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ABSTRACT

LEARNING ABSTRACTIONS FOR PLANNING

BRIAN COOK, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Manfred Huber

Planners for hard problems must exploit domain-specific structure to find solu-

tions efficiently. Yet, hand-engineered solutions and optimizations are often expensive

and difficult or impossible to adapt to other problems. This work applies automatic

machine learning techniques to increase planner performance for specific problem do-

mains and to learn useful abstract representations for planning. In particular, this

dissertation develops methods to address important aspects of learning in planning

in four different areas:

State-of-the-art domain-independent classical planners utilize multiple search

heuristics and decide how to allocate computational effort between heuristics prior

to planning. This work presents a heuristic planning algorithm that uses a learned

model of heuristic search dynamics to dynamically allocate computational effort to

available heuristics during planning.

Non-parametric function approximators can be used to represent state transi-

tion models, reachability estimators and distance functions for planning. However

when training data is not uniformly distributed, variations in sample density can re-

sult in local neighborhood bias that negatively affects accuracy. Two new algorithms
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are presented for k-nearest neighbor (kNN) regression and classification that explicitly

compensate for the asymmetric distribution of local neighborhood samples.

A novel abstraction-guided planning algorithm using control policies is pre-

sented and implemented for a multi-goal physics-based game. This work develops

learned predictive models for abstract state connectivity and control policy utility

and shows they can increase the efficiency of exploration and construction of the

abstract model.

Lastly, this work proposes a novel approach for automatically identifying useful

abstract states using random transition sampling and graph analysis. Experiments

show the method yields results similar to hand-engineered abstractions implemented

by human experts for the same domain.
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CHAPTER 1

OVERVIEW

1.1 Introduction

The field of planning encompasses an enormous range of problems encountered

in robotics, artificial intelligence (AI), control theory, and other disciplines. While

incredibly diverse, these problems share certain fundamental characteristics. Namely,

some system in the world is represented by a model, in which the state of the system

evolves over time in response to a sequence of actions taken by an agent. A planning

problem is then defined by such a model along with an initial state and a set of goals.

The task of a planner is to find a sequence of actions that best achieve the goals. This

sequential decision-making is the defining quality of planning problems.

Important and challenging planning problems abound, including game-playing,

autonomous vehicle and spacecraft control, logistics, manufacturing assembly, drug

design, and industrial control. Solving these problems efficiently is of immense value.

A famous example is the DART planner used by U.S. forces during the Persian

Gulf conflict in 1991 for logistics planning and scheduling. The Defense Advanced

Research Project Agency (DARPA) stated the savings in time and resources by this

one application more than paid back the preceeding 30 years of investment in AI by

DARPA. [14]

Yet while planning is important, it is hard. Complexity results vary depending

on the problem representation and constraints, but many problems of interest are

either PSPACE-complete or EXPSPACE-complete for finding feasible plans. When

searching for optimal plans, many become NEXPTIME-complete. [24]
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Nonetheless, automated planners have achieved considerable success by exploit-

ing domain-specific structure to find solutions efficiently. These domain-specific plan-

ners are typically hand-engineered and optimized for a specific class of problems, often

with a customized domain-specific representation. While they may be effective, such

solutions also tend to be expensive and rigid, and may be difficult or impossible to

adapt to other problems.

Domain-independent planners on the other hand are designed to address a

broader range of problem domains and thereby reduce the engineering cost of solving

particular problems by minimizing domain-specific components. This increased flex-

ibility usually comes at the cost of efficiency since such a planner can make no prior

assumptions about constraints or patterns that might be exploited for a particular

problem domain.

In the real world, a planner is usually dedicated to solving many similar prob-

lems. For example, a pick-and-place robot in a warehouse might be presented with

thousands of distinct tasks, but the types of items, the warehouse environment, and

capabilities of the robot are similar for each task.

These observations raise a basic question. Can a planner designed for a broad

set of problem domains learn about a particular problem domain and then exploit

that knowledge to improve its performance when solving new problems from that

domain?

The term learning itself is open to a range of definitions, but for our purposes

we adopt the view that a system that improves performance with experience is said

to be learning.

The past 25 years have witnessed enormous progress in machine learning. Learned

function approximators based on neural networks and support vector machines have

demonstrated impressive success in a wide variety of applications, including detecting

2



and classifying objects in images, speech recognition and translation, identification of

biological markers, and many more [38].

However, these technologies have thus far seen only limited application to plan-

ning. The aim of this research is to investigate applications of machine learning

to improve the efficiency and quality of planning on both symbolic and continuous

problem domains.

1.2 Statement of Contributions

The first contribution is a novel approach for planning based on heuristic search,

in which the planner decides how to allocate computational effort based on estimates

of search progress. The DH1 algorithm for dynamically selecting heuristic plan-

ners is introduced. Given a set of training problems drawn from a target problem

distribution, and given a base set of domain-independent heuristic planners, a pre-

dictive model is trained to estimate heuristic progress on problems in the domain.

After training, these estimates are then used to dynamically select the most promis-

ing heuristic during the planning process. This is the first work that uses a learned

model of the heuristic search dynamics to dynamically select a heuristic or planner

during planning. Experimental results on planning benchmark problems show that

dynamic heuristic selection using the learned model can solve more problems than

strategies that statically allocate processing time, one of which allocates all time to

the single best heuristic for a domain, or another that equally allocates time to each

base heuristic.

A second contribution is a pair of new algorithms for k-nearest neighbor (kNN)

regression and classification. Non-parametric function approximators are commonly

used to represent models used in planning, including state transition models, reacha-

bility estimators and distance functions. However, when the training data for such a
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model is not uniformly distributed, as is usually the case, variations in sample density

can result in local neighborhood bias that negatively affects the accuracy of kNN-based

estimators. This work introduces two novel kNN algorithms that adjust the weights

of the k-nearest neighbors to balance the influence of samples from opposing regions

of space. This is the first approach to explicitly compensate for the asymmetric

distribution of local neighborhood samples. Experimental results on synthetic and

real-world data show that these algorithms improve accuracy under a defined range

of conditions.

A third contribution is an abstraction-guided kinodynamic planning algorithm

for multi-goal problems using control policies. The algorithm is implemented in a com-

petitive planner for the Geometry Friends (GF) game. GF is a challenging physics-

based 2-dimensional problem-solving game featured in several recent competitions.

[51] When presented with a problem instance, the planner builds an abstract model

of the state space by identifying regions where the game agent is stable and control-

lable. Sampling and simulated rollouts are used to estimate connectivity between

the abstract regions, then graph search (a∗ ) is used to find a candidate abstract

plan that achieves the high-level goals for the problem. The high-level plan guides

the agent and directs the lower-level control policies responsible for reaching a target

location and velocity within a local region. This planner is able to find feasible and

high-quality solutions for all of the published GF problem instances including those

from past competitions.

A fourth contribution is a method for using predictive models to reduce the sim-

ulation effort required to explore a state space and construct an abstract model. The

models predict whether particular control policies are likely to be useful in a range of

situations. Using these predictions the planner can avoid allocating simulation effort

for policies that are unlikely to improve the abstract model. Models are developed
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and evaluated for the GF planning domain and demonstrate the predictive method

is effective in finding higher-quality plans with less simulation effort than comparable

methods without prediction.

The final contribution is a novel sampling-based approach for learning abstract

states. For continuous state spaces the task of identifying abstract states for use

by higher-level symbolic planning often requires hand-engineered domain-specific ab-

stractions. This work investigates whether it is possible to identify useful state ab-

stractions using only random sampling and a minimal set of first principles. The

proposed approach uses random transition sampling and graph analysis to identify

strongly-connected regions of space that are good candidates for abstract states. Us-

ing the identified regions, we then seek to learn an agent control policy to enable the

agent to reliably transition between any pair of states in an abstract region. The ap-

proach is applied to problem instances from the GF planning domain and successfully

identifies abstract regions similar to the hand-engineered abstractions used by every

competitive GF planner. An agent control policy is learned for the identified regions

using a Deep-Q Network and shows promising results.

1.3 Outline

Chapter 2 reviews state-of-the-art planning approaches for symbolic and contin-

uous domains along with learning methods. Chapter 3 introduces the DH1 algorithm

for dynamically allocating search effort to heuristics. Chapter 4 describes two new al-

gorithms for k-nearest neighbor (kNN) regression and classification that can improve

accuracy by compensating for non-uniform training sample distribution in the local

neighborhood. Chapter 5 introduces the AGPlan and AGAgent algorithms for

abstraction-guided planning and execution. Chapter 6 develops predictive models for

estimating whether control policies are likely to be useful in particular situations and

5



applies the predictions to reduce unproductive simulation effort. Chapter 7 proposes

a novel sampling-based approach for identifying abstract states that may be useful

for symbolic planning. A policy is then learned for state-to-state control within the

identified regions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 General Planning

Planning is concerned with selecting a series of actions that affect the state

of a system to achieve some set of goals, possibly subject to defined constraints.

Systems in planning may be formally modeled as state-transition systems [24], that

are described as a tuple Σ = (S,A,E, γ) where:

• S = {s1, s2, ...} is a finite or recursively enumerable set of states

• A = {a1, a2, ...} is a finite or recursively enumerable set of actions that can be

selected by the planner. Actions are sometimes also referred to as operators.

• E = {e1, e2, ...} is a finite or recursively enumerable set of possible events that

are externally triggered and not under control of the planner

• γ = S × A× E 7→ 2S is a state transition function

A system is considered static if the set of events E is empty. In this case the

system has no dynamics and the state changes only when the planner selects an

action.

A system is deterministic if for every state s, action a and event e, |γ(s, a, e)| ≤

1, i.e. there is at most one possible outcome state for any action and event occurring

in a state.

A system is fully observable if the planner has complete access to the current

state s. In a partially observable system the planner instead is provided an observation

function η : S 7→ O where O is a set of observation values.
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A planning problem is then specified by a system Σ, an initial state s0, a set of

constraints, and a set of objectives.

Constraints on solutions may take many forms, but a common constraint spec-

ifies which states of the system are allowed in a valid plan, S 7→ {true, false}. For

example, a predicate function isCollision(s) that indicates whether the system is in

a disallowed collision state.

Objectives also may be defined in a variety of ways. Objectives are commonly

specified as one of the following:

• A set of goal states G with the objective of finding a sequence of actions and

states leading to a goal state.

• A reward function R : S × A 7→ R that assigns value to actions taken in

different states, with the objective of finding a sequence of actions and states

that maximize some function of the reward.

2.2 Classical Planning

Classical planning is concerned with planning problems that are fully-observable

and deterministic, with a finite number of states and a specified set of goal states.

Actions and events are instantaneous without explicit representation of time.

The earliest work on classical planning specified problems using the well-known

STRIPS propositional representation [20]. Recent work typically uses the more com-

pact PDDL (planning domain definition language) which extends STRIPS with first-

order literals and logical connectives to specify operator preconditions and conditional

effects, as well as the ability to define axioms [39]. An alternative formulation is the

multi-valued planning task (MPT) that instead represents each state as a tuple of

variables, each of which has a discrete, finite set of values [27]. All of these represen-

tations have equivalent expressive power and problems may be translated between
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them; however PDDL and MPTs have the advantage of explicitly representing some

structure that is only implicit in a grounded propositional representation.

2.2.1 Heuristic Search

A classical planning problem implicitly defines a finite directed graph rooted at

the initial state and thus standard graph search algorithms may be used to search for

solutions. A commonly used search algorithm is a∗ as shown in Algorithm 1.

a∗ is an informed search algorithm that makes use of a heuristic estimate h of

the cost-to-go, which is the optimal cost from the current state to the nearest goal

state. Nodes are selected for expansion from the open list according to the f -value,

which for a∗ is f(n) = g(n)+h(n) where g is the cost to reach node n from the initial

state and h is the heuristic estimate for n.

If a heuristic estimate h is always less than or equal to the true cost-to-go, then

the heuristic is said to be admissible. a∗ search finds optimal-cost solutions when

using an admissible heuristic.

Heuristic functions vary in how informative they are. The least-informative

heuristic is h(n) = 0, which is admissible and results in optimal solutions by a∗ (assuming

non-negative action costs). In this case, however, nodes in the open list are ordered

entirely by the cost-to-reach g(n) resulting in an uninformed breadth-first search that

evaluates every possible solution with cost less than an optimal solution.

At the other extreme, a∗ with a perfect heuristic function with h(n) equal to

the true cost-to-go will result in only expanding nodes along an optimal path to a

solution.

a∗ balances g(n) and h(n) equally, choosing to explore nodes with the lowest

total estimated cost. Greedy best-first search (GBFS) instead uses f(n) = h(n) and
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considers only the heuristic estimated cost-to-go with the hope of finding a solution

more quickly although losing any guarantees of optimality.

Heuristics are limited in their applicability. A customized domain-specific heuris-

tic may be highly informative for a class of problems, but this superior performance

for some problems comes at the cost of poor performance on others. The No Free

Lunch theorem [63] shows that for general heuristic search, no heuristic is superior to

any other when considering all possible search problems. The value added by a heuris-

tic is inherently tied to the assumed structure of the problems it is designed to solve.

Even so-called domain-independent heuristics rely heavily on implicit assumptions

regarding the problems they solve.

As a result, a variety of multi-heuristic search approaches have also been inves-

tigated. For example, a search agent may utilize multiple open lists, each organized

by a different heuristic, and select one node at a time from each open list in a round-

robin manner. Another approach is to assign the heuristic value for a node by taking

the minimum, maximum, or average of a set of independent heuristic estimates. A

fixed multi-heuristic strategy is effectively another heuristic. Adding heuristics may

improve or degrade performance depending on the quality of the heuristics.

2.2.2 Heuristic Planning

The first successful demonstration of heuristic state-space search for large clas-

sical planning problems was the HSP planner that won the AIPS98 international

planning competition [6]. Since then, heuristic planners have come to dominate clas-

sical planning competitions, using a variety of increasingly sophisticated domain-

independent heuristics.

Yet competition results also confirm that no one heuristic planner achieves

superior performance on every problem domain. A planner that out-performs on a
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Algorithm 1 a∗ Search

1: input: search problem problem
2: output: a solution, or failure
3: openList← empty priority queue
4: closedList← ∅
5: openList← Insert(openList, problem.InitialState, 0)
6: while not Empty(openList) do
7: node← Pop(openList)
8: if problem.IsGoal(node.State) then
9: return Solution(node)

10: closedList← Add(closedList, node.State)
11: for a ∈ problem.Actions(node.State) do
12: child← ChildNode(problem, node, action)
13: g ← child.Cost
14: h← CalculateHeuristic(problem, child.State)
15: f ← g + h
16: if child.State /∈ closedList then
17: openList← Insert(openList, child.State, f)

18: return failure

majority of domains may still exhibit very poor performance on others. Likewise, a

planner that is quite poor overall may nonetheless excel at problems in a particular

domain.

Consequently the most competitive classical planners today are those that select

one or more of the most promising planners to apply to a particular problem.

Portfolio planning allocates processing time to multiple independent planners

in the hope that one of them solves the problem.

Fast Downward Stone Soup (FDSS) [29] is a static generic portfolio of base

planners selected in advance based on each planner’s performance on all prior compe-

tition domains and problems. FDSS proved highly competitive at IPC 2011, winning

the sequential optimizing track and placing second in the sequential satisficing track.

Other planners learn static domain-specific portfolios. For example, PbP2 [23]

uses learned knowledge from a set of training problems to pre-select and parametrize
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a portfolio of promising base planners for a domain. Using this approach PbP2 won

the learning track at IPC 2011.

IbaCop2 [9] is a problem-specific portfolio planner that uses a learned classifier

to select 5 base planners for each problem. The classifier uses features extracted from

a static analysis of the problem prior to planning, and the available processor time is

divided equally among the selected base planners. Using this approach IbaCop2 won

the sequential satisficing track of IPC 2014.

All of these portfolio planners attempt to select the base planners that are most

likely to solve a problem, but they treat them as black boxes. The internal dynamics

of the base planners are not considered during the planning search process.

Other work has been done in the area of dynamic heuristic selection during

search.

The Fast Downward planner [27] introduced the use of multiple heuristics with a

separate open list for each heuristic as multi-heuristic best-first search using the causal

graph and FF heuristics. In addition it maintains separate open lists restricted to

nodes reachable by preferred operators identified by each heuristic. The planner alter-

nates between these open lists when selecting the next node for expansion. Successor

nodes are added to all of the open lists. This strategy improved overall performance

resulting in Fast Downward winning the classical planning track at ICAPS 2004.

Alternating open lists were also used by the well-known LAMA 2008 and 2011

planners [52]. In addition to a new landmark heuristic, LAMA added a boost in pri-

ority for heuristics that make progress by achieving a new minimum h-value. LAMA

performed very well, winning the sequential track at IPC 2008.

In addition to alternation, other multi-heuristic combination strategies have

been investigated such as maximum, sum, tie-breaking, and pareto dominance [54].

Yet in all of these cases, the combination strategy for the heuristics is pre-selected
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and does not take into account the current planning state. Heuristic selection is

determined by a hand-engineered fixed policy that is the same for every domain and

problem.

Two approaches to the problem of dynamic heuristic selection are presented

in [48]. The first approach, Meta-A*, selects the heuristic at each step that has the

lowest total g-value plus weighted h-value, thereby favoring heuristics that appear

closer to a solution. The second approach treats heuristic selection as a multi-armed

bandit problem where heuristics are given reward when they achieve a new minimum

h-value. Both approaches dynamically adapt to prefer heuristics that are making

progress, but the determination of progress is effectively limited to the rate of decline

in the minimum h-value. No learned knowledge is applied across problems.

For optimal planning, selective max uses a problem-specific learned classifier

to dynamically select one heuristic from a set of admissible heuristics to evaluate for

each state. This approach is shown to outperform any one heuristic or taking the

max of the heuristics [17]. However, the classifier utilizes only elementary features

corresponding to the state variables of the particular planning problem and cannot

be applied across problem instances.

RA* approaches multiple-heuristic selection for optimal planning as a utility

problem [4]. Given a set of admissible heuristics for a problem, RA* initially randomly

samples frontier nodes during the search in order to estimate the relative strength

of each heuristic as well as the average per-node generation and evaluation time.

Information from the sampling period is used to select a combination of heuristics with

the highest observed utility. The remainder of the search evaluates that combination

of heuristics on every node and takes the max as the h-value. Heuristic selection is

static after the initial sampling period. Again, no learned knowledge is applied across

problems.
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None of the above approaches consider the dynamics of a heuristic search.

During a search, the sequence of node values consumed from the open list(s) can be

treated as a time-series signal. When a search is stuck in a large plateau the values

may change very little, while in other regions the values may oscillate as branches

of the search graph are explored. A natural question investigated by this work is

whether the behavior of a heuristic signal over a span of time can provide useful

information for predicting the utility of that heuristic in real-time for a particular

problem.

2.3 Continuous Planning

While a large number of important real-world problems can be addressed using

classical planning, continuous problem domains require a very different approach.

Examples include robot arm and manipulator motion planning, autonomous vehicle

path planning, chemical industrial plant control, and protein folding analysis.

2.3.1 Kinematic Planning

In the terminology of continuous planning, the workspace refers to the 3D space

in which the system itself is located. The configuration space (C-space) refers to the

set of possible transformations that can be applied to a robot, usually represented as

a real-valued vector q ∈ Rn. For example, the configuration of a simple differential-

drive robot on a flat surface may be represented as q = [p0, p1, θ] where p0 and p1

specify the 2D position of the robot and θ the orientation. C-space is partitioned into

two regions, free space Cfree and obstacle space Cobs. Kinematic planning is restricted

to the configuration space and searches for collision-free paths that are geometrically

feasible but does not consider system dynamics, i.e. velocity or acceleration. This is
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useful for a wide range of problems, however such a kinematic solution may not be

dynamically feasible in general.

For kinematic planning problems the use of graph search methods on discretized

representations is typically too computationally expensive due to the high dimension-

ality of the search spaces. While a wide variety of alternative methods such as po-

tential fields with random walks have also been explored, randomized sampling-based

methods have emerged as the preferred approach for many applications. They can

often provide fast suboptimal solutions to challenging high-dimensional problems.

The most common algorithms are based on the Probabilistic Roadmap Method

(PRM) [34] and Rapidly-exploring Random Trees (RRT) [36].

PRM is a multi-query planning algorithm designed to solve multiple problem

instances in the same environment. During a learning phase, random samples are

selected from the obstacle-free region of the configuration space and are connected

to form a roadmap. For each problem instance, the starting and goal states are

connected to the roadmap in order to find a path.

Roadmaps sample space uniformly and are not goal-directed. They are designed

to be reusable in a static environment. For single-query planning they may not be

efficient since they may spend much of their time exploring space that is either not

reachable from the initial state or is not relevant to finding the goal.

The RRT algorithm is designed for single-query planners. Instead of creating

a forest of connected components as with PRM, RRT incrementally builds a tree

expanding outward from the starting configuration toward the goal. The general

RRT algorithm is shown in Algorithm 2.

RRT initializes a tree starting at the initial configuration. It then explores the

configuration space by selecting samples from a dense random or quasi-random se-

quence and attempting to connect the tree to each sample. Goal-seeking is achieved
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Algorithm 2 RRT

1: function query(qinit, qgoal)
2: T ← newTree(qinit)
3: while not timeout do
4: qtarget ← getNextSample()
5: qnew ← growTree(T, qtarget)
6: if qnew and ρ(qnew, qgoal) < ε then
7: return extractSolution(qnew)

8: return failure

1: function growTree(T, qtarget)
2: qnearest ← nearestNeighbor(T, qtarget)
3: ubest ← selectControl(qnearest, qtarget)
4: if ubest then
5: T ← T + newEdge(qnearest, ubest)
6: qnew ← simulate(qnearest, ubest)

7: return qnew

1: function selectControl(q, qtarget)
2: dmin, ubest ← ρ(q, qtarget),∅
3: for u ∈ U do
4: qnew ← simulate(q, u)
5: if qnew then
6: d← ρ(qnew, qtarget)
7: if d < dmin then
8: dmin, ubest ← d, u

9: return ubest

by including a goal configuration in the sample sequence some fraction of the time.

Compared with PRM, RRT has the advantage that the trees only include configura-

tions that are reachable from the initial point, so it spends less time considering areas

of space that are unreachable and irrelevant to the solution.

The behavior of RRT is dependent on a number of key elements that may be

modified to create variants of the algorithm:

• Sampling Strategy : The random sample sequence is the core of RRT. It typi-

cally uses a dense uniform random or quasi-random sequence of configurations,
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usually but not always restricted to obstacle-free configuration space. The fre-

quency of goals appearing in the sequence controls how greedy the search is.

Unbiased sampling assures uniform coverage of the space, but can be very slow

to explore narrow passages. To compensate for this, some approaches bias the

sampling toward bottlenecks between obstacles in the C-space.

• Distance: The distance function ρ(qa, qb) estimates the cost of getting from qa

to qb. In simple implementations ρ is often specified as a straight-line Euclidean

distance ρ = ‖qa− qb‖ but the true distance is often much more complex due to

kinematic and dynamic constraints as well as obstacles in the environment. The

nearestNeighbor and selectControl functions depend directly on ρ. When

ρ is not accurate, RRT degrades badly as it fails to correctly select nearest

neighbors and instead selects nodes that are further away and more difficult to

connect to the target qtarget. It may also generate control sequences that do not

steer toward targets qtarget.

Distance function estimates typically ignore obstacles and thus tend to under-

estimate the true distance.

• Local Steering : The selectControl function is tasked with finding a control

sequence to get from q to qtarget. It effectively represents a local planner for a

subproblem. In some cases it may be as difficult to solve this problem as the

original planning problem.

The pseudocode in Algorithm 2 shows an implementation which assumes the

controls in U are discretized with fixed timesteps. Each step greedily selects the

control value u that results in the greatest decrease in distance to the target.

Like many steering methods, this approach is very sensitive to the distance

function ρ.
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• Parent Node Selection: The growTree function shown in Algorithm 2 always

selects the nearest neighbor of the sample target as the parent node to extend

toward the target, based on the distance function ρ. This may not always be the

best choice, particularly if ρ is inaccurate. The planner may acquire and utilize

additional knowledge to avoid selecting parent nodes that have little chance of

successfully reaching the target.

RRT-Connect is a variation that allows multiple time-steps when attempting

to extend the tree to a target and can span spaces faster. For each sample target it

calls growTree repeatedly until qnew stops approaching qtarget.

Algorithm 3 Bidirectional RRT

1: function query(qinit, qgoal)
2: Ta, Tb ← newTree(qinit),newTree(qgoal)
3: while not timeout do
4: qtarget ← getNextSample()
5: qa ← growTree(Ta, qtarget)
6: if qa then
7: qb ← growTree(Tb, qa)
8: if qb and ρ(qa, qb) < ε then
9: return extractSolution(qa, qb)

10: Ta, Tb ← Tb, Ta

11: return failure

Much better performance is often achieved using bidirectional RRT as shown

in Algorithm 3. This method utilizes two trees, one grown forward from the initial

configuration qinitial, and a second grown backward from qgoal. The search alternates

between the two trees. At each step, when a node qnew is added to tree Ta, an

attempt is made to connect with the nearest neighbor in the other tree Tb. Since each

tree provides a much larger target area than the singular qgoal there are many more

opportunities to connect.
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Standard RRT approaches can be fast but are proven to produce sub-optimal

trajectories [42]. The RRT* algorithm modifies RRT to approach optimal solutions

by rewiring the tree as it goes [33].

2.3.2 Kinodynamic Planning

The state space specifies all of the information describing a state of the system.

For motion planning, this extends the configuration space with velocities and can be

represented as x = (q, q̇). In the differential drive robot example, the state space is

thus 6-dimensional with x = [p0, p1, θ, ṗ0, ṗ1, θ̇].

Actions in continuous planning are typically specified by a control input vector

u ∈ U applied for some time interval. The full system transition equation is then

defined as ẋ = f(x, u) where f specifies both the kinematic and dynamic constraints

of the system. Kinodynamic planning refers to planning in the full state space with

kinematic and dynamic constraints.

State space planning introduces additional concepts. As with C-space planning,

Xfree and Xobs partition the state space into regions that are either in collision or

not. In addition, the region of inevitable collision or Xric specifies the set of states

in Xfree from which a collision is inevitable as a result of drift, regardless of what

control input is applied. Conversely, states in Xfree are called viable if control can

avoid collisions, and the set of viable states Xviable = Xfree \Xric is sometimes called

the viability kernel.

The reachable set from a state x0 is defined as all states that are visited by

any trajectories starting at x0 for any sequence of control inputs u ∈ U . Cost-limited

reachable sets, as the term suggests, are all states that can be reached within some

cost limit.
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Historically path planning and dynamic constraints have been decoupled. After

generating a valid kinematic path, trajectory modification can be used to incremen-

tally adjust the path to satisfy the dynamic constraints [35]. However, paths generated

without regard for the system dynamics may be highly suboptimal and involve dif-

ficult maneuvers, and may be impossible to modify so that dynamic constraints are

satisfied. As a result we are motivated to consider kinodynamic planning directly in

the state space. State space planning is more difficult but can be shown to improve

robustness, speed and energy efficiency of robots [62].

Kinodynamic planning is harder than path planning for a number of reasons:

• High dimensionality. The introduction of velocities essentially doubles the di-

mensionality of the search space.

• Drift. System dynamics usually preclude instantaneous changes in velocity. The

resulting momentum constrains controllability and connectivity between states.

• Distance. The true distance function ρ(xa, xb) is highly nonlinear and asym-

metric and depends on the system transition equation. Obtaining an exact

value requires solving an optimal motion planning problem and hence is not ef-

ficient or practical. For many problems estimating distance is computationally

expensive and domain-specific. The true distance function is itself a function

of the local steering controller behavior and of the obstacles in the workspace.

As previously mentioned, many planning approaches, including RRT, rely on a

reasonably accurate distance function and perform very poorly without one.

RRT tends to get stuck and explore poorly in kinodynamic problems. As a

result numerous variants have been developed to address some of the issues.

RRT with Collision Tendency checking (RRT-CT) partially addresses the prob-

lem of RRT selecting the same nodes repeatedly [10]. Statistics are maintained for
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each node to keep track of how often a node connection attempt fails with a collision,

and nodes with high rates of collision are less likely to be selected.

RRT-Blossom introduces a distinction between regressing and receding edges

[31]. An edge is considered receding if it ends further from the target node than

when it started. Indiscriminately adding receding edges can lead to wasted effort in

areas already explored, and for this reason they are discarded by some algorithms.

However, in some cases they are useful as shown in Figure 2.1. An edge is said to be

regressing if it ends closer to an existing node in the tree than to the parent node. By

filtering out regressing edges the search is able to explore faster, but one complication

is keeping track of which nodes are non-viable so that they do not “block” other

receding expansions.

Traditional planners consider the state of the agent and the environment sepa-

rately, using them together only for collision checking. An alternative is to guide or

steer local node expansion based on an egocentric representation of the local envi-

ronment using local sensing. Define sensing functions σi that extract scalar sensing

features from state x. A concatenated vector of sensor values is a sensory state s. The

locally situated state of an agent combines the sensory state and local state, λ = (s, x̂),

where x̂ excludes the global position and orientation of the agent.

Local sensing has been used to learn a viability model for avoiding non-viable

regions [32]. Non-viable regions are problematic for sampling based planners since all

attempts to connect graph nodes from Xric will fail, and thus considerable effort is

wasted if such nodes are selected frequently. To avoid this, a viability classifier Ωv(λ) :

Λ 7→ {viable, nonviable} is trained to predict whether a given locally situated state

λ is likely to be viable or not. It is then simple to modify existing algorithms by

replacing checking for isCollision(x) with isCollision(x)∨¬isV iable(x). Note that in
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(a) A Useful Receding Edge

(b) Non-regressing Edges in Green

Figure 2.1: Receding vs. Regressing Edges (from [31])

a dual-tree environment, a second backwards classifier must be trained using reversed

sensors.

2.4 Learning Approaches

Recent work has begun to explore applications of learning to improve planning.

Both RRT and PRM-based methods connect randomly sampled points to near-

est nodes in a graph, which requires frequent distance evaluations between pairs of

points. Solving these 2PBVP problems is expensive, and a natural idea is to learn

models to reduce the computational cost. One approach is to learn a reachability

function. In [2] a large number of 2PBVP problems are solved offline and used to

train functions for estimating the cost-limited reachable set. Experiments using a bi-

nary SVM and locally weighted linear regression (LWR) yield a 4 order-of-magnitude

speedup over exact methods with less than a 10% error rate.

Going one step further, one can learn a distance function. In [5] an obstacle-free

distance function is approximated by locally-weighted projection regression (LWPR)

using high-quality training samples generated with iterative linear quadratic regres-

sion (iLQR). The RRT algorithm is modified to use the learned distance function to

select the nearest node for expansion, then iLQR is used to connect to the target
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state. Experiments for a simple pendulum swing-up problem show the number of

node expansions can be significantly reduced.

In [44] a obstacle-free distance function is learned for a 2-wheeled differential

drive robot using training samples from a high-quality POSQ solver. Using hand-

engineered features with a neural network regression estimator results in a 5 order-

of-magnitude decrease in planning time with negligible effect on path quality.

Another approach is to learn to generate control trajectories. In [16] a set

of motion primitives in the workspace is learned from an expert tutor for a simple

kitchen manipulation task, using fitted cubic polynomials. Then candidate paths

for new problems are generated by finding applicable motion primitives. Using this

approach yielded both a higher success rate at finding solutions and a lower number

of nodes expanded.

RRT-CoLearn is described in [62] which learns indirect optimal controls using

costates. This results in a much smaller set of parameters to describe the input control

function, in contrast to direct optimal control that requires a series of parameter

inputs over time. The paper also proposes a method of filtering the training samples

to address a fundamental problem of learning control sequences, which is that the

average of two control sequences that yield similar results may yield entirely different

results. For example one sequence may steers left around an obstacle while another

steers right, but the average of the two trajectories leads straight into the obstacle.

Most of these supervised learning techniques require a high-quality hand-engineered

2PBVP solver to generate the training samples, as well as a large amount of offline

time to generate the samples and train the models.

23



2.5 Obstacles

Many learning approaches utilize supervised training of a model using an ex-

haustive set of optimally-solved problem samples in an obstacle-free environment. Yet

the particular layout of obstacles in a space has an enormous impact on how planning

behaves. In regions with low obstacle density and ample space to navigate between

obstacles, effective global guidance can be achieved using these obstacle-free distance

estimates.

However, as obstacle density increases, one encounters more instances of dead-

ends or local minima in which distance heuristics become trapped. Mazes represent

an extreme example of spaces with frequent and deep dead-ends. In these cases,

relying on obstacle-free distance estimates to distant targets is of little use since the

true distance function is much more complex. A better option may be to focus on

rapid local exploration instead.

Hence, a planner presented with problems drawn from environments with few

obstacles naturally should focus on different strategies than the same planner when

presented with problems from environments with dense obstacles or obstacles with

regular structure.

Yet no existing work appears to adapt in response to the distribution of obstacles

in the environment.

2.6 Global Guidance

Standard sampling-based planning methods consist of some combination of local

steering toward a goal, or randomly directed exploration. No global guidance is

provided to the algorithm.
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One approach to providing global guidance is to analyze the workspace to derive

a global distance heuristic. The winning team in the 2012 Physical Traveling Salesman

Problem (PTSP) competition used Monte-Carlo Tree Search (MCTS) guided by a

global distance heuristic [46]. The heuristic used a scanline floodfill algorithm on the

2D representation of the obstacle map to determine the minimum distance to each

goal from any location on the map.

Another approach is to first form a discrete abstract graph representing the

search space, then use standard graph search to find an abstract solution path. The

abstract solution is then used to guide a local steering controller to find a concrete

solution to the problem. An example is [19] which considers a physics-based simu-

lation of a wheeled vehicle navigating in a complex unstructured environment with

obstacles with the objective of visiting multiple goal locations. The workspace is

first decomposed into an abstract graph, then a modified Traveling Salesman Prob-

lem (TSP) solver is used to search for dynamically feasible solutions guided by the

abstract graph topology.

The examples cited here make use of fast geometric algorithms for completely

partitioning or traversing a discretized 2D space. Unfortunately for problems with

3 or more dimensions, the computational complexity of geometric partitioning grows

exponentially and fast exact solutions are generally impossible [37].

Given the high-dimensional nature of kinodynamic planning problems, it seems

natural to explore sampling-based methods as a basis for forming global abstractions

that might help guide a search that is otherwise randomly exploring. Yet it does not

appear any existing work has done so.
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2.7 Planning Architectures

A number of previous planners have utilized the concept of abstract states and

hierarchies.

The Skills, Tactics and Play (STP) architecture [7] provides a hierarchical

framework in which domain-specific skills can be composed to solve complex problems

quickly, in particular Robot Soccer. In STP, skills are specialized low-level control

policies designed to achieve specific short-term objectives. Tactics utilize multiple

skills in a finite state machine to compose higher-level control policies for an agent.

Plays are team plans for multiple agents and assign coordinated tactics to agents.

Planning in this architecture is primarily reactive and designed for speed. Deliber-

ative planning is limited to selecting one play at a time from the playbook without

looking further into the future, and hence cannot pursue multiple goals.

[67] integrates RRT methods with STP in order to better exploit control policies

for exploration. The approach can solve challenging physics-based problems with

moving and adversarial obstacles, but does not consider the problem of reaching

multiple goals.

The SyCLoP (synergistic combination of layers of planning) architecture [49]

speeds up continuous sampling-based exploration by utilizing a discrete workspace

decomposition. Exploration is biased toward extending the motion tree from a se-

lected region to neighboring regions. Repeated failure to connect regions increases

the estimated cost and leads the planner to explore alternate routes.

A combination of sampling-based motion planning with efficient TSP solvers has

been applied to multi-goal planning with a physics-based game engine in [19]. The

problem domains studied consist of vehicles navigating in a cluttered environment to

reach multiple goals. The workspace is first decomposed into a triangular mesh of

regions, then heuristic estimates are computed based on partial TSP tours using an
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undirected graph of the mesh geometry. A sampling-based algorithm grows a motion

tree starting from the initial state, and heuristic estimates are used to bias growth of

the tree along potential TSP tours.

Similar approaches have been applied for the Physical Traveling Salesman Prob-

lem (PTSP) [47], a 2-D real-time game where the agent must steer a ship around ob-

stacles to visit as many waypoints as possible within a time limit. The multi-objective

version seeks to minimize time, fuel consumption, and damage incurred from colli-

sions. This game featured in three international IEEE competitions in 2012 and 2013.

The winning entry in 2013 [50] utilized a global TSP tour based on a geometric anal-

ysis of the workspace. Local steering to follow the TSP tour was implemented using

MCTS.

2.8 Online Learning and Local Neighborhood Bias

Sampling-based planning offers a number of opportunities to incrementally ac-

cumulate knowledge during planning that may be useful for function approximation.

For example, the results of collision checking each random sample can be used to

build an online approximate model of free configuration space and improve perfor-

mance by reducing the need for more expensive collision checking [8]. Similarly, when

attempting to extend nodes in a search tree, the success or failure may be recorded

and over time may be useful for estimating the reachability of regions of space.

Non-parametric function estimation methods represent functions using a set of

training samples and are ideally suited for incremental online learning of complex

functions with limited training data.

Among these methods, k-Nearest Neighbor (kNN) algorithms have long been

used for regression and classification. They are simple, fast and often perform as well

or better than more complex methods [21, 64].
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kNN methods estimate a function based on the k-nearest neighbors of a query

point in a set of training samples. Most of the time Cartesian distance over all or

a selected subset of the data features is used to identify the nearest neighbors but

other distance metrics have also been used, including learned ones [61, 60]. Typically

the estimate is a simple average of the neighbor values, or an inversely-weighted

average based on distance from the query point. More generally, the estimator may

use locally-weighted regression to fit a function to the neighbors.

The choice of distance metric is crucial for nearest-neighbor algorithms and

much effort has focused on learning distance metrics for classification tasks. Repre-

sentative global methods are described in [66] and [61] that apply global linear trans-

formations to the input data. Locally discriminative transformations are applied in

[26] and [41]. In [59] the distance to each training point is scaled inversely with its

distance from the class boundary, resulting in fewer neighbors from high-variance

regions.

Other approaches vary the size of the neighborhood. In [22] locally-adaptive k

values are determined for each training sample. In [45] the local k-neighborhood is

extended to include training samples whose k-neighborhood includes the query point,

thus increasing the influence of neighbors from lower-density regions.

Standard kNN approaches only consider the distance of the k-nearest neighbors,

not their spatial distribution, and implicitly assume a uniform distribution around the

query point. Yet local variation in sample density is common, arising naturally when

training samples are randomly distributed in the input space. Variation may also

result from bias in the training data collection process. For example, when learning

a function of a dynamic physical system, samples from regions near unusual states of

the system may be sparse relative to the normal operating range. Likewise, regions

near the boundary of a training domain are less dense than the interior. As a result,
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kNN estimates are more heavily influenced by regions of higher sample density within

the local neighborhood, since those regions are over-represented in the set of k-nearest

neighbors. In general, this local neighborhood bias is not desirable for locally smooth

regression functions since there is no a priori reason to prefer samples in any particular

region.

Yet, no existing methods directly take into account asymmetric distribution of

samples in the local neighborhood.
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CHAPTER 3

LEARNING HEURISTIC DYNAMICS

3.1 Introduction

Heuristic state-space search for classical planning has demonstrated state-of-

the-art performance since the introduction of HSP at AIPS98 [6]. At the 2014 In-

ternational Planning Competition, the majority of planners utilized heuristic search

directly or indirectly.

It is well-known that the performance of a heuristic varies significantly across

different types of problems. In fact, the No Free Lunch theorem shows that no one

heuristic dominates any other when averaged over all possible search problems [63].

In the context of planning we observe that heuristic performance varies significantly

by planning domain and by individual problem. Even within a problem, the infor-

mativeness of a heuristic may vary across regions of the search space.

A modern heuristic search planner may utilize multiple heuristics, heuristic

parameters, search strategies, and exploration strategies. Furthermore, a portfolio

planner may utilize multiple base planners to solve a given problem. In such a context,

the question naturally arises of how a planner can identify the best available heuristic,

search strategy or base planner for a given situation.

To answer this question we propose a new approach using the information pro-

vided by search dynamics during planning. By observing search progress over a win-

dow of time, we can extract useful features for learning and online decision-making

during planning.
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3.2 Search Dynamics

A state-space heuristic search algorithm inherently traverses a sequence of nodes

corresponding to states. By treating this sequence of nodes as a signal, one can

infer information about the progress of the search. For example, we can observe the

sequence of heuristic values (h-values) over time to determine if a heuristic search is

stuck in a plateau or local minima.

The search dynamics of a planner depend not only on the heuristic but also on

the search algorithm. For example the behavior of greedy best-first search (GBFS)

may be quite different than enforced hill-climbing (EHC) using the same heuristic.

Furthermore, planners may alternate between local and global search, and may incor-

porate a variety of random exploration strategies. See for example [65]. All of these

affect the search dynamics.

In traditional planners, heuristic progress is typically evaluated based on how

many nodes have been expanded since the most recent minimum h-value was achieved.

While this is simple and fast, it neglects activity between minima as well as other

search node properties. As a result it might not correctly capture the actual progress,

especially in problems with weak or inconsistent heuristics.

Figure 3.1 illustrates the dynamics of the g-values for 3 different heuristic plan-

ners on a problem from the IPC scanalyzer-sat11-strips domain. The g-values in this

domain correspond to the search depth. Visualizing the planner dynamics over time

clearly shows information that is not captured by a single node measurement, and

thus might be useful to make better progress predictions.

As a result we are motivated to observe the dynamics of sequential node expan-

sions over time. For a given heuristic searching in a specific domain, we ask whether

search dynamics can reveal patterns of activity that distinguish when the heuristic

planner is making progress or is stalled.
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(a) hcg GBFS (b) hFF GBFS (c) LAMA 2011

Figure 3.1: g-value vs. nodes expanded for scanalyzer-sat11-strips p16.pddl

In this work, we present a dynamic portfolio planner that selects from a set

of base heuristic search planners during the planning process. Online selection is

performed using a learned function to evaluate which heuristic planners are making

progress based on the current search dynamics.

3.3 Approach

In contrast to existing approaches, we evaluate the dynamics of each heuristic

planner over fixed search windows. During planning, we use these dynamics with a

learned regression function to predict after each search window whether the heuristic

planner is likely to solve the problem.

We present here the dh1 dynamic portfolio planner. The planner is given a

fixed time limit for each problem with the goal of maximizing coverage, i.e. solving

as many problems as possible. The planner does not consider plan quality, but it

is straightforward to extend the algorithm presented here with base planners that

utilize anytime planning techniques such as iterative weighted-a∗ .

The planner is provided with a set of base heuristic planners H and a represen-

tative set of training problems T .
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Using the training problems, we learn a regression function for each base planner

that estimates distance to solution based on the current heuristic search dynamics.

Once trained, the regression function is used during planning to dynamically select

base planners that appear to be making the most progress toward a solution.

3.3.1 Feature Extraction

Each base planner h ∈ H is modified to record data during planning. For each

state node expanded during the search phase, a function ν : node 7→ Rl captures a

vector of l node features.

In order to capture dynamics spanning multiple search nodes, sequences of

nodes are further processed in windows of length m. A function ω : Rl×m 7→ Rn

extracts a set of n search dynamics features from each window. These features are

subsequently used to predict planner progress.

3.3.2 Training

Algorithm 4 is used to train a regression function ρ(h) : Rn 7→ R for each base

planner h. The objective of ρ(h) is to predict distance to the solution based on the

current search dynamics, with 0 representing very far from a solution, and 1 very

close.

To generate the training set for learning the regression function, each base

heuristic planner h ∈ H is run on a set of training problems T . For each planning

problem Π ∈ T , a sequence of window feature vectors Φ is generated during the

search. Algorithm 6 shows the processing performed for each window. For each

ϕ ∈ Φ both the feature vector ϕ and the current search time are recorded. After the

training problem is either solved or times out, a set of samples Σ is updated with one

sample per feature vector ϕ. A regression value σ is associated with each sample,
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Algorithm 4 dh1 training algorithm

input: a set of training problems T
a set of base heuristic planners H
node feature extraction function ν : node 7→ Rl

window feature extraction function ω : Rl×m 7→ Rn

output: ∀h ∈ H:
prior probability π(h)
regression function ρ(h) : Rn 7→ [0, 1]

for h ∈ H do
Σ← ∅
for Π ∈ T do

initialize(Π, h)
Φ← ∅
repeat

solved, ϕ← executeP lannerWindow(h)
Φ← Φ ∪ (ϕ, timeElapsed)

until solved or timeElapsed > timeLimit
for φ ∈ Φ do

if solved then
∆time ← timeElapsed− φ.timeElapsed

else
∆time ← 2 ∗ timeLimit

σ ← 1/(1 + e−k∗(∆time−timeLimit/2))
Σ← Σ ∪ (ϕ, 1− σ)

π(h)← |Π : Π ∈ T, solved(Π)| / |T |
ρ(h)← trainRegressionFunction(Σ)

return π, ρ

computed based on the time-to-solution ∆time for each sample. For solved problems,

∆time is simply the difference between the total solution time and sample time. For

problems that time out, ∆time is set to twice the time limit. From this, we compute

a normalized regression value σ from ∆time using a sigmoidal function to ensure σ

ranges (0..1).

After samples Σ have been generated using h for all training problems, the

regression function ρ(h) is trained using Σ and an appropriate regression algorithm.
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3.3.3 Planning

The dynamic heuristic planner basic algorithm (dh1) is shown in Algorithm 5.

dh1 uses the learned regression functions to distribute processing time between the

base heuristic planners.

For every h ∈ H, dh1 maintains a preference value ranging [0..1]. A value of

0 indicates the heuristic appears very unlikely to solve the problem, and 1 indicates

the heuristic is very likely to solve the problem. We initialize each preference(h)

based on the prior probability π(h) of planner h solving a problem in the domain as

determined during training.

After initialization, the search process proceeds one feature window at a time.

At each step the planner h to use is selected based on the preference(h) values.

The selected planner executes one search window using Algorithm 6 and the window

feature vector ϕ is computed. Based on this, the pre-trained regression function ρ(h)

estimates the distance-to-solution δ. Finally preference(h) is updated with δ.

This means that in effect, the base planners are run in parallel and the dh1

planner switches between them and allocates processing time based on the estimated

search progress. No information is exchanged between the base planners.

3.4 Experiments

Experiments were conducted on 8 domains taken from IPC competitions. For

each domain, the dh1 planner was trained using a randomly selected 75/25 train-

ing/test split. Tests were run on Intel Dual-Core I3-500 3.2 GHz processors with

a memory limit of 4GB and a timeout of 60 seconds per problem. All results are

averaged over 10 independent experiments.
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Algorithm 5 dh1 planning algorithm

input: planning problem Π
a set of base heuristic planners H
node feature extraction function ν : node 7→ Rl

window feature extraction function ω : Rl×m 7→ Rn

∀h ∈ H:
prior probability π(h)
regression function ρ(h) : Rn 7→ [0, 1]

output: a plan, or ⊥
initialize(Π, h)
for h ∈ H do

preference(h)← π(h)

while not timeout do
h← selectP lanner(H, preference[])
solved, ϕ← executeP lannerWindow(h)
if solved then

return h.plan

δ ← ρ(h, ϕ)
preference(h)← updatePref(preference(h), δ)

return ⊥

Algorithm 6 executePlannerWindow

input: planning problem Π
base heuristic planner h
node feature extraction function ν : node 7→ Rl

window feature extraction function ω : Rl×m 7→ Rn

output: true if a plan is found, else (false, ϕ) where ϕ is the window feature
vector
for i : 1,m do

node← fetchNext(h.openList)
if isGoal(Π, node) then

return true
window[i]← ν(node)
updateOpenList(h, node)

ϕ← ω(window)
return (false, ϕ)
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Domain selection was performed on the following basis. The base planners were

first tested independently on all IPC domains. For each domain, if a base planner

solved every problem solved by any of the rest of the base planners, we say that

planner dominated the domain. Domains with one or more dominant base planners

were then excluded as uninteresting. Since the planner is working with a fixed set of

base heuristic planners, one cannot improve on the policy of simply picking a dominant

base planner for all problems in the domain. Instead domains were selected in which

it is more difficult to predict which base planner will solve a particular problem.

3.4.1 Heuristics

The following base heuristic planners were configured using the Fast Downward

planner [27]:

• FF/additive heuristic hFF with lazy GBFS [30]

• Context-enhanced additive heuristic hcea with lazy GBFS [28]

• Causal graph heuristic hcg with lazy GBFS [27]

• Alternating hFF and hcea with lazy GBFS

• LAMA 2011 [53]

• An experimental modification of hFF that counts violated preconditions in the

relaxed plan, with lazy GBFS

These were selected based on the diversity of the underlying heuristics and

their good performance but without an attempt of being comprehensive or optimizing

diversity or ensemble performance.
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3.4.2 Features

The base planners were modified to record data during planning. The node

feature extraction function ν recorded the following features for each search node

encountered:

• h-value (cost-to-go)

• g-value (cost-to-reach)

• Whether the node is a dead-end

All experiments used a window size of 200. The pick of this window size was

informed by some knowledge of solution length and planner run times but no empirical

study of different sizes or window size optimization was used. The window feature

extraction function ω generated the following features:

• Mean h- and g-values

• Minimum h- and g-values

• Maximum h- and g-values

• Standard deviation of h- and g-values

• Slope of h and g

• Number of dead-ends

• Number of nodes expanded since most recent minimum h-value achieved

• Log of the total nodes expanded

• Time elapsed during the window

These initial features can easily be extended but we considered them sufficient

for experimentation. No feature selection or optimization process was performed.

3.4.3 Training and Parameters

The domain-specific regression functions ρ(h) were learned using ε-SVR support

vector regression using a Gaussian kernel with parameters determined by grid-search.

38



Preference values preference(h) were updated with distance estimates δ using

exponentially-weighted averaging with a weight-decay factor λ to reduce noise:

preference(h)← (1− λ) ∗ preference(h) + λ ∗ δ

λ was set to 0.7 based on empirical testing using a range of values.

After each planning window, the next planner h to use is stochastically selected

using a Boltzmann soft-max function applied to the preference(h) values. The prob-

ability P (h) of selecting planner h is calculated by

P (h) =
e
preference(h)

τ∑
h′∈H e

preference(h′)
τ

The temperature τ was set to 0.1 based on empirical testing using a range of values.

3.4.4 Results

To demonstrate the potential of the dh1 planner and to evaluate its perfor-

mance, it was compared to 3 fixed planner selection strategies, namely Best Prior,

Equal and Ideal.

Best Prior simply selects the base planner that had the best performance on

the training set for the domain. Equal divides the available search time equally

between all of the base planners. Ideal selects one of the base planners that can solve

the problem, if any. Note that Ideal represents the best possible planner selection

and would require an oracle. It is not a practical strategy but an upper bound on

performance.

The results shown in Figure 3.2 represent the average performance over 10

experiments, each with an randomly partitioned 75/25 training/test split. For each
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Domain Best Prior Equal DH1 Ideal Total NonDom

airport 8.60 8.20 8.18 8.90 12 1

depot 4.00 3.90 4.00 4.50 5 1

parcprinter-sat11-strips 3.10 5.00 5.00 5.00 5 6

pathways 5.50 6.30 6.30 6.30 7 3

pipesworld-tankage 7.90 9.20 9.43 10.30 12 6

scanalyzer-sat11-strips 4.50 4.70 4.20 5.00 5 1

tidybot-sat11-strips 2.40 2.30 2.70 3.30 5 2

transport-sat11-strips 2.60 2.00 3.17 4.00 5 3

Total 38.60 41.60 42.98 47.30 56 23

Figure 3.2: Experimental Results

experiment, each selection strategy was applied to the test problems in the domain

and the number of problems solved within the 60 second time limit were recorded.

The average number of test problems solved by each of the strategies is shown in

their respective columns. The Total column is the total number of test problems per

experiment. The NonDom column is the total number of non-dominated problems

in the domain, i.e. the number of problems that were not solved by the Best Prior

planner but were solved by at least one other base planner.

The overall results show dh1 performs better than both the Best Prior and

Equal strategies.

dh1 achieves Ideal performance in the parcprinter and pathways domains, but

underperforms Best Prior and Equal in the airport and scanalyzer domains. The

airport and scanalyzer domains each contain only 1 non-dominated problem and as

a result Best Prior is difficult to beat as it is close to Ideal. dh1 performs relatively

better in domains with more non-dominated problems. In these domains there is more

variability and it is more difficult to predict a priori which base heuristic planner will

solve a given problem.
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3.5 Conclusions and Further Work

By observing heuristic search progress over a period of time, we can extract

features of the search dynamics that are useful for learning and online decision-making

during planning.

This chapter presents dh1, a novel algorithm that learns from the search dy-

namics for a set of base heuristic planners. This knowledge is used during planning

to dynamically select from the base planners. Results are promising and show that

performance can be improved over static approaches that select base planners before

planning starts.

Future work may explore further properties and applications of heuristic search

dynamics in planning. dh1 is a portfolio planner and the base heuristic planners are

entirely independent of one another. Search dynamics are used only for switching

between base planners. Still to be investigated is the use of search dynamics within

a base planner to select between multiple heuristics with shared open lists instead

of using fixed strategies such as alternation. This may improve performance if some

heuristics are more informative than others depending on the region of the search

space.

In dh1 the regression function is used solely for selecting a base heuristic planner

to execute. Another question is whether the regression estimator can be used to better

determine when a planner should utilize random exploration or a deep local search

in order to escape a local minima in conjunction with algorithms such as [65].

Lastly, the window feature extraction function ω : Rl×m 7→ Rn used here is

hand-coded and fixed. An open question is whether more effective features can be

learned directly from the data.
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CHAPTER 4

BALANCED NEAREST NEIGHBORS

4.1 Introduction

To address the problem of local neighborhood bias described in Section 2.8,

this work introduces two new kNN algorithms, Axis-balanced kNN and Box kNN,

that use sample balancing, and investigates the effect of different sample attributes

on their performance relative to standard kNN.

Figure 4.1a illustrates a 1-dimensional example. A random distribution of noise-

free sample points are taken from the function y = sin(x). In the highlighted regions,

5-NN overestimates or underestimates the function because most of the neighbors

are on one side of the query point. In other regions where the nearest neighbors are

approximately equally distributed in either direction, the estimate is much closer.

Motivated by this observation, we can adjust the neighbor weights to approxi-

mate an equal distribution along each feature axis in the input space. In this example,

if 4 neighbors are in the negative x direction, and 1 neighbor is in the positive x di-

rection, we can adjust the relative weight of the positive neighbor by a factor of 4.

Intuitively, that neighbor is likely to provide more information since it is in a region

that is under-represented among the neighborhood samples. Figure 4.1b shows results

of the Axis-balanced 5-NN algorithm described below using the same sample points

as 4.1a. The mean-squared error (MSE) is reduced by 11% in this example.

A further observation in this example is that if we have noise-free samples and

multiple neighbors are in the same direction from the query point, the nearest neigh-

bor in that direction will be the most informative. Additional neighbors further away
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(a) 5-NN (b) Axis-balanced 5-NN (c) Box 5-NN

Figure 4.1: Local Neighborhood Bias

in the same direction may reduce accuracy rather than improve it. This motivates

us to consider at most one neighbor in the direction of each axis from the set of

nearest neighbors, using the subset of neighbors that form an axis-aligned bounding

box around the point. Figure 4.1c shows the effect of this Box 5-NN algorithm. The

MSE in this case is reduced by 58%.

4.2 Approach

For real-valued outputs y ∈ R, regression seeks to approximate a function

f : X 7→ R where X ∈ Rd is a metric space with a distance function δ : X ×X 7→ R.

Similarly, for categorical outputs y ∈ C, classification seeks to approximate a function

f : X 7→ C.

Let S be a set of N training samples {x(i), y(i)}Ni=1 where x(i) ∈ X is an input

variable and y(i) is the corresponding output variable. For a query point q ∈ X and

distance function δ, define the ordered set A ⊂ S of k-nearest neighbors {a(i)}ki=1 such

that:

|A| = k
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∀a ∈ A, b ∈ S − A, δ(a.x, q) ≤ δ(b.x, q)

∀a(i), a(j) ∈ A, i < j, δ(a.x(i), q) ≤ δ(a.x(j), q)

Let w(i) be the weight associated with neighbor a(i).

Let ω be an initial weighting function that calculates weights ω(i) from A,

ω : Rd × Rd×k 7→ Rk.

The standard formulation for kNN regression uses a weighted average of the

k-nearest neighbors from a set of training samples. For query point q ∈ X, the true

function f(q) is estimated by:

f̂(q) =
1

Zq

k∑
i=1

w(i)y(i) (4.1)

where y(i) is the output value of the i-th nearest neighbor, w(i) is the cor-

responding weight for each point resulting from the used weighting function, and

Zq =
∑k

i=1w
(i) is a normalization factor.

Similarly, kNN classification predicts discrete class labels y ∈ C as:

f̂(q) = argmax
c∈C

k∑
i=1


w(i) if y(i) = c

0 otherwise

(4.2)

Basic kNN weights all k-nearest neighbors equally with w(i) = 1/k. Effectively

it assumes a uniform function value in the local neighborhood spanned by the k

neighbors.

Distance-weighted kNN (w-kNN) incorporates the idea that neighbors closer to

the query point should have a greater influence than neighbors farther away. A wide

variety of weighting functions based on distance have been investigated [18, 58]. A

simple choice is to use the inverse of the distance, w(i) = 1/δ(x(i), q).
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4.2.1 Axis-balanced kNN

The Axis-balanced kNN algorithm uses Equations (4.1) and (4.2) but modifies

the weighting factors w(i) as follows.

For query point q, find the k-nearest neighbors A. For each a(i) ∈ A, assign

weight w(i) using some initial standard weighting function ω. Now for each dimension

j ∈ [1..d], partition the neighbors in each direction along axis j.

Lj = {a(i) : a(i) ∈ A, a.x(i)
j < qj}

Rj = {a(i) : a(i) ∈ A, a.x(i)
j > qj}

Ej = {a(i) : a(i) ∈ A, a.x(i)
j = qj}

(4.3)

If |Lj| > 0 and |Rj| > 0 then adjust weights w(i) using:

w(i) ←


w(i)(|Lj|+ |Rj|)/|Lj| if a(i) ∈ Lj

w(i)(|Lj|+ |Rj|)/|Rj| if a(i) ∈ Rj

w(i) if a(i) ∈ Ej

(4.4)

Compared to standard kNN the additional computation time is O(dk).

4.2.2 Box kNN

The Box kNN algorithm also uses Equations (4.1) and (4.2) but modifies the

weighting factors w(i) as follows.

For query point q, find the k-nearest neighbors A. For each a(i) ∈ A, assign

weight w(i) using some initial standard weighting function ω. Now for each dimension
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Algorithm 7 Axis-balanced kNN regression

input: set of training samples S ∈ Rd × R
query point q ∈ Rd

distance function δ : Rd × Rd 7→ R
weighting function ω : Rd × Rd×k 7→ Rk

output: Predicted y ∈ R

A← findNeighbors(q, S, k, δ)
W ← ω(q, A)
for j ∈ [1..d] do

l← 0, r ← 0
for i ∈ [1..k] do

if A[i].xj < qj then l← l + 1
else if A[i].xj > qj then r ← r + 1

if l > 0 & r > 0 then
for i ∈ [1..k] do

if A[i].xj < qj then W [i]← W [i](l + r)/l
else if A[i].xj > qj then W [i]← W [i](l + r)/r

y ← 0, z ← 0
for i ∈ [1..k] do

y ← y +W [i]A[i].y
z ← z +W [i]

y ← y/z
return y

j ∈ [1..d], partition the neighbors in each direction along axis j as in Equation (4.3)

and identify nearest neighbors in each dimension as:

L̃j = {l ∈ Lj : l.xj = max
a∈Lj

a.xj}

R̃j = {r ∈ Rj : r.xj = min
a∈Rj

a.xj}
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Algorithm 8 Box kNN regression

input: set of training samples S ∈ Rd × R
query point q ∈ Rd

distance function δ : Rd × Rd 7→ R
weighting function ω : Rd × Rd×k 7→ Rk

output: Predicted y ∈ R

A← findNeighbors(q, S, k, δ)
W ← ω(q, A)
for j ∈ [1..d] do

l← −∞, r ←∞, L[j]← ∅, R[j]← ∅
for i ∈ [1..k] do

if A[i].xj ≤ qj then
if A[i].xj > l then l← A[i].xj, L[j]← A[i]
else if A[i].xj = l then L[j]← L[j] ∪ A[i]

if A[i].xj ≥ qj then
if A[i].xj < r then r ← A[i].xj, R[j]← A[i]
else if A[i].xj = r then R[j]← R[j] ∪ A[i]

y ← 0, z ← 0
for i ∈ [1..k] do

c← 0
for j ∈ [1..d] do

if A[i] ∈ L[j] then c← c+ 1

if A[i] ∈ R[j] then c← c+ 1

y ← y + cW [i]A[i].y
z ← z + cW [i]

y ← y/z
return y

Using this, adjust weights w(i) using:

w(i) ← w(i)

d∑
j=1


2 if a(i) ∈ Ej

1 if a(i) ∈ L̃j ∪ R̃j

0 otherwise

(4.5)

As with Axis-balanced kNN, the additional computation time is O(dk).
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(a) Effect of Sample Density (b) Effect of Noise (c) Effect of Cluster Density

Figure 4.2: Synthetic Datasets: Top Row is Log MSE, Bottom is Ratio of MSE vs.
kNN

4.3 Synthetic Experiments

To study the effects of different dataset properties on the estimation accuracy of

the kNN algorithms, synthetic datasets were generated using the radial sin function

f(x) = sin(2π‖x‖) for sample points generated in a unit hypercube. The standard

and balanced kNN algorithms were all distance-weighted using inverse Euclidean dis-

tance as the initial weighting function ω(i) = 1/‖q, x(i)‖.

Each experiment performed 5-fold cross-validation to measure performance and

was repeated until reaching confidence level P > 0.99 that the relative error is less

than 0.01. Results are analyzed in terms of Mean Square Error (MSE) and are also

presented as the ratio of MSEs compared to standard kNN to make comparisons

easier.
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4.3.1 Effect of Uniform Sample Density

Figure 4.2a compares the algorithms for a 2-dimensional space, over a range of

uniform sample densities. In areas with very low density and low noise, Box kNN

works best. As density increases, Axis-balanced kNN performs increasingly better.

4.3.2 Effect of Noise

Figure 4.2b compares the algorithms for a 2-dimensional space, over a range of

noise levels. Box kNN performs relatively poorly for noisy data. This is not surprising

since it considers only a subset of its nearest neighbors, resulting in higher variance

in its estimates. Axis-balanced kNN performance is more tolerant of noise, but also

deteriorates relative to kNN as noise increases.

4.3.3 Effect of Non-uniform Sample Density

In order to observe the effect of a non-uniformly generated training set, training

sample points were drawn from 10 normally distributed clusters x ∼ N(µi, σcluster)

and the density of the clusters was varied by varying the standard deviation σcluster.

The test sample points were drawn from a quasirandom uniform distribution over the

unit hypercube using a Hammersley sequence.

Figure 4.2c compares the algorithms for a 2-dimensional space, over a range of

σcluster densities.

For small dense clusters, Box kNN works best. As cluster density decreases

and the training distribution becomes more uniform, Axis-balanced kNN performs

increasingly better. It should be noted that one of the balanced kNN algorithms

always outperformed standard kNN on these synthetic datasets.
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4.4 Real-World Experiments

While synthetic datasets allow to study the effects of different data sample

distributions on the accuracy in the context of a smooth function, they do not capture

the effects that diversity in real-world function and task have on performance. To

address this, experiments were performed on 11 regression datasets and 3 classification

datasets obtained from the UCI machine learning repository [15].

Each experiment performed 5-fold cross-validation to measure performance and

was repeated until reaching confidence level P > 0.99 that relative error is less than

0.01.

kNN methods using isotropic distance functions perform relatively poorly when

given uninformative or redundant input features. Consequently some form of feature

selection and scaling is often required to obtain good accuracy. Here, simple forward

and backward stepwise feature selection was performed to obtain the best features

for each combination of dataset and algorithm [21]. In addition, each experiment was

performed using the original unscaled features and then with each feature scaled to

unit standard deviation, and results are shown using the best scaling option.

Each algorithm was further tested using initial weighting functions ω(i) = 1/k

and ω(i) = 1/δ(x(i), q) and results are shown using the best weighting.

Each experiment varied k from 1 to 40 and selected the value of k with the

best accuracy. In order to make a fair comparison, it is necessary to allow different

values of k for each algorithm since each approach utilizes the k nearest neighbors

differently.

Tables 4.1 and 4.2 show summary results for regression and classification prob-

lems. For each dataset the total number of samples and dimensions is shown. Each

algorithm shows the number of selected features d and the value of k with the best

accuracy.
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Dataset Samples
kNN Axis-balanced kNN Box kNN

d K MSE d K MSE d K MSE

3D Roads 434874 2 2 1.070 2 2 1.059 2 3 0.925

Airfoil Self Noise 1503 5 2 5.10 4 4 4.99 3 30 4.95

Concrete 1030 5 4 48.2 6 4 47.3 5 10 52.4

Energy Cool 768 7 4 3.47 7 4 3.20 4 16 3.88

Energy Heat 768 5 1 0.355 6 4 0.379 6 2 0.345

Parkinson’s Motor 5876 16 13 44.1 16 2 56.1 16 13 44.9

Power 9568 4 7 13.5 4 5 15.1 4 18 11.8

Protein 45731 9 6 13.7 9 2 15.1 9 10 12.9

Red Wine Quality 1599 4 31 0.326 4 37 0.346 8 31 0.341

White Wine Quality 4898 8 20 0.369 4 50 0.392 10 31 0.369

Yacht 308 2 8 1.95 2 8 1.96 2 3 2.05

Table 4.1: Real-World Regression Datasets

These results show that in the majority of datasets, balancing of the neighbors

using one of the two algorithms can improve performance with only two datasets

leading to standard kNN having slightly better performance and two sets where it is

tied. This illustrates the benefit of balancing but also underlines the importance of

selecting the correct scheme for the particular aspects of the dataset.

Visualizing the training samples reveals several datasets consist of samples that

are completely or partially organized on a regular grid of feature coordinates. This

group includes Airfoil Self Noise, Balance, Concrete, Energy Cooling and Heating,

and Yacht.

Figure 4.3a shows a representative example from this group. Here the Box

kNN algorithm quickly levels off to a constant error since it is effectively restricted

Dataset Samples
kNN Axis-balanced kNN Box kNN

d K Error % d K Error % d K Error %

Balance 625 4 17 10.06 4 13 9.44 4 11 19.01

Iris 150 4 13 3.15 4 20 1.90 4 1 4.24

Wine 178 8 32 0.742 6 12 3.621 9 11 1.040

Table 4.2: Real-World Classification Datasets
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(a) Concrete (b) Power (c) Iris

Figure 4.3: Real-world Datasets. Top Shows Error, Bottom Shows Sample Distribu-
tion.

to the neighbors with the same grid coordinates in most dimensions. Axis-balanced

kNN and standard kNN achieve highest accuracy with a small k value and rapidly

deteriorate as k increases, indicating that the function value changes quickly outside

of a small neighborhood.

The remaining datasets consist of samples that are randomly distributed in the

feature space. Figure 4.3b shows a representative example. All algorithms exhibit

smooth asymptotic behavior and the Box kNN algorithm performs well on these

datasets.

Figure 4.3c shows the well-known Iris classification problem in which the sam-

ples are clearly clustered, thus leading to a different behavior. The Axis-balanced

kNN algorithm performs well here and reduces the error rate by 40% while Box kNN

does not perform well, likely due to moderate noise in the data.

Higher values of k suggest increasing noise since they indicate better accuracy

is obtained by averaging more samples from a larger neighborhood. The results in
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Tables 4.1 and 4.2 show standard kNN is likely the best choice in this case. Balancing

in the presence of high noise increases the variance and is less effective.

The results show that the balancing algorithms work best on datasets in which

the intrinsic dimensionality is less than around 10 dimensions. Beyond this level the

sample density is likely insufficient to perform effective balancing.

In summary this data shows that behavior of the algorithms varies significantly

with the data sample distribution and the type of function estimated, thus again

reinforcing the importance of the correct choice of balancing scheme for the specific

problem and dataset. It also shows the general benefit of balanced kNN approaches

when correctly selected, as they can outperform standard kNN for most problems and

often show more stability for varying values of k.

4.5 Conclusions and Further Work

This work introduces two modifications of standard kNN. Axis-balanced kNN

adjusts the weights of the k-nearest neighbors to approximate a balanced distribution

along each feature axis. Box kNN, in contrast, adjusts the weights of the k-nearest

neighbors to include only the nearest neighbors in each feature axis direction. Neither

method requires additional parameters or tuning beyond that required by kNN.

Experiments using synthetic and real-world data demonstrate these methods

can improve accuracy in comparison to kNN. Axis-balanced kNN performs better

when training data is more dense and there is little to moderate noise. Box-kNN

tends to outperform the other approaches when training data is less dense and there

is little noise. When there is a high level of noise, or the intrinsic dimensionality of

the data is 10 or higher, standard kNN is likely the best choice.

The balancing here is performed solely along the feature axes of the original

sample data. To further improve performance, balancing in other directions may be
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more effective, such as using whitened data. Another potential improvement is to

first globally transform the sample data using distance metric learning methods for

classification problems.
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CHAPTER 5

ABSTRACTION-GUIDED PLANNING WITH CONTROL POLICIES

5.1 Introduction

Abstraction is a powerful technique for compressing the vast state spaces en-

countered in continuous planning problems. Solutions found using simplified discrete

representations can provide global guidance for lower-level continuous planning com-

ponents. Yet as described above in Section 2.6, forming useful abstractions of spaces

for kinodynamic planning is generally difficult and domain-specific.

Likewise, control in kinodynamic systems is hard due to the vast action space.

A controller may be required to specify actions frequently and frame rates of 50Hz or

more are not uncommon. A 2-second task running at 100Hz with 3 discrete actions

has 3200 ≈ 2.7 × 1090 possible action sequences. For highly-constrained and precise

tasks the space of valid solutions is many orders of magnitude smaller. Thus random

action sampling alone cannot possibly solve complex problems.

In practice, kinodynamic planners usually rely on domain-specific hand-engineered

or learned control policies to select actions. A control policy represents a low-level

capability or skill that may be useful in some situations, for example “steer toward

a point”, “turn a specified angle”, “accelerate to a specified velocity”, or “jump for-

ward”. Composite policies can be formed by concatenating 2 or more existing policies.

This section presents an abstraction-guided planning and execution algorithm

that is based on the available control policies. The method requires only a forward

simulator of the system dynamics and a predefined set of control policies and no

distance metric is required.
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Rather than basing abstract states on a simple arbitrary geometric decompo-

sition of space, the approach here forms a useful abstraction of the state space in

relation to the control policies. Abstract states correspond to regions in the state

space such that any state is reachable from any other state in the region using one of

the control policies. Hence, abstract states correspond to regions in the state space

that are closed under individual control policies.

The planner explores reachable space using the control policies and builds a

directed graph of abstract states. Connectivity between abstract states is established

by applying control policies to states sampled from a region and recording transitions

to other abstract state regions or goal regions. The resulting graph is used to search

for an abstract high-level plan that is dynamically feasible and achieves all of the

goals.

The algorithm is implemented and evaluated in a real-time planning agent for

the Geometry Friends competition held at the 2019 IEEE Conference on Games.

Competition results demonstrate planner performance is comparable to a more highly-

engineered domain-specific planner, and significantly outperforms a more general

sampling-based planner.

5.2 Formal Problem Statement

Let S ⊆ Rd denote the state space and A ⊆ Rk denote the action space with

system dynamics approximated by a function

s′ = Simulate(s, a, dt) (5.1)

where s′ ∈ S is the result of applying action a ∈ A for a time step of duration

dt.
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Let G = {G1, ..., Gn} ⊂ S denote a set of n goal regions. Let Goal : S 7→ G ∪⊥

specify the goal region, if any, containing a given state.

Let Π = {π1, ..., πm} be a set of control policies πi : (S, θ) 7→ A ∪ ⊥, where

θ ∈ Rli denotes parameters for πi and πi(s, θ) returns ⊥ if πi(θ) terminates in state s.

Starting at state s ∈ S and applying a policy π(θ) for T ∈ N time steps results

in a trajectory τ : [1, ..., T ] 7→ S, where τ(1) = s and τ(i+1) = Simulate(τ(i), ai, dt)

with ai = π(τ(i), θ) for all i = 1...T − 1. Let τ(s, π(θ)) denote the trajectory starting

at state s and applying policy π(θ) until π(τ(i), θ) = ⊥.

For any trajectory τ with length T , let First(τ) = τ(1) and Last(τ) = τ(T ).

Let Goals(τ) = ∪Ti=1Goal(τ(i)) denote the set of goal regions reached by the tra-

jectory.

The planning problem can now be defined. Given 〈S,A,G,Π〉 and initial state

sinit ∈ S, find actions [a1, ..., aT ] and trajectory τ such that τ(1) = sinit and τ(i+1) =

Simulate(τ(i), ai, dt) for all i = 1...T − 1, and Goals(τ) = G.

5.3 Geometry Friends

Geometry Friends (GF) is a challenging physics-based 2-dimensional problem-

solving game featured in several recent competitions [51]. The game includes two

agents, a Circle and a Rectangle, that may act independently or cooperatively. The

implementation here solves problems using only the Circle agent.

The Circle agent is subject to 2-dimensional physics with momentum, friction

and gravity. It has sensors that provide it with the current location and linear velocity,

but the angular velocity is not directly observable. A set of 4 control actions A are

available at any time step:

• None: Apply no force.

• RollLeft: Apply a counter-clockwise torque to the Circle.
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(a) Actions

(b) Multiple Goals

Figure 5.1: Circle Agent for Geometry Friends

• RollRight: Apply a clockwise torque to the Circle.

• Jump: Apply an instantaneous upward force to the Circle. This action has no

effect if the Circle is not in contact with a surface.

As shown in Figure 5.1, the objective of the game is to collect a set of goals

G represented as purple diamonds as quickly as possible, within a time limit. If all

of the goals are collected the level is considered solved. The agent must jump from

platform to platform to reach some goals and a high-level plan is required in order to

reach all of the goals successfully.

5.3.1 States

The full game state s ∈ S consists of (x, ẋ, y, ẏ, ω, O, C) where x and y represent

the location of the circle character along with their respective velocities, ω is the

angular velocity of the circle, O is the obstacle configuration of the level, and C is

the set of remaining collectibles (goals not yet achieved).
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Sensing provides the agent with (x, ẋ, y, ẏ, O, C) but ω is not observable. Sens-

ing events during game play are asynchronous and there is a small non-deterministic

delay between the time an observation is recorded and the time the agent receives it.

5.3.2 Control Policies

The planner uses a set Π of four low-level hand-engineered control policies that

incorporate highly-specific domain knowledge.

5.3.2.1 RollTo

The RollTo(xtarget, ẋtarget) policy rolls the agent to a target x position and

velocity on the current surface.

The policy was learned using value iteration [57]. The action at time step t is

selected based on the rolling state st(xt, ẋt, xtarget, ẋtarget). A state is a terminal state

if |x−xtarget| < εx and |ẋ− ẋtarget| < εẋ for thresholds εx and εẋ. Actions are selected

from the set of rolling actions Ar = {NoAction,RollLeft, RollRight}.

Value iteration requires a transition model P (a, s, s′) that specifies the proba-

bility {st+1 = s′|st = s, at = a}. The transition model was learned using a test agent

that randomly applied actions from Ar for all possible x velocities and recorded the

resulting states.

Value iteration also requires a reward function R(s) that specifies expected

reward at each time step when the agent is in state s. The reward function used is:

R(s)←


0 if s is a terminal state

−1 otherwise

(5.2)
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Using the transition model and reward function, value iteration iteratively up-

dates the value of each state V (s) until convergence. For iteration k + 1 the update

is:

Vk+1(s)← max
a

∑
s′

P (a, s, s′)[R(s) + γVk(s
′)] (5.3)

where γ specifies a discount factor for future states. The value used for γ is

0.999.

After the state value function V (s) converges, the deterministic control policy

π(s) is obtained by:

π(s) = argmax
a

∑
s′

P (a, s, s′)[R(s) + γVk(s
′)] (5.4)

The specified reward function with -1 reward per time step is useful because

the resulting |V (s)| provides a good estimate of the number of time steps required to

reach a terminal state from state s.

The value and policy functions were implemented using a simple tabular repre-

sentation with discretized states.
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5.3.2.2 JumpAndStop

JumpAndStop is a hand-engineered policy that selects the Jump action, then

stops as quickly as possible using actions {RollLeft, RollRight}. It utilizes a hand-

engineered function grounded that checks if the agent is in contact with a surface.

π(s)←



Jump if first time step for policy π

NoAction if not grounded(s)

RollLeft if ẋ > stopV el and grounded(s)

RollRight if ẋ < −stopV el and grounded(s)

⊥ if |ẋ| < stopV el and grounded(s)

(5.5)

The stopping action is required in order to identify the ending segment where

the agent comes to a complete stop. This ensures the planner can search any forward

transitions from the ending segment.

Without stopping, the agent sometimes lands on segments at too high of a

velocity to stop before rolling off the segment. These are not considered to be in

the abstract segment state since the agent cannot utilize other forward transitions

identified for the segment.

A side effect of the stopping behavior is that the planner will not find solutions

that require jumping across multiple small segments without stopping. This could be

solved in the future by adding another control policy, for example JumpAndJump.
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5.3.2.3 FallAndStop

FallAndStop is a hand-engineered policy that selects NoAction until the agent

rolls off the current surface, then stops as quickly as possible using actions {RollLeft, RollRight}.

π(s)←



NoAction if grounded(s) and on initial surface

NoAction if not grounded(s)

RollLeft if ẋ > stopV el and grounded(s) and not on initial surface

RollRight if ẋ < −stopV el and grounded(s) and not on initial surface

⊥ if |ẋ| < stopV el and grounded(s) and not on initial surface

(5.6)

The stopping action is required for the same reasons as JumpAndStop and has

similar limitations.

5.3.2.4 RollUp

RollUp(xtarget, ytarget, ẋtarget) is a hand-engineered policy that attempts to roll

up onto a nearby surface located at (xtarget, ytarget) at velocity ẋtarget using actions

{RollLeft, RollRight}.

π(s)←



RollLeft if ẋ > ẋtarget

RollRight if ẋ < ẋtarget

⊥ if ẋtarget > 0 and x > xtarget and y < ytarget and grounded(s)

⊥ if ẋtarget < 0 and x < xtarget and y < ytarget and grounded(s)

(5.7)
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5.4 Planning

The high level AGPlan planning algorithm is shown in Algorithm 9. The

planner explores space to construct an abstract model, then searches for a solution

using the model. If a solution is not found, the planner continues to alternate refining

the model and searching until an abstract plan is found or a timeout occurs.

Algorithm 9 AGPlan〈S,A,G,Π, sinit〉
1: R ← InitRegions(S,A,Π)
2: s← sinit
3: R← Region(s)
4: model← InitModel(S,A,G,Π,R)
5: while not timeout do
6: Explore(R,model)
7: ϕ← Search(s,G,model)
8: if ϕ 6= ∅ then
9: return ϕ

10: return ∅

5.4.1 Abstract States

The planner identifies a set of regions R in the state space such that any state

in a region can be reached from any other state in the region by applying a single

control policy. Each region defines an abstract state.

Let Region : S 7→ R ∪ ⊥ specify the region, if any, containing a given state.

(For simplicity this assumes regions do not overlap, which is not true in general.

However, it is straightforward to extend support for overlapping regions.)

The task of identifying regions is highly specific to the state space and the

available control policies. Regions may be found using hand-engineered analysis or

may be identified using learned functions of the control policies.
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It is not necessary to identify all regions during initialization; indeed, it is likely

infeasible in large state spaces. Regions can be identified incrementally as reachable

states are explored.

For GF, abstract states consist of flat surfaces on top of obstacles where the

circle can roll and is not in collision with any obstacle. We refer to these regions as

segments, denoted by the tuple 〈xfrom, xto, y〉.

Each segment region is further bounded by the range of x velocities achievable

using the RollTo policy starting from zero velocity at any point on the segment. y

velocities are limited to |ẏ| < ẏgrounded which ensures the agent is in contact with the

surface and can accelerate or decelerate.

5.4.2 Abstract Model

The planner incrementally constructs an abstract model containing the regions

along with a set of potentially useful trajectories for each region. Trajectories are

considered useful if they achieve a goal, or result in a transition between regions.

Algorithm 10 shows the procedure for exploring and extending the model start-

ing from region R. The planner first explores R, then recursively explores all regions

reachable from R. A region is not explored until the planner finds a way to reach it.

For each exploration step, the planner selects a starting state s in the current

region R and selects a control policy π = πi(θ) for some applicable πi ∈ Π with

parameters θ. Policy selection may be entirely random, or may be biased toward

potentially more useful policies based on knowledge of the problem domain.

The planner then simulates applying policy π from s and evaluates the resulting

trajectory τ . If the trajectory achieves any goals or results in a transition to another

region, the tuple 〈τ, π〉 is saved with the region.
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Algorithm 10 Explore〈R,model〉
1: model.Regions← model.Regions ∪R
2: loop GetEffort(R,model) times
3: s← SelectState(R,model)
4: π(θ)← SelectPolicy(s,model)
5: τ ← SimulatePolicy(s, π(θ))
6: s′ ← Last(τ)
7: R′ ← Region(s′)
8: if Goals(τ) 6= ∅ or R′ 6= R then
9: model.T rajectories(R).Add(〈τ, π(θ)〉)

10: if R′ 6= R and R′ /∈ model.Connections(R) then
11: model.Connections(R).Add(R′)

12: for R′ ∈ model.Connections(R) do
13: Explore(R′,model)

The number of iterations controls the level of exploration effort for each region

and can allow the planner to focus on the most relevant regions.

5.4.3 Engineered Exploration in Geometry Friends

GF provides a physics simulator which is used to determine the result of ap-

plying a control policy from a state. The game provides a simulation state for the

current state to the agent at each time step. Simulation states can be saved and

copied, but cannot be created for arbitrary states. As a consequence, simulation is

limited to a forward search of states reachable from the agent starting state.

For the initial implementation of the planner for GF, the state and policy sam-

pling in lines 3-4 of Algorithm 10 uses the following highly-engineered strategy that

combines hand-coded geometric analysis with random exploration.

5.4.3.1 Potential Segment Transitions

For each pair of segments (sfrom, sto), a set of possible transitions is identified.
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Potential jump transitions are identified by evaluating the predicted trajectory

of jumping from sfrom at (x, ẋ) for a range of x and ẋ values. A trajectory is assumed

to be a simple parabolic path determined by the starting location, velocity, and gravity

in the y direction. If the trajectory intersects sto then a potential transition is created

using a composite policy of [RollTo(x, ẋ), JumpAndStop].

Potential roll-off transitions are identified by evaluating the predicted trajectory

of rolling off either end of sfrom for a range of ẋ values. If the trajectory intersects sto

then a potential transition is created using a composite policy of [RollTo(xend, ẋ), FallAndStop].

Potential roll-up transitions are identified by checking if either end of sto is near

sfrom with 0 < yto − yfrom < ymaxRollUp. If so, then potential transitions for a range

of ẋ values are created with policy RollUp(xto, yto, ẋ) where (xto, yto) is the nearest

corner of sto.

The simplistic predicted trajectories for jump and roll-off transitions completely

ignore obstacles and the potential transitions often cannot reach sto.

5.4.3.2 Potential Goal Collects

Potential jumps to collect goals are identified in a similar way as jump tran-

sitions. For every pair (s, gi) of segment s and goal gi, potential jump collects are

identified by evaluating the predicted trajectory of jumping from (x, ẋ) for a range of

x and ẋ values. If the trajectory intersects gi then a potential collect is created using

a composite policy of [RollTo(x, ẋ), JumpAndStop].

Likewise, potential roll-offs to collect goals are identified by evaluating the pre-

dicted trajectory of rolling off either end of s for a range of ẋ values. If the tra-

jectory intersects gi then a potential collect is created using a composite policy of

[RollTo(xend, ẋ), FallAndStop].
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If a goal can be reached by directly rolling to a point x on s, then a roll collect

is created with policy RollTo(x, 0). In this case the collect is guaranteed to succeed.

5.4.3.3 Exploring Jumps

Using only the potential transitions and collects identified above, the planner

will fail to find many solutions. Since the potential trajectories assume an obstacle-

free environment the planner will not identify many useful policies, for example those

that require collisions with obstacles.

Random exploration is required to find useful policies not identified by the initial

analysis. This is accomplished using exploring jumps for every segment s over the full

range of possible (x, ẋ) values with a composite policy of [RollTo(x, ẋ), JumpAndStop].

Exploring jumps are randomly selected without predicting the outcome and can even-

tually find transitions and collect goals that otherwise would not be found.

When exploring a segment, the planner randomly selects from the potentially

useful policies and exploring jumps identified in the initial analysis. It then simulates

executing each selected policy starting from a previously recorded simulation state in

the segment. The first time the planner reaches a segment, the simulation state is

saved with the segment to enable subsequent exploration from that point.

5.4.4 Search

Heuristic search is used to find a solution in the form of an abstract plan as

shown in Algorithm 11.

Nodes in the search correspond to 〈s,G〉 where s ∈ S and G is the set of

remaining goals. When a node is expanded, successor nodes are generated for each

saved trajectory 〈τt, πt〉 associated with the node region. For each successor the

planner must first find a local trajectory from the current node state s to the start of
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Algorithm 11 Search〈sinit,G,model〉
1: openList← EmptyPriorityQueue()
2: h← CalculateHeuristic(sinit)
3: openList.Insert(RootNode(sinit,G, 0, h))
4: while not timeout and not openList.IsEmpty() do
5: node← openList.Pop()
6: if node.Goals = ∅ then
7: return CreatePlan(node)

8: s← node.State
9: R← Region(s)

10: for 〈τt, πt〉 ∈ model.T rajectories(R) do
11: 〈τs, πs〉 ← GetTrajectory(s,First(τt))
12: τ ← τs + τt
13: π ← CompositePolicy(πs + πt)
14: s′ ← Last(τ)
15: G′ ← G −Goals(τ)
16: cost← node.Cost+ Cost(τ)
17: h′ ← CalculateHeuristic(s′)
18: succ← ChildNode(node, π, s′, G′, cost, h′)
19: openList.Insert(succ)

20: return ∅

the saved trajectory First(τt). This is guaranteed possible by the region condition

that every state is reachable from every other state using a single policy.

The successor node then combines the local and saved trajectories, and removes

any remaining goals achieved by the combined policy.

A complete solution is found when the search selects a node with no remaining

goals. An abstract plan ϕ consisting of a sequence of states and control policies

[〈s0, π0〉 ... 〈sn, πn〉] is obtained by tracing the ancestors of the solution node back to

the initial node.

Some implementation details are not shown for brevity. An important consid-

eration is that equality checking for nodes is only approximate. This controls the

branching factor by limiting the number of nodes for each region. For example, the
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number of nodes can be minimized by specifying 〈s,G〉 ≈ 〈s′, G′〉 ⇐⇒ Region(s) =

Region(s′) ∧G = G′. This reduces the search complexity but produces less optimal

solutions since it ignores differences in cost-to-go for node states in the same region.

This trade-off can be balanced by partitioning large regions into smaller sub-regions

for the purpose of node equality checking.

As usual in heuristic search, nodes in the open list may be sorted using any

weighted combination of the cost-to-reach (g) and cost-to-go (h) estimates.

The search also keeps track of the best node found so far, i.e. one with the

fewest remaining goals and the lowest cost. This node may be used to generate a

partial plan if a complete plan is not found.

For GF a variety of heuristic functions h(s) have been tested but simply using

h(s) = 0 is an effective choice, which essentially reduces planning to breadth-first

search based on cost. Exploration in this instance requires on the order 102 more

time than planning so it is not worth computing a more informative heuristic. Nodes

in the search correspond to 〈R,C〉 where R is a segment region and C is the set of

remaining collectibles.

5.4.4.1 Risk Avoidance

Sometimes the planner finds policies that appear useful in simulation but are

unreliable during plan execution. An example in GF is a plan that requires the agent

to bounce off a corner. In simulation the behavior is deterministic and reliable, but

during game execution small variations in the agent position and velocity result in

widely divergent trajectories after hitting the corner. At best, this wastes time re-

planning from an unexpected state. At worst, it leaves the agent stuck in a dead-end

unable to finish the problem. Thus, trajectories that hit corners have a much higher

risk of failure.
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To address this problem, a function GetRiskPenalty(π, τ) evaluates the risk

of failure for a given policy trajectory and assigns a cost penalty based on the risk.

During search the Cost(τ) function includes the risk penalty so the agent tends to

avoid risky trajectories.

Using the risk penalty the GF agent is less likely to fail during plan execu-

tion and is better at avoiding dead-ends. However, the solutions found tend to be

slower than when it is not used. Furthermore the magnitude of the risk penalty is a

parameter that must be tuned.

5.5 Execution

The high level AGAgent control algorithm that interleaves planning and ex-

ecution is shown in Algorithm 12.

Algorithm 12 AGAgent〈S,A,G,Π〉
1: model← InitModel(S,A,G,Π,R)
2: while not IsSolved() do
3: s← GetCurrentState()
4: G← GetRemainingGoals()
5: ϕ← AGPlan(s,G,model)
6: for 〈si, πi〉 ∈ ϕ do
7: InitPolicy(πi, si)
8: while not IsFinished(πi) do
9: s← GetCurrentState()

10: a← GetAction(πi, s)
11: SelectAction(a)

12: if Failed(πi) then
13: Abort(ϕ)

Once an initial plan has been found, the agent starts execution by selecting

actions using the first policy in the plan until the policy completes. If the resulting
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state satisfies the preconditions for the next policy in the plan, the agent proceeds

with the next policy and so on until the entire plan has been completed.

If at any point a policy fails to complete with the expected preconditions for

the next policy, the plan is considered to have failed and the planner replans from

the current state, resulting in further exploration and a new search.

Any policy failures during execution are recorded so that the policy is not

selected in subsequent searches. This prevents the agent from repeatedly attempting

a policy that succeeds in simulation but fails during actual execution.

If the planner fails to find a complete solution within a specified timeout period,

the agent proceeds with the best partial plan found so far.

The circle agent for GF is implemented using AGAgent.

5.5.1 Optimizations

Using the provided control policies the GF agent is able to find good quality

plans and solve all levels tested. However, execution of the resulting plans is signifi-

cantly improved with minor modifications.

5.5.1.1 Early Policy Termination

In general, when executing a plan, the current policy can be terminated as soon

as the goals for the policy have been achieved and the preconditions for starting the

next policy are satisfied, i.e. the agent is in the attractor region for the next control

policy.

The GF agent slows down and stops between every step in the initial plan since

the JumpAndStop and FallAndStop policies bring the agent to a complete stop.

Stopping is useful during planning because it ensures the agent can come to a full

stop on a segment and therefore can reach any other point on the segment. Yet
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during plan execution, stopping is unnecessary once we reach the target segment. As

a result, the agent can proceed immediately with the next policy when it reaches the

next segment, without coming to a stop. The resulting motion is much faster and

smoother.

5.5.1.2 Redundant Policies

If a plan has two policies in sequence and executing the second policy achieves

the same goals as the first policy, the first policy is redundant and can be removed

from the plan.

In GF this occurs when the agent uses RollTo to collect a goal on the current

segment, followed by a RollTo for a jump or fall transition. Eliminating the first

RollTo allows the agent to immediately accelerate for the jump or fall, while still

collecting the goal.

5.6 Results

The performance of AGAgent was evaluated on all Geometry Friends levels

from past competitions. Each competition has 10 levels and results are averaged over

10 runs per level. Results for the two best-performing agents from prior competitions

are provided for comparison in Figure 5.2.

AGAgent is able to solve all levels for every Geometry Friends competition

and outperforms all agents from prior competitions except one.

The KITAgent planner [43] achieves excellent performance by predicting ac-

curate trajectories using a fast hand-engineered forward simulation that emulates the

actual game physics. The agent initializes an exhaustive set of predicted trajectories

that are used directly for planning, enabling it to find efficient solutions quickly. No

further exploration is performed after initialization.
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Competition Goals
RRTAgent2017 KITAgent2017 AGAgent

Goals Time Goals Time Goals Time

2013 28 19.8 848.4 28 199.1 27.3 320.5

2014 28 14.8 547.1 27.8 189.4 27.4 292.5

2015 30 15 562.8 29.6 263.6 27.2 367.3

2016 35 17 973.9 34 432.1 32.9 601.9

2017 26 21.2 726.2 25.4 226.5 25.4 280.3

2019 27 22 736.6 24 237.3 26.9 342.3

Figure 5.2: Geometry Friends Results

KITAgent solves most levels faster than AGAgent. However, AGAgent

can solve some levels not possible with KITAgent. AGAgent uses the native

physics simulation provided by the game and can accurately predict the outcome of

any control policy from any state, whereas the KITAgent simulation is accurate

only for trajectories with no more than one obstacle collision. As a result AGAgent

can use a richer set of control policies applicable to a larger variety of problems, at

the cost of additional computation time. Furthermore, AGAgent utilizes random

sampling of control policies during exploration and can find solutions that would

otherwise not be considered. KITAgent does not perform random sampling at all.

Figure 5.3 shows a difficult level solvable by AGAgent but not KITAgent. The

tight passages and irregular surfaces require a series of collisions to navigate and the

hand-engineered simulation in KITAgent does not find a feasible path.

In addition to the KITAgent, performance is also compared with the RRTA-

gent. The RRTAgent planner [55] is based on RRT with the STP approach using

3 simple skills. While it manages to collect a majority of goals, it is the slowest of

the three planners.
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Figure 5.3: 2016 Level 1

5.7 Conclusions and Further Work

Initial experiments using standard sampling-based methods for kinodynamic

planning performed poorly in the GF domain. RRT-based planning using randomized

control strategies and macro-actions could find solutions only for the very simplest

problems. A key problem is the lack of an effective distance metric, leading the

planner to make poor decisions when selecting nodes in the tree. Another problem is

the lack of an effective steering mechanism to approach arbitrary sampled points in

free space.

Abstraction of the state space appears essential for this domain. Indeed, all

of the competitive entries in GF competitions from 2013-2019 have utilized similar

abstractions based on identifying flat navigable surfaces.
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The related works cited in Section 2.7 generally rely on abstractions based on

simple geometric decompositions of the workspace using triangulation or grid-based

approaches. These approaches are effective for general 2D and 3D agent navigation

when the planning state space is uniform, i.e. the agent has the same control actions

available at any point in free space and is equally maneuverable in all directions.

These conditions do not hold in the GF domain. The agent has direct control

over linear acceleration only when in stable contact with a surface and cannot ac-

celerate or jump when in free space not in contact with a surface. Furthermore, the

agent is subject to gravity in one dimension resulting in a non-symmetric state space

for planning.

An analysis of the 60 competition GF levels shows that the volume of useful

abstract states comprises only 4.5× 10−5 of the state space on average. Thus, naive

standard planning methods spend 99.99% of their time exploring states that are of

little use in this domain.

In contrast, the work presented here offers a general approach that defines

abstract states in relation to the available control policies rather than in terms of

geometric, domain-specific attributes. By focusing on identifying abstract states and

finding transitions between them, the planner is able to find good quality plans much

more quickly.

The competition agent described here uses a highly-engineered exploration

strategy tailored to the problem domain that does not take into account obstacles.

To reduce this need of hand-engineering, the following chapters will investigate tech-

niques that use sampling and machine learning techniques to provide efficient explo-

ration and facilitate the automatic formation of abstract states and useful control

policies. Chapter 6 presents an exploration strategy that uses predictive models to

avoid simulating policies that are unlikely to succeed based on the full problem state
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including obstacles. In addition a pure random exploration strategy is implemented

for comparison with the engineered strategy.

Lastly, this planner relies on a domain-specific hand-engineered identification

of the abstract states. Chapter 7 proposes a more general sampling-based approach

for identifying abstract states.
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CHAPTER 6

PREDICTIVE MODELS FOR EXPLORATION

6.1 Introduction

The GF competition agent described in Chapter 5 uses a highly-engineered

exploration strategy tailored to the problem domain in order to sample policies for

simulation.

While the implemented approach works reasonably well in practice, it has some

key shortcomings:

• The engineered analysis for selecting policies to sample and simulate is naive

and ignores obstacles. This leads to wasted time simulating many policies that

have little hope of success because the analysis makes false assumptions about

the obstacle configuration in the environment.

• The engineered analysis is limited and does not identify feasible policies with

trajectories that require collisions with obstacles.

• The engineered analysis itself is highly domain-specific and cannot be general-

ized.

This chapter seeks to address these shortcomings in two ways.

The first question explored is, can we learn to predict where a control policy

is likely to be useful within an abstract state? If so, can we use these predictions to

improve planning efficiency?

The second question explored is, how does a completely random exploration

strategy compare with the highly engineered strategy? Can predictive models improve

a random exploration strategy as well?
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6.2 Predictive Models

The first question considered is whether we can accurately predict when control

policies will be useful in a range of situations. To investigate this we evaluate the

following 5 models in this section:

• The Predict Goal model predicts whether applying a policy π(θ) from state s

can reach a specified goal g

• The Predict Region model predicts whether applying a policy π(θ) from state

s can reach a specified target region R′

• The Predict Useful model predicts whether applying a policy π(θ) from state s

can reach any goal or region not equal to the starting region

• The Predict Region-to-Goal model predicts whether applying a policy π from

region R can reach a specified goal g

• The Predict Region-to-Region model predicts whether applying a policy π from

region R can reach a specified target region R′

6.2.1 Model Architecture

Prediction of a control policy outcome is highly dependent on the location of

the agent, the goal, and the obstacles in the surrounding enviroment. Convolution

using input images of the workspace offers a promising approach to capture these

dependencies since physical workspaces are intrinsically 2D or 3D and the system

behavior is location-invariant. Using convolution enables a network to learn features

and spatial relationships that may occur anywhere in the workspace and offers a

natural way to represent obstacles and physically situated parameters such as the

agent and goal locations.
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All experiments used convolutional neural networks to learn the prediction func-

tions [38]. Each of the networks used a similar design, with a multi-channel input

image and a vector of input parameters.

6.2.2 Training Data

To obtain training data, a set of 10000 random GF levels were generated. Each

level contains between 2 and 4 platforms, each with a random size and location. In

addition, each level contains 100 randomly located goals.

Training samples were created using Algorithm 13. Random policy instances

were simulated for every abstract state region (segment) in each level. Each sample

records the start region and end region after applying the policy, as well as any goals

reached by the policy. An average of 1200 samples per level were created for a total

of approximately 1.2× 107 samples.

Algorithm 13 GeneratePolicySamples〈levels, samplingDensity〉
1: for level ∈ levels do
2: for R ∈ level.Regions do
3: loop GetSampleCount(R, samplingDensity) times
4: s← SelectRandomState(R)
5: π, θ ← SelectRandomPolicy(s)
6: τ ← SimulatePolicy(s, π(θ))
7: R′ ← Region(Last(τ))
8: SaveSample(s, π, θ, R,R′,Goals(τ))

6.2.3 Predict Goal Model

This model predicts whether applying an instance of a control policy starting

in a specified state will result in the agent reaching a specified goal.

The prediction function has the following form:
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PredictGoal(s, π, θ, goalLocation) 7→ [0..1]

where an output > 0.5 predicts the policy will achieve the specified goal.

Figure 6.1 shows the high-level network architecture. A 9-channel input image

is processed by 4 stacked convolutional layers using LeakyReLU(α = 0.2) activation

with a stride of 2, kernel size 3, and 32 filters each. A batch normalization layer

is included after each of the convolutional layers. The convolutional output layer is

then flattened and concatenated with a vector input, followed by a fully-connected

hidden layer of 1000 nodes. Lastly dropout (rate=0.2) is applied and connected to a

single sigmoid output node. Training uses a binary cross-entropy loss function with

the Adam optimizer with learning rate 1× 10−3.

The convolutional input images correspond to a rescaled global image of the

2D workspace as shown in Figure 6.2. Each image input channel encodes an input

parameter in the corresponding spatial location in the workspace image.

The 9 input channels assign the workspace pixel values as follows:

• Obstacles: 1 if occupied by an obstacle, else 0

• Agent Location: 1 if occupied by the agent, else 0

• Goal Location: 1 if occupied by the goal, else 0

• Agent X Velocity: ẋ if occupied by the agent, else 0

• Agent Y Velocity: ẏ if occupied by the agent, else 0

• JumpAndStop indicator: 1 if occupied by the agent and π = JumpAndStop,

else 0

• FallAndStop indicator: 1 if occupied by the agent and π = FallAndStop, else

0

• RollUp indicator: 1 if occupied by the agent and π = RollUp, else 0

• RollUp X Velocity: ẋtarget if occupied by the agent and π = RollUp, else 0
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Figure 6.1: Predict Goal Network Architecture

Network training consumes an infinite random sequence of goal prediction sam-

ples drawn from the training policy samples using Algorithm 14. The sequence ensures

uniform coverage and alternates positive and negative training samples to avoid the

negative sample bias which otherwise occurs since there are far more ways to fail to

achieve a goal than to succeed.

The network implementation used Keras and Tensorflow [1] [11]. The network

architecture and parameters were selected on the basis of limited informal testing and

have not been otherwise tuned.
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(a) Sample State (b) Obstacles Channel

(c) Agent Channel (d) Goal Channel

Figure 6.2: Convolutional Image Channels

6.2.3.1 Results

The network was trained using 9900 of the training levels with 100 levels used

only for evaluation. As shown in Figure 6.3, the model reaches 96.6% accuracy over

3000 training epochs.

It is worth noting there is no sign of overfitting for this model as the evaluation

accuracy closely tracks training accuracy. This appears to be a result of the extremely

large pool of training samples and suggests the batch normalization and dropout layers

in the network may not be needed.
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Algorithm 14 GenerateGoalSamples〈levels〉
1: isPositive← true
2: loop forever
3: level← SelectRandom(levels)
4: goal← SelectRandom(level.Goals)
5: if isPositive then
6: σ ← SelectRandom(σ ∈ level.PolicySamples : goal ∈ σ.Goals)
7: else
8: σ ← SelectRandom(σ ∈ level.PolicySamples : goal /∈ σ.Goals)
9: yield GoalSample(σ.state, σ.π, σ.θ, goal, isPositive)

10: isPositive← ¬isPositive

6.2.4 Predict Region Model

This model predicts whether applying an instance of a control policy starting

in a specified state will result in the agent reaching a specified target region.

The prediction function has the following form:

PredictRegion(s, π, θ, regionLocation) 7→ [0..1]

where an output > 0.5 predicts the policy will achieve the specified region.

The network architecture is the same as the Predict Goal network shown in

Figure 6.1 except the Goal Location channel input is replaced by a Region Location

channel:

Figure 6.3: Predict Goal Network Training Accuracy (Orange = training data, Blue
= evaluation data)
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• Region Location: 1 if occupied by the target region, else 0

Network training is similar to the Predict Goal model and consumes samples

generated by Algorithm 15.

Algorithm 15 GenerateRegionSamples〈levels〉
1: isPositive← true
2: loop forever
3: level← SelectRandom(levels)
4: R← SelectRandom(level.Regions)
5: if isPositive then
6: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.R 6= R ∧ σ.R′ = R)
7: else
8: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.R 6= R ∧ σ.R′ 6= R)

9: yield RegionSample(σ.state, σ.π, σ.θ, R, isPositive)
10: isPositive← ¬isPositive

6.2.4.1 Results

As shown in Figure 6.4, the model reaches 94.8% accuracy over 3500 training

epochs.

In contrast to the Predict Goal model, this model shows some overfitting as the

evaluation accuracy trails training accuracy. This reflects the smaller pool of training

samples since there are only 3 to 5 target regions on average per level vs. 100 goals

per level.

6.2.5 Predict Useful Model

This model predicts whether applying an instance of a control policy starting

in a specified state will be useful, i.e. will it result in the agent reaching any goal or

any region not equal to the starting region.

The prediction function has the following form:
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Figure 6.4: Predict Region Network Training Accuracy (Orange = training data, Blue
= evaluation data)

PredictUseful(s, π, θ, goalLocations, regionLocations) 7→ [0..1]

where an output > 0.5 predicts the policy will reach at least one of the goals or

regions.

The network architecture is the same as the Predict Goal network shown in

Figure 6.1 except the Goal Location channel input is replaced by 2 channels:

• Goal Locations: 1 if occupied by any goal, else 0

• Region Locations: 1 if occupied by any region, else 0

Network training is similar to the Predict Goal model and consumes samples

generated by Algorithm 16. One additional training parameter required for this model

is goalsPerSample. The generated training levels contain 100 goals per level, which

is far more than typical GF levels that contain 1-5 goals. To compensate for this, the

generator randomly selects a subset of 5 goals from the 100 available goals each time

a sample is generated.

6.2.5.1 Results

As shown in Figure 6.5, the model reaches 93.6% accuracy over 2400 training

epochs.
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Algorithm 16 GenerateUsefulSamples〈levels, samplesPerGoal〉
1: isPositive← true
2: loop forever
3: level← SelectRandom(levels)
4: G← SelectRandomSubset(level.Goals, samplesPerGoal)
5: if isPositive then
6: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.R 6= σ.R′∨|σ.Goals∩
G| > 0)

7: else
8: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.R = σ.R′∧|σ.Goals∩
G| = 0)

9: yield UsefulSample(σ.state, σ.π, σ.θ,G, level.Regions, isPositive)
10: isPositive← ¬isPositive

As with the Predict Goal model, this model shows no overfitting as the eval-

uation accuracy closely tracks training accuracy. This reflects the vastly expanded

training diversity introduced by selecting a random goal subset for each sample.

6.2.6 Predict Region-to-Goal Model

Up to this point the models have made predictions given a specific state s and

policy instance π(θ). In contrast, this model makes a broader prediction whether

Figure 6.5: Predict Useful Network Training Accuracy (Orange = training data, Blue
= evaluation data)
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applying a control policy π with any θ starting from any state in a specified region

will reach a specified goal.

The prediction function has the following form:

PredictRegionToGoal(regionLocation, π, goalLocation) 7→ [0..1]

where an output > 0.5 predicts whether any instance of the policy can reach the goal

starting from the specified region.

The network architecture is the same as the Predict Goal network shown in

Figure 6.1 but uses the following image channels:

• Obstacles: 1 if occupied by an obstacle, else 0

• Starting Region Location: 1 if occupied by the starting region, else 0

• Goal Location: 1 if occupied by the goal, else 0

• JumpAndStop indicator: 1 if occupied by the starting region and π = JumpAndStop,

else 0

• FallAndStop indicator: 1 if occupied by the starting region and π = FallAndStop,

else 0

• RollUp indicator: 1 if occupied by the starting region and π = RollUp, else 0

Network training is similar to the Predict Goal model and consumes samples

generated by Algorithm 17.

6.2.6.1 Results

As shown in Figure 6.6, the model reaches 95.1% accuracy over 1500 training

epochs.

The model is more prone to overfitting since the number of combinations of

starting regions and policy types is small compared to the possible number of starting

states.
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Algorithm 17 GenerateRegionToGoalSamples〈levels,Π〉
1: isPositive← true
2: loop forever
3: level← SelectRandom(levels)
4: goal← SelectRandom(level.Goals)
5: π ← SelectRandom(Π)
6: if isPositive then
7: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.π = π ∧ goal ∈
σ.Goals)

8: else
9: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.π = π ∧ goal /∈
σ.Goals)

10: yield RegionToGoalSample(σ.R, σ.π, goal, isPositive)
11: isPositive← ¬isPositive

6.2.7 Predict Region-to-Region Model

This model predicts whether applying a control policy π with any θ starting

from any state in a specified region will reach a specified target region.

The prediction function has the following form:

PredictRegionToRegion(regionLocation, π, targetRegionLocation) 7→ [0..1]

where an output > 0.5 predicts whether any instance of the policy can reach the

target region from the starting region.

Figure 6.6: Predict Region-to-Goal Network Training Accuracy (Orange = training
data, Blue = evaluation data)
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The network architecture is the same as the Predict Goal network shown in

Figure 6.1 but uses the following image channels:

• Obstacles: 1 if occupied by an obstacle, else 0

• Starting Region Location: 1 if occupied by the starting region, else 0

• Target Region Location: 1 if occupied by the target region, else 0

• JumpAndStop indicator: 1 if occupied by the starting region and π = JumpAndStop,

else 0

• FallAndStop indicator: 1 if occupied by the starting region and π = FallAndStop,

else 0

• RollUp indicator: 1 if occupied by the starting region and π = RollUp, else 0

Network training is similar to the Predict Goal model and consumes samples

generated by Algorithm 18.

Algorithm 18 GenerateRegionToRegionSamples〈levels,Π〉
1: isPositive← true
2: loop forever
3: level← SelectRandom(levels)
4: R′ ← SelectRandom(level.Regions)
5: π ← SelectRandom(Π)
6: if isPositive then
7: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.π = π ∧ σ.R 6= R′ ∧
σ.R′ = R′)

8: else
9: σ ← SelectRandom(σ ∈ level.PolicySamples : σ.π = π ∧ σ.R 6= R′ ∧
σ.R′ 6= R′)

10: yield RegionToRegionSample(σ.R, σ.π,R′, isPositive)
11: isPositive← ¬isPositive
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Figure 6.7: Predict Region-to-Region Network Training Accuracy (Orange = training
data, Blue = evaluation data)

6.2.7.1 Results

As shown in Figure 6.7, the model reaches 95.1% accuracy over 300 training

epochs.

The model is the most prone to overfitting since there are relatively few com-

binations of starting and target regions per level in the training data.

6.3 Predictive Engineered Exploration

Using the models developed in Section 6.2, can we improve exploration efficiency

in the abstraction-guided planning algorithm? Policy simulations are relatively ex-

pensive for complex physical systems and require sequential computation. Inference

in predictive models is relatively fast and can take advantage of parallelized GPU

computation.

The engineered exploration described in Section 5.4.3 spends much of its time

running policy simulations that fail to achieve anything useful. To reduce this wasted

simulation time, Algorithm 19 modifies the Explore algorithm to skip simulation of

policies that are unlikely to succeed.
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Algorithm 19 PredictiveExplore〈R,model, predictThreshold〉
1: model.Regions← model.Regions ∪R
2: loop GetEffort(R,model) times
3: repeat
4: s← SelectState(R,model)
5: π(θ)← SelectPolicy(s,model)
6: until PredictSuccess(s, π(θ)) > predictThreshold
7: τ ← SimulatePolicy(s, π(θ))
8: s′ ← Last(τ)
9: R′ ← Region(s′)

10: if Goals(τ) 6= ∅ or R′ 6= R then
11: model.T rajectories(R).Add(〈τ, π(θ)〉)
12: if R′ 6= R and R′ /∈ model.Connections(R) then
13: model.Connections(R).Add(R′)

14: for R′ ∈ model.Connections(R) do
15: Explore(R′,model)

To test the approach, the engineered exploration strategy for GF was mod-

ified to use the ExplorePredictive algorithm. PredictSuccess uses the GF

predictive models developed above as follows:

• When a potential jump or roll collect is selected, the Predict Goal model predicts

whether the policy will collect the specified goal.

• When a potential jump or roll transition is selected, the Predict Region model

predicts whether the policy will result in a transition to the target segment.

• When an exploring jump is selected, the Predict Useful model predicts whether

the exploring jump will collect any goals or transition to another segment.

6.3.1 Experiments

Each exploration strategy was evaluated on the 60 competition GF levels from

2013-2019. Results are averaged over 10 runs per level.
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500 planning steps were performed for each test. Each step executes lines 5-9

of Algorithm 9, performing an Explore update with a budget of 100 simulations,

followed by a Search for the best plan using the current abstract model. The best

(shortest) plan time found, if any, was recorded for each step.

Since the GF levels vary considerably in difficulty and plan length, results use

a relative measure of plan quality that is evaluated at each step. For each GF level

plan quality Qlevel is defined in terms of plan time Tlevel as Qlevel = T ∗level/Tlevel where

T ∗level is the shortest plan time achieved in any test using any exploration strategy for

that level. When a plan has not been found, Tlevel is undefined and Qlevel = 0.

6.3.2 Results

Figure 6.8a compares plan quality as a function of simulation effort for the

Engineered and Engineered Predictive exploration strategies over the first 500 sim-

ulations. The results show that on average the predictive strategy can find better

quality plans with fewer simulations.

Figure 6.8b shows a scatter plot of the plan quality distribution after the first

500 simulations. Each point represents of the 60 levels tested. The x-axis is the mean

plan quality for the Engineered strategy and the y-axis is the Engineered Predictive

strategy. The plot shows most levels fall above the line indicating better quality using

the predictive strategy.

Figure 6.8c compares plan quality over 50000 simulations. While both strategies

asymptotically level off, the predictive strategy consistently performs better. Figure
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6.8d shows the 2 most difficult problems for the planner were only solvable using the

predictive strategy.

(a) Mean Plan Quality @ 500 Simulations (b) Levels Tested @ 500 Simulations

(c) Mean Plan Quality @ 50000 Simulations (d) Levels Tested @ 50000 Simulations

Figure 6.8: Engineered vs. Engineered Predictive Exploration
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6.4 Random Exploration

The engineered exploration described in Section 5.4.3 spends most of its effort

on potential transitions and goal collects that ignore obstacles, and only a small

amount of effort in random exploration. As a result it performs well in levels with

few obstacles but is less effective in more complex levels. It also incorporates hand-

engineered expert knowledge that may not be available in other domains.

For comparison we consider an entirely random exploration strategy. For each

simulation, the random strategy first selects a weighted random control policy type

π ∈ Π. The weights for each policy π roughly correspond to the proportion of

states in which each policy type is applicable. For GF, the policy weights were

set to {JumpAndStop : 5, FallAndStop : 2, RollUp : 1}. Then state s and policy

parameters θ are selected at uniform random.

6.4.1 Results

Figure 6.9a compares average plan quality as a function of simulation effort for

the Engineered and Random exploration strategies for all GF levels for 500 simula-

tions. Surprisingly, the random strategy dominates on average at all times except the

initial 100 simulations. Figure 6.9b shows that the engineered strategy does in fact

find better plans for close to half the levels but the random strategy finds solutions

for several levels the engineered strategy cannot.

Figure 6.9c compares average plan quality over 50000 simulations. The random

strategy continues to improve long after the engineered strategy levels off. Figure

6.9d shows the random strategy eventually finds better plans for almost all levels.
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These results illustrate the potential limitations of a hand-engineered approach.

By focusing on a subset of easily-predicted trajectories the agent makes quick initial

progress but the strategy is slow to find more difficult transitions.

(a) Mean Plan Quality @ 500 Simulations (b) Levels Tested @ 500 Simulations

(c) Mean Plan Quality @ 50000 Simulations (d) Levels Tested @ 50000 Simulations

Figure 6.9: Engineered vs. Random Exploration
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6.5 Random Predictive Exploration

Section 6.3 showed that the use of predictive models can improve plan quality

and reduce simulation time for engineered exploration sampling. Can they provide

the same benefit when using entirely random sampling?

To answer this question, the random exploration strategy for GF was modified

to use Algorithm 19. Each random policy sample is evaluated by Predict Useful model

to predict if it will collect any goals or transition to another segment.

6.5.1 Results

Figure 6.10a compares average plan quality as a function of simulation effort

for the Random and Random Predictive exploration strategies for all GF levels for

500 simulations. Using predictive models improves plan quality by 10-15% over the

base random strategy. Figure 6.10b shows the predictive strategy outperforms the

random strategy on almost all levels.

Figure 6.10c compares average plan quality over 50000 simulations. While the

difference between the strategies narrows asymptotically the predictive strategy con-

tinues to result in higher plan quality. Figure 6.10d shows that both random strategies

find among the highest-quality plans over time for most levels. This is as expected

since these strategies will eventually sample all possible useful policies within this

planning framework, given enough simulations.
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(a) Mean Plan Quality @ 500 Simulations (b) Levels Tested @ 500 Simulations

(c) Mean Plan Quality @ 50000 Simulations (d) Levels Tested @ 50000 Simulations

Figure 6.10: Random vs. Random Predictive Exploration
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6.6 Conclusions and Further Work

This chapter has shown that predictive models can be trained to accurately

estimate where policies are likely to succeed in a variety of situations. It also shows

that using these predictive models, one can substantially improve the quality of plans

found using a given amount of simulation resources.

The strategies used here apply the same exploration effort for every abstract

state found by dividing the simulation budget equally among the states. This ap-

proach can be inefficient since it continues to allocate resources to refining the model

in areas where the regions and goals have already been reached while other goals have

not been achieved. Focusing attention on relevant states likely to reach remaining

goals may further reduce simulation effort and exploration time to improve perfor-

mance. In particular, the Predict Region-to-Goal and Predict Region-to-Region mod-

els were not utilized in the exploration strategies here. Future strategies may utilize

these models to better identify abstract states to focus on.
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CHAPTER 7

LEARNING ABSTRACT REPRESENTATIONS

7.1 Introduction

The GF implementation described in Chapter 5 (and indeed, all other compet-

itive GF planners) relies on a highly domain-specific hand-engineered identification

of the abstract states. One problem with such engineering is that it is typically ex-

pensive in terms of the time and expertise required. Furthermore, in some domains

it may be far from obvious what a good abstraction should be.

This raises the question, is there a way to find useful abstract states automati-

cally using general guiding principles?

This work identifies useful abstract states as regions in which a single control

policy can reach any state in the region from any other state. Yet, we would like to

learn control policies from scratch as well. To learn a control policy we must define

the preconditions or domain of the policy, as well as the objective or goal of the policy.

This presents a chicken-and-egg problem. Abstract states define a structure for

learning control policies for transitions within abstract regions and between regions.

Yet control policies themselves provide the basis for identifying abstract states. Where

to begin?

This chapter describes a bootstrapping approach for identifying abstract states

starting with only random transition sampling and graph analysis. The identified

abstract states are then used as the basis for learning a control policy for transitions

within the abstract state.
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7.2 Identifying Abstract States

We begin by considering how to approximate connectivity in the state space.

Define approximate equivalence s ≈ s′ ⇒ ‖s − s′‖ < ε for a resolution value ε.

Thus for a given distance threshold of ε, one can create a directed transition graph

from a set of continuous state transition samples. The choice of Euclidean distance

is arbitrary but approximates transition connectivity reasonably well for sufficiently

small values of ε.

Our criteria for useful abstract states is that every state in an abstract region

is reachable from any other state by means of a single control policy. In other words,

given region R, ∀s, s′ ∈ R ∃τ : First(τ) ≈ s ∧ Last(τ) ≈ s′. Consequently in

a complete transition graph there is a cycle for every pair of states in an abstract

region.

This observation suggests the following initial strategy:

• Sample transitions randomly in the state space and build a transition graph.

• Find strongly connected components in the graph.

• Regions containing dense collections of cycles may be good candidate abstract

states.

7.2.1 Random Transition Sampling

To evaluate the proposed strategy, random transitions were generated for 1000

of the randomly generated GF levels described in Section 6.2.2. For each level, 1000

trajectories were generated each of length 500. At the simulation frame rate of 50Hz

each trajectory represents 10 seconds of game time.

The starting location for each trajectory is selected at uniform random, discard-

ing any locations that are in collision with obstacles. At each time step the action is

100



(a) Transitions (b) Strongly Connected Components

Figure 7.1: Uniform Random Transition Sampling

selected at uniform random from the set of available actions, A. In the GF domain,

A = {NoAction,RollLeft, RollRight, Jump}.

Figure 7.1a visualizes the transitions for a level.

7.2.2 Transition Graph

A transition graph was constructed from the transition samples and strongly-

connected components in the graph were found using Kosaraju’s linear time algorithm

[56]. Figure 7.1b shows the resulting connected components identified using the uni-

form random transitions for a distance threshold ε = 5.

The visualization shows that the random agent spends most of its time in ver-

tical trajectories in the air. There are virtually no rolling transitions on the platform

surfaces which we have seen are crucial to engineered control in this domain.

This behavior results from the extreme differences between actions in GF. The

Jump action immediately imparts a high y-velocity to the agent when in contact

with a surface. Since the random action policy selects Jump action at a rate of

approximately 12Hz the agent never has time to slow down and always has a high

y-velocity magnitude. The resulting set of random transitions is thus strongly biased
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toward large y-velocities. While it achieves fairly uniform coverage of locations it

does not obtain good coverage of velocities.

7.2.3 Energy-weighted Transition Sampling

In general we are interested in more uniform coverage of the state space and

reducing the bias shown in Figure 7.1b. To achieve more balanced sampling of states

across the full range of velocities for the agent we are motivated to consider the kinetic

energy of the agent.

In the GF domain we observe each of the actions imparts a change in energy

∆E for time step duration δ:

• NoAction reduces the energy as a result of friction. Using simplistic assump-

tions, the force on the agent from kinetic friction is Fk = µkFn where µk is the

coefficient of kinetic friction and Fn is the normal force. Work is force ·distance

thus we can approximate ∆E = −µkFn|ẋ|δ.

• RollLeft and RollRight each apply a constant torque to the agent. Given

torque τ and angular velocity ω, power P = 2πτω, thus ∆E = 2πτωδ.

• Jump immediately accelerates the agent to a y-velocity of ẏjump. For agent

mass M the instantaneous change in kinetic energy is ∆E = 0.5Mẏ2
jump.

These action differences suggest a modified approach for random action selection

such that the probability of selecting action a varies inversely with its change in energy,

i.e. P (a) ∼ 1/∆Ea.

Figure 7.2 shows the effect of using this energy-weighted action selection.

The results are more balanced and the agent spends much more time on plat-

forms.
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(a) Transitions (b) Strongly Connected Components

Figure 7.2: Energy-weighted Transition Sampling

7.2.4 Shortest Cycles Continuity

By definition, every node in a strongly-connected component is reachable from

any other node and thus might meet the criterion for an abstract region. Yet strongly-

connected components can span large and complex regions within which it is unlikely

a single control policy can reach any point. Figure 7.2b demonstrates this as a single

connected component spans almost the entire lower half of the level. In fact as the

density of transition sampling increases the connected components naturally grow and

merge, sometimes resulting in a single component spanning the entire navigable space.

Such large regions are unlikely to be useful as the basis for higher-level planning since

they are too complex.

Thus, cycles among all the nodes in an abstract state is a necessary but not

sufficient condition since the cycle trajectories must also be achievable by a control

policy of limited complexity.

Observing the connected components as shown in Figure 7.2 reveals clusters

of densely connected states connected by a sparse number of long trajectories. The

shortest cycle for nodes in these long trajectories includes a large number of nodes.

This suggests pruning the graph by removing these sparse long trajectories to yield
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more useful components, using the length of the shortest cycle as a criterion for

pruning.

Consider the shortest cycle containing state s with length ψ(s). Given the

system dynamics and drift, ψ(s) must naturally increase as the velocity of state s

increases. Thus a simple threshold value for ψ(s) alone is not a good criterion for

pruning since it would preclude high-velocity states from abstraction.

Yet observation of the graphs also reveals that the shortest cycles for neighbor-

ing nodes within a dense cluster are relatively smooth, i.e. |ψ(s) − ψ(s′)| < εψ for

edges (s, s′). Discontinuities where |ψ(s) − ψ(s′)| > εψ indicate that at least one of

the nodes is not in a highly-connected cluster.

Using this insight we can analyze each connected component C in the transition

graph and remove each edge (s, s′) where |ψ(s)−ψ(s′)| > εψ. Connected components

can then be identified in the pruned graph.

The results after pruning cycle discontinuities and identifying connected com-

ponents is shown in Figure 7.3. Figure 7.3a shows the location of nodes in the

components. Figure 7.3b shows an alternative view that displays a vertical line with

length equal to ẋ for each node. Positive ẋ values extend upwards and negative ẋ

values extend downwards. The velocity view reveals an interesting asymmetry as the

highest ẋ values tend to be on the right side and the most negative ẋ values tend to

be on the left. This suggests the agent is able to brake faster than it can accelerate.

The regions identified using this process correspond closely to the hand-engineered

abstract states shown in Figure 7.4 which were found using geometric analysis as de-

scribed in Section 5.4.1.
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(a) Location (b) X Velocity

Figure 7.3: Abstract State Candidates

7.3 Learning a Control Policy

The GF agent in Chapter 5 uses the RollTo(xtarget, ẋtarget) control policy for

transitions within abstract states. The policy was learned using value iteration in

only a few hours and provides high-quality control for the agent.

Yet even though the control policy is learned, it relies on a constructed learning

environment with several highly-engineered domain-specific elements:

• The rolling state st(xt, ẋt, xtarget, ẋtarget) on which the policy operates is precisely

abstracted from the full agent state (x, ẋ, y, ẏ, ω, O, C) and includes a precisely

abstracted goal (xtarget, ẋtarget).

(a) Location (b) X Velocity

Figure 7.4: Engineered Abstract States
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• The tabular representation using discretized states relies on expert engineering

to select good resolution values for discretization.

• Learning an accurate transition model requires a implementing a hand-engineered

curriculum to ensure the agent systematically obtains transition experiences

across the full range of rolling states that may be encountered.

While useful, this sort of learning may be difficult or impossible to implement

in other domains. Is there a more general approach that reduces the domain-specific

engineering effort?

This section investigates learning a control policy from scratch for navigating

within the candidate abstract regions identified in Section 7.2. The inputs to the

control policy are specified using only a direct representation of the state space.

The objective is to learn a control policy π(s) for states s = (scurrent, starget)

where scurrent is the current actual state of the agent and starget is a desired state

somewhere in the current abstract region. During each training episode starget remains

constant while scurrent updates at each time step according to the system dynamics.

The learning agent for the control policy was implemented using a Deep-Q

Network (DQN) architecture described below.

7.3.1 Agent Architecture

The Deep-Q Network (DQN) architecture [40] is basis of much recent work uti-

lizing deep convolutional neural networks with reinforcement learning. It has proven

highly effective for a wide range of challenging domains such as Atari video games

using no significant prior knowledge of the problem domain, and in some cases sur-

passing human expert performance.

DQN utilizes a variant of Q-learning [57], an off-policy model-free method that

directly learns an action-value function Q(s, a; θ) that approximates the value of tak-
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ing action a in state s using a convolutional neural network with parameters θ. This

type of network is called a Q-network.

Future rewards are discounted by a factor of γ per time step so that the total

return at time t is Rt =
∑∞

i=t γ
i−tri where ri is the reward at time i. For these

experiments γ = 0.99. Any optimal Q function Q∗ satisfies the Bellman equation:

Q∗(s, a) = Es′∼p(·|s,a)[r(s, a) + γmax
a′∈A

Q∗(s′, a′)] (7.1)

A greedy action in state s is one that selects the highest expected return, or

a∗ = argmaxa∈AQ
∗(s, a).

To increase stability and increase the likelihood of convergence of the network,

the DQN incorporates 2 copies of the Q-network, the primary network Q with pa-

rameters θ and an identical target network with parameters θ̄. θ is updated during

each batch update and is periodically copied to θ̄.

At each time step t the agent uses ε-greedy action selection such that the agent

selects a random action with probability ε, otherwise it selects the greedy action with

respect to Qθ. Each step (st, at, rt, st+1) is recorded in an experience replay buffer

containing the last 2.5× 106 experiences.

The network parameters θ are updated iteratively using batch stochastic gradi-

ent descent with the Adam optimizer, but θ̄ is held constant during updates. Gradient

descent minimizes the following loss function:

L = (rt + γmax
a′∈A

Qθ̄(st+1, a
′)−Qθ(st, at))

2 (7.2)

Target update values rt+γmaxa′∈AQθ̄(st+1, a
′) are clipped to the range [0..1000].

Each training update selects a batch of experiences (st, at, rt, st+1) at uniform

random from the replay buffer. The large replay buffer improves efficiency by reusing
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experiences and is crucial for reducing the correlation that arises from consecutive

experiences.

The reward function used is:

r(s)←


1000 if s is a terminal state

0 otherwise

(7.3)

A state s = (scurrent, starget) is a terminal state if ‖scurrent − starget‖ < εterminal.

Since rewards are sparse and received only when successfully reaching a target

state, the agent may go for long periods without receiving positive reward. Hindsight

experience replay [3] can speed up goal-directed training in these situations by adding

artificial experiences to the replay buffer that simulate pursuing goals selected from

the current episode. These experiences represent what could have happened for the

actual state/action transitions if the agent had a different goal closer to the current

state. For each actual experience (st, at, rt, st+1) recorded, the agent may record k

additional synthetic experiences (σ, at, r(σ
′), σ′) where σ = (st.current, g) and σ′ =

(st+1.current, g) with goal state g = s.current for a random state s that occurs after

time t in the current episode. The hindsight parameter k used was 1, resulting in an

equal proportion of real and synthetic hindsight experience.

The network structure is shown in Figure 7.5. The 7 input channels assign the

workspace pixel values as follows:

• Obstacles: 1 if occupied by an obstacle, else 0

• Agent Location: 1 if occupied by the agent, else 0

• Agent X Velocity: ẋ if occupied by the agent, else 0

• Agent Y Velocity: ẏ if occupied by the agent, else 0

• Goal Location: 1 if occupied by the agent target location, else 0
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Figure 7.5: Deep Q Network Architecture

• Goal X Velocity: ẋtarget if occupied by the agent target location, else 0

• Goal Y Velocity: ẏtarget if occupied by the agent target location, else 0

Each episode ends when the agent reaches the goal, or after 250 time steps.

7.3.2 Results

Figure 7.6 shows the average reward per episode for the best agent tested over

the course of approximately 1.8× 105 batch updates. The average reward approaches

600 which represents about 60% episode success rate since the reward is 1000 for

reaching the goal and 0 otherwise.

Figure 7.7 shows the average change in distance to the goal for the same agent

where ∆-distance= ‖sfinal−starget‖−‖sinitial−starget‖. Negative values for ∆-distance
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Figure 7.6: Deep Q Agent Average Reward

indicate the agent is moving closer to the goal in each episode and shows progress

in approaching goals even if the agent does not reach the goal precisely. The results

show the agent is clearly making progress at approaching goal states even though it

does not reach them 40% of the time.

Figure 7.8 compares the DQN agent (red) to a random agent (blue). The

histogram shows the Euclidean distance between the agent and goal at the end of

each episode for 2500 episodes. The DQN agent is over twice as likely to end close to

the goal as a random agent and is much less likely to end far from the goal.

Figure 7.7: Deep Q Agent ∆-distance
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Figure 7.8: Deep Q Agent End Distance vs. Random Agent

A small number of variations of the convolutional network architecture were

tested:

• Model A : Conv2D + ReLU

• Model B : Conv2D + ReLU + batch normalization

• Model C : Conv2D + ReLU + Conv2D 1x1 + ReLU

• Model D : Conv2D + ReLU + Conv2D 1x1 + ReLU + batch normalization

• Model E : Vector input only, no convolution or image input

The results are shown in Figure 7.9. For each agent the number of convolutional

filters is shown and the number of hidden nodes. All agents used hindsight experience

replay with k = 1 except for one.

The performance of the best agent is still far from optimal and the results

suggest some general guidelines for further improvement.

• Hindsight experience replay greatly improves learning for these agents. The

only agent tested without hindsight experience had the worst performance of
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Agent
Solved

%
Steps

Min
Distance

End
Distance

Delta
Distance

Random 26.8 187.2 86.1 186.8 77.1

A 32x32x32x32 H 500 58.8 137.7 56.1 84.0 -29.7

B 32x32x32x32 H 500 28.3 187.0 75.1 157.8 51.1

C 32x32x32x32x32x32 H 500 56.7 142.8 51.8 83.2 -21.9

C 32x32x32x32x32 H 500 57.2 143.5 56.1 91.1 -25.4

C 32x32x32x32 H 500 No Hindsight 32.4 180.3 73.9 178.6 70.0

C 32x32x32x32 H 500 50.0 154.4 38.4 66.5 -40.3

C 48x48x48x48 H 1000 55.0 150.5 40.7 68.3 -40.5

C 48x48x48x48 H 2000 57.7 143.4 34.3 55.3 -48.7

D 32x32x32x32 H 500 29.6 183.1 73.9 145.6 35.8

E H 1000x1000x1000x1000 46.8 152.5 41.8 75.5 -23.6

E H 1000x1000x1000 41.8 160.3 66.0 121.1 8.0

E H 1000x1000 40.9 159.9 75.3 171.0 59.9

E H 2500x2500 40.6 161.8 65.0 160.1 58.9

Figure 7.9: Deep Q Agent Mean Results 2500 Episodes

all agents, with an average End Distance from the goal only slightly less than

the random agent.

• Regularization in Q-networks can adversely affect performance. Models B and

D used batch normalization in the convolution layers and had among the worst

results of all agents tested, only marginally better than the random agent.

• Convolution yields better results in comparison to direct vector input. Model

E did not use convolution and had poor results overall.

• More complex models may be required. Model C added an extra 1x1 convolution

for each of the convolutional layers and had achieved consistently better results

than all other models. Furthermore the best agent tested had the largest number

of filters and hidden nodes of all the model C agents.
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7.4 Conclusions and Further Work

This chapter has demonstrated a process using random sampling and graph

analysis that yields candidate abstract states in GF that closely resemble the hand-

engineered abstractions created by human experts in competitive planners. In addi-

tion, a deep-Q learning agent with minimal domain-specific engineering demonstrated

ability to navigate within the regions identified.

This work is a first step towards planning using entirely learned abstract states

and control policies.

The work here has identified abstract states only for the GF domain. A priority

for future work is applying and evaluating the ability of the method to generalize for

other diverse domains.

Additional work may explore iteratively expanding and refining the initial ab-

stract states with focused transition sampling in the neighborhood of each state. An

area of interest is whether using we can use the learned control policy itself to better

define and expand the boundaries of the abstract regions.

The bootstrap process for identifying abstract states presented here is rela-

tively time-consuming and must be performed separately for each environment with

a unique obstacle configuration. Future work will investigate learning models to iden-

tify abstract states quickly and reduce or eliminate the sampling and graph analysis

required.

The objective of the agent control policy learned here is to reach other states

within the same abstract region. Future work will consider learning 1 or more ad-

ditional control policies that can transition from one region to another, which is a

requirement for abstract planning.

The Q-learning method used by DQN uses only 1-step backups for Q updates,

while the high frame rate means that rewards are often more than 100 steps distant.
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Together with the large state space, this results in very slow propagation of Q-values

for the agent policy. Advantage learning [25] is similar to Q-learning except that

it uses advantages rather than Q-values. Advantage learning can sometimes learn

orders of magnitude faster than Q-learning when using a function approximator,

particularly when the state changes for each time step are small. Further work will

evaluate whether advantage learning may be more efficient for this domain.

Further work will also refine and improve performance of the learning agent for

the GF control policy and explore potentially more efficient learning based on SARSA

or other on-policy methods that propagate rewards to distant states faster.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

This dissertation has investigated novel applications of machine learning to im-

prove the efficiency and quality of planning on both symbolic and continuous problem

domains. This chapter reviews the key contributions presented and suggests direc-

tions for future work.

8.1.1 Dynamic Heuristic Selection

A novel approach for planning based on heuristic search was presented, in which

the planner decides how to allocate computational effort based on estimates of search

progress. By observing heuristic search progress over a period of time, the plan-

ner extracts features of the search dynamics that are useful for learning and online

decision-making during planning. Given a set of training problems drawn from a

target problem distribution, and given a base set of domain-independent heuristic

planners, a predictive model is trained to estimate heuristic progress on problems in

the domain. After training, these estimates are then used to dynamically select the

most promising heuristic during the planning process. This is the first work that uses

a learned model of the heuristic search dynamics to dynamically select a heuristic

or planner during planning. Experimental results on planning benchmark problems

show that dynamic heuristic selection using the learned model can solve more prob-

lems than static approaches that select base planners before planning starts.
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Future work may explore further properties and applications of heuristic search

dynamics in planning. dh1 is a portfolio planner and the base heuristic planners are

entirely independent of one another. Search dynamics are used only for switching

between base planners. Still to be investigated is the use of search dynamics within

a base planner to select between multiple heuristics with shared open lists instead

of using fixed strategies such as alternation. This may improve performance if some

heuristics are more informative than others depending on the region of the search

space.

In dh1 the regression function is used solely for selecting a base heuristic planner

to execute. Another question is whether the regression estimator can be used to better

determine when a planner should utilize random exploration or a deep local search

in order to escape a local minima in conjunction with algorithms such as [65].

The window feature extraction function used here is hand-coded and fixed. An

open question is whether more effective features can be learned directly from the

data. The predictive models used in this work utilized support vector machines.

Deep neural networks that can learn useful features may be a better approach.

8.1.2 Balanced k-Nearest Neighbors

To address the problem of local neighborhood bias described in Section 2.8,

this work introduced two new algorithms for k-nearest neighbor (kNN) regression

and classification. Axis-balanced kNN and Box kNN compensate for non-uniform

training sample distribution by adjusting the weights of the k-nearest neighbors to

balance the influence of samples from opposing regions of space. Axis-balanced kNN

adjusts the weights of the k-nearest neighbors to approximate a balanced distribution

along each feature axis. Box kNN, in contrast, adjusts the weights of the k-nearest
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neighbors to include only the nearest neighbors in each feature axis direction. Neither

method requires additional parameters or tuning beyond that required by kNN.

Experiments using synthetic and real-world data demonstrate these methods

can improve accuracy in comparison to kNN. Axis-balanced kNN performs better

when training data is more dense and there is little to moderate noise. Box-kNN

tends to outperform the other approaches when training data is less dense and there

is little noise. When there is a high level of noise, or the intrinsic dimensionality of

the data is 10 or higher, standard kNN is likely the best choice.

The balancing approach presented here is performed solely along the feature

axes of the original sample data. To further improve performance, balancing in other

directions may be more effective, such as using whitened data. Another potential

improvement is to first globally transform the sample data using distance metric

learning methods for classification problems.

8.1.3 Abstraction-Guided Planning

This work presented an abstraction-guided kinodynamic planning algorithm for

multi-goal problems using control policies.

Rather than basing abstract states on a simple arbitrary geometric decomposi-

tion of space, the approach forms a useful abstraction of the state space in relation

to the control policies. Abstract states correspond to regions in the state space such

that any state is reachable from any other state in the region using one of the control

policies.

The planner explores reachable space using the control policies and builds a

directed graph of abstract states. Connectivity between abstract states is established

by applying control policies to states sampled from a region and recording transitions

to other abstract state regions or goal regions. The resulting graph is used to search
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for an abstract high-level plan that is dynamically feasible and achieves all of the

goals.

The algorithm was implemented and evaluated in a real-time planning agent

for the Geometry Friends competition held at the 2019 IEEE Conference on Games.

Competition results demonstrate planner performance is comparable to a more highly-

engineered domain-specific planner, and significantly outperforms a more general

sampling-based planner.

Further work will extend the GF implementation of AGAgent to support

planning for the Rectangle and Cooperative games. These variations of the game

competition change the action and state spaces and can provide additional insight

into the requirements for adapting the algorithm to new domains.

More broadly, an open question to be answered is how well the AGAgent

planner can generalize to other challenging domains that require dynamic interaction

with obstacles, such as foot step planning and wall climbing.

8.1.4 Predictive Exploration

The abstraction-guided GF competition agent uses a highly-engineered explo-

ration strategy tailored to the problem domain in order to sample policies for simu-

lation.

To improve upon the engineered strategy, this work learned accurate predictive

models for estimating how useful a control policy is likely to be in a range of situations.

These predictive models were then incorporated into the exploration process to avoid

simulating policies that have little chance of success.

Results show that augmenting the engineered exploration with the predictive

strategy results in improved plan quality compared to engineered exploration alone,

given the same amount of simulation resources.
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In addition, pure random exploration was also augmented with the predictive

strategy. Again, predictive exploration showed consistent improvement over the base-

line exploration strategy.

The strategies evaluated here all apply the same exploration effort for every

abstract state found by dividing the simulation budget equally among the states.

This approach can be inefficient since it continues to allocate resources to refining the

model in areas where the regions and goals have already been reached while other

goals have not been achieved. Focusing attention on relevant states likely to reach

remaining goals may further reduce simulation effort and exploration time to improve

performance.

8.1.5 Learning Abstract States

This work has proposed a novel approach using random sampling and graph

analysis for learning abstract states, with the goal of identifying useful state abstrac-

tions using only a general set of guiding principles.

The approach is shown to yield candidate abstract states in GF that closely re-

semble the hand-engineered abstractions used by competitive planners. In addition, a

deep-Q learning agent with minimal engineering demonstrated the ability to navigate

within the regions identified.

This work represents a first step towards hybrid symbolic/continuous planning

using entirely learned abstract states and control policies.

The work here has identified abstract states only for the GF domain. A priority

for future work is applying and evaluating the method for other diverse domains.

Additional work may explore iteratively expanding and refining the initial ab-

stract states with focused transition sampling in the neighborhood of each state. An
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area of interest is whether we can use the learned control policy itself to better define

and expand the boundaries of the abstract regions.

The bootstrap process for identifying abstract states presented here is rela-

tively time-consuming and must be performed separately for each environment with

a unique obstacle configuration. Future work will investigate learning models to iden-

tify abstract states quickly and reduce or eliminate the sampling and graph analysis

required.

The objective of the agent control policy learned here is to reach other states

within the same abstract region. Future work will consider learning 1 or more ad-

ditional control policies that can transition from one region to another, which is a

requirement for abstract planning.

The Q-learning method used by DQN uses only 1-step backups for Q updates,

while the high frame rate means that rewards are often many steps distant. Together

with the large state space, this results in very slow propagation of Q-values for the

agent control policy. Advantage learning [25] is similar to Q-learning except that it is

guided by relative advantage of actions rather than the Q-values directly. Advantage

learning can sometimes learn orders of magnitude faster than Q-learning when using

function approximation, particularly when the state changes for each time step are

small. Further work will evaluate whether advantage learning may be useful for this

problem.

Further work will seek to refine and improve performance of the learning agent

for the GF control policy and explore potentially more efficient learning based on

SARSA or other on-policy methods, as well as alternative neural network architec-

tures.
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