
0

QUANTIFICATION OF NOCTURNAL BLOOD PRESSURE OSCILLATIONS

IN OBSTRUCTIVE SLEEP APNEA PATIENTS

By

Yao-Shun Chuang

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN BIOMEDICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2020

1

Copyright © by Yao-Shun Chuang 2020

All Rights Reserved

2

ACKNOWLEDGEMENTS

Everything in this world has the meaning from the God’s arrangement. Two years ago, I can’t

imagine I would study abroad, and two years later, I wouldn’t be able to finish this work without the

help from my guide, Dr. Khosrow Behbehani. Dr. Behbehani patiently teaches me all the knowledge,

leads me to think and makes space for me to practice the idea. There wouldn’t exist a way to express

in words how grateful I am because I can’t even begin to explain how much your help meant to me.

Secondly, I want to express my gratitude to the graduate academic advisor, Julie Rockow,

and the administrative assistant, Alicia Gill, in Bioengineering Department because, with their support

and help, I could focus more on the research.

I would not have been able to complete this work without the help, support and love of

almighty God, my parents, my best buddy, Wade Yeh, in Taiwan and my friends in UTA.

June 1, 2020

3

ABSTRACT

QUANTIFICATION OF NOCTURNAL BLOOD PRESSURE OSCILLATIONS

IN OBSTRUCTIVE SLEEP APNEA PATIENTS

Yao-Shun Chuang, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Khosrow Behbehani

An approach to quantifying and analysis of nocturnal blood pressure (BP) variations that are

elicited by sleep-disordered breathing (SDB) is presented. A sample-by-sample aggregation of the

dynamic BP variations during normal breathing and BP oscillations prompted by apnea episodes is

performed. This approach facilitates the visualization and analysis of BP oscillations. Nocturnal BP

oscillations reflect the cardiovascular stresses that SDB mediates and may be of clinical significance.

Preliminary results from an analysis of full night study of 10 SDB subjects (8 Male 2 Female, 53±5.7

yrs., Body Mass Index 34.5±7.8 kg/m2, Apnea-Hypopnea Index 63.5±28.7) are presented. Aggregate

trajectory and quantitative values for changes concomitant with obstructive apnea episodes are

presented for systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood

pressure (MAP) and pulse pressure (PP).

Further, the effect of sleep stages is considered. The results show 17.6 mmHg (13.7%) surge

in SBP and 9.5 mmHg (13.7%) surge in DBP. By computing the MAP and PP, an 11.8 mmHg (13.3%)

and a 9.8 mmHg (16.4%) surge in MAP and PP, respectively, were observed. When compared to

their respective values during normal breathing, SBP, DBP, and PP show significantly different mean

values (p<0.001). Additionally, the peak of the surge in SBP, DBP, and MAP occurred about 7s post

the end of apnea events. This delay is around 8s for PP. Further, the rate of surge in SBP and DBP

due to apnea was estimated by computing the slopes of their rise. They were0.9 mmHg/s and 0.6

4

mmHg/s, respectively. . When computing the surge rate of SBP in various sleep stages, the slopes

were approximately 0.95 mmHg/s, 0.93 mmHg/s, 0.89 mmHg/s and 0.7 mmHg/s for of Stages 1,

2, 3, and REM, respectively. Similar analysis for DBP showed the slopes to be approximately 0.64

mmHg/s, 0.69 mmHg/s, 0.53 mmHg/s and0.39 mmHg/s for Stages 1, 2, 3, and REM, respectively.

The results of this study provide means of quantifying both the rate and the level of nocturnal blood

pressure oscillations.

5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 2

ABSTRACT ... 3

TABLE OF CONTENTS .. 5

LIST OF ILLUSTRATIONS ... 8

LIST OF TABLES ... 13

INTRODUCTION .. 15

1.1. Sleep Apnea .. 15

1.1.1. What is Sleep Apnea? ... 15

1.1.2. Types of Sleep Apnea ... 15

1.1.3. Health Consequences of Obstructive Sleep Apnea .. 16

1.1.4. Detection and Treatment of Sleep Apnea .. 16

1.2. Arterial Blood Pressure.. 17

1.2.1. What is Arterial Blood pressure .. 17

1.2.2. High Blood Pressure .. 17

1.2.3. Relationship between High Blood Pressure and Sleep Apnea 18

1.2.4. Nocturnal Blood Pressure Variations .. 18

1.2.5. Relationship between Nocturnal Blood Pressure and Sleep Apnea 19

1.3. Study Overview and Organization ... 19

1.3.1. Objective of the study .. 19

1.3.2. Thesis Organization ... 19

MATERIALS AND METHODS ... 21

2.1. Non-invasive Blood Pressure Monitoring ... 21

2.2. Blood Pressure Measure and Mode Monitor ... 24

2.3. Subject Demographics .. 25

2.4. Blood Pressure Measurement .. 25

2.4.1. Finger Cuff Positioning .. 26

2.4.2. Applying Heart Reference System... 26

2.4.3. Wrist Unit Placement ... 26

2.5. Data Acquisition .. 27

2.5.1. Computer-Based Data Acquisition Unit .. 27

2.6. Experimental Set Up for Sleep Apnea Subjects .. 28

2.6.1. Experimental Set Up .. 28

6

2.6.2. Apnea Scoring .. 28

2.7. Data Processing ... 29

2.7.1. Meaning of Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood

Pressure, and Pulse Pressure .. 29

2.7.2. Detection of Systolic and Diastolic Blood Pressure .. 30

2.7.3. Removal of Noisy and Calibration from Finapres .. 31

2.7.4. Interpolation of the Blood Pressure Peaks ... 33

2.7.5. Computation of Pulse and Mean Arterial Pressure ... 34

2.7.6. Baseline Calculations .. 34

2.7.7. Segmentation Method of Whole Night Blood Pressure 36

2.7.8. Calculation of Slopes from the Blood Pressure Variation 38

2.7.9. Statistical Analysis .. 39

RESULTS .. 41

3.1. Baseline Effect on Blood Pressure Features ... 41

3.1.1. Systolic Blood Pressure (SBP) ... 41

3.1.2. Diastolic Pressure (DBP) .. 43

3.1.3. Mean Arterial Pressure (MAP) ... 45

3.1.4. Pulse Pressure (PP) .. 46

3.2. Effect of Obstructive Sleep Apnea Episodes on Measures of Blood Pressure 48

3.2.1. Systolic Blood Pressure (SBP) ... 48

3.2.2. Diastolic Blood Pressure (DBP) ... 50

3.2.3. Mean Arterial Pressure (MAP) ... 51

3.2.4. Pulse Pressure (PP) .. 53

3.2.5. Systolic Slope.. 54

3.2.6. Diastolic Slope .. 56

3.3. Comparisons of Blood Pressure Surge during Apnea Episodes in Sleep Stages . 58

3.3.1. Analysis of Systolic Blood Pressure Surges in Various Sleep Stages 58

3.3.2. Analysis of Diastolic Blood Pressure Surges in Various Sleep Stages 68

3.3.3. Analysis of Mean Arterial Blood Pressure Surges in Various Sleep Stages ... 74

3.3.4. Analysis of Pulse Pressure Surges in Various Sleep Stages 77

3.3.5. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages

 80

7

3.3.6. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages

 82

3.4. Subject Time of Sleep Summary ... 84

Discussion and Conclusion ... 87

4.1. Discussion ... 87

4.1.1. Comparison of Aggregated Sleep Apnea Events with the Blood Pressure in

Normal Breathing.. 87

4.1.2. Effect of Sleep Stage on Blood Pressure Surges Elicited by Apnea Events .. 89

4.1.3. Novelty of the Study ... 91

4.2. Conclusion ... 93

4.3. Limitation of Study .. 94

APPENDIX .. 95

A. MATLAB CODE FOR PEAK AND VALLEY DETECTION 95

B. MATLAB CODE FOR REMOVING CALIBRATION .. 99

C. MATLAB CODE FOR COMPUTATION OF PULSE PRESSURE, MEAN

PRESSURE, SLOPES, BASELINE .. 124

D. MATLAB CODE FOR AGGREGATION OF DATA WITHOUT CONSIDERING

SLEEP STAGES .. 128

E. MATLAB CODE FOR AGGREGATION OF DATA CONSIDERING SLEEP

STAGES .. 159

F. ADDITIONAL FUNCTIONS .. 213

REFERENCES ... 273

BIOGRAPHICAL INFORMATION .. 278

8

LIST OF ILLUSTRATIONS

Figure Page

Figure 1.2-1 Blood Pressure Waveform ... 17

Figure 2.1-1 Demonstration of an arterial tonometry device (T-Line, Tensys Medical) [15]. 23

Figure 2.4-1 Application of Heart Reference System ... 26

Figure 2.4-2 Wrist Unit Connection to Monitor and Finger Cuff .. 27

Figure 2.5-1 Connector Block and DAQ ... 28

Figure 2.7-1 Findpeaks Setting Diagram .. 31

Figure 2.7-2 A example of calibration period ... 32

Figure 2.7-3 A example of noisy and calibration; (a) occurred at the beginning in the whole

night recording; (b) (a) occurred at the end in the whole night recording 32

Figure 2.7-4 A example of the distance between each SDB points in a right-skewed

distribution ... 33

Figure 2.7-5 Interpolated Blood Pressure .. 33

Figure 2.7-6 A example for the Baseline collection in sleep stage 2 35

Figure 2.7-7 A selected apnea event with no any other event occurred in the next 30 s 36

Figure 2.7-8 Aggregated all apnea epochs: the dash line represents the end of the apnea

event... 37

Figure 2.7-9 An apnea event in Stage 2 from beginning to the end and away from other

apnea epochs for 30s on both side. .. 38

Figure 2.7-10 Slope calculation for a single event: (a) the duration of the event is less than

30s; (b) the duration of the event is beyond 30s ... 39

Figure 3.1-1 Average SBP distribution of all subjects in normal breathing 42

Figure 3.1-2 Aggregated Baseline of blood pressure signals from all the subjects: (a) SBP

Baseline recordings for each of the 10 subjects; (b) Aggregated SBP

Baseline with 95% confidence interval envelope. ... 43

Figure 3.1-3 Average DBP distribution of all subjects in normal breathing 44

9

Figure 3.1-4 Aggregated Baseline of blood pressure signals from all the subjects: (a) DBP

Baseline recordings for each of the 10 subjects; (b) Aggregated DBP

Baseline with 95% confidence interval envelope. ... 44

Figure 3.1-5 Average MAP distribution of all subjects in normal breathing 46

Figure 3.1-6 Aggregated Baseline of blood pressure signals from all the subjects: (a) MAP

Baseline recordings for each of the 10 subjects; (b) Aggregated MAP

Baseline with 95% confidence interval envelope. ... 46

Figure 3.1-7 Average PP distribution of all subjects in normal breathing 47

Figure 3.1-8 Aggregated Baseline of blood pressure signals from all the subjects: (a) PP

Baseline recordings for each of the 10 subjects; (b) Aggregated PP Baseline

with 95% confidence interval envelope. ... 48

Figure 3.2-1 Aggregated blood pressure oscillations elicited by apnea events: (a) Systolic

blood pressure (SBP) recordings for all analyzed apnea events for all

subjects; (b) Aggregated SBP oscillations elicited by apnea with 95%

confidence interval envelope (shaded area); ... 50

Figure 3.2-2 Aggregated blood pressure oscillations elicited by apnea events: (a) Diastolic

blood pressure (DBP) recordings for all analyzed apnea events for all

subjects; (b) Aggregated DBP oscillations elicited by apnea with 95%

confidence interval envelope (shaded area); ... 51

Figure 3.2-3 Aggregated blood pressure oscillations elicited by apnea events: (a) Mean

arterial pressure (MAP) recordings for all analyzed apnea events for all

subjects; (b) Aggregated MAP oscillations elicited by apnea with 95%

confidence interval envelope (shaded area); ... 53

Figure 3.2-4 Aggregated blood pressure oscillations elicited by apnea events: (a) Pulse

pressure (PP) recordings for all analyzed apnea events for all subjects; (b)

Aggregated PP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 54

Figure 3.2-5 Slope plot in 60 in SBPs; the red cross indicates the value at 30s 56

Figure 3.2-6 Slope plot in 60s in DBP; the red cross indicates the value at 30s 57

Figure 3.3-1 Aggregated blood pressure oscillations elicited by apnea events in Stage 1:

(a) SBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated SBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 60

Figure 3.3-2 Aggregated blood pressure oscillations elicited by apnea events in Stage 2: (c)

SBP recordings for all analyzed apnea events for all subjects; (d)

10

Aggregated SBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 60

Figure 3.3-3 Aggregated blood pressure oscillations elicited by apnea events in Stage 3:

(a) SBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated SBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 60

Figure 3.3-4 Aggregated blood pressure oscillations elicited by apnea events in REM: (a)

SBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated SBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 61

Figure 3.3-5 BP Baseline distribution in each sleep stage in SBP; .. 62

Figure 3.3-6 One-way ANOVA results in SBP Baseline .. 63

Figure 3.3-7 Tukey test result in SBP Baseline ... 64

Figure 3.3-8 peak BP distribution elicited by apnea events in each sleep stage in SBP 66

Figure 3.3-9 One-way ANOVA results in peak SBP elicited by apnea events 67

Figure 3.3-10 Tukey test result in peak SBP elicited by apnea events.................................... 68

Figure 3.3-11 Aggregated blood pressure oscillations elicited by apnea events in Stage 1:

(a) DBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated DBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 69

Figure 3.3-12 Aggregated blood pressure oscillations elicited by apnea events in Stage 2:

(c) DBP recordings for all analyzed apnea events for all subjects; (d)

Aggregated DBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 70

Figure 3.3-13 Aggregated blood pressure oscillations elicited by apnea events in Stage 3:

(a) DBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated DBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 70

Figure 3.3-14 Aggregated blood pressure oscillations elicited by apnea events in REM: (a)

DBP recordings for all analyzed apnea events for all subjects; (b)

Aggregated DBP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 70

Figure 3.3-15 BP Baseline distribution in each sleep stage in DBP ... 72

11

Figure 3.3-16 One-way ANOVA results in DBP Baseline .. 73

Figure 3.3-17 Tukey test result in Stage 1, 2, and REM in DBP Baseline 73

Figure 3.3-18 Aggregated blood pressure oscillations elicited by apnea events in Stage 1:

(a) MAP recordings for all analyzed apnea events for all subjects; (b)

Aggregated MAP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 76

Figure 3.3-19 Aggregated blood pressure oscillations elicited by apnea events in Stage 2:

(c) MAP recordings for all analyzed apnea events for all subjects; (d)

Aggregated MAP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 76

Figure 3.3-20 Aggregated blood pressure oscillations elicited by apnea events in Stage 3:

(a) MAP recordings for all analyzed apnea events for all subjects; (b)

Aggregated MAP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 76

Figure 3.3-21 Aggregated blood pressure oscillations elicited by apnea events in REM: (a)

MAP recordings for all analyzed apnea events for all subjects; (b)

Aggregated MAP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 77

Figure 3.3-22 Aggregated blood pressure oscillations elicited by apnea events in Stage 1:

(a) PP recordings for all analyzed apnea events for all subjects; (b)

Aggregated PP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 78

Figure 3.3-23 Aggregated blood pressure oscillations elicited by apnea events in Stage 2:

(c) PP recordings for all analyzed apnea events for all subjects; (d)

Aggregated PP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 79

Figure 3.3-24 Aggregated blood pressure oscillations elicited by apnea events in Stage 3:

(a) PP recordings for all analyzed apnea events for all subjects; (b)

Aggregated PP oscillations elicited by apnea with 95% confidence interval

envelope (shaded area); ... 79

Figure 3.3-25 Aggregated blood pressure oscillations elicited by apnea events in REM: (a)

PP recordings for all analyzed apnea events for all subjects; (b) Aggregated

PP oscillations elicited by apnea with 95% confidence interval envelope

(shaded area); .. 79

Figure 3.3-26 Slope plot in 60 in SBP in each sleep stages; the red cross indicates the

value at 30s ... 82

12

Figure 3.3-27 Slope plot in 60 in DBP in each sleep stages; the red cross indicates the

value at 30s ... 84

Figure 3.4-1 Subject Time of Sleep Summary n all 10 subjects ... 85

Figure 3.4-2 Aggregate results for sleep stages in all 10 subjects ... 85

Figure 3.4-3 Aggregated result of event distribution in each sleep stage 86

13

LIST OF TABLES

Table Page

Table 1.2-1 Stages of Hypertension .. 18

Table 2.3-1 Subject Demographic ... 25

Table 3.1-1 Subjects information and normal breathing results ... 42

Table 3.1-2 Subjects information and normal breathing results ... 43

Table 3.1-3 Subjects information and normal breathing results ... 45

Table 3.1-4 Subjects information and normal breathing results ... 47

Table 3.2-1 Systolic Blood Pressure Variations .. 49

Table 3.2-2Diastolic Blood Pressure Variations .. 51

Table 3.2-3 Mean Arterial Pressure Variations .. 52

Table 3.2-4 Pulse Pressure Variations ... 54

Table 3.2-5 Slope and intercept values for the surges in SBP during obstructive sleep

apnea events ... 55

Table 3.2-6 Slope and intercept results from sleep apnea events in DBP 56

Table 3.3-1 Quantity of events in each sleep stage .. 58

Table 3.3-2 SBP variation in different sleep stages .. 59

Table 3.3-3 The homogeneity in Stage 1, 2, 3, and REM in SBP Baseline 62

Table 3.3-4 The homogeneity in Stage 1, 2, and REM in SBP Baseline 62

Table 3.3-5 One-way ANOVA Summary in SBP Baseline .. 63

Table 3.3-6 Tukey test summary in SBP Baseline .. 64

Table 3.3-7 P-value of Shapiro-Wilk parametric hypothesis test in peak SBP elicited by

apnea events ... 65

Table 3.3-8 The homogeneity in Stage 1, 2, 3, and REM in peak SBP elicited by apnea

events ... 65

Table 3.3-9 The homogeneity in Stage 1, 2, and REM in peak SBP elicited by apnea

events ... 65

14

Table 3.3-10 One-way ANOVA Summary in peak SBP elicited by apnea events 67

Table 3.3-11 Tukey test summary in peak SBP elicited by apnea events 67

Table 3.3-12 DBP variation in different sleep stages ... 69

Table 3.3-13 The homogeneity in Stage 1, 2, 3, and REM in DBP Baseline.......................... 71

Table 3.3-14 The homogeneity in Stage 1, 2, and REM in DBP Baseline 71

Table 3.3-15 One-way ANOVA Summary in DBP Baseline .. 72

Table 3.3-16 Tukey test summary in Stage 1, 2, and REM in DBP Baseline 73

Table 3.3-17 P-value of Shapiro-Wilk parametric hypothesis test .. 74

Table 3.3-18 The results of Wilcoxon rank sum test ... 74

Table 3.3-19 MAP variation in different sleep stages ... 75

Table 3.3-20 PP variation in different sleep stages .. 78

Table 3.3-21 Slope and intercept results from apnea events in different sleep stages in SBP 80

Table 3.3-22 Slope and intercept results from apnea events in different sleep stages in

DBP .. 83

15

CHAPTER 1

INTRODUCTION

1.1. Sleep Apnea

1.1.1. What is Sleep Apnea?

Sleep apnea is characterized with resulting either from partial or complete obstruction of the

upper airway during sleep by, definition, lasting at least 10 sec during sleep, which cause patients

experience repetitive episodes of apnea or reduced inspiratory airflow. These events are associated

with intermittent hypoxemia and possibly hypercapnia and usually provoke an arousal from sleep.

The arousal is associated with restoration of upper airway patency and ventilation [1]. One study

deduced the prevalence estimates of moderate to severe sleep-disordered breathing (apnea-

hypopnea index, measured as events/hour, ≥15) are 10% among 30–49-year-old men; 17% among

50–70-year-old men; 3% among 30–49-year-old women; and 9% among 50–70 year-old women.

These estimated prevalence rates represent substantial increases over the last 2 decades [2].

1.1.2. Types of Sleep Apnea

There are three types of sleep disorder breathing (SDB): obstructive sleep apnea (OSA),

central sleep apnea (CSA) and mixed sleep apnea (MSA). OSA is the most common type, constituting

greater than 85% of all cases of sleep apnea and CSA is less common [3]. A physical blockage of

the airway, during sleep, causes OSA. That is, during OSA even though the respiratory effort is still

present, upper airway collapses due to lack of muscle tone during sleep and results in airway

obstruction that prevents airflow to the lungs. In the CSA, although the airway is not blocked, the

brain fails to signal the muscles to breathe and breathing is interrupted by a lack of respiratory effort

[4]. MSA is a sleep disordered breathing that includes both central and obstructive apnea. MSA

16

events occur more frequently in severe sleep apnea with hypopnea patients, as well as gender in

male and higher level in BMI. Also, the patients with higher Epworth Sleepiness Scales and higher

triglyceride scores levels are associated with higher risk for MSA events in obstructive sleep apnea-

hypopnea syndrome patients [5].

1.1.3. Health Consequences of Obstructive Sleep Apnea

 OSA may have adverse effects on individuals’ health, depending on the severity apnea. It is

associated with cardiovascular diseases such as hypertension, heart failure and cerebrovascular

diseases [6], as well as diabetes and metabolic syndrome [7]. In addition, excessive daytime

sleepiness and impaired neurocognitive function are related to sleep apnea. Considering long-term

adverse health outcomes of OSA, it is associated with the higher risk of motor vehicle accidents [8],

reduced quality of life, increased cardiovascular morbidity, increased malignancy and other mortality

[9]. One study showed that long-term cardiovascular morbidity and mortality increased in untreated

severe OSA patients [10].

1.1.4. Detection and Treatment of Sleep Apnea

An overnight full polysomnography (PSG) is the standard diagnostic test for OSA. PSG

consists of recording cardiorespiratory and neurophysiological signals, which are used to analyze

sleep and breathing. The apnea–hypopnea index (AHI) derived from the PSG is used to diagnose

the disease. The apnea hypopnea index (AHI), a count of the number of apneas and hypopneas per

hour of sleep, is the key measure used for case identification, for quantifying disease severity, and

for defining disease prevalence in normal and clinical populations. [11] AHI scale of 5-15 events/hour

is generally classified as mild apnea, 15-30 events/hour as moderate apnea. If AHI is above 30 it is

categorized as severe apnea [12].

Therapeutic approaches for treating OSA include positive airway pressure (Continuous

Positive Airway Pressure, or CPAP and bi-level Positive Airway Pressure), oral appliances, and

surgery [13]. The mainstay of OSA treatment is CPAP which delivers a column of pressurized air via

17

a nasal or facial mask interface to keep the airway open. With the positive pressure, CPAP essentially

provides a pneumatic splint to keep the airway open and prevent its collapse. CPAP is highly

efficacious in reducing obstructive events, but still, its health benefits are limited by patient

compliance with the therapy [14]. Historically, it is shown that two thirds of the patients prescribed

CPAP adhere to the therapy. [9].

1.2. Arterial Blood Pressure

1.2.1. What is Arterial Blood pressure

The pressure measurement in large arteries in the systemic circulation is considered as blood

pressure in human beings. Arterial pressure directly corresponds to cardiac output, arterial elasticity,

and peripheral vascular resistance [15]. The measured number can be divided into systolic blood

pressure and diastolic blood pressure in Figure 1.2-1. Systolic blood pressure (SBP) refers to the

maximum pressure within the large arteries when the heart muscle contracts to propel blood through

the body. Diastolic blood pressure (DBP) describes the lowest pressure within the large arteries

during heart muscle relaxation between beatings [16].

Figure 1.2-1 Blood Pressure Waveform

1.2.2. High Blood Pressure

Blood pressure will increase with age, even in apparently healthy individuals, it is

18

acknowledged as a feature of human aging [17]. As shown in Table 1.2-1, according to 2018

guideline from the American College of Cardiology (ACC) and the American Heart Association (AHA)

for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults, blood

pressure (BP) should be categorized as normal (<120/80 mm Hg), elevated (120-129/<80 mm Hg),

stage 1 hypertension (130-139/80-89 mm Hg), or stage 2 hypertension (≥140/90 mm Hg) [18].

Table 1.2-1 Stages of Hypertension

Category Systolic (mmHg) Diastolic (mmHg)

Normal < 120 < 80

Elevated 120 – 129 < 80

Stage 1 Hypertension 130-139 80-89

Stage 2 Hypertension ≥ 140 ≥ 90

1.2.3. Relationship between High Blood Pressure and Sleep Apnea

Sleep apnea has been associated with hypertension and cardiovascular disease (CVD) in

studies [19]. It is now the most common identifiable cause of secondary hypertension [20]. In addition,

apnea and hypopnea events cause instantaneous elevations in blood pressure, which are associated

blood oxygen desaturation, arousal, and sympathetic activation. Some researchers propose that

these episodic BP may lead to elevated blood pressure during the daytime and, ultimately, sustained

hypertension [21].

1.2.4. Nocturnal Blood Pressure Variations

Blood pressure fluctuates appreciably throughout day-night with a clear decrease during

sleep [22]. In healthy individuals, the blood pressure dipping regularly exceeds 10% of mean daytime

values in normotensive and primary hypertensive subjects [23] [24]. Blood pressure declination

during sleep causes a baroreflex threshold downward shift, which the threshold counter-regulate the

modulation the activity of the sympathetic nerve to the muscle vascular. The result of this shift is a

reduced sympathetic activity and that cause a blood pressure decline during sleep [22]. In addition,

during the nighttime, blood flow to the skeletal muscles is decreased through local auto-regulation,

19

which increases total peripheral resistance and decreases cardiac output compared with the daytime

[23].

1.2.5. Relationship between Nocturnal Blood Pressure and Sleep Apnea

A drop or dipping in the blood pressure during a night of sleep is important for health [25].

However, studies found a non-dipping pattern occurred in older OSA patients. It was found that

patients with moderate to severe SDB have significant association with sleep-time hypertension,

indicating increased BP load during sleep [25]. The non-dipping pattern is considered as a future

development marker of hypertension in those who are normotensive at baseline. In patients with

hypertension, non-dipping has been associated with worse cardiovascular prognosis and increased

target organ damage, [26]. Moreover, the increase of variation of nocturnal blood pressure becomes

one characteristic of nocturnal hypertension in OSA patients [20] . The phenomenon may be due to

a temporary increase in arterial stiffness resulting from sympathetically mediated vasoconstriction, or

increased cardiac stroke volume driven by isotropic effects of sympathoexcitation, or both [27].

1.3. Study Overview and Organization

1.3.1. Objective of the study

The goal of this study is to quantify the dynamic variations in nocturnal BP of OSA patients.

By selecting SBP, DBP, mean arterial pressure (MAP), and pulse pressure (PP) as prime measures

of BP, we quantify the oscillation level of BP during sleep apnea episodes. The proposed method for

this study uses the SBP and DBP derived from continuously monitored blood pressure waveform for

all apnea episode to obtain an aggregate representation of the BP due to OSA. Further, these the

interaction of these variations with sleep stages are studied.

1.3.2. Thesis Organization

Chapter two of this thesis describes the usage and components of the continuous blood

pressure monitoring method, and its principle of operation. Also, this chapter includes the

experimental set up, protocols, subject demographics, the algorithm used in signal processing, and

20

statistical analysis. Chapter three presents the results obtained from data analysis and statistical

analysis of the results. The conclusions and limitations of this study, and the future work are included

in last chapter.

21

CHAPTER 2

MATERIALS AND METHODS

To obtain and monitor the whole night blood pressure, we utilized non-invasive blood

pressure monitor, Finapres. The accessories of the monitor are described in the following section. In

this chapter, we also narrowed the summary of our subjects, the monitors and equipment used in this

research and the steps of data processing.

2.1. Non-invasive Blood Pressure Monitoring

We chose non-invasive blood pressure monitor to monitor and collect the whole night blood

pressure because traditional method to monitor the blood pressure is difficult to be applied on whole

night blood pressure monitor. Due to the rapid change in blood pressure in OSA, arm cuff

measurement systems in traditional approach doesn’t allow to record the variation from the blood

pressure. Further, there are also other ways to monitor blood pressure, invasive arterial line, which

is known as to be the “gold standard” of blood pressure measurement [15]. However, due to the

invasive approach, the risk of monitor blood pressure surge, and that affects the wishes of

participants. Thus, we prefer the non-invasive blood pressure monitor and, currently, there are two

main types of non-invasive blood pressure monitors, Finapres and arterial tonometry.

Finapres (FINger Arterial PRESsure) is the first generation using finger cuff technology in

continuous noninvasive measurement of BP. It is based on the volume-clamp method invented by

the Czech physiologist Jan Peñáz. The diameter of peripheral arteries in a finger artery under a cuff

is clamped, which keep at a constant diameter in the presence of the changes in arterial pressure

during each heartbeat. Inside the finger cuff, an infrared photo-plethysmograph is built to measure

the mean of the changes in diameter. The finger cuff keeps the diameter of the underlying arteries

22

constant by dynamically applying a counter-pressure throughout the cardiac cycle [28]. About the

accuracy of Finapres, in the review study, the weighted accuracy of finger arterial pressure

measurement comprising a total of 1031 subjects was −0.8±11.7 mmHg (range −48 to 30 mmHg) for

systolic pressure, −1.6±8.5 mmHg (range −20.1 to 18.5 mmHg) for mean pressure and −1.6±7.7

mmHg (range −13.4 to 25 mmHg) for diastolic pressure [29].

In the principle of operation in Finapres, the basic device consists of a small finger cuff

containing a photoplethysmograph—a light source on one side of the cuff and infrared receiver on

the opposite side—with the ability to estimate the blood volume of the finger via the infrared light

absorbance. Thus, the signal obtained from the plethysmograph is used in a feedback loop allowing

for adjustment of the cuff to keep blood volume constant and the vessels in a constant state of

“vascular unloading.” By calibrating the Peñáz-technique values with a non-invasive cuff placed on

the upper arm, the signal obtained from the plethysmograph is used in a feedback loop allowing for

adjustment of artery pressures [15].

On the finger artery, the relationship between internal and external pressure on the arterial

wall is given by Pt = Pa – Pe, where Pt, is trans-mural pressure, Pa, is arterial pressure, and Pe is

external pressure, and all pressure values are referenced to atmospheric pressure. The diameter of

the arterial wall varies directly with variations in Pt. As Pt, increases, the arterial wall dilates

(viscoelasticity), and vice versa. When Pt, = 0, the artery is stated to be unloaded. Determining the

size of the unloaded artery requires an analysis of the viscoelasticity of the finger arteries as

expressed in pressure-volume characteristics [30].

However, every device has its pros and cons. The accuracy may be affected by factors such

as vascular disease, cold temperature, Raynaud’s disease as well as other factors have been

reported to contribute to finger plethysmogram failure in about 1% of patients when looking

specifically at the Finapres technology [29]. In other study, systemic vasoactive drugs may induce

error in the device, which has the significant effect that intravenous phenylephrine had on the

reliability of the arterial volume clamp method Additionally, cooling the finger upon which the cuff was

placed may cause a higher systolic and diastolic pressure bias [29] [31].

Another continuous noninvasive blood pressure monitor is arterial tonometry in Figure 2.1-1,

23

which also provide beat-to-beat measurement. It also produces a wave-form similar to Peñáz

technique. Tonometry are placed over a superficial artery with sufficient bony support and utilize the

pressure-pulse method. The sensor is placed on the radial artery to compress it until the vessel is

flattened against the bone but no occluded. On the skin surface, due to contact pressure, a pressure

transducer is able to measure arterial blood pressure [15].

Figure 2.1-1 Demonstration of an arterial tonometry device (T-Line, Tensys Medical) [15]

For the comparison between Finapres and arterial tonometry, we chose Finapres because

the process of recording nocturnal pressure is rapid, non-invasive, and has minimal impact on

disrupting sleep. In the tonometry, the technicians need to manual positioning of tonometer over

radial artery which can be challenging and dependent on the experience of the technician [15]. Also,

during the sleeping, it might be problematic under conditions with significant patient motion [28]. As

a result, it would be less desirable for monitoring patient’s blood pressure throughout the night. The

motion of the sensor through the night is less problematic, as both the finger probe and the wrist unit

are securely fastened to the patient finger and wrist in Figure 2.4-1, respectively. In the review study,

24

there is another non-invasive blood pressure monitor, Pulse transit time. However, it isn’t fully

developed to correlate pulse transit time to blood pressure [15].

2.2. Blood Pressure Measure and Mode Monitor

In this study, the unit of the noninvasive blood pressure consists of a touch screen monitor,

a wrist, module which is worn on the wrist, finger cuffs and a heart reference system that can be

connected to the wrist unit [32].

In Nexfin HD monitor (BMEYE, Amsterdam, Netherlands), it is used in this study to monitor

beat to beat blood pressure. The advantage of the Nexfin monitor include portable, use easily and a

graphical interface with tough screen which utilize the volume-clamp methodology of Peñáz [33].

Also, on the monitor, users allow to view the hemodynamic value in each heartbeat, which includes

systolic pressure, diastolic pressure, mean arterial pressure, pulse rate, stroke volume, cardiac output

and systemic vascular resistance [32]. Further, Nexfin provides accurate pressure measurement with

good within-subject precision. In this study, we have only used the blood pressure waveform.

The finger cuffs employs a photo electric plethysmograph for detecting the blood flow and is

also equipped with inflatable thin transparent plastic bladder controlled by the wrist unit through air

hose connector [32]. The photoelectric part comprises an infrared light-emitting diode (LED) of

wavelength 950 nm and an infrared photodiode for detection. The cuff can be wrapped around finger

such that LED and photodiode are positioned on the opposite sides of the finger to allow optimal

signal [30]. The infrared radiation is able to be utilized in the electromagnetic spectrum because

infrared absorption by blood is far more sensitive than its absorption by bone and other blood less

tissues [34].

In the heart reference systems, to avoid the earth’s gradient changes in blood pressure due

to hydrostatic effect during invasive blood pressure measurement or using sphygmomanometer, the

pressure monitoring sensor is kept at heart level. While using Nexfin blood pressure monitor, an

integrated heart reference system (HRS) is used to allow accurate heart level blood pressure

measurement with free movement of hand irrespective of its vertical height with respect to the heart

[32].

25

2.3. Subject Demographics

The data was collected from sleep apnea patients who were undergoing 8 hour

polysomnography (except one subject who was subjected to have partial Polysomnography) at Sleep

Consultants, Inc. (Fort Worth, TX). These subjects were given complete instructions about the

experiment and signed informed consent. The data were collected according to the protocols which

will be described later in Section 2.6 of this chapter. The subject demographics for the groups with

corresponding mean and standard deviation (σ) are as shown in Table 2.3-1. The average age,

height, weight, BMI and AHI for subjects were 53.2± 5.7 years, 177.6 ± 9 cm, 238 ±49.1 lb., and

63.5±28.7.

Table 2.3-1 Subject Demographic

SUBJECT GENDER AGE HEIGHT(CM) WEIGHT(LB) BMI AHI

1 M 50 175.3 175 25.8 63.6

2 M 56 182.9 298 40.4 105.4

3 M 47 175.3 235 34.7 77.4

4 F 57 162.6 248 42.6 21.8

5 M 50 180.3 174 24.3 18.3

6 M 45 162.6 210 36.0 82.2

7 F 48 175.3 325 48.0 42.3

8 M 61 188.0 215 27.6 91.3

9 M 56 182.9 290 39.3 87.3

10 M 62 190.5 210 26.2 44.9

Summary 53.2 ± 5.7 177.6 ± 9.0 238.0 ± 49.1 34.5 ± 7.8 63.5 ± 28.7

2.4. Blood Pressure Measurement

The data analyzed in this study was collected by our lab and details of which is reported in

the thesis [32] from the former graduated student, Raichel Mary Alex. In the subsections below, the

unit of blood pressure measurement, the principles of operation, and the process of applying it to a

subject are described [32].

26

2.4.1. Finger Cuff Positioning

A finger cuffs, an important part of the Nexfin monitor, are wrapped around a subject's finger

to detect arterial blood pressure. The proper placement of finger cuff is critical to get reliable blood

pressure measurement. Thus, it can be applied to any of the larger fingers (middle, index or ring

finger) with an appropriate size Nexfin Finger cuff, has to be placed in center between the two

knuckles of the middle phalanx and is secured with a small Velcro strip.

2.4.2. Applying Heart Reference System

The monitor has a sensor known as the heart reference system for avoiding the hydrostatic

effect due to the distance of finger from the heart, which the subjects enable to move their hands

freely and not have to keep them at the heart level. Calibration of the heart reference system should

be done to zero the HRS before attaching the sensor to the subject's arm. The pressure transducer

is fastened to a finger strap and is wrapped around the middle phalanx of an adjacent finger to which

the finger cuff is wrapped [32]. Figure 2.4-1 shows the application of Heart Reference System.

Figure 2.4-1 Application of Heart Reference System

2.4.3. Wrist Unit Placement

The wrist unit has to be wrapped around the wrist of the subject and connects to the finger

cuff and the heart reference system on one side and the other side is contacted with the Nexfin

monitor. The wrist unit is connected to the Nexfin monitor using a large connector at the end of the

27

wrist unit cable [32]. The connection of wrist unit to the pressure monitor is as shown in Figure 2.4-2.

Figure 2.4-2 Wrist Unit Connection to Monitor and Finger Cuff

2.5. Data Acquisition

2.5.1. Computer-Based Data Acquisition Unit

Data Acquisition Unit (DAQ) was used to collect the analog outputs from all the physiological

monitors. DAQ 6024E, manufactured by the National Instruments (Austin, TX), was used in data

collection, which has two 12 bit analog output lines, 8 digital Input/output lines, and two 24 bits

counters. CB-68 LP which interfaces with the DAQ is the output from the Nexfin with a printed circuit

board. By using custom program with Lab View 9.0 software, DAQ collected the input signal at 1 kHz

of sampling frequency. A custom-designed Lab View program saved the data in lvm file format which

was imported into MATLAB for signal analysis [32]. The DAQ and the interface from National

Instruments are shown below in Figure 2.5-1.

28

Figure 2.5-1 Connector Block and DAQ

2.6. Experimental Set Up for Sleep Apnea Subjects

2.6.1. Experimental Set Up

 The experimental data for this study was collected at our collaborating accredited sleep

laboratory (Sleep Consultants Inc., Fort Worth, Texas). For this purposed, full night polysomnography

(PSG) was conducted on subjects who have previously been diagnosed with having obstructive sleep

apnea. As part of PSG, the parameters monitored included electroencephalogram (EEG),

electroculogram (EOG), electromyogram (EMG), oral and nasal airflow, chest and abdominal

movement, leg movements, snoring, blood oxygen saturation and a video monitoring of the subject

using Sandman sleep study system (Natus Medical Inc., Pleasanton, California). In addition to PSG

data, patient nocturnal blood pressure was continuously recorded during the sleep study as described

above. A synchronization signal was used for both Sandman software and the DAQ board to ensure

that the alignment of the blood pressure data with the PSG data [32].

2.6.2. Apnea Scoring

A certified sleep lab technician blind to the objective of this study scored the PSG data after

the completion of the PSG. The tasks of scoring included sleep stage determination and the

identification of apneas and hypopneas during the sleep. The resulting PSG file also contained the

start time, duration of the stages, and the length of apnea events. Once scoring was done, the

relevant PSG data was imported to MATLAB software to create a graphical representation of these

29

stages and events.

2.7. Data Processing

The raw blood pressure data was extracted from the data recorded using the Lab VIEW

program and processed in Matlab. Before the data processing, it was synchronized between

polysomnography and other monitors. The processing steps and the features extracted from the

waveform are narrowed in details in followings.

2.7.1. Meaning of Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood Pressure, and

Pulse Pressure

The definition of systolic blood pressure is the maximum pressure experienced in the aorta

when the heart contracts and ejects blood into the aorta from the left ventricle; the diastolic blood

pressure is defined as the minimum pressure experienced in the aorta when the heart is relaxing

before ejecting blood into the aorta from the left ventricle [35].

The definition of the mean arterial pressure (MAP) is the time‐weighted integral of the

instantaneous pressures derived from the area under the curve of the pressure‐time waveform of one

entire cardiac cycle [36], which directly corresponds to cardiac output, arterial elasticity, and

peripheral vascular resistance [16]. It is a measure of tissue perfusion, essentially independent of

pulse pressure, and can be used to calculate other hemodynamic variables. This is important when

the blood pressure is adjusted by use of drugs to maintain an adequate perfusion pressure [36]. The

MAP formula is described in Section 2.7.5 and is widely-accepted.

Pulse pressure (PP) is the consequence of intermittent ventricular ejection from the heart.

PP is influenced by some cardiac and vascular factors. In addition to the pattern of left ventricular

ejection, the determinants of PP (and SBP) are the cushioning capacity of arteries and the timing and

intensity of wave reflections [37].

30

2.7.2. Detection of Systolic and Diastolic Blood Pressure

The raw data was processed with Matlab and used “findpeaks” function. Three settings in

“findpeaks” function are used, which are min peak distance, min peak height, and min peak

prominence. The meaning of these settings is showed in Figure 2.7-1. Since different sleeping

stages, apnea severity, and physiological and anatomical different are effected the blood pressure

waveform, the settings of “findpeaks” are varies not only in each individuals but in different period of

data. Thus, by utilized nowadays strong computing power of computer, I created an algorithm to

generate the setting automatically. The assumption of the algorithm is that the highest quantity of

peaks should be found in regular blood pressure. First, in each subject, the data was dismantled into

50 pieces. I tried the settings limitation manually and generated the upper and lower bond of those

setting. Second, to get the best value of each settings, each piece will go through all the possibility

in each setting to include all the possibility and I collect all the quantity of peaks at the mean time.

Third, the quantity result is analyzed and choose the point that numbers of peaks started to drop and

find the corresponding value of setting. Last, with applying the previous best setting to the next

setting, repeating the process on all the setting in each piece. Thus, after executing with all the setting

steps by steps, I can obtain the best settings for this piece and rerun “findpeaks” function with the

setting to get the peaks’ value and location. The different between detecting systolic and diastolic is

set the data to opposite number. By flipping the data to the opposite number, the diastolic point

changes from trough to peak, which is able to apply with “findpeaks” method.

31

Figure 2.7-1 Findpeaks Setting Diagram

2.7.3. Removal of Noisy and Calibration from Finapres

In Finapres, the calibration is executed in a non-specific points in time, but frequently. These

calibration period can last anywhere between approximately 2s to 3s, which Figure 2.7-2 shows an

example of the calibration period, in blue double arrow. Since during the calibration periods no

measure of BP is made, these periods need to be identified in the whole night BP data and be

removed from analysis. After getting the SBP and DBP value from Section 2.7.2, the first steps is

manually removed the noisy at either the beginning or the end Figure 2.7-3. For detecting the

calibration period and noisy occurred between the recordings, the algorithm is based on the

assumption that the majority of SBP and DBP are correct, which the distance between each SBP and

DBP should fall into a high concentration distribution. Therefore, the distribution includes with the

noisy and calibration will be a right-skewed graph in Figure 2.7-4. Then, I calculated the 99th

percentiles in both SBP and DBP distribution and collected those period beyond the 99th percentile

as calibration period. The proposed calibration detection method is able to detect around 90% of

calibration periods. However, due to unexpected situation, e.g. accidental dislocation of the cuff on

32

the finger, one still needs to manually review the results and remove the noisy and in calibration

periods.

Figure 2.7-2 A example of calibration period

Figure 2.7-3 A example of noisy and calibration; (a) occurred at the beginning in the whole night recording; (b)
(a) occurred at the end in the whole night recording

33

Figure 2.7-4 A example of the distance between each SDB points in a right-skewed distribution

2.7.4. Interpolation of the Blood Pressure Peaks

After obtaining all the locations and values of the systolic and diastolic pressure, regarding

to the type of blood pressure, I used the “spline” function in Matlab, which is a cubic spline function.

An example of the interpolation in SBP, DBP, MAP and PP are in illustrated in Figure 2.7-5.

Figure 2.7-5 Interpolated Blood Pressure

34

2.7.5. Computation of Pulse and Mean Arterial Pressure

The MAP is estimated using the following formula:

MAP = (
2

3
) DBP + (

1

3
) SBP

where MBP is the mean arterial blood pressure, DBP is the diastolic blood pressure, and SBP is the

systolic blood pressure. The classic pulse pressure coefficient (PPC), 1/3, originated from the work

of Gauer, who measured intra‐arterial iliac pressure in young healthy male subjects at rest [36].

Pulse pressure (PP) is the difference between the systolic and diastolic blood pressures. The

formula of PP is calculated by the following:

PP = SBP − DBP

A proof from the study is that the systolic blood is usually approximately 120 mm Hg and the

diastolic blood pressure is often approximately 80 mm Hg. Thus, normal pulse pressure is

approximately 40 mm Hg. A change in pulse pressure (△ PP) is proportional to stroke volume change

(△ V) but inversely proportional to arterial compliance (C):

 △ PP =
△ V

C

Since the change in volume is due to the stroke volume of blood being ejected from the left

ventricle (SV), we can approximate pulse pressure as:

PP =
S V

C

A normal young adult at rest has a stroke volume of approximately 80 mL. Arterial compliance

is approximately 2 mL/mmHg, which confirms that normal pulse pressure is approximately 40 mmHg

[35].

2.7.6. Baseline Calculations

For the analysis irrespective of the effects of sleep stages, we first needed to determine the

Baseline as blood pressure level when no apnea is present. For each subject, we identified one

35

minute of normal breathing during the night at which no SDB was occurred. The beat-to-beat blood

pressure pulses during this interval were processed to extract SBP and DBP trajectories; referring to

these trajectories as SBP Baseline and DBP Baseline. To obtain aggregate SBP and DBP Baselines

for the subject sample population, the individual subject SBP and DBP Baselines were respectively

averaged using a sample-by-sample averaging.

Since the blood pressure varies regards to each sleeping stages, the Baseline from each

sleep stage is defined as greater or equal to 60 sec. and no apnea event occurred in that period. In

addition, either side of the window in this 60 sec. is away from the apnea event for at least 30 sec.

The algorithms of extracting SBP and DBP are similarly above. Figure 2.7-6 indicates a baseline in

Stage 2. The blue dashed line is the center in this period of Stage 2 and the blue solid line reveals

the before and after 30s from the center, respectively. The period between two blue solid line is inside

Stage 2 (green double arrow) and then, we collected this period as the Baseline in Stage 2.

Figure 2.7-6 A example for the Baseline collection in sleep stage 2

36

2.7.7. Segmentation Method of Whole Night Blood Pressure

When considering the variations of BP elicited by apnea events, and irrespective of the sleep

stages, we opted to consider apnea episodes that were at least 30 s apart from the next respiratory

event. Figure 2.7-7 illustrates an example of an apnea episodes that was analyzed from one of the

subjects. As shown, the apnea event is not succeeded by another apnea event for at least 30s. In

Figure 2.7-7, the arrows labeled with -30s and +30s denote the temporal width of the interval over

which we analyzed the blood pressure (BP) values to capture the impact of each apnea episode.

The resulting SBP (red) and DBP (green) envelopes were used for aggregating the BP variations. By

following this criteria, we aggregated all the apnea epochs by aligning the end of the apnea events,

as shown in Figure 2.7-8.

Figure 2.7-7 A selected apnea event with no any other event occurred in the next 30 s

37

Figure 2.7-8 Aggregated all apnea epochs: the dash line represents the end of the apnea event.

In contrast, when analyzing the blood pressure variations during the sleep stages, we not

only selected the events met the previous criteria, but also the whole period of each event is in a

single sleeping stage. In totality of all subjects’ data, there were around 20% of cross stages events.

Those cross stages epochs were excluded from analysis to allow more accurate assessment of the

effect of each stage on blood pressure surges elicited by apnea events during that stage. Figure 2.7-9

shows an example of selected epochs. As shown, the apnea event (marked with blue solid line) is

away from the next respirator event by at least 30 sec on both side for 30s (red arrow) and the entire

period of the event is within the Stage 2 (green arrow). The number of events varies from stage to

stage. To generate the meaningful statistic result, if the number of events in any of the stages for a

subject was less than 5, we did not consider those for analysis of that subject’s data, but when

analyzing all subjects’ data, we included those results.

38

Figure 2.7-9 An apnea event in Stage 2 from beginning to the end and

 away from other apnea epochs for 30s on both side.

2.7.8. Calculation of Slopes from the Blood Pressure Variation

To assess the speed of surges in blood pressure that are elicited by apnea events, the slope

of surges in systolic and diastolic pressure rises for each selected apnea event – those that were

selected in accordance with the criteria described in Section 2.7.7 – were computed. Although we

only collected the data for 30s before and after the end of apnea episodes in Section 2.7.7, the

starting points may occur beyond 30s window. Figure 2.7-10a indicates the majority of the started

points we analyzed and Figure 2.7-10b reveals the situation the duration of the event is over 30s

during calculating the slope. In these figures, the red circle is the starting point and the green circle

as the end point. The event markers were marked by the sleep technician. The start point is the time

where the event started and the value is calculated as the mean value of 5 sample points before the

start points to compensate imprecise marking. For the end point, we detected the highest peak which

occurred after the end of the apnea event (e.g., yellow lines in Figure 2.7-10 a and b mark the end of

the apnea even). Similarly, to reduce the marking inaccuracy, we got the average from the peak

points and 2 sample points before and after the highest peak (i.e., average of five points with the

highest point temporally centered between them).

39

Figure 2.7-10 Slope calculation for a single event: (a) the duration of the event is less than 30s; (b) the duration
of the event is beyond 30s

For slope calculation, we considered two methods. The first approach is utilizing the slope

equation, which only taking the start and the endpoints to come up with the slope and interception.

The other is applying with the linear equation, a least-squares fit, by using all the points from the

beginning of the event to the peak point. To have better understanding, we generated both results

and found out the slopes from linear regression (green line in Figure 2.7-10) are typically less than

the results from slope equation (purple line in Figure 2.7-10), due to the compensation from the events

duration. In Figure 2.7-10, we can clearly visualize the findings. Thus, we will apply the slope

equations for the analysis.

2.7.9. Statistical Analysis

In this study, we analyzed the data from each subject and also aggregated the BP variations

for both normal breathing (i.e., the Baseline) and apnea epochs. Then, we calculated the mean and

standard deviation values for the blood pressure features that were considered (i.e., MBP, PP, SBP,

and DBP). A two-tailed t-test was used to determine whether the mean of the peak pressures during

apnea episodes were significantly different from the Baseline means for each of the BP features.

Also, in the slope analysis, we utilized a t-test not only in the comparison between the slope in events

and the Baseline, but between each sleep stage. Additionally, we divided the data set regarding their

sleep stages to analyze the change between sleeping stages. During the extracting process, we also

utilized the slope equation to calculate the slope for each apnea events to determine the effect of

40

blood pressure variation. In addition, the sleep study data is analyzed using two-tailed t-test, which

considering p-value < 5% as significant difference. We also generated a 95 % confidence interval for

each data set. To investigate the effect of sleep stages on BP variations, ANOVA test was applied to

the data after examining the normality and homogeneity of the measured features (i.e., SBP, DBP,

MBP, and PP). The null hypothesis (i.e., h0) tested using ANOVA test is the mean value in the stages

are all the same. The alternative hypothesis (i.e., h1) is that not all the mean values are the same. If

the null hypothesis was rejected, we utilized Tukey Test to determine the differences between the

mean values of the BP features across the sleep stages. For any of the BP features (i.e., SBP, DBP,

MBP, or PP) that the data failed the homogeneity and normal distribution tests, a rank-based

nonparametric test, Wilcoxon rank sum test, was applied to find the difference in the median of the

feature across sleep stages.

41

CHAPTER 3

RESULTS

In this section, the results are all based on the criteria described in Section 2.7. In this

chapter, there are three main fields, Baseline analysis, the comparison between OSA events and the

Baseline, and comparisons of BP surge during apnea episodes in sleep stages. Also, the last two

fields are included with the slope analysis based on Section 2.7.8. The discussion is in Chapter 4.

3.1. Baseline Effect on Blood Pressure Features

As was described in Section 2.7.6 above, the Baseline blood pressure traces were all

selected from the beginning of the night when subjects were still awake.

3.1.1. Systolic Blood Pressure (SBP)

The first row of data in

42

Table 3.1-1 shows the average results of blood pressure during normal breathing for all

subjects, while the rows below that show the results for each subject. Further, the entry in the Col. 3

represents the BMI and the 4th column reveals the AHI to the subjects. The corresponding values of

the entries just described for individual subjects are presented in rows labeled No. 1 to No.10 in

43

Table 3.1-1. The average SBP in normal breathing from the accumulated results is 128.7

mmHg in Col. 5 in the first row. Figure 3.1-1 provides the visual form to summarize the blood pressure

distribution from the subjects and the accumulated results.

44

Table 3.1-1 Subjects information and normal breathing results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Subject
Age
(yr.)

BMI
(m2/kg)

AHI
(event/hr.)

Average BP in Normal
Breathing (mmHg)

Accumulated results 34.5 ± 7.8
63.5 ±

28.7
128.7 ± 12.7

1 50 25.8 63.6 120.1 ± 4.2

2 56 40.4 105.4 141.2 ± 5.8

3 47 34.7 77.4 114.9 ± 4.0

4 61 27.6 91.3 138.4 ± 3.2

5 45 36.0 82.2 118.4 ± 4.3

6 57 42.6 21.8 148.2 ± 4.0

7 48 48.0 42.3 109.5 ± 3.5

8 56 39.3 87.3 131.2 ± 4.5

9 62 26.2 44.9 136.9 ± 3.3

10 50 24.3 18.3 128.0 ± 2.2

Figure 3.1-1 Average SBP distribution of all subjects in normal breathing

Figure 3.1-2a displays a plot of the SBP trajectories during the Baseline normal breathing

from all of the subjects. Further, Figure 3.1-2b shows the result of aggregating these trajectories as

well as the corresponding 95% confidence interval (CI), assuming Gaussian Distribution of the mean

of each SBP sample.

100.0

110.0

120.0

130.0

140.0

150.0

160.0

1 2 3 4 5 6 7 8 9 10 All

B
lo

o
d

 P
re

ss
u

re
 (

m
m

H
g)

Subject

Average SBP in Normal Breathing

45

Figure 3.1-2 Aggregated Baseline of blood pressure signals from all the subjects: (a) SBP Baseline
recordings for each of the 10 subjects; (b) Aggregated SBP Baseline with 95% confidence interval
envelope.

3.1.2. Diastolic Pressure (DBP)

Similar to the results reported in Section 3.1.1, above, the first row of data in Table 3.1-2

shows the aggregate results of DBP during Baseline normal breathing from all subjects, while the

rows below that show the results for each subject. Specifically, the entry in the 3rd column represents

the BMI and the 4th column reveals the AHI to the subjects. The average DBP in normal breathing

from the accumulated results is 69.1 mmHg in Col. 5 in the first row. The corresponding values of the

entries just described for individual subjects are presented in rows labeled No. 1 to No.10 in Table

3.1-2. Figure 3.1-3 provides the visual form to summarize the blood pressure distribution from the

subjects and the accumulated results.

Table 3.1-2 Subjects information and normal breathing results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Subject
Age
(yr.)

BMI
(m2/kg)

AHI
(event/hr.)

Average BP in Normal
Breathing (mmHg)

Accumulated results 34.5 ± 7.8 63.5 ± 28.7 69.1 ± 5.8

1 50 25.8 63.6 66.8 ± 2.5

2 56 40.4 105.4 67.2 ± 2.3

3 47 34.7 77.4 68.8 ± 3.0

4 61 27.6 91.3 70.4 ± 1.4

5 45 36.0 82.2 76.2 ± 2.7

6 57 42.6 21.8 76.2 ± 1.9

46

Col. 1 COL. 2 COL. 3 COL. 4 COL. 5

Subject
Age
(yr.)

BMI
(m2/kg)

AHI
(event/hr.)

Average BP in Normal
Breathing (mmHg)

7 48 48.0 42.3 56.8 ± 2.6

8 56 39.3 87.3 72.6 ± 3.4

9 62 26.2 44.9 68.7 ± 1.5

10 50 24.3 18.3 67.1 ± 1.5

Figure 3.1-3 Average DBP distribution of all subjects in normal breathing

Figure 3.1-4a displays a plot of the DBP trajectories in the normal breathing from the all the

subjects and Figure 3.1-4b shows the result of aggregating these trajectories as well as the

corresponding 95% CI.

Figure 3.1-4 Aggregated Baseline of blood pressure signals from all the subjects: (a) DBP Baseline recordings
for each of the 10 subjects; (b) Aggregated DBP Baseline with 95% confidence interval envelope.

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

1 2 3 4 5 6 7 8 9 10 All

B
lo

o
d

 P
re

ss
u

re
 (

m
m

H
g)

Subject

Average DBP in Normal Breathing

47

3.1.3. Mean Arterial Pressure (MAP)

In Table 3.1-3, the first row of data shows the aggregate results of MAP in normal breathing

from all subjects, while the rows below that show the results for each. Additionally, the entry in the

3rd column represents the BMI and the 4th column reveals the AHI to the subjects. In Col. 5 in the

first row, the average MAP in normal breathing from the accumulated results is 89.0 mmHg. The

corresponding values of the entries just described for individual subjects are presented in rows

labeled No. 1 to No.10 in Table 3.1-3 and Table 3.1-2. Figure 3.1-5 provides the visual form to

summarize the MBP distribution from the subjects and the accumulated results.

Table 3.1-3 Subjects information and normal breathing results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Subject
Age
(yr.)

BMI
(m2/kg)

AHI
(event/hr.)

Average BP in Normal
Breathing (mmHg)

Accumulated results 34.5 ± 7.8 63.5 ± 28.7 89.0 ± 7.0

1 50 25.8 63.6 84.7 ± 2.8

2 56 40.4 105.4 92.0 ± 3.3

3 47 34.7 77.4 84.2 ± 3.2

4 61 27.6 91.3 93.0 ± 1.7

5 45 36.0 82.2 90.3 ± 3.1

6 57 42.6 21.8 100.2 ± 2.1

7 48 48.0 42.3 74.4 ± 2.3

8 56 39.3 87.3 92.1 ± 3.4

9 62 26.2 44.9 91.5 ± 1.6

10 50 24.3 18.3 87.4 ± 1.1

48

Figure 3.1-5 Average MAP distribution of all subjects in normal breathing

Figure 3.1-6a displays a plot of the DBP trajectories in the normal breathing from the all the

subjects and Figure 3.1-6b shows the result of aggregating these trajectories as well as the

corresponding 95% CI.

Figure 3.1-6 Aggregated Baseline of blood pressure signals from all the subjects: (a) MAP Baseline recordings
for each of the 10 subjects; (b) Aggregated MAP Baseline with 95% confidence interval envelope.

3.1.4. Pulse Pressure (PP)

The first row of data in Table 3.1-4 shows the aggregate results of PP in normal breathing

for all subjects, while the rows below that show the results for each. Additionally, the entry in the 3rd

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

105.0

1 2 3 4 5 6 7 8 9 10 All

B
lo

o
d

 P
re

ss
u

re
 (

m
m

H
g)

Subject

Average MAP in Normal Breathing

49

column represents the BMI and the 4th column reveals the AHI to the subjects. In Col. 5 in the first

row, the average PP in normal breathing from the accumulated results is 59.6 mmHg. The

corresponding values of the entries just described for individual subjects are presented in rows

labeled No. 1 to No.10 in Table 3.1-4Table 3.1-2. Figure 3.1-7 provides the visual form to summarize

the blood pressure distribution from the subjects and the accumulated results.

Table 3.1-4 Subjects information and normal breathing results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Subject
Age
(yr.)

BMI
(m2/kg)

AHI
(event/hr.)

Average BP in Normal
Breathing (mmHg)

Accumulated results 34.5 ± 7.8 63.5 ± 28.7 59.6 ± 10.9

1 50 25.8 63.6 53.2 ± 2.9

2 56 40.4 105.4 73.9 ± 4.5

3 47 34.7 77.4 46.0 ± 2.8

4 61 27.6 91.3 68.1 ± 2.7

5 45 36.0 82.2 42.1 ± 2.9

6 57 42.6 21.8 72.0 ± 3.6

7 48 48.0 42.3 52.7 ± 3.7

8 56 39.3 87.3 58.7 ± 4.1

9 62 26.2 44.9 68.0 ± 3.3

10 50 24.3 18.3 60.9 ± 2.8

Figure 3.1-7 Average PP distribution of all subjects in normal breathing

30.0

40.0

50.0

60.0

70.0

80.0

90.0

1 2 3 4 5 6 7 8 9 10 All

B
lo

o
d

 P
re

ss
u

re
 (

m
m

H
g)

Subject

Average PP in Normal Breathing

50

Figure 3.1-8a displays a plot of the PP trajectories in the normal breathing from the all the

subjects and Figure 3.1-8b shows the result of aggregating these trajectories as well as the

corresponding 95% CI.

Figure 3.1-8 Aggregated Baseline of blood pressure signals from all the subjects: (a) PP Baseline recordings for
each of the 10 subjects; (b) Aggregated PP Baseline with 95% confidence interval envelope.

3.2. Effect of Obstructive Sleep Apnea Episodes on Measures of Blood Pressure

In this section, the results of analyzing the BP changes between sleep apnea episodes and

normal breathing are presented. The extracted data is followed by the criteria in Section 2.7.6 and

Section 2.7.7, and the normal values are the results in Section 3.1. Blood pressure measurement

includes SBP, DBP, MAP and PP, which the formula of Mean Arterial Pressure and Pulse Pressure

calculation is in Section 2.7.5. The results include the mean Baseline value of BP with the standard

deviation, mean peak BP during apnea episodes with the standard deviation, the difference between

peak and Baseline BP, the percentage change of the difference, the temporal location of peak value,

and quantity of apnea events used. In statistical analysis, the p-value less than 5% is considered as

statistical significance.

3.2.1. Systolic Blood Pressure (SBP)

The first row of data in Table 3.2-1 shows the aggregate results from all subjects, while the

rows below that show the results for each of the 10 subjects. Specifically, the entry in the 2nd column

51

for the first row shows the average and standard deviation (STD) of all sample-by-sample values of

the SBP Baselines for all subjects. The average result is shown with the brown horizontal line in

Figure 3.2-1b.The entry under Col. 3 in the first row of the table shows the average and standard

deviation of the peak SBP values during all apnea events. The red circle in Figure 3.2-1b indicates

the peak point of the average. The magnitude and % deviation of the mean for SBP during apnea

event from the Baseline mean are shown under Col. 4 and Col. 5, respectively. The temporal location

of the SBP peak is at 7s (first row Col.6). Column 7 shows the total number of apnea events that

contributed to the results show in each row. The corresponding values of the entries just described

for individual subjects are presented in rows labeled No. 1 to No.10 in Table 3.2-1. Further, in

statistical analysis, the comparison of the Baseline BP and peak BP from all subjects (Col.2 and

Col.3), p-values is less than 1% in the two-tailed T-test.

Table 3.2-1 Systolic Blood Pressure Variations

Figure 3.2-1a displays a plot of the SBP trajectories during all 274 apnea events in the sample

population which were separated from the next apnea event by at least 30s. Figure 3.2-1b shows the

result of aggregating these trajectories as well as the corresponding 95% CI.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Subject
Mean

Baseline
BP (mmHg)

Mean Peak BP
during Apnea

(mmHg)

Difference of
Mean Peak and

Baseline BP (mm
Hg)

% Difference
of Mean Peak
and Baseline

BP

Temporal
Location of BP

Peak (s)

No. of Apnea
Events

Averaged

ALL 128.7 ± 12.7 146.3 ± 19.5 17.6 13.7% 7.0 274

NO. 1 141.2 ± 5.8 158.4 ± 10.1 17.2 12.2% 5.8 49
NO. 2 114.9 ± 4.0 140.8 ± 23.1 25.9 22.5% 9.8 17
NO. 3 138.4 ± 3.2 173.5 ± 13.3 35.1 25.4% 14.5 42
NO. 4 118.4 ± 4.3 137.4 ± 13.0 19.0 16.0% 6.0 44
NO. 5 148.2 ± 4.0 160.4 ± 17.6 12.2 8.2% 15.6 16
NO. 6 109.5 ± 3.5 120.7 ± 8.4 11.2 10.2% 10.6 19
NO. 7 131.2 ± 4.5 151.6 ± 12.4 20.4 15.5% 4.8 15
NO. 8 136.9 ± 3.3 155.2 ± 11.9 18.3 13.4% 9.9 6
NO. 9 128.0 ± 2.2 145.2 ± 15.4 17.2 13.4% 5.9 32
NO. 10 120.1 ± 4.2 133.6 ± 14.3 13.5 11.2% 7.1 34

52

Figure 3.2-1 Aggregated blood pressure oscillations elicited by apnea events: (a) Systolic blood pressure (SBP)
recordings for all analyzed apnea events for all subjects; (b) Aggregated SBP oscillations elicited by apnea with
95% confidence interval envelope (shaded area);

3.2.2. Diastolic Blood Pressure (DBP)

Similar to the results shown Section 3.2.1, the first row of data in

53

Table 3.2-2 shows the aggregate results from all subjects, while the rows below that show

the results for each of the 10 subjects. Specifically, the entry in the 2nd column for the first row shows

the average and standard deviation of all sample-by-sample values of the DBP Baselines for all

subjects. The average result is the brown horizontal line in Figure 3.2-2b.The entry under Col. 3 in

the first row of the table shows the average and standard deviation of the peak DBP values during all

apnea events. The red circle in Figure 3.2-2b indicates the peak point of the average. The magnitude

and % deviation of the mean for DBP during apnea event from the Baseline mean are shown under

Col. 4 and Col. 5, respectively. The temporal location of the DBP peak is at 6.4s (first row Col.6).

Column 7 shows the total number of apnea events that contributed to the results show in each row.

The corresponding values of the entries just described for individual subjects are presented in rows

labeled No. 1 to No.10 in

54

Table 3.2-2. Further, in statistical analysis, the comparison of the Baseline BP and peak BP

from all subjects (Col.2 and Col.3), p-values is less than 0.1% in the two-tailed T-test.

55

Table 3.2-2Diastolic Blood Pressure Variations

Figure 3.2-2a displays a plot of the DBP trajectories during all apnea events in the sample

population which were separated from the next apnea event by at least 30s. Figure 3.2-2b shows the

result of aggregating these trajectories as well as the corresponding 95% CI.

Figure 3.2-2 Aggregated blood pressure oscillations elicited by apnea events: (a) Diastolic blood pressure
(DBP) recordings for all analyzed apnea events for all subjects; (b) Aggregated DBP oscillations elicited by
apnea with 95% confidence interval envelope (shaded area);

3.2.3. Mean Arterial Pressure (MAP)

The first row of data in Table 3.2-3 shows the aggregate results from all subjects, while the

rows below that show the results for each of the 10 subjects. Specifically, the entry in the 2nd column

for the first row shows the average and standard deviation of all sample-by-sample values of the MAP

Baselines for all subjects. The average result is the brown horizontal line in Figure 3.2-3b.The entry

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Subject
Mean

Baseline
BP (mmHg)

Mean Peak BP
during Apnea

(mmHg)

Difference of
Mean Peak and

Baseline BP (mm
Hg)

% Difference
of Mean Peak
and Baseline

BP

Temporal
Location of BP

Peak (s)

No. of Apnea
Events

Averaged

ALL 69.1 ± 5.8 78.6 ± 9.9 9.5 13.7% 6.4 274

NO. 1 67.2 ± 2.3 77.7 ± 4.3 10.5 15.6% 5.9 49
NO. 2 68.8 ± 3.0 85.9 ± 17.6 17.1 24.9% 9.9 17
NO. 3 70.4 ± 1.4 82.7 ± 6.6 12.3 17.5% 11.6 42
NO. 4 76.2 ± 2.7 85.7 ± 9.2 9.5 12.5% 6.5 44
NO. 5 76.2 ± 1.9 74.1 ± 5.8 -2.1 -2.8% 25.0 16
NO. 6 56.8 ± 2.6 64.2 ± 6.3 7.4 13.0% 8.2 19
NO. 7 72.6 ± 3.4 81.5 ± 10.9 8.9 12.3% 8.7 15
NO. 8 68.7 ± 1.5 86.5 ± 7.9 17.8 25.9% 7.3 6
NO. 9 67.1 ± 1.5 78.9 ± 8.6 11.8 17.6% 4.6 32
NO. 10 66.8 ± 2.5 80.5 ± 10.2 13.7 20.5% 7.2 34

56

under Col. 3 in the first row of the table shows the average and standard deviation of the peak MAP

values during all apnea events. The red circle in Figure 3.2-3b indicates the peak point of the average.

The magnitude and % deviation of the mean for MAP during apnea event from the Baseline mean

are shown under Col. 4 and Col. 5, respectively. The temporal location of the MAP peak is at 6s (first

row Col.6). Column 7 shows the total number of apnea events that contributed to the results show in

each row. The corresponding values of the entries just described for individual subjects are presented

in rows labeled No. 1 to No.10 in Table 3.2-3. Further, in statistical analysis, the comparison of the

Baseline BP and peak BP from all subjects (Col.2 and Col.3), p-values is less than 0.1% in the two-

tailed T-test.

Table 3.2-3 Mean Arterial Pressure Variations

Figure 3.2-3a displays a plot of the MAP trajectories during all apnea events in the sample

population which were separated from the next apnea event by at least 30s. Figure 3.2-3b shows the

result of aggregating these trajectories as well as the corresponding 95% CI.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Subject
Mean

Baseline
BP (mmHg)

Mean Peak BP
during Apnea

(mmHg)

Difference of
Mean Peak and

Baseline BP (mm
Hg)

% Difference
of Mean Peak
and Baseline

BP

Temporal
Location of BP

Peak (s)

No. of Apnea
Events

Averaged

ALL 89.0 ± 7.0 100.8 ± 11.9 11.8 13.3% 6.0 274

NO. 1 92.0 ± 3.3 104.4 ± 6.0 12.5 13.6% 5.5 49
NO. 2 84.2 ± 3.2 103.8 ± 19.1 19.6 23.3% 9.6 17
NO. 3 93.0 ± 1.7 112.6 ± 8.1 19.5 21.0% 11.2 42
NO. 4 90.3 ± 3.1 102.1 ± 11.5 11.8 13.1% 6.0 44
NO. 5 100.2 ± 2.1 102.7 ± 11.3 2.5 2.5% 5.6 16
NO. 6 74.4 ± 2.3 82.6 ± 6.4 8.2 11.0% 10.5 19
NO. 7 92.1 ± 3.4 104.7 ± 10.4 12.6 13.7% 5.1 15
NO. 8 91.5 ± 1.6 107.7 ± 8.7 16.2 17.7% 7.7 6
NO. 9 87.4 ± 1.1 100.1 ± 10.1 12.8 14.6% 4.7 32
NO. 10 84.7 ± 2.8 98.0 ± 11.3 13.3 15.7% 6.8 34

57

Figure 3.2-3 Aggregated blood pressure oscillations elicited by apnea events: (a) Mean arterial pressure (MAP)
recordings for all analyzed apnea events for all subjects; (b) Aggregated MAP oscillations elicited by apnea with
95% confidence interval envelope (shaded area);

3.2.4. Pulse Pressure (PP)

In

58

Table 3.2-4, the first row of data shows the aggregate results from all subjects, while the rows

below that show the results for each of the 10 subjects. Specifically, the entry in the 2nd column for

the first row shows the average and standard deviation of all sample-by-sample values of the PP

Baselines for all subjects. The average result is the brown horizontal line in Figure 3.2-3b.The entry

under Col. 3 in the first row of the table shows the average and standard deviation of the peak PP

values during all apnea events. The red circle in Figure 3.2-3b indicates the peak point of the average.

The magnitude and % deviation of the mean for PP during apnea event from the Baseline mean are

shown under Col. 4 and Col. 5, respectively. The temporal location of the PP peak is at 9.1s (first row

Col.6). Column 7 shows the total number of apnea events that contributed to the results show in each

row. The corresponding values of the entries just described for individual subjects are presented in

rows labeled No. 1 to No.10 in

59

Table 3.2-4. Further, in statistical analysis, the comparison of the Baseline BP and peak BP

from all subjects (Col.2 and Col.3), p-values is around 6% in the two-tailed T-test.

60

Table 3.2-4 Pulse Pressure Variations

Figure 3.2-4a displays a plot of the PP trajectories during all apnea events in the sample

population which were separated from the next apnea event by at least 30s. Figure 3.2-4b shows the

result of aggregating these trajectories as well as the corresponding 95% CI.

Figure 3.2-4 Aggregated blood pressure oscillations elicited by apnea events: (a) Pulse pressure (PP)
recordings for all analyzed apnea events for all subjects; (b) Aggregated PP oscillations elicited by apnea with
95% confidence interval envelope (shaded area);

3.2.5. Systolic Slope

The computation of the slope of surges in SBP that are presented in this section follows the

method that was described in Section 2.7.8. The resulting slope values for SBP are displayed in

Table 3.2-5. In this table, the first row shows the aggregate results from all subjects in SBP, while the

rows below that show the results for each of the 10 subjects. Respectively, the mean and standard

deviation of slope and intercept values for Baseline are shown under Col. 2 and Col. 3. Similarly, Col

4 and Col. 5 display the mean and standard deviation of slope and intercept values for apnea events.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Subject
Mean

Baseline
BP (mmHg)

Mean Peak BP
during Apnea

(mmHg)

Difference of
Mean Peak and

Baseline BP (mm
Hg)

% Difference
of Mean Peak
and Baseline

BP

Temporal
Location of BP

Peak (s)

No. of Apnea
Events

Averaged

ALL 59.6 ± 10.9 69.3 ± 19.8 9.8 16.4% 9.1 274

NO. 1 73.9 ± 4.5 82.0 ± 6.8 8.2 11.1% 8.5 49
NO. 2 46.0 ± 2.8 58.2 ± 11.7 12.2 26.5% 13.5 17
NO. 3 68.1 ± 2.7 92.5 ± 11.6 24.4 35.8% 14.9 42
NO. 4 42.1 ± 2.9 52.5 ± 24.0 10.4 24.7% 9.1 44
NO. 5 72.0 ± 3.6 88.8 ± 14.8 16.9 23.5% -5.3 16
NO. 6 52.7 ± 3.7 57.7 ± 7.4 5.0 9.5% 8.8 19
NO. 7 58.7 ± 4.1 72.8 ± 9.4 14.1 24.0% 12.3 15
NO. 8 68.0 ± 3.3 77.0 ± 10.8 9.0 13.2% 10.1 6
NO. 9 60.9 ± 2.8 71.1 ± 12.5 10.2 16.7% 6.8 32
NO. 10 53.2 ± 2.9 55.7 ± 7.7 2.5 4.7% 11.8 34

61

Column 6 shows the total number of apnea events that contributed to the results show in each row.

The accumulated results from the slope equation reveals the slope is 0.9 mmHg/s and the intercept

is 149.3 mmHg.

Table 3.2-5 Slope and intercept values for the surges in SBP during obstructive sleep apnea events

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Subject
Slope in Normal

Breathing
(mmHg/s)

Intercept in
Normal

Breathing
(mmHg)

Slope in Apnea
Events

(mmHg/s)

Intercept in
Apnea Events

(mmHg)

No. of
Obstructive

Apnea
Events

ALL 0.00 ± 0.0 1.28 ± 0.1 0.90 ± 0.7 149.3 ± 20.0 274

1 0.00 ± 0.0 1.15 ± 0.0 0.75 ± 0.4 133.7 ± 12.9 34

2 0.00 ± 0.0 1.42 ± 0.0 0.74 ± 0.5 159.2 ± 8.1 49

3 0.00 ± 0.0 1.16 ± 0.0 1.15 ± 1.2 136.8 ± 17.7 17

4 0.00 ± 0.0 1.46 ± 0.0 0.67 ± 0.7 172.9 ± 14.3 42

5 0.00 ± 0.0 1.19 ± 0.0 1.27 ± 0.5 137.9 ± 8.7 44

6 0.00 ± 0.0 1.44 ± 0.0 0.64 ± 0.4 169.8 ± 18.1 16

7 0.00 ± 0.0 1.08 ± 0.0 0.69 ± 0.4 119.1 ± 8.4 19

8 0.00 ± 0.0 1.26 ± 0.0 0.97 ± 0.3 151.3 ± 12.6 15

9 0.00 ± 0.0 1.36 ± 0.0 0.76 ± 0.7 157.4 ± 7.2 6

10 0.00 ± 0.0 1.26 ± 0.0 1.23 ± 0.8 147.1 ± 12.8 32

Figure 3.2-5 provides an average prediction for the blood pressure rises in the apnea events

in 60s window. The orange line is calculated by using average slope and average intercept with the

aggregated result from all apnea events in Table 3.2-5. The blue line in Figure 3.2-5 indicates stable

BP during normal breathing. Specifically, the average slope and the intercept for the lines fitted to the

Baseline SBP are close to zero in the first row of Col. 3 in Table 3.2-5. Therefore, to compensate the

biased, the value in normal breathing are added with the accumulated results, 128.7 mmHg, from

normal breathing in

62

Table 3.1-1. At 30s, the blood pressure raises to 176.3 mmHg and the difference between

the surge and Baseline is around 46 mmHg.

Figure 3.2-5 Slope plot in 60 in SBPs; the red cross indicates the value at 30s

3.2.6. Diastolic Slope

Similar to the computation of slopes and intercepts for SBP surges, we also computed the

slope and intercept of the surges in DBP to determine whether SBP and DBP surges show any

difference. The first row of data in Table 3.2-6 shows the aggregate results slope calculations from

all of the subjects; results from calculations for individual subjects are also shown. . Correspondingly,

the slope and intercept results in normal breathing from the slope equation with the standard deviation

are shown under Col. 2 and Col. 3. Similarly, Col 4 and Col. 5 display the slope and intercept results

in apnea events. Column 6 shows the total number of apnea events that contributed to the results

show in each row. The accumulated results from the slope equation reveals the slope is around 0.6

mmHg/s and the intercept is 80.9 mmHg.

Table 3.2-6 Slope and intercept results from sleep apnea events in DBP

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Subject
Slope in Normal

Breathing
(mmHg/s)

Intercept in
Normal

Breathing
(mmHg)

Slope in Apnea
Events

(mmHg/s)

Intercept in
Apnea Events

(mmHg)

No. of
Apnea
Events

ALL 0.00 ± 0.0 0.68 ± 0.1 0.62 ± 0.5 80.9 ± 9.1 274

63

1 0.00 ± 0.0 0.62 ± 0.0 0.57 ± 0.3 80.3 ± 9.9 34

2 0.00 ± 0.0 0.67 ± 0.0 0.47 ± 0.3 78.6 ± 4.1 49

3 0.00 ± 0.0 0.69 ± 0.0 0.54 ± 0.5 85.0 ± 12.8 17

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Subject
Slope in Normal

Breathing
(mmHg/s)

Intercept in
Normal

Breathing
(mmHg)

Slope in Apnea
Events

(mmHg/s)

Intercept in
Apnea Events

(mmHg)

No. of
Apnea
Events

4 0.00 ± 0.0 0.72 ± 0.0 0.46 ± 0.4 83.0 ± 7.3 42

5 0.00 ± 0.0 0.77 ± 0.0 0.84 ± 0.4 85.8 ± 6.4 44

6 0.00 ± 0.0 0.72 ± 0.0 0.31 ± 0.3 79.7 ± 5.4 16

7 0.00 ± 0.0 0.59 ± 0.0 0.52 ± 0.4 64.6 ± 6.0 19

8 0.00 ± 0.0 0.69 ± 0.0 0.89 ± 0.6 82.4 ± 8.9 15

9 0.00 ± 0.0 0.68 ± 0.0 0.62 ± 0.3 88.0 ± 4.5 6

10 0.00 ± 0.0 0.64 ± 0.0 0.95 ± 0.6 81.5 ± 8.9 32

Figure 3.2-6 provides an average prediction for the blood pressure rises in the apnea events

in 60s window. The orange line is calculated by using average slope and average intercept with the

aggregated result from all apnea events in Table 3.2-6. The blue line in Figure 3.2-6 indicates stable

BP during normal breathing. Specifically, the average slope and the intercept for the lines fitted to the

Baseline SBP are close to zero in the first row of Col. 3 in Table 3.2-6. Therefore, to compensate the

biased, the value in normal breathing are added with the accumulated results, 69.1 mmHg, from

normal breathing in Table 3.1-2. At 30s, the blood pressure raises to 99.49 mmHg and the difference

between the surge and Baseline is around 29.71 mmHg.

64

Figure 3.2-6 Slope plot in 60s in DBP; the red cross indicates the value at 30s

3.3. Comparisons of Blood Pressure Surge during Apnea Episodes in Sleep Stages

In this section, the selected apnea episodes are separated from other events by at least 30

seconds and the event in its entirety takes place within a single sleep stage (see Section 2.7.7 for

details) are grouped together to determine the interaction of sleep stage and the degree of blood

pressure surges elicited by apnea events. A tabulation of the number of qualified events (per criteria

mentioned above) is shown in Table 3.3-1. The first row of data in Table 3.3-1 displays the aggregate

results from all subjects. As can be seen from Table 3.3-1, the majority of the events occur in Stages

1, 2 and REM. The stage without events, Stage 4, will be ignored in the following subsection.

Table 3.3-1 Quantity of events in each sleep stage

SUBJECT
NO

 STAGE
1

STAGE
2

STAGE
3

STAGE
4

REM

ALL 135 38 7 0 23

1 7 12 0 0 1

2 40 1 0 0 0

3 5 3 7 0 0

4 25 4 0 0 5

5 27 2 0 0 0

6 4 1 0 0 10

65

7 5 1 0 0 6

8 12 1 0 0 0

9 3 13 0 0 0

10 7 12 0 0 1

3.3.1. Analysis of Systolic Blood Pressure Surges in Various Sleep Stages

The first four row of data in

Table 3.3-2 shows the aggregate mean and standard deviation of SBP surges in each of the

sleep stages considered for all subjects, while the rows below that show the results for each of the

10 subjects individually. Specifically, the entries in the 3rd column for the first four rows show the

average and standard deviation of all sample-by-sample values of the SBP Baselines for all subjects

in the stages 1, 2, 3 and REM sleep. It is noted that since no event in Stage 4 qualified for analysis –

based on the criteria outlined in Section 2.7.7 – there are no entries for that stage. In addition, the

entry under Col. 3 in the first four rows of the table shows the average and standard deviation of the

peak SBP values during all apnea events respectively to each sleep stage. The corresponding values

of the entries just described for individual subjects are presented in rows labeled No. 1 to No.10 in

Table 3.3-2. In the t-test results, there is no difference (p-value > 5%) in the comparison

between normal value and the peak value from each subject in

Table 3.3-2.

Table 3.3-2 SBP variation in different sleep stages

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

STAGE Subject

Mean
Baseline

BP
(mmHg)

Mean Peak
BP during

Apnea
(mmHg)

Difference of
Mean Peak

and Baseline
BP (mm Hg)

% Difference of
Mean Peak and

Baseline BP

Temporal
Location of

BP Peak
(s)

No. of
Apnea
Events

Averaged

1 All 137.1 ± 5.6 149.4 ± 18.8 12.3 9.0% 6.1 135
2 All 128.4 ± 5.1 141.6 ± 16.3 13.3 10.4% 6.4 38
3 All 117.6 ± 4.9 132.0 ± 9.3 14.4 12.2% 10.1 7

REM All 149.0 ± 3.4 157.7 ± 29.6 8.7 5.8% 10.2 23

1 1 121.4 ± 4.1 130.4 ± 8.5 9.1 7.5% 10.0 7
1 8 135.7 ± 6.6 152.2 ± 9.7 16.5 12.2% 8.5 12
1 4 156.9 ± 8.9 170.5 ± 12.6 13.6 8.7% 11.7 25
1 7 109.5 ± 4.8 122.1 ± 6.2 12.6 11.5% 7.4 5
1 10 124.3 ± 6.7 142.8 ± 17.3 18.4 14.8% 5.4 7
1 5 122.1 ± 5.9 137.3 ± 13.8 15.2 12.4% 6.3 27
2 1 116.7 ± 5.4 128.8 ± 12.4 12.1 10.4% 7.1 12
2 10 128.6 ± 8.1 152.6 ± 15.0 24 18.7% 3.4 13

REM 6 160.2 ± 3.4 166.1 ± 15.5 5.9 3.7% 25.1 10

66

The brown horizontal lines in the Figure 3.3-1 b, Figure 3.3-2 b,

Figure 3.3-3 b, and Figure 3.3-4 b show the average result of the Baseline. In these figures,

the plots on the left side displays all the SBP trajectories during the qualified apnea events within

the corresponding sleep stage (i.e., stage 1, 2, 3, and REM) The plots on the right side of the figures

show the result of aggregating these trajectories for each corresponding sleep stages as well as the

corresponding 95% CI. Additionally, the red circles in the right-side figures mark the peak of the

sample-by-sample mean apnea SBP surges corresponding to the apnea episodes.

Figure 3.3-1 Aggregated blood pressure oscillations elicited by apnea events in Stage 1: (a) SBP recordings for
all analyzed apnea events for all subjects; (b) Aggregated SBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-2 Aggregated blood pressure oscillations elicited by apnea events in Stage 2: (c) SBP recordings for
all analyzed apnea events for all subjects; (d) Aggregated SBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

REM 7 109.9 ± 3.6 118.9 ± 8.4 9 8.2% 7.1 6

67

Figure 3.3-3 Aggregated blood pressure oscillations elicited by apnea events in Stage 3: (a) SBP recordings for

all analyzed apnea events for all subjects; (b) Aggregated SBP oscillations elicited by apnea with 95%

confidence interval envelope (shaded area);

Figure 3.3-4 Aggregated blood pressure oscillations elicited by apnea events in REM: (a) SBP recordings for all
analyzed apnea events for all subjects; (b) Aggregated SBP oscillations elicited by apnea with 95% confidence
interval envelope (shaded area);

In the statistical analysis, one-way ANOVA method was used for comparison between sleep

stages. In the Baseline, the dataset is considered in the normal distribution due to the central limit

theorem. Since the quantity of 1 min window in Baseline in Stage 1, 2, 3, and REM is 230, 158, 14,

and 28, respectively, which each stage contains more than 60,000 values. However, by testing for

the homogeneity using Bartlett's test, we reject the null hypothesis (around p=0.01) in

68

Table 3.3-3. Such a result indicated that the data from stage 3 should be excluded. Figure

3.3-5 is the box-whisker plots in each sleep stage. The two horizontal solid lines indicate the minimum

and maximum value in that stage and the horizontal distance of the box reveals the interquartile rage,

which is from the subtraction between the upper edge of the box, third quartile and the lower edge of

the box, first quartile. Also, the red line inside the box shows the median of that stage. So, the data

distribution in Stage 3 clearly considers as not homogeneity in Figure 3.3-5. With only Stage 1, 2

and REM in homogeneity test, we fail to reject the null hypothesis (p = 0.53) in Table 3.3-4.

69

Table 3.3-3 The homogeneity in Stage 1, 2, 3, and REM in SBP Baseline

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 28 64.9 7.0

3 14 55.6 5.0

2 158 66.5 9.2

1 230 71.2 7.9

POOLED 430 68.6 8.3

BARTLETT'S STATISTIC 11.0

DEGREES OF FREEDOM 3

P-VALUE 0.012

Table 3.3-4 The homogeneity in Stage 1, 2, and REM in SBP Baseline

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 28 134.7 21.9

2 158 131.0 23.5

1 230 143.2 21.6

POOLED 416 138.0 22.4

BARTLETT'S STATISTIC 1.242

DEGREES OF FREEDOM 2

P-VALUE 0.537

Figure 3.3-5 BP Baseline distribution in each sleep stage in SBP;

70

From the results of ANOVA in Table 3.3-5, we rejected the null hypothesis (p<0.0001),

which the mean values in Stage 1, 2 and REM aren’t all the same. Figure 3.3-6 is a notched box plot,

which is almost the same as a box-whisker plot as well as showing the 95% confidence interval (CI)

in the notched. The coefficient used in calculated the boundary of 95%CI is 1.57. From Figure 3.3-6,

we could roughly find out that the 95%CI between Stage 1 and 2 are non-overlapping. To avoid Type

II error in statistic, instead of using student t-test, we applied Tukey Test of multiple means to find the

difference in Table 3.3-6 and found the mean values in Stage 1 is significantly different from Stage

2 (p <0.0001), but the mean values in REM has no difference in either Stage 1 (p=0.13) or Stage 2

(p=0.7). Additionally, Figure 3.3-7 is a Tukey-Kramer Confidence Interval Plot, which each horizontal

line indicates the 95%CI for the corresponding stages, and there isn’t overlapping between the blue

line in Stage 2 and the red line in REM.

Table 3.3-5 One-way ANOVA Summary in SBP Baseline

SOURCE SS DF MS F PROB>F

GROUPS 14207.9 2 7103.9 14.2 1.08E-06

ERROR 206573.7 413 500.2

TOTAL 220781.5 415

Figure 3.3-6 One-way ANOVA results in SBP Baseline

71

Table 3.3-6 Tukey test summary in SBP Baseline

STAGES
95%

CONFIDENCE
INTERVAL

ESTIMATED
MEAN

DIFFERENT
P-VALUE

REM vs. 2 [-7.087, 14.409] 3.661 0.7040

REM vs. 1 [-19.003, 1.980] -8.512 0.1382

2 vs. 1 [-17.589, -6.757] -12.173 < 0.0001

Figure 3.3-7 Tukey test result in SBP Baseline

For the statistical comparison between sleep stages with apnea episodes, we collected the

blood pressure values at the temporal location of blood pressure peak in each sleep stage in Table

3.3-2 Col.4. ANOVA test is used to analyze the mean different between sleep stages elicited by

apnea events. The Shapiro-Wilk parametric hypothesis test is used to check the normality. In Table

3.3-7, each stage is in normal distribution, which we fail to reject the null hypothesis (p>5%). Then,

in the way to examine the homogeneity with Bartlett's test, we rejected the null hypothesis (around

p=0.001) in Table 3.3-8. The standard deviation in REM in Table 3.3-8 indicated that the variance is

relatively large. Figure 3.3-8 is the box-whisker plots in each sleep stage. The two horizontal solid

lines indicate the minimum and maximum value in that stage and the horizontal distance of the box

reveals the interquartile rage, which is from the subtraction between the upper edge of the box, third

72

quartile and the lower edge of the box, first quartile. Also, the red line inside the box shows the median

of that stage. So, the median in REM is too close to the third quartile in Figure 3.3-8, which is the

reason of not homogeneity and the data from REN should be excluded. With only Stage 1, 2 and 3

in homogeneity test, we fail to reject the null hypothesis (p = 0.1) in Table 3.3-9.

Table 3.3-7 P-value of Shapiro-Wilk parametric hypothesis test in peak SBP elicited by apnea events

SLEEP STAGES NUM P-VALUE

REM 23 0.08

STAGE 3 7 0.74

STAGE 2 38 0.08

STAGE 1 135 0.08

 Table 3.3-8 The homogeneity in Stage 1, 2, 3, and REM in peak SBP elicited by apnea events

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 23 157.7 29.6

3 7 132.0 9.3

2 38 141.6 16.3

1 135 149.4 18.8

POOLED 203 148.3 19.7

BARTLETT'S STATISTIC 16.6

DEGREES OF FREEDOM 3

P-VALUE 0.0009

Table 3.3-9 The homogeneity in Stage 1, 2, and REM in peak SBP elicited by apnea events

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 7 132.0 9.3

2 38 141.6 16.3

1 135 149.4 18.8

POOLED 180 147.1 18.1

BARTLETT'S STATISTIC 4.6

DEGREES OF
FREEDOM

2.0

P-VALUE 0.102

73

Figure 3.3-8 peak BP distribution elicited by apnea events in each sleep stage in SBP

From the results of ANOVA in Table 3.3-10, we rejected the null hypothesis (p<0.01), which

the mean values in Stage 1, 2 and 3 aren’t all the same. Figure 3.3-9 is a notched box plot, which is

almost the same as a box-whisker plot as well as showing the 95% confidence interval (CI) in the

notched. The coefficient used in calculated the boundary of 95%CI is 1.57. From Figure 3.3-9, we

could roughly find out that the 95%CI between Stage 1 and 3 are non-overlapping. To avoid Type II

error in statistic, instead of using ordinary t-test, we applied Tukey Test to find the difference in Table

3.3-11 and found the mean values in Stage 1 is significantly difference with Stage 3 (p=0.036), but

the mean values in Stage 2 has no difference in either Stage 1 (p=0.4) or Stage 3 (p=0.052).

Additionally, Figure 3.3-10 is a Tukey-Kramer Confidence Interval Plot, which each horizontal line

indicates the 95%CI for the corresponding stages, and there isn’t overlapping between the blue line

in Stage 1 and the red line in Stage 3.

74

Table 3.3-10 One-way ANOVA Summary in peak SBP elicited by apnea events

SOURCE SS DF MS F PROB>F

GROUPS 3414 2 1707.0 5.2 6.20E-03

ERROR 57794.9 177 326.5

TOTAL 61208.9 179

Figure 3.3-9 One-way ANOVA results in peak SBP elicited by apnea events

Table 3.3-11 Tukey test summary in peak SBP elicited by apnea events

SLEEP
STAGE

95%
CONFIDENCE

INTERVAL

ESTIMATED
MEAN

DIFFERENT
P-VALUE

1 vs. 2 [-27.019, 7.819] -9.600 0.400

1 vs. 3 [-33.744, -0.910] -17.327 0.036

2 vs. 3 [-15.504, 0.050] -7.727 0.052

75

Figure 3.3-10 Tukey test result in peak SBP elicited by apnea events

3.3.2. Analysis of Diastolic Blood Pressure Surges in Various Sleep Stages

Similarly in Section 3.3.1, the first four row of data in

76

Table 3.3-12 shows the aggregate mean and standard deviation of SBP surges in each of

the sleep stages considered for all subjects, while the rows below that show the results for each of

the 10 subjects individually. Specifically, the entries in the 3rd column for the first four rows show the

average and standard deviation of all sample-by-sample values of the SBP Baselines for all subjects

in the stages 1, 2, 3 and REM sleep. It is noted that since no event in Stage 4 qualified for analysis –

based on the criteria outlined in Section 2.7.7 – there are no entries for that stage. In addition, the

entry under Col. 3 in the first four rows of the table shows the average and standard deviation of the

peak SBP values during all apnea events respectively to each sleep stage. The corresponding values

of the entries just described for individual subjects are presented in rows labeled No. 1 to No.10 in

77

Table 3.3-12. In the t-test results, Stage 1 and 2 show significantly difference (p-value around

3%) in the comparison between normal value and the peak value from each subject in

78

Table 3.3-12, but no difference in REM.

79

Table 3.3-12 DBP variation in different sleep stages

The brown horizontal lines in the Figure 3.3-11 b, Figure 3.3-12 b, Figure 3.3-13 b, and

Figure 3.3-14 b show the average result of the Baseline. In these figures, the plots on the

left side displays all the DBP trajectories during the qualified apnea events within the corresponding

sleep stage (i.e., stage 1, 2, 3, and REM) The plots on the right side of the figures show the result

of aggregating these trajectories for each corresponding sleep stages as well as the corresponding

95% CI. Additionally, the red circles in the right-side figures mark the peak of the sample-by-sample

mean apnea DBP surges corresponding to the apnea episodes.

Figure 3.3-11 Aggregated blood pressure oscillations elicited by apnea events in Stage 1: (a) DBP recordings
for all analyzed apnea events for all subjects; (b) Aggregated DBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

STAGE Subject

Mean
Baseline

BP
(mmHg)

Mean Peak
BP during

Apnea
(mmHg)

Difference of
Mean Peak

and Baseline
BP (mm Hg)

% Difference of
Mean Peak and

Baseline BP

Temporal
Location of
BP Peak (s)

No. of
Apnea
Events

Averaged

1 All 71.9 ± 3.0 79.2 ± 9.8 7.3 10.2% 6.1 135
2 All 69.2 ± 3.5 78.1 ± 8.0 8.8 12.7% 6.4 38
3 All 72.1 ± 2.9 79.2 ± 5.3 7.0 9.7% 10.1 7

REM All 69.7 ± 1.8 75.1 ± 14.5 5.4 7.7% 10.2 23

1 1 69.3 ± 2.8 76.4 ± 7.1 7.1 10.2% 10.0 7
1 8 71.0 ± 5.2 83.0 ± 9.0 12.0 16.9% 8.5 12
1 4 75.0 ± 4.1 82.8 ± 7.1 7.8 10.4% 11.7 25
1 7 57.5 ± 3.0 65.4 ± 6.9 7.9 13.7% 7.4 5
1 10 64.1 ± 4.9 80.0 ± 9.3 15.9 24.8% 5.4 7
1 5 74.9 ± 3.5 84.2 ± 9.4 9.3 12.4% 6.3 27
2 1 68.3 ± 3.6 77.9 ± 7.8 9.6 14.1% 7.1 12
2 10 65.9 ± 5.7 82.4 ± 8.7 16.6 25.2% 3.4 13

REM 6 71.1 ± 1.6 75.3 ± 4.3 4.1 5.8% 25.1 10
REM 7 57.9 ± 2.0 63.1 ± 8.2 5.2 9.0% 7.1 6

80

Figure 3.3-12 Aggregated blood pressure oscillations elicited by apnea events in Stage 2: (c) DBP recordings
for all analyzed apnea events for all subjects; (d) Aggregated DBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-13 Aggregated blood pressure oscillations elicited by apnea events in Stage 3: (a) DBP recordings
for all analyzed apnea events for all subjects; (b) Aggregated DBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-14 Aggregated blood pressure oscillations elicited by apnea events in REM: (a) DBP recordings for
all analyzed apnea events for all subjects; (b) Aggregated DBP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

81

In the statistical analysis, one-way ANOVA method was used for comparison between sleep

stages. In the Baseline, the dataset is considered in the normal distribution due to the central limit

theorem. Since the quantity of 1 min window in Baseline in Stage 1, 2, 3, and REM is 230, 158, 14,

and 28, respectively, which each stage contains more than 60,000 values. But, in the way to examine

the homogeneity with Bartlett's test, we reject the null hypothesis (p=0.01) in Table 3.3-13. Such a

result indicated that the data from stage 3 should be excluded. Figure 3.3-15 is the box-whisker plots

in each sleep stage. The two horizontal solid lines indicate the minimum and maximum value in that

stage and the horizontal distance of the box reveals the interquartile rage, which is from the

subtraction between the upper edge of the box, third quartile and the lower edge of the box, first

quartile. Also, the red line inside the box shows the median of that stage. So, the data distribution in

Stage 3 clearly considers as not homogeneity in Figure 3.3-15. With only Stage 1, 2 and REM in

homogeneity test, we fail to reject the null hypothesis (p = 0.05) in Table 3.3-14.

Table 3.3-13 The homogeneity in Stage 1, 2, 3, and REM in DBP Baseline

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 28 64.9 7.0

3 14 55.6 5.0

2 158 66.5 9.2

1 230 71.2 7.9

POOLED 430 68.6 8.3

BARTLETT'S STATISTIC 11.0

DEGREES OF FREEDOM 3

P-VALUE 0.012

Table 3.3-14 The homogeneity in Stage 1, 2, and REM in DBP Baseline

SLEEP STAGE COUNT MEAN
STANDARD
DEVIATION

REM 28 64.9 7.0

2 158 66.5 9.2

1 230 71.2 7.9

POOLED 416 69.0 8.4

BARTLETT'S STATISTIC 6.0

DEGREES OF FREEDOM 2

P-VALUE 0.050

82

Figure 3.3-15 BP Baseline distribution in each sleep stage in DBP

From the results of ANOVA in Table 3.3-15, we rejected the null hypothesis (p<0.0001),

which the mean values in Stage 1, 2 and REM aren’t all the same. Figure 3.3-16 is a notched box

plot, which is almost the same as a box-whisker plot as well as showing the 95% confidence interval

(CI) in the notched. The coefficient used in calculated the boundary of 95%CI is 1.57. From Figure

3.3-16, we could roughly find out that the 95%CI between Stage 1 with either Stage 2 or REM are

non-overlapping. To avoid Type II error in statistic, instead of using ordinary t-test, we applied Tukey

Test to find the difference in Table 3.3-16 and found the mean value in Stage 1 is significantly

difference on either Stage 2 (p <0.0001) or REM (p =0.0004). Additionally, Figure 3.3-17 is a Tukey-

Kramer Confidence Interval Plot, which each horizontal line indicates the 95%CI for the

corresponding stages, and there isn’t overlapping between the red line in 1 with either the blue line

in Stage 2 or REM.

Table 3.3-15 One-way ANOVA Summary in DBP Baseline

SOURCE SS DF MS F PROB>F

GROUPS 2634.1 2 1317.1 18.8 1.61E-08

ERROR 29013.6 413 70.3

TOTAL 31647.7 415

83

Figure 3.3-16 One-way ANOVA results in DBP Baseline

Table 3.3-16 Tukey test summary in Stage 1, 2, and REM in DBP Baseline

GROUP
95% CONFIDENCE

INTERVAL
ESTIMATED MEAN

DIFFERENT
P-VALUE

REM vs. 2 [-5.636, 2.420] -1.608 0.6178

REM vs. 1 [-10.299, -2.436] -6.367 0.0004

2 vs. 1 [-6.789, -2.730] -4.760 < 0.0001

Figure 3.3-17 Tukey test result in Stage 1, 2, and REM in DBP Baseline

84

In the statistical comparison between sleep stages with apnea episode, we collected the

blood pressure values at the temporal location of blood pressure peak in each sleep stage in

85

Table 3.3-12 Col.4. In DBP, ANOVA test isn’t able to be used because we reject the null

hypothesis in Shapiro-Wilk parametric hypothesis test, which the dataset in either sleep stages isn’t

in normal distribution Table 3.3-17. Therefore, we applied Wilcoxon rank sum test, a rank-based

nonparametric test, to get the difference regard to the median. We fail to reject the null hypothesis,

such a result that the medians in Stage 1, 2, 3, and REM are all the same.

Table 3.3-17 P-value of Shapiro-Wilk parametric hypothesis test

SLEEP STAGES NUM P-VALUE

REM 23 0.016

STAGE 3 7 0.001

STAGE 2 38 0.016

STAGE 1 135 0.016

Table 3.3-18 The results of Wilcoxon rank sum test

Stages P-value Z- value Rank sum

REM vs. 3 0.39 -0.859 338.5

REM vs. 2 1.00 0.000 540.5

REM vs. 1 1.00 0.000 540.5

3 vs. 2 0.39 0.859 126.5

3 vs. 1 0.39 0.859 126.5

2 vs. 1 1.00 0.000 540.5

3.3.3. Analysis of Mean Arterial Blood Pressure Surges in Various Sleep Stages

In Table 3.3-19, the first four row of data shows the aggregate mean and standard deviation

of SBP surges in each of the sleep stages considered for all subjects, while the rows below that show

the results for each of the 10 subjects individually. Specifically, the entries in the 3rd column for the

first four rows show the average and standard deviation of all sample-by-sample values of the SBP

Baselines for all subjects in the stages 1, 2, 3 and REM sleep. It is noted that since no event in Stage

4 qualified for analysis – based on the criteria outlined in Section 2.7.7 – there are no entries for that

stage. In addition, the entry under Col. 3 in the first four rows of the table shows the average and

standard deviation of the peak SBP values during all apnea events respectively to each sleep stage.

The corresponding values of the entries just described for individual subjects are presented in rows

86

labeled No. 1 to No.10 in Table 3.3-19. In the t-test results, there is no difference (p-value > 5%) in

the comparison between normal value and the peak value from each subject in Table 3.3-19.

Table 3.3-19 MAP variation in different sleep stages

The brown horizontal lines in the Figure 3.3-18 b, Figure 3.3-19 b, Figure 3.3-20 b, and Figure

3.3-21 b show the average result of the Baseline. In these figures, the plots on the left side displays

all the MAP trajectories during the qualified apnea events within the corresponding sleep stage (i.e.,

stage 1, 2, 3, and REM). The plots on the right side of the figures show the result of aggregating

these trajectories for each corresponding sleep stages as well as the corresponding 95% CI.

Additionally, the red circles in the right-side figures mark the peak of the sample-by-sample mean

apnea MAP surges corresponding to the apnea episodes.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

STAGE Subject

Mean
Baseline

BP
(mmHg)

Mean Peak
BP during

Apnea
(mmHg)

Difference of
Mean Peak

and Baseline
BP (mm Hg)

% Difference of
Mean Peak and

Baseline BP

Temporal
Location of
BP Peak (s)

No. of
Apnea
Events

Averaged

1 All 93.6 ± 3.7 102.2 ± 11.6 8.6 9.2% 5.8 135
2 All 88.8 ± 3.8 98.5 ± 9.2 9.7 10.9% 6.4 38
3 All 87.5 ± 3.4 96.3 ± 6.7 8.7 9.9% 9.6 7

REM All 96.2 ± 2.2 102.3 ± 18.1 6.1 6.3% 9.6 23

1 1 86.6 ± 3.1 94.3 ± 7.2 7.6 8.8% 9.5 7
1 8 92.3 ± 5.4 104.8 ± 7.6 12.4 13.4% 4.6 12
1 4 102.4 ± 5.7 111.7 ± 8.4 9.3 9.1% 11.1 25
1 7 74.6 ± 3.4 84.0 ± 5.0 9.4 12.6% 10.7 5
1 10 84.0 ± 5.2 99.2 ± 10.8 15.2 18.1% 5.2 7
1 5 90.0 ± 3.9 100.4 ± 12.4 10.3 11.4% 5.7 27
2 1 84.3 ± 4.0 94.5 ± 8.7 10.2 12.1% 6.7 12
2 10 86.5 ± 6.2 104.7 ± 10.2 18.2 21.0% 4.3 13

REM 6 101.0 ± 2.1 105.6 ± 5.3 4.6 4.6% 24.4 10
REM 7 75.2 ± 2.5 81.5 ± 6.7 6.3 8.4% 9.7 6

87

Figure 3.3-18 Aggregated blood pressure oscillations elicited by apnea events in Stage 1: (a) MAP recordings
for all analyzed apnea events for all subjects; (b) Aggregated MAP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-19 Aggregated blood pressure oscillations elicited by apnea events in Stage 2: (c) MAP recordings
for all analyzed apnea events for all subjects; (d) Aggregated MAP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-20 Aggregated blood pressure oscillations elicited by apnea events in Stage 3: (a) MAP recordings
for all analyzed apnea events for all subjects; (b) Aggregated MAP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

88

Figure 3.3-21 Aggregated blood pressure oscillations elicited by apnea events in REM: (a) MAP recordings for
all analyzed apnea events for all subjects; (b) Aggregated MAP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

3.3.4. Analysis of Pulse Pressure Surges in Various Sleep Stages

The first four row of data in Table 3.3-20 shows the aggregate mean and standard deviation

of SBP surges in each of the sleep stages considered for all subjects, while the rows below that show

the results for each of the 10 subjects individually. Specifically, the entries in the 3rd column for the

first four rows show the average and standard deviation of all sample-by-sample values of the SBP

Baselines for all subjects in the stages 1, 2, 3 and REM sleep. It is noted that since no event in Stage

4 qualified for analysis – based on the criteria outlined in Section 2.7.7 – there are no entries for that

stage. In addition, the entry under Col. 3 in the first four rows of the table shows the average and

standard deviation of the peak SBP values during all apnea events respectively to each sleep stage.

The corresponding values of the entries just described for individual subjects are presented in rows

labeled No. 1 to No.10 in Table 3.3-20. In the t-test results, there is no difference (p-value > 5%) in

the comparison between normal value and the peak value from each subject in Table 3.3-20.

89

Table 3.3-20 PP variation in different sleep stages

The brown horizontal lines in the Figure 3.3-22 b, Figure 3.3-23 b, Figure 3.3-24 b, and Figure

3.3-25 b show the average result of the Baseline. In these figures, the plots on the left side displays

all the PP trajectories during the qualified apnea events within the corresponding sleep stage (i.e.,

stage 1, 2, 3, and REM) The plots on the right side of the figures show the result of aggregating

these trajectories for each corresponding sleep stages as well as the corresponding 95% CI.

Additionally, the red circles in the right-side figures mark the peak of the sample-by-sample mean

apnea PP surges corresponding to the apnea episodes.

Figure 3.3-22 Aggregated blood pressure oscillations elicited by apnea events in Stage 1: (a) PP recordings for
all analyzed apnea events for all subjects; (b) Aggregated PP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

STAGE Subject

Mean
Baseline

BP
(mmHg)

Mean Peak
BP during

Apnea
(mmHg)

Difference of
Mean Peak

and Baseline
BP (mm Hg)

% Difference of
Mean Peak and

Baseline BP

Temporal
Location of
BP Peak (s)

No. of
Apnea
Events

Averaged

1 All 65.1 ± 3.2 71.6 ± 21.2 6.5 10.0% 9.1 135
2 All 59.3 ± 2.7 65.2 ± 15.6 5.8 9.8% 7.3 38
3 All 45.9 ± 3.6 57.7 ± 11.3 11.8 25.7% 13.7 7

REM All 79.1 ± 2.3 84.4 ± 23.9 5.3 6.7% 15.8 23

1 1 52.1 ± 2.1 56.6 ± 3.2 4.5 8.6% 10.9 7
1 8 64.9 ± 3.5 71.8 ± 12.4 6.9 10.6% 9.6 12
1 4 81.8 ± 5.3 89.1 ± 8.9 7.2 8.8% -23.1 25
1 7 52.2 ± 2.7 59.7 ± 3.0 7.5 14.4% 11.5 5
1 10 60.4 ± 5.6 76.1 ± 21.4 15.7 26.0% 8.4 7
1 5 45.5 ± 2.2 51.3 ± 30.8 5.8 12.7% 8.2 27
2 1 48.5 ± 2.8 54.9 ± 7.3 6.3 13.0% 12.6 12
2 10 63.1 ± 4.5 75.9 ± 11.4 12.8 20.3% 6.1 13

REM 6 88.6 ± 3.1 94.4 ± 9.5 5.8 6.5% 18.0 10
REM 7 52.1 ± 2.4 58.3 ± 5.8 6.2 11.9% 14.1 6

90

Figure 3.3-23 Aggregated blood pressure oscillations elicited by apnea events in Stage 2: (c) PP recordings for
all analyzed apnea events for all subjects; (d) Aggregated PP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-24 Aggregated blood pressure oscillations elicited by apnea events in Stage 3: (a) PP recordings for
all analyzed apnea events for all subjects; (b) Aggregated PP oscillations elicited by apnea with 95%
confidence interval envelope (shaded area);

Figure 3.3-25 Aggregated blood pressure oscillations elicited by apnea events in REM: (a) PP recordings for all
analyzed apnea events for all subjects; (b) Aggregated PP oscillations elicited by apnea with 95% confidence
interval envelope (shaded area);

91

3.3.5. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages

Based on the method that was detailed in Section 2.7.8., the possible impact of sleep stages

on the rate of blood pressure surge due to an apnea was studied. The first row of data in

In the t-test results, Stage 1, 2 and REM show significantly difference (p-value < 0.1%) in the

comparison between the Baseline slope and the slope in apnea episodes from each subject in

Table 3.3-21, but there is no difference in the comparison between the Baseline and apnea

epochs intercept in any sleep stages. Also, p-value are all greater than 5% in the comparison between

sleep stages in either Baseline or apnea events, which reveal that there is no difference.

Table 3.3-21 shows the aggregate results of the slop of SBC in all subjects, while the rows

below that show the results for each of the 10 subjects individually. Similarly, the mean and standard

deviation of the slope and intercept values for normal breathing (i.e. no apnea event present) are

shown in Col. 3 and Col. 4. Further, Col. 5 and Col. 6 display the slope and intercept values

associated with the apnea events. Column 7 shows the total number of apnea events that satisfied

the set criteria in Section 2.7.7 and contributed to the results shown in each row of the table.

In the t-test results, Stage 1, 2 and REM show significantly difference (p-value < 0.1%) in the

comparison between the Baseline slope and the slope in apnea episodes from each subject in

Table 3.3-21, but there is no difference in the comparison between the Baseline and apnea

epochs intercept in any sleep stages. Also, p-value are all greater than 5% in the comparison between

sleep stages in either Baseline or apnea events, which reveal that there is no difference.

Table 3.3-21 Slope and intercept results from apnea events in different sleep stages in SBP

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Stage Subject

Slope for
Normal

Breathing
(mmHg/Sec)

Intercept for
Normal

Breathing
(mmHg)

Slope for
Apnea Events
(mmHg/Sec)

Intercept for
Apnea Events

(mmHg)

No. of
Apnea
Events

1 All 0.01 ± 0.2 137.9 ± 23.7 0.95 ± 0.7 152.0 ± 17.0 135

2 All -0.02 ± 0.2 134.7 ± 24.6 0.93 ± 0.6 144.2 ± 19.4 38

3 All 0.00 ± 0.1 104.0 ± 12.6 0.89 ± 1.0 128.3 ± 9.8 7

92

REM All 0.06 ± 0.2 133.3 ± 22.6 0.68 ± 0.4 163.1 ± 31.2 23

1 1 0.07 ± 0.2 113.1 ± 10.0 0.52 ± 0.3 131.5 ± 5.7 7

Col. 1 COL. 2 COL. 3 COL. 4 COL. 5 COL. 6 COL. 7

Stage Subject

Slope for
Normal

Breathing
(mmHg/Sec)

Intercept for
Normal

Breathing
(mmHg)

Slope for
Apnea Events
(mmHg/Sec)

Intercept for
Apnea Events

(mmHg)

No. of
Apnea
Events

1 2 -0.11 ± 0.4 149.0 ± 18.8 0.79 ± 0.5 159.6 ± 8.4 40

1 3 -0.03 ± 0.1 125.7 ± 25.7 1.97 ± 1.7 148.6 ± 25.3 5

1 8 -0.01 ± 0.3 133.4 ± 11.2 0.94 ± 0.3 150.6 ± 9.8 12

1 6 0.01 ± 0.2 158.3 ± 15.6 0.14 ± 0.1 153.9 ± 30.7 4

1 4 -0.02 ± 0.4 156.3 ± 14.9 0.80 ± 0.8 169.1 ± 13.3 25

1 7 0.01 ± 0.2 106.7 ± 10.9 0.63 ± 0.3 119.4 ± 5.2 5

1 9 0.04 ± 0.1 140.6 ± 9.9 1.18 ± 0.8 156.1 ± 5.0 3

1 10 0.01 ± 0.2 129.0 ± 13.3 1.74 ± 1.2 142.6 ± 9.9 7

1 5 -0.05 ± 0.3 121.1 ± 12.8 1.19 ± 0.5 139.1 ± 7.1 27

2 1 -0.24 ± 0.2 130.6 ± 11.1 0.90 ± 0.4 128.4 ± 8.8 12

2 2 -0.20 ± 0.4 150.1 ± 17.0 0.62 ± 0.0 158.3 ± 0.0 1

2 3 -0.05 ± 0.1 115.7 ± 7.9 0.74 ± 0.5 136.7 ± 16.6 3

2 6 0.02 ± 0.2 159.9 ± 15.9 0.91 ± 0.0 172.8 ± 0.0 1

2 4 0.00 ± 0.4 153.1 ± 12.7 0.14 ± 0.1 172.1 ± 3.2 4

2 7 -0.01 ± 0.1 104.7 ± 10.0 1.23 ± 0.0 105.6 ± 0.0 1

2 9 0.01 ± 0.2 143.1 ± 11.1 0.47 ± 0.0 149.1 ± 0.0 1

2 10 -0.02 ± 0.2 128.4 ± 13.2 1.22 ± 0.8 153.4 ± 11.7 13

2 5 -0.09 ± 0.2 119.0 ± 12.1 1.41 ± 0.0 130.4 ± 23.2 2

3 3 0.12 ± 0.0 114.9 ± 0.0 0.89 ± 1.0 128.3 ± 9.8 7

 REM 1 0.31 ± 0.5 117.7 ± 6.4 1.20 ± 0.0 175.8 ± 0.0 1

 REM 6 0.04 ± 0.1 152.0 ± 10.3 0.78 ± 0.4 175.0 ± 9.1 10

 REM 4 0.19 ± 0.1 160.7 ± 14.9 0.49 ± 0.2 196.0 ± 11.5 5

 REM 7 0.06 ± 0.1 109.1 ± 5.6 0.57 ± 0.4 118.0 ± 6.2 6

 REM 10 -0.05 ± 0.2 128.8 ± 19.8 0.79 ± 0.0 136.0 ± 0.0 1

Figure 3.3-26 provides an average prediction for the blood pressure rises in the apnea events

in 60s window. The solid lines are calculated by using average slope and average intercept with the

aggregated result from all apnea events in

Table 3.3-21. The horizontal dashed line in Figure 3.3-26 indicates stable BP during normal

breathing. At 30s, the blood pressure surges to 179 mmHg, 171 mmHg, 155 mmHg and 184 mmHg

in the order of Stage 1, 2, 3 and REM.

93

Figure 3.3-26 Slope plot in 60 in SBP in each sleep stages; the red cross indicates the value at 30s

3.3.6. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages

In slope analysis, it follows the criteria in Section 2.7.8. The possible impact of sleep stages

on the rate of blood pressure surge due to an apnea was studied. The first row of data in

94

Table 3.3-22 shows the aggregate results of the slop of SBC in all subjects, while the rows

below that show the results for each of the 10 subjects individually. Similarly, the mean and standard

deviation of the slope and intercept values for normal breathing (i.e. no apnea event present) are

shown in Col. 3 and Col. 4. Further, Col. 5 and Col. 6 display the slope and intercept values

associated with the apnea events. Column 7 shows the total number of apnea events that satisfied

the set criteria in Section 2.7.7 and contributed to the results shown in each row of the table.

In the t-test results, Stage 1, 2 and REM show significantly difference (p-value < 1%) in the

comparison between Baseline slope and the slope in apnea episodes from each subject in

95

Table 3.3-22. In the comparison between Baseline and apnea events intercept, Stage 1 and

2 also shows significantly difference (p-value < 5%), but not in REM. In addition, p-value are all

greater than 5% in the comparison in both slope and intercept between sleep stages in either Baseline

or apnea events in, which reveal that there is no difference.

96

Table 3.3-22 Slope and intercept results from apnea events in different sleep stages in DBP

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Stage Subject

Slope in
Normal

Breathing
(mmHg/Sec)

Intercept in
Normal

Breathing
(mmHg)

Slope in Apnea
Events

(mmHg/Sec)

Intercept in
Apnea Events

(mmHg)

No. of
Apnea
Events

1 All 0.00 ± 0.1 69.3 ± 9.6 0.64 ± 0.5 81.1 ± 8.7 135

2 All -0.02 ± 0.1 68.1 ± 10.7 0.69 ± 0.5 81.4 ± 8.4 38

3 All 0.00 ± 0.1 55.8 ± 7.9 0.53 ± 0.5 78.4 ± 3.2 7

REM All 0.03 ± 0.2 64.2 ± 9.4 0.39 ± 0.2 78.5 ± 12.7 23

1 1 0.04 ± 0.1 66.2 ± 6.5 0.46 ± 0.2 77.3 ± 5.5 7

1 2 -0.08 ± 0.1 71.9 ± 5.8 0.51 ± 0.3 78.6 ± 4.1 40

1 3 0.04 ± 0.1 73.9 ± 16.0 0.76 ± 0.6 95.0 ± 20.3 5

1 8 0.02 ± 0.2 67.1 ± 7.6 0.89 ± 0.6 83.6 ± 5.6 12

1 6 0.00 ± 0.1 73.7 ± 8.3 0.05 ± 0.1 77.0 ± 9.6 4

1 4 -0.02 ± 0.2 74.2 ± 6.2 0.56 ± 0.5 82.2 ± 8.4 25

1 7 0.01 ± 0.1 57.8 ± 6.2 0.48 ± 0.2 64.7 ± 3.8 5

1 9 0.03 ± 0.1 76.4 ± 6.1 0.85 ± 0.3 86.2 ± 3.9 3

1 10 0.01 ± 0.2 64.2 ± 6.4 1.28 ± 0.8 77.1 ± 9.8 7

1 5 -0.03 ± 0.2 74.6 ± 9.4 0.77 ± 0.4 85.4 ± 6.5 27

2 1 -0.20 ± 0.1 77.5 ± 8.1 0.62 ± 0.3 77.1 ± 5.4 12

2 2 -0.14 ± 0.2 72.3 ± 6.3 0.15 ± 0.0 76.1 ± 0.0 1

2 3 0.02 ± 0.1 68.9 ± 9.2 0.56 ± 0.2 85.8 ± 5.0 3

2 6 0.00 ± 0.1 74.2 ± 8.7 0.57 ± 0.0 86.0 ± 0.0 1

2 4 -0.02 ± 0.2 73.8 ± 6.1 0.14 ± 0.0 81.8 ± 2.4 4

2 7 -0.01 ± 0.1 56.7 ± 6.1 0.77 ± 0.0 56.0 ± 0.0 1

2 9 -0.02 ± 0.1 78.5 ± 6.8 0.35 ± 0.0 85.5 ± 0.0 1

2 10 0.00 ± 0.2 63.2 ± 7.7 0.99 ± 0.6 85.8 ± 7.8 13

2 5 -0.07 ± 0.2 74.2 ± 8.5 0.94 ± 0.1 82.7 ± 15.4 2

3 3 0.17 ± 0.0 67.1 ± 0.0 0.53 ± 0.5 78.4 ± 3.2 7

 REM 1 0.25 ± 0.4 68.0 ± 6.8 0.93 ± 0.0 111.5 ± 0.0 1

 REM 6 0.02 ± 0.1 68.2 ± 7.6 0.37 ± 0.3 79.6 ± 2.7 10

 REM 4 -0.06 ± 0.1 75.9 ± 2.8 0.25 ± 0.1 89.6 ± 5.7 5

 REM 7 0.05 ± 0.1 55.6 ± 4.5 0.40 ± 0.2 62.8 ± 5.2 6

 REM 10 -0.02 ± 0.2 64.2 ± 10.8 0.58 ± 0.0 72.8 ± 0.0 1

Figure 3.3-27 provides an average prediction for the blood pressure rises in the apnea events

in 60s window. The solid lines are calculated by using average slope and average intercept with the

aggregated result from all apnea events in

97

Table 3.3-22. The horizontal dashed line in Figure 3.3-27 indicates stable BP during normal

breathing. At 30s, the blood pressure surges to 100 mmHg, 102 mmHg, 94 mmHg and 90 mmHg in

the order of Stage 1, 2, 3 and REM.

Figure 3.3-27 Slope plot in 60 in DBP in each sleep stages; the red cross indicates the value at 30s

3.4. Subject Time of Sleep Summary

One of the physiologically important parameters for determining the quality of sleep is the

duration of each sleep stage. The total time in bed is an account of the elapsed time between when

the lights in the bedroom of the sleep lab is turned off until when the test is terminated in the morning

and lights are turned back on. Further, to obtain the actually sleep time for subjects, we totaled the

duration of each of the stages. Figure 3.4-1 shows the time in bed and actual sleep duration for all

10 subjects. The average percentages of each sleep stage are shown in Figure 3.4-2. The proportion

of Stage 1 is around 61%; 29% in Stage 2, around 2% in Stage 3 and around 8% in REM. Another

measure of interest is the distribution of the number of events in various sleep stages. Using the

count of events given in Table 3.3-2, one can obtain this distribution as shown in Figure 3.4-3.

98

Figure 3.4-1 Subject Time of Sleep Summary n all 10 subjects

Figure 3.4-2 Aggregate results for sleep stages in all 10 subjects

1 2 3 4 5 6 7 8 9 10

Net Time in Bed 6.5 7.6 7.4 7.5 5.8 8.1 7.7 7.5 7.3 7.4

Time in Sleep 4.6 5.9 2.7 6.3 4.3 6.5 6.6 2.4 2.9 5.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

h
o

u
r

Subject Time of Sleep Summary

Stage 1,
60.7%

Stage 2,
29.0%

Stage 3,
1.9%

REM, 8.2%

SLEEP STAGE RATIO DISTRIBUTION

99

Figure 3.4-3 Aggregated result of event distribution in each sleep stage

Stage 1,
66.5%

Stage 2,
18.7%

Stage 3, 3.4%

REM ,
11.3%

EVENT DISTRIBUTION IN SLEEP STAGES

100

Chapter 4

Discussion and Conclusion

4.1. Discussion

The aim of the study presented here was to provide an analysis method that yields clinically

relevant information about nocturnal blood pressure variations in sleep apnea patients. Continuous

recording of blood pressure, as reported in this study, is of importance, because it can reveal the

severity and frequency of oscillations in the patient blood pressure throughout the night. Considering

that long continuous recording (6 to 8 hours) of blood pressure produces a high volume of data, an

approach to aggregate this high volume of data for clinical and scientific study is of interest. The

results can help us understand more into the various physiological changes occurring because of

OSA. This section deals with the interpretation and significance of the results in chapter 3.

4.1.1. Comparison of Aggregated Sleep Apnea Events with the Blood Pressure in Normal Breathing

Examining the Baseline values in aggregate averages in SBP and DBP in Section 3.1 reveals

that patients in the sample population had an overall relatively stable BP during normal breathing.

This is evidenced by the levels of MAP and PP being normal. Further, one can observe from the

101

Table 3.1-1 and Table 3.1-2 in Section 3.1, that the standard deviations of SBP, DBP, MAP,

and PP during the Baseline for the subjects are small (between 1.4 to 4.5 mmHg).

This is in contrast with the distinct oscillations observed in all four quantitative measures (i.e.,

SBP, DBP, MBP, and PP) when an apnea event is present (Figure 3.2-1 through Figure 3.2-4). The

level of the oscillations in the BP post selected apnea events is reflected in the sharp rise in the mean

and standard deviation of all four measures in the tables in Section 3.2 which shows that the peak of

the average of SBP surges over 17.6 mmHg (around 14%), average of DBP surges by 9.5 mmHg

(around 14%), average of MAP surges by 9.5 mmHg (around 14%) and average of PP surges by 9.8

mmHg (over 15%) with respect to their respective Baseline average values in the order of Table 3.2-1

through

102

Table 3.2-4. The t-test of the mean values for the Baseline BP and the peak BP elicited by

apnea in Table 3.2-1,

103

Table 3.2-2 and Table 3.2-3 showed that they are significantly different (p<0.001) in SBP,

DBP, and MAP. The p-value in PP is 6%, which isn’t different. Since PP is calculated from the

subtraction between SBP and DBP, the change is compensated by the formula. The greater

variations in the blood pressure elicited by apnea events results in a relatively wide 95% confidence

interval envelopes in the part b in Figure 3.2-1 and Figure 3.2-2, indicating that the expected range

of oscillations can be in excess of 50 mmHg. Such large oscillations in the nocturnal BP would be of

interest to clinicians as they may have health implications.

Considering part b in Figure 3.2-1 through Figure 3.2-4, it can be observed that the peak of

oscillations that are induced by apnea events do not occur within the apnea interval, rather they occur

after the apnea has ended. As the aggregated results in Table 3.2-1 through

104

Table 3.2-4 show the average delay to the peak are between from 6s to 9s. Another

observation of interest in the figures is the average trajectory of the BP changes elicited by apnea

events. As can be seen, the trajectories of all four measures return toward the Baseline after peaking

are oscillatory, indicating underdamped overall BP restoration control to the pre-apnea level. From

Figure 3.2-1 through Figure 3.2-4, the surged blood pressure take about 20s to the return to the

baseline after the end of apnea. This interval can serve as a preliminary estimation of the blood

pressure recovery, if no other apnea event occurs. It also shows the adequacy of selecting the 30 s

interval as the minimum temporal distance between apnea events for the analysis. This interval length

allowed one to observe the recovery due to separated apnea events.

In the results of analysis of the slope of the BP surges due to apnea events, one observes

that on the average BP rises about 1 mmHg every second (Section 3.2.5) . By applying aggregated

result of the temporal location of BP peak, 7s (in Table 3.2-1), we could get 155.6 mmHg with the

intercept in 149 mmHg. However, the mean peak BP during apnea episodes in Table 3.2-1 Col. 3 is

146.3 mmHg. Such a difference reveals estimating the surge by utilizing the slope may be higher

than the mean peak BP values. With respect to the variations in DBP, the slope in apnea events is

around 0.6 mmHg/s (Section 3.2.6). Hence, the blood pressure raises to around 85 mmHg with

temporal location of BP peak in 6.4s. The estimated surge level from the slope equation is still higher

than the accumulated result in

105

Table 3.2-2.

4.1.2. Effect of Sleep Stage on Blood Pressure Surges Elicited by Apnea Events

Analysis of the mean values of SBP, MAP and PP during Baseline showed that the mean

values exhibit a general decreasing trend as the patient moves from stage 1 to deeper stages (Table

3.3-2, Table 3.3-19 and Table 3.3-20). Specifically, means and one standard deviations of SBP during

Baseline were 137.1 ± 5.6, 128.4 ± 5.1, and 117.9 ± 4.9 mmHg in stages 1, 2, and 3 respectively in

Table 3.3-2. In MAP in Table 3.3-19, means and one standard deviations during Baseline were 93.6

± 3.7, 88.8 ± 3.8, 87.5 ± 3.4 mmHg in stages 1, 2, and 3 respectively, as well as in PP in Table 3.3-20.

The means and one standard deviations during Baseline in stage 1, 2, and 3 were 65.1 ± 3.2, 59.3 ±

2.7, 45.9 ± 3.6, respectively. This phenomenon is reasonable since the body and brain waves

slowdown in NREMS [38]. In addition, due to autonomic instability, blood pressure fluctuations

increased in REM [39]. However, this phenomenon isn’t showed in of the mean values of DBP during

Baseline in

106

Table 3.3-12. The standard deviations of SBP, DBP, MAP, and PP of the Baseline in Stage

1, 2, 3, and REM for the subjects are between 1.8 to 5.6 mmHg.

Contrarily, these are the distinct oscillations observed in Col. 4 in Table 3.3-2 through Table

3.3-20 associated with apnea events that can be seen in part b figures in Section 3.3, respectively.

The level of the oscillations in the BP post selected apnea events is reflected in the sharp rise in the

mean and standard deviation in either stages of all four measures in Table 3.3-2 through Table

3.3-20. In Table 3.3-2 through Table 3.3-20 Col. 5 and 6, the peak of the average of BP measures in

stage 1, 2 and 3 surge level between 8.7 to 14.4 mmHg and the percentage change from 9% to

around 12%, respectively. In REM, the peak average of SBP surges only 8.7 mmHg (around 6%). In

DBP, the surge of the average peak in either stage 1, 2 and 3 are similar between 7 to 9 mmHg

(around 10%). The peak average of DBP in REM is only around 5.5 mmHg (8%), which isn’t likely in

SBP to have a larger change. The track of the change in the peak of the average BP in MAP is alike

in SBP. The surges in Stage 1, 2 and 3 are around 9 mmHg (10%) and, in REM, is around 6 mmHg

(6%) which change is less. In PP, the peak of the average surge in Stage 1 and 2 are likely around

6 mmHg (10%) and around 5.3 mmHg (7%) change in REM. Specifically, in Stage 3, we found out

that the peak of the average surge to around 12 mmHg (26%). In Col. 7 in Table 3.3-2 through Table

3.3-20, the temporal location of BP peak in Stage 1 and 2 in the aggregate results occur between

from 6.5s to 9s, which are much earlier in Stage 3 and REM, 9.8s to 16s. Additionally, in the part a

in Figure 3.3-25, the division is inconclusive. Currently, there are only 23 events in REM, fitting our

criteria in Section 2.7.7, in 5 subjects, which further investigation is needed with more subjects.

In the statistical analysis in the Baseline, ANOVA method was used for comparison between

sleep stages. From Table 3.3-5, the mean values of Baseline in SBP in Stage 1, 2 and REM aren’t

all the same. Then, in the Tukey test, we found out that the mean value in Stage 1 is significantly

difference with Stage 2. Such a result that there is fluctuation in BP Baseline between Stage 1 and

2, but not in REM. Further, in the comparison between sleep stages elicited by apnea events by

ANOVA test, the mean values in SBP with apnea episodes in Stage 1, 2 and 3 aren’t all the same.

After running the Tukey test, we discovered the mean value in Stage 1 is significantly difference with

Stage 3. Thus, since the Baseline in SBP in Stage 1 and 2 are different, but not in peak BP, we could

107

conclude that the BP variation due to apnea events is different between Stage 1 and 2.

Similarly, ANOVA method was used for comparison between sleep stages in the DBP

Baseline in the statistical analysis. From Table 3.3-15, the mean values of Baseline in DBP in Stage

1, 2 and REM aren’t all the same. Then, in the Tukey test in Table 3.3-16, we found out that the mean

value in Stage 1 is significantly difference with either Stage 2 or REM. Such a result that there is

fluctuation in BP Baseline in Stage 1 2, and REM. Further, in the comparison between sleep stages

elicited by apnea events, the ANOVA test is unable to be used because the dataset in either stage

isn’t in normal distribution. Thus, we applied Wilcoxon rank sum test to get the difference regard to

the median. From Table 3.3-18, we failed to reject the null hypothesis, which the median in Stage 1,

2, 3, and REM are all the same. Therefore, since the Baseline in SBP in Stage 1 is different with

either Stage 2 or REM, but not in peak BP, we could conclude that the BP variation due to apnea

events is different between Stage 1 with either Stage 2 or REM.

Additionally, t-test is used in comparison of sleep stages in the percentage change. There

isn’t different (p=0.055) in the percentage change between Stage 1 and 2 regardless BP category.

But, both Stage 1 and 2 compare with REM shows significantly different (p<0.005).

Furthermore, the duration in each sleep stage may provide us the extent of the time that the

subjects experienced that stage and, hence, the level of the impact of apneas during the stage on

the blood pressure oscillations. That is, one can assess if the average of the duration that subjects

spent in a given stage, is associated with level of changes in the BP features. In Figure 3.4-1, the

average time in bed for all 10 subjects is around 7.5hrs. There is a weak correlation to the time in

sleep with either BMI or AHI. Also, by accumulated all the data in the subjects, in Figure 3.4-2, the

proportion of Stage 1 is around 61%; 29% in Stage 2, around 2% in Stage 3 and around 8% in REM.

From Table 3.3-2 Col. 8, we could get the event distribution in Figure 3.4-3. Thus, Stage 1 contains

the majority of apnea events and also dominates the highest portion during the sleep, which follows

by Stage 2.

The results of the analysis of the impact of the sleep stages on the rate of rise in BP (Section

3.3.5), the slope in apnea events in Stage 1, 2, and REM are 0.99 mmHg/s, 0.85 mmHg/s, 0.89

mmHg/s and 0.79 mmHg/s, which indicates the rate of surge decrease as going to a deeper sleep.

108

By applying aggregated result of the temporal location of BP peak in each sleep stage in

Table 3.3-2, we could get around 156 mmHg in Stage 1, 151 mmHg in Stage 2, 137 mmHg

in Stage 3 and 163 mmHg in REM. However, the mean peak BP values during apnea in

Table 3.3-2 are all lower than the estimated value we calculated from the equation slope.

Similarly logic in DBP, the slope in

109

Table 3.3-22 in apnea events in DBP in Stage 1, 2, and REM are 0.66 mmHg/s, 0.57

mmHg/s, 0.53 mmHg/s and 0.51 mmHg/s. And, applying the aggregated result of the temporal

location of BP peak in each sleep stage in

110

Table 3.3-12, the blood pressure surges to around 85 mmHg in Stage 1, 83.2 mmHg in Stage

2, 84 mmHg in Stage 3 and around 88 mmHg in REM. Again, the estimated results compare to

111

Table 3.3-12 Col. 4 are still higher than the mean peak BP values during apnea. Such a result

indicates that estimating the surge of blood pressure by utilizing the slope may provide higher

estimate than the measured blood pressure variation.

4.1.3. Novelty of the Study

The present study provides a convenient and effective way of quantifying the overall

dynamics of blood pressure surges that occur as a result of each apnea episode. Specifically, it allows

an investigator to measure some key features of the dynamic oscillations for the entire night in a

rather compact and simple-to-understand fashion; addressing the challenge of how one reduces

relatively large and variant volume of BP data for the entire night. One of the previous studies that

had considered nocturnal BP variations with SpO2 dropped and simply detected those desaturation

period to get the BP surges (ranging from around 10 to 100mmHg) during sleep in OSA patients [20].

Another prior study determined the blood pressure surge by comparing with the average blood

pressure in 60 min and got the change around 25.4 mmHg [40]. As a result, they did not precisely

capture the more rapid dynamic components that we are able to capture.

Our study has revealed that the blood pressure surges elicited by OSA events result in

pronounced peaks that is estimated to range between 11 to 35 mmHg for SBP and 7.4 to 17.8 mmHg

for DBP. Further, these peaks do not occur within the boundary of detected apnea event, but rather

they occur approximately 7 to 9 s post termination of the event. Moreover, the surges tend to subside,

and BP returns to the baseline within approximately 20 s of the termination of the events. One of prior

studies considered windows that were at least 60 min or longer to analyze the BP variations [41].

Thus, the speed and range of BP variations had not been established by previous studies. While one

prior study investigated the BP surge levels at the end of the apnea events and reported similar

results values (6 ± 13.8 mmHg) [42], our study not only provided the value for the surge, but also the

average time course for the surge. Hence, as a result of our study, a higher temporal resolution for

the BP dynamic variations resulting from apnea is now available. With future study of larger subject

populations confirming the results of our study, one can possibly use the knowledge of rapid dynamic

features that this study provided as a means of assessing the health of sympathetic nervous system

112

response to apnea challenges.

The findings in this study discussed in-depth on blood pressure variation within the sleep

stages. By utilizing dynamic trajectory of the blood pressure due to apnea events in each sleep stage,

we clearly defined the baseline in each stage and compare with the BP surge in that corresponding

stages due to apnea events. As going to a deeper sleep in NREM, both Baseline and peak blood

pressure during apnea events decrease gradually, but the percentage change gradually increase

from 9% to 12.2% in SBP (around 13 mmHg). In REM, the SBP surge level only around 9 mmHg

(5.8%). Additionally, in event distribution between sleep stages and the sleep stages distribution,

Stage 1 contains 66% of events and covered 60% of sleep, which follows with Stage 2. The results

of the previous study discovered the both BP baseline and the peak BP due to apnea events gradually

increased from Stage 1 to REM, and the BP surge in NREM is around 4 mmHg and 15 mmHg in

REM. The main different between our findings and theirs is due to they used either the fixed-interval

or oxygen-triggered function to BP monitor. Our study analyzed each dynamic trajectory of the blood

pressure due to apnea events and compared with the Baseline trajectory. Thus, our study produces

more precise results between sleep stages, which is able to contribute valuable and meaningful data

to the clinical and medical field.

4.2. Conclusion

Analysis of continuous nocturnal blood pressure for a sample of sleep apnea patients showed

large oscillations are elicited by apnea events. These oscillations tend to have peaks that occur after

an apnea event has ended, rather than within the time interval that apnea is in progress. In addition,

by considering the sleep stages, the degree of rise increases as patient goes to deeper sleep stages

in NREM. While the computation of the slope of the rise in BP provides a means of estimating the

rate of surge in BP due to apnea, a linear line estimate of the level of the rise tend to be higher than

the experimentally obtained values, Overall, the observed large magnitude of oscillations elicited by

each apnea event suggest that they could have clinical significance.

From the findings, e.g. temporal location of BP peak and the difference from the baseline

and mean blood pressure elicited by apnea events, it could be quite fruitful to combine the results

113

with other physiological data that are commonly monitored during PSG studies, such as EEG, EKG,

and respiratory efforts, as well as with functional near-infrared spectroscopy to perform a time-

frequency dependent analysis in order to understand more comprehensively effects of obstructive

sleep apnea on cardiac and neurological systems. Additionally, the results are proved our expectation

on apnea episodes inducing either sympathetically mediated vasoconstriction with temporary

increase in arterial stiffness or isotropic effects of sympathoexcitation with cardiac stroke volume [27].

Our study provides methods to quantify blood pressure variations during a whole night record.

4.3. Limitation of Study

While the methods and results of our study have revealed new findings about the level, rate,

and temporal course of surges in BP due to OSA, the findings can be further enhanced with inclusion

of data from more subjects. In particular, analysis of the interaction of sleep stage and BP surges

could benefit from more subjects as duration of some of the stages in our current subject population

was relatively short. The analysis of the rate of surge in BP can be improved to achieve higher

accuracy in the estimation with exploring more ways of estimating the rates, in addition to the linear

equation that was done here.

114

APPENDIX

A. MATLAB CODE FOR PEAK AND VALLEY DETECTION

clc; close all;clear;

rootDir = "..\\data";

folderNum ="03";

global folderPath fileName;

folderPath = sprintf("%s\\SLEEP DATA 2013-2015 (Ann.)\\%s",
rootDir, folderNum);

fileName = sprintf('%s_DAQ_resampled', folderNum);

printLog('Message', sprintf('Start working on %s~~~~~~~',
fileName));

m = load(sprintf('%s\\%s.mat', folderPath, fileName));

[len,~] = size(m.DAQ_rsmpl);

x = 0.00: 0.01:(len/100);

x = x(1:numel(x)-1);

bp = m.DAQ_rsmpl(:,3);

clear m;

%%

m = load(sprintf("%s\\%s_stage_event.mat", folderPath, folderNum));

event = m.EVENT;

stage = m.STAGE;

event = round(event);

stage = round(stage);

clear m;

%%

% for i = 1:size(m.DAQ_rsmpl, 2)

115

i = 4;

figure;

stPt = 1; endPt = 2000000;

plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,3));

hold on;

% plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,2));%time signal 4
synchronized

plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,i));

% plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,5));

% plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,6));

% plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,7));

% plot(x(stPt:endPt), m.DAQ_rsmpl(stPt:endPt,8));

plot(x(stPt:endPt),event(stPt:endPt), 'LineWidth',2, 'Color',
colorConvertor('#D7BD00'));

plot(x(stPt:endPt),stage(stPt:endPt));

hold off;

title(sprintf('Channel: %d',i));

% end

%% for find period in testing mode

targetIdx = find(x < 3340, 1, 'last');

w = 1;

getTarget = false;

while w <= numel(wholeperiod) && getTarget == false

 if targetIdx <= wholeperiod(w)

 disp([w-1, wholeperiod(w-1), targetIdx]);

 getTarget = true;

 end

 w = w + 1;

end

116

%%

% Set up

global allPeakVal allPeakLc allTroughVal allTroughLc

allPeakVal = bp(:) .* 0;

allPeakLc = bp(:) .* 0;

allTroughVal = bp(:) .* 0;

allTroughLc = bp(:) .* 0;

%%

cut = floor(numel(x) * 0.02);

wholeperiod = 1:cut:numel(x);

totalPointPeakAdd = 0;

totalPointTroughAdd = 0;

% upperlimit = 1.5;

% lowerlimit = 1.1;

periodIdx = 1;

% while periodIdx < 8

while periodIdx < numel(wholeperiod)

% disp([periodIdx,numel(wholeperiod),
wholeperiod(periodIdx),wholeperiod(periodIdx +1)]);

 printLog('Message',sprintf('Now Working on %d / %d >> IDX is
from %d to %d', ...

 periodIdx,numel(wholeperiod),
wholeperiod(periodIdx),wholeperiod(periodIdx +1)));

 periodStart = wholeperiod(periodIdx);

 periodEnd = wholeperiod(periodIdx +1);

 [tmpPk, tmpLc] = findPeriodPeak(x, bp, periodStart, periodEnd,
false);

 allPeakVal(totalPointPeakAdd +1 : totalPointPeakAdd +
numel(tmpPk)) = tmpPk;

 allPeakLc(totalPointPeakAdd +1 : totalPointPeakAdd +
numel(tmpPk)) = tmpLc;

117

 totalPointPeakAdd = totalPointPeakAdd + numel(tmpPk);

 [tmpTroughPk, tmpTroughLc] = findPeriodTrough(x, bp,
periodStart, periodEnd, false);

 allTroughVal(totalPointTroughAdd +1 : totalPointTroughAdd +
numel(tmpTroughPk)) = tmpTroughPk;

 allTroughLc(totalPointTroughAdd +1 : totalPointTroughAdd +
numel(tmpTroughPk)) = tmpTroughLc;

 totalPointTroughAdd = totalPointTroughAdd + numel(tmpTroughPk);

 periodIdx = periodIdx + 1;

end

printLog('Message','ALMOST DONE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');

%% Finish the last part

periodStart = wholeperiod(periodIdx);

periodEnd = numel(x);

disp([periodIdx,numel(wholeperiod),
wholeperiod(periodIdx),wholeperiod(numel(wholeperiod))]);

[tmpPk, tmpLc] = findPeriodPeak(x, bp, periodStart, periodEnd,
false);

allPeakVal(totalPointPeakAdd +1 : totalPointPeakAdd + numel(tmpPk))
= tmpPk;

allPeakLc(totalPointPeakAdd +1 : totalPointPeakAdd + numel(tmpPk))
= tmpLc;

[tmpTroughPk, tmpTroughLc] = findPeriodTrough(x, bp, periodStart,
periodEnd, false);

allTroughVal(totalPointTroughAdd +1 : totalPointTroughAdd +
numel(tmpTroughPk)) = tmpTroughPk;

allTroughLc(totalPointTroughAdd +1 : totalPointTroughAdd +
numel(tmpTroughPk)) = tmpTroughLc;

printLog('Message','ALL DONE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');

%%

118

figure;

startPoint = 1;

plot(x(startPoint:periodEnd), bp(startPoint: periodEnd));

hold on;

stidx = 2708651; endidx = 2708651;

plot([x(stidx) x(stidx)], [0 4], '--k');

plot([x(endidx) x(endidx)], [0 4], '--k');

plot(allPeakLc, allPeakVal, 'r^');

plot(allTroughLc, allTroughVal,'v', 'Color',
colorConvertor('#54009E'));

hold off;

%%

[allPeakLc, allPeakVal, allTroughLc, allTroughVal] =
removeZeronNan(allPeakLc, allPeakVal, allTroughLc, allTroughVal);

savint2file(nan);

B. MATLAB CODE FOR REMOVING CALIBRATION

%% Init 1-1

clc;close all; clear;

folderNum = "15";

rootDir = "..\\data";

fileName = sprintf("%s_DAQ_resampled", folderNum);

folderPath = fullfile(rootDir, "SLEEP DATA 2013-2015 (Ann.)",
folderNum);

dict_fPath = fullfile(folderPath, sprintf('%s.mat', fileName));

m = load(dict_fPath);

[len,~] = size(m.DAQ_rsmpl);

x = 0.00: 0.01:(len/100);

119

y = m.DAQ_rsmpl(:,3);

dict_fPath = fullfile(folderPath, sprintf('%s_dict.mat',
fileName));

m = load(dict_fPath);

dict = m.dict;

dict.x = x(1:numel(x)-1);

dict.y = y;

clear m x y;

%% Check the figure 1-2

close all;

coeff = 1;

figure;

plot(dict.x, dict.y.*coeff);

hold on;

plot(dict.peakLc, dict.peakVal.*coeff, 'r^');

plot(dict.troughLc, dict.troughVal.*coeff,'v', 'Color',
colorConvertor('#158C00'));

% upbond = 1;

% plot([dict.x(1), dict.x(end)], [upbond upbond], '--k');

% lowbond = 0.4;

% plot([dict.x(1), dict.x(end)], [lowbond lowbond], '-k');

hold off;

title(folderNum);

%% Remove the value from one value

% pklow bond, tr low bond

dict = removeFromOneValue(dict, upbond, lowbond, true);

%%

% pk up bond, tr up bond

120

dict = removeFromOneValue(dict, 2, 1, false);

%% Remove the starting part from location

dict = removeFromOnePt(dict, 3.06, 'start');

%% Remove the end part from location

dict = removeFromOnePt(dict, 27340.46, 'end');

%% Remove selected point 1- removePt.txt

% disp([0,0,0,numel(dict.peakVal)]);

dict = removeFromRemovePtTXT(dict, folderNum);

% disp([0,0,0,numel(dict.peakVal)]);

%%
%%%
%%%%%

% Remove some trough in the calibration

% Get the troughVal different 2-1

trValDif = abs(dict.troughVal(1:end-1) - dict.troughVal(2:end));

% Remove some trough in the calibration 2-2

figure;

h = histogram(trValDif);

global status;

status = nan;

graphSetting;

%% Simply determined by the threshold 2-3-1

threshold = prctile(h.Data,99);

disp(threshold);

len_trValDif = numel(trValDif);

outLierLs = nan(len_trValDif, 1);

121

for i = 1:len_trValDif

 try

 if trValDif(i) > threshold && trValDif(i+1) > threshold

 outLierLs(i) = i;

 end

 catch

 fprintf('Error on %d / %d\r',i, len_trValDif);

 end

end

outLierLs = outLierLs(~isnan(outLierLs));

% Subplot 1 >> 2-3-2

figure;

subP1 = subplot(3,1,1);

plot(dict.x, dict.y);

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

% plot(dict.peakLc(caliLs), dict.peakVal(caliLs), 'kx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

% plot(dict.peakLc(caliLs(1)), dict.peakVal(caliLs(1)), 'o',
'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

plot(dict.troughLc(outLierLs), dict.troughVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc(outLierLs + 1), dict.troughVal(outLierLs + 1),
'ro', 'MarkerSize',15, 'LineWidth',2);

hold off;

% Determined by the threshold in the front and mean in the back 2-
3-2

122

% the cur 2 nx > threshold and nx 2 nxx > mean diff with next 7
points

meanptNum = 7;

len_trValDif = numel(trValDif);

outLierLs = nan(len_trValDif, 1);

for i = 1:len_trValDif

 try

 endDiff = mean(abs(dict.troughVal(i+1: i+meanptNum) -
dict.troughVal(i+2:i+meanptNum+1)));

 if trValDif(i) > threshold && trValDif(i+1) > endDiff*1.05

 outLierLs(i) = i;

 end

 catch

 fprintf('Error on %d / %d\r',i, len_trValDif);

 end

end

outLierLs = outLierLs(~isnan(outLierLs));

%

subP2 = subplot(3,1,2);

plot(dict.x, dict.y);

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

plot(dict.troughLc(outLierLs), dict.troughVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc(outLierLs + 1), dict.troughVal(outLierLs + 1),
'ro', 'MarkerSize',15, 'LineWidth',2);

hold off;

123

% Use the mean diff to detect 2-3-3

% cur 2 nx > threshold and nx 2 nxx > threshold

% and check the front 7 points mean diff and the post 7 points
diff to see

% whether it also greater

meanptNum = 7;

len_trValDif = numel(trValDif);

outLierLs = nan(len_trValDif, 1);

shiftlv = 1.05;

% for i = 1:3

for i = 1:len_trValDif

 try

 if trValDif(i) > threshold && trValDif(i+1) > threshold

% disp('in');

 frontDiff = mean(abs(dict.troughVal(i-meanptNum: i-1) -
dict.troughVal(i-meanptNum - 1:i-2)));

 endDiff = mean(abs(dict.troughVal(i+1: i+meanptNum) -
dict.troughVal(i+2:i+meanptNum + 1)));

 if trValDif(i) > frontDiff * shiftlv && trValDif(i+1) >
endDiff * shiftlv

 outLierLs(i) = i;

 end

 end

 catch

 fprintf('ERROR at i = %d\r', i);

 end

end

outLierLs = outLierLs(~isnan(outLierLs));

%

% Get the figure to verify %% Remove some trough in the calibration
2-3-4

% figure;

subP3 = subplot(3,1,3);

124

plot(dict.x, dict.y);

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

plot(dict.troughLc(outLierLs), dict.troughVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc(outLierLs + 1), dict.troughVal(outLierLs + 1),
'ro', 'MarkerSize',15, 'LineWidth',2);

hold off;

linkaxes([subP1, subP2, subP3],'xy');

%% Manual Exclude the mis judge points 2-4-1 confirm the points
first

tmpls = [16295.6, 16200];

tls = nan(numel(tmpls),1);

for i = 1: numel(tmpls)

 tmp = find(troughLc == tmpls(i));

 tls(i) = tmp;

 disp(tmp);

end

% Manual Exclude the mis judge points 2-4-2 remove points in the
outliers

outLierLs(outLierLs == tmpls) = nan;

outLierLs = outLierLs(~isnan(outLierLs));

%% Remove outliers %% Remove some trough in the calibration 2-5

dict.troughVal(outLierLs+1) = nan;

dict.troughLc(outLierLs+1) = nan;

dict.troughVal = dict.troughVal(~isnan(dict.troughVal));

125

dict.troughLc = dict.troughLc(~isnan(dict.troughLc));

disp('done');

%%
%%%
%%%%%

% Remove some peak in the calibration

% Get the troughVal different 3-1

pkValDif = abs(dict.peakVal(1:end-1) - dict.peakVal(2:end));

% Remove some trough in the calibration 3-2

figure;

h = histogram(pkValDif);

%% Simply determined by the threshold 3-3-1

threshold = prctile(h.Data,99.75);

len_pkValDif = numel(pkValDif);

outLierLs = nan(len_pkValDif, 1);

for i = 1:len_pkValDif

 try

 if pkValDif(i) > threshold && pkValDif(i+1) > threshold

 outLierLs(i) = i;

 end

 catch

 fprintf('Error on %d / %d\r',i, len_pkValDif);

 end

end

outLierLs = outLierLs(~isnan(outLierLs));

% Subplot 1 >> 3-3-2

figure;

subP1 = subplot(3,1,1);

plot(dict.x, dict.y);

126

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

% plot(dict.peakLc(caliLs), dict.peakVal(caliLs), 'kx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

% plot(dict.peakLc(caliLs(1)), dict.peakVal(caliLs(1)), 'o',
'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

plot(dict.peakLc(outLierLs), dict.peakVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.peakLc(outLierLs + 1), dict.peakVal(outLierLs + 1), 'ko',
'MarkerSize',15, 'LineWidth',2);

hold off;

% Determined by the threshold in the front and mean in the back 3-
3-2

% the cur 2 nx > threshold and nx 2 nxx > mean diff with next 7
points

meanptNum = 7;

len_pkValDif = numel(pkValDif);

outLierLs = nan(len_pkValDif, 1);

for i = 1:len_pkValDif

 try

 endDiff = mean(abs(dict.peakVal(i+1: i+meanptNum) -
dict.peakVal(i+2:i+meanptNum+1)));

 if pkValDif(i) > threshold && pkValDif(i+1) > endDiff

 outLierLs(i) = i;

 end

 catch

 fprintf('Error on %d / %d\r',i, len_pkValDif);

 end

end

127

outLierLs = outLierLs(~isnan(outLierLs));

%

subP2 = subplot(3,1,2);

plot(dict.x, dict.y);

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

plot(dict.peakLc(outLierLs), dict.peakVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.peakLc(outLierLs + 1), dict.peakVal(outLierLs + 1), 'ko',
'MarkerSize',15, 'LineWidth',2);

hold off;

% Use the mean diff to detect 3-3-3

% cur 2 nx > threshold and nx 2 nxx > threshold

% and check the front 7 points mean diff and the post 7 points
diff to see

% whether it also greater

meanptNum = 7;

len_pkValDif = numel(pkValDif);

outLierLs = nan(len_pkValDif, 1);

% for i = 1:3

for i = 1:len_pkValDif

 try

 if pkValDif(i) > threshold && pkValDif(i+1) > threshold

% disp('in');

 frontDiff = mean(abs(dict.peakVal(i-meanptNum: i-1) -
dict.peakVal(i-meanptNum - 1:i-2)));

128

 endDiff = mean(abs(dict.peakVal(i+1: i+meanptNum) -
dict.peakVal(i+2:i+meanptNum + 1)));

 if pkValDif(i) > frontDiff && pkValDif(i+1) > endDiff

 outLierLs(i) = i;

 end

 end

 catch

 fprintf('ERROR at i = %d\r', i);

 end

end

outLierLs = outLierLs(~isnan(outLierLs));

%

% Get the figure to verify %% Remove some trough in the calibration
3-3-4

% figure;

subP3 = subplot(3,1,3);

plot(dict.x, dict.y);

title(numel(outLierLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

plot(dict.peakLc(outLierLs), dict.peakVal(outLierLs), 'gx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.peakLc(outLierLs + 1), dict.peakVal(outLierLs + 1), 'ko',
'MarkerSize',15, 'LineWidth',2);

hold off;

linkaxes([subP1, subP2, subP3],'xy');

%% Remove outliers %% Remove some trough in the calibration 3-5

dict.peakVal(outLierLs+1) = nan;

dict.peakLc(outLierLs+1) = nan;

129

dict.peakVal = dict.peakVal(~isnan(dict.peakVal));

dict.peakLc = dict.peakLc (~isnan(dict.peakLc));

disp('done');

%% Check the figure 3-6

figure;

plot(dict.x, dict.y);

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

hold off;

%%
%%%
%%%%%

%%%
%%%%%%%%

%

% The part for checking peak location different

%

%

%% Backup For the
%%%

%

origpeakLc = dict.peakLc(:);

origpeakVal = dict.peakVal(:);

origtroughLc = dict.troughLc(:);

origtroughVal = dict.troughVal(:);

%% Restore

dict.peakLc = origpeakLc(:);

dict.peakVal = origpeakVal(:);

dict.troughLc = origtroughLc(:);

130

dict.troughVal = origtroughVal(:);

%% Detect the Calibration Period 3-1

dict = removeZeronNan(dict);

peakLcDif = abs(dict.peakLc(1:end-1) - dict.peakLc(2:end));

%% histogram of peaklcdiff 3-2

figure;

h = histogram(peakLcDif, 'BinLimits', [0, 3]);

% Detect the calibration part by using the THRESHOLD 3-3

threshold = prctile(h.Data,98.5);

disp(threshold);

len_peakLcDif = numel(peakLcDif);

caliLs = nan(len_peakLcDif, 1);

for i = 1:len_peakLcDif

 if peakLcDif(i) > threshold

 caliLs(i) = i;

 end

end

caliLs = caliLs(~isnan(caliLs));

%% Check the points 3-4

figure;

plot(dict.x, dict.y);

title(numel(caliLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.peakLc(caliLs), dict.peakVal(caliLs), 'kx',
'MarkerSize',15, 'LineWidth',2);

131

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

% plot(dict.peakLc(caliLs(765:768)), dict.peakVal(caliLs(765:768)),
'bo', 'MarkerSize',20, 'LineWidth',2);

% plot(dict.peakLc(caliLs(1)), dict.peakVal(caliLs(1)), 'o',
'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

% plot(dict.troughLc(idx), dict.troughVal(idx), 'gx',
'MarkerSize',15, 'LineWidth',2);

hold off;

%% Get the points >> in case 3-5

clc;

idx = find(dict.peakLc > 10328.46,1, 'first');

disp([dict.peakLc(idx), dict.peakVal(idx)]);

disp(dict.peakLc(idx) - dict.peakLc(idx+1));

%% Get the calibration period in to variable >> caliPeriod 3-6

len_caliLs = numel(caliLs);

caliPeriod = cell(1, len_caliLs);

for i = 1:len_caliLs

 disp(i);

 pkIdx = caliLs(i);

 [group, idx] = getEndCaliPoints("peak", pkIdx, dict.peakLc,
dict.troughLc, threshold);

 disp({group, idx});

 if group == "peak"

 caliPeriod(i) = {[dict.peakLc(pkIdx), dict.peakVal(pkIdx),
dict.peakLc(idx), dict.peakVal(idx)]};

 else

 caliPeriod(i) = {[dict.peakLc(pkIdx), dict.peakVal(pkIdx),
dict.troughLc(idx), dict.troughVal(idx)]};

132

 end

end

disp('done');

% %%

% caliPeriod = caliPeriod(1:numel(caliPeriod) - 4);

% Need to combine the calibration part if it is consecutive 3-10

% for i = 1:3

i = 1;

len_caliPeriod = numel(caliPeriod);

while i < len_caliPeriod

 disp(i);

 curP = caliPeriod{i};

 ce1 = curP(3);

 ce2 = curP(4);

 [i, caliPeriod] = checkNextCaliPart(i+1, caliPeriod, ce1, ce2);

end

caliPeriod(cellfun(@(caliPeriod)
any(isnan(caliPeriod)),caliPeriod)) = [];

disp('done');

%% Check again with the calibration period 3-7

figure;

startPoint = 1;

plot(dict.x, dict.y);

title(numel(caliLs));

hold on;

133

plot(dict.peakLc, dict.peakVal, 'r^');

plot(dict.peakLc(caliLs), dict.peakVal(caliLs), 'kx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

% plot(dict.peakLc(caliLs(1)), dict.peakVal(caliLs(1)), 'o',
'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

% plot(dict.troughLc(idx), dict.troughVal(idx), 'gx',
'MarkerSize',15, 'LineWidth',2);

for i = 1:numel(caliPeriod)

 tmp = caliPeriod{i};

 s1 = tmp(1);

 s2 = tmp(2);

 e1 = tmp(3);

 e2 = tmp(4);

 plot(s1, s2, '<', 'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

 plot(e1, e2, 'g>', 'MarkerSize',15, 'LineWidth',2);

end

hold off;

% %% Backup 3-8

%

% oriCali = caliPeriod;

%

% %% Restore 3-9

%

% caliPeriod = oriCali;

134

%% Also clean up the point during the calibration 3-11

for i = 1:numel(caliPeriod)

 tmp = caliPeriod{i};

 startLc = tmp(1);

 endLc = tmp(3);

 pkIdx = find(dict.peakLc > startLc & dict.peakLc < endLc);

 trIdx = find(dict.troughLc > startLc & dict.troughLc <
endLc);

 dict.peakLc(pkIdx) = nan;

 dict.peakVal(pkIdx) = nan;

 dict.troughLc(trIdx) = nan;

 dict.troughVal(trIdx) = nan;

end

dict = removeZeronNan(dict);

%% Check again with the calibration period 3-7

figure;

startPoint = 1;

plot(dict.x, dict.y);

title(numel(caliLs));

hold on;

plot(dict.peakLc, dict.peakVal, 'r^');

% plot(dict.peakLc(caliLs), dict.peakVal(caliLs), 'kx',
'MarkerSize',15, 'LineWidth',2);

plot(dict.troughLc, dict.troughVal,'v', 'Color',
colorConvertor('#158C00'));

135

% plot(dict.peakLc(caliLs(1)), dict.peakVal(caliLs(1)), 'o',
'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

% plot(dict.troughLc(idx), dict.troughVal(idx), 'gx',
'MarkerSize',15, 'LineWidth',2);

for i = 1:numel(caliPeriod)

 tmp = caliPeriod{i};

 s1 = tmp(1);

 s2 = tmp(2);

 e1 = tmp(3);

 e2 = tmp(4);

 plot(s1, s2, '<', 'MarkerSize',15, 'LineWidth',2 ,'Color',
colorConvertor('#111111'));

 plot(e1, e2, 'g>', 'MarkerSize',15, 'LineWidth',2);

end

hold off;

%% Final update the result to the the file 3-12 Done

update2file(dict, caliPeriod, folderPath, fileName);

%%

function [inFront, idx] = getEndCaliPoints(inFront, idx, peakLc,
troughLc, threshold)

 disp(['in', inFront]);

 if inFront == "peak"

 endTrIdx = find(peakLc(idx) < troughLc, 1, 'first');

136

 endPkIdx = idx + 1;

 trIdxFromPk = find(troughLc < peakLc(endPkIdx), 1, 'last');

 if trIdxFromPk > endTrIdx

 endTrIdx = trIdxFromPk;

 end

 else

 endPkIdx = find(troughLc(idx) < peakLc, 1, 'first');

 endTrIdx = idx + 1;

 end

% disp([endTrIdx, endPkIdx]);

 t = troughLc(endTrIdx);

 p = peakLc(endPkIdx);

 % Check who is closer to the begin points>> less value >>
closer

 if p < t

 inFront = "peak";

 if abs(peakLc(endPkIdx + 1) - p) > threshold

 [inFront, idx] = getEndCaliPoints(inFront, endPkIdx,
peakLc, troughLc, threshold);

 else

 idx = endPkIdx;

 end

 else

 inFront = "trough";

 if abs(troughLc(endTrIdx + 1) - t) > threshold

 [inFront, idx] = getEndCaliPoints(inFront, endTrIdx,
peakLc, troughLc, threshold);

137

 else

 idx = endTrIdx;

 end

 end

end

%% Check consecutive calibration period to merge them into the
first one

function [nxIdx, caliPeriod] = checkNextCaliPart(nxIdx, caliPeriod,
firstEndLc, firstEndVal)

 if nxIdx <= numel(caliPeriod)

 nxP = caliPeriod{nxIdx};

 nxEndLc = nxP(3);

 nxEndVal = nxP(4);

 disp([firstEndLc, nxEndLc]);

 disp([firstEndVal, nxEndVal]);

 if firstEndLc == nxEndLc && firstEndVal == nxEndVal

 disp('got');

 disp(nxIdx);

 caliPeriod{nxIdx} = nan;

 disp(caliPeriod{nxIdx});

 [nxIdx, caliPeriod] = checkNextCaliPart(nxIdx + 1,
caliPeriod, firstEndLc, firstEndVal);

 end

 end

end

%

function dict = removeFromRemovePtTXT(dict, folderNum)

 peakLc = round(dict.peakLc, 2);

 peakVal = round(dict.peakVal, 5);

138

 filePath = sprintf('D:\\Dream\\UT
Arlington\\Thesis\\data\\SLEEP DATA 2013-2015
(Ann.)\\RemovePt\\%s.txt', folderNum);

 fprintf('Using file: %s to clean the points', filePath);

 fid = fopen(filePath);

 m = textscan(fid, '%f\t%f');

 fclose(fid);

 deleteLsLc = m{1};

 deleteLsVal = m{2};

 deleteLsVal = round(deleteLsVal, 5);

 total = 0;

 for i = 1:numel(deleteLsLc)

% for i = 17:17

 delPtLc = deleteLsLc(i);

 idx = find(peakLc == delPtLc);

% disp([idx, delPtLc, dict.peakLc(idx)]);

 if numel(idx) == 1 && peakVal(idx) == deleteLsVal(i)

 total = total + 1;

% disp(idx);

% dict.peakLc(idx) = -9;

% dict.peakVal(idx) = -9;

 dict.peakLc(idx) = nan;

 dict.peakVal(idx) = nan;

 else

 disp(i);

 end

 end

 fprintf("Delete List Size: %d, Delete Num: %d\r",
numel(deleteLsLc), total);

139

end

function dict = removeFromOneValue(dict, pkBond, trBond,
isLowerBond)

% pkLowerBond = 1;

 if ~isnan(pkBond)

 if isLowerBond

 idxPk = dict.peakVal < pkBond;

 fprintf('remove from Peak below %f - # %d\r',pkBond,
numel(idxPk));

 else

 idxPk = dict.peakVal > pkBond;

 fprintf('remove from Peak over %f - # %d\r',pkBond,
numel(idxPk));

 end

 dict.peakLc(idxPk) = nan;

 dict.peakVal(idxPk) = nan;

 end

 if ~isnan(trBond)

 if isLowerBond

 idxTr = dict.troughVal < trBond;

 fprintf('remove from Trough below %f - # %d\r',trBond,
numel(idxTr));

 else

 idxTr = dict.troughVal > trBond;

 fprintf('remove from Trough over %f - # %d\r',trBond,
numel(idxTr));

 end

 dict.troughLc(idxTr) = nan;

 dict.troughVal(idxTr) = nan;

140

 end

end

function dict = removeFromOnePt(dict, cutPt, cutDirection)

% cutPt = 16015.91;

 if cutDirection == "end"

 rm = find(dict.peakLc > cutPt);

 elseif cutDirection == "start"

 rm = find(dict.peakLc < cutPt);

 end

 fprintf('remove from Peak - # %d\r',numel(rm));

 dict.peakLc(rm) = [];

 dict.peakVal(rm) = [];

 if cutDirection == "end"

 rm = find(dict.troughLc > cutPt);

 elseif cutDirection == "start"

 rm = find(dict.troughLc < cutPt);

 end

 dict.troughLc(rm) = [];

 dict.troughVal(rm) = [];

 fprintf('remove from trough - # %d\r',numel(rm));

end

141

function [inFront, idx] = OriginGetEndCaliPoints(inFront, idx,
peakLc, troughLc, threshold)

 disp(['in', inFront]);

 if inFront == "peak"

 endTrIdx = find(peakLc(idx) < troughLc, 1, 'first');

 endPkIdx = idx + 1;

 else

 endPkIdx = find(troughLc(idx) < peakLc, 1, 'first');

 endTrIdx = idx + 1;

 end

 disp([endTrIdx, endPkIdx]);

 t = troughLc(endTrIdx);

 p = peakLc(endPkIdx);

 % Check who is closer to the begin points>> less value >>
closer

 if p < t

 inFront = "peak";

 if abs(peakLc(endPkIdx + 1) - p) > threshold

 [inFront, idx] = getEndCaliPoints(inFront, endPkIdx,
peakLc, troughLc, threshold);

 else

 idx = endPkIdx;

 end

 else

 inFront = "trough";

 if abs(troughLc(endTrIdx + 1) - t) > threshold

 [inFront, idx] = getEndCaliPoints(inFront, endTrIdx,
peakLc, troughLc, threshold);

 else

 idx = endTrIdx;

 end

 end

142

end

%% Save Peaks, Trough and Calibration Period

function savint2file(caliPeriodLs)

 printLog('Message', 'Start the saving process...');

 global allPeakVal allPeakLc allTroughVal allTroughLc folderPath
fileName

 dict = struct('peakLc', allPeakLc, ...

 'peakVal', allPeakVal, ...

 'troughLc', allTroughLc, ...

 'troughVal', allTroughVal, ...

 'caliPeriod', caliPeriodLs);

 filePath = sprintf('%s\\%s_dict.mat', folderPath, fileName);

 save(filePath, 'dict');

 printLog('Message','The saving process is done');

end

function update2file(dict, caliPeriodLs, folderPath, fileName)

 printLog('Message', 'Start the updating process...');

 dict.caliPeriod = caliPeriodLs;

 filePath = sprintf('%s\\%s_dict.mat', folderPath, fileName);

 save(filePath, 'dict');

 printLog('Message','The updating process is done');

end

143

%

function removeMiddlePt(pkStartPt, pkEndPt, troStartPt, troEndPt)

 global allPeakVal allPeakLc allTroughVal allTroughLc

 for idx = pkStartPt:pkEndPt

 allPeakVal(idx) = nan; allPeakLc(idx) = nan;

 end

 for idx = troStartPt: troEndPt

 allTroughVal(idx) = nan; allTroughLc(idx) = nan;

 end

end

% Remove the 0 and NaN

function dict = removeZeronNan(dict)

 dict.peakLc(dict.peakLc == 0) = nan;

 dict.peakVal(dict.peakVal == 0) = nan;

 dict.troughLc(dict.troughLc == 0) = nan;

 dict.troughVal(dict.troughVal == 0) = nan;

 dict.peakLc = dict.peakLc(~isnan(dict.peakLc));

 dict.peakVal = dict.peakVal(~isnan(dict.peakVal));

 dict.troughLc = dict.troughLc(~isnan(dict.troughLc));

 dict.troughVal = dict.troughVal(~isnan(dict.troughVal));

 printLog('Message','Clear the nan pt');

end

C. MATLAB CODE FOR COMPUTATION OF PULSE PRESSURE, MEAN

PRESSURE, SLOPES, BASELINE

function [targetVal, targetLc] = getStatus(dict)

144

 % Set up which value is used SBP or DBP or MAP or PP

 global status;

 switch status

 case "SBP"

 targetVal = dict.peakVal;

 targetLc = dict.peakLc;

 case "DBP"

 targetVal = dict.troughVal;

 targetLc = dict.troughLc;

 case "MAP"

 peakLc = dict.peakLc; peakVal = dict.peakVal;

 troughLc = dict.troughLc; troughVal = dict.troughVal;

 targetVal = getMAP;

 targetLc = peakLc;

 case "PP"

 peakLc = dict.peakLc; peakVal = dict.peakVal;

 troughLc = dict.troughLc; troughVal = dict.troughVal;

 targetVal = getPP;

 targetLc = peakLc;

 end

 function valLs = getMAP

 pklen = numel(dict.peakLc);

 valLs = nan(pklen, 1);

% for pkidx = 1: 11

 for pkidx = 1: pklen-1

 % get the first trough after current peak

 curPkLc = peakLc(pkidx);

145

 nxTrIdx = getTroLcIdx(curPkLc, true);

 % get the previous trough from the NEXT peak

 preTrIdx = getTroLcIdx(peakLc(pkidx+1), false);

 % it should be the same, if it is not then skip

 if nxTrIdx ~= preTrIdx

 continue;

 end

 % fprintf('IDX: %d, preTrIdx: %d, nxTrIdx: %d\r',pkidx,
preTrIdx, nxTrIdx);

 valLs(pkidx) = (troughVal(nxTrIdx).*2 +
peakVal(pkidx))/3 ;

 end

 pkidx = pklen;

 % get the first trough after current peak

 curPkLc = peakLc(pkidx);

 nxTrIdx = getTroLcIdx(curPkLc, true);

 if numel(nxTrIdx) ~= 0

 % fprintf('IDX: %d, preTrIdx: %d, nxTrIdx: %d\r',pkidx,
preTrIdx, nxTrIdx);

 valLs(pkidx) = (troughVal(nxTrIdx).*2 +
peakVal(pkidx))/3 ;

 end

 end

 function troIdx = getTroLcIdx(pkLc, getNx)

 if getNx

 troIdx = find(pkLc < troughLc, 1, 'first');

 else

 troIdx = find(pkLc > troughLc, 1, 'last');

 end

 end

146

 function valLs = getPP

 pklen = numel(dict.peakLc);

 valLs = nan(pklen, 1);

% for pkidx = 1: 11

 for pkidx = 1: pklen-1

 % get the first trough after current peak

 curPkLc = peakLc(pkidx);

 nxTrIdx = getTroLcIdx(curPkLc, true);

 % get the previous trough from the NEXT peak

 preTrIdx = getTroLcIdx(peakLc(pkidx+1), false);

 % it should be the same, if it is not then skip

 if nxTrIdx ~= preTrIdx

 continue;

 end

 % fprintf('IDX: %d, preTrIdx: %d, nxTrIdx: %d\r',pkidx,
preTrIdx, nxTrIdx);

 valLs(pkidx) = peakVal(pkidx) - troughVal(nxTrIdx);

 end

 pkidx = pklen;

 % get the first trough after current peak

 curPkLc = peakLc(pkidx);

 nxTrIdx = getTroLcIdx(curPkLc, true);

 if numel(nxTrIdx) ~= 0

 % fprintf('IDX: %d, preTrIdx: %d, nxTrIdx: %d\r',pkidx,
preTrIdx, nxTrIdx);

 valLs(pkidx) = peakVal(pkidx) - troughVal(nxTrIdx);

 end

 end

147

end

D. MATLAB CODE FOR AGGREGATION OF DATA WITHOUT

CONSIDERING SLEEP STAGES

clc;clear; close all;

global folderNum halfWindow_sz xx xx_ne fieldLs allEvent coeff ls
status fs halfWindow_len;

global slopeStru normalSlopeStru;

% Init some variable %

% ----------------------------------

% Decide which type of value to use-

status = "SBP";

% status = "DBP";

% status = "MAP";

% status = "PP";

% ----------------------------------

rootDir = "..\\data";

fs = 100;

halfWindow_len = 30; %sec >>> Normal Breathing Window size

xx_ne = 0 : 1/fs : 2 * halfWindow_len - 1/fs; % >>> Normal
Breathing Window size

halfWindow_sz = halfWindow_len * fs;

xx = halfWindow_len * (-1):1/fs:halfWindow_len - 1/fs; % >>> Event
Window Size

%
% % % %

nonEvent = initNonEvent(rootDir);

% nonEvent = load(sprintf('%s\\SLEEP DATA 2013-2015
(Ann.)\\nonEvent_windowsz_%d.mat', rootDir, halfWindow_len * 2));

% nonEvent = nonEvent.noneEvent;

148

collectSlope = 0;

slopeStru = initEventslopeStruc(false, false, nan);

normalSlopeStru = initEventslopeStruc(false, true, nonEvent);

printLog('Message', 'Cell: 1~4 col >>> Equation slope, Equation
intercept, Regres slope, intercept');

showDiffColor = false;

enableStatistcs = true;

getPkStd = true;

% ls = ["01", "03", "05", "10", "15"];% Male Group

% ls = ["07", "11"]; % Female Group

% ls = ["01", "03", "05", "10", "15", "07", "11"];

ls = ["01", "03", "05", "10", "15", "07", "11" , "06", "12",
"13"];

allEquIdx = 1; allEquEvent = cell(1000, 1);

isAll = true;

for i = 1: numel(ls)

folderNum = ls(i);

% for i = 1: 1

% folderNum = "03";

% folderPath = sprintf("..\\SLEEP DATA 2013-2015 (Ann.)\\%s",
folderNum);

[dict, splinePk, event, stage] = init(rootDir);

splinePk = removeNoisy(folderNum, dict, splinePk);

% collect each event stages in eventCell, same in stageLs

stageStru = getStageList(stage);

eventStru = getEventStageList(event);

149

% Remove the event period which have no splinePk value (ratio <
80%)

% eventStru = checkEventLs(eventStru, splinePk);

% [eventPtLs, slopeLs] = getEventPtnSlope(dict, eventLs, false);

coeff = 100;

% Rescale the y unit %

splinePk = splinePk * coeff;

stage = stage * coeff;

event = event * coeff;

% Init.

% Include all the event with spline peak value period in each stage

allEvent = struct('sn5', [], ...

 'sn4', [], ...

 'sn3', [], ...

 'sn2', [], ...

 'sn1', [], ...

 's0' , [], ...

 's1' , []);

eventStr = "Event"; noneventStr = "NonEvent";

fieldLs = ["sn5", "sn4", "sn3", "sn2", "sn1", "s0", "s1", "all"];

printLog("Message",sprintf("%s - Subject: %s >>> Initialization
done...", status, folderNum));

% getWholeNightPlot(nan, nan, dict, event, stage, splinePk, nan,
eventStru.e1)

150

% ~~~ GET THE EQUAL EVENTS OF EACH STAGE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

allEvent.('all') = cell(600,1); 

shortEventLs = getEqualLenEventWoutStage(splinePk, eventStru, 
collectSlope); 

if collectSlope 

    removeEmptyinSlope; 

    getSlopePlot(folderNum); 

end 

 

if isAll 

    % % >>> Add to allEqualEvent 

    len = numel(allEvent.all); 

    disp({folderNum, len}); 

    allEquEvent(allEquIdx:allEquIdx + len - 1) = allEvent.all; 

    allEquIdx = allEquIdx + len; 

     

end 

 

plotEventinLinear("all"); 

[allEventInv, lc, pk, pkSTD] = 
newGetInverseAllEvent(enableStatistcs, getPkStd); 

[normalVal, normalStd] = getNormalVal(nonEvent); 

printLog('Messege', ... 

        sprintf('%s - Subject: %s >>> Normal Val: %3.1f +- %2.1f, 
Peak Val: %3.1f +- %5.1f, Pk vs normal: %2.1f (%2.1f %%%%), Peak 
Time: %3.1f, # of Events: %3d',... 

        status, folderNum, normalVal, normalStd, pk, pkSTD, pk-
normalVal, (pk-normalVal)*100/normalVal , lc, 
numel(allEvent.all))); 

 

getCenterPlot(allEventInv, "all" , shortEventLs, showDiffColor, 
normalVal, [lc, pk]); 

 

end % for loop end (for all the subjects) 



151 
 

 

%% 

if collectSlope 

    getSlopePlot('isAll'); 

end 

 

close all; 

if isAll 

    allEvent.all = allEquEvent(:); 

    allEvent.all = allEvent.all(~cellfun('isempty',allEvent.all)); 

    plotEventinLinear( "isAll" ); 

    enableStatistcs = true;   getPkStd = true; 

    [allEventInv, lc, pk, pkSTD] = 
newGetInverseAllEvent(enableStatistcs, getPkStd); 

     

    [normalVal, normalStd] = getTotNormalVal(nonEvent);  

    printLog('Messege', sprintf('%s - All in one >>> Normal Val: 
%2.1f +- %2.1f, Peak Val: %2.1f +- %2.1f, Pk vs normal: %2.1f 
(%2.1f %%%%), Peak Time: %2.1f, # of Events: %3d',... 

                                   status, normalVal,normalStd, pk, 
pkSTD, pk-normalVal, (pk-normalVal)*100/normalVal , lc, 
numel(allEvent.all))); 

 

    getCenterPlot(allEventInv, "isAll" , shortEventLs, 
showDiffColor, normalVal, [lc, pk]); 

end 

 

disp('done for all'); 

 

 

%% Normal Breathing >> No Event \ No Event \ No Event \ No Event \ 
No Event >> All 

close all;clc; 

plotLinearNonEvent(xx_ne, nonEvent); 

enableStatistcs = true; 



152 
 

showDiffColor = false; 

allNonEventInv = getInverseNonEvent(nonEvent, enableStatistcs); 

getNonEventCenterPlot(allNonEventInv, xx_ne, showDiffColor); 

% % No Event \ No Event \ No Event \ No Event \ No Event \ No Event 
\ No Event 

%% 

function getSlopePlot(typeStr) 

    global slopeStru folderNum ls status normalSlopeStru; 

     

    figure; 

    maxSlope = 2;%max(linearSlopeLs); 

    plot([0, maxSlope], [0, maxSlope], '--k'); 

    hold on; 

     

    if strcmp(typeStr, 'isAll') 

        allStIdx = 1; 

        inAll = nan(1000, 2); 

        for i = 1: numel(ls) 

            tmpLs = slopeStru.('sub' + ls(i)); 

            equaSlopeLs = tmpLs(:, 1); 

            equalInterCept = tmpLs(:, 2); 

            linearSlopeLs = tmpLs(:, 3); 

            tmpLsLen = numel(equaSlopeLs); 

             

            endIdx = allStIdx + tmpLsLen - 1; 

%             disp({ls(i), allStIdx, endIdx, endIdx - allStIdx, 
tmpLsLen}); 

            inAll(allStIdx:endIdx, 1) = equaSlopeLs; 

            inAll(allStIdx:endIdx, 2) = equalInterCept; 

            allStIdx = allStIdx + tmpLsLen; 

        end 

         

        idx = ~isnan(inAll(:, 1)); 



153 
 

        allSlopeLs = inAll(idx,1); 

        allInterCept = inAll(idx, 2); 

         

        plot(equaSlopeLs, linearSlopeLs, '*'); 

        printLog("Slope", sprintf("%s - All, mean equation slope, 
%2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, %2.3f",... 

                status, mean(allSlopeLs), std(allSlopeLs), 
mean(allInterCept), std(allInterCept) )); 

             

        allStIdx = 1; 

        inAll = nan(1000, 2); 

        for i = 1: numel(ls) 

            tmpLs = normalSlopeStru.('sub' + ls(i)); 

            equaSlopeLs = tmpLs(:, 1); 

            equalInterCept = tmpLs(:, 2); 

            linearSlopeLs = tmpLs(:, 3); 

            tmpLsLen = numel(equaSlopeLs); 

             

            endIdx = allStIdx + tmpLsLen - 1; 

%             disp({ls(i), allStIdx, endIdx, endIdx - allStIdx, 
tmpLsLen}); 

            inAll(allStIdx:endIdx, 1) = equaSlopeLs; 

            inAll(allStIdx:endIdx, 2) = equalInterCept; 

            allStIdx = allStIdx + tmpLsLen; 

        end 

         

        idx = ~isnan(inAll(:, 1)); 

        allSlopeLs = inAll(idx,1); 

        allInterCept = inAll(idx, 2); 

         

        plot(equaSlopeLs, linearSlopeLs, '*'); 

        printLog("Slope", sprintf("%s - All,normal slope, mean 
equation slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f",... 



154 
 

                status, mean(allSlopeLs), std(allSlopeLs), 
mean(allInterCept), std(allInterCept) )); 

         

    else 

        tmpLs = slopeStru.('sub' + folderNum); 

        equaSlopeLs = tmpLs(:, 1); 

        linearSlopeLs = tmpLs(:, 3); 

        plot(equaSlopeLs, linearSlopeLs, '*'); 

        printLog("Slope", sprintf("%s - Subject: %s, mean equation 
slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f",... 

                    status, folderNum, mean(equaSlopeLs), 
std(equaSlopeLs), mean(tmpLs(:, 2)), std(tmpLs(:, 2) ) )); 

                 

        tmpLs = normalSlopeStru.('sub' + folderNum); 

        equaSlopeLs = tmpLs(:, 1); 

        linearSlopeLs = tmpLs(:, 3); 

        plot(equaSlopeLs, linearSlopeLs, '*'); 

        printLog("Slope", sprintf("%s-Subject:%s,normal slope, mean 
equation slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f",... 

                    status, folderNum, mean(equaSlopeLs), 
std(equaSlopeLs), mean(tmpLs(:, 2)), std(tmpLs(:, 2) ) )); 

 

    end 

     

%     for i = 1: numel(ls) 

%         if strcmp(typeStr, 'isAll') || strcmp(typeStr, ls(i)) 

%             tmpLs = slopeStru.('sub' + ls(i)); 

%             equaSlopeLs = tmpLs(:, 1); 

%             linearSlopeLs = tmpLs(:, 3); 

%             plot(equaSlopeLs, linearSlopeLs, '*'); 

%             printLog("Slope", sprintf("%s - Subject: %s, mean 
equation slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f",... 



155 
 

%                         status, typeStr, mean(equaSlopeLs), 
std(equaSlopeLs), mean(tmpLs(:, 2)), std(tmpLs(:, 2) ) )); 

%         end 

%     end 

     

    hold off; 

     

    xlabel('Equation Slope') ; 

    ylabel('Linear Regression Slope'); 

    if strcmp(typeStr, 'isAll') 

        title('All the subjects'); 

    else 

        title(folderNum); 

    end 

end 

 

%% 

function shortLs = getEqualLenEventWoutStage(splinePk, eventLs, 
getSlope) 

    global allEvent fieldLs folderNum status slopeStru; 

    event1 = eventLs.e1; 

    len_e1 = numel(eventLs.e1); 

 

    shortLs = nan(50, 1); 

    shortIdx = 1; 

     

    subFolderName = 'sub' + folderNum; 

     

    eventIdx = 1; 

    for e = 1: len_e1 

        %--- [WARNING 1 ] Haven't consider seperate the point by 
using the 

        %---              ratio of length of two events 



156 
 

         

        %--- [WARNING 2 ] Still need to consider if there is no 
next pt 

        %---              get the distance to the nx event  

 

        isOverlap = checkOverlapping(event1, len_e1, e); 

%         isOverlap = false; 

         

        if isOverlap == true 

            % Collecting the quantity of the event 

            % Ignore this point and look on the next one. 

            shortLs(shortIdx) = e; 

            shortIdx = shortIdx + 1; 

            % disp(i); 

        else  

            % This event is longer or equal to window size, SO 
start collecting 

 

            cur_e = event1{e}; 

            endIdx = cur_e(2); 

            collectedPeriod = getNonOverlapPeriod(endIdx, 
splinePk); 

            if numel(collectedPeriod(~isnan(collectedPeriod))) == 0 

                printLog("Warning",sprintf("Subject: %s (%s) >>> on 
event idx: %d >>> without any data >>> skip in collected to 
allevent", ... 

                            folderNum, status, e)); 

                shortLs(shortIdx) = e; 

                shortIdx = shortIdx + 1; 

            else 

                allEvent.('all'){eventIdx} = collectedPeriod; 

                eventIdx = eventIdx + 1; 

                 

                if getSlope 



157 
 

                    stIdx = cur_e(1); 

%                     try 

                    [equSlope, equIntercept, lineSlope, 
lineIntercept] = getLinearRegression(stIdx, endIdx, splinePk, 
false); 

                    slopeStru.(subFolderName)(e, :) = [equSlope, 
equIntercept, lineSlope, lineIntercept]; 

 

%                     catch 

%                         printLog('ERROR', sprintf('Event idx: %d 
>>> fail to get the slope', e)); 

%                     end 

                end 

            end 

             

 

        end 

    end 

 

    % Remove empty value in each cell 

    for e = 1: numel(fieldLs) 

        fieldName = fieldLs(e); 

        if ~isempty(allEvent.(fieldName)) 

            allEvent.(fieldName) = 
allEvent.(fieldName)(~cellfun('isempty',allEvent.(fieldName))); 

        end 

    end 

 

    shortLs = shortLs(~isnan(shortLs)); 

 

    printLog("Message",sprintf("%s - Subject: %s >>> Get the all 
same length event (without consider the stage)", status, 
folderNum)); 

end 

 



158 
 

function removeEmptyinSlope 

    global slopeStru folderNum; 

    tmpLs = slopeStru.('sub' + folderNum); 

 

    nanEmptyColIdx = ~isnan(tmpLs(:, 1)); 

    tmpLs = tmpLs(nanEmptyColIdx, :); 

    nanEmptyColIdx = tmpLs(:,1) ~= 0; 

    slopeStru.('sub' + folderNum) = tmpLs(nanEmptyColIdx, :); 

end 

 

function getNonEventCenterPlot(allNonEventInv, xx, showDiffColor ) 

    global status; 

    stageDict = allNonEventInv.normalBre; 

    avePlotSetting = {'--k', 'LineWidth', 1}; 

    upCILineSetting = { 'Color', 'r', 'LineWidth', 2}; 

    lowCILineSetting = { 'Color', colorConvertor('#003300'), 
'LineWidth', 2}; 

    if showDiffColor 

        period = getColorPeriod(stageDict.HexColor); 

 

        figure; 

%         plot([0 0], [min(stageDict.Min) max(stageDict.Max)], 
'Color','k', 'LineStyle','--'); 

        hold on; 

 

        for p = 1:numel(period) 

            stIdx = period{p}(1); 

            endIdx = period{p}(2)-1; 

 

            curve1 = stageDict.Min(stIdx:endIdx).'; 

            curve2 = stageDict.Max(stIdx:endIdx).'; 

            x = xx(stIdx:endIdx); 

             



159 
 

            plot(x, curve2, upCILineSetting{:}); 

            plot(x, curve1, lowCILineSetting{:}); 

             

 

            x2 = [x, fliplr(x)]; 

            inBetween = [curve1, fliplr(curve2)]; 

 

            colorLs = colormap(jet(20)); 

            fill(x2, inBetween, 
colorLs(stageDict.HexColor(stIdx), :), 'LineStyle','none', 
'HandleVisibility','off'); 

            hcb = colorbar; 

            set(get(hcb,'Title'),'String','A Title') 

            caxis([0 100]); 

 

            plot(x, stageDict.Ave(stIdx:endIdx), 
avePlotSetting{:});   

        end 

        hold off; 

        colorbar ; 

 

    else 

        figure; 

%         plot([0 0], [min(stageDict.Min) max(stageDict.Max)], 
'Color','k', 'LineStyle','--'); 

 

        hold on; 

        curve1 = stageDict.Max.'; 

        curve2 = stageDict.Min.'; 

         

        plot(xx, curve1, upCILineSetting{:}); 

        plot(xx, curve2, lowCILineSetting{:}); 

 

 



160 
 

        x2 = [xx, fliplr(xx)]; 

        inBetween = [curve1, fliplr(curve2)]; 

        fill(x2, inBetween, colorConvertor('#55a6f8'), 
'LineStyle','none', 'HandleVisibility','off'); 

 

        plot(xx, stageDict.Ave, avePlotSetting{:});   

        hold off; 

    end 

    legend({'95% CI Upper Bound','95% CI Lower Bound',... 

                    'Mean ' + status },'Location','northwest'); 

    graphSetting; 

    addAnnotation('b'); 

    title(sprintf("%s Normal Breathing\n", status)); 

 

end 

%% Plot all linear normal breathing 

function plotLinearNonEvent(xx_ne, nonEvent) 

    global coeff status; 

    figure; 

    hold on; 

    for i = 1: numel(nonEvent(1,:)) 

        oneNonEvent = nonEvent{2, i}.(status); 

        oneNonEvent = oneNonEvent *coeff; 

        plot(xx_ne, oneNonEvent); 

 

    %     line([0 0], [min_num max_num], 'Color','k', 
'LineStyle','--'); 

    end 

    hold off; 

    addAnnotation('a'); 

    graphSetting; 

    title(sprintf("Normal Breathing, Number of Subject: %d\n", 
numel(nonEvent(1,:)))); 



161 
 

 

end 

%% 

function [totNorVal, totNorStd] = getTotNormalVal(nonEvent) 

    global coeff status; 

    interval = numel(nonEvent{2,1}.(status)); 

    totNorLs = nan(1, numel(nonEvent(2,:)) * interval); 

 

    for i = 1:numel(nonEvent(2,:)) 

        stIdx = 1 + interval * (i-1); 

        endIdx = interval * i; 

        totNorLs(stIdx: endIdx) = nonEvent{2,i}.(status); 

    end 

    totNorVal = mean(totNorLs) * coeff; 

    totNorStd = std(totNorLs) * coeff; 

 

end 

 

function [normalVal, normalStd] = getNormalVal(nonEvent) 

    global folderNum coeff status; 

    try 

        subjLs = string(nonEvent(1,:)); 

        subjIdx = subjLs == folderNum; 

        subjLs = nonEvent{2, subjIdx}.(status) ; 

        normalVal = mean(subjLs).*coeff; 

        normalStd = std(subjLs).*coeff; 

    catch 

        printLog('Messege', 'Cannot get the normal value'); 

        normalVal = nan; 

        normalStd = nan; 

    end 

     



162 
 

end 

 

function getCenterPlot(allEventInv, stageName, shortEventLs, 
showDiffColor, normalVal, avePk) 

    global folderNum allEvent fieldLs xx halfWindow_sz ls status; 

     

    avePlotSetting = getAvePlotSetting; 

    centerLineSetting = getCenterLineSetting; 

    [upCILineSetting ,lowCILineSetting] = getCILineSetting; 

     

    for i = 1: numel(fieldLs) 

 

        fieldName = fieldLs(i) + "Val"; 

 

        %                                       You Can specify 
which field 

        %                                       To view all the 
graphy, use "" 

        if (isfield(allEventInv,fieldName)) && (stageName == "" || 
strcmp(fieldLs(i), stageName) || strcmp(stageName, 'isAll')) 

            stageDict = allEventInv.(fieldName); 

            dict_len = numel(stageDict); 

        else 

            dict_len = 0; 

        end 

 

        if dict_len > 0 

            aveLc = avePk(1); 

            avePk = avePk(2); 

 

            if showDiffColor 

                period = getColorPeriod(stageDict.HexColor); 

                figure; 

                hold on; 



163 
 

                for p = 1:numel(period) 

                    stIdx = period{p}(1); 

                    endIdx = period{p}(2)-1; 

 

                    curve1 = stageDict.Max(stIdx:endIdx).'; 

                    curve2 = stageDict.Min(stIdx:endIdx).'; 

                    x = xx(stIdx:endIdx); 

                     

                    plot(x, curve1, upCILineSetting{:}); 

                    plot(x, curve2, lowCILineSetting{:}); 

 

                    x2 = [x, fliplr(x)]; 

                    inBetween = [curve1, fliplr(curve2)]; 

 

                    colorLs = colormap(jet(20)); 

                    fill(x2, inBetween, 
colorLs(stageDict.HexColor(stIdx), :), 'LineStyle','none', 
'HandleVisibility','off'); 

                    hcb = colorbar; 

                    set(get(hcb,'Title'),'String','A Title') 

                    caxis([0 100]); 

 

                    plot(x, stageDict.Ave(stIdx:endIdx), 
avePlotSetting{:});   

                end 

                plot([0 0], [min(stageDict.Min) 
max(stageDict.Max)], centerLineSetting{:}); 

                plotNormalVal; 

                plotAvePk; 

                hold off; 

%                 legend({'95% CI Upper Bound','95% CI Lower 
Bound', 'Mean value', 'Mean Average BP',  'Highest Average 
Point'},'Location','southwest'); 

                colorbar ; 



164 
 

             

            else 

                h = figure; 

                hold on; 

                curve1 = stageDict.Max.'; 

                curve2 = stageDict.Min.'; 

                plot(xx, curve1, upCILineSetting{:}); 

                plot(xx, curve2, lowCILineSetting{:}); 

 

                x2 = [xx, fliplr(xx)]; 

                inBetween = [curve1, fliplr(curve2)]; 

                fill(x2, inBetween, colorConvertor('#55a6f8'), 
'LineStyle','none', 'HandleVisibility','off'); 

                 

                plot(xx, stageDict.Ave, avePlotSetting{:});   

                plotAvePk; 

                plot([0 0], [min(stageDict.Min) 
max(stageDict.Max)], centerLineSetting{:}); 

                plotNormalVal; 

                hold off; 

                 

            end 

             

            legend({'Mean Apnea ' + status,'Peak ' + status + ' 
Avg.', 'Avg. ' + status + ' Baseline'},'Location','northwest'); 

            graphSetting; 

             

            if strcmp(stageName, "isAll") % aggrecated result 

                shortNum = numel(shortEventLs); 

                eventNum = numel(allEvent.(fieldLs(i))); 

                totNum = shortNum + eventNum; 

                title(sprintf("Subject Count: %d, # Event: %d (%d 
%%) | <%d points: %d | Total: %d\n",... 



165 
 

                        numel(ls), eventNum, round(eventNum * 100/ 
totNum), halfWindow_sz, shortNum, totNum )); 

            elseif strcmp(fieldLs(i), "all") % means in all 
withouth considering stages 

                shortNum = numel(shortEventLs); 

                eventNum = numel(allEvent.(fieldLs(i))); 

                totNum = shortNum + eventNum; 

                title(sprintf("Subject: %s, Stage: %s, # Event: %d 
(%d %%) | <%d points: %d | Total: %d\n",... 

                        folderNum, getStageName(fieldLs(i)), 
eventNum, round(eventNum * 100/ totNum), halfWindow_sz, shortNum, 
totNum )); 

            else 

                title(sprintf("Subject: %s, Stage: %s\nEvent 
Amount: %d", folderNum, 
getStageName(fieldLs(i)),numel(allEvent.(fieldLs(i))) )); 

            end 

             

            addAnnotation('b'); 

             

%             if strcmp(stageName, "isAll") 

%                 
savefig(h,'all_combination_regardless_overlap.fig'); 

%             else 

%                 
savefig(h,sprintf('%s_combination_regardless_overlap.fig', 
folderNum)); 

%             end 

        end 

    end 

     

    function plotNormalVal 

        plot([xx(1) xx(end)], [normalVal normalVal], 
'Color',colorConvertor('#cc6600'), 'LineStyle','-', 'LineWidth', 
2); 

    end 

    function plotAvePk 



166 
 

        plot(aveLc, avePk, 'ro', 'LineWidth', 2); 

    end 

end 

 

function [upSetting, lowSetting] = getCILineSetting 

    upSetting = { 'Color', 'r', 'LineWidth', 2, 
'HandleVisibility','off'}; 

    lowSetting = { 'Color', colorConvertor('#003300'), 'LineWidth', 
2, 'HandleVisibility','off'}; 

end 

 

function setting = getCenterLineSetting 

    setting = {'Color','k', 'LineStyle',':','LineWidth', 1, 
'HandleVisibility','off'}; 

end 

 

function setting = getAvePlotSetting 

    setting = {'--k', 'LineWidth', 1}; 

end 

 

function [allEventInv, lc, pk, pkStd] = 
newGetInverseAllEvent(useStatistic, getPkStd) 

    global allEvent fieldLs xx status; 

    z_Val = 1.96; 

 

    % Use as top limit, eg 10 >>> (5, 10] 

    percentLs = [ 5, 10, 15, 20, ... 

                 25, 30, 35, 40, ... 

                 45, 50, 55, 60, ... 

                 65, 70, 75, 80, ... 

                 85, 90, 95,100]; 

%     percentLs = linspace(1, 100, colorScaleCount 

 

    allEventInv = struct('sn5Val', [], ... %'sn5', [],... 



167 
 

                         'sn4Val', [], ... %'sn4', [],... 

                         'sn3Val', [], ... %'sn3', [],... 

                         'sn2Val', [], ... %'sn2', [],... 

                         'sn1Val', [], ... %'sn1', [],... 

                         's0Val' , [], ... %'s0' , [],... 

                         's1Val' , []);    %'s1' , []); 

 

 

    for i = 1:numel(fieldLs) 

%     for i = 1:1 

        % in Stage level 

        eventLs = allEvent.(fieldLs(i)); 

%         disp(fieldLs(i)); 

        cell_len = numel(eventLs); 

        if cell_len > 0 

            colSz = numel(eventLs{1}); 

            %--- [WARNING] Have NOT apply inverse matrix to the 
struct-> allEventInv 

            %--- Create inverse matrix 

            matr = nan(colSz, cell_len); 

            for e = 1: cell_len 

                matr(:, e) = eventLs{e}; 

            end 

 

            valDict = struct('Min', nan(colSz, 1), 'Max', 
nan(colSz, 1),... 

                             'Ave', nan(colSz, 1), 'HexColor', 
nan(colSz, 1));%strings(colSz, 1)); 

             

%             if fieldLs(i) == "all" 

%                 disp('yes'); 

%             end 

                          



168 
 

            %--- data in each row  

            for r = 1: colSz 

                row = matr(r, :); 

                oriLen = numel(row); 

                row = row(~isnan(row)); 

                newLen = numel(row); 

                meanVal = mean(row); 

                 

                if useStatistic && newLen >= 5 

                    oriLen = newLen; 

                    int = z_Val * std(row); 

                    CI_low = meanVal - int; 

                    CI_up = meanVal + int; 

%                     row = row( row >= CI_low); 

%                     row = row( row <= CI_up); 

                    newLen = numel(row); 

                end 

                percentVal = newLen * 100/ oriLen; 

%                 colorTag = colorLs(find(percentLs >= percentVal, 
1, 'first')); 

                if numel(row) > 0 && newLen >= 5 

                    % assign val from each row 

                    valDict.Min(r) =  CI_low; 

                    valDict.Max(r) =  CI_up; 

                    valDict.Ave(r) = meanVal; 

                    valDict.HexColor(r) = find(percentLs >= 
percentVal, 1, 'first'); 

    %                 valDict.HexColor(r) = percentVal; 

                end 

 

            end 

 

            allEventInv.(fieldLs(i) + 'Val') = valDict; 



169 
 

             

            [lc, pk] = getPeakVal(valDict.Ave); 

            if getPkStd 

                pkIdx = xx == lc; 

                row = matr(pkIdx, :); 

                row = row(~isnan(row)); 

                pkStd = std(row); 

            else 

                pkStd = nan; 

            end 

             

        end 

    end 

 

    printLog("Message",status + " - Inverse done! Get the 
allEventInv "); 

 

end 

 

%% Plot all the event in each stage. 

function plotEventinLinear(fieldType) 

    global xx allEvent fieldLs folderNum; 

    for i = 1: numel(fieldLs) 

        eventList = allEvent.(fieldLs(i)); 

 

        cell_len = numel( allEvent.(fieldLs(i))); 

        if cell_len > 0 

            h = figure; 

%             line([0 0], [100 130], 'Color','k', 'LineStyle','--
'); 

            hold on; 

            max_num = 0; 

            min_num = 200; 



170 
 

            for j = 1:  cell_len 

                if max_num < max(eventList{j}) 

                    max_num = max(eventList{j}); 

                end 

                 

                if min_num > min(eventList{j}) 

                    min_num = min(eventList{j}); 

                end 

%                 disp(j); 

                plot(xx, eventList{j}); 

            end 

 

            line([0 0], [min_num max_num], 'Color','k', 
'LineStyle','--'); 

            hold off; 

            xlabel('-30 to 30 (s)') ; 

            ylabel('Blood Pressure (mmHg)'); 

            graphSetting; 

            addAnnotation('a'); 

                 

            if strcmp(fieldType, "isAll") % aggrecated result 

                title(sprintf("All Subject, Stage: %s, Event 
Amount: %d\n", getStageName(fieldLs(i)),cell_len)); 

            elseif strcmp(fieldType, "all") % means in all withouth 
considering stages 

                title(sprintf("Subject: %s, Stage: %s, Event 
Amount: %d\n", folderNum, getStageName(fieldLs(i)),cell_len)); 

            end 

             

%             if strcmp(fieldType, "isAll") 

%                 savefig(h,'all_linear_regardless_overlap.fig'); 

%                 close(h) 

%             else 



171 
 

%                 
savefig(h,sprintf('%s_linear_regardless_overlap.fig', folderNum)); 

%                 close(h) 

%             end 

        end 

    end 

end 

 

function period = getColorPeriod(colorLs) 

    idx = 1; 

    curColor = colorLs(1); 

    period = cell(numel(colorLs), 1); 

    pIdx = 1; 

    for c = 2: numel(colorLs) 

        if colorLs(c) ~= curColor 

            period{pIdx} = [idx c]; 

            curColor = colorLs(c); 

            idx = c; 

            pIdx = pIdx + 1; 

        end 

    end 

    period{pIdx} = [idx c]; 

    period = period(~cellfun('isempty',period)); 

end 

 

function allEventInv = getInverseNonEvent(nonEvent, useStatistic) 

    global status; 

    z_Val = 1.96; 

 

    % Use as top limit, eg 10 >>> (5, 10] 

    percentLs = [ 5, 10, 15, 20, ... 

                 25, 30, 35, 40, ... 



172 
 

                 45, 50, 55, 60, ... 

                 65, 70, 75, 80, ... 

                 85, 90, 95,100]; 

%     percentLs = linspace(1, 100, colorScaleCount 

 

    allEventInv = struct('normalBre', []); 

    colSz = numel(nonEvent{2,1}.(status)); 

    matr = zeros(numel(nonEvent(1,:)), colSz ); 

     

     

 

    for i = 1:numel(nonEvent(1,:)) 

%     for i = 1:1 

        % in Stage level 

        oneNonEvent = nonEvent{2, i}.(status); 

        matr(i,:) = oneNonEvent.*100; 

    end 

 

    valDict = struct('Min', nan(colSz, 1), 'Max', nan(colSz, 1),... 

                     'Ave', nan(colSz, 1), 'HexColor', nan(colSz, 
1));%strings(colSz, 1)); 

                     

    %--- data in each column  

    for r = 1: colSz 

        row = matr(:, r); 

        oriLen = numel(row); 

        row = row(~isnan(row)); 

        newLen = numel(row); 

        meanVal = mean(row); 

         

        CI_low = min(row); 

        CI_up = max(row); 



173 
 

        if useStatistic && newLen >= 5 

            oriLen = newLen; 

            int = z_Val * std(row); 

            CI_low = meanVal - int; 

            CI_up = meanVal + int; 

        end 

 

        percentVal = newLen * 100/ oriLen; 

    %   colorTag = colorLs(find(percentLs >= percentVal, 1, 
'first')); 

        if numel(row) > 0 

            % assign val from each row 

            valDict.Min(r) = CI_low; 

            valDict.Max(r) = CI_up; 

            valDict.Ave(r) = meanVal; 

            valDict.HexColor(r) = find(percentLs >= percentVal, 1, 
'first'); 

    %       valDict.HexColor(r) = percentVal; 

        end 

 

    end 

 

    allEventInv.normalBre = valDict; 

    printLog("Message",status + " - Inverse done! Get the 
allNonEventInv "); 

 

end 

 

function stageCell = getStageList(stage) 

    global folderNum status; 

    sn1ls = cell(600, 1); sn2ls = cell(600, 1); sn3ls = cell(600, 
1);  

    sn4ls = cell(600, 1); sn5ls = cell(600, 1);  s0ls = cell(600, 
1); 



174 
 

    s1ls  = cell(600, 1); 

 

    sn1lsIdx = 1; sn2lsIdx = 1; sn3lsIdx = 1; sn4lsIdx = 1; 
sn5lsIdx = 1;  

    s1lsIdx = 1; s0lsIdx = 1; 

 

    targetNum = stage(1); 

    startPt = 1; 

    for i = 2:numel(stage) 

        curNum = stage(i); 

    %     disp([i,curNum]); 

        if curNum ~= targetNum 

            switch targetNum 

                case -5 

                    sn5ls{sn5lsIdx} = [startPt, i-1]; 

                    sn5lsIdx = sn5lsIdx + 1; 

                case -4 

                    sn4ls{sn4lsIdx} = [startPt, i-1]; 

                    sn4lsIdx = sn4lsIdx + 1; 

                case -3 

                    sn3ls{sn3lsIdx} = [startPt, i-1]; 

                    sn3lsIdx = sn3lsIdx + 1; 

                case -2 

                    sn2ls{sn2lsIdx} = [startPt, i-1]; 

                    sn2lsIdx = sn2lsIdx + 1; 

                case -1 

                    sn1ls{sn1lsIdx} = [startPt, i-1]; 

                    sn1lsIdx = sn1lsIdx + 1; 

                case 0 

                    s0ls{s0lsIdx} = [startPt, i-1]; 

                    s0lsIdx = s0lsIdx + 1; 

                case 1 



175 
 

                    s1ls{s1lsIdx} = [startPt, i-1]; 

                    s1lsIdx = s1lsIdx + 1; 

            end 

            targetNum = curNum; 

            startPt = i; 

        end 

    end 

 

    % catch the last one if it is still remain the same; 

    if curNum == targetNum 

        switch targetNum 

            case -5 

                sn5ls{sn5lsIdx} = [startPt, i]; 

            case -4 

                sn4ls{sn4lsIdx} = [startPt, i]; 

            case -3 

                sn3ls{sn3lsIdx} = [startPt, i]; 

            case -2 

                sn2ls{sn2lsIdx} = [startPt, i]; 

            case -1 

                sn1ls{sn1lsIdx} = [startPt, i]; 

            case 0 

                s0ls{s0lsIdx} = [startPt, i]; 

            case 1 

                s1ls{s1lsIdx} = [startPt, i]; 

        end 

    end 

 

    sn5ls = sn5ls(~cellfun('isempty', sn5ls)); 

    sn4ls = sn4ls(~cellfun('isempty', sn4ls)); 

    sn3ls = sn3ls(~cellfun('isempty', sn3ls)); 

    sn2ls = sn2ls(~cellfun('isempty', sn2ls)); 



176 
 

    sn1ls = sn1ls(~cellfun('isempty', sn1ls)); 

    s0ls  = s0ls(~cellfun('isempty',  s0ls)); 

    s1ls  = s1ls(~cellfun('isempty',  s1ls)); 

 

    stageCell = struct('sn5', [], 'sn4', [], 'sn3', [], 'sn2', 
[],... 

                       'sn1', [], 's0',  [], 's1' , []); 

 

    stageCell.sn5 = sn5ls;    stageCell.sn4 = sn4ls;    
stageCell.sn3 = sn3ls; 

    stageCell.sn2 = sn2ls;    stageCell.sn1 = sn1ls;    
stageCell.s0 = s0ls; 

    stageCell.s1  = s1ls;  

 

    printLog("Message",sprintf("%s  - Subject: %s >>> Get the stage 
list", status, folderNum)); 

end 

 

%% collect each event stages in eventCell 

function eventCell = getEventStageList(event) 

    global folderNum status; 

    e1ls = cell(600, 1); e2ls = cell(600, 1); e3ls = cell(600, 1); 
e4ls = cell(600, 1); e10ls = cell(600, 1);  

    e1lsIdx = 1; e2lsIdx = 1; e3lsIdx = 1; e4lsIdx = 1; e10lsIdx = 
1;  

    % event = 
[10,10,10,10,3,3,2,2,2,1,1,1,1,4,4,4,4,3,3,3,2,2,1,1,10,10]; 

    %         1  2  3  4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  5  
6 

    targetNum = event(1); 

    startPt = 1; 

    for i = 2:numel(event) 

        curNum = event(i); 

    %     disp([i,curNum]); 

        if curNum ~= targetNum 



177 
 

            switch targetNum 

                case 10 

                    e10ls{e10lsIdx} = [startPt, i-1]; 

                    e10lsIdx = e10lsIdx + 1; 

                case 4 

                    e4ls{e4lsIdx} = [startPt, i-1]; 

                    e4lsIdx = e4lsIdx + 1; 

                case 3 

                    e3ls{e3lsIdx} = [startPt, i-1]; 

                    e3lsIdx = e3lsIdx + 1; 

                case 2 

                    e2ls{e2lsIdx} = [startPt, i-1]; 

                    e2lsIdx = e2lsIdx + 1; 

                case 1 

                    e1ls{e1lsIdx} = [startPt, i-1]; 

                    e1lsIdx = e1lsIdx + 1; 

            end 

            targetNum = curNum; 

            startPt = i; 

        end 

    end 

 

    % catch the last one if it is still remain the same; 

    if curNum == targetNum 

        switch targetNum 

            case 10 

                e10ls{e10lsIdx} = [startPt, i]; 

            case 4 

                e4ls{e4lsIdx} = [startPt, i]; 

            case 3 

                e3ls{e3lsIdx} = [startPt, i]; 

            case 2 



178 
 

                e2ls{e2lsIdx} = [startPt, i]; 

            case 1 

                e1ls{e1lsIdx} = [startPt, i]; 

        end 

    end 

     

    e10ls = e10ls(~cellfun('isempty', e10ls)); 

    e4ls = e4ls(~cellfun('isempty', e4ls)); 

    e3ls = e3ls(~cellfun('isempty', e3ls)); 

    e2ls = e2ls(~cellfun('isempty', e2ls)); 

    e1ls = e1ls(~cellfun('isempty', e1ls)); 

     

    eventCell = struct('e10', [], 'e4', [], 'e3', [], 'e2', [], 
'e1', []); 

    

    eventCell.e10 = e10ls;    eventCell.e4 = e4ls;    eventCell.e3 
= e3ls; 

    eventCell.e2 = e2ls;      eventCell.e1 = e1ls; 

     

    printLog("Message",sprintf("%s - Subject: %s >>> Get the event 
list", status, folderNum)); 

end 

 

 

E. MATLAB CODE FOR AGGREGATION OF DATA CONSIDERING SLEEP 

STAGES 
 

clc;clear; close all; 

global folderNum halfWindow_sz xx xx_ne fieldLs coeff ls status 
subEvent subEventInv; 

global crxSequenceStru eventStr nonEventStr allEventStage 
allEventStageInv isAll; 

global subEventStr allEventStageStr subEventInvStr 
allEventStageInvStr fs eventTypeLs; 

global slopeStru normalSlopeStru; 



179 
 

% Init some variable ----------------------------------------------
------ % 

% ---------------------------------- 

% Decide which type of value to use- 

% status = "SBP"; 

status = "DBP"; 

% status = "MAP"; 

% status = "PP"; 

% ---------------------------------- 

eventStr = "Event";    nonEventStr = "NonEvent"; 

subEventStr = 'subEvent';    allEventStageStr = 'allEventStage'; 

subEventInvStr = 'subEventInv';    allEventStageInvStr = 
'allEventStageInv'; 

eventTypeLs = [eventStr, nonEventStr]; 

isAll = true;  

 

enableStatistcs = true; 

showDiffColor = false; 

getSTD = true; 

 

rootDir = "..\\data"; 

 

fs = 100; 

halfWindow_len = 30; %sec >>> Normal Breathing Window size 

% xx = -60:0.01:60 - 0.01; 

% xx_ne = halfWindow_len * (-1) : 1/fs : halfWindow_len - 1/fs; % 
>>> Normal Breathing Window size 

xx_ne = 0 : 1/fs : 2 * halfWindow_len - 1/fs; % >>> Normal 
Breathing Window size 

 

halfWindow_sz = halfWindow_len * fs; 

% >>> Event Window Size 

xx = halfWindow_len * (-1):1/fs:halfWindow_len - 1/fs; % xx = -
30:0.01:30 - 0.01; 



180 
 

 

 

% Slope Calculation -----------------------------------------------
------ % 

collectSlope = 0; 

slopeStru = initEventslopeStruc('stage'); 

normalSlopeStru = initEventslopeStruc('stage'); 

printLog('Message', 'Cell: 1~4 col >>> Equation slope, Equation 
intercept, Regres slope, intercept'); 

 

% Cross Event Analysis --------------------------------------------
------ % 

crxSequenceStru = struct('sub01', [], 'sub03', [], 'sub05', [], ... 

                         'sub06', [], 'sub07', [], 'sub10', [], ... 

                         'sub11', [], 'sub12', [], 'sub13', [], ... 

                         'sub15', [], 'subAll',[]); 

fields = fieldnames(crxSequenceStru); 

for fidx = 1: numel(fields) 

    crxSequenceStru.(fields{fidx}) = cell(50,2); 

end 

 

fieldLs = ["sn5",  "sn4", "sn3", "sn2", "sn1", "s0", "s1", "all"]; 

 

ls = ["01", "03", "05", "06", "07", "10", "11", "12", "13", "15"]; 

% ls = ["01", "03", "05", "10", "15",  "07", "11", "06", "12", 
"13" ]; 

% ls = ["01", "03", "05", "10", "15",  "07", "11" ]; 

if isAll 

    initAllEventStageNInv; 

end 

 

 for fNum = 1: numel(ls) 

% for fNum = 1:1 

% folderNum = "10"; 



181 
 

folderNum = ls(fNum); 

 

[dict, splinePk, event, stage] = init(rootDir); 

splinePk = removeNoisy(folderNum, dict, splinePk); 

 

% collect each event stages in eventCell, same in stageLs 

% include the idx start & end point of each stage period 

stageStru = getStageList(stage);  

eventStru = getEventStageList(event); 

 

% Remove the event period which have no splinePk value ( ratio < 
80%) 

% eventStru = checkEventLs(eventStru, splinePk, 0.8); 

 

% [eventPtLs, slopeLs] = getEventPtnSlope(dict, eventLs, false); 

 

coeff = 100; 

% Rescale the y unit % 

splinePk = splinePk * coeff; 

stage = stage * coeff; 

event = event * coeff; 

 

% Init. 

initSubEventStruct; 

printLog("Message",sprintf("%s - Subject: %s >>> Initialization 
done...", status, folderNum)); 

 

% Include all the event with spline peak value period in each stage 

getNonEventWtStage(stageStru, event, splinePk, collectSlope); 

removeEmptyinStru(subEventStr, nonEventStr); 

getInverseStruc(subEventStr, subEventInvStr, nonEventStr, 
enableStatistcs, getSTD); 

plotLinearData(subEventStr, nonEventStr); 



182 
 

% getCenterPlot(subEventStr, subEventInvStr, nonEventStr, 
showDiffColor); 

 

 

getCrxResult(splinePk, eventStru, stage, false, collectSlope); 

removeEmptyinStru(subEventStr, eventStr); 

getSummary4Event(subEventStr); 

getInverseStruc(subEventStr, subEventInvStr, eventStr, 
enableStatistcs, getSTD); 

plotLinearData(subEventStr, eventStr); 

% getCenterPlot(subEventStr, subEventInvStr, eventStr, 
showDiffColor); 

 

if collectSlope 

    removeEmptyinSlope; 

    getSlopePlot(folderNum); 

end 

 

% clear subEvent; 

 end 

 

 

close all; 

removeEmptyinStru(allEventStageStr, nonEventStr); 

getInverseStruc(allEventStageStr, allEventStageInvStr, nonEventStr, 
enableStatistcs, getSTD); 

plotLinearData(allEventStageStr, nonEventStr); 

getCenterPlot(allEventStageStr, allEventStageInvStr, nonEventStr, 
showDiffColor); 

 

close all; 

removeEmptyinStru(allEventStageStr, eventStr); 

getSummary4Event(allEventStageStr); 



183 
 

getInverseStruc(allEventStageStr, allEventStageInvStr, eventStr, 
enableStatistcs, getSTD); 

getCenterPlot(allEventStageStr, allEventStageInvStr, eventStr, 
showDiffColor); 

plotLinearData(allEventStageStr, eventStr); 

 

 

if collectSlope 

    getSlopePlot('isAll'); 

end 

 

disp('done'); 

 

 

%% ANOVA on sleep stages ~~~ NON EVENT ( BASELINE ) 

clc; close all; 

sleepField = fieldLs(1:5); 

% normal 

sleepValLs = getSleepValLs(nonEventStr, sleepField); 

 

sleepValLs(:, 3) = nan; 

% variances 

p = vartestn(sleepValLs); 

set(gca,'xticklabel',{"REM", "2", "1"}); 

graphSetting; 

xlabel('Stage'); 

grid on; 

disp(p); 

 

%% 

 

[p,tbl,stats] = anova1(sleepValLs); 

stats.gnames = {'REM';'2';'1'}; 



184 
 

set(gca,'xticklabel',{"REM", "2", "1"}); 

graphSetting; 

xlabel('Stage'); 

grid on; 

%% 

[c,m,h,nms] = multcompare(stats); 

ylabel('Stage'); 

xlabel('Blood Pressure (mmHg)'); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 

%% ANOVA on sleep stages ~~~ EVENT 

clc; close all; 

sleepField = fieldLs(1:5); 

sleepValLs = getSleepValLs(eventStr, sleepField); 

 

% Check normality 

for s = 1:numel(sleepField) 

    targetLs = sleepValLs(~isnan(sleepValLs(:,s))); 

    if numel(targetLs)> 1 

        % Check normality 

        [H, pValue, W] = swtest(targetLs); 

        resultStrNormal = isRejectNull(H); 

        fprintf('%-7s,#,%3d,p-value,%2.5f, normality, %s\n', 
getStageName( sleepField(s)), numel(targetLs), 
pValue,resultStrNormal ); 

    end 

end 

 

%% homogeneity 

% sleepValLs(:, 1) = nan; 

p = vartestn(sleepValLs); 



185 
 

resultStr = isRejectNull(p); 

disp({'homogeneity p-val',p,resultStr}); 

set(gca,'xticklabel',{ "3", "2", "1"}); 

% set(gca,'xticklabel',{"REM", "3", "2", "1"}); 

graphSetting; 

xlabel('Stage'); 

grid on; 

 

%% 

clc; 

% [p,tbl,stats] = anova1(sleepValLs, 
'group',{'REM','4','3','2','1'}); 

% [p,tbl,stats] = anova1(sleepValLs, 'group',{"3","2","1"}); 

[p,tbl,stats] = anova1(sleepValLs); 

stats.gnames = {'3';'2';'1'}; 

resultStr = isRejectNull(p); 

disp({'ANOVA p-val',p,resultStr}); 

set(gca,'xticklabel',{"3", "2", "1"}); 

graphSetting; 

xlabel('Stage'); 

grid on; 

%% 

[c,m,h,nms] = multcompare(stats); 

set(gca,'yticklabel',{"3", "2", "1"}); 

box on; 

set(gcf,'color','w'); 

ylabel('Stage'); 

xlabel('Blood Pressure (mmHg)'); 

 

%% 

for s = 1:numel(sleepField) 

    targetLs = sleepValLs(~isnan(sleepValLs(:,s))); 



186 
 

    if numel(targetLs)> 1 

        for ss = s+1:numel(sleepField) 

            compareLs = sleepValLs(~isnan(sleepValLs(:,ss))); 

            if numel(compareLs)> 1 

                [p,h,stats] = ranksum( targetLs , compareLs); 

                resultStr = isRejectNull(h); 

                fprintf('%-7s vs %-7s,  p-val, %3.5f, zval, %2.5f, 
ranksum, %.3f >>> %s\n', getStageName( sleepField(s)), 
getStageName( sleepField(ss)), p, stats.zval, stats.ranksum, 
resultStr); 

            end 

        end 

    end 

     

end 

 

% p = kruskalwallis(sleepValLs); 

 

% Percentage 

 

 

disp('ANOVA Sect. Done'); 

 

%% 

 

function sleepValLs = getSleepValLs(typeStr, sleepField) 

    global allEventStage allEventStageInv nonEventStr xx; 

    sleepValLs = nan(500, 5); 

     

    if strcmp(typeStr, nonEventStr) 

        for s = 1:numel(sleepField) 

            stageKey = sleepField(s); 

            resultCell = allEventStage.(typeStr).(stageKey); 



187 
 

            if size(resultCell, 1)> 1 

                for r = 1:size(resultCell, 1) 

                    tmp = resultCell{r}; 

                    tmp = tmp(~isnan(tmp)); 

                    sleepValLs(r, s)= mean(tmp); 

                end 

            end 

        end 

     

    else 

        for s = 1:numel(sleepField) 

            stageKey = sleepField(s); 

            resultCell = allEventStage.(typeStr).(stageKey); 

            resultStru = allEventStageInv.(typeStr).(stageKey); 

            if isstruct(resultStru) 

                pkLc = resultStru.AveLc; 

                pkIdx = xx == pkLc; 

                for r = 1:size(resultCell, 1) 

                    tmp = resultCell{r}; 

                    sleepValLs(r, s)= tmp(pkIdx); 

                end 

            end 

        end 

    end 

     

end 

 

function resultStr = isRejectNull(val) 

    if val == 0 

        resultStr = 'fail to reject the null hypothesis'; 

    elseif val == 1 

        resultStr = 'rejection of the null hypothesis'; 



188 
 

    elseif floor(val) ~= val % if it is float 

        if val >= 0.05 

            resultStr = 'fail to reject the null hypothesis'; 

        else 

            resultStr = 'rejection of the null hypothesis'; 

        end 

    end 

end 

%% 

function getCrxResult(targeValLs, eventStru, stage, 
getOnlyStartnEnd, getSlope) 

    global folderNum crxSequenceStru subEvent allEventStage 
eventStr isAll status; 

    global slopeStru; 

     

    event1 = eventStru.e1; 

    len_e1 = numel(event1); 

    oneStageNum = 0; 

    shortLs = nan(50, 1); 

    shortIdx = 1; 

    crxNum = 0; 

    totalNonOverlap = 0; 

    sequFolderNum = "sub" + folderNum; 

    sequAll = "subAll"; 

    slopeIdx = 1; 

    for e = 1: len_e1 

        isOverlap = checkOverlapping(event1, len_e1, e); 

 

        if isOverlap == true 

            % Ignore this point and look on the next one. 

            shortLs(shortIdx) = e; 

            shortIdx = shortIdx + 1; 

        else  



189 
 

            % The non-overlapping event on either side 

            totalNonOverlap = totalNonOverlap + 1; 

            cur_e = event1{e}; 

            cur_stIdx = cur_e(1); 

            cur_endIdx = cur_e(2); 

            stagePeriod = stage(cur_stIdx:cur_endIdx); % catch the 
period of the stage 

 

            uniItems = unique(stagePeriod); % Check how many stage 
there is 

             

            if numel(uniItems) == 1 % Event in single stage 

                % get event endpoint >>> endIdx 

                oneStageNum = oneStageNum + 1; 

                stageName = getStageKey(uniItems); 

                idxNum = getNxIdx(subEvent.(eventStr),stageName ); 

                targetPeriod = getNonOverlapPeriod(cur_endIdx, 
targeValLs); 

                if numel(targetPeriod(~isnan(targetPeriod))) == 0 

                    printLog("Warning",sprintf("Subject: %s (%s) 
>>> on event idx: %d >>> without any data >>> skip in collected to 
allevent", ... 

                            folderNum, status, e)); 

                    continue 

                end 

                subEvent.(eventStr).(stageName){idxNum} = 
targetPeriod; 

                 

                if getSlope 

                    [equSlope, equIntercept, lineSlope, 
lineIntercept] = getLinearRegression(cur_stIdx, cur_endIdx, 
targeValLs, false); 

                    
slopeStru.(sequFolderNum).(stageName)(slopeIdx, :) = [equSlope, 
equIntercept, lineSlope, lineIntercept]; 

                    slopeIdx = slopeIdx + 1; 



190 
 

                end 

                 

                if isAll 

                    idxNum = 
getNxIdx(allEventStage.(eventStr),stageName ); 

                    allEventStage.(eventStr).(stageName){idxNum} = 
targetPeriod; 

                end 

                 

                if uniItems == -500 

                    printLog('REM Count', sprintf('#,%s, %3.2f', 
folderNum, mean(targetPeriod))); 

                end 

                 

            elseif numel(uniItems) > 1 % >>> crx stage event 

                crxNum = crxNum + 1; 

                % collect which stage change to sequenceLs 

                sequenceLs = nan(1, 10); 

                lsIdx = 1; 

                sequenceLs(lsIdx) = stagePeriod(1); 

 

                for stageNum = 2: numel(stagePeriod) 

                    if stagePeriod(stageNum) ~= sequenceLs(lsIdx) 

                        lsIdx = lsIdx + 1; 

                        sequenceLs(lsIdx) = stagePeriod(stageNum); 

                    end 

                end 

 

 

                sequenceLs = sequenceLs(~isnan(sequenceLs)); 

 

                if getOnlyStartnEnd 

                    sequ = [sequenceLs(1), sequenceLs(end)]; 



191 
 

                else 

                    sequ = sequenceLs; 

                end 

                 

                % check whether it is in the list. 

                idxNum = getNxIdx(crxSequenceStru, sequFolderNum); 

                [inLsResult, idxInList] = isInList(sequFolderNum); 

                 

                % in list then add the value 

                if inLsResult 

                    crxSequenceStru.(sequFolderNum){idxInList, 2} = 
crxSequenceStru.(sequFolderNum){idxInList, 2} + 1; 

                else 

                    % not in the list add new row 

                    crxSequenceStru.(sequFolderNum){idxNum, 1} = 
sequ; 

                    crxSequenceStru.(sequFolderNum){idxNum, 2} = 1; 

                end 

                 

                % check whether it is in the list. >> For all 

                idxNum = getNxIdx(crxSequenceStru, sequAll); 

                [inLsResult, idxInList] = isInList(sequAll); 

                 

                % in list then add the value 

                if inLsResult 

                    crxSequenceStru.(sequAll){idxInList, 2} = 
crxSequenceStru.(sequAll){idxInList, 2} + 1; 

                else 

                    % not in the list add new row 

                    crxSequenceStru.(sequAll){idxNum, 1} = sequ; 

                    crxSequenceStru.(sequAll){idxNum, 2} = 1; 

                end 

             



192 
 

            else 

                disp('else'); 

            end 

        end 

 

    end 

 

    printLog("Count", sprintf('Subject: %s >>> single stage evnet#: 
%3d, crx stage event #: %2d/%2d (%2.2f %%%%)',... 

                            folderNum, oneStageNum, crxNum, 
totalNonOverlap, crxNum*100/ totalNonOverlap)); 

                         

    function idxNum = getNxIdx(parentStru, childField) 

        tmpLs = ~cellfun('isempty', parentStru.(childField)); 

        idxNum = find(tmpLs == 0, 1, 'first'); 

    end 

 

    function [inList, idxInList] = isInList(sequName) 

        inList = false; 

        curIdx = 1; 

        idxInList = nan; 

        while inList == false && curIdx <= idxNum 

            if isequal(crxSequenceStru.(sequName){curIdx, 1}, sequ) 

                inList = true; 

                idxInList = curIdx; 

            end 

            curIdx = curIdx + 1; 

        end 

    end 

end 

 

function getSlopePlot(typeStr) 

    global slopeStru folderNum ls status fieldLs normalSlopeStru; 



193 
 

     

    figure; 

    maxSlope = 2;%max(linearSlopeLs); 

    plot([0, maxSlope], [0, maxSlope], '--k'); 

    hold on; 

     

    if strcmp(typeStr, 'isAll') 

         

        for fieldIdx = 1: numel(fieldLs)-1 

            allStIdx = 1; 

            inAll = nan(1000, 2); 

            fieldName = fieldLs(fieldIdx); 

             

            for i = 1: numel(ls) 

                tmpLs = slopeStru.('sub' + ls(i)).(fieldName); 

                equaSlopeLs = tmpLs(:, 1); 

                equalInterCept = tmpLs(:, 2); 

                linearSlopeLs = tmpLs(:, 3); 

                tmpLsLen = numel(equaSlopeLs); 

    %             disp([allStIdx,tmpLsLen]); 

                inAll(allStIdx:allStIdx + tmpLsLen - 1, 1) = 
equaSlopeLs; 

                inAll(allStIdx:allStIdx + tmpLsLen - 1, 2) = 
equalInterCept; 

                allStIdx = allStIdx + tmpLsLen; 

            end 

 

            idx = ~isnan(inAll(:, 1)); 

            allSlopeLs = inAll(idx,1); 

            allInterCept = inAll(idx, 2); 

 

            plot(equaSlopeLs, linearSlopeLs, '*'); 



194 
 

            printLog("Slope", sprintf("%s - All, %-7s, mean 
equation slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f",... 

                    status, getStageName(fieldName), 
mean(allSlopeLs), std(allSlopeLs), mean(allInterCept), 
std(allInterCept) )); 

             

            % -------- Normal Slope Part --------------------------
-------- 

            allStIdx = 1; 

            inAll = nan(1000, 2); 

             

            for i = 1: numel(ls) 

                tmpLs = normalSlopeStru.('sub' + 
ls(i)).(fieldName); 

                equaSlopeLs = tmpLs(:, 1); 

                equalInterCept = tmpLs(:, 2); 

                linearSlopeLs = tmpLs(:, 3); 

                tmpLsLen = numel(equaSlopeLs); 

    %             disp([allStIdx,tmpLsLen]); 

                inAll(allStIdx:allStIdx + tmpLsLen - 1, 1) = 
equaSlopeLs; 

                inAll(allStIdx:allStIdx + tmpLsLen - 1, 2) = 
equalInterCept; 

                allStIdx = allStIdx + tmpLsLen; 

            end 

 

            idx = ~isnan(inAll(:, 1)); 

            allSlopeLs = inAll(idx,1); 

            allInterCept = inAll(idx, 2); 

 

            plot(equaSlopeLs, linearSlopeLs, '*'); 

            printLog("Slope", sprintf("%s - All, %-7s,normal slope, 
mean equation slope, %2.3f,+-, %2.3f, mean equation intercept, 
%2.3f,+-, %2.3f",... 



195 
 

                    status, getStageName(fieldName), 
mean(allSlopeLs), std(allSlopeLs), mean(allInterCept), 
std(allInterCept) )); 

        end 

    else 

        for fieldIdx = 1: numel(fieldLs)-1 

            fieldName = fieldLs(fieldIdx); 

            tmpLs = slopeStru.('sub' + folderNum).(fieldName); 

            equaSlopeLs = tmpLs(:, 1); 

            linearSlopeLs = tmpLs(:, 3); 

            plot(equaSlopeLs, linearSlopeLs, '*'); 

            printLog("Slope", ... 

            sprintf("%s - Subject: %s, %-7s, mean equation slope, 
%2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, %2.3f,#,%d",... 

                status, typeStr, getStageName(fieldName), ... 

                mean(equaSlopeLs), std(equaSlopeLs), mean(tmpLs(:, 
2)), std(tmpLs(:, 2)), numel(equaSlopeLs) )); 

             

            fieldName = fieldLs(fieldIdx); 

            tmpLs = normalSlopeStru.('sub' + 
folderNum).(fieldName); 

            equaSlopeLs = tmpLs(:, 1); 

            linearSlopeLs = tmpLs(:, 3); 

            plot(equaSlopeLs, linearSlopeLs, '*'); 

            printLog("Slope", ... 

            sprintf("%s - Subject: %s, %-7s,normal slope, mean 
equation slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f,#,%d",... 

                status, typeStr, getStageName(fieldName), ... 

                mean(equaSlopeLs), std(equaSlopeLs), mean(tmpLs(:, 
2)), std(tmpLs(:, 2)), numel(equaSlopeLs) )); 

        end 

    end 

     

%     for i = 1: numel(ls) 



196 
 

%         if strcmp(typeStr, 'isAll') || strcmp(typeStr, ls(i)) 

%             for fieldIdx = 1: numel(fieldLs)-1 

%                 fieldName = fieldLs(fieldIdx); 

%                  

%                 tmpLs = slopeStru.('sub' + ls(i)).(fieldName); 

%                 equaSlopeLs = tmpLs(:, 1); 

%                 linearSlopeLs = tmpLs(:, 3); 

%                 plot(equaSlopeLs, linearSlopeLs, '*'); 

%                 printLog("Slope", ... 

%                 sprintf("%s - Subject: %s, %-7s, mean equation 
slope, %2.3f,+-, %2.3f, mean equation intercept, %2.3f,+-, 
%2.3f,#,%d",... 

%                     status, typeStr, getStageName(fieldName), ... 

%                     mean(equaSlopeLs), std(equaSlopeLs), 
mean(tmpLs(:, 2)), std(tmpLs(:, 2)), numel(equaSlopeLs) )); 

%             end 

%         end 

%     end 

     

    hold off; 

     

    xlabel('Equation Slope') ; 

    ylabel('Linear Regression Slope'); 

    if strcmp(typeStr, 'isAll') 

        title('All the subjects'); 

    else 

        title(folderNum); 

    end 

end 

 

function removeEmptyinSlope 

    global slopeStru folderNum fieldLs normalSlopeStru; 

 



197 
 

    for fieldIdx = 1: numel(fieldLs)-1 

        fieldName = fieldLs(fieldIdx); 

        tmpLs = slopeStru.('sub' + folderNum).(fieldName); 

        emptyColIdx = ~isnan(tmpLs(:, 1)); 

        tmpLs = tmpLs(emptyColIdx, :); 

        nanEmptyColIdx = tmpLs(:,1) ~= 0; 

        slopeStru.('sub' + folderNum).(fieldName) = 
tmpLs(nanEmptyColIdx, :); 

         

        tmpLs = normalSlopeStru.('sub' + folderNum).(fieldName); 

        emptyColIdx = ~isnan(tmpLs(:, 1)); 

        tmpLs = tmpLs(emptyColIdx, :); 

        nanEmptyColIdx = tmpLs(:,1) ~= 0; 

        normalSlopeStru.('sub' + folderNum).(fieldName) = 
tmpLs(nanEmptyColIdx, :); 

    end 

 

end 

 

function getSummary4Event(struName) 

    global status fieldLs eventStr; 

     

    tmpStru = getStruByStr(struName); 

 

    for stgIdx = 1:numel(fieldLs) 

        stageName = fieldLs(stgIdx); 

        if ~strcmp(stageName, "s0") && ~strcmp(stageName, "all") 

            fieldCell = tmpStru.(eventStr).(stageName); 

            fieldCell_len = numel(fieldCell); 

 

            detail = sprintf('%s - %s, Stage: %-7s, NonOverlapping 
Event #: %3d',... 

                        status, getTitleStr(struName),  
getStageName(stageName), fieldCell_len);  



198 
 

            printLog('Message', detail); 

        end 

    end 

end 

 

%% 

function getCenterPlot(struStr, struInvStr, eventType, 
showDiffColor) 

    global fieldLs status xx xx_ne eventStr nonEventStr; 

    tmpStru = getStruByStr(struStr); 

    tmpInvStru = getStruByStr(struInvStr); 

    isEvent = true; 

     

    xx_axis = xx; 

    % in event plot >> the legend not include ave line and 2 
confidence 

    % internval line 

    if strcmp(eventType, eventStr) 

        avePlotSetting = getAvePlotSetting; 

        [upCILineSetting ,lowCILineSetting] = 
getCILineSetting(isEvent); 

        centerLineSetting = getCenterLineSetting; 

        nonEventInvStru = tmpInvStru.(nonEventStr); 

    else 

        xx_axis = xx_ne; 

        isEvent = false; 

        avePlotSetting = getAvePlotSetting; 

        [upCILineSetting ,lowCILineSetting] = 
getCILineSetting(isEvent); 

    end 

     

    if isfield(tmpInvStru, eventType) 

        tmpInvStru = tmpInvStru.(eventType); 

    end 



199 
 

     

    for fieldidx = 1:numel(fieldLs) 

%     for i = 1:1 

        % in Stage level 

        fieldName = fieldLs(fieldidx); 

        if ~isfield(tmpInvStru, fieldName) 

            continue 

        end 

        stageDict = tmpInvStru.(fieldName); 

         

        if isempty(stageDict) || ~isstruct(stageDict) 

            continue 

        end 

         

        if isEvent && ~isstruct(nonEventInvStru.(fieldName)) 

            continue 

        end 

 

        if showDiffColor 

            period = getColorPeriod(stageDict.HexColor); 

 

            figure; 

    %         plot([0 0], [min(stageDict.Min) max(stageDict.Max)], 
'Color','k', 'LineStyle','--'); 

            hold on; 

 

            for p = 1:numel(period) 

                stIdx = period{p}(1); 

                endIdx = period{p}(2)-1; 

 

                curve1 = stageDict.Min(stIdx:endIdx).'; 

                curve2 = stageDict.Max(stIdx:endIdx).'; 



200 
 

                x = xx(stIdx:endIdx); 

 

                plot(x, curve2, upCILineSetting{:}); 

                plot(x, curve1, lowCILineSetting{:}); 

 

 

                x2 = [x, fliplr(x)]; 

                inBetween = [curve1, fliplr(curve2)]; 

 

                colorLs = colormap(jet(20)); 

                fill(x2, inBetween, 
colorLs(stageDict.HexColor(stIdx), :), 'LineStyle','none', 
'HandleVisibility','off'); 

                hcb = colorbar; 

                set(get(hcb,'Title'),'String','A Title') 

                caxis([0 100]); 

 

                plot(x, stageDict.Ave(stIdx:endIdx), 
avePlotSetting{:});   

            end 

            hold off; 

            colorbar ; 

 

        else 

            figure; 

             

            hold on; 

            curve1 = stageDict.Max.'; 

            curve2 = stageDict.Min.'; 

 

            plot(xx_axis, curve1, upCILineSetting{:}); 

            plot(xx_axis, curve2, lowCILineSetting{:}); 

 



201 
 

            x2 = [xx_axis, fliplr(xx_axis)]; 

            inBetween = [curve1, fliplr(curve2)]; 

            fill(x2, inBetween, colorConvertor('#55a6f8'), 
'LineStyle','none', 'HandleVisibility','off'); 

 

            plot(xx_axis, stageDict.Ave, avePlotSetting{:}); 

 

            if isEvent 

                plot([0 0], [min(stageDict.Min) 
max(stageDict.Max)], centerLineSetting{:}); 

                 

                [normalVal, normalStd] = 
getNormalVal(stageDict.Ave); 

                plotNormalVal; 

                plotAvePk; 

                 

            end 

             

            hold off; 

             

            if isEvent 

                legend({'Mean Apnea ' + status, 'Avg. ' + status + 
' Baseline', 'Peak ' + status + ' Avg.'},'Location','northwest'); 

            else 

                legend({'95% CI Upper Bound','95% CI Lower 
Bound',... 

                        'Mean Event '+ 
status },'Location','northwest'); 

            end 

 

        end 

         

        % for different color, it is combined with multiple period, 
so 

        % that's the reason it shows error. 



202 
 

         

        graphSetting; 

        eventNum =  numel(tmpStru.(eventType).(fieldName)); 

        title(sprintf("%s-%s %s Stage: %s Event Amount: %d\n", ... 

                status, getTitleStr(struInvStr), eventType, 
getStageName(fieldName), eventNum )); 

        addAnnotation('b'); 

        if isEvent 

            dispSummary; 

        end 

    end    

     

    function dispSummary 

        pk = stageDict.AvePk; 

        lc = stageDict.AveLc; 

        pkSTD = stageDict.AveSTD; 

        printLog('Summary', sprintf('%s - %s Stage: %-7s >>> 
NormalVal: %2.1f +- %2.1f, PeakVal: %2.1f +- %2.1f, Diff: %2.1f 
(%2.1f %%%%), Peak Time: %2.1f, # of Events: %3d',... 

                                   status, getTitleStr(struInvStr), 
getStageName(fieldName), normalVal,normalStd, pk, pkSTD, pk-
normalVal, (pk-normalVal)*100/normalVal , lc, eventNum )); 

    end 

     

    function plotNormalVal 

        plot([xx_axis(1) xx_axis(end)], [normalVal normalVal], 
'Color',colorConvertor('#cc6600'), 'LineStyle','-', 'LineWidth', 
2); 

    end 

    function plotAvePk 

        plot(stageDict.AveLc, stageDict.AvePk, 'ro', 'LineWidth', 
2); 

    end 

 

     



203 
 

end 

 

function titleStr = getTitleStr(str) 

    global subEventStr subEventInvStr allEventStageStr 
allEventStageInvStr folderNum;  

    if strcmp(str, subEventInvStr) || strcmp(str, subEventStr) 

        titleStr = sprintf('Subject - %s',folderNum); 

    elseif strcmp(str, allEventStageInvStr) || strcmp(str, 
allEventStageStr) 

        titleStr = "All"; 

    end 

end 

 

function getInverseStruc(oriStruStr, targetInvStruStr, eventType, 
useStatistic, getPkStd) 

    global fieldLs status halfWindow_sz xx; 

    z_Val = 1.96; 

     

    oriStru = getStruByStr(oriStruStr); 

    oriInvStru = getStruByStr(targetInvStruStr); 

     

     

    % Use as top limit, eg 10 >>> (5, 10] 

    percentLs = [ 5, 10, 15, 20, ... 

                 25, 30, 35, 40, ... 

                 45, 50, 55, 60, ... 

                 65, 70, 75, 80, ... 

                 85, 90, 95,100]; 

    fullWindowsz = halfWindow_sz * 2; 

 

    for fieldidx = 1:numel(fieldLs) 

        % in Stage level 

        fieldName = fieldLs(fieldidx); 



204 
 

        if ~isfield(oriStru.(eventType), fieldName) 

            continue 

        end 

%             disp(fieldName); 

 

        eventLs = oriStru.(eventType).(fieldName); 

 

        cell_len = numel(eventLs); 

        if cell_len > 0 

            % --- Create inverse matrix 

            matr = nan(fullWindowsz, cell_len); 

            for e = 1: cell_len 

                matr(:, e) = eventLs{e}; 

            end 

 

            valDict = struct('Min', nan(fullWindowsz, 1), 'Max', 
nan(fullWindowsz, 1),... 

                             'Ave', nan(fullWindowsz, 1), 
'HexColor', nan(fullWindowsz, 1),... 

                             'AveLc', [], 'AvePk', [], 'AveSTD', 
[]);%strings(colSz, 1)); 

 

            skipNum = 0; 

            %--- data in each row >>> analyze sample point by 
sample point 

            for r = 1: fullWindowsz 

                row = matr(r, :); 

                oriLen = numel(row); 

                row = row(~isnan(row)); 

                newLen = numel(row); 

                meanVal = mean(row); 

 

                if useStatistic && newLen >= 5 

                    int = z_Val * std(row); 



205 
 

                    CI_low = meanVal - int; 

                    CI_up = meanVal + int; 

                end 

 

                percentVal = newLen * 100/ oriLen; 

                % colorTag = colorLs(find(percentLs >= percentVal, 
1, 'first')); 

                if numel(row) > 0 && newLen >= 5 

                    % assign val from each row 

                    valDict.Min(r) =  CI_low; 

                    valDict.Max(r) =  CI_up; 

                    valDict.Ave(r) = meanVal; 

                    valDict.HexColor(r) = find(percentLs >= 
percentVal, 1, 'first'); 

                else 

                    skipNum = skipNum + 1; 

                end 

 

            end % for r = 1: fullWindowsz 

 

            if skipNum ~= fullWindowsz 

                [lc, pk] = getPeakVal(valDict.Ave); 

                if getPkStd 

                    pkIdx = xx == lc; 

                    row = matr(pkIdx, :); 

                    row = row(~isnan(row)); 

                    pkStd = std(row); 

                else 

                    pkStd = nan; 

                end 

                 

                valDict.AveLc = lc; 

                valDict.AvePk = pk; 



206 
 

                valDict.AveSTD = pkStd; 

                oriInvStru.(eventType).(fieldName) = valDict; 

            end 

 

        end % end of if event ls contains value 

    end % end of fieldLs loop 

 

    update2StrutureByStr(targetInvStruStr, oriInvStru, eventType); 

     

    printLog("Message", sprintf("%s - Inverse done in %s!\tFrom %s 
Get the %s ",status, eventType, oriStruStr, targetInvStruStr) ); 

 

end 

 

%% Plot all the event in each stage. 

function plotLinearData(strucName, typeEvent) 

    global xx fieldLs folderNum; 

     

    [tmpStru, inAll] = getStruByStr(strucName); 

     

    for i = 1: numel(fieldLs) 

%         disp(fieldLs(i)); 

        if ~isfield(tmpStru.(typeEvent), fieldLs(i)) 

            continue 

        end 

        eventList = tmpStru.(typeEvent).(fieldLs(i)); 

 

        cell_len = numel(eventList); 

        if cell_len > 0 

            figure; 

%             line([0 0], [100 130], 'Color','k', 'LineStyle','--
'); 

            hold on; 



207 
 

            max_num = 0; 

            min_num = 200; 

            for j = 1:  cell_len 

                if max_num < max(eventList{j}) 

                    max_num = max(eventList{j}); 

                end 

                 

                if min_num > min(eventList{j}) 

                    min_num = min(eventList{j}); 

                end 

                plot(xx, eventList{j}); 

            end 

 

            line([0 0], [min_num max_num], 'Color','k', 
'LineStyle','--'); 

            hold off;    

             

            if inAll 

                title(sprintf("%s - Subject:ALL, Stage: %s, %s 
Amount: %d\n", typeEvent,  getStageName(fieldLs(i)),typeEvent, 
cell_len)); 

            else 

                title(sprintf("%s - Subject: %s, Stage: %s, %s 
Amount: %d\n", typeEvent, folderNum, 
getStageName(fieldLs(i)),typeEvent, cell_len)); 

            end 

            xlabel('-30 to 30 (s)') ; 

            ylabel('Blood Pressure (mmHg)'); 

            graphSetting; 

            addAnnotation('a'); 

        end 

    end 

end 

 



208 
 

function getNonEventWtStage(stageStruct, event, splinePk, getSlope) 

    global status folderNum fieldLs subEvent coeff nonEventStr 
halfWindow_sz isAll allEventStage normalSlopeStru; 

    eventLen = numel(event); 

    sequFolderNum = "sub" + folderNum; 

    for stgIdx = 1:numel(fieldLs) 

        stageName = fieldLs(stgIdx); 

        if ~strcmp(stageName, "s0") && ~strcmp(stageName, "all") 

            stagePeriodLs = stageStruct.(stageName); 

            stagePeriodLsLen = numel(stagePeriodLs); 

            % nonNum = 0; 

            slopeIdx = 1; 

            stageFieldIdx = 0; 

            % Check on each period in this stage 

            for idx = 1:stagePeriodLsLen 

                [stIdx, endIdx] = getPeriodIdx(stagePeriodLs{idx}); 

                 

                % Check whether there is a apnea event( 1 x coeff) 
in it 

                if inList(event(stIdx:endIdx), 1 * coeff) 

                    % include apnea event. 

                    % The apnea event collected in  

                    continue 

                     

                else 

                    % It is a non event period 

                     

                    % Check this period is >= window sz 

                    if endIdx - stIdx +1 >= halfWindow_sz*2 

 

                        % Check the edge of window whether overlap 
with other events 

                        % Get the center point of this stage period 



209 
 

                        centerIdx = round(( endIdx - stIdx )/2) + 
stIdx; 

                        f3000Idx = centerIdx - 3000; 

                        b3000Idx = centerIdx + 2999; 

 

                        % less than total len 

                        if eventLen >= b3000Idx + 3000 

                            % Check forward and backward for 3000 
sample to see 

                            % whether overlap (contain 100) 

                            if ~isGotcha( flip(event(f3000Idx - 
3000: f3000Idx)), 1 * coeff) && ... 

                               ~isGotcha( event(b3000Idx: b3000Idx 
+ 3000), 1 * coeff) 

                            % Start collecting 

                            % 
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 

                            % (1.) 

                            % How do I know whether I should move 
the center 

                            % point when there is an event close 
by? 

                            % 
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 

                                 

                                stageFieldIdx = stageFieldIdx + 1; 

                                targetPeriod = splinePk(f3000Idx: 
b3000Idx); 

                                
subEvent.(nonEventStr).(stageName){stageFieldIdx} = targetPeriod; 

                                 

                                if getSlope 

                                    [equSlope, equIntercept, 
lineSlope, lineIntercept] = getLinearRegression(1, 2 * 
halfWindow_sz, targetPeriod, true); 

                                    
normalSlopeStru.(sequFolderNum).(stageName)(slopeIdx, :) = 
[equSlope, equIntercept, lineSlope, lineIntercept]; 



210 
 

                                    slopeIdx = slopeIdx + 1; 

                                end 

                                 

                                if isAll 

                                    
allEventStage.(nonEventStr).(stageName){getIdx(allEventStage, 
stageName, nonEventStr )} = targetPeriod; 

                                end 

                            end 

                                 

                        end 

                         

                    end 

                end 

 

            end 

             

            detail = sprintf('%s - Subject: %s, Stage: %-7s, Non 
Event Collect: %2d / %3d >>> %2.1f %%%%',... 

                 status, folderNum,  getStageName(stageName), 
stageFieldIdx, stagePeriodLsLen, stageFieldIdx * 
100/stagePeriodLsLen);  

            printLog('Message', detail); 

        end  

    end 

     

end 

 

function gotcha = isGotcha(targetLs, matchOne) 

    gotcha = false; 

    uniqLs = unique(targetLs); 

    if ismember(uniqLs, matchOne) 

        gotcha = true; 

    end 



211 
 

     

     

%     matchOne = 1 * coeff; 

%     targetLs = event(f3000Idx - 3000: f3000Idx); 

%     targetIdx = 1; 

%     targetLen = numel(targetLs); 

%     gotcha = false; 

%     while targetIdx <= targetLen && ~gotcha == true 

%         if targetLs(targetIdx) == matchOne 

%             gotcha = true; 

%         end 

%         targetIdx = targetIdx + 1; 

%     end 

end 

 

function removeEmptyinStru(struName, typeStr) 

    global fieldLs; 

     

    tmpStru = getStruByStr(struName); 

 

    for e = 1: numel(fieldLs) 

        fieldName = fieldLs(e); 

        if isfield(tmpStru.(typeStr), fieldName ) 

            if ~isempty(tmpStru.(typeStr).(fieldName)) 

                tmpStru.(typeStr).(fieldName) = 
tmpStru.(typeStr).(fieldName)(~cellfun('isempty',tmpStru.(typeStr).
(fieldName))); 

            end 

        end 

    end 

     

    insert2StrutureByStr(struName, tmpStru) 

end 



212 
 

 

function [tmpStru, isAll] = getStruByStr(str) 

    global subEvent subEventInv allEventStage allEventStageInv; 

    global subEventStr allEventStageStr subEventInvStr 
allEventStageInvStr; 

    isAll = false; 

    if strcmp(str, subEventStr) 

        tmpStru = subEvent; 

    elseif strcmp(str, subEventInvStr) 

        tmpStru = subEventInv; 

    elseif strcmp(str, allEventStageStr) 

        tmpStru = allEventStage; 

        isAll = true; 

    elseif strcmp(str, allEventStageInvStr) 

        tmpStru = allEventStageInv; 

        isAll = true; 

    end   

end 

 

function update2StrutureByStr(str, tmpStru, eventType) 

    global subEvent subEventInv allEventStage allEventStageInv; 

    global subEventStr allEventStageStr subEventInvStr 
allEventStageInvStr; 

     

    tmpStru = tmpStru.(eventType); 

     

    if strcmp(str, subEventStr) 

        subEvent.(eventType) = tmpStru; 

    elseif strcmp(str, subEventInvStr) 

        subEventInv.(eventType) = tmpStru; 

    elseif strcmp(str, allEventStageStr) 

        allEventStage.(eventType) = tmpStru; 

    elseif strcmp(str, allEventStageInvStr) 



213 
 

        allEventStageInv.(eventType) = tmpStru; 

    end   

end 

 

function insert2StrutureByStr(str, tmpStru) 

    global subEvent subEventInv allEventStage allEventStageInv; 

    global subEventStr allEventStageStr subEventInvStr 
allEventStageInvStr; 

     

    if strcmp(str, subEventStr) 

        subEvent = tmpStru; 

    elseif strcmp(str, subEventInvStr) 

        subEventInv = tmpStru; 

    elseif strcmp(str, allEventStageStr) 

        allEventStage = tmpStru; 

    elseif strcmp(str, allEventStageInvStr) 

        allEventStageInv = tmpStru; 

    end   

end 

 

function [stIdx, endIdx] = getPeriodIdx(twoXoneVector) 

    if numel(twoXoneVector) == 2 

        stIdx = twoXoneVector(1); 

        endIdx = twoXoneVector(2); 

    else 

        stIdx = nan; 

        endIdx = nan; 

        disp('Fail to get the stIdx & endIdx'); 

    end 

 

end 

 



214 
 

function shortLs = getEqualLenEventWtStage(splinePk, stage, 
eventLs) 

    global halfWindow_sz subEvent folderNum eventStr; 

    event1 = eventLs.e1; 

    len_e1 = numel(eventLs.e1); 

 

    shortLs = nan(50, 1); 

    shortIdx = 1; 

 

    eventIdx = 1; 

    for e = 1: len_e1 

        cur_e = event1{e}; 

        endPt = cur_e(2); 

        %--- [WARNING 1 ] Haven't consider seperate the point by 
using the 

        %---              ratio of length of two events 

        % 

        %--- [WARNING 2 ] Still need to consider if there is no 
next pt 

        %---              get the distance to the nx event  

 

        %--- get the distance to the nx event  

        if e+1 <= len_e1 

            nx_e = event1{ e + 1 }; 

            nx_stPt = nx_e(1); 

            diffbtw_nx_e = nx_stPt - endPt; 

            if diffbtw_nx_e < halfWindow_sz 

                % The distance between two event are shorter than 
halfWindow_sz 

                longEnough = false; 

            else 

                longEnough = true; 

            end 

 



215 
 

        end 

         

        %--- get the distance to the pre event  

        if longEnough == true && e > 1 

            pre_e = event1{ e - 1 }; 

            pre_endPt = pre_e(2); 

             

            if endPt - pre_endPt < halfWindow_sz 

                longEnough = false; 

            end 

        end 

 

        if longEnough == false 

            % Collecting the quantity of the event 

            % Ignore this point and look on the next one. 

            shortLs(shortIdx) = e; 

            shortIdx = shortIdx + 1; 

            % disp(i); 

        else  

            % This event is longer or equal to window size, SO 
start collecting 

             

            % Check crx stage 

            stageNum = nan; isCrx = false; 

            checkCrxStage; 

             

             

            x_stPt  = endPt - halfWindow_sz; 

            x_endPt = endPt + halfWindow_sz - 1; 

 

            oneEvent = nan(halfWindow_sz * 2 ,1); 

            stIdx = 1; 



216 
 

            oneEvent(stIdx:halfWindow_sz) = splinePk(x_stPt:endPt-
1);  

            oneEvent(halfWindow_sz + 1 :halfWindow_sz*2 - stIdx + 
1) = splinePk(endPt:x_endPt); 

 

            subEvent.('all').(eventStr){eventIdx} = oneEvent; 

            eventIdx = eventIdx + 1; 

             

            if ~isCrx 

                subEvent.('sn1').(eventStr){getIdx(subEvent, 
stageNum, eventStr)} = oneEvent; 

            end 

        end 

 

    end 

 

    % Remove empty value in each cell 

%     for e = 1: numel(fieldLs) 

%         fieldName = fieldLs(e); 

%         if ~isempty(subEvent.(fieldName).(eventStr)) 

%             subEvent.(fieldName).(eventStr) = 
subEvent.(fieldName).(eventStr)(~cellfun('isempty',subEvent.(fieldN
ame).(eventStr))); 

%         end 

%     end 

%      

    removeEmptyinStru(eventStr) 

 

    shortLs = shortLs(~isnan(shortLs)); 

 

    printLog("Message",sprintf("Subject: %s >>> Get the all same 
length event (without consider the stage)", folderNum)); 

     

 



217 
 

 

    function checkCrxStage 

        stIdx = cur_e(1); 

        endIdx = cur_e(2); 

        stagePeriod = stage(stIdx:endIdx); % catch the period of 
the stage 

 

        uniItems = unique(stagePeriod); % Check how many stage 
there is 

 

        if numel(uniItems) > 1 % >>> crx stage event 

            isCrx = true; 

        else 

            isCrx = false; 

            stageNum = round(uniItems(1)); 

             

        end 

    end 

     

end 

 

function idxNum = getIdx(struName, fieldType, eventType ) 

    global fieldLs; 

    if ~ismember(fieldLs, fieldType) 

        fieldType = getStageKey(fieldType); 

    end 

 

    zeroLs = ~cellfun('isempty',struName.(eventType).(fieldType)); 

    idxNum = find(zeroLs == 0, 1, 'first'); 

end 

 

function initSubEventStruct 

    global fieldLs subEvent subEventInv eventTypeLs; 



218 
 

    % The structure is - Event - fieldStruct 

    %                  - NonEvent - fieldStruct 

    % 

    % fieldStruct = struct('sn5',[], 'sn4',[], 'sn3',[], ... 

    %                      'sn2',[], 'sn1',[], 's0' ,[], 's1' ,[]); 

     

    subEvent = struct(); 

    subEventInv = struct(); 

    fieldStruct = struct(); 

                       

    for fieldIdx = 1: numel(fieldLs)-1 

        fieldName = fieldLs(fieldIdx); 

        fieldStruct.(fieldName) = cell(600,1); 

    end 

     

    for idx = 1:numel(eventTypeLs) 

        eventType = eventTypeLs(idx); 

        subEvent.(eventType) = fieldStruct; 

        subEventInv.(eventType) = fieldStruct; 

    end 

 

end 

 

function initAllEventStageNInv 

    global fieldLs allEventStage allEventStageInv eventTypeLs; 

    % The structure is - Event - fieldStruct 

    %                  - NonEvent - fieldStruct 

    % 

    % fieldStruct = struct('sn5',[], 'sn4',[], 'sn3',[], ... 

    %                      'sn2',[], 'sn1',[], 's0' ,[], 's1' ,[]); 

 

    allEventStage =  struct(); 



219 
 

    allEventStageInv =  struct(); 

    fieldStruct = struct(); 

                       

    for fieldIdx = 1: numel(fieldLs)-1 

        fieldName = fieldLs(fieldIdx); 

        fieldStruct.(fieldName) = cell(1000,1); 

    end 

     

    for idx = 1:numel(eventTypeLs) 

        eventType = eventTypeLs(idx); 

        allEventStage.(eventType) = fieldStruct; 

        allEventStageInv.(eventType) = fieldStruct; 

    end 

     

end 

 

%% 

function [totNorVal, totNorStd] = getTotNormalVal(nonEvent) 

    global coeff; 

    interval = numel(nonEvent{2,1}); 

    totNorLs = nan(1, numel(nonEvent(2,:)) * interval); 

 

    for i = 1:numel(nonEvent(2,:)) 

        stIdx = 1 + interval * (i-1); 

        endIdx = interval * i; 

        totNorLs(stIdx: endIdx) = cell2mat(nonEvent{2,i}); 

    end 

    totNorVal = mean(totNorLs) * coeff; 

    totNorStd = std(totNorLs) * coeff; 

 

end 

 



220 
 

function [normalVal, normalStd] = getNormalVal(aveLs) 

    try 

        normalVal = mean(aveLs); 

        normalStd = std(aveLs); 

    catch 

        printLog('Messege', 'Cannot get the normal value'); 

        normalVal = nan; 

        normalStd = nan; 

    end 

end 

 

function getOverallCenterPlot(subEventInv, stageName, shortEventLs, 
showDiffColor, normalVal, avePk) 

    global folderNum subEvent fieldLs xx halfWindow_sz ls status; 

     

    for i = 1: numel(fieldLs) 

 

        fieldName = fieldLs(i) + "Val"; 

 

        %                                       You Can specify 
which field 

        %                                       To view all the 
graphy, use "" 

        if (isfield(subEventInv,fieldName)) && (stageName == "" || 
strcmp(fieldLs(i), stageName) || strcmp(stageName, 'isAll')) 

            stageDict = subEventInv.(fieldName); 

            dict_len = numel(stageDict); 

        else 

            dict_len = 0; 

        end 

 

        if dict_len > 0 

            aveLc = avePk(1); 

            avePk = avePk(2); 



221 
 

 

            avePlotSetting = getAvePlotSetting; 

            centerLineSetting = getCenterLineSetting; 

            [upCILineSetting ,lowCILineSetting] = getCILineSetting; 

             

            if showDiffColor 

                period = getColorPeriod(stageDict.HexColor); 

                figure; 

                hold on; 

                for p = 1:numel(period) 

                    stIdx = period{p}(1); 

                    endIdx = period{p}(2)-1; 

 

                    curve1 = stageDict.Max(stIdx:endIdx).'; 

                    curve2 = stageDict.Min(stIdx:endIdx).'; 

                    x = xx(stIdx:endIdx); 

                     

                    plot(x, curve1, upCILineSetting{:}); 

                    plot(x, curve2, lowCILineSetting{:}); 

 

                    x2 = [x, fliplr(x)]; 

                    inBetween = [curve1, fliplr(curve2)]; 

 

                    colorLs = colormap(jet(20)); 

                    fill(x2, inBetween, 
colorLs(stageDict.HexColor(stIdx), :), 'LineStyle','none', 
'HandleVisibility','off'); 

                    hcb = colorbar; 

                    set(get(hcb,'Title'),'String','A Title') 

                    caxis([0 100]); 

 

                    plot(x, stageDict.Ave(stIdx:endIdx), 
avePlotSetting{:});   



222 
 

                end 

                plot([0 0], [min(stageDict.Min) 
max(stageDict.Max)], centerLineSetting{:}); 

                plotNormalVal; 

                plotAvePk; 

                hold off; 

%                 legend({'95% CI Upper Bound','95% CI Lower 
Bound', 'Mean value', 'Mean Average BP',  'Highest Average 
Point'},'Location','southwest'); 

                colorbar ; 

             

            else 

                figure; 

                hold on; 

                curve1 = stageDict.Max.'; 

                curve2 = stageDict.Min.'; 

                plot(xx, curve1, upCILineSetting{:}); 

                plot(xx, curve2, lowCILineSetting{:}); 

 

                x2 = [xx, fliplr(xx)]; 

                inBetween = [curve1, fliplr(curve2)]; 

                fill(x2, inBetween, colorConvertor('#55a6f8'), 
'LineStyle','none', 'HandleVisibility','off'); 

                 

                plot(xx, stageDict.Ave, avePlotSetting{:});   

                plotAvePk; 

                plot([0 0], [min(stageDict.Min) 
max(stageDict.Max)], centerLineSetting{:}); 

                plotNormalVal; 

                hold off; 

                 

            end 

             



223 
 

            legend({'Mean Apnea ' + status,'Peak ' + status + ' 
Avg.', 'Avg. ' + status + ' Baseline'},'Location','northwest'); 

            graphSetting; 

             

            if strcmp(stageName, "isAll") 

                shortNum = numel(shortEventLs); 

                eventNum = numel(subEvent.(fieldLs(i))); 

                totNum = shortNum + eventNum; 

                title(sprintf("Subject Count: %d\nEvent Amount: %d 
(%d %%) | <%d points: %d | Total: %d ",... 

                        numel(ls), eventNum, round(eventNum * 100/ 
totNum), halfWindow_sz, shortNum, totNum )); 

            elseif strcmp(fieldLs(i), "all") 

                shortNum = numel(shortEventLs); 

                eventNum = numel(subEvent.(fieldLs(i))); 

                totNum = shortNum + eventNum; 

                title(sprintf("Subject: %s, Stage: %s\nEvent 
Amount: %d (%d %%) | <%d points: %d | Total: %d ",... 

                        folderNum, getStageName(fieldLs(i)), 
eventNum, round(eventNum * 100/ totNum), halfWindow_sz, shortNum, 
totNum )); 

            else 

                title(sprintf("Subject: %s, Stage: %s\nEvent 
Amount: %d", folderNum, 
getStageName(fieldLs(i)),numel(subEvent.(fieldLs(i))) )); 

            end 

        end 

    end 

     

    function plotNormalVal 

        plot([xx(1) xx(end)], [normalVal normalVal], 
'Color',colorConvertor('#cc6600'), 'LineStyle','-', 'LineWidth', 
2); 

    end 

    function plotAvePk 

        plot(aveLc, avePk, 'ro', 'LineWidth', 2); 



224 
 

    end 

end 

 

%% 

function [upSetting, lowSetting] = getCILineSetting(isEvent) 

    if isEvent 

        upSetting = { 'Color', 'r', 'LineWidth', 2, 
'HandleVisibility','off'}; 

        lowSetting = { 'Color', colorConvertor('#003300'), 
'LineWidth', 2, 'HandleVisibility','off'}; 

    else 

        upSetting = { 'Color', 'r', 'LineWidth', 2, 
'HandleVisibility','on'}; 

        lowSetting = { 'Color', colorConvertor('#003300'), 
'LineWidth', 2, 'HandleVisibility','on'}; 

    end 

     

end 

 

function setting = getCenterLineSetting 

    setting = {'Color','k', 'LineStyle',':','LineWidth', 1, 
'HandleVisibility','off'}; 

end 

 

function setting = getAvePlotSetting 

    setting = {'--k', 'LineWidth', 1, 'HandleVisibility','on'}; 

end 

 

%% Plot all linear normal breathing 

function plotLinearNonEvent(xx_ne, nonEvent) 

    global coeff; 

    figure; 

    hold on; 

    for i = 1: numel(nonEvent(1,:)) 



225 
 

        oneNonEvent = nonEvent{2, i}; 

        oneNonEvent = cell2mat(oneNonEvent).*coeff; 

        plot(xx_ne, oneNonEvent, 'k'); 

 

    %     line([0 0], [min_num max_num], 'Color','k', 
'LineStyle','--'); 

    end 

    hold off; 

    graphSetting; 

    title(sprintf("Normal Breathing\nNumber of Subject: %d", 
numel(nonEvent(1,:)))); 

 

end 

 

function period = getColorPeriod(colorLs) 

    idx = 1; 

    curColor = colorLs(1); 

    period = cell(numel(colorLs), 1); 

    pIdx = 1; 

    for c = 2: numel(colorLs) 

        if colorLs(c) ~= curColor 

            period{pIdx} = [idx c]; 

            curColor = colorLs(c); 

            idx = c; 

            pIdx = pIdx + 1; 

        end 

    end 

    period{pIdx} = [idx c]; 

    period = period(~cellfun('isempty',period)); 

end 

 

function targetStageName = getStageName(fieldKey) 

    switch fieldKey 



226 
 

        case "sn5" 

            targetStageName = "REM"; 

        case "sn4" 

            targetStageName = "Stage 4"; 

        case "sn3" 

            targetStageName = "Stage 3"; 

        case "sn2" 

            targetStageName = "Stage 2"; 

        case "sn1" 

            targetStageName = "Stage 1"; 

        case "s0" 

            targetStageName = "Stage 0"; 

        case "s1" 

            targetStageName = "Awake"; 

        case "all" 

            targetStageName = "All Events in all stage"; 

    end 

end 

 

function targetStage = getStageKey(num) 

    switch num 

        case -500 

            targetStage = "sn5"; 

        case -400 

            targetStage = "sn4"; 

        case -300 

            targetStage = "sn3"; 

        case -200 

            targetStage = "sn2"; 

        case -100 

            targetStage = "sn1"; 

        case 0 



227 
 

            targetStage = "s0"; 

        case 100 

            targetStage = "s1"; 

    end 

end 

 

function stageCell = getStageList(stage) 

    global folderNum; 

    sn1ls = cell(600, 1); sn2ls = cell(600, 1); sn3ls = cell(600, 
1);  

    sn4ls = cell(600, 1); sn5ls = cell(600, 1);  s0ls = cell(600, 
1); 

    s1ls  = cell(600, 1); 

 

    sn1lsIdx = 1; sn2lsIdx = 1; sn3lsIdx = 1; sn4lsIdx = 1; 
sn5lsIdx = 1;  

    s1lsIdx = 1; s0lsIdx = 1; 

 

    targetNum = stage(1); 

    startPt = 1; 

    for i = 2:numel(stage) 

        curNum = stage(i); 

    %     disp([i,curNum]); 

        if curNum ~= targetNum 

            switch targetNum 

                case -5 

                    sn5ls{sn5lsIdx} = [startPt, i-1]; 

                    sn5lsIdx = sn5lsIdx + 1; 

                case -4 

                    sn4ls{sn4lsIdx} = [startPt, i-1]; 

                    sn4lsIdx = sn4lsIdx + 1; 

                case -3 

                    sn3ls{sn3lsIdx} = [startPt, i-1]; 



228 
 

                    sn3lsIdx = sn3lsIdx + 1; 

                case -2 

                    sn2ls{sn2lsIdx} = [startPt, i-1]; 

                    sn2lsIdx = sn2lsIdx + 1; 

                case -1 

                    sn1ls{sn1lsIdx} = [startPt, i-1]; 

                    sn1lsIdx = sn1lsIdx + 1; 

                case 0 

                    s0ls{s0lsIdx} = [startPt, i-1]; 

                    s0lsIdx = s0lsIdx + 1; 

                case 1 

                    s1ls{s1lsIdx} = [startPt, i-1]; 

                    s1lsIdx = s1lsIdx + 1; 

            end 

            targetNum = curNum; 

            startPt = i; 

        end 

    end 

 

    % catch the last one if it is still remain the same; 

    if curNum == targetNum 

        switch targetNum 

            case -5 

                sn5ls{sn5lsIdx} = [startPt, i]; 

            case -4 

                sn4ls{sn4lsIdx} = [startPt, i]; 

            case -3 

                sn3ls{sn3lsIdx} = [startPt, i]; 

            case -2 

                sn2ls{sn2lsIdx} = [startPt, i]; 

            case -1 

                sn1ls{sn1lsIdx} = [startPt, i]; 



229 
 

            case 0 

                s0ls{s0lsIdx} = [startPt, i]; 

            case 1 

                s1ls{s1lsIdx} = [startPt, i]; 

        end 

    end 

 

    sn5ls = sn5ls(~cellfun('isempty', sn5ls)); 

    sn4ls = sn4ls(~cellfun('isempty', sn4ls)); 

    sn3ls = sn3ls(~cellfun('isempty', sn3ls)); 

    sn2ls = sn2ls(~cellfun('isempty', sn2ls)); 

    sn1ls = sn1ls(~cellfun('isempty', sn1ls)); 

    s0ls  = s0ls(~cellfun('isempty',  s0ls)); 

    s1ls  = s1ls(~cellfun('isempty',  s1ls)); 

 

    stageCell = struct('sn5', [], 'sn4', [], 'sn3', [], 'sn2', 
[],... 

                       'sn1', [], 's0',  [], 's1' , []); 

 

    stageCell.sn5 = sn5ls;    stageCell.sn4 = sn4ls;    
stageCell.sn3 = sn3ls; 

    stageCell.sn2 = sn2ls;    stageCell.sn1 = sn1ls;    
stageCell.s0 = s0ls; 

    stageCell.s1  = s1ls;  

 

    printLog("Message",sprintf("Subject: %s >>> Get the stage 
list", folderNum)); 

end 

 

%% collect each event stages in eventCell 

function eventCell = getEventStageList(event) 

    global folderNum; 

    e1ls = cell(600, 1); e2ls = cell(600, 1); e3ls = cell(600, 1); 
e4ls = cell(600, 1); e10ls = cell(600, 1);  



230 
 

    e1lsIdx = 1; e2lsIdx = 1; e3lsIdx = 1; e4lsIdx = 1; e10lsIdx = 
1;  

    % event = 
[10,10,10,10,3,3,2,2,2,1,1,1,1,4,4,4,4,3,3,3,2,2,1,1,10,10]; 

    %         1  2  3  4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  5  
6 

    targetNum = event(1); 

    startPt = 1; 

    for i = 2:numel(event) 

        curNum = event(i); 

    %     disp([i,curNum]); 

        if curNum ~= targetNum 

            switch targetNum 

                case 10 

                    e10ls{e10lsIdx} = [startPt, i-1]; 

                    e10lsIdx = e10lsIdx + 1; 

                case 4 

                    e4ls{e4lsIdx} = [startPt, i-1]; 

                    e4lsIdx = e4lsIdx + 1; 

                case 3 

                    e3ls{e3lsIdx} = [startPt, i-1]; 

                    e3lsIdx = e3lsIdx + 1; 

                case 2 

                    e2ls{e2lsIdx} = [startPt, i-1]; 

                    e2lsIdx = e2lsIdx + 1; 

                case 1 

                    e1ls{e1lsIdx} = [startPt, i-1]; 

                    e1lsIdx = e1lsIdx + 1; 

            end 

            targetNum = curNum; 

            startPt = i; 

        end 

    end 



231 
 

 

    % catch the last one if it is still remain the same; 

    if curNum == targetNum 

        switch targetNum 

            case 10 

                e10ls{e10lsIdx} = [startPt, i]; 

            case 4 

                e4ls{e4lsIdx} = [startPt, i]; 

            case 3 

                e3ls{e3lsIdx} = [startPt, i]; 

            case 2 

                e2ls{e2lsIdx} = [startPt, i]; 

            case 1 

                e1ls{e1lsIdx} = [startPt, i]; 

        end 

    end 

     

    e10ls = e10ls(~cellfun('isempty', e10ls)); 

    e4ls = e4ls(~cellfun('isempty', e4ls)); 

    e3ls = e3ls(~cellfun('isempty', e3ls)); 

    e2ls = e2ls(~cellfun('isempty', e2ls)); 

    e1ls = e1ls(~cellfun('isempty', e1ls)); 

     

    eventCell = struct('e10', [], 'e4', [], 'e3', [], 'e2', [], 
'e1', []); 

    

    eventCell.e10 = e10ls;    eventCell.e4 = e4ls;    eventCell.e3 
= e3ls; 

    eventCell.e2 = e2ls;      eventCell.e1 = e1ls; 

     

    printLog("Message",sprintf("Subject: %s >>> Get the event 
list", folderNum)); 

end 



232 
 

F. ADDITIONAL FUNCTIONS 
 

addAnnotation.m 

 

function addAnnotation(str) 

    annotation('textbox', [0.83, 0.79, 0.1, 0.1], 'String', 
sprintf("(%s)",str), 'BackgroundColor', 'white'); 

end 

___________________________________________________________________ 

 

checkOverlapping.m 

 

function isOverlap = checkOverlapping(eventCell, eventCellLen, 
curIdx) 

    global halfWindow_sz; 

    cur_e = eventCell{curIdx}; 

    cur_stIdx  = cur_e(1); 

    cur_endIdx = cur_e(2); 

%     disp(curIdx); 

    isOverlap = false; 

    if curIdx +1 <= eventCellLen 

        % Check the distance between next event start point and the 
endPoint of 

        % current event 

        nx_e = eventCell{ curIdx + 1 }; 

        nx_stIdx  = nx_e(1); 

%         nx_endIdx = nx_e(2); 

        if abs(nx_stIdx - cur_endIdx) < halfWindow_sz 

            % The distance between two event are shorter than 
halfWindow_sz *2 

            isOverlap = true; 

             

        end 

    end 



233 
 

 

    %--- get the distance to the pre event  

    if isOverlap == false && curIdx > 1 

        pre_e = eventCell{ curIdx - 1 }; 

%         pre_stIdx  = pre_e(1); 

        pre_endIdx = pre_e(2); 

 

        if abs(cur_stIdx - pre_endIdx) < halfWindow_sz 

            isOverlap = true; 

        end 

    end 

end 

___________________________________________________________________ 

 

colorConvertor.m 

 

function colorCode = colorConvertor(HexadecimalColor) 

    % Convert color code to 1-by-3 RGB array (0~1 each) 

    % str = '#FF0000'; >> not " " 

    colorCode = sscanf(HexadecimalColor(2:end),'%2x%2x%2x',[1 
3])/255; 

return 

___________________________________________________________________ 

 

excludeOutlier.m 

 

function result = excludeOutlier(value, limit, resultType, 
direction) 

    IQR = iqr(value); 

    Q3 = quantile(value,0.75); 

    Q1 = quantile(value,0.25); 

    if resultType == "data" 

        if direction == "up" 



234 
 

            value(value >= Q3+(IQR*limit)) = nan; 

        elseif direction == "low" 

            value(value <= Q1-(IQR*limit)) = nan; 

        elseif direction == "all" 

            value(value >= Q3+(IQR*limit)) = nan; 

            value(value <= Q1-(IQR*limit)) = nan; 

        end 

        result = value; 

    elseif resultType == "outlierIdx" 

        if direction == "up" 

            result = find(value >= Q3+(IQR*limit)); 

        elseif direction == "low" 

            result = find(value <= Q1-(IQR*limit)); 

        elseif direction == "all" 

            result = [find(value >= Q3+(IQR*limit))' find(value <= 
Q1-(IQR*limit))']; 

        end 

    end 

end 

 

___________________________________________________________________ 

 

findDistribution.m 

 

function [distX, distY] = findDistribution(pointnRange, x, y, 
varPairSet, goDownward, threshold , showFigure )  

 

% Warning >> varPairSet: only the last one is unparied. eg: 
{'MinPeakDistance',0.5, 'MinPeakHeight'}; 

% toSmaller => true = descending; false = ascending; 

% distX = nan; 

% distY = nan; 

 



235 
 

% eg: findRange = -0.4:-0.01:-1.4; 

findRange = pointnRange; 

% disp(findRange); 

meanNum = NaN(numel(findRange),1); 

noPoints = false; 

lenfindRange = numel(findRange); 

i = 1; 

 

while i <= lenfindRange && noPoints == false 

    if goDownward%descending 

        val = findRange(lenfindRange + 1 - i) .* -1; 

    else 

        val = findRange(i); 

    end 

     

    lc = findpeaks(y, x, varPairSet{:}, val); 

%     disp(lc); 

%     lc = findpeaks(findPeaksDataset); 

    troughNum = numel(lc); 

%     disp([lenFindM + 1 - i,minPkVal, round(minPkVal .* (-1)), 
troughNum]); 

%     disp(troughNum); 

    meanNum(i) = troughNum; 

    if (troughNum < threshold) 

        noPoints = true; 

    end 

%     disp(findM(i)); 

    i = i + 1; 

end 

 

distX = findRange(1:numel(meanNum)); 

distY = meanNum; 



236 
 

 

if showFigure 

   figure;plot(distX, distY, '-bo'); 

   title('From findDistribution'); 

end 

 

return 

 

___________________________________________________________________ 

 

findPeriodPeak.m 

 

function [val, lc] = findPeriodPeak(x, y, startPoint, endPoint, 
showFigure) 

 

% startPoint = 1; 

% endPoint = 55535; 

% showFigure = true; 

% nBP = bp(startPoint:endPoint); 

% nX = x(startPoint:endPoint); 

 

%% Break the BP to several parts 

nBP = y(startPoint:endPoint); 

nX = x(startPoint:endPoint); 

% figure; plot(nX,nBP); 

 

%% find peaks to get the max and min value 

% [tmpPk, ~] = findpeaks(nBP, nX); 

% maxVal = max(tmpPk); 

maxVal = 2.5; 

minVal = 0.6; 

% minVal = min(tmpPk); 



237 
 

% disp([maxVal, minVal]); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%-----------------------------Peak Distance------------------------
-------% 

%                                                                         
% 

% Get the best Min Peak Distance 

[tmpX, tmpY] = findDistribution(0.4:0.01:1.5,nX, nBP, ... 

               {'MinPeakDistance'}, false, 0, false); 

minPeakDistance = getSetVal(tmpX, tmpY, 1, false); 

 

% % TEST MIN PEAK DISTANCE 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance); 

% figure; 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% fprintf('Number of Peak: %d\n\n', numel(maxLc)); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%-----------------------------Peak Height--------------------------
-------% 

%                                                                         
% 

% Get the best Min Peak Height 

% clc; close all; 

[tmpX, tmpY] = findDistribution(minVal:0.01:maxVal,nX, nBP, ... 

                {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight'}, false, 0, false); 



238 
 

minPeakHeight = getSetVal(tmpX, tmpY, 1, false); 

 

% TEST MIN PEAK HEIGHT 

% figure; 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', minPeakHeight); 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% title(sprintf('Number of Peak: %d', numel(maxLc))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%----------------------------Peak Prominence-----------------------
-------% 

%                                                                         
% 

[tmpX, tmpY] = findDistribution(0.1:0.01:0.5,nX, nBP, ... 

                                {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight', minPeakHeight, 'MinPeakProminence'}, false, 0, 
false); 

minPeakProminence = getSetVal(tmpX, tmpY, 30, false); 

%                                                                         
% 

%% TEST MIN PEAK Prominence 

% figure; 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', 
minPeakHeight,'MinPeakProminence', minPeakProminence); 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% title(sprintf('Number of Peak: %d', numel(maxLc))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

%% 



239 
 

[maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', minPeakHeight, 
'MinPeakProminence', minPeakProminence);%, 
'MinPeakProminence',minPeakProminence);%,'Annotate','extents'); 

% figure; 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

 

fprintf('Best Peak Distance = %f\n', minPeakDistance); 

fprintf('Best Peak Height = %f\n', minPeakHeight); 

fprintf('Best Peak Prominence = %f\n\n', minPeakProminence); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%%-----------------------------------------------------------------
------%% 

%%--------+END OF FINDING PEAKS+----------+END OF FINDING PEAKS+---
------%% 

%%-----------------------------------------------------------------
------%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 

if showFigure 

    figure; 

    plot(nX, nBP, 'Color', [0.4660 0.6740 0.1880]); 

    title('From findPeroidPeak'); 

    hold on 

    plot(maxLc, maxPk,'r^'); 

    hold off; 

    title(sprintf("%d - %d",startPoint, endPoint)); 

end 

 

val = maxPk; 

lc = maxLc; 



240 
 

 

return 

 

 

___________________________________________________________________ 

 

findPeriodTrough.m 

 

function [val, lc] = findPeriodTrough(x, y, startPoint, endPoint, 
showFigure) 

 

 

% startPoint = 933589; 

% endPoint = 1011388; 

% nBP = bp(startPoint:endPoint); 

% nX = x(startPoint:endPoint); 

% negBP = nBP * -1; 

% showFigure = true; 

% testMode = true; 

%% 

nBP = y(startPoint:endPoint); 

nX = x(startPoint:endPoint); 

% figure;plot(nX, nBP); 

negBP = nBP * -1; 

testMode = false; 

minPeakDistance = nan; 

minPeakHeight = nan; 

minPeakProminence = nan; 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 



241 
 

%-----------------------------Peak Distance------------------------
-------% 

%                                                                         
% 

% 

[tmpX, tmpY] = findDistribution(0.5:0.01:1.5,nX, negBP, 
{'MinPeakDistance'}, false, 0, false); 

minPeakDistance = getSetVal(tmpX, tmpY, 1, false); 

%                                                                         
% 

%                                                                         
% 

if testMode 

    [minPk,minLc] = findpeaks(negBP, nX, 
'MinPeakDistance',minPeakDistance); 

    figure('units','normalized','outerposition',[0 0 1 1]);plot(nX, 
negBP, minLc, minPk, 'r^'); 

    title(sprintf('With MinPeakDistance\nNumber of Peak: %d', 
numel(minPk))); 

end 

%                                                                         
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%-----------------------------Peak Height--------------------------
-------% 

%                                                                         
% 

% 

% Get the best Min Peak Height 

% clc;% close all; 



242 
 

[tmpPk, ~] = findpeaks(negBP, nX); 

negMax = -0.4; 

negMin = min(tmpPk); 

% negMax = minVal .* -1; 

% negMin = maxVal .* -1; 

disp([negMin, negMax]); 

[tmpX, tmpY] = findDistribution(negMin:0.01:negMax,nX, nBP, ... 

                        {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight'}, true, 10, false); 

minPeakHeight = getSetVal(tmpX, tmpY, 1, false); 

 

% 

if testMode 

    [minPk,minLc] = findpeaks(negBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', minPeakHeight); 

    figure;plot(nX, negBP, minLc, minPk, 'r^'); 

    title(sprintf('With MinPeakDistance + MinPeakHeight\nNumber of 
Peak: %d', numel(minPk))); 

end 

%                                                                         
% 

%                                                                         
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%----------------------------Peak Prominence-----------------------
-------% 

%                                                                         
% 

%                                                                         
% 



243 
 

 

[tmpX, tmpY] = findDistribution(0.1:0.01:0.5,nX, negBP, ... 

                    {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight', minPeakHeight, 'MinPeakProminence'}, false, 0, 
false); 

minPeakProminence = getSetVal(tmpX, tmpY, 30, false); 

 

 

% 

if testMode 

    [minPk,minLc] = findpeaks(negBP, nX, 
'MinPeakDistance',minPeakDistance, ... 

                                         'MinPeakHeight', 
minPeakHeight, ... 

                                         
'MinPeakProminence',minPeakProminence); 

    disp(numel(minPk)); 

    figure;plot(nX, negBP); 

    hold on; plot(minLc, minPk, '^', 'Color', 
colorConvertor('#54009E'));hold off; 

    title(sprintf('With MinPeakDistance + MinPeakHeight + 
MinPeakProminence: %f\n -- Number of Peak: %d',minPeakProminence, 
numel(minPk))); 

end 

%                                                                         
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 

[minPk,minLc] = findpeaks(negBP, nX, 
'MinPeakDistance',minPeakDistance,... 

                                     'MinPeakHeight', 
minPeakHeight, ... 

                                     'MinPeakProminence', 
minPeakProminence); 

if showFigure 



244 
 

    figure;plot(nX, negBP, minLc, minPk, 'r^'); 

    title(sprintf('It is trough With 
MinPeakDistance:%f\nMinPeakHeight:%f\nMinPeakProminence:%f\n -- 
Number of Peak: %d'... 

        ,minPeakDistance,minPeakHeight,minPeakProminence, 
numel(minPk))); 

end 

 

minPk = minPk .* -1; 

 

val = minPk; 

lc = minLc; 

 

fprintf('Best Trough Distance = %f\n', minPeakDistance); 

fprintf('Best Trough Height = %f\n', minPeakHeight); 

fprintf('Best Trough Prominence = %f\n\n', minPeakProminence); 

 

return 

___________________________________________________________________ 

 

function.txt 

 

 

___________________________________________________________________ 

 

addAnnotation.m 

 

function addAnnotation(str) 

    annotation('textbox', [0.83, 0.79, 0.1, 0.1], 'String', 
sprintf("(%s)",str), 'BackgroundColor', 'white'); 

end 

___________________________________________________________________ 

 

checkOverlapping.m 



245 
 

 

function isOverlap = checkOverlapping(eventCell, eventCellLen, 
curIdx) 

    global halfWindow_sz; 

    cur_e = eventCell{curIdx}; 

    cur_stIdx  = cur_e(1); 

    cur_endIdx = cur_e(2); 

%     disp(curIdx); 

    isOverlap = false; 

    if curIdx +1 <= eventCellLen 

        % Check the distance between next event start point and the 
endPoint of 

        % current event 

        nx_e = eventCell{ curIdx + 1 }; 

        nx_stIdx  = nx_e(1); 

%         nx_endIdx = nx_e(2); 

        if abs(nx_stIdx - cur_endIdx) < halfWindow_sz 

            % The distance between two event are shorter than 
halfWindow_sz *2 

            isOverlap = true; 

             

        end 

    end 

 

    %--- get the distance to the pre event  

    if isOverlap == false && curIdx > 1 

        pre_e = eventCell{ curIdx - 1 }; 

%         pre_stIdx  = pre_e(1); 

        pre_endIdx = pre_e(2); 

 

        if abs(cur_stIdx - pre_endIdx) < halfWindow_sz 

            isOverlap = true; 

        end 



246 
 

    end 

end 

___________________________________________________________________ 

 

colorConvertor.m 

 

function colorCode = colorConvertor(HexadecimalColor) 

    % Convert color code to 1-by-3 RGB array (0~1 each) 

    % str = '#FF0000'; >> not " " 

    colorCode = sscanf(HexadecimalColor(2:end),'%2x%2x%2x',[1 
3])/255; 

return 

___________________________________________________________________ 

 

excludeOutlier.m 

 

function result = excludeOutlier(value, limit, resultType, 
direction) 

    IQR = iqr(value); 

    Q3 = quantile(value,0.75); 

    Q1 = quantile(value,0.25); 

    if resultType == "data" 

        if direction == "up" 

            value(value >= Q3+(IQR*limit)) = nan; 

        elseif direction == "low" 

            value(value <= Q1-(IQR*limit)) = nan; 

        elseif direction == "all" 

            value(value >= Q3+(IQR*limit)) = nan; 

            value(value <= Q1-(IQR*limit)) = nan; 

        end 

        result = value; 

    elseif resultType == "outlierIdx" 

        if direction == "up" 



247 
 

            result = find(value >= Q3+(IQR*limit)); 

        elseif direction == "low" 

            result = find(value <= Q1-(IQR*limit)); 

        elseif direction == "all" 

            result = [find(value >= Q3+(IQR*limit))' find(value <= 
Q1-(IQR*limit))']; 

        end 

 

         

    end 

     

end 

 

 

___________________________________________________________________ 

 

findDistribution.m 

 

function [distX, distY] = findDistribution(pointnRange, x, y, 
varPairSet, goDownward, threshold , showFigure )  

 

% Warning >> varPairSet: only the last one is unparied. eg: 
{'MinPeakDistance',0.5, 'MinPeakHeight'}; 

% toSmaller => true = descending; false = ascending; 

% distX = nan; 

% distY = nan; 

 

% eg: findRange = -0.4:-0.01:-1.4; 

findRange = pointnRange; 

% disp(findRange); 

meanNum = NaN(numel(findRange),1); 

noPoints = false; 

lenfindRange = numel(findRange); 



248 
 

i = 1; 

 

while i <= lenfindRange && noPoints == false 

    if goDownward%descending 

        val = findRange(lenfindRange + 1 - i) .* -1; 

    else 

        val = findRange(i); 

    end 

     

    lc = findpeaks(y, x, varPairSet{:}, val); 

%     disp(lc); 

%     lc = findpeaks(findPeaksDataset); 

    troughNum = numel(lc); 

%     disp([lenFindM + 1 - i,minPkVal, round(minPkVal .* (-1)), 
troughNum]); 

%     disp(troughNum); 

    meanNum(i) = troughNum; 

    if (troughNum < threshold) 

        noPoints = true; 

    end 

%     disp(findM(i)); 

    i = i + 1; 

end 

 

distX = findRange(1:numel(meanNum)); 

distY = meanNum; 

 

if showFigure 

   figure;plot(distX, distY, '-bo'); 

   title('From findDistribution'); 

end 

 



249 
 

return 

 

___________________________________________________________________ 

 

findPeriodPeak.m 

 

function [val, lc] = findPeriodPeak(x, y, startPoint, endPoint, 
showFigure) 

 

% startPoint = 1; 

% endPoint = 55535; 

% showFigure = true; 

% nBP = bp(startPoint:endPoint); 

% nX = x(startPoint:endPoint); 

 

%% Break the BP to several parts 

nBP = y(startPoint:endPoint); 

nX = x(startPoint:endPoint); 

% figure; plot(nX,nBP); 

 

%% find peaks to get the max and min value 

% [tmpPk, ~] = findpeaks(nBP, nX); 

% maxVal = max(tmpPk); 

maxVal = 2.5; 

minVal = 0.6; 

% minVal = min(tmpPk); 

% disp([maxVal, minVal]); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 



250 
 

%-----------------------------Peak Distance------------------------
-------% 

%                                                                         
% 

% Get the best Min Peak Distance 

[tmpX, tmpY] = findDistribution(0.4:0.01:1.5,nX, nBP, ... 

               {'MinPeakDistance'}, false, 0, false); 

minPeakDistance = getSetVal(tmpX, tmpY, 1, false); 

 

% % TEST MIN PEAK DISTANCE 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance); 

% figure; 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% fprintf('Number of Peak: %d\n\n', numel(maxLc)); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%-----------------------------Peak Height--------------------------
-------% 

%                                                                         
% 

% Get the best Min Peak Height 

% clc; close all; 

[tmpX, tmpY] = findDistribution(minVal:0.01:maxVal,nX, nBP, ... 

                {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight'}, false, 0, false); 

minPeakHeight = getSetVal(tmpX, tmpY, 1, false); 

 

% TEST MIN PEAK HEIGHT 

% figure; 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', minPeakHeight); 



251 
 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% title(sprintf('Number of Peak: %d', numel(maxLc))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%                                                                         
% 

%----------------------------Peak Prominence-----------------------
-------% 

%                                                                         
% 

[tmpX, tmpY] = findDistribution(0.1:0.01:0.5,nX, nBP, ... 

                                {'MinPeakDistance',minPeakDistance, 
'MinPeakHeight', minPeakHeight, 'MinPeakProminence'}, false, 0, 
false); 

minPeakProminence = getSetVal(tmpX, tmpY, 30, false); 

%                                                                         
% 

%% TEST MIN PEAK Prominence 

% figure; 

% [maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', 
minPeakHeight,'MinPeakProminence', minPeakProminence); 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

% title(sprintf('Number of Peak: %d', numel(maxLc))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

%% 

[maxPk,maxLc] = findpeaks(nBP, nX, 
'MinPeakDistance',minPeakDistance, 'MinPeakHeight', minPeakHeight, 
'MinPeakProminence', minPeakProminence);%, 
'MinPeakProminence',minPeakProminence);%,'Annotate','extents'); 

% figure; 

% plot(nX, nBP, maxLc, maxPk, 'r^'); 

 



252 
 

fprintf('Best Peak Distance = %f\n', minPeakDistance); 

fprintf('Best Peak Height = %f\n', minPeakHeight); 

fprintf('Best Peak Prominence = %f\n\n', minPeakProminence); 

 

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

%%-----------------------------------------------------------------
------%% 

%%--------+END OF FINDING PEAKS+----------+END OF FINDING PEAKS+---
------%% 

%%-----------------------------------------------------------------
------%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% %% 

 

%% 

if showFigure 

    figure; 

    plot(nX, nBP, 'Color', [0.4660 0.6740 0.1880]); 

    title('From findPeroidPeak'); 

    hold on 

    plot(maxLc, maxPk,'r^'); 

    hold off; 

    title(sprintf("%d - %d",startPoint, endPoint)); 

end 

 

val = maxPk; 

lc = maxLc; 

 

return 

 

 

___________________________________________________________________ 



253 
 

 

getCalibr4NAN.m 

 

function nanCali = getCalibr4NAN(dict, percentage) 

    % nanCali >>> get the ls containing all the period will set to 
nan in 

    %             spline ls. 

    caliperiod = dict.caliPeriod; 

    caliLen = numel(caliperiod); 

    caliperiodDiff = nan(caliLen, 1); 

 

    for c = 1: caliLen 

        tmp = caliperiod{c}; 

        stLc = tmp(1); 

        endLc = tmp(3); 

        calidiff = abs(stLc - endLc); 

        caliperiodDiff(c) = calidiff; 

 

    end 

    % get the percentage from different list 

    threshold = prctile(caliperiodDiff, percentage); 

 

    nanCali = caliperiod(caliperiodDiff >= threshold); 

 

end 

___________________________________________________________________ 

 

getLinearRegression.m 

 

function [equSlope, equIntercept, lineSlope, lineIntercept] = 
getLinearRegression(stIdx, endIdx, splinePk, isNormalVal) 

    global halfWindow_sz xx fs xx_ne; 

    showFigure = false; 



254 
 

    if ~isNormalVal 

    eventLen = endIdx - stIdx; 

    if eventLen > halfWindow_sz 

        xaxis = eventLen * (-1/fs)-4/fs:1/fs:halfWindow_sz/fs - 
1/fs; % >>> Event Window Size 

        xaxis = round(xaxis, 2); 

    else 

        xaxis = round(xx, 2); 

    end 

         

    period = getTargetPeriod(stIdx, endIdx, splinePk); 

    periodLen = numel(period); 

     

    % The idx below is refer to the new length of the period 

    stPtIdx = (periodLen - halfWindow_sz +1)  - eventLen; 

%     stPtIdx = halfWindow_sz + 1 - eventLen; 

    stPtLc  = xaxis(stPtIdx); 

    stPtVal = mean(period(stPtIdx - 4: stPtIdx)); 

     

    [endPtLc, endPtVal, endPtIdx] = getPkVal; 

    else 

        xaxis = xx_ne; 

        period = splinePk'; 

        stPtIdx = stIdx; 

        endPtIdx = endIdx; 

        stPtLc = xaxis(stPtIdx); 

        stPtVal = period(stPtIdx); 

        endPtLc = xaxis(endPtIdx); 

        endPtVal = period(endPtIdx);  

    end 

     

    % Equation 



255 
 

    equSlope = (stPtVal - endPtVal)/(stPtLc - endPtLc); 

    equIntercept = stPtVal - equSlope * stPtLc; 

     

    % Linear Regression 

    targetPeriod = period(stPtIdx: endPtIdx); 

    polyxx = xaxis(stPtIdx: endPtIdx); 

     

    a = polyfit(polyxx ,targetPeriod',1); 

    lineSlope = a(1); 

    lineIntercept = a(2); 

     

    if showFigure 

        figure; 

        plot(xaxis, period); 

        hold on; 

        plot([xaxis(stPtIdx) ,xaxis(stPtIdx)], [0, 200], '-', 
'LineWidth', 2); 

        endEventIdx = find(xaxis == 0); 

        plot([xaxis(endEventIdx),xaxis(endEventIdx)], [0, 200], '-
', 'LineWidth', 2); 

        plot(xaxis(stPtIdx), period(stPtIdx),'ro', 'LineWidth', 2, 
'HandleVisibility','off');  

        plot(xaxis(endPtIdx), period(endPtIdx), 'go', 'LineWidth', 
2, 'HandleVisibility','off');  

        plot([xaxis(stPtIdx), xaxis(endPtIdx)], 
[getY(xaxis(stPtIdx), equSlope, equIntercept) getY(xaxis(endPtIdx), 
equSlope, equIntercept)]); 

        plot([xaxis(stPtIdx), xaxis(endPtIdx)], 
[getY(xaxis(stPtIdx), lineSlope, lineIntercept) 
getY(xaxis(endPtIdx), lineSlope, lineIntercept)]); 

        hold off; 

        legend({'Blood Pressure', 'Event Start', 'Event End', 
'Equation Result', 'Linear Regression Result'}, 
'Location','northwest'); 

        title(sprintf('Equation: a = %4.5f, b = %4.5f\nLinear: a = 
%4.5f, b= %4.5f', equSlope, equIntercept, lineSlope, 
lineIntercept)); 



256 
 

        graphSetting; 

    end 

 

 

    function [lc, pk, xxidx] = getPkVal 

%         figure; 

%         plot(xaxis, period, '--r'); 

 

        x = xx(halfWindow_sz+1: end); 

        targetLs = period(periodLen - halfWindow_sz+1: end); 

 

%         hold on; 

%         plot(x, targetLs, '-xk'); 

%         hold off; 

        [pk, lc] = findpeaks(targetLs, x); 

 

        idx = pk == max(pk); 

 

        lc = round(lc(idx), 2); 

        % pk = pk(idx); 

         

        xxidx = find(xaxis == lc); 

         

        % In the discussion with the Dr. Behbehani,  

        % he wanted to take the mean of the 5 points which 2 points 
before 

        % and after with peak point. Total 5 points 

        pk = mean(period(xxidx -2: xxidx+2)); 

 

%         if showFigure 

%             figure; 

%             plot(x, targetLs); 



257 
 

%             hold on; 

%             plot(lc, pk,'go', 'LineWidth', 2); 

% %             plot(lc(idx), pk(idx), 'go', 'LineWidth', 2); 

%             centerSettig = {'Color','k', 
'LineStyle',':','LineWidth', 1, 'HandleVisibility','off'}; 

%             plot([0 0], [min(pk) max(pk)], centerSettig{:} ); 

%             hold off; 

%         end 

    end 

     

    function oneEvent = getTargetPeriod(eventStIdx, eventEndIdx, 
targetLs) 

        x_endPt = eventEndIdx + halfWindow_sz - 1; 

         

        if eventLen > 3000 

            x_stPt = eventStIdx - 4; 

            oneEvent = nan(x_endPt - x_stPt + 1 ,1); 

            firstHalfWindow = eventLen+4; 

        else 

            x_stPt  = eventEndIdx - halfWindow_sz; 

            firstHalfWindow = halfWindow_sz; 

            oneEvent = nan(2 * halfWindow_sz ,1); 

        end 

        oneEvent(1:firstHalfWindow) = targetLs(x_stPt:eventEndIdx-
1);  

        oneEvent(firstHalfWindow + 1 : firstHalfWindow + 
halfWindow_sz) = targetLs(eventEndIdx:x_endPt); 

         

%         figure; 

%         plot(xaxis, splinePk(stIdx-4: endIdx +  halfWindow_sz-1), 
'--k'); 

%         hold on; 

%         plot(xaxis, splinePk(x_stPt: x_endPt), '-xr'); 

%          



258 
 

%         plot(xaxis(1:firstHalfWindow), 
oneEvent(1:firstHalfWindow), '^g'); 

%          

%         disp((firstHalfWindow + 1) - (firstHalfWindow + 
halfWindow_sz )); 

%         disp(eventEndIdx - x_endPt); 

%          

%         plot(xaxis(firstHalfWindow + 1 : firstHalfWindow + 
halfWindow_sz),... 

%           oneEvent(firstHalfWindow + 1 : firstHalfWindow + 
halfWindow_sz), '^g'); 

%         hold off; 

    end 

 

    function yVal = getY(xVal, slope, intercept) 

        yVal = slope * xVal + intercept; 

    end 

 

     

end 

___________________________________________________________________ 

 

getNonOverlapPeriod.m 

 

function oneEvent = getNonOverlapPeriod(eventEndIdx, targetLs) 

    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 

    % return a list with total len equals to 2x halfWindow_sz             
% 

    % eventEndIdx at halfWindow_sz + 1                                    
% 

    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 

     



259 
 

    global halfWindow_sz 

    x_stPt  = eventEndIdx - halfWindow_sz; 

    x_endPt = eventEndIdx + halfWindow_sz - 1; 

 

    oneEvent = nan(halfWindow_sz * 2 ,1); 

    stIdx = 1; 

    oneEvent(stIdx:halfWindow_sz) = targetLs(x_stPt:eventEndIdx-1);  

    oneEvent(halfWindow_sz + 1 :halfWindow_sz*2 - stIdx + 1) = 
targetLs(eventEndIdx:x_endPt); 

     

end 

___________________________________________________________________ 

 

getPeakVal.m 

 

function [lc, pk] = getPeakVal(ls) 

    global xx; 

    [pk, lc] = findpeaks(ls, xx); 

%     figure; 

%     plot(xx, ls); 

%     hold on; 

%     plot(lc, pk, '-rx', 'MarkerSize',20 ); 

    idx = pk == max(pk); 

%     plot(lc(idx), pk(idx), 'go', 'LineWidth', 2); 

%     centerSettig = getCenterLineSetting; 

%     plot([0 0], [min(pk) max(pk)], centerSettig{:} ); 

%     hold off; 

    lc = lc(idx); 

    pk = pk(idx); 

end 

 

___________________________________________________________________ 



260 
 

 

getSetVal.m 

 

function val = getSetVal(x, y, slopeLimit, showFigure) 

    % Calculate the slope and the difference between each slope 

 

    slopeLs = NaN(numel(y),1); 

    slopeCal = NaN(numel(y),1); 

    slopeCalX = NaN(numel(y),1); 

 

    stopCollect = false; 

    startCollect = false; 

 

    for i = 2: numel(y) 

        slopeLs(i) = (y(i) - y(i-1)); 

    end 

 

    % figure;plot(slopeLs); 

    % title('Slope Figure'); 

 

    i = 1; 

    countZero = 1; 

    % indexCount = 1; 

    while i <= numel(slopeLs) && stopCollect == false 

        slopeVal = slopeLs(i); 

    %     disp([slopeVal, countZero, i]); 

        if (slopeVal == 0 || isnan(slopeVal) )  && countZero == i 

            startAtZero = true; 

            countZero = countZero + 1; 

    %         fprintf('start at zero No: %02d\n\n',countZero); 

        else 

            startAtZero = false; 



261 
 

        end 

 

        if startAtZero == false 

        %check slope value if  it is between +-50 collect; >>> Need 
more improvement 

            if abs(slopeVal)<= slopeLimit %&& indexCount <= 7 

 

                slopeCal(i) = x(i); 

                slopeCalX(i) = 1; 

    %             slopeCal(indexCount) = x(i); 

    %             indexCount = indexCount +1; 

                startCollect = true; 

            elseif startCollect == true 

                stopCollect = true; 

            end 

 

        end 

 

        i = i + 1; 

    end 

 

 

    % calculate the average 

 

    %%%%%%%%% PLOT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    if showFigure 

 

        figure; 

        plot(x, y, '-go'); 

 

        title('Combination result From getSetVal'); 

        yyaxis left; 



262 
 

        hold on; 

        plot(x, slopeLs,'-k^', slopeCal,slopeCalX , 'rx'); 

        yyaxis right; 

        legend('Distribution Curve','Slope Curve', 'Slope count 
point'); 

        hold off; 

 

        figure; 

        plot(x, slopeLs, '-o'); 

        title('Sloep Ls From getSetVal'); 

    end 

    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 

 

    slopeCal = slopeCal(~isnan(slopeCal)); 

 

    val = mean(slopeCal); 

 

    if showFigure 

    %     disp(slopeCal); 

        disp({'Best Setting Value :',val}); 

    end 

 

 

 

 

end 

 

___________________________________________________________________ 

 

getSpline.m 

 



263 
 

function [splineLs, splinePk_stPt, splinePk_endPt] = 
getSpline(targetLc, targetVal, sampleXX) 

    % targetLc and targetVal should be the from the peaks lc and 
val 

     

    % Get the spline value from the peak value 

    splineLs = spline(targetLc, targetVal, sampleXX); 

    splinePk_stPt = find(sampleXX <= targetLc(1), 1, 'last'); 

    splineLs(1: splinePk_stPt-1) = nan; 

 

    splinePk_endPt = find(sampleXX >= targetLc(end), 1, 'first'); 

    splineLs(splinePk_endPt+1: end) = nan; 

 

end 

___________________________________________________________________ 

 

getStageName.m 

 

function targetStageName = getStageName(fieldKey) 

    switch fieldKey 

        case "sn5" 

            targetStageName = "REM"; 

        case "sn4" 

            targetStageName = "Stage 4"; 

        case "sn3" 

            targetStageName = "Stage 3"; 

        case "sn2" 

            targetStageName = "Stage 2"; 

        case "sn1" 

            targetStageName = "Stage 1"; 

        case "s0" 

            targetStageName = "Stage 0"; 

        case "s1" 



264 
 

            targetStageName = "Awake"; 

        case "all" 

            targetStageName = "All Events in all stage"; 

    end 

end 

 

___________________________________________________________________ 

 

getWholeNightPlot.m 

 

function getWholeNightPlot(startPoint, endPoint, dict, event, 
stage, splinePk, crxStageEventLs, event1) 

global folderNum; 

% % The Whole night plot 

figure; 

if isnan(startPoint ) 

    startPoint =1; 

end 

if isnan(endPoint) 

    endPoint =  numel(splinePk); 

end 

 

 

coeff = 100; 

 

% endPoint =  500000; 

% spStartPoint = find(dict.x(startPoint) <= targetLc, 1, 'first'); 

% spEndPoint = find(dict.x(endPoint) >= targetLc, 1, 'last'); 

% trStartPoint = find(dict.x(startPoint) <= dict.troughLc, 1, 
'first'); 

% trEndPoint = find(dict.x(endPoint) >= dict.troughLc, 1, 'last'); 

plot(dict.x(startPoint: endPoint), dict.y(startPoint: 
endPoint).*coeff); 



265 
 

 

hold on; 

% plot(dict.troughLc(trStartPoint: trEndPoint), 
dict.troughVal(trStartPoint: trEndPoint),'-', 'Color', 
colorConvertor('#158C00')); 

plot(dict.x(startPoint: endPoint),event(startPoint: endPoint), 
'LineWidth',2, 'Color', colorConvertor('#D7BD00') ); 

 

% tmpStageIdx = find(stage == -1); 

% plot(dict.x(tmpStageIdx),stage(tmpStageIdx), 'x', 'LineWidth',2); 

plot(dict.x(startPoint: endPoint),stage(startPoint: endPoint) , 
'Color', colorConvertor('#009900') ); 

 

 

plot(dict.x(stage == 0), stage(stage == 0), 'xr', 'LineWidth',2); 

 

 

splinePk_endPt = endPoint;%numel(splinePk); 

 

splinePk_stPt = 1; 

plot(dict.x(splinePk_stPt:splinePk_endPt), 
splinePk(splinePk_stPt:splinePk_endPt), 'k','LineWidth',1); 

% plot(dict.x(tmp), dict.y(tmp), 'o', 
'LineWidth',2,'MarkerEdgeColor','k', 'MarkerFaceColor',[.49 
1 .63]); 

 

crxStageEventLs = crxStageEventLs( ~isnan(crxStageEventLs)); 

if ~isnan(crxStageEventLs) 

    for i = 1: numel(crxStageEventLs) 

        e = event1{crxStageEventLs(i)}; 

        plot([dict.x(e(1)) dict.x(e(1))], [0, 200], '<', 
'LineWidth',2,'MarkerEdgeColor','k', 'MarkerFaceColor',[.49 
1 .63]); 

        plot([dict.x(e(2)) dict.x(e(2))], [0, 200], '>', 
'LineWidth',2,'MarkerEdgeColor','k', 'MarkerFaceColor',[.49 
1 .63]); 



266 
 

         

    end 

end 

 

hold off; 

title(sprintf("Subject: %s,   Total Event: %d", folderNum, 
numel(event1))); 

box on; 

set(gcf,'color','w'); 

labelSetting = {'FontSize',12,'FontWeight','bold'}; 

xlabel('Time (s)', labelSetting{:}) ; 

ylabel('Blood Pressure (mmHg)', labelSetting{:}); 

     

 

end 

___________________________________________________________________ 

 

graphSetting.m 

 

function graphSetting 

    global status 

    box on; 

    set(gcf,'color','w'); 

    xlabel('Time (s)') ; 

%     ylabel('Count'); 

    ylabel('Blood Pressure (mmHg)'); 

    if strcmp(status, "SBP")  

        ylim([80 200]); 

         

    elseif strcmp(status, "DBP")  

        ylim([40 120]); 

         



267 
 

    elseif strcmp(status, "MAP")  

        ylim([40 160]); 

         

    elseif strcmp(status, "PP")  

        ylim([20 120]); 

         

    end 

end 

___________________________________________________________________ 

 

init.m 

 

function [dict, splinePk, eventLs, stageLs] = init(rootFolder) 

    global folderNum fs; 

    folderPath = sprintf("%s\\SLEEP DATA 2013-2015 
(Ann.)\\%s",rootFolder, folderNum); 

    fileName = sprintf("%s_DAQ_resampled", folderNum); 

    filePath = sprintf('%s\\%s_dict.mat', folderPath, fileName); 

    m = load(filePath); 

    dict = m.dict; 

     

    % assign which data should be use >>> SBP, DBP, MAP or PP -----
-------- 

    [targetVal, targetLc] = getStatus(dict);                             
%- 

    %--------------------------------------------------------------
-------- 

     

    % get the blood pressure waveform 

    m = load(sprintf('%s\\%s.mat', folderPath, fileName)); 

    % startVal = m.DAQ_rsmpl(:,1)(1); 

    [len, ~] = size(m.DAQ_rsmpl); 

    x = 0.00: (1/fs):(len/fs); 

    dict.x = round(x(1:numel(x)-1), 4); 



268 
 

    dict.y = m.DAQ_rsmpl(:,3); 

     

    [splinePk, splineStIdx, splineEndIdx] = getSpline(targetLc, 
targetVal, dict.x); 

     

    % get the event and stage 

    m = load(sprintf("%s\\%s_stage_event.mat", folderPath, 
folderNum)); 

 

    eventLs = m.EVENT; 

    stageLs = m.STAGE; 

    eventLs = round(eventLs); 

    stageLs = round(stageLs); 

     

    eventLs = eventLs(1:numel(dict.x)); 

    stageLs = stageLs(1:numel(dict.x)); 

     

    % if the spline start later and end earlier, the event and 
state should 

    % not have the value, thus set it to nan 

    eventLs(1: splineStIdx-1) = nan; 

    eventLs(splineEndIdx+1: end) = nan; 

     

    stageLs(1: splineStIdx-1) = nan; 

    stageLs(splineEndIdx+1: end) = nan; 

     

    % Get Calibration length 

    nanCalibr = getCalibr4NAN(dict, 99); 

    splinePk = setNANtoSplineLs(nanCalibr, dict, splinePk); 

     

    printLog('Message',sprintf('Subject: %s >>> init done', 
folderNum)); 

     

end 



269 
 

___________________________________________________________________ 

 

initEventslopeStruc.m 

 

function slopeStru = initEventslopeStruc(isStage, isNormalVal, 
normalLs) 

    global fieldLs status halfWindow_sz; 

 

    slopeStru = struct('sub01', [], 'sub03', [], 'sub05', [], ... 

                         'sub06', [], 'sub07', [], 'sub10', [], ... 

                         'sub11', [], 'sub12', [], 'sub13', [], ... 

                         'sub15', []); 

    if isStage 

        stageStru = struct(); 

        for fieldIdx = 1: numel(fieldLs)-1 

            fieldName = fieldLs(fieldIdx); 

            stageStru.(fieldName) = nan(300,4); 

        end 

 

        fields = fieldnames(slopeStru); 

        for fidx = 1: numel(fields) 

            slopeStru.(fields{fidx}) = stageStru; 

        end 

         

    else 

        if isNormalVal 

%             folderNumLs = normalLs(1,:); 

            for i = 1:size(normalLs,2) 

                folderNum = normalLs{1,i}; 

                subFolderName = sprintf('sub%s',folderNum{1}); 

                splineLs = normalLs{2,i}.(status); 

                [equSlope, equIntercept, lineSlope, lineIntercept] 
= getLinearRegression(1, 2 * halfWindow_sz, splineLs, true); 



270 
 

                slopeStru.(subFolderName)(1, :) = [equSlope, 
equIntercept, lineSlope, lineIntercept]; 

            end 

        else 

             

            fields = fieldnames(slopeStru); 

            for fidx = 1: numel(fields) 

                slopeStru.(fields{fidx}) = nan(300,4); 

            end 

        end 

    end 

end 

 

___________________________________________________________________ 

 

initNonEvent.m 

 

function nonEvent = initNonEvent(rootDir) 

    global halfWindow_len; 

    nonEvent = load(sprintf( '%s\\SLEEP DATA 2013-2015 
(Ann.)\\nonEvent_windowsz_%d.mat', rootDir, halfWindow_len * 2) ); 

    nonEvent = nonEvent.noneEvent; 

end 

___________________________________________________________________ 

 

inList.m 

 

function result = inList(ls, value) 

    % it is only available for 1 x n or n x 1  

    result = false; 

    lsLen = numel(ls); 

    idx = 1; 

    while result ~= true && idx <= lsLen 



271 
 

        if ls(idx) == value 

            result = true; 

        end 

        idx = idx + 1; 

         

    end 

 

end 

___________________________________________________________________ 

 

printLog.m 

 

function printLog(type, input) 

    msg = sprintf('%d/%d/%d %02d:%02d:%02.f [%s] %s \r',clock, 
type, input); 

     

    logPath = 'D:\\Dream\\UT Arlington\\Thesis\\data\\log.txt'; 

    fid = fopen(logPath,'a+'); 

    fprintf(fid, msg); 

    fclose(fid); 

     

    fprintf(msg); 

end 

 

___________________________________________________________________ 

 

removeNoisy.m 

 

function splinePk = removeNoisy(folderNum, dict, splinePk) 

    if strcmp(folderNum, '01') 

        % 5247.5 1.41509951768494 

        % 5307.51 1.16048637552839 



272 
 

        removePt(5247.5, 5307.51); 

         

        % 17561.11    1.27284830466048 

        % 18402.33    1.02926285577489 

        removePt(17561.11, 18402.33); 

         

    elseif strcmp(folderNum, '02') 

        %     6601.13 1.19122935866885 

        %     6925.58 1.1177336541943 

        removePt(6601.13, 6925.58); 

         

%         8447.52 1.17919077389192 

%         8658.25 1.04413370082015 

        removePt(8447.52, 8658.25); 

         

        % 15070.71 1.01207758238626 

        % 15150.52 1.41885783551752 

        removePt(15070.71, 15150.52); 

         

        splinePk(splinePk > 1.8) = nan; 

        splinePk(splinePk < 0.50) = nan; 

         

    elseif strcmp(folderNum, '03') 

        % 4760.17 1.2867703359585 

        % 4774.43 1.2877982883856 

        removePt(4760.17, 4774.43); 

         

    elseif strcmp(folderNum, '05') 

        %     4669.54 1.30632813352569 

        %     4752.35 1.27895726888601 

        removePt(4669.54, 4752.35); 

         



273 
 

        % 8034.57 1.52207256334442 

        % 8376.9 1.60877143966121 

        removePt(8034.57, 8376.9); 

 

        % 9061.6 1.55450511481939 

        % 9090.49 1.94327999651919 

        removePt(9061.6, 9090.49); 

 

        % 9379.24 1.74926777561938 

        % 10083.46 1.31865155032019 

        removePt(9379.24, 10083.46); 

         

        % 1238.92 1.05518573426437 

        % 1799.15 1.0607154054546 

        removePt(1238.92, 1799.15); 

         

        % 1815.15 0.985600865041068 

        % 1835.01 1.59142443673898 

        removePt(1815.15, 1835.01); 

         

        % 969.32 1.34536304629181 

        % 1003.61 1.13553188507893 

        removePt(969.32, 1003.61); 

 

        % 11788.93 1.16419944774793 

        % 11935.7 1.49600265622529 

        removePt(11788.93, 11935.7); 

         

%         splinePk(splinePk < 0.8) = nan; 

         

        endIdx = find(dict.x <= 13346.19, 1, 'last'); 

        % 13346.19 1.19867314777888 last peak points 



274 
 

        splinePk(endIdx+1: end) = nan; 

        %     event = event(1:numel(dict.x)); 

        %     stage = stage(1:numel(dict.x)); 

        %  

        %     % Re collect the event 

        %     stageLs = getStageList(stage); 

        %     eventLs = getEventStageList(event); 

     

    elseif strcmp(folderNum, '06') 

%         removePt(4669.54, 4752.35); 

 

         

    elseif strcmp(folderNum, '09')      

% 12531.44 1.52655938575631 

% 13305.21 1.40350326478065 

        removePt(12531.44, 13305.21); 

         

    elseif strcmp(folderNum, '10') 

        %     8732.14 1.7272935987688 

        %     10054.89 1.22412195640995 

        removePt(8732.14, 10054.89); 

         

    elseif strcmp(folderNum, '11') 

% 8777.41 1.48944750058368 

% 8794.28 1.21625136313327 

        removePt(8777.41, 8794.28); 

         

    elseif strcmp(folderNum, '12') 

%         820.7 1.57661972573783 

%         842.46 1.46571628009148 

%  

%         1054.7 1.3232515365196 



275 
 

%         1156.29 1.40960336601451 

%  

%         1875.54 1.4711422954288 

%         2204.55 1.49741926674487 

%  

%         4305.92 1.6607204338789 

%         4986.55 1.33760204513593 

 

        endIdx = find(dict.x >= 52.67, 1, 'first'); 

        % 52.67 1.34141491678299 First stable peak val 

        splinePk(1:endIdx-1) = nan; 

 

    elseif strcmp(folderNum, '15') 

%         559.04 1.24780534206627 

%         914.61 1.1947090300395 

        removePt(559.04, 914.61); 

 

%         9368.82 1.54339149464206 

%         9643.96 1.04145764667209 

        removePt(9368.82, 9643.96); 

 

    end 

     

    function removePt(stPt, endPt)        

        sIdx = find(dict.x >= stPt, 1, 'first'); 

        eIdx = find(dict.x <= endPt, 1, 'last'); 

        %     8732.14 1.7272935987688 

        %     10054.89 1.22412195640995 

        splinePk(sIdx+1: eIdx-1) = nan; 

    end 

     

end 



276 
 

___________________________________________________________________ 

 

removeNoisyDSP.m 

 

function splinePk = removeNoisyDSP(folderNum, dict, splinePk) 

    if strcmp(folderNum, '01') 

        % 5247.5 1.41509951768494 

        % 5307.51 1.16048637552839 

        removePt(5247.5, 5307.51); 

         

        % 17561.11    1.27284830466048 

        % 18402.33    1.02926285577489 

        removePt(17561.11, 18402.33); 

         

    elseif strcmp(folderNum, '02') 

        %     6601.13 1.19122935866885 

        %     6925.58 1.1177336541943 

        removePt(6601.13, 6925.58); 

         

%         8447.52 1.17919077389192 

%         8658.25 1.04413370082015 

        removePt(8447.52, 8658.25); 

         

        % 15070.71 1.01207758238626 

        % 15150.52 1.41885783551752 

        removePt(15070.71, 15150.52); 

         

        splinePk(splinePk > 1.8) = nan; 

        splinePk(splinePk < 0.50) = nan; 

         

    elseif strcmp(folderNum, '03') 

        % 4760.17 1.2867703359585 



277 
 

        % 4774.43 1.2877982883856 

        removePt(4760.17, 4774.43); 

         

    elseif strcmp(folderNum, '05') 

 

        % 965.31 0.766292294264087 

        % 1003.44 0.723228708741105 

        %        

        % 1236.31 0.657815557760036 

        % 1935.95 0.634068101840189 

        %  

        % 4668.66 0.761099297772447 

        % 4753.01 0.734065278371569 

        %  

        % 7669.98 0.901611413113894 

        % 7722.27 1.17401599752182 

        %  

        % 8007 0.973152439182646 

        % 8377.56 1.01242870393025 

         

        % 9379.06 1.03299584519092 

        % 10085.9 0.932435906862825 

        %  

        % 11787.32 0.78285671887977 

        % 11936.35 1.01503087148992 

 

        removePt(965.31,1003.44); 

        removePt(1236.31,1935.95); 

        removePt(4668.66,4753.01); 

        removePt(7669.98,7722.27); 

        removePt(8007, 8377.56); 

        removePt(9379.06,10085.9); 



278 
 

        removePt(11787.32,11936.35); 

         

%         eIdx = find(dict.x <= 13346.19, 1, 'last'); 

%         % 13346.19 1.19867314777888 last peak points 

%         splinePk(eIdx+1: end) = nan; 

        %     event = event(1:numel(dict.x)); 

        %     stage = stage(1:numel(dict.x)); 

        %  

        %     % Re collect the event 

        %     stageLs = getStageList(stage); 

        %     eventLs = getEventStageList(event); 

 

    elseif strcmp(folderNum, '09')      

% 12531.44 1.52655938575631 

% 13305.21 1.40350326478065 

        removePt(12531.44, 13305.21); 

         

    elseif strcmp(folderNum, '10') 

        %     8732.14 1.7272935987688 

        %     10054.89 1.22412195640995 

        removePt(8732.14, 10054.89); 

         

    elseif strcmp(folderNum, '11') 

% 8777.41 1.48944750058368 

% 8794.28 1.21625136313327 

        removePt(8777.41, 8794.28); 

         

    elseif strcmp(folderNum, '12') 

%         820.7 1.57661972573783 

%         842.46 1.46571628009148 

%  

%         1054.7 1.3232515365196 



279 
 

%         1156.29 1.40960336601451 

%  

%         1875.54 1.4711422954288 

%         2204.55 1.49741926674487 

%  

%         4305.92 1.6607204338789 

%         4986.55 1.33760204513593 

 

        eIdx = find(dict.x >= 52.67, 1, 'first'); 

        % 52.67 1.34141491678299 First stable peak val 

        splinePk(1:eIdx-1) = nan; 

 

    elseif strcmp(folderNum, '15') 

        removePt(7280.91, 7381.02); 

         

%         559.04 1.24780534206627 

%         914.61 1.1947090300395 

        removePt(559.04, 914.61); 

 

%         9368.82 1.54339149464206 

%         9643.96 1.04145764667209 

        removePt(9368.82, 9643.96); 

         

        removePt(19416.36, 19513.55); 

         

    end 

     

    function removePt(stPt, endPt)        

        sIdx = find(dict.x >= stPt, 1, 'first'); 

        eIdx = find(dict.x <= endPt, 1, 'last'); 

        %     8732.14 1.7272935987688 

        %     10054.89 1.22412195640995 



280 
 

        splinePk(sIdx+1: eIdx-1) = nan; 

    end 

     

end 

___________________________________________________________________ 

 

removePoints.m 

 

function dict = removePoints(folderNum, dict) 

    count = 0; 

    if strcmp(folderNum, '01') 

 

         

    elseif strcmp(folderNum, '02') 

 

         

    elseif strcmp(folderNum, '03') 

 

         

    elseif strcmp(folderNum, '05') 

        removePt(1221.51, 0.00551659358452486); 

        removePt(1230.38, 0.19681970465736); 

        removePt(1231.1, 0.538771171703811); 

        removePt(1238.72, 0.485388615173904); 

        removePt(7831.25, 0.69595904466782); 

        removePt(8639.2, 0.807724780487715); 

        removePt(8728.6, 0.769758830270064); 

        removePt(9138.19, 1.17524063069134); 

        removePt(9206.37, 0.890861418353335); 

        removePt(10411.03, 0.335682380367277); 

        removePt(10801, 0.475844521480214); 

        removePt(11747.38, 0.414300885830584); 



281 
 

        removePt(12601, 0.442744885712318); 

     

    elseif strcmp(folderNum, '07') 

        removePt(13701.54, 0.79700221048562); 

        removePt(13721.28, 0.811586213393857); 

 

    elseif strcmp(folderNum, '09')      

 

         

    elseif strcmp(folderNum, '10') 

 

         

    elseif strcmp(folderNum, '11') 

 

         

    elseif strcmp(folderNum, '12') 

 

 

    elseif strcmp(folderNum, '15') 

 

    end 

    fprintf("Successful delete # points >>> %d\r", count); 

     

    function removePt(lc, val) 

        troughLc = round(dict.troughLc, 2); 

        troughVal = round(dict.troughVal, 5); 

 

        val = round(val, 5); 

 

        idx = find(troughLc == lc); 

 

        if numel(idx) == 1 && troughVal(idx) == val 



282 
 

            dict.troughLc(idx) = nan; 

            dict.troughVal(idx) = nan; 

            fprintf("Delete Subject: %s (%f, %f)\r", folderNum, lc, 
val); 

            count = count + 1; 

        else 

            fprintf("Fail to delete Subject: %s (%f, 
%f)\r",folderNum,  lc, val); 

        end 

    end 

 

end 

___________________________________________________________________ 

 

setNANtoSplineLs.m 

 

function splineLs = setNANtoSplineLs(nanCali, dict, splineLs) 

    % from getCalibr4NAN to apply to splineLs 

    % set those period in splineLs to nan 

 

    for caliIdx = 1:numel(nanCali) 

        tmp = nanCali{caliIdx}; 

        stLc = round(tmp(1), 4); 

        endLc = round(tmp(3), 4); 

        stIdx = find(dict.x == stLc); 

        endIdx = find(dict.x == endLc); 

        splineLs(stIdx:endIdx) = nan; 

    end 

end 

___________________________________________________________________ 

 

swtest.m 

 



283 
 

function [H, pValue, W] = swtest(x, alpha) 

%SWTEST Shapiro-Wilk parametric hypothesis test of composite 
normality. 

%   [H, pValue, SWstatistic] = SWTEST(X, ALPHA) performs the 

%   Shapiro-Wilk test to determine if the null hypothesis of 

%   composite normality is a reasonable assumption regarding the 

%   population distribution of a random sample X. The desired 
significance  

%   level, ALPHA, is an optional scalar input (default = 0.05). 

% 

%   The Shapiro-Wilk and Shapiro-Francia null hypothesis is:  

%   "X is normal with unspecified mean and variance." 

% 

%   This is an omnibus test, and is generally considered relatively 

%   powerful against a variety of alternatives. 

%   Shapiro-Wilk test is better than the Shapiro-Francia test for 

%   Platykurtic sample. Conversely, Shapiro-Francia test is better 
than the 

%   Shapiro-Wilk test for Leptokurtic samples. 

% 

%   When the series 'X' is Leptokurtic, SWTEST performs the 
Shapiro-Francia 

%   test, else (series 'X' is Platykurtic) SWTEST performs the 

%   Shapiro-Wilk test. 

%  

%    [H, pValue, SWstatistic] = SWTEST(X, ALPHA) 

% 

% Inputs: 

%   X - a vector of deviates from an unknown distribution. The 
observation 

%     number must exceed 3 and less than 5000. 

% 

% Optional inputs: 

%   ALPHA - The significance level for the test (default = 0.05). 



284 
 

%   

% Outputs: 

%  SWstatistic - The test statistic (non normalized). 

% 

%   pValue - is the p-value, or the probability of observing the 
given 

%     result by chance given that the null hypothesis is true. 
Small values 

%     of pValue cast doubt on the validity of the null hypothesis. 

% 

%     H = 0 => Do not reject the null hypothesis at significance 
level ALPHA. 

%     H = 1 => Reject the null hypothesis at significance level 
ALPHA. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 

%                Copyright (c) 17 March 2009 by Ahmed Ben Saïda          
% 

%                 Department of Finance, IHEC Sousse - Tunisia           
% 

%                       Email: ahmedbensaida@yahoo.com                   
% 

%                    $ Revision 3.0 $ Date: 18 Juin 2014 $               
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 

% 

% References: 

% 

% - Royston P. "Remark AS R94", Applied Statistics (1995), Vol. 44, 

%   No. 4, pp. 547-551. 

%   AS R94 -- calculates Shapiro-Wilk normality test and P-value 

%   for sample sizes 3 <= n <= 5000. Handles censored or uncensored 
data. 

%   Corrects AS 181, which was found to be inaccurate for n > 50. 



285 
 

%   Subroutine can be found at: http://lib.stat.cmu.edu/apstat/R94 

% 

% - Royston P. "A pocket-calculator algorithm for the Shapiro-
Francia test 

%   for non-normality: An application to medicine", Statistics in 
Medecine 

%   (1993a), Vol. 12, pp. 181-184. 

% 

% - Royston P. "A Toolkit for Testing Non-Normality in Complete and 

%   Censored Samples", Journal of the Royal Statistical Society 
Series D 

%   (1993b), Vol. 42, No. 1, pp. 37-43. 

% 

% - Royston P. "Approximating the Shapiro-Wilk W-test for non-
normality", 

%   Statistics and Computing (1992), Vol. 2, pp. 117-119. 

% 

% - Royston P. "An Extension of Shapiro and Wilk's W Test for 
Normality 

%   to Large Samples", Journal of the Royal Statistical Society 
Series C 

%   (1982a), Vol. 31, No. 2, pp. 115-124. 

% 

% 

% Ensure the sample data is a VECTOR. 

% 

if numel(x) == length(x) 

    x  =  x(:);               % Ensure a column vector. 

else 

    error(' Input sample ''X'' must be a vector.'); 

end 

% 

% Remove missing observations indicated by NaN's and check sample 
size. 

% 



286 
 

x  =  x(~isnan(x)); 

if length(x) < 3 

   error(' Sample vector ''X'' must have at least 3 valid 
observations.'); 

end 

if length(x) > 5000 

    warning('Shapiro-Wilk test might be inaccurate due to large 
sample size ( > 5000).'); 

end 

% 

% Ensure the significance level, ALPHA, is a  

% scalar, and set default if necessary. 

% 

if (nargin >= 2) && ~isempty(alpha) 

   if ~isscalar(alpha) 

      error(' Significance level ''Alpha'' must be a scalar.'); 

   end 

   if (alpha <= 0 || alpha >= 1) 

      error(' Significance level ''Alpha'' must be between 0 and 
1.');  

   end 

else 

   alpha  =  0.05; 

end 

% First, calculate the a's for weights as a function of the m's 

% See Royston (1992, p. 117) and Royston (1993b, p. 38) for details 

% in the approximation. 

x       =   sort(x); % Sort the vector X in ascending order. 

n       =   length(x); 

mtilde  =   norminv(((1:n)' - 3/8) / (n + 1/4)); 

weights =   zeros(n,1); % Preallocate the weights. 

if kurtosis(x) > 3 

     



287 
 

    % The Shapiro-Francia test is better for leptokurtic samples. 

     

    weights =   1/sqrt(mtilde'*mtilde) * mtilde; 

    % 

    % The Shapiro-Francia statistic W' is calculated to avoid 
excessive 

    % rounding errors for W' close to 1 (a potential problem in 
very 

    % large samples). 

    % 

    W   =   (weights' * x)^2 / ((x - mean(x))' * (x - mean(x))); 

    % Royston (1993a, p. 183): 

    nu      =   log(n); 

    u1      =   log(nu) - nu; 

    u2      =   log(nu) + 2/nu; 

    mu      =   -1.2725 + (1.0521 * u1); 

    sigma   =   1.0308 - (0.26758 * u2); 

    newSFstatistic  =   log(1 - W); 

    % 

    % Compute the normalized Shapiro-Francia statistic and its p-
value. 

    % 

    NormalSFstatistic =   (newSFstatistic - mu) / sigma; 

     

    % Computes the p-value, Royston (1993a, p. 183). 

    pValue   =   1 - normcdf(NormalSFstatistic, 0, 1); 

     

else 

     

    % The Shapiro-Wilk test is better for platykurtic samples. 

    c    =   1/sqrt(mtilde'*mtilde) * mtilde; 

    u    =   1/sqrt(n); 

    % Royston (1992, p. 117) and Royston (1993b, p. 38): 



288 
 

    PolyCoef_1   =   [-2.706056 , 4.434685 , -2.071190 , -
0.147981 , 0.221157 , c(n)]; 

    PolyCoef_2   =   [-3.582633 , 5.682633 , -1.752461 , -
0.293762 , 0.042981 , c(n-1)]; 

    % Royston (1992, p. 118) and Royston (1993b, p. 40, Table 1) 

    PolyCoef_3   =   [-0.0006714 , 0.0250540 , -0.39978 , 0.54400]; 

    PolyCoef_4   =   [-0.0020322 , 0.0627670 , -0.77857 , 1.38220]; 

    PolyCoef_5   =   [0.00389150 , -0.083751 , -0.31082 , -1.5861]; 

    PolyCoef_6   =   [0.00303020 , -0.082676 , -0.48030]; 

    PolyCoef_7   =   [0.459 , -2.273]; 

    weights(n)   =   polyval(PolyCoef_1 , u); 

    weights(1)   =   -weights(n); 

     

    if n > 5 

        weights(n-1) =   polyval(PolyCoef_2 , u); 

        weights(2)   =   -weights(n-1); 

     

        count  =   3; 

        phi    =   (mtilde'*mtilde - 2 * mtilde(n)^2 - 2 * 
mtilde(n-1)^2) / ... 

                (1 - 2 * weights(n)^2 - 2 * weights(n-1)^2); 

    else 

        count  =   2; 

        phi    =   (mtilde'*mtilde - 2 * mtilde(n)^2) / ... 

                (1 - 2 * weights(n)^2); 

    end 

         

    % Special attention when n = 3 (this is a special case). 

    if n == 3 

        % Royston (1992, p. 117) 

        weights(1)  =   1/sqrt(2); 

        weights(n)  =   -weights(1); 

        phi = 1; 



289 
 

    end 

    % 

    % The vector 'WEIGHTS' obtained next corresponds to the same 
coefficients 

    % listed by Shapiro-Wilk in their original test for small 
samples. 

    % 

    weights(count : n-count+1)  =  mtilde(count : n-count+1) / 
sqrt(phi); 

    % 

    % The Shapiro-Wilk statistic W is calculated to avoid excessive 
rounding 

    % errors for W close to 1 (a potential problem in very large 
samples). 

    % 

    W   =   (weights' * x) ^2 / ((x - mean(x))' * (x - mean(x))); 

    % 

    % Calculate the normalized W and its significance level (exact 
for 

    % n = 3). Royston (1992, p. 118) and Royston (1993b, p. 40, 
Table 1). 

    % 

    newn    =   log(n); 

    if (n >= 4) && (n <= 11) 

     

        mu      =   polyval(PolyCoef_3 , n); 

        sigma   =   exp(polyval(PolyCoef_4 , n));     

        gam     =   polyval(PolyCoef_7 , n); 

     

        newSWstatistic  =   -log(gam-log(1-W)); 

     

    elseif n > 11 

     

        mu      =   polyval(PolyCoef_5 , newn); 

        sigma   =   exp(polyval(PolyCoef_6 , newn)); 



290 
 

     

        newSWstatistic  =   log(1 - W); 

     

    elseif n == 3 

        mu      =   0; 

        sigma   =   1; 

        newSWstatistic  =   0; 

    end 

    % 

    % Compute the normalized Shapiro-Wilk statistic and its p-
value. 

    % 

    NormalSWstatistic   =   (newSWstatistic - mu) / sigma; 

     

    % NormalSWstatistic is referred to the upper tail of N(0,1), 

    % Royston (1992, p. 119). 

    pValue       =   1 - normcdf(NormalSWstatistic, 0, 1); 

     

    % Special attention when n = 3 (this is a special case). 

    if n == 3 

        pValue  =   6/pi * (asin(sqrt(W)) - asin(sqrt(3/4))); 

        % Royston (1982a, p. 121) 

    end 

     

end 

% 

% To maintain consistency with existing Statistics Toolbox 
hypothesis 

% tests, returning 'H = 0' implies that we 'Do not reject the null  

% hypothesis at the significance level of alpha' and 'H = 1' 
implies  

% that we 'Reject the null hypothesis at significance level of 
alpha.' 

% 



291 
 

H  = (alpha >= pValue); 

 

  



292 
 

REFERENCES 

 

[1]  D. J. Eckert and A. Malhotra, "Pathophysiology of adult obstructive sleep apnea," Proceedings 

of the American thoracic society, vol. 5, no. 2, pp. 144-153, 2008.  

[2]  P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. Hagen and K. M. Hla, "Increased 

prevalence of sleep-disordered breathing in adults," American journal of epidemiology, vol. 

177, no. 9, pp. 1006-1014, 2013.  

[3]  T. I. Morgenthaler, V. Kagramanov, V. Hanak and P. A. Decker, "Complex sleep apnea 

syndrome: is it a unique clinical syndrome?," Sleep, vol. 29, no. 9, pp. 1203-1209, 2006.  

[4]  D. P. White, "Pathogenesis of obstructive and central sleep apnea," American journal of 

respiratory and critical care medicine, vol. 172, no. 11, pp. 1363-1370, 2005.  

[5]  X. Yang, Y. Xiao, B. Han, K. Lin, X. Niu and X. Chen, "Implication of mixed sleep apnea events in 

adult patients with obstructive sleep apnea-hypopnea syndrome," Sleep and Breathing, vol. 

23, no. 2, pp. 559-565, 2019.  

[6]  W. McNicholas, M. Bonsignore and . Management Committee of EU Cost Action B26, "Sleep 

apnoea as an independent risk factor for cardiovascular disease: current evidence, basic 

mechanisms and research priorities," European Respiratory Journal, vol. 29, no. 1, pp. 156-

178, 2007.  

[7]  F. J. Nieto, P. E. Peppard and T. B. Young, "Sleep disordered breathing and metabolic 

syndrome," WMJ: official publication of the State Medical Society of Wisconsin, vol. 108, no. 

5, p. 263, 2009.  

[8]  S. Tregear, J. Reston, K. Schoelles and B. Phillips, "Obstructive sleep apnea and risk of motor 

vehicle crash: systematic review and meta-analysis," Journal of clinical sleep medicine, vol. 5, 

no. 06, pp. 573-581, 2009.  

[9]  K. Sutherland and P. A. Cistulli, "Recent advances in obstructive sleep apnea pathophysiology 

and treatment," Sleep and Biological Rhythms, vol. 13, no. 1, pp. 26-40, 2015.  

[10]  J. M. Marin, S. J. Carrizo, E. Vicente and A. G. Agusti, "Long-term cardiovascular outcomes in 

men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous 

positive airway pressure: an observational study," The Lancet, vol. 365, no. 9464, pp. 1046-

1053, 2005.  

[11]  W. R. Ruehland, P. D. Rochford, F. J. O’Donoghue, R. J. Pierce, P. Singh and A. T. Thornton, 

"The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index," Sleep, 

vol. 32, no. 2, pp. 150-157, 2009.  



293 
 

[12]  T. Young, P. E. Peppard and D. J. Gottlieb, "Epidemiology of obstructive sleep apnea: a 

population health perspective," American journal of respiratory and critical care medicine, 

vol. 165, no. 9, pp. 1217-1239, 2002.  

[13]  T. Gharibeh and R. Mehra, "Obstructive sleep apnea syndrome: natural history, diagnosis, and 

emerging treatment options," Nature and science of sleep, vol. 2, no. -1, p. 233, 2010.  

[14]  T. E. Weaver, G. Maislin, D. F. Dinges, T. Bloxham, C. F. George, H. Greenberg, G. Kader, M. 

Mahowald, J. Younger and A. I. Pack, "Relationship between hours of CPAP use and achieving 

normal levels of sleepiness and daily functioning," Sleep, vol. 30, no. 6, pp. 711-719, 2007.  

[15]  E. Chung, G. Chen, B. Alexander and M. Cannesson, "Non-invasive continuous blood pressure 

monitoring: a review of current applications," Frontiers of medicine, vol. 7, no. 1, pp. 91-101, 

2013.  

[16]  J. S. Shahoud and N. R. Aeddula, "Physiology, Arterial Pressure Regulation," Vols. -1, FL, 

StatPearls, 2019.  

[17]  M. Gurven, A. D. Blackwell, D. E. Rodríguez, J. Stieglitz and H. Kaplan, "Does blood pressure 

inevitably rise with age? Longitudinal evidence among forager-horticulturalists," 

Hypertension, vol. 60, no. 1, pp. 25-33, 2012.  

[18]  C. Armstrong, "High blood pressure: ACC/AHA releases updated guideline," American family 

physician, vol. 97, no. 6, pp. 413-415, 2018.  

[19]  R. Kanagala, N. S. Murali, P. A. Friedman, N. M. Ammash, B. J. Gersh, K. V. Ballman, A. S. M. 

Shamsuzzaman and V. K. Somers, "Obstructive sleep apnea and the recurrence of atrial 

fibrillation," Circulation, vol. 107, no. 20, pp. 2589-2594, 2003.  

[20]  K. Kario, "Obstructive sleep apnea syndrome and hypertension: mechanism of the linkage and 

24-h blood pressure control.," Hypertension research, vol. 32, no. 7, p. 537, 2009.  

[21]  E. C. Fletcher, "The relationship between systemic hypertension and obstructive sleep apnea: 

facts and theory," The American journal of medicine, vol. 98, no. 2, pp. 118-128, 1995.  

[22]  F. Sayk, C. Becker, C. Teckentrup, H.-L. Fehm, J. Struck, J. P. Wellhoener and C. Dodt, "To dip 

or not to dip: on the physiology of blood pressure decrease during nocturnal sleep in healthy 

humans," Hypertension, vol. 49, no. 5, pp. 1070-1076, 2007.  

[23]  D. P. Veerman, B. P. Imholz, W. Wieling, K. H. Wesseling and G. A. van Montfrans, "Circadian 

profile of systemic hemodynamics," Hypertension, vol. 26, no. 1, pp. 55-59, 1995.  

[24]  F. Lombardi and G. Parati, "An update on: cardiovascular and respiratory changes during 

sleep in normal and hypertensive subjects," Cardiovascular research, vol. 45, no. 1, pp. 200-

211, 2000.  



294 
 

[25]  Y. W. Endeshaw, W. B. White, M. Kutner, J. G. Ouslander and D. L. Bliwise, "Sleep-disordered 

breathing and 24-hour blood pressure pattern among older adults.," Journals of Gerontology 

Series A: Biomedical Sciences and Medical Sciences, vol. 64, no. 2, pp. 280-285, 2009.  

[26]  K. M. Hla, T. Young, L. Finn, P. E. Peppard, M. Szklo-Coxe and M. Stubbs, "Longitudinal 

association of sleep-disordered breathing and nondipping of nocturnal blood pressure in the 

Wisconsin Sleep Cohort Study," Sleep, vol. 31, no. 6, pp. 795-800, 2008.  

[27]  R. M. Alex, H. W. Chun, S. Sun-Mitchell, D. E. Watenpaugh and K. Behbehani, "Quantitative 

Assessment of Apnea-Induced Dynamic Blood Pressure Variations.," J Sleep Med Disord, vol. 

3, no. 3, p. 1050, 2016.  

[28]  J. Truijen, J. J. van Lieshout, W. A. Wesselink and B. E. Westerhof, "Noninvasive continuous 

hemodynamic monitoring," Journal of clinical monitoring and computing, vol. 26, no. 4, pp. 

267-278, 2012.  

[29]  B. P. Imholz, W. Wieling, G. A. van Montfrans and K. H. Wesseling, "Fifteen years experience 

with finger arterial pressure monitoring: assessment of the technology," Cardiovascular 

research, vol. 38, no. 3, pp. 605-616, 1998.  

[30]  R. D. Boehmer, "Continuous, real-time, noninvasive monitor of blood pressure: Peňaz 

methodology applied to the finger," Journal of clinical monitoring, vol. 3, no. 4, pp. 282-287, 

1987.  

[31]  K. H. WESSELING, J. J. SETTELS, G. M. V. D. HOEVEN, J. A. NIJBOER, M. W. BUTIJN and J. C. 

DORLAS, "Effects of peripheral vasoconstriction on the measurement of blood pressure in a 

finger," Cardiovascular research, vol. 19, no. 3, pp. 139-145, 1985.  

[32]  R. M. Alex, Quantitative variation of blood pressure dynamics during sleep apnea, Texas: The 

University of Texas at Arlington, 2010.  

[33]  D. W. Eeftinck Schattenkerk, J. J. Van Lieshout, A. H. Van Den Meiracker, K. R. Wesseling, S. 

Blanc, W. Wieling, G. A. Van Montfrans, J. J. Settels, K. H. Wesseling and B. E. Westerhof, 

"Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff," 

American journal of hypertension, vol. 22, no. 4, pp. 378-383, 2009.  

[34]  K. Wesseling, "Physiocal, calibrating finger vascular physiology for Finapres," Homeostasis, 

vol. 36, no. -1, pp. 67-82, 1995.  

[35]  T. D. Homan and E. Cichowski, "Physiology, pulse pressure," Vols. -1, StatPearls , 2019.  

[36]  M. Razminia, A. Trivedi, J. Molnar, M. Elbzour, M. Guerrero, Y. Salem, A. Ahmed, S. Khosla and 

D. L. Lubell, "Validation of a new formula for mean arterial pressure calculation: the new 

formula is superior to the standard formula," Catheterization and cardiovascular 

interventions, vol. 63, no. 4, pp. 419-425, 2004.  



295 
 

[37]  M. E. Safar, B. I. Levy and H. Struijker-Boudier, "Current perspectives on arterial stiffness and 

pulse pressure in hypertension and cardiovascular diseases," Circulation, vol. 107, no. 22, pp. 

2864-2869, 2003.  

[38]  A. Silvani, "Physiological sleep‐dependent changes in arterial blood pressure: central 

autonomic commands and baroreflex control," Clinical and Experimental Pharmacology and 

Physiology, vol. 35, no. 9, pp. 987-994, 2008.  

[39]  B. Jafari, "Sleep architecture and blood pressure," Sleep medicine clinics, vol. 12, no. 2, pp. 

161-166, 2017.  

[40]  M. Kuwabara, H. Hamasaki, N. Tomitani, T. Shiga and K. Kario, "Novel triggered nocturnal 

blood pressure monitoring for sleep apnea syndrome: distribution and reproducibility of 

hypoxia triggered nocturnal blood pressure measurements," The Journal of Clinical 

Hypertension, vol. 19, no. 1, pp. 30-37, 2017.  

[41]  M. Kuwabara, N. Tomitani, T. Shiga and K. Kario, "Polysomnography derived sleep parameters 

as a determinant of nocturnal blood pressure profile in patients with obstructive sleep 

apnea," The Journal of Clinical Hypertension, vol. 20, no. 6, pp. 1039-1048, 2018.  

[42]  N. Sasaki, M. Nagai, H. Mizuno, M. Kuwabara, S. Hoshide and K. Kario, "Associations between 

characteristics of obstructive sleep apnea and nocturnal blood pressure surge," Hypertension, 

vol. 72, no. 5, pp. 1133-1140, 2018.  

[43]  L. J. Epstein and G. R. Dorlac, "Cost-effectiveness analysis of nocturnal oximetry as a method 

of screening for sleep apnea-hypopnea syndrome," Chest, vol. 113, no. 1, pp. 97-103, 1998.  

[44]  D. Alvarez, R. Hornero, M. Garcia, F. del Campo and C. Zamarron, "Improving diagnostic 

ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea 

detection by means of central tendency measure," Artificial intelligence in medicine, vol. 41, 

no. 1, pp. 13-24, 2007.  

[45]  T. Konecny, T. Kara and V. K. Somers, "Obstructive sleep apnea and hypertension: an 

update.," Hypertension, vol. 63, no. 2, pp. 203-209, 2014.  

[46]  A. S. Cifu and A. M. Davis, "Prevention, detection, evaluation, and management of high blood 

pressure in adults," Jama, vol. 318, no. 21, pp. 2132-2134, 2017.  

[47]  B. Darne, X. Girerd, M. Safar, F. Cambien and L. Guize, "Pulsatile versus steady component of 

blood pressure: a cross-sectional analysis and a prospective analysis on cardiovascular 

mortality.," Hypertension, vol. 13, no. 4, pp. 392-400, 1989.  

[48]  K. Kario, "Vascular Consequences of Sleep Disordered Breathing-Sleep apnea syndrome and 

hypertensive target organ damage in Japan," in The American Society of Hypertension 21st 

Annual Scientific Meeting and Exposition, New York, 2006.  



296 
 

[49]  S. Lattanzi, F. Brigo and M. Silvestrini, "Obstructive sleep apnea syndrome and the nocturnal 

blood pressure profile," The Journal of Clinical Hypertension, vol. 20, no. 6, pp. 1036-1038, 

2018.  

[50]  R. M. Alex, An investigation of the effect of obstructive sleep apnea on cerebral 

hemodynamics in relation with systemic hemodynamics, Arlington Texas: The University of 

Texas at Arlington, 2015.  

 

 

 

  



297 
 

 

 

BIOGRAPHICAL INFORMATION 
 

Yao-Shun Chuang was born in Taipei, Taiwan, a small island next to 

Mainland China. His major in undergraduate is respiratory therapy. During his 

studies in medical school, he acquired professional knowledge in critical respiratory 

therapy and long-term respiratory therapy to realize the purpose of each treatment 

and practiced in critical and advanced comprehensive respiratory therapy to utilize 

medical knowledge in real-world situations. During the practice of critical respiratory 

therapy, he not only understood how respiratory therapists helped patients but also 

how hard it was to face work-related difficulties and heavy workloads. He wondered 

how he could improve the procedure of caring services to create better care. Thus, 

he joined a Data Science Class at Institute for Information Industry to acquire 

certification to acquire knowledge of data after which he received his national 

licensure as a Respiratory Therapist. After finished the certification course, he 

applied as a software engineer at RiskVal Financial Solutions, one of the top market 

risk solution companies in New York, to sharpen his coding skills. To accomplish his 

original purpose, he enrolled for a Master’s Degree in Bioengineering at the 

University of Texas at Arlington in August 2018. 

His motivation was triggered by my practical experience at the hospital when 

I saw for the first time that combining medicine and engineering was the key to 

improve the quality of medical care and relieve the severe pressure of medical 

personnel. In the upcoming 40 years, the elderly population will be in the majority, 



298 
 

which will affect the labor market. With increased workloads and inadequate medical 

personnel, not only would medical care services be difficult to maintain, but fewer 

people are also likely to work in medical fields. Therefore, to improve the quality of 

care for patients and reduce the working pressure of medical specialists, he is 

planning to secure a position as an R&D engineer in medical data analysis in 

biomedical and biotechnology industry. 


	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	1.1. Sleep Apnea
	1.1.1. What is Sleep Apnea?
	1.1.2. Types of Sleep Apnea
	1.1.3. Health Consequences of Obstructive Sleep Apnea
	1.1.4. Detection and Treatment of Sleep Apnea

	1.2. Arterial Blood Pressure
	1.2.1. What is Arterial Blood pressure
	1.2.2. High Blood Pressure
	1.2.3. Relationship between High Blood Pressure and Sleep Apnea
	1.2.4. Nocturnal Blood Pressure Variations
	1.2.5. Relationship between Nocturnal Blood Pressure and Sleep Apnea

	1.3. Study Overview and Organization
	1.3.1. Objective of the study
	1.3.2. Thesis Organization


	MATERIALS AND METHODS
	2.
	2.1. Non-invasive Blood Pressure Monitoring
	2.2. Blood Pressure Measure and Mode Monitor
	2.3. Subject Demographics
	2.4. Blood Pressure Measurement
	2.4.1. Finger Cuff Positioning
	2.4.2. Applying Heart Reference System
	2.4.3. Wrist Unit Placement

	2.5. Data Acquisition
	2.5.1. Computer-Based Data Acquisition Unit

	2.6. Experimental Set Up for Sleep Apnea Subjects
	2.6.1. Experimental Set Up
	2.6.2. Apnea Scoring

	2.7. Data Processing
	2.7.1. Meaning of Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood Pressure, and Pulse Pressure
	2.7.2. Detection of Systolic and Diastolic Blood Pressure
	2.7.3. Removal of Noisy and Calibration from Finapres
	2.7.4. Interpolation of the Blood Pressure Peaks
	2.7.5. Computation of Pulse and Mean Arterial Pressure
	2.7.6. Baseline Calculations
	2.7.7. Segmentation Method of Whole Night Blood Pressure
	2.7.8. Calculation of Slopes from the Blood Pressure Variation
	2.7.9. Statistical Analysis


	RESULTS
	3.
	3.1. Baseline Effect on Blood Pressure Features
	3.1.1. Systolic Blood Pressure (SBP)
	3.1.2. Diastolic Pressure (DBP)
	3.1.3. Mean Arterial Pressure (MAP)
	3.1.4. Pulse Pressure (PP)

	3.2. Effect of Obstructive Sleep Apnea Episodes on Measures of Blood Pressure
	3.2.1. Systolic Blood Pressure (SBP)
	3.2.2. Diastolic Blood Pressure (DBP)
	3.2.3. Mean Arterial Pressure (MAP)
	3.2.4. Pulse Pressure (PP)
	3.2.5. Systolic Slope
	3.2.6. Diastolic Slope

	3.3. Comparisons of Blood Pressure Surge during Apnea Episodes in Sleep Stages
	3.3.1. Analysis of Systolic Blood Pressure Surges in Various Sleep Stages
	3.3.2. Analysis of Diastolic Blood Pressure Surges in Various Sleep Stages
	3.3.3. Analysis of Mean Arterial Blood Pressure Surges in Various Sleep Stages
	3.3.4. Analysis of Pulse Pressure Surges in Various Sleep Stages
	3.3.5. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages
	3.3.6. Analysis of Rate of Systolic Blood Pressure Surges in Various Sleep Stages

	3.4. Subject Time of Sleep Summary

	Discussion and Conclusion
	4.
	4.1. Discussion
	4.1.1. Comparison of Aggregated Sleep Apnea Events with the Blood Pressure in Normal Breathing
	4.1.2. Effect of Sleep Stage on Blood Pressure Surges Elicited by Apnea Events
	4.1.3. Novelty of the Study

	4.2. Conclusion
	4.3. Limitation of Study

	APPENDIX
	A. MATLAB CODE FOR PEAK AND VALLEY DETECTION
	B. MATLAB CODE FOR REMOVING CALIBRATION
	C. MATLAB CODE FOR COMPUTATION OF PULSE PRESSURE, MEAN PRESSURE, SLOPES, BASELINE
	D. MATLAB CODE FOR AGGREGATION OF DATA WITHOUT CONSIDERING SLEEP STAGES
	E. MATLAB CODE FOR AGGREGATION OF DATA CONSIDERING SLEEP STAGES
	F. ADDITIONAL FUNCTIONS

	REFERENCES
	BIOGRAPHICAL INFORMATION

