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Abstract 
 
 

There are different page replacement algorithms and yet there seems to be 

some drawbacks in them, making no page replacement algorithm ideal. To 

be one step closer to achieving the ideal algorithm it is vital to have a 

maximum cache hit ratio and strong consistent across different workload. 

In this paper we shall explore a new cache management policy called 

“Dynamic and Stable page replacement algorithm” uses frequency and 

recency importance dynamically”. The proposed page replacement 

algorithm has overcome the drawbacks of the LRU (Least Recently Used) 

algorithm in many scenarios and also overcome the drawbacks of LFU 

(Least Recently Used).Like LRU can be easily polluted by a scan, that is 

by a sequence of one-time use only page requests leading to decrease in 

performance and also LFU does not pay attention to recent history. 

 

The proposed algorithm has achieved consistent hit ratio by using the 

fundamentals of page replacement algorithm which are: low recency and 

high frequency of the blocks. To achieve this stability we have to integrate 

the design principles of LRU and LFU in the cache and the blocks have 

been placed blocks according to the hit on the block, the above mentioned 

is done using simple computations. 
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Chapter 1: Introduction 
 
 
1.1The LRU algorithm 

For any input-output system to have performance stability it is very critical 

that the cache block replacement algorithm be extremely efficient. The 

simplest algorithm used to manage the cache data is the LRU.  

The LRU algorithm ensures that when a block present in the cache is 

accessed the block is moved to the top of the stack. When block not present 

in the cache is accessed, the newly accessed block takes the place of the 

least recent block in the cache. 

 

Problems in Current LRU page replacement Algorithm 

 

Despite the simplicity there have been many anomalies detected 

within this algorithm. For instance, despite having a significant 

increase in the cache size the hit rate only increases slightly. LRU 

doesn’t perform well in weak localities such as regular pattern access 

and access on blocks with distinct frequencies.  

 

Here we have listed few of the LRU drawbacks: 

• The LRU algorithm sequential scans can cause commonly 

referenced blocks in the cache to be replaced. In an ideal page 

replacement algorithm commonly referenced two blocks must 

not be replaced by blocks that haven't been used. 

• The LRU algorithm for loop access does not maintain a miss 

rate which is close to the buffer space shortage ratio hence this 

algorithm always removes the blocks that will be accessed the 

soonest as these blocks have not been accessed recently. 

 

 

 



  

1.2The LFU algorithm: 

 

In contrast to the LRU algorithm, this algorithm computes the frequency of 

access for every block. When the block present in the cache is accessed the 

block’s frequency will increase, when a block not present in the cache is 

accessed then the newly accessed block replaces the least frequency block 

in the cache. 

 

 Few problems present in LFU: 

• While the LFU method may seem like an intuitive approach to 

memory management it is not without faults. Consider an item 

in memory which is referenced repeatedly for a short period of 

time and is not accessed again for an extended period. Due to 

how rapidly it was just accessed its counter has increased 

drastically even though it will not be used again for a decent 

amount of time. This leaves other blocks which may be used 

more frequently susceptible to purging simply because they 

were accessed through a different method.  

• Moreover, new items that just entered the cache are subject to 

being removed very soon again, because they start with a low 

counter, even though they might be used very frequently after 

that. Due to major issues like these, an explicit LFU system is 

fairly uncommon; instead, there are hybrids that utilize LFU 

concepts.  

• LFU does not take into consideration the recency of the blocks. 

1.3 The optimal page replacement algorithm: 

 

The OPT algorithm is a theoretical concept which evicts the block from the 

cache based on future access predictions of the blocks present in the cache, 

this algorithm is hard to achieve as future predictions on the access can not 

be determined. 
 
 
 
 
 



  

 
 

Chapter 2: Related work 
 

2.1 Offline Optimal 

 

For a priori known page reference stream, Belady’s OPT that replaces the 

page that has the most considerable forward distance is known to be OPT 

in terms of the hit ratio. The policy OPT provides an upper bound on the 

achievable hit ratio by any on-line policy. 

 

 2.2 Recency Based Replacement: 

 

 The policy LRU always replaces the least recently used page [13]. It dates 

back at least to 1965, and may in fact be older. Various approximations and 

improvements to LRU abound, see, for example, enhanced clock algorithm 

[11] It is known that if the workload or the request stream is drawn from an 

LRU Stack Depth Distribution (SDD), then LRU is the optimal policy [2]. 

LRU has several advantages; for example, it is simple to implement and 

responds well to changes in the underlying SDD model. However, while 

the SDD model captures “recency,” it does not capture “frequency”. To 

quote from [12, p. 282]: “The significance of this is, in the long run, that 

each page is equally likely to be referenced and that therefore the model is 

useful for treating the clustering effect of locality but not the nonuniform 

page referencing.” 

 

2.3 Frequency Based Replacement: 

 

 The Independent Reference Model (IRM) provides a workload 

characterization that captures the notion of frequency. Specifically, IRM 

assumes that each page reference is drawn in an independent fashion from 

a fixed distribution over the set of all pages in the auxiliary memory. Under 

the IRM model, policy LFU that replaces the least frequently used page is 

known to be optimal. The LFU policy has several drawbacks: it requires 

logarithmic implementation complexity in cache size, pays almost no 

attention to recent history, and does not adapt well to changing access 



  

patterns since it accumulates stale pages with high-frequency counts that 

may no longer be useful. A relatively recent algorithm LRU-2 approximates 

LFU while eliminating its lack of adaptivity to the evolving distribution of 

page reference frequencies. This was a significant practical step forward. 

The basic idea is to remember, for each page, the last two times when it was 

requested, and to replace the page with the least recent penultimate 

reference. Our Model has both frequency and recency, which cooperates 

eviction of any block based on the frequency and recency. 
 
 
 
 
 



  

Chapter 3: DAS page replacement algorithm 

 
3.1 General Idea 

 

In DAS (Dynamic and Stable) page replacement algorithm, we divide the 

cache into two partitions, one holds the LRU blocks and the other holds the 

LFU blocks. The LRU portion contains most recently used blocks, and their 

frequencies will always be less than the minimum frequency in the LFU 

portion frequency. LFU portion includes the most used blocks, and their 

frequency is always larger than any blocks in the LRU portion.  

        We divided the cache, where size in blocks is ‘c’, into a frequent part 

and recent part in terms of their size required. The recent past, with its size 

cLRU, is used to store most recently used blocks, and frequent part, with its 

size cLFU, is used to store high frequently used blocks, where cLRU + cLFU = c.  

 

3.2 The Partial DAS Algorithm based on LRU stack 

 

The partial DAS algorithm is effectively built on the LRU stack model, 

which is an implementation of the LRU structure. The LRU stack contains 

c entries, each of which represents a block. Usually, c is the cache size in 

the blocks. The DAS algorithm makes use of the LRU stack to keep track 

of recency, and to maintain the frequency; it estimates the frequency of all 

blocks. In contrast to LRU stack, it also keeps the frequency track. Still, this 

frequency does not participate in the eviction of the LRU blocks, but these 

frequencies helps to replace the least frequently used block in the LFU 

portion of the cache. The LRU portion of stack performs the same as LRU 

stack in operation, but it has a variable size. The DAS algorithm is partially 

inspired by the observation of improper LRU replacement behavior. If a 

block is evicted from the bottom often LRU stack, it means the block 

occupies a buffer during the period.  Why do we have to afford a buffer for 

another long idle, when the block is loaded in the cache next time as an 

LRU? 

 

 

 



  

 

3.3 The Partial DAS algorithm based on LFU stack 

 

The partial DAS algorithm is effectively built using the LFU stack model, 

which is an implementation of the structure of LFU. The LFU stack 

contains l entries, each of which represents a block, and each block has a 

frequency count. Usually, l is the cache size in blocks. The DAS algorithm 

keeps track of frequency in the LFU portion. These blocks in LFU relatively 

have high-frequency value blocks when compared to the LRU portion 

blocks. The block from the LFU will be replaced by the LRU block only if 

the frequency of the block is less in the LFU portion. The main drawback 

of LFU is that it ignores the recency of the block. If the block has higher 

frequency then it has less chance in eviction even though it is not accessed 

for a longer period. These limitations inspired us to use a partial stack of 

LFU and partial stack as LRU. 

 



  

  
Fig 1: Architecture of DAS algorithm 

Let us consider A,B,D and E are blocks and FA,FB,FD and FE  will be there 

frequencies respectively. c will be the cache size cLRU cache of LRU portion 

and cLFU cache of LFU portion. Where c= cLRU + cLFU. 

 

 

 

 

 

 

 

 



  

3.4 Detailed Description  

 

In the DAS algorithm, when a cache is set and a new block available and 

stack is empty, then we fill the cache. Firstly, it fills the empty portion of 

LRU, and then we fill the LFU portion of the stack. The block access in the 

cache, then one of these cases performs: 

 

Case 1: Block X is present in LFU portion: 

 

This access is guaranteed to be hit in the cache. We increase the frequency 

count of the block in LFU portion.  

 

Case 2: Block X is present in LRU portion: 

 

This access will be hit on the cache. Then we will update the frequency of 

block in cache. The block is moved to the top of the LRU portion stack. 

The block X has a possible chance to be part of the LFU portion in two 

ways 1) If LFU assigned portion has free space available then add block to 

LFU portion, 2)If the minimum frequency of the block in LFU portion is 

less than the frequency of block X. Then these blocks exchange their 

position.  

 

 

Case 3: Block X not present: 

 

This is miss, we need to add this new block to the free LRU portion. If LRU 

portion is full then we evict the block from LRU portion. And new block 

will be placed in top LRU portion and new frequency of that block is 

created.  

 

 



   

Chapter 4: PERFORMANCE 

EVALUATION: 
  

4.1 Experimental Settings 

 

To validate our DAS algorithm and to demonstrate its strength, we use trace-

driven simulations with various types of workloads to evaluate and compare 

it with other algorithms. We have adopted many application workload traces 

used in previous literature, aiming at addressing the limits of LRU. We have 

also generated a synthetic trace. Among these traces, cpp, cs, glimpse, and 

Postgres are used in [6,7] (\cs" is named as \cscope" and \postgres" is named 

as \postgres2" there), a sprite is used in [4], multi1, multi2, multi3 are used in 

[5]. We briefly describe the workload traces here. 

 

1. 2-pools is a synthetic trace, which simulates the application behavior of 

example 3 in Section 1.1 with 100,000 references. 

 

2. cpp is a GNU C compiler pre-processor trace. The total size of C source 

programs used as input is roughly 11 MB. 

 

3. cs is an interactive C source program examination tool trace. The total size 

of the C programs used as input is roughly 9 MB. 

 

4. glimpse is a text information retrieval utility trace. The total size of text 

files used as input is roughly 50 MB. 

 

5. postgres is a trace of join queries among four relations in a relational 

database system from the University of California at Berkeley. 

 

6. sprite is from the Sprite network le system, which contains requests to a le 

server from client workstations for a two-day period. 

 

7. multi1 is obtained by executing two workloads, cs, and cpp, together. 

 



   

8. multi2 is obtained by executing three workloads, cs, cpp, and postgres, 

together. 

 

9. multi3 is obtained by executing four workloads, cpp, Gnuplot, glimpse, 

and postgres, together. 

 

Through an elaborate investigation, Choi et al. classify the le cache access 

patterns into four types [4]: 

Sequential references: all blocks are accessed one after another, and never re-

accessed; 

Looping references: all blocks are accessed repeatedly with a regular interval 

(period); 

Temporally-clustered references: blocks accessed more recently are the ones 

more likely to be accessed in the near future; 

Probabilistic references: each block has a stationary reference probability, and 

all blocks are accessed independently with the associated probabilities. 

 

 

The classification serves as a basis for access pattern detections and for 

adapting different replacement policies in their AFC scheme. For example, 

LRU applies to sequential and looping patterns, LRU applies to temporally-

clustered patterns, and LFU applies to probabilistic patterns. Though our DAS 

policy does not depend on such a classification, we would like to use it to 

present and explain our experimental results. Because a sequential pattern is a 

special case of the looping pattern (with an infinite interval), we only use the 

last three groups: looping, temporally-clustered, and probabilistic patterns. 

 

Policies LRU belong to the same category of replacement policies as DAS. In 

other words, these policies take the same technical direction | predicting the 

access possibility of a block through its own history access information. Thus, 

we focus our performance comparisons between ours and the LRU policy. We 

also include the results of OPT, an optimal offline replacement algorithm [2] 

for comparisons. 

 

 

 



   

4.2 Performance Evaluation Results 

 

We divide the 9 traces into 4 groups based on their access patterns. Traces cs, 

postgres, and glimpse belong to the looping type, traces cpp and 2-pools 

belong to the probabilistic type, trace sprite belongs to the temporally-

clustered type and traces multi1, multi2, and multi3 belong to the mixed type. 

For the policies with pre-determined parameters, we used the parameters 

presented in their related papers. The parameter of the DAS algorithm, cLRU 

and cLFU assigned 10% and 90% of cache size respectively.  

 

4.2.1 Replacement Performance on Looping Patterns 

 

Traces cs, glimpse, and postgres have looping patterns with long intervals. As 

expected, LRU performs poorly for these workloads with the lowest hit rates 

among the policies. Let us take cs as an example, which has a pure looping 

pattern. Each of its blocks is accessed almost with the same interval. Since all 

blocks with looping accesses have the same eligibility to be kept in the cache, 

it is desirable to keep the same set of blocks in the cache no matter what blocks 

are referenced currently. In the looping pattern, recency predicts the opposite 

of the future reference time of a block: the larger the recency of a block is, the 

sooner the block will be re-referenced. The hit rate of LRU for cs is almost 

0% until the cache size approaches 1,400 blocks, which can hold all the blocks 

referenced in the loop. 

 Except for cs, the other two workloads have mixed looping patterns with 

different intervals. LRU presents stair-step curves to increase the hit rates for 

those workloads. LRU is not effective until all the blocks in its locality scope 

are brought into the cache. For example, only after the cache can hold 355 

blocks does the LRU hit rate of postgres have a sharp increase from 16.3% to 

48.5%. 
 

 
 



   

 
 

Fig 2: The hit rate curves of cs trace for the replacement algorithm 
 

 
Fig 3: The hit rate curves of GLimpse trace for the replacement algorithm 
 
 



   

 
Fig 4: The hit rate curves of Postgres trace for the replacement algorithm 
 
We simulate the results show of DAS significantly outperforms all of the other 
algorithms and its hit rate curves are very closely to those of OPT. Meanwhile, 
show that the hit rates of CS, glimpse and postgres are closer to those of OPT 
than the hit rates of LRU. 
 
 

4.2.2 Replacement Performance on Probabilistic Patterns 

  
According to the detection results in  workload cpp exhibits probabilistic 
reference pattern. The cpp hit rate in Figure  5 shows that before the cache size 
increases to 100 blocks, the hit rate of LRU is much lower than that of DAS 
for cpp. For example, when the cache size is 50 blocks, hit rate of LRU is 
9.3%, while hit rate of DAS is 38.0%. This is because holding a major 
frequency and recency together forms needs of about100 blocks. LRU can not 
exploit frequency until enough cache space is available to hold all the recently 
referenced blocks. However, the capability for DAS to exploit recency and 
also frequency does not depend on the cache size. Workload 2-pools is 
generated to evaluate replacement policies on their abilities to recognize the 
long-term reference behaviors. Though the reference frequencies are largely 
different between record blocks and index blocks, It is hard for LRU to 
distinguish them when the cache size is relatively small compared with the 



   

number of referenced blocks. This is because LRU takes only recency into 
consideration eviction. In workload 2-pools, the blocks with high access 
frequency and blocks with low access frequency are alternatively referenced, 
thus no sign of an early point eviction can be detected. 

 
Fig 5: The hit rate curves of cpp trace for the replacement algorithm 
 
 

 
Fig 6: The hit rate curves of 2pools trace for the replacement algorithm 



   

4.2.3 Replacement Performance on Temporally Clustered Patterns 

 

Workload sprite exhibits temporally clustered reference patterns. The sprite 

result in Figure 7 shows that the LRU hit rate curve smoothly climbs with the 

increase of the cache size. Although there is still a gap between the LRU and 

OPT, the slope of the LRU is close to that of OPT. Sprite is a so-called LRU-

friendly workload [14], which seldom accesses more blocks than the cache 

size over a fairly long period. For this type of workload, the behavior of all 

our policies should be similar to that of LRU, so that their hit rates could be 

close to that of LRU. Before the cache size reaches 350 blocks, the hit rates of 

our are slightly less than those of LRU but close to LRU. Because we have 

frequent locality scope changes, and the slight negative effect of the extra 

misses is minimal. 
    

 
 

Fig 7: The hit rate curves of sprite trace for the replacement algorithm 
 
 
 
 
 
 



   

4.2.4   Replacement Performance on Mixed Patterns 

 

Multi1, multi2, and multi3 are traces with mixed access patterns. The authors 

in [15] provide a detailed discussion of why their UBM shows the best 

performance among the polices they have considered {UBM, SEQ, 2Q, 

EELRU, and LRU. Here we focus on performance differences be-tween LIRS 

and UBM. UBM is a typical spatial regularity detection-based replacement 

policy that conducts exhaustive reference pattern detections. UBM tries to 

identify sequential and looping patterns and applies LRU to the detected 

patterns. UBM further measures looping intervals and conducts period-based 

replacements. For unidentified blocks, LRU is applied. A dynamical buffer 

allocation among blocks managed by different policies is employed. Without 

devoting specific effort to specific regularities, we can also see that DAS is 

stable and also performs better in all these traces. 

 

 
Fig 8: The hit rate curves of multi1 trace for the replacement algorithm 



   

 
 
Fig 9: The hit rate curves of multi2 trace for the replacement algorithm 

 

 
Fig 10: The hit rate curves of multi3 trace for the replacement algorithm 

 



   

4.2.4   Sensitivity Analysis on Partitioning LRU and LFU portion 
 
DAS has one tuning parameters, i.e. partitioning the cache. By varying LRU 

portion and LFU portion we can observe difference in hit ratio.We use the cs 

(Fig11) to identify the changes in the DAS algorithm in different ratio portion. 

LRU and LFU both lie in the same curve, whereas in DAS we can observe 

implementing recency and frequency together form a stable and better-

caching approach. 

We can also observe special feature in DAS that is inter-relation between 

the frequency and recency. This mainly impact on the DAS algorithm. For 

example, in figure 11, where we can observe the hit ratio increase when we 

increase LFU portion. This unique feature is mainly because LRU portion is 

always controlling in LFU entry blocks.  

 
 

Fig 11: The hit rate curves of cs trace with different partition size of LRU and 

LFU for the replacement algorithm  

 

4.2.5 Overhead Analysis: 

 

LRU and LFU are known for their simplicity and efficiency. Comparing the 

time and space overhead of DAS and LFU, we show that DAS keeps the LFU 



   

merit of low overhead. The time overhead of DAS algorithm is O(1), which 

is almost the same as that of LFU with a few additional operations such as the 

swapping the LRU block and LFU blocks. 
 

Chapter 5: Conclusion 
 
 

 

We have presented a new page replacement algorithm called DAS that is 

dynamic. DAS is very simple to implement and has low space overhead with 

minimum computation. We have empirically demonstrated that DAS 

outperforms the LRU page replacement algorithm. The proposed algorithm is 

dynamic has achieved stability in hit ratio by using the fundamentals methods 

of page replacement algorithm which is: low recency and high frequency of 

the blocks. 

As future work, we are planning to implement the self-tunable parameter. That 

helps to partition the cache into the LRU portion and LFU portion. We have 

also observed in sensitivity analysis tunable parameter proportion of results. 

Hence self-tunable parameter will help to achieve a better hit ratio. 
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