
i

DAS Page Replacement Algorithm

 By Ramya Danappa

Supervising Professor: Dr. Song Jiang

Presented to the Faculty of the Graduate School of The

University of Texas at Arlington in Partial Fulfillment of

the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

 May 2020

Supervising Committee:

Dr. Hao Che

Dr. Jia Rao

ii

Copyright © by Ramya Danappa 2020

All Rights Reserved

Acknowledgements

I would like to express my deepest appreciation and gratitude to my advisor, Dr. Song

Jiang, for giving me this opportunity to work with him and for his constant support and

guidance throughout my Master thesis. I feel extremely honored to be a part of system

lab, where I have had the opportunity to explore new horizons, which I never knew existed.

I am also extremely grateful to Dr. Hao Che and Dr. Jia Rao for accepting to be on the

thesis committee.

Finally, a huge thank you to my parents and my friends for their moral support and

encouragement in the graduation days and GOD, for his grace in me.

June 2, 2020

Abstract

There are different page replacement algorithms and yet there seems to be

some drawbacks in them, making no page replacement algorithm ideal. To

be one step closer to achieving the ideal algorithm it is vital to have a

maximum cache hit ratio and strong consistent across different workload.

In this paper we shall explore a new cache management policy called

“Dynamic and Stable page replacement algorithm” uses frequency and

recency importance dynamically”. The proposed page replacement

algorithm has overcome the drawbacks of the LRU (Least Recently Used)

algorithm in many scenarios and also overcome the drawbacks of LFU

(Least Recently Used).Like LRU can be easily polluted by a scan, that is

by a sequence of one-time use only page requests leading to decrease in

performance and also LFU does not pay attention to recent history.

The proposed algorithm has achieved consistent hit ratio by using the

fundamentals of page replacement algorithm which are: low recency and

high frequency of the blocks. To achieve this stability we have to integrate

the design principles of LRU and LFU in the cache and the blocks have

been placed blocks according to the hit on the block, the above mentioned

is done using simple computations.

Table of Contents

Acknowledgements.. iii

Abstract.. iv

List of Illustrations ..vi

Chapter 1: Introduction... 8

1.1 The LRU page replacement Algorithm and drawbacks……………………………………. 8

1.2 The LFU Page replacement Algorithm and drawbacks…………………………….………. 8

1.3 The optimal Page replacement Algorithm…………………………………………………… .8

Chapter 2: Related Work .. 10

Chapter 3: The DAS Page replacement Algorithm... 12

3.1. General Idea………. ... 12

3.2. The Partial DAS algorithm on LRU stack .. 13

3.3. The Partial DAS algorithm on LFU stack…... 13

3.4 Detailed description.. 13

Chapter 4: Performance Evaluation .. 17

4.1. Experiment Settings.. 18

4.2. Performance evaluation result………... 18

4.2.1. Performance for looping Pattern……... 21

4.2.2. Performance for Probabilistic Pattern.. 23

4.2.3 Performance for temporally Clustered Pattern………………………………………… 23

4.2.4 Performance for Mixed type Pattern……………………………………………………. 29

 4.2.5 Sensitivity analysis…………………………………………………………………………. 26

 4.2.6 Overhead analysis …………………………………………………………………………..26

Chapter 5: Conclusion... 28

Chapter 1: Introduction

1.1The LRU algorithm

For any input-output system to have performance stability it is very critical

that the cache block replacement algorithm be extremely efficient. The

simplest algorithm used to manage the cache data is the LRU.

The LRU algorithm ensures that when a block present in the cache is

accessed the block is moved to the top of the stack. When block not present

in the cache is accessed, the newly accessed block takes the place of the

least recent block in the cache.

Problems in Current LRU page replacement Algorithm

Despite the simplicity there have been many anomalies detected

within this algorithm. For instance, despite having a significant

increase in the cache size the hit rate only increases slightly. LRU

doesn’t perform well in weak localities such as regular pattern access

and access on blocks with distinct frequencies.

Here we have listed few of the LRU drawbacks:

• The LRU algorithm sequential scans can cause commonly

referenced blocks in the cache to be replaced. In an ideal page

replacement algorithm commonly referenced two blocks must

not be replaced by blocks that haven't been used.

• The LRU algorithm for loop access does not maintain a miss

rate which is close to the buffer space shortage ratio hence this

algorithm always removes the blocks that will be accessed the

soonest as these blocks have not been accessed recently.

1.2The LFU algorithm:

In contrast to the LRU algorithm, this algorithm computes the frequency of

access for every block. When the block present in the cache is accessed the

block’s frequency will increase, when a block not present in the cache is

accessed then the newly accessed block replaces the least frequency block

in the cache.

 Few problems present in LFU:

• While the LFU method may seem like an intuitive approach to

memory management it is not without faults. Consider an item

in memory which is referenced repeatedly for a short period of

time and is not accessed again for an extended period. Due to

how rapidly it was just accessed its counter has increased

drastically even though it will not be used again for a decent

amount of time. This leaves other blocks which may be used

more frequently susceptible to purging simply because they

were accessed through a different method.

• Moreover, new items that just entered the cache are subject to

being removed very soon again, because they start with a low

counter, even though they might be used very frequently after

that. Due to major issues like these, an explicit LFU system is

fairly uncommon; instead, there are hybrids that utilize LFU

concepts.

• LFU does not take into consideration the recency of the blocks.

1.3 The optimal page replacement algorithm:

The OPT algorithm is a theoretical concept which evicts the block from the

cache based on future access predictions of the blocks present in the cache,

this algorithm is hard to achieve as future predictions on the access can not

be determined.

Chapter 2: Related work

2.1 Offline Optimal

For a priori known page reference stream, Belady’s OPT that replaces the

page that has the most considerable forward distance is known to be OPT

in terms of the hit ratio. The policy OPT provides an upper bound on the

achievable hit ratio by any on-line policy.

 2.2 Recency Based Replacement:

 The policy LRU always replaces the least recently used page [13]. It dates

back at least to 1965, and may in fact be older. Various approximations and

improvements to LRU abound, see, for example, enhanced clock algorithm

[11] It is known that if the workload or the request stream is drawn from an

LRU Stack Depth Distribution (SDD), then LRU is the optimal policy [2].

LRU has several advantages; for example, it is simple to implement and

responds well to changes in the underlying SDD model. However, while

the SDD model captures “recency,” it does not capture “frequency”. To

quote from [12, p. 282]: “The significance of this is, in the long run, that

each page is equally likely to be referenced and that therefore the model is

useful for treating the clustering effect of locality but not the nonuniform

page referencing.”

2.3 Frequency Based Replacement:

 The Independent Reference Model (IRM) provides a workload

characterization that captures the notion of frequency. Specifically, IRM

assumes that each page reference is drawn in an independent fashion from

a fixed distribution over the set of all pages in the auxiliary memory. Under

the IRM model, policy LFU that replaces the least frequently used page is

known to be optimal. The LFU policy has several drawbacks: it requires

logarithmic implementation complexity in cache size, pays almost no

attention to recent history, and does not adapt well to changing access

patterns since it accumulates stale pages with high-frequency counts that

may no longer be useful. A relatively recent algorithm LRU-2 approximates

LFU while eliminating its lack of adaptivity to the evolving distribution of

page reference frequencies. This was a significant practical step forward.

The basic idea is to remember, for each page, the last two times when it was

requested, and to replace the page with the least recent penultimate

reference. Our Model has both frequency and recency, which cooperates

eviction of any block based on the frequency and recency.

Chapter 3: DAS page replacement algorithm

3.1 General Idea

In DAS (Dynamic and Stable) page replacement algorithm, we divide the

cache into two partitions, one holds the LRU blocks and the other holds the

LFU blocks. The LRU portion contains most recently used blocks, and their

frequencies will always be less than the minimum frequency in the LFU

portion frequency. LFU portion includes the most used blocks, and their

frequency is always larger than any blocks in the LRU portion.

 We divided the cache, where size in blocks is ‘c’, into a frequent part

and recent part in terms of their size required. The recent past, with its size

cLRU, is used to store most recently used blocks, and frequent part, with its

size cLFU, is used to store high frequently used blocks, where cLRU + cLFU = c.

3.2 The Partial DAS Algorithm based on LRU stack

The partial DAS algorithm is effectively built on the LRU stack model,

which is an implementation of the LRU structure. The LRU stack contains

c entries, each of which represents a block. Usually, c is the cache size in

the blocks. The DAS algorithm makes use of the LRU stack to keep track

of recency, and to maintain the frequency; it estimates the frequency of all

blocks. In contrast to LRU stack, it also keeps the frequency track. Still, this

frequency does not participate in the eviction of the LRU blocks, but these

frequencies helps to replace the least frequently used block in the LFU

portion of the cache. The LRU portion of stack performs the same as LRU

stack in operation, but it has a variable size. The DAS algorithm is partially

inspired by the observation of improper LRU replacement behavior. If a

block is evicted from the bottom often LRU stack, it means the block

occupies a buffer during the period. Why do we have to afford a buffer for

another long idle, when the block is loaded in the cache next time as an

LRU?

3.3 The Partial DAS algorithm based on LFU stack

The partial DAS algorithm is effectively built using the LFU stack model,

which is an implementation of the structure of LFU. The LFU stack

contains l entries, each of which represents a block, and each block has a

frequency count. Usually, l is the cache size in blocks. The DAS algorithm

keeps track of frequency in the LFU portion. These blocks in LFU relatively

have high-frequency value blocks when compared to the LRU portion

blocks. The block from the LFU will be replaced by the LRU block only if

the frequency of the block is less in the LFU portion. The main drawback

of LFU is that it ignores the recency of the block. If the block has higher

frequency then it has less chance in eviction even though it is not accessed

for a longer period. These limitations inspired us to use a partial stack of

LFU and partial stack as LRU.

Fig 1: Architecture of DAS algorithm

Let us consider A,B,D and E are blocks and FA,FB,FD and FE will be there

frequencies respectively. c will be the cache size cLRU cache of LRU portion

and cLFU cache of LFU portion. Where c= cLRU + cLFU.

3.4 Detailed Description

In the DAS algorithm, when a cache is set and a new block available and

stack is empty, then we fill the cache. Firstly, it fills the empty portion of

LRU, and then we fill the LFU portion of the stack. The block access in the

cache, then one of these cases performs:

Case 1: Block X is present in LFU portion:

This access is guaranteed to be hit in the cache. We increase the frequency

count of the block in LFU portion.

Case 2: Block X is present in LRU portion:

This access will be hit on the cache. Then we will update the frequency of

block in cache. The block is moved to the top of the LRU portion stack.

The block X has a possible chance to be part of the LFU portion in two

ways 1) If LFU assigned portion has free space available then add block to

LFU portion, 2)If the minimum frequency of the block in LFU portion is

less than the frequency of block X. Then these blocks exchange their

position.

Case 3: Block X not present:

This is miss, we need to add this new block to the free LRU portion. If LRU

portion is full then we evict the block from LRU portion. And new block

will be placed in top LRU portion and new frequency of that block is

created.

Chapter 4: PERFORMANCE

EVALUATION:

4.1 Experimental Settings

To validate our DAS algorithm and to demonstrate its strength, we use trace-

driven simulations with various types of workloads to evaluate and compare

it with other algorithms. We have adopted many application workload traces

used in previous literature, aiming at addressing the limits of LRU. We have

also generated a synthetic trace. Among these traces, cpp, cs, glimpse, and

Postgres are used in [6,7] (\cs" is named as \cscope" and \postgres" is named

as \postgres2" there), a sprite is used in [4], multi1, multi2, multi3 are used in

[5]. We briefly describe the workload traces here.

1. 2-pools is a synthetic trace, which simulates the application behavior of

example 3 in Section 1.1 with 100,000 references.

2. cpp is a GNU C compiler pre-processor trace. The total size of C source

programs used as input is roughly 11 MB.

3. cs is an interactive C source program examination tool trace. The total size

of the C programs used as input is roughly 9 MB.

4. glimpse is a text information retrieval utility trace. The total size of text

files used as input is roughly 50 MB.

5. postgres is a trace of join queries among four relations in a relational

database system from the University of California at Berkeley.

6. sprite is from the Sprite network le system, which contains requests to a le

server from client workstations for a two-day period.

7. multi1 is obtained by executing two workloads, cs, and cpp, together.

8. multi2 is obtained by executing three workloads, cs, cpp, and postgres,

together.

9. multi3 is obtained by executing four workloads, cpp, Gnuplot, glimpse,

and postgres, together.

Through an elaborate investigation, Choi et al. classify the le cache access

patterns into four types [4]:

Sequential references: all blocks are accessed one after another, and never re-

accessed;

Looping references: all blocks are accessed repeatedly with a regular interval

(period);

Temporally-clustered references: blocks accessed more recently are the ones

more likely to be accessed in the near future;

Probabilistic references: each block has a stationary reference probability, and

all blocks are accessed independently with the associated probabilities.

The classification serves as a basis for access pattern detections and for

adapting different replacement policies in their AFC scheme. For example,

LRU applies to sequential and looping patterns, LRU applies to temporally-

clustered patterns, and LFU applies to probabilistic patterns. Though our DAS

policy does not depend on such a classification, we would like to use it to

present and explain our experimental results. Because a sequential pattern is a

special case of the looping pattern (with an infinite interval), we only use the

last three groups: looping, temporally-clustered, and probabilistic patterns.

Policies LRU belong to the same category of replacement policies as DAS. In

other words, these policies take the same technical direction | predicting the

access possibility of a block through its own history access information. Thus,

we focus our performance comparisons between ours and the LRU policy. We

also include the results of OPT, an optimal offline replacement algorithm [2]

for comparisons.

4.2 Performance Evaluation Results

We divide the 9 traces into 4 groups based on their access patterns. Traces cs,

postgres, and glimpse belong to the looping type, traces cpp and 2-pools

belong to the probabilistic type, trace sprite belongs to the temporally-

clustered type and traces multi1, multi2, and multi3 belong to the mixed type.

For the policies with pre-determined parameters, we used the parameters

presented in their related papers. The parameter of the DAS algorithm, cLRU

and cLFU assigned 10% and 90% of cache size respectively.

4.2.1 Replacement Performance on Looping Patterns

Traces cs, glimpse, and postgres have looping patterns with long intervals. As

expected, LRU performs poorly for these workloads with the lowest hit rates

among the policies. Let us take cs as an example, which has a pure looping

pattern. Each of its blocks is accessed almost with the same interval. Since all

blocks with looping accesses have the same eligibility to be kept in the cache,

it is desirable to keep the same set of blocks in the cache no matter what blocks

are referenced currently. In the looping pattern, recency predicts the opposite

of the future reference time of a block: the larger the recency of a block is, the

sooner the block will be re-referenced. The hit rate of LRU for cs is almost

0% until the cache size approaches 1,400 blocks, which can hold all the blocks

referenced in the loop.

 Except for cs, the other two workloads have mixed looping patterns with

different intervals. LRU presents stair-step curves to increase the hit rates for

those workloads. LRU is not effective until all the blocks in its locality scope

are brought into the cache. For example, only after the cache can hold 355

blocks does the LRU hit rate of postgres have a sharp increase from 16.3% to

48.5%.

Fig 2: The hit rate curves of cs trace for the replacement algorithm

Fig 3: The hit rate curves of GLimpse trace for the replacement algorithm

Fig 4: The hit rate curves of Postgres trace for the replacement algorithm

We simulate the results show of DAS significantly outperforms all of the other
algorithms and its hit rate curves are very closely to those of OPT. Meanwhile,
show that the hit rates of CS, glimpse and postgres are closer to those of OPT
than the hit rates of LRU.

4.2.2 Replacement Performance on Probabilistic Patterns

According to the detection results in workload cpp exhibits probabilistic
reference pattern. The cpp hit rate in Figure 5 shows that before the cache size
increases to 100 blocks, the hit rate of LRU is much lower than that of DAS
for cpp. For example, when the cache size is 50 blocks, hit rate of LRU is
9.3%, while hit rate of DAS is 38.0%. This is because holding a major
frequency and recency together forms needs of about100 blocks. LRU can not
exploit frequency until enough cache space is available to hold all the recently
referenced blocks. However, the capability for DAS to exploit recency and
also frequency does not depend on the cache size. Workload 2-pools is
generated to evaluate replacement policies on their abilities to recognize the
long-term reference behaviors. Though the reference frequencies are largely
different between record blocks and index blocks, It is hard for LRU to
distinguish them when the cache size is relatively small compared with the

number of referenced blocks. This is because LRU takes only recency into
consideration eviction. In workload 2-pools, the blocks with high access
frequency and blocks with low access frequency are alternatively referenced,
thus no sign of an early point eviction can be detected.

Fig 5: The hit rate curves of cpp trace for the replacement algorithm

Fig 6: The hit rate curves of 2pools trace for the replacement algorithm

4.2.3 Replacement Performance on Temporally Clustered Patterns

Workload sprite exhibits temporally clustered reference patterns. The sprite

result in Figure 7 shows that the LRU hit rate curve smoothly climbs with the

increase of the cache size. Although there is still a gap between the LRU and

OPT, the slope of the LRU is close to that of OPT. Sprite is a so-called LRU-

friendly workload [14], which seldom accesses more blocks than the cache

size over a fairly long period. For this type of workload, the behavior of all

our policies should be similar to that of LRU, so that their hit rates could be

close to that of LRU. Before the cache size reaches 350 blocks, the hit rates of

our are slightly less than those of LRU but close to LRU. Because we have

frequent locality scope changes, and the slight negative effect of the extra

misses is minimal.

Fig 7: The hit rate curves of sprite trace for the replacement algorithm

4.2.4 Replacement Performance on Mixed Patterns

Multi1, multi2, and multi3 are traces with mixed access patterns. The authors

in [15] provide a detailed discussion of why their UBM shows the best

performance among the polices they have considered {UBM, SEQ, 2Q,

EELRU, and LRU. Here we focus on performance differences be-tween LIRS

and UBM. UBM is a typical spatial regularity detection-based replacement

policy that conducts exhaustive reference pattern detections. UBM tries to

identify sequential and looping patterns and applies LRU to the detected

patterns. UBM further measures looping intervals and conducts period-based

replacements. For unidentified blocks, LRU is applied. A dynamical buffer

allocation among blocks managed by different policies is employed. Without

devoting specific effort to specific regularities, we can also see that DAS is

stable and also performs better in all these traces.

Fig 8: The hit rate curves of multi1 trace for the replacement algorithm

Fig 9: The hit rate curves of multi2 trace for the replacement algorithm

Fig 10: The hit rate curves of multi3 trace for the replacement algorithm

4.2.4 Sensitivity Analysis on Partitioning LRU and LFU portion

DAS has one tuning parameters, i.e. partitioning the cache. By varying LRU

portion and LFU portion we can observe difference in hit ratio.We use the cs

(Fig11) to identify the changes in the DAS algorithm in different ratio portion.

LRU and LFU both lie in the same curve, whereas in DAS we can observe

implementing recency and frequency together form a stable and better-

caching approach.

We can also observe special feature in DAS that is inter-relation between

the frequency and recency. This mainly impact on the DAS algorithm. For

example, in figure 11, where we can observe the hit ratio increase when we

increase LFU portion. This unique feature is mainly because LRU portion is

always controlling in LFU entry blocks.

Fig 11: The hit rate curves of cs trace with different partition size of LRU and

LFU for the replacement algorithm

4.2.5 Overhead Analysis:

LRU and LFU are known for their simplicity and efficiency. Comparing the

time and space overhead of DAS and LFU, we show that DAS keeps the LFU

merit of low overhead. The time overhead of DAS algorithm is O(1), which

is almost the same as that of LFU with a few additional operations such as the

swapping the LRU block and LFU blocks.

Chapter 5: Conclusion

We have presented a new page replacement algorithm called DAS that is

dynamic. DAS is very simple to implement and has low space overhead with

minimum computation. We have empirically demonstrated that DAS

outperforms the LRU page replacement algorithm. The proposed algorithm is

dynamic has achieved stability in hit ratio by using the fundamentals methods

of page replacement algorithm which is: low recency and high frequency of

the blocks.

As future work, we are planning to implement the self-tunable parameter. That

helps to partition the cache into the LRU portion and LFU portion. We have

also observed in sensitivity analysis tunable parameter proportion of results.

Hence self-tunable parameter will help to achieve a better hit ratio.

 References
1. L.A. Belady, R.A. Nelson, and G.S. Shedler, “An Anomaly in Space-Time

Characteristics of Certain Programs Running in a Paging Machine,” Comm. ACM,

vol. 12, pp. 349-353, 1969

2. E.G. Coffman and P.J. Denning, Operating Systems Theory. Prentice-Hall, 1973.

3. P. Cao, E.W. Felten, and K. Li, “Application-Controlled File Caching Policies,” Proc.

USENIX Summer 1994 Technical Conf., pp. 171-182, June 1994.

4. J. Choi, S. Noh, S. Min, and Y. Cho, “Towards Application/FileLevel

Characterization of Block References: A Case for FineGrained Buffer

Management,” Proc. 2000 ACM SIGMETRICS Conf. Measuring and Modeling of

Computer Systems, pp. 286-295, June 2000

5. J. Choi, S. Noh, S. Min, and Y. Cho, “An Implementation Study of a Detection-Based

Adaptive Block Replacement Scheme,” Proc. 1999 Ann. USENIX Technical Conf.,

pp. 239-252, June 1999.

6. C. Ding and Y. Zhong, “Predicting Whole-Program Locality through Reuse-Distance

Analysis,” Proc. ACM SIGPLAN Conf. Programming Language Design and

Implementation, pp. 245-257, June 2003.

7. W. Effelsberg and T. Haerder, “Principles of Database Buffer Management,” ACM

Trans. Database Systems, pp. 560-595, Dec. 1984.

8. S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference Recency Set

Replacement Policy to Improve Buffer Cache Performance,” Proc. 2002 ACM

SIGMETRICS Conf. Measuring and Modeling of Computer Systems, pp. 31-42, June

2002.

9. V. Phalke and B. Gopinath, “An Inter-Reference Gap Model for Temporal Locality

in Program Behavior,” Proc. 1995 ACM SIGMETRICS Conf. Measuring and

Modeling of Computer Systems, pp. 291-300, May 1995.

10. G. Glass and P. Cao, “Adaptive Page Replacement Based on Memory Reference

Behavior,” Proc. 1997 ACM SIGMETRICS Conf. Measuring and Modeling of

Computer Systems, pp. 115-126, May 1997.

11. W. R. Carr and J. L. Hennessy, “WSClock – a simple and effective algorithm for

virtual memory management,” in Proc. Eighth Symp. Operating System Principles,

pp. 87–95, 1981.

12. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for

storage hierarchies,” IBM Sys. J., vol. 9, no. 2, pp. 78–117, 1970.

13. T. Johnson and D. Shasha, “2Q: A Low Overhead High Performance Buffer

Management Replacement Algorithm,” Proc. 20th Int’l Conf. Very Large Data

Bases, pp. 439-450, Sept. 1994.

14. C. Gniady, A.R. Butt, and Y.C. Hu, “Program Counter Based Pattern Classification

in Buffer Caching,” Proc. Sixth Symp. Operating Systems Design and

Implementation, pp. 395-408, Dec. 2004.

