

Pain Management in Nursing Homes

Sachin Shrestha, RN, MSN, FNP-BC

Acknowledgements

- Faculty Project Advisor: Donna Hamby DNP, RN, APRN, ACNP-BC
- Statistician: Richard E. Gilder, RN-BC, MS

Background

- Universal human experience 5th vital sign (McCaffery, 1999)
- Pain management a national epidemic (IOM, 2011)
 - Leading cause of disability
 - Annual cost = \$ 635 billion
 - Affects > 100 million adults in the U.S., mostly elderly
 - 1.4 million older adults reside in nursing homes
 - Over 85% of nursing home residents experience pain regularly (Atkinson, 2013)
 - Pain under-assessed, under-treated, under-managed in nursing homes (Parker, 2013)

Gap Analysis

- Hydrocodone changed to Schedule II on October 6, 2014
- Challenge for healthcare providers in nursing homes
- Patients transferred from other healthcare facilities without triplicates for Schedule II medications.
- Pharmacist unable to dispense Sch II Rx without a triplicate
- Physicians make 1 or 2 visits to nursing homes per week
- Patients suffer until seen by their physician
- Pain protocol using Buprenorphine Transdermal System (BTDS)

Reasons of

GAP

Promises do no Match Actual

Delivery

Literature Review

- Pharmacokinetics and pharmacodynamics of BTDS
 - Buprenorphine semisynthetic opioid
 - \triangleright Partial μ and δ receptor agonist
 - Partial κ receptor antagonist
 - Half-life of 32 hours sustained analgesia
 - Metabolized in liver and primarily excreted in feces (Pergolizzi et al., 2015)
- Randomized controlled trials (RCTs)
- Non-RCTs, longitudinal, observational studies
- Somatic, nociceptive, neuropathic, cancer pain, mixed pain
- Efficacy, tolerability, and safety of BTDS

Literature Review

Therapeutic Efficacy

Statistical significant result for BTDS patch compared to Hydrocodone, Oxycodone, MS Contin, Percocet, and Fentanyl patch (Leng et al., 2015; Gordon et al., 2015)

al.,2010; Steiner et al.,2011, Miller et al.,2013)

Tolerability

- Fewer nausea, vomiting, and constipation.
- Minimal withdrawal effect and adverse site reaction

(Ripa et al., 2012; Wolff et al., 2012; Conaghan et al., 2011)

Safety

- No dosage adjustment needed in elderly
- Ceiling effect for respiratory depression at lower dosages
- No potential for drug abuse
- Suitable for renal impairments and hemodialysis

(Mitra et al., 2013; Pergolizzi et al., 2015)

Framework ***

❖ The IOWA Model of Evidence-Based Practice

- Dr. Marita Titler, 1994
- Assessment of problem
 - ✓ Clinical versus knowledge deficit issue
- Priority for organization
- Review of literature
- Synthesize and critique findings
- Conduct pilot study
- Appraise the feasibility to implement results
- Implement the change
- Evaluate the outcomes

Inquiry Question

In nursing home patients admitted with moderate to severe pain, what is the effect of a pain protocol compared to the usual standard of care on pain scores during a four-month period?

Methods

Project Design

- > Pre-test, intervention, and post-test design
- ➤ Pain scores for admission, 48 hours, 72 hours, week 1, week 2, and week 3 were compared and analyzed.

Setting

- Nursing home
- ➤ Non-probability sample of convenience

Population

- ➤ Inclusion Criteria: Patients requiring Sch II pain Rx with moderate to severe pain
- >Exclusion Criteria: COPD, ILD, neuropathy, cancer patients

xplain and use 0-	-10 scale for po	atient	self-assessm	ent.		or be	ehavioral obser er pain intensity	vation	s to interpret	ехр	ressed pain
	0	1	2	3	4	5	6	7	8	9	10
Verbal descriptor scale	No pain	· La	Mild pain	- !	Moderate pain	J	Moderate pain		Severe pain		Worst pain possible
Wong-Baker facial grimace scale	(§)		9,6		60		60		66		30
	Alert sm i ing		No humor serious flat		Furrowed brow pursed lips breath holding		Wrinkled nose raised upper lips rapid breathing	_	Slow blink open mouth		Eyes closed moening crying
Activity tolerance scale	No pain		Can be ignored		Interferes with tasks		Interferes with concentration	1000	terferes with asic needs		Bedrest required

- Internal consistency with Cronbach's α coefficients from 0.85 to 0.89.
- **❖** Test-retest reliability ranged from 0.57 to 0.83
- Scales were found to be valid according to the factor analysis (Herr, Spratt, Mobily, & Richardson, 2004).

Data Collection

Data Collection

- Nurses recorded the pain scores in the electronic health record (EHR) every shift and every time a pain medication was given.
- Patient's unique ID, age, gender, ethnicity, diagnosis, and pain scores were recorded in the Excel Spreadsheet
- Patients were divided into two broad categories chronic pain group and post-operative pain group
- Information transferred to Statistical Package for the Social Science (SPSS) for data analysis

Data Analysis

- Descriptive statistics such as frequency, mean, median, range, and standard deviation were used to compute age and pain scores.
- Non-parametric Independent Samples Kruskal-Wallis test was used to determine the significance of difference between the pain scores.
- Post-hoc analysis was conducted to analyze the statistical difference among the various pain scores.
- The level of significance was set at 0.05 (95%).
- All analyses were performed for total sample, chronic pain group, and postoperative pain group.

Total Sample: 94 Chronic Pain: 53

Post-Operative Pain: 41

Maximum	BTDS Dosage	Frequency (Patients)	Percent	Valid Percent	Cumulative Percent
	5 mcg/hr	3	3.2	3.2	3.2
	10 mcg/hr	73	77.7	77.7	80.9
	15 mcg/hr	18	19.1	19.1	100.0
	Total	94	100.0	100.0	

Frequency of maximum dose of BTDS used

BTDS Titrated at	Frequency (Patients)	Percent	Valid Percent	Cumulative Percent
48 hrs	62	66	66	66
48 hrs and 1 week	13	13.8	13.8	79.8
48 hrs and 72 hrs	4	4.3	4.3	84.1
72 hrs	10	10.6	10.6	94.7
72 hrs and 2 week	2	2.1	2.1	96.8
None	3	3.2	3.2	100.0
Total	94	100.0	100.0	

Titration of BTDS at various points on timeline

Frequency of Adjunct Pain Medications Used

Total Sample

Chronic Pain Group

Post-Operative Pain Group

Discussion

- Mean pain scores at admission, 48 hrs, 72 hrs, week 1, week 2, and week 3 were 8.3, 4.77, 3.47, 2.73, 1.9, and 1.72 respectively
- 42.5% pain improvement in 48 hrs and 58.1% in 72 hrs
- Frequency of adjunct medication used went down by 38% between 48 hours to 72 hours
- 2 or less adjunct medications used per day after 72 hrs.
- Only 3 patients complained of nausea and 1 had constipation.
- Validated the findings of review of literature about the efficacy, safety, and tolerability of BTDS.

Limitations

- Small sample size
 - Increased the risk of Type II error
 - Result not generalizable to larger population
- Staff turn over
- Change in the ownership of the facility
- Findings only limited to chronic pain and post-operative pain

Implications

Theoretical implication

Gate control theory of pain – controlling pain by regulating opioid receptors

Clinical implication

- BTDS can be safely and effectively substituted for Schedule II pain medications
- Provides better provision for healthcare providers to manage moderate to severe pain
- Future studies can explore the relationship between BTDS and functional status, fall, sleep, quality of life, patient satisfaction

Conclusion

- Pain management in nursing home is a non-trivial problem
- Protocol based pain management with BTDS provided adequate and sustained pain relief among patients with chronic and postoperative pain
- BTDS is a safe, effective, and efficient alternative to Schedule II pain medications for managing moderate to severe pain in nursing home patients.

References

Atkinson, T. J., Fudin, J., Pandula, A., & Mirza, M. (2013). Medication pain management in the elderly: unique and underutilized analgesic treatment options. *Clinical therapeutics*, *35*(11), 1669-1689.

Herr, K., Spratt, K., Mobily, P., & Richardson, G. (2004). Pain intensity assessment in older adults: Use of Experimental Pain to Compare Psychometric Properties and Usability of Selected Scales in Adult and Older Populations. Clinical Journal of Pain, 20(4), 207-219.

IOM. (2011). Relieving Pain in America: A Blueprint for Transforming Prevention, Care. *Education, and Research. Washington, DC: Institute of Medicine*.

McCaffery, M., & Pasero, C. (1999). Teaching patients to use a numerical pain-rating scale. *AJN The American Journal of Nursing*, *99*(12), 22.

McCaffery, M., & Pasero, C. (1999). Teaching patients to use a numerical pain-rating scale. *AJN The American Journal of Nursing*, 99(12), 22.

Parker, T. Y. (2013). Management of Chronic Non-malignant Pain in Nursing Homes Residents. *Journal of Student Nursing Research*, *5*(1), 4.

