2, …, Ad}. We 

partition the schema A into X and Y where X is the set of predictor/independent attributes 

and Y the predicted/dependent attribute(s). The schema also has a set of dimension 

attributes Z = {Z1, Z2, …, Zg} that are associated with pre-defined dimensional hierarchies 

such as city. 

Each tuple ti is also associated with a unique identifier tid that imposes a total ordering in 

D. As an example, tid could be an automatically incrementing sequence or timestamp 

indicating when the tuple was created. 

Query Model: Let q be the analytic query specified on D that returns a result set Dq over 

which the ML model is built. We consider the following types of queries that subsumes 

most queries used for model building. 

• Range based predicate: These queries are specified by an attribute Xi and range 

[a, b] such that they filter all tuples with value of Xi falling between a and b. 

• Dimension based predicate: These queries filter tuples that have specific values 

for one or more dimensional attributes. 
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• Arbitrary Predicates: These queries use complex query predicates (including a 

combination of range and dimension based) to select relevant data. 

 In this project, based on selected dataset we just focused on the first type, ranged based 

predicate. 

3.2. Pre-Materialized Models 

We denote the exact model built on Dq as M(Dq) while its approximation as M’( Dq). We 

assume the availability of pre-materialized exact models {M1,M2, …, MR} built from 

previous analytic queries. Each of these models is annotated with relevant information 

(such as State = `Texas'). Given an arbitrary query q, let Mq be the set of pre-built models 

that could be used to answer it approximately where |Mq| = r. 

Example: Consider a database D = {1, … ,1000} where we have a set of built ML models 

{M1, … ,M10} over ranges {P1 = [1; 100]; P2 = [101; 200], … , P10 = [901; 1000]}. Given a 

query q1 = [101; 500], then Mq1 = {M2, M3, M4, M5}. If necessary, one can build 

appropriate models for tuples from Dq for which no pre-built models exist. Given a query 

q2 = [51; 550], the set of models to answer them will be Mq2 = {M([51; 100]  [501; 550]), 

M2, M3, M4, M5} 

3.3. Machine Learning algorithms 

3.3.1. K-means 

K-means clustering is one of the simplest and most popular unsupervised machine 

learning algorithms. Typically, unsupervised algorithms make inferences from datasets 

using only input vectors without referring to known, or labelled, outcomes[4]. 

A cluster refers to a collection of data points aggregated together because of certain 

similarities. We will define a target number k, which refers to the number of centroids 

needed in the dataset. A centroid is the imaginary or real location representing the center 

of the cluster. Every data point is allocated to each of the clusters through reducing the 

https://paperpile.com/c/9SOAQM/rlmb


14 
 

in-cluster sum of squares. Given a set of points X∈ Rd, the K-Means clustering seeks to 

find cluster centers in Rd (centroids) such that the sum of squared errors (SSE) is 

minimized. Given a set of data points X and centroids C, the SSE is defined as: 

 

In other words, the K-means algorithm identifies k number of centroids, and then allocates 

every data point to the nearest cluster, while keeping the centroids as small as possible. 

Clustering with K-Means objective is known to be a NP-Complete problem, there are a 

number of efficient heuristics and approximation algorithms. The most popular heuristic 

algorithm is Lloyd's algorithm. This algorithm starts with a first group of randomly selected 

centroids, which are used as the beginning points for every cluster, and then performs 

iterative (repetitive) calculations to optimize the positions of the centroids 

It halts creating and optimizing clusters when either: 

•      The centroids have stabilized, there is no change in their values because the 

clustering has been successful. 

• The defined number of iterations has been achieved.  

 

3.3.2. Gaussian Mixture Models (GMM) 

Gaussian mixture (GM) is defined as a convex combination of Gaussian densities. A 

Gaussian density in a d-dimensional space, characterized by its mean m ∈ Rd and d×d 

covariance matrix [5]. 

Gaussian mixture model is parameterized by two types of values, the mixture component 

weights, and the component means and variances/covariances. For a Gaussian mixture 

model with K components, the kth component has a mean of µk and variance of ∑ for the 

univariate case and a vector of mean of μk and covariance matrix of Σk for the multivariate 

case. Noted that the total probability distribution normalizes to 1. 

https://paperpile.com/c/9SOAQM/IeTm
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GMMs have been used for feature extraction from speech data and have also been used 

extensively in object tracking of multiple objects, where the number of mixture 

components and their means predict object locations at each frame in a video sequence. 

Suppose we are given a set of d-dimensional data points X = {x1, x2, … , xn}. We fit X as 

Gaussian mixture model parameterized by  = [(w1, µ1, ∑1), (w2, µ2, ∑2), … , (wk, µk, ∑k),] 

where the i-th mixture component is a d-dimensional multivariate Gaussian (wi, µi, ∑i) with 

wi being its prior probability. Note that the prior probabilities of the components sum up to 

1. Given the data X, GMM estimates the parameters that maximizes the likelihood through 

the Expectation-Maximization (EM) algorithm. 

3.3.3. Generalized Linear Models (GLM) 

Among many classes of GLM we focused on the most popular ones, including logistic 

regression (LR) and support vector machines (SVM). Logistic regression method 

calculates the probabilities for classification problems with two possible outcomes. It’s an 

extension of the linear regression model for classification problems. Instead of fitting a 

straight line or hyperplane (in linear regression model), the logistic regression model uses 

the logistic function to squeeze the output of a linear equation between 0 and 1. The 

logistic function is defined as: 

 

Logistic regression is the appropriate regression analysis to conduct when the dependent 

variable is binary. Like all regression analyses, logistic regression is a predictive analysis. 

SVM is a supervised machine learning algorithm which can be used for classification or 

regression problems. In this project, we'll focus on using SVM for classification. A 

hyperplane is a line that splits the input variable space. In SVM, a hyperplane is selected 

to best separate the points in the input variable space by their class, either class 0 or 
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class 1. In two-dimensions you can visualize this as a line and let’s assume that all our 

input points can be completely separated by this line. 

The distance between the line and the closest data points is referred to as the margin. 

The best or optimal line that can separate the two classes is the line that as the largest 

margin. This is called the Maximal-Margin hyperplane. 

The margin is calculated as the perpendicular distance from the line to only the closest 

points. Only these points are relevant in defining the line and in the construction of the 

classifier. These points are called the support vectors. They support or define the 

hyperplane (Figure 2). 

 

Figure 2  Maximum-margin hyperplane and margins for an SVM trained with samples from two classes 

While we restrict our attention to popular supervised ML models, we would like to note 

that our methods described in this section can be easily adapted for other GLMs such as 

linear regression and other log-linear models. 
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 Chapter 4: Methodologies 

In this part, we will elaborate the main idea of implementation Approximation ML models. 

It consists of two main types: approximation by model merging and approximation by 

coreset points. 

In model merging, we merge prebuilt (exact) ML models for a query and the result will 

approximate the exact model which is built for that query. The advantage is that we can 

generate a model without retrieving the data. Suppose we have data D and the exact ML 

model M(D). we have also n number of pre-built models for a specific algorithm in range 

of D, which are needed to be merged and generate an approximation of M(D). For each 

algorithm, the relevant parameters of pre-built models must be materialized. The models 

are used and merged with help of reusing the parameters which have been stored in the 

repository. Each algorithm has its own method for merging pre-built models which will be 

elaborated later in this chapter. 

When we want to train the model on a smaller number of data points, we can candidate 

a portion of the original points that can provide accurate enough model compared to the 

model built from scratch. The candidate points and their associated weights should be 

selected in a way that the model which is built on top of them have enough accuracy.    

A coreset is a weighted subset of the data such that an ML model built on the coreset 

very closely approximates one built on the entire data [6]. Specifically, a weighted set C 

is said to be a coreset for dataset D, if  where  

corresponds to the objective function of a model - such as Sum of Squared Errors (SSE) 

for K-Means. The SSE for the cluster centroids obtained by running K-Means algorithm 

on the coreset is within a factor of (1 + 𝜀 ) of SSE obtained by running K-Means on the 

entire data. 

For selecting the coreset points, the natural approach of uniform sampling often does not 

work well in practice or requires very large sample size for sufficient approximation. So, 

https://paperpile.com/c/9SOAQM/bDnS
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for each ML algorithm, we explain the method than can be leveraged to get the best points 

as the data points coresets. 

Coresets are a natural solution to the problem of obtaining ML models with tunable 

approximation – by varying the value of epsilon (), we can achieve coresets with higher 

or lower approximation. Naturally, lower requires a larger size coreset. 

These two approaches enable a data analyst to tradeoff performance and model 

approximation. The merging-based approach is often extremely fast but does not provide 

tunable approximation of the objective function. On the other hand, the coreset based 

approach might take more time (though much less than re-training from scratch) but is 

more flexible and allows one to approximate the objective function within a factor of (1+ 𝜀) 

of SSE obtained by running K-Means on the entire data.  

4.1.  K-Means  

4.1.1. Model Merging 

Given an arbitrary query q, our objective is to efficiently output K centroids Cq such that 

SSE for Cq is close to SSE of Cq where Cq is the set of centroids obtained by running K-

Means algorithm from scratch on the entire Dq. We seek to do this by only using the 

information (Mi) - the cluster centroids and the number of data points assigned to it. K-

Means++ [4] is one of the most popular algorithms for solving K-Means clustering. It 

augments the classical Lloyd's algorithm with a careful randomized seeding procedure 

and results in O(logK) approximation guarantee. 

Due to its simplicity and speed, K-Means++ has become the default algorithm of choice 

for K-Means clustering. Hence, we assume that all the cluster centroids were 

obtained through the K-Means++ algorithm. Let Cw represent the union of all cluster 

centroids from all the models Mi  Mq. As before, if there were some tuples in Dq that were 

not covered by models Mq, one can readily run K-Means on those tuples and add those 

cluster centroids to Cw. For each centroid cj  Cw, we assign the number of data points 

https://paperpile.com/c/9SOAQM/rlmb
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associated with it in the original partition as its weight w(j). We then run the weighted 

variant of K-Means++ algorithm on Cw and return the K cluster centroids as the output. If 

the centroids were obtained using some other algorithm, our algorithm proposed below 

still works as an effective heuristic but does not provide any provable approximation 

guarantees. Algorithm 1 provides the pseudocode of the approach while Figure 3 

provides an illustration. The time complexity of the algorithm is to store the cluster 

centroids for each of the partition which is O(Kd) in which k is the number of clusters and 

d is the number of features of dataset.. 

  

 

Figure 3 Merging of K-Means centroids 

  

4.1.2. coreset approximation 

Coresets are compact representations of data sets and models trained on a coreset 

points are provably competitive with models trained on the full data set. The coreset 

construction is based on important sampling. Let q(x) be any probability distribution on X 

and Q any set of k centers in Rd. Then the quantization error may be rewritten as: 
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The quantization error can hence be approximated by sampling m points from X using 

q(x) and assigning them weights inversely proportional to q(x). Olivier Bachem et.al. 

suggested the following proposal distribution [7]: 

 

 The resulting coreset construction is provided as pseudo code in Algorithm 2 and is 

extremely simple and practical: One calculates the mean of the data and then uses it to 

compute the importance sampling distribution q(x). Finally, m points are sampled with 

probability q(x) from X and assigned the weight 1/(m·q(x)). The algorithm only requires 

two full passes through the data set resulting in a total computational complexity of O(nd). 

There is no additional linear dependence on the number of clusters k as in previous 

constructions which is crucial in the setting where k is even moderately large. 

 

 

 

https://paperpile.com/c/9SOAQM/rrjF
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4.2. GMM 

4.2.1. Model Merging 

In this part we will discuss about how to merge to models which are GMM type. Given 

a query q, we assume the availability of pre-built ML models Mq = M1, …, Mr that are 

parameterized by (Mj) = [(wj1, µj1, ∑j1), (wj2, µj2, ∑j2), …, (wjk, µjk, ∑jk)]. We seek to post-

processes the Gaussian mixtures obtained from each partition to approximate the 

GMM on Dq. There are totally Kr Gaussian components that we must process to just 

K components. The output of GMM is a Gaussian mixture where each Gaussian 

distribution in it is parameterized by mean vector, covariance matrix and a prior 

probability, so we cannot use the method of model merging for K-Means models which 

were parametrized by the vector of centroids. Given a set of data points, GMM works 

by estimating the parameters of a Gaussian mixture that maximizes the likelihood. 

Instead, we used another approximate method for merging in the easy, yet with a good 

enough accuracy as follows: We begin by normalizing the prior probabilities of all the 

Gaussian mixtures by wji =wji /Z where . We can consider the problem 

of obtaining GMM for Dq as analogous to constructing a mixture of Gaussian mixture 

models. This can be achieved by iteratively merging two Gaussian components till 

only K of them are left. Algorithm 3 provides the pseudocode and Figure 4 an 

illustration. 
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Figure 4 Merging of GMM  

Selecting Components to Merge: One of the key steps in Algorithm 3 is the selection 

of two Gaussian components to merge. There has been extensive work in statistical 

community about appropriate measures to select components for merging [8]. 

Intuitively, one seeks to select two distributions that are very similar to each other. In 

our work, we use the Bhattacharyya dissimilarity measure for this purpose and choose 

the pair of components with least distance between them. Given two multivariate 

Gaussian distributions N1(µ1, ∑1) and N2(µ2, ∑2), their Bhattacharyya distance is 

computed as: 

 

Merging Gaussian Components: Once the two components with the least 

Bhattacharyya distance has been identified, we merge them into a single Gaussian 

component while taking into account their respective mixing weights, mean vectors 

and covariance matrices. Given two multivariate Gaussian distributions N1(µ1, ∑1) and 

N2(µ2, ∑2) with mixing weights w1 and w2, the merged component is described by 

N(µ,∑) with mixing weights w where, 

https://paperpile.com/c/9SOAQM/aNSn
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4.2.2.  coreset construction for GMM 

The method for selecting the candidate points in GMM model is a simple procedure 

which iteratively samples a small number of points and removes half of the data set 

closest to the sampled points, provides a sufficiently accurate first approximation B for 

this purpose. This initial clustering is then used to sample the data points comprising 

coreset C according to probabilities which are roughly proportional to the squared 

distance to the set B. This non-uniform random sampling can be understood as an 

importance-weighted estimate of the log-likelihood L(Dj), where the weights are 

optimized in order to reduce the variance[9]. The pseudocode for obtaining the 

approximation B, and for using it to obtain coreset C is given in Algorithm 4. This 

algorithm can be achieved in O( ndk). 

 

https://paperpile.com/c/9SOAQM/oqEL
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4.3. Generalized Linear Models (GLM) 

4.3.1  Model merging  

Algorithm 4 shows the pseudocode for the approach. Given a set of pre-built ML 

models, we average their corresponding model parameters and return that as the 

model Mq. This surprisingly simple algorithm works extremely well for most ML models 

and especially so for GLMs[2]. This approach can be considered as analogous to 

distributed statistical inference where we partition the data into a number of chunks, 

build optimal models for each individually and then in a single round of communication 

average the parameters. 

 

4.3.2. Coreset construction  

For Logistic regression : 

In logistic regression, the covariates are real feature vectors Xn 𝜖 RD, the observations 

are labels  , and the likelihood is defined as: 

 

Huggins has designed coreset construction algorithm and proved its correctness using 

a quantity σn(θ) called the sensitivity [3], which quantifies the redundancy of a 

particular data point n. the larger the sensitivity, the less redundant. In the setting of 

logistic regression, we have that the sensitivity is 

 

https://paperpile.com/c/9SOAQM/gHsY
https://paperpile.com/c/9SOAQM/EHs6
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Intuitively, σn(θ) captures how much influence data point n has on the log-likelihood 

Ln(θ) when varying the parameter 𝜃𝜖𝜗 , and thus data points with high sensitivity 

should be included in the coreset. Evaluating σn( 𝜗)  exactly is not tractable, however, 

so an upper bound mn ≥ σn(𝜗 )  must be used in its place. Thus, the key challenge is 

to efficiently compute a tight upper bound on the sensitivity. The upper bound of 

sensitivity for any k clustering is proven to be: 

 

Which can be calculated in O(k) time. The size of the coreset depends on the mean 

sensitivity bound, the desired error. Combining these pieces we obtain Algorithm 5, 

which constructs an  𝜀-coreset. 

 

  

For svm: 

The algorithm is based on the idea that for any given dataset P, we assign an 

importance 𝛾(pi) to each data point pi and then sample from the dataset according to 

the multinomial distribution emerging from this procedure. The crucial insight to this 

method is how we assign the importance. In particular, we use an over approximation 

of the sensitivity s(pi) of each point, i.e., 𝛾(pi), to assign importance, which are obtained 

from the analysis from the previous section. Following the sampling of points, we 
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further assign weights u(pi) to each data points, which are proportional to the number 

of times the point has been sampled. 

 The overall method to compute the desired coreset is outlined in Algorithm 6. Given 

a set of input data P, an error parameter 𝜀, and the desired failure probability 𝛿, the 

algorithm returns an  𝜀 -coreset (S, u) from the query space F with probability at least 

1- 𝛿 . In Line 2 we compute the importance of a point, i.e., the upper bound on the 

sensitivity s(pi) of a point pi. In Line 4, we compute the necessary number of samples 

to include in (S, u), and we then sample from the resulting multinomial distribution, 

see Line 5. More details are in [10]. 

 

 

 

4.4. Combining the coreset points  

Our approach consists of two phases. In the pre-processing phase, we compute C 

coreset points for each of the pre-built models. In the runtime phase, we identify the 

set of partitions Pq that could be used to answer q. We construct a coreset for all the 

tuples that were not covered by pre-existing partitions. For combining the points, 

coreset compression method is implemented. We select the topmost weighted points 

from each partition is selected and the number of points is proportional to the number 

https://paperpile.com/c/9SOAQM/mulN
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of data points which has been used for the model construction to the total number of 

data points in all the partitions. Finally, we do a union of all the relevant coresets and 

run an appropriate ML model on it and provide the resulting model as an 

approximation. Noted that in this method the final number of coreset points after 

combination will be C. 

4.5. Optimization Consideration 

4.5.1. Choosing ml model to reuse 

 

After building the pre-process models and store them in the repository, we need to 

identify an optimal execution strategy. In other words, we need to build an approximate 

ML model efficiently from set of materialized models and an analytic query. 

We formulate the problem of finding the optimal execution strategy as finding the 

shortest path in a graph with minimum weight. Our approach involves three steps. 

First, we retrieve a set of materialized models that can be used to answer q. A model 

built on [lb0, ub0] is considered relevant if it is a subset of q = [lb, ub]. For example, for 

q = [250K, 1M], the model M1= [1, 100] is not relevant. Second, we collect the set of 

distinct lb, ub values from the relevant models including q. As an example, it will be V 

= {250K, 300K, 500K, 900K, 1M}. Third, we construct an execution strategy graph - a 

weighted, directed and complete graph - that succinctly encodes all possible execution 

strategies to solve q. We build two graphs - one to identify the best execution strategy 

using the coreset approach and another for the merging approach. Informally, each of 

the distinct lb, ub values collected in Step 2 form the nodes. A directed edge eij exists 

between nodes vi and vj if vi < vj . If there exists a model with lb and ub corresponding 

to vi and vj , then weight(eij) = CMerge(vi , vj). This corresponds to the cost of directly 

using this model. If not, weight(eij) = CBuild([250K, 300K]) for the merging approach and 

weight(eij) = Ccoreset([250K, 300K]) for coreset based approach. This corresponds to 

the cost of directly building an ML model for this range or building a coreset for this 

range and building an ML model over the coreset. Once the graph is constructed, the 

minimum cost execution strategy can be obtained by identifying the shortest path 
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between the nodes corresponding to lb and ub - say by using Dijkstra's algorithm. 

Each edge eij = (vi, vj) in the shortest path either corresponds to a pre-existing ML 

model built on (vi, vj) or requires one to build one between (vi, vj). Algorithm 7 provides 

the pseudocode for this approach.  

  

  

4.5.2. Selecting Models for Prebuilding 

 

Suppose we are given a set of queries Q that is representative of the ad-hoc analytic 

queries that could be issued in the future. These could be obtained from a workload 

or analytic query logs from the past. In this subsection, we consider the problem of 

selecting L models to materialize so as to maximize the number of queries in Q that 

can be speed up through model reuse. We then briefly discuss the case where 

workload Q is not available. We address this problem in two stages. In the candidate 

generation step, we enumerate the list of possible ML models to build. In the candidate 

selection step, we propose a metric to evaluate the utility of selecting a model and use 

it to pick the best L models. 

Candidate Generation: Given a workload Q = {q1 = [lb1; ub1], q2 = [lb2; ub2] , …  qM 

= [lbM, ubM]} , our objective is to come up with L ranges such that they could be used 

to answer Q. Note that we are not limited to selecting ranges from Q. As an example, 

one could identify a sub-range that is contained in multiple queries to materialize. We 

generate the set of candidate models as follows. First, we select the list of all distinct 
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lb, ub values. We then consider all possible ranges (l, u) such that l < u and there 

exists at least one query in Q that contains the range (l, u). This ensures that we 

consider all possible ranges that could be reused to answer at least one query in Q.  

Candidate Selection: In this step, we design a simple cost metric to compare two sets 

of candidate models. We can see that the cost of not materializing any model is 

equivalent to the traditional approach of building everything from scratch. So, we 

have  . This gives us a natural method to evaluate a 

candidate set. We assume the availability of the corresponding models and compute 

the cost of answering Q. We use Algorithm 7 to estimate the optimal cost of building 

a given query. The difference between Cost({}) and Cost({ri1, ri2 , …}) provides the 

utility of choosing models ri1 , ri2 , … to materialize. Given this setup, one can use a 

greedy strategy to select the L models with highest utility. At each iteration, we pick a 

range ri such that it provides the largest reduction in cost of answering all queries in 

Q. If the workload information is not available, one could use some simple strategies 

to choose which models to materialize. 

The equi-width strategy creates L partitions by splitting the range [1, n] into L equal 

sized parts. For example, if one of the dimensions is Country, then one could choose 

to pre-build models for the L largest countries.  
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Chapter 5: User interface  

As it is shown in Fig. 5, the user interface of ApproxML consists of two main sections: 

building partial models and building approximate models. Each section is described in 

detail as follows. 

 

Figure 5 Main user interface of ApproxML  

5.1. building approximate models 

In this section the user can submit an analytic query and customize the following options 

for approximate ML model. 

Dataset: The user will select a dataset in this section. Each dataset based on the 

datatypes and labels is assigned to a suitable ML model category i.e. classification and 

clustering. For any selected dataset, appropriate query range options for customizing the 

query becomes available. For example for Flights dataset, the user can customize the 

analytic query range by specifying the FROM and TO parameters with min and max of 1 

and 365, respectively, as day of the year (Figure 6). 
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Figure 6 ApproxML: building approximate models configuration for flight dataset  

ML algorithm: The user can choose between Logistic Regression and Linear SVM for 

classification task and K-means and Gaussian Mixture Model for clustering task. If 

clustering option is chosen, the number of clusters should be specified as well. 

 Approximation method: The user has the option to select between the approximate and 

exact models. If she chooses the exact solution, the entire data for the given analytic 

query will be retrieved from the selected dataset, and the exact model will be built on the 

entire data from scratch. If Approx-merging or Approx-coreset-construction is selected, 

the user can then choose between model merging and coreset-based methods. Model 

merging/Coreset-based: Based on the user's input in this section, the approximate model 

will be built using either model merging or the coreset-based methods. If coreset-based 

method is chosen, a coreset size should also be selected. Figure 4 shows the 

configuration for building a K-means clustering model on the Flight (Clustering) dataset 

using exact and coreset-based approach with coreset size of 200 for the data between 1 

and 365. As another example, Figure 7 illustrates the configuration panel for building an 

SVM classifier on Santander (Classification) dataset using the data from 5.43 to 17.00 

through a model merging approach and exact model. 
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Figure 7 ApproxML: building approximate models configuration for Santander dataset 

Functionalities: 

There is a total of 6 option that can be selected after setting the criteria. The first one is 

for ‘building models’ based on the range and criteria selected in previous paragraphs. In 

the results section of ApproxML, quantitative measures of the generated ML model are 

reported to the user. For classifier, accuracy as well as time of building the model are 

reported to the user. In clustering scenario, accuracy in terms of Adjusted Rand Index 

(ARI) and likelihood are shown for K-means and GMM respectively. Figure 8 illustrates 

an example for the result, when all the options for approximation method have been 

selected. 

 

Figure 8 ApproxML: results for approximate models 
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The second option is ‘dataset info’ which shows general information about the dataset 

selected.  

The ‘existing model’ option demonstrate a table containing all the prebuilt models that 

have been built between the range selected in the configuration and their meta data exists 

in the repository. The table shows important information about the data such as ML model 

information as well as date and time of their generation (Fig. 9).  

 

Figure 9 list of prebuilt models in repository 

The prebuilt models in the repository can be visually demonstrated in another option of 

Model Chart. As it is shown in Figure 10, the horizontal axis represents the selected 

feature of the dataset and the models have been built in the different ranges are colored 

blocks in the specified ranges. Each ML algorithm has its own color. By moving the curser 

on each block, it will show the information including ML algorithm and the range of that 

block.   
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Figure 10 demonstration of prebuilt models in the chart 

  

In the graph show option, the user can see which pre-built models are retrieved from the 

pre-built model repository and reused for this particular approximate ML model. Figure 8 

shows an example of graph for an ApproxML system. As it is explained in the legend, 

each color of the edges and nodes have a specific meaning. The colored edges are 

selected among all the edges with the shortest path methods (Dijkstra in our project) and 

building the model on the query from 2.87 to 11.55 will have minimum cost with the 

colored path illustrated in figure 11. 
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Figure 11 models have been used in building the specified model 

5.2. building partial models 

In this section, the user can select a dataset, method of approximation and customize the 

parameters of an ML model. There are three different way for setting the partitions that 

models will be built on top of them. These three ways are : workload, partition and range. 

User can select workload and upload the workload file of desired ranges for model 

construction. The data is then retrieved from the dataset, partitioned into optimum 

partitions, the exact model is built for each partition, and the corresponding meta data for 

the models are saved in the ML model repository. For partition section the user selects 

the number of partitions k. Data will be divided into k equal partitions and exact model is 

built for each partition, and the corresponding meta data for the models are saved in the 

ML model repository. For range section, range of one partition in the slide bar can be 

selected. The exact model is built for the partition, and the corresponding meta data for 

the model are saved in the ML model repository.  Figure 12 shows an example of this 

section. 
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Figure 12 building partial models section 

5.3. System Implementation 

ApproxML's backend is implemented in Python 3.6. Scikit- Learn (version 0.19.1) was 

used to train the ML models. Pandas library was used to save the query results in data 

frames. We used Flask for session management and database connection tools. 

Datasets: For classification, we used Santander datasets from the UCL repository which 

includes 10500 rows and 200 features and Flight dataset with one attribute as a label. 

For evaluating clustering algorithms, we used Flight dataset with 580000 rows and 32 

features.  
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Chapter 6: Conclusion 
 

We demonstrate ApproxML, a system that efficiently constructs approximate ML models 

for new queries from previously constructed ML models by leveraging the concepts of 

model materialization and reuse. In order to generate approximate ML models, ApproxML 

takes a two-phase approach. In the pre-processing phase it partitions the data and builds 

exact ML models on each partition and stores their meta data in a pre-built model 

repository. During the run-time phase, it reuses the pre-built models and combines them 

efficiently to create an approximate model for a new analytic query. 
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