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Abstract 

 

Using Graph Convolutional Network and Message Passing Neural Networks for Solving 

Unit Commitment and Economic Dispatch in a day ahead Energy Trading Market based 

on ERCOT Nodal Model. 

 

Pradnya Sanjay Gaikwad, MS 

The University of Texas at Arlington, 2020 

 

Supervising Professor: Dr. Ramez Elmasri 

Various machine learning applications will pre-process graphical representations 

into a vector of real values which in turn loses information regarding graph structure. Graph 

Neural Networks (GNNs) are a combination of an information diffusion mechanism and 

neural networks, which represent a set of transition functions and a set of output functions. 

Graph Convolution Network (GCN) is based on the optimized variant of CNN which 

operates on graph and is a scalable approach for semi-supervised learning on structured 

graph data. Message Passing Neural Networks (MPNNs) summaries the cohesions 

between many of the existing Neural Network models for structured graph data. This thesis 

proves the viability of semi-supervised learning GCN model and supervised learning 

MPNNs to solve the crucial problems like the Unit Commitment (UC) and Economic 

Dispatch (ED) for the energy market. Power System Optimizer (PSO), a MILP based 

solution which simulates energy market accurately, but is extremely reluctant to scale in 

both time and compute. This thesis aims at representing the complex structure of the energy 
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network using GNN and training the models to simulate the market with increased 

flexibility to scale in time and compute.  
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1. Introduction 

1.1. Energy trading market 

Energy trading markets are exactly like any other commodity markets. Wholesale 

energy is traded as commodities. Energy prices are driven by the market supply and 

demand of the energy. Higher demand higher the prices, higher the supply lowers the 

prices.  

Several external factors also affect the supply and demand of the energy. For example, 

any faults or outages in transmission lines can affect the supply of energy. Consider 

weather, when temperature is hot more energy is consumed for air conditioning, thus 

increasing the demand, and decreasing the supply due to transmission losses.  

 

1.2.  Role of ERCOT and Power System Optimizer (PSO) 

The Electric Reliability Council of Texas (ERCOT) manages the flow of electric power 

to Texas. It represents about 90% of Texas electric load. It provides a central place where 

generation is dispatched onto the grid. ERCOT’s primary responsibility is Reliability i.e. 

to match generation with demand and operate transmission system within established 

limits. 

Figure 1. shows the ERCOT’s Nodal market design for Texas state. The Nodal market 

is responsible for dispatching energy to follow the system demand. It also ensures sufficient 

Capacity is on-line to meet the forecasted demand. ERCOT’s congestion management 

system keeps transmission system operating within limits and avoiding congestion on 

transmission lines. 
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As the independent system operator for the region, ERCOT schedules power on an 

electric grid that connects more than 46,500 miles of transmission lines and 650+ 

generation units. 

 

Figure 1: ERCOT Nodal Market Design for Texas 

 

The main problem that ERCOT or any other energy market faces is Economic 

Dispatch and Unit Commitment. Unit commitment (UC) aims at optimizing the total cost 

of power generation in a specific period, by forming an adequate scheduling of the 

generating units. The economic dispatch (ED) problem concerns with finding how much 

power each unit should generate for a given demand, by minimizing the total operational 

costs. Unit Commitment and Economic Dispatch are crucial to meet generation 
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requirements and satisfy the real-time system demand and Day-Ahead market system 

demand.  

ERCOT uses Power System Optimizer (PSO) simulator for solving the above problem. 

Power System Optimizer (PSO) is a simulator that takes variables that defines 

supply and demand of energy and derives (simulates) the market prices for every hour by 

solving a mixed integer linear problem. It simulates the production cost and supports the 

modeling of multi-level, nested time intervals that simultaneously optimize energy and 

ancillary services dispatch and can simulate uncertainties.  

PSO's modeling approach is based on the use of Mixed Integer Programming (MIP) 

algorithms. We can give forecasted values for these variables (weather forecasts, 

transmission outages prediction) and simulate the market to understand the behavior of 

market in the future. Energy can be traded at an auction a day before (Day-Ahead Market) 

or on the very day it is generated and consumed (Real-Time spot market).  

The disadvantage of PSO that it is not time efficient and hence cannot be used to 

simulate market in real time. To simulate next 2 weeks of markets, PSO needs 90 minutes 

approximately. Another disadvantage of PSO is that it does not scale out. We need to scale 

out the computation manually meaning, we can ask the simulator to simulate 1 year of data 

in biweekly partition. Simulator in return runs the 26 biweekly market simulation as the 

year contains 26 bi-weeks and combines the result. Then, 26 outputs are merged to give 

final output. It will take approximately 150 mins to finish simulation of 1-year timeframe. 

We can also run the simulator to simulate 1 year of data without any partition where 
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simulator will run PSO in 1 big single run which will take 20 hours to finish and sometimes 

fail due to memory constraints. 

1.3.  Proposed Work 

Graph Neural Networks (GNNs) have developed as a fascinating application to a 

variety of problems. This thesis focuses on extending the application of GNN to simulate 

the unregulated energy market and solve the UC ED problem. The UC ED problem is 

heavily dependent on the structured graph data and GNN gives the ability to process the 

structured graph data and its spatial properties.  

Out of the various models available for GNN, this thesis experiments with supervised 

and semi-supervised models i.e. Message Passing Neural Network (MPNNs) and Graph 

Convolution Networks (GCNs). MPNN are famous for considering edge constraints along 

with node constraints as part of its convolution. CNNs work by extracting local properties 

of the data with use of local features which are shared across the complete graph. We will 

be leveraging above features of these models on our dataset to solve the UC ED problem 

and give better accuracy than the traditional MILP solution. 

To represent the energy market problem, we will be using the 7_Bus model that is 

provided to us by Vistra energy. It is an accurate, but small representation of what Vistra 

uses, and which is compatible with the PSO software. We are training our GNN models 

based on 1 month of data generated by PSO on the 7_Bus Model. The accuracy of our 

GNN models will be computed by calculating the Mean Squared Error (MSE) between 

PSO output and GNN outputs.  
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2. Motivation and Background 

We saw in chapter 1 the vastness of the energy trading market. There are multiple 

factors which affect the supply and demand of energy every day. It is thus a challenge to 

constantly balance out demand and supply of the energy. This section will focus on 

problems faced by ERCOT and the existing solutions for them. 

 

2.1. Unit Commitment (UC) 

One of the most important problem faced in the energy sector is Unit Commitment 

(UC). UC refers to finding optimal schedule and a production level for power system’s 

each generating unit over a given time period, subject to a given load forecast and spinning 

reserve constraints [1]. Altogether UC aims to balance demand with supply while 

optimizing costs.  

The total energy generation cost consists of start-up costs, shutdown costs, ramp-up 

cost, ramp-down cost, fuel costs. Solving UC determines the best possible commitment 

status for an injector, the start-up/shutdown sequences, and the power dispatch for all 

available units. The UC optimization problem has the following form [1]: 

Total production costs = Fuel cost + Start-up cost + Shutdown cost + Maintenance cost 

 

2.2. Economic Dispatch (ED) 

Economic dispatch (ED), playing an important role in the power system operation 

and planning, has received significant attention in recent years. The purpose of ED is 

to schedule the committed generating unit outputs. ED also minimizes the operating 
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cost and meet the load demand of a power system and satisfy all the constraints [2].  

The conventional solution methods for ED includes linear programming, Lagrange 

relaxation, nonlinear programming, quadratic programming, dynamic programming, 

etc.   

As discussed in ERCOT use a market simulator called as PSO, which provides an 

accurate solution to UC and ED problems. PSO helps to simulate market very accurately, 

however it fails to scale efficiently. Which makes it un-suitable for Real-Time trading. It 

takes longer to run, requires to be scaled out manually or even fail due to memory 

constraints.  
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3. ERCOT 7-Bus Model and its Components 

We introduced ERCOT and ISO in 1.2.  Role of ERCOT and Power System 

Optimizer (PSO). This chapter will describe in detail the 7-Bus Model which we used in 

our thesis provided by Vistra Energy. The main components of the models include the 

Areas, Injectors, Branches, Buses, etc. The following diagram show the 7-Bus Model. 

        

Figure 2 ERCOT 7-Bus Model and its Components 

 

3.1. Areas 

End users in the system are consumers that consume the energy produced and 

paying for it to maintain the balance. There can be millions and millions of consumers that 

are involved in the system. So, for abstraction these are grouped by geographical regions 

and each of this region is called “Area”. These can also be classified based on demand into 

“Load zones”.  
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An area is a geographical area with preferably non-commercial establishments and 

households. These are considered as a separate entity as the energy required here varies 

vastly depending on various constraints like weather, time of the day, events, festivals etc. 

Thus, these require different set of constraints than Load Zones. As shown in Figure 2 the 

model has 3 areas: 

a. E-City Area 

b. Munchkin Area 

c. Winkle Area 

All the above areas belong to a parent area which is the complete system in this case. The 

parent area is labelled as 0. 

3.2. Injectors 

The cycle starts from generators which generate energy to supply to the grid. These 

come in all shapes and sizes, require different fuels to run, differ in capacities, require to 

be maintained. Basically, there are a multitude of constraints that can be associated with 

each generation unit. These are also referred to as injectors since they are injecting the 

energy into the grid. As shown in Figure 2 the model has 5 injectors: 

a. Dorothy Gale 

b. Toto 

c. Won Wiz Oz 

d. Wicked Witch East 

e. Wicked Witch West 

The constraints for all the injectors are explained in the chapter 4 
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3.3. Nodes/Buses 

Node identifies physical connection to a transmission network. Every Node belongs to 

an Area. Injector dispatches power to its connected Node. A generator/injector can have a 

power-balance “Area” different from the area of its Node. An injector is unavailable if 

Node is not specified. Electrical Nodes are mapped to substations to support data 

management. 

Electrical Nodes are valid only when mapped to branches. Nodes are mapped when 

used to identify a branch “FrEnode” and “ToEnode”. 

3.4. Substation 

Substations are used to map Electrical Nodes. Substations belong to a given area and 

are mapped to a Node at a given time. 

3.5. Branches 

Branches are the transmission lines which connects one Node to another. As 

transmission lines have certain constraints similarly branches also have few constraints 

which are explained in chapter 4.1. Input Data Resistance is used to calculate losses, and 

Reactance is used to calculate sensitivities of branch flows to changes in power injections 

and phase-shifter angles. Branch limits are assumed to be physical limits that apply to flow 

in either direction 
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4. Data description 

4.1. Input Data 

4.1.1. AREA ID (ARA_ID) 

Field  Type  Description  

Area  char  {areas}  

Name  char  Long name  

ParentArea  char  {areas}  

Balance  bit  Power balance constraint enforced for area  

External  bit  External-area logic enforced  

 

Notes:  

1. Primary Key: (Area). ParentArea passed as text string. 

2. The default “system” area (Area = ‘0’) is always defined. It is enforced as a balancing area 

if Balance is not flagged for any area. 

3. Additional areas are always sub-areas of the system area “0”. Sub-areas can have power-

balance constraints enforced instead of or in addition to balancing constraints on the system 

area. Balance is automatically enforced for system area if not identified for any sub areas. 

4. When an area is flagged as External, it is modeled as having only aggregate load and 

generation. Injectors mapped to the area are ignored, and generation is the sum of the area 

load schedule (ARA_SCH_LOD) and interchange (IPR_ID). Note that external generators 

scheduled to meet internal loads (sometimes referred to as “dynamically scheduled”) 

should be mapped to the internal balancing area that they serve. 



 

 

 

11 

5. All areas must be a balance areas or child of a balance area, even if flagged as External.  

 

4.1.2. BRANCH ID (BRN_ID) 

Field  Type  Description  

Branch  char  {branches}  

Name  char  Long name  

FrEnode  char  { electrical nodes } starting node of branch (“from”)  

ToEnode  char  { electrical nodes } ending node of branch (“to”)  

Circuit  char  Circuit identifier for multi-circuit branches  

Voltage  float  (Kilovolt) Nominal voltage of branch  

Resistance  float  (per unit) Branch resistance R  

Reactance  float  (per unit) Branch reactance X  

NormalLimit  float  (MW) Normal bi-directional limit  

CtgLimit  float  (MW) Contingency bi-directional limit  

Solve  bit  Branch shift-factors solved and saved in case file  

Enforce  bit  Branch constraint is enforced in all periods  

Monitor  bit  Branch constraint is monitored when running feasibility 

analysis  

Switchable  bit  Identifies branch that may be opened  

Penalty  float  ($/MWh) Penalty for flow violation  

AngleLimit  float  (rad) Maximum difference in open-circuit voltage angles  
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HVDC  bit  Branch is high voltage direct current line  

CID  char  { Constraint IDs } name used to add path to set of Constraint 

IDs  

 

Notes:  

1. Primary Key: (Branch). FrEnode and ToEnode passed as text strings.  

2. Circuit is optional field used to identify branches of multi-circuit lines (i.e., “parallel” 

branches). PSO automatically identifies multi-circuit lines as those mapped to the same 

FrEnode and ToEnode, or mapped to nodes that are electrically equivalent. Branch must 

be a unique key, even when representing different circuits of the same line.  

3. Because Resistance and Reactance are “per unit” values, Voltage is not used. Resistance is 

used to calculate losses, and Reactance is used to calculate sensitivities of branch flows to 

changes in power injections and phase-shifter angles.  

4. Modeling marginal losses (with option “AddAreaLosses”) can have a significant impact 

on computation performance. Because losses are separately calculated for each line with 

positive Resistance, performance can be improved by limiting the number of lines with 

losses (i.e., by using Resistance = 0 for low-voltage lines).  

5. Branch limits are assumed to be physical limits that apply to flow in either direction. Limits 

that differ based on flow direction (such as when used to enforce voltage stability 

constraints or agreements between neighboring BAs) should be specified using paths.  

6. NormalLimit identifies default non-contingency limit (aka long-term or steady-state limit), 

and CtgLimit identifies default contingency limit (aka short-term or emergency limit). The 
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default CtgLimit cannot be more restrictive than the default NormalLimit but, when 

appropriate, more restrictive limits can be specified for specific contingency constraints 

(PTH_CTG). If NormalLimit = 0, limits are ignored. If CtgLimit = 0, NormalLimit is used 

as contingency limit.  

7. When Solve is flagged, shift factors are solved and stored in a “case file”. This allows all 

shift factors for the “core topology” to be solved up front where needed in the current or a 

future model. Branches need shift factors when reported, enforced, monitored, switched, 

associated with phase-shifter, or used in definition of path, contingency or losses. Once 

solved, these shift factors can be used in future runs without re-solving. When a branch is 

not in the case file but is flagged as Solve or is used where shift factors are needed, the case 

file is resolved.  

8. When Enforce is flagged, branch limit is enforced and flows in excess of the limit are 

penalized. When Monitor is flagged, flows are not calculated and limit is not enforced 

unless feasibility analysis is used (CYC_SAI). When “RunAnalysis” is flagged, branch 

flows are calculated and reported, and flows in excess of the limit are reported as violations 

without penalty. When neither Enforce nor Monitor is flagged, branch violations are not 

reported.  

9. The Switchable flag identifies branches that may be switched to define new topologies. 

Switchable branches are also identified when associated with an open-branch schedule 

(SCN_BRN_OPN or SCN_FCP_OPN) or optimized switch branch (SCN_FCP_OPT) in 

the PS library.  
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10. Use of Enforce, Monitor and Switchable flags should be minimized as these increase data 

processing and memory requirements needed to calculate additional sensitivity data for 

each topology. The Solve flag also increases requirements needed to load case-file data, 

but has a much smaller impact.  

11. A non-zero Penalty identifies a branch-specific penalty cost.  

12. A non-zero AngleLimit identifies a branch-specific “MaxPhaseAngleDifference” when 

Switchable branches are modeled using Flow Canceling Phase Shifters (FCPS). The 

default value of 1.5 radians should be sufficiently large, but higher angles may be needed 

for branches in weakly-connected areas, typically with lower voltage. However, 

AngleLimit should not be any larger than necessary because smaller AngleLimit can 

improve solver performance.  

13. When HVDC branch resistance is identified, associated losses are included in the power-

balance constraints (i.e., added to area loads). The impact of HVDC losses cannot be 

captured using the penalty-factor model.  

14. When HVDC branches are added to a model that does not have congestion, flows can vary 

without having an impact of costs (i.e., solution is “degenerate”). When losses are modeled 

and HVDC flows can reverse direction, the linearized “loss factor” model can cause HVDC 

flows to be optimized to create “negative losses”. This can be avoided by constraining 

HVDC flows to be unidirectional. When solving an iterative model (i.e., using 

“MaxIterations” in table CYC_ID) with HVDC losses, PSO will fix HVDC flows to zero 

when flow reverses between first and second iterations.  
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15. When CID is specified, results for branch will be included in all reports that use “cid” as 

index. Results for branches and paths provided by other reports (that use “pth” as index) 

only include those flagged as “Enforce” or “Monitor” or that are HVDC. CID can be used 

to identify a subset of these paths or to specify additional paths that are not enforced or 

monitored.  

4.1.3. CYCLE ID (CYC_ID) 

Field  Type  Description  

Cycle  char  { cycles }  

Name  char  Long name of cycle  

DeltaTime  int  (TimeUnit) Time between start of each horizon of the cycle  

LeadTime  int  (TimeUnit) Time between start of the cycle and model StartDate  

DecisionTime  int  (TimeUnit) Time in advance of each horizon to begin analysis  

OrderTime  int  (TimeUnit) Time in advance of each horizon to announce 

controls  

MipGap  int  MIP convergence tolerance  

 

Notes:  

1. Primary Key: (Cycle)  

2. In the absence of an explicit cycle model, the default cycle (Cycle = ‘0’) is automatically 

defined with a single horizon.  

3. Each cycle defines a chronological rolling horizon model when a positive value is specified 

for DeltaTime.  
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4. LeadTime identifies the amount of time that the start of a cycle (i.e., beginning of the first 

horizon) leads the model “StartDate” (MDL_ID). LeadTime allows users to stagger the 

start of cycles when they do not coincide.  

5. Horizons of all cycles are solved chronologically based on the “decision time” of each 

horizon, defined by the starting time of each horizon minus DecisionTime. DecisionTime 

is also used by the Sequence Model (TS library) to identify schedule data used as the 

forecast for solving each horizon. Larger values for DecisionTime will reduce access to 

more-accurate forecasts available closer to real-time operations, but can also give longer 

time to respond to control orders (e.g., for generators with longer startup time).  

6. Except when used to define the solution order of horizons, DecisionTime is rounded to the 

nearest integer multiple of IntervalLength (MDL_ID) so that the decision time of each 

horizon can be associated with a time point in the model calendar.  

7. OrderTime is the time when control decisions are announced prior to the start of each 

horizon. This reflects the amount of time following DecisionTime required to process data 

and issue orders. For example, this is used to identify the earliest period in a horizon that 

units can startup based on startup time requirements. OrderTime cannot be greater than 

DecisionTime. If not identified, OrderTime is assumed to be the same as DecisionTime.  

8. If an injector’s startup time exceeds available notification time in a cycle, the injector will 

have restricted availability for startup the cycle’s horizons. If startup time exceeds the sum 

of notification time and the cycle’s DeltaTime, then the injector cannot be started in the 

cycle. Insufficient notification time to start an injector can be addressed by applying: (1) a 

must-run schedule, (2) Stage1 commitment in an earlier cycle, or (3) "LastPeriod" logic 
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(INJ_STG_CMT) so that commitment decisions later in the horizons can be enforced as 

Stage1 in the current cycle.  

9. Cycles are ordered from longest to shortest DeltaTime (e.g., a day-ahead cycle with 24-

hour DeltaTime comes before an hour-ahead cycle with shorter DeltaTime). Cycles with 

the same DeltaTime are ordered from longest to shortest LeadTime, DecisionTime, and 

OrderTime. Though cycles may have identical values for DeltaTime, DecisionTime, and 

OrderTime, all values must be ordered from longest to shortest consistent with the cycle 

order.  

10. The number of horizons solved in each cycle will be sufficient to solve all intervals in the 

solution horizon as periods in the DeltaTime of a horizon.  

11. The values of LeadTime and DecisionTime must be consistent with the amount of time 

between the first interval (or “MinDate”) and the “StartInterval” (or “StartDate”) specified 

for the model (MDL_ID).  

12. The definition of cycles must be consistent with the amount of time between the 

“StopInterval” (or “StopDate”) and the “MaxInterval (or “MaxDate”) specified for the 

model (MDL_ID). Additional time is required to solve intervals that are beyond the 

“DeltaTime” of the last horizons of each cycle. Additional time is also required when the 

set of solution intervals is not an even multiple of intervals in the DeltaTime of each cycle.  

13. Cycle-specific MipGap identifies override of convergence tolerance for mixed-integer 

programming (MIP) optimization problems specified by option “MipGap”. Negative 

values can be used to set MipGap to zero.  
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14. MaxSolveTime identifies the maximum solver time to solve each horizon (or to solve each 

iteration of a horizon when MaxIterations > 0). If not specified, solver time is not 

constrained and will continue until required convergence tolerance is reached (i.e., 

“MipGap” for mixed integer models).  

15. By default, a horizon is solved once before progressing to the next horizon. This can 

provide sufficient solution accuracy when prior cycles or earlier horizons of the current 

cycle identify monitored constraints that should be enforced, power-flow for loss-factor 

estimates, or coupling FCPS. However, additional iterations may be used to identify (1) 

additional enforced constraints, (2) more accurate linearized loss factors, (3) more accurate 

power flow in contingency topologies when using FCPS, or (4) co-optimization of unit 

commitment and optimized switching. 

16. MaxIterations identifies the maximum number of times a horizon is solved. Iterations are 

halted earlier if not needed. If not specified, MaxIterations is 1.  

 

4.1.4. CYCLE PERIOD ID (CYC_PRD_ID) 

Field  Type  Description  

Cycle  char  { cycles }  

Period  int  { Periods }  

Length  int  (TimeUnit) Period length  

 

Notes:  

1. Primary Key: (Cycle, Period)  
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2. The definition of periods is mandatory when solving rolling-horizon models. The total 

length of all periods defines the horizon length of the associated cycle.  

3. Periods must be labeled with consecutive integers starting with ‘1’ for each cycle.  

4. Periods must be integer multiples of IntervalLength and can be used to aggregate intervals 

into coarser time steps. This reduces the size of a model and improves the computational 

performance of optimization problems. When periods are not defined, IntervalLength is 

used.  

5. Within the “DeltaTime” of a cycle (CYC_ID), periods must have an equal Length, and 

DeltaTime must be an integer multiple of this “characteristic period length”. If the 

beginning of a cycle were allowed to fall in the middle of a period from a previous horizon, 

interpolation of previous results could lead to inaccurate and confusing results.  

6. The value Length should not decrease with increasing period must be an integer multiple 

of the characteristic period length.  

7. Solved values are mapped by interval using period definitions associated with the horizon. 

Solutions are passed to subsequent horizons by aggregating these interval values using 

period mapping associated with each horizon. When solved values exist for some but not 

all intervals of a period, the values are ignored and the associated period variables are free. 

Solved values for these intervals will be overwritten with the new solution. Period lengths 

should be structured so that periods in one horizon are fully contained in periods of the 

previous horizon where they overlap.  
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4.1.5. FUEL ID (FUE_ID) 

Field  Type  Description  

FuelType  char  { fuel types } alias: fuel  

Name  char  Long name  

Quantity  char  Fuel quantity (e.g., tons, Mcf, barrels, MMBtu)  

Heat  float  (MMBtu/FuelQuantity) Fuel heat content  

Cost  float  ($/FuelQuantity) Default cost of fuel  

 

Notes:  

1. Primary Key: (FuelType)  

2. Fuel types may be used to represent different fuels or be used to represent the same fuel 

used for different purposes (e.g., for different injectors, different locations, etc.).  

3. Any unit can be used for Quantity, but it must be used consistently to define all data 

associated with the fuel type.  

4. For compressible fuels (i.e., gas), Quantity and associated Heat and Cost should be based 

on standard temperature and pressure.  

5. Default Cost of fuels is used when unit-specific or pool-specific cost is not specified.  
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4.1.6. FUEL THERMAL UNIT (FUE_UTH) 

Field  Type  Description  

FuelType  char  { fuel types }  

ThermalUnit  char  { thermal units } alias: thermalunit  

FuelFactor  float  Adjustment factor applied to total required fuel  

Cost  float  ($/FuelQuantity) Unit-specific cost of fuel  

CostAdder  float  ($/FuelQuantity) Addition component added fuel cost  

 

Notes:  

1. Primary Key: (FuelType, ThermalUnit).  

2. FuelFactor identifies fuel or fuel-mix used by unit. May also be used to calibrate a unit’s 

fuel consumption, but value (or sum of values) should be close to 1. FuelFactor does not 

change a unit’s heat rate but, instead, it scales total fuel consumption required to provide a 

quantity of heat to identify a unit-specific heat-content for fuel.  

3. Unit-specific Cost of fuels overrides default and pool-specific costs if specified.  

4. CostAdder is added to Cost or default costs (FUE_ID or SCN_FUE_CST). This cost is 

added as an independent component even when time varying costs are specified 

(SCN_FUE_UTH_CST).  
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4.1.7. HEATCURVE ATT (HCV_ATT) 

Field  Type  Description  

HeatCurve  char  { heat curves } alias: curve  

TotalHeat  bit  Curve is defined by total heat-rate data (MMBtu/hour)  

BaseHeat  float  (MMBtu/hour) Base heat added incremental heat-rate curve  

NonConvex  bit  Curve known to be non-convex  

 

Notes:  

1. Primary Key: (HeatCurve)  

2. Implementation of curve logic (and validation to produce convex curves) parallels 

implementation for cost curves except than MMBtu is used in place of $. See CV library 

for details.  

3. When used with an incremental heat-rate curve, BaseHeat is added to total heat before 

identifying incremental-heat-rate points. BaseHeat is ignored when a total heat-rate curve 

is used; total heat-rate data should already include BaseHeat. “BaseHeat” specified by table 

INJ_HEA is always added so it can be used as an injector-specific adder.  
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4.1.8. HEATCURVE POINT (HCV_PNT) 

Field  Type  Description  

HeatCurve  char  { heat curves } alias: curve  

Point  int  { points } Vertices of the heat curve  

X  float  (MW) Generation level in MW  

Y  float  (MMBtu/MWh or MMBtu/hour) Incremental or total heat rate  

 

Notes:  

1. Primary Key: (HeatCurve, Point)  

2. If “TotalHeat” curve (HCV_ATT), Point = 0 may be specified with X = 0 MW. This will 

be interpreted as “BaseHeat” for curve.  
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4.1.9. INJECTOR COMMIT (INJ_CMT) 

Field  Type  Description  

Injector  char  { injectors }  

MinDispatch  float  (MW) Minimum dispatch when committed  

MinOn  float  (hours) Minimum time committed after startup  

MinOff  float  (hours) Minimum time de-committed after shutdown  

BaseCost  float  ($/hour) Cost rate when committed  

HotStartCost  float  ($) Cost to start unit from hot status  

WarmStartCost  float  ($) Cost to start unit from warm status  

ColdStartCost  float  ($) Cost to start unit from cold status  

TimeToWarm  float  (hours) Time after shutdown to go from hot to warm status  

TimeToCold  float  (hours) Time after shutdown to go from hot to cold status  

HotUpTime  float  (hours) Time from startup notification to on-line when initially 

hot  

WarmUpTime  float  (hours) Time from startup notification to on-line when initially 

warm  

ColdUpTime  float  (hours) Time from startup notification to on-line when initially 

cold  

 

Notes:  

1. Primary Key: (Injector)  
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2. Startup is deemed to occur when an injector is synchronized with the grid (breaker closed), 

and shutdown when it is de-synchronized (breaker opened). Thus, the time used for 

ramping between 0 MW and MinDispatch counts towards MinOn requirements and does 

not count towards MinOff.  

3. Commitment constraints are enforced only if non-zero values are specified for 

MinDispatch or BaseCost; otherwise, there is no reason to ever turn a unit off once 

committed.  

4. Startup and shutdown ramping is based on normal dispatch ramp rates (INJ_ID). Startup 

and shutdown ramp rates cannot vary by scenario, and are currently based on the lowest 

non-zero values of each injector.  

5. BaseCost is cost when injector is committed at 0 MW. It should include costs at low 

dispatch levels where these costs are greater than the mimimum incremental cost. BaseCost 

is added to any other costs identified by a cost curve or heat requirements. When used in 

combination with heat model (HD library), BaseCost may be used to account for 

maintenance costs.  

6. When commitment constraints are not enforced for specified injector, BaseCost is added 

to incremental costs by prorating over scheduled “MaxMw” (INJ_ID and/or 

SCN_INJ_MAX). Costs are ignored when option “IgnoreBaseCostWhenRelaxed” is 

flagged and commitment constraints are relaxed.  

7. Startup costs (HotStartCost, WarmStartCost , ColdStartCost) should include costs 

associated with subsequent shutdown. Once a unit is started, shutdown costs are “sunk” 

costs that cannot be avoided.  
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8. When commitment constraints are relaxed, startup costs are ignored unless option 

“EnforceStartCostWhenRelaxed” is flagged.  

9. The timing of startup orders is based on OrderTime (CYC_ID). Injectors cannot be started 

until startup-time requirements (HotUpTime, WarmUpTime, ColdUpTime) have been 

satisfied. An injector’s status (hot, warm, or cold) is based on the amount of time since the 

last shutdown at the time startup orders are issued.  

10. Startup-time requirements constrain only the first startup in a horizon. Subsequent startups 

in the same horizon are constrained by MinOff requirements.  

11. ColdUpTime also constrains the amount of “non-spinning” reserves that can be assigned 

to an injector when not committed. ColdUpTime identifies time lost before an inject can 

begin ramping from 0 MW, reducing the remaining “activation time” to supply reserves 

(RSV_ID).  

 

4.1.10. INJECTOR HEATCURVE (INJ_HCV) 

Field  Type  Description  

Injector  char  { injectors }  

HeatCurve  char  { heat curves }  

 

Notes:  

1. Primary Key: (Injector). HeatCurve passed as text string. 

2. “IncHeat” and “BaseHeat” (INJ_HEA) are enforced even when an injector is mapped to a 

curve (i.e., costs are additive).  
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4.1.11. INJECTOR ID (INJ_ID) 

Field  Type  Description  

Injector  char  { injectors }  

Name  char  Long name  

Area  char  { areas } Area used to identify power balance  

LoadFlag  bit  Identifies injector that withdraws power  

Link  bit  Identifies injector with source and sink at different locations  

MaxMw  float  (MW) Max dispatch under any condition (nameplate capacity)  

MinMw  float  (MW) Min negative dispatch under any condition  

RaiseRR  float  (MW/minute) Maximum rate allowed for increasing power  

LowerRR  float  (MW/minute) Maximum rate allowed for decreasing power  

RampCapOnly  bit  Ramp rates enforced only on capacity during startup & 

shutdown  

EnergyCost  float  ($/MWh) Cost of energy  

CostAdder  float  ($/MWh) Cost component added to EnergyCost  

RampUpCost  float  ($/MW) Cost of increasing dispatch (“mileage” cost)  

RampDnCost  float  ($/MW) Cost of decreasing dispatch (“mileage” cost)  
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Notes:  

1. Primary Key: (Injector). Area passed as text strings.  

2. An injector must be a load (non-negative withdrawal of power) or a generator (non-

negative injection of power). This also applies to specialized models (such as for energy 

storage) which must also be classified as load or generator based on an appropriate 

convention (e.g., determined by source-data convention).  

3. Area identifies balancing areas that include the injector. All injectors (except for paired 

injectors discussed later) must be mapped to a balancing area or the sub-area of a balancing 

area. When mapped to a sub area, the injector’s balancing area is inferred by the 

parent/child relationships between areas. By default, all injectors are mapped to the default 

area (Area = ‘0’) which represents the entire system. Power-balance is enforced at the 

system level if not enforced in sub areas.  

4. LoadFlag identifies injectors that are loads and adjusts interpretation of capacity limits, 

costs, ramp-rates, and other parameters. When a load increases its dispatch, it withdraws 

additional power from the grid.  

5. Link identifies injectors with source and sink at different locations. There are two injector 

types: (1) “Paired Injectors” (IPR_ID) that identify flows of power from one balance area 

to another, and (2) “Point-to-Point bids” (PTP_ID) that identify flow of power from one 

node to another node in the power grid.  

6. When an injector is flagged as a load, MaxMw and MinMw are limits on power 

withdrawals, and RaiseRR and LowerRR are limits on ramping.  
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7. The value of MaxMw must be positive. If modeling loads that withdraw power from the 

grid, LoadFlag should be used.  

8. The value of MinMw should be zero or negative. Note that the minimum dispatch when 

committed (and not starting up or shutting down) is a positive number and is enforced by 

the Unit Commitment Model.  

9. A variety of models may require negative MinMw: Storage units (SRG_ID) and models 

bases on “paired injectors” (IPR_ID), including area interchange, transactions, and 

financial transmission rights (FTRs). For these models, LoadFlag should not be used. When 

LoadFlag is combined with negative MinMw, this is interpreted as representing “behind 

the meter” distributed generation.  

10. For loads, RaiseRR is the rate at which the load can increase, and LowerRR is the rate at 

which the load can decrease. Thus, the RaiseRR capacity of a load contributes to down 

reserves, and the LowerRR capacity of a load contributes to up reserves (see Reserve 

Requirements section). Zero values are ignored (i.e., no ramp limit).  

11. Ramp rate constraints can significantly increase optimization time. To improve 

computational performance the flag RampCapOnly identifies that ramp limits are enforced 

as a reduced MaxMw limit in periods after startup and before shutdown. In many models, 

the biggest impact of ramp-rate constraints is to limit the capacity immediately available 

after startup and before shutdown. By replacing constraints that are enforced in every 

period with a smaller number of constraints, the RampCapOnly flag may improve 

computational performance while maintaining the most important impacts of ramp-rate 

constraints.  
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12. EnergyCost is the cost of power consumption. In general, this can be interpreted as the 

variable operating and maintenance cost (VOM) when not included separately as fuel cost). 

EnergyCost is applied even if a cost-curve is also associated with an injector. EnergyCost 

can be used in combination with other cost models (e.g., heat and fuel costs) to represent 

other operating costs and benefits (e.g., emissions cost or a production tax credit for 

generation from renewable sources). Negative price are allowed.  

13. CostAdder is added to EnergyCost, and can be used to separately report components of 

injector costs. This is useful when costs are calibrated (e.g., to match historical data), and 

users want to preserve original EnergyCost. This is also useful even if energy costs are 

accurate but offers are different from costs (i.e., not equal to VOM) in market models.  

14. RampUpCost and RampDnCost identify cycling costs. Ramp cost is cost per MW/minute 

of ramping accumulated over time: (ramp cost) x (ramp rate) x (ramp time). For example, 

$1/MW x (1 MW/minute) x (1 hour) = $60.  

 

4.1.12. INJECTOR INITIAL MW (INJ_INI) 

Field  Type  Description  

Injector  char  { injectors }  

Mw  float  (MW) initial MW injection (+) or withdrawal (-) by injector  

EnforceMw  bit  Identifies that MW=0 is enforced.  

TimeInStatus  float  (hours) Time in current commitment status  
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Notes:  

1. Primary Key: (Injector)  

2. Mw is used to enforce ramp constraints at beginning of first horizon. If zero and 

EnforceMw not flagged, initial MW not defined (i.e., initial ramp constraint not enforced).  

3. TimeInStatus is used to enforce “MinOn” and “MinOff” (INJ_CMT) at beginning of first 

horizon. Positive values identify that injector is committed at beginning of first horizon 

and negative values identify that injector is not committed. If zero, initial status is not 

defined and does not constrain subsequent status.  

4. Initial values are used at the beginning of the first cycle and, in subsequent cycles, initial 

values are taken from prior cycle. After the first horizon of a cycle, initial values are 

determined by results from previous horizon of the same cycle.  

 

4.1.13. INJECTOR NETWORK (INJ_NET) 

Field  Type  Description  

Injector  char  { injectors }  

Node  char  { nodes } Electrical location (electrical node or aggregate node)  

PhysicalArea  char  { areas } Physical area if different from balance area  

LossFactor  exp  (MW/MW) Change in system losses with change in dispatch  

IgnoreLoss  bit  Resistive losses ignored in penalty-factor model  
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Notes:  

1. Primary Key: (Injector). PhysicalArea and Node passed as text strings.  

2. Node identifies physical connection to a transmission network. Note that a generator can 

have a power-balance “Area” (INJ_ID) different from the area of its Node (aka 

“dynamically scheduled” generators). An injector is unavailable if Node is not specified 

and option “IgnoreUnmappedInjectors” is set.  

3. When an injector has no Node mapping, power-flow impact is based on generation or load 

distribution (PF library) of the injector’s “Area” (INJ_ID) or, if specified, PhysicalArea. 

For example, area mapping can be used to evaluate general power-flow impacts of new 

generation or load without a detailed interconnection specification.  

4. LossFactor is user specified the incremental chance in net system losses with each MW 

change in injector dispatch (i.e., where is system loss and is injector dispatch) and is used 

to define penalty factor applied as multiplier of costs of delivered energy and services (i.e., 

for dispatch, commitment, heat, fuel and reserves).  

5. Penalty-factor models assume system losses are already included in area load forecasts and 

need not be separately calculated (this is typical case where power utilities have better 

metering of generation than load), and penalty factors are used to reflect the impact that 

losses should have on dispatch (e.g., “merit order” of generator dispatch). Thus, LossFactor 

does not affect power and heat output (e.g., maximum limits) or power balance (i.e., the 

increase in generator output needed to compensate for losses).  

6. When also modeling resistive losses (BRN_ID), LossFactor is applied as additional 

multiplier of costs. Care should be taken to avoid double counting when both are used.  
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7. IgnoreLoss identifies that resistive losses are ignored when calculating penalty factors. 

This can be used to override calculated injector loss factors (based on branch resistance 

and prior power flow) to apply user-specified or to set loss factors to zero for specified 

injectors. LossFactor and IgnoreLoss do not impact locational marginal prices (LMPs).  

 

4.1.14. INJECTOR STAGE1 COMMITMENT (INJ_STG_CMT) 

Field  Type  Description  

Injector  char  { injectors }  

Cycle  char  { cycles } Cycle in which commitment is Stage1 decision  

LastPeriod  int  Last period of Stage1 decisions  

 

Notes:  

1. Primary Key: (Injector). Cycle is passed as text string.  

2. An injector’s Cycle is the cycle in which commitment decisions are finalized. In any 

subsequent cycles, commitment is assumed fixed at results from the identified Cycle 

(however, results can be overridden by forced outages and failed starts; see CYC_INJ_FOP 

and INJ_FSP).  

3. When any injector is mapped to the null cycle (‘0’), validation will be applied to verify that 

all commit-able injectors are mapped to a cycle.  

4. When dispatch decisions after DeltaTime should be assigned as Stage1 decisions, 

LastPeriod identifies the last period that is Stage1 in each horizon. Prior periods are also 
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Stage1 decisions or are solved in earlier horizons as Stage1 decisions. Not needed when 

Stage1 decisions coincide with DeltaTime.  

5. Uses standard implementation for stage specification. See INJ_STG_DSP for further 

description.  

 

 

 

4.1.15. LIBRARY REPORT SUPRESS (LIB_RPT) 

Field  Type  Description  

Library  char  { libraries } alias: modellibrary  

NoInterval  bit  Supress interval results  

NoAggHour  bit  Supress aggregate hour results  

NoAggDay  bit  Supress aggregate day results  

NoAggMonth  bit  Supress aggregate month results  

NoAggYear  bit  Supress aggregate year results  

 

Notes:  

1. Primary Key: (Library)  

2. Suppresses default reporting of results (i.e., “Default” results identified by PSO Results 

Reports). NoInterval, NoAggHour, NoAggDay, NoAggMonth, and NoAggYear identify 

results that should not be reported. NoInterval suppresses interval results (i.e., the most-
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granular results of a model) of identified Library. NoAggHour, NoAggDay, NoAggMonth, 

and NoAggYear suppress aggregate results with identified granularity.  

3. NoInterval suppresses interval results regardless of interval length. For example, if interval 

length is = 1 hour, Hourly results are suppressed even if NoAggHour is not flagged.  

4. Libraries are identified by their two-character acronym by lower-case letters (e.g., “ed”, 

“uc”, etc.). Library = 0 can be used to identify all libraries.  

5. “Default” results controlled by LIB_RPT. In addition, “standard” are always reported and 

cannot be suppressed, and “detailed” results are not reported unless requested (see PSO 

Results Reports).  

6. Specific results (including “detailed” reports) are reported by adding report names to the 

list of options (i.e., “configuration parameters”). For example, “ED_Inj” added to the list 

of options causes this default report to be written, even if LIB_RPT identifies that “ed” 

results are suppressed.  

7. When writing tabular reports, each field is written to a separate CSV file or Excel tab. 

Adding “ED_Inj” added to the list of options causes all fields of the table to be written 

while adding “ED_InjP” causes only the “P” field to be written. Names of table and field 

reports are case sensitive.  

8. Specific aggregate results can be reported by adding aggregate report names to the list of 

options (e.g., “ED_Inj_d” or “ED_InjP_d”).  
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4.1.16. MODEL ID (MDL_ID) 

Field  Type  Description  

Name  char  Long name for model  

MajorRelease  int  Major release number  

MinorRelease  int  Minor release number  

BranchRelease  int  Branch number  

TimeUnit  char  Units associated with interval length  

IntervalLength  int  (TimeUnit) Length of each interval  

MaxInterval  int  Last interval used to specify model data  

StartInterval  int  Start interval of model’s solution horizon  

StopInterval  int  Stop interval of model’s solution horizon  

MinDate  date  First date used to specify model data  

MaxDate  date  Last date used to specify model data  

StartDate  date  Start date of model’s solution horizon  

StopDate  date  Stop date of model’s solution horizon  

 

Notes:  

1. Primary Key: not applicable (scalar data)  

2. Version data is used to ensure model changes and data structures are synchronized and also 

allows software to be backwards compatible (i.e., it can run older data models). Major and 

minor releases are identified by MajorRelease and MinorRelease. Previously defined tables 



 

 

 

37 

cannot be re-organized without a change in MinorRelease. BranchRelease identifies “beta” 

releases with prototype or custom implementations.  

3. Valid TimeUnit values are “minute”, “hour”, “day” or “week”. Must be specified. Longer 

values (e.g., month or year) can be approximated by using IntervalLength.  

4. IntervalLength is the shortest time increment used by model time step and input data 

specified by interval or date. To minimize memory and data-processing requirements, 

IntervalLength should be as large as possible based on model and data. Currently, it is 

assumed that IntervalLength should not be less than one minute can be specified as an 

integer multiple of time units.  

5. Time data must align with intervals, which can be difficult when using intervals longer 

than 1 day. Months vary from 28 to 31 days, and years can be 365 or 366 days. As a result, 

the beginning and end of months and years will not be included in the set of valid time 

points when multi-day or weekly intervals are used. Where values are specified in years 

(e.g., “DiscountRate” in UE library), it is assumed that 1 year = 365.25 days or 8766 hours. 

Nevertheless, aggregate values are based on calendar length of each month and year (i.e., 

considering varying length).  

6. Time-varying data must be modeled using either interval data or time points. If interval 

data is used, then all mapping to time (e.g., by schedules) must be by interval. If time-point 

data is used, then all mapping to time must use dates. In general, interval data is more 

appropriate for simple or abstract models with a limited number of intervals. Time-point 

data is more appropriate for models of real systems, particularly when integrating data from 

different sources.  
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7. When interval data is used, intervals are identified (i.e., labeled) by consecutive integers 

from ‘1’ to MaxInterval, and intervals that are outside of this range are not recognized.  

8. When interval data is used, StartInterval and StopInterval identify the first and last interval 

of the “solution horizon”. Intervals before the StartInterval may be included in the model 

definition when control decisions are made in advance (i.e., “LeadTime” in table 

CYC_ID). Intervals after the StopInterval may also be included in the model definition to 

avoid myopic decisions.  

9. If StartInterval and/or StopInterval are not identified, StartInterval is set to 1 and 

StopInterval is set to MaxInterval.  

10. When time-point data is used, dates are identified by MinDate and MaxDate. Dates outside 

this range are not recognized.  

11. When time-point data is used, the maximum interval is calculated based on TimeUnit, 

IntervalLength, and the difference between MinDate and MaxDate.  

12. When time-point data is used, StartDate and StopDate identify the beginning and end of 

the solution horizon.  

13. MinDate identifies the date at the beginning of the first interval even when interval data is 

used. If not specified, DefaultMinDate is used.  
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4.1.17. ELECTRICAL NODE ID (NDE_ID) 

Field  Type  Description  

Enode  char  { electrical nodes } alias: enode  

Name  char  Long name  

Busbar  char  { electrical nodes }  

Substation  char  { substations }  

ReportNode  bit  Nodal LMPs and other results should be calculated and reported  

 

Notes:  

1. Primary Key: (Enode). Busbar, Substation and Area passed as text strings.  

2. Electrical nodes are valid only when mapped to branches. Nodes are mapped when used to 

identify a branch “FrEnode” and “ToEnode” (BRN_ID) or when indirectly mapped by 

Busbar.  

3. Mapping electrical nodes to same Busbar identifies inoperable zero-impedance 

connections. This avoids the need to use dummy branches or jumpers to establish 

connectivity. The combined use of both bus bars and electrical nodes allows users to 

distinguish between electrical and physical connections. This can also be useful when 

combining data from datasets that use inconsistent naming or mapping conventions. This 

can also be useful to track power-flow values of different injectors connected to the same 

bus.  

4. Any node from among a group of electrically-identical nodes may be a Busbar. In general, 

it will be easier to manage data if bus bars are electrical nodes used as branch terminals 
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(i.e., branch “FrEnode” or “ToEnode”) except when breakers or transformers are also 

modeled.  

5. Default logic calculates and reports locational marginal prices (LMPs) for injectors but not 

electrical nodes. The flag ReportNode identifies additional LMPs that are reported.  

 

4.1.18. SCHEDULE TIMEPOINT (SCH_TMP) 

Field  Type  Description  

Schedule  char  { schedules }  

Time  date  { time points }  

Value  exp  Schedule value associate with time point  

Enforce  bit  Identifies that Value=0 should be enforced.  

 

Notes:  

1. Primary Key: (Schedule, Time)  

2. Time-point schedules are converted to interval schedules using linear interpolation unless 

“StepChange” is flagged (SCH_ATT). By definition, time points are always at the 

boundary between intervals (since an interval is the smallest time increment in the model). 

Thus, every interval is fully contained between time points.  

3. A time-point schedule is not defined before the first time point or after the last time point 

(i.e., the value of the time point values are not extrapolated).  

4. When Enforce flag is not used, zero values are ignored. If the Enforce flag is used, it must 

be specified for all other values in the same schedule that are to be enforced.  
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5. For tabular data, tabs in Excel are labeled SCH_TMP_TV for Value and SCH_TMP_TE 

for Enforce and have the following structure:  

a. Columns = Schedule  

b. Rows = Time  

c. Data = Value, Enforce 

6. Multiple Excel tabs can be used to specify input data when the option 

“NumberOfExcelTabs” is identified. Tab names are identified as SCH_TMP1, 

SCH_TMP2, SCH_TMP3 and so on (or SCH_TMP_TV1, SCH_TMP_TE1).  

 

4.1.19. SCENARIO AREA LOAD (SCN_ARA_LOD) 

Field  Type  Description  

Scenario  char  { scenarios }  

Area  char  { areas }  

Load  float  (MW) Static fixed load  

Enforce  bit  Identifies that Load = 0 should be enforced.  

ScaleFactor  float  Factor used to scale Schedule and Sequence  

Schedule  char  { schedules }  

Sequence  char  { sequences }  
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Notes:  

1. Primary Key: (Scenario, Area). Schedule and Sequence passed as text strings.  

2. Table identifies fixed active-power loads that are not associated with a specific device and 

location. When power-flow impacts need to be considered, area loads are distributed based 

on weighs applied to specified electrical nodes (see STE_NDE).  

3. When parent-area mapping exists, sub-area load schedules are aggregated to establish 

parent area load schedules when parent-area schedules are not identified.  

4. All loads must be mapped to a balancing area or the sub-area of a balancing area.  

General notes for scenario data:  

1. When flagged, Enforce will cause all intervals to have an enforced value. Time-varying 

values will be used where enforced by Schedule and Sequence. The static scenario value 

(i.e., Load) is enforced in all other intervals. Time varying Schedule and Sequence values 

are enforced only in periods which have enforced values in all intervals of the period.  

2. The optional parameter ScaleFactor is applied to Schedule and Sequence to define time-

varying values when they differ only by a constant scaling factor. ScaleFactor is an attribute 

of the Schedule and Sequence mapping: When assigned to the default scenario ‘0’, it is 

applied only to schedules and sequences also associated with the default scenario. Non-

default scenarios that do not have a ScaleFactor will be assigned a value of 1.  

3. If ScaleFactor is not assigned a value or is assigned the value of 0, then ScaleFactor = 1. If 

it is desired that ScaleFactor = 0 be used, this can be achieved by setting Enforce = 1 with 

default value of 0 or null and with no Schedule or Sequence specified.  



 

 

 

43 

4. Load (or other appropriate static value), Enforce, ScaleFactor, Schedule or Sequence 

mapped to the default scenario (Scenario = ‘0’) is used as default data for all scenarios 

without explicit mapping. When multiple methods are used to map static and/or time-

varying data, the following priority identifies data associated with each period:  

Sequence, Schedule, and static data (including any mapping to the default scenario). For 

example, when both static and time-varying data are specified, Load and/or Enforce 

identify default values for periods without enforced Schedule or Sequence values. Priority 

order is as follows:  

a. Sequence of non-default scenario  

b. Sequence of default scenario  

c. Schedule of non-default scenario  

d. Schedule of default scenario  

e. Static value (e.g., Load) of non-default scenario  

f. Static value (e.g., Load) of default scenario  

g. Static default value  

Area load does not have a static default value. Static default values exist for other types 

of scenario data (e.g., SCN_INJ_MAX). 
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4.1.20. SCENARIO CYCLE (SCN_CYC) 

Field  Type  Description  

Scenario  char  { scenarios }  

Cycle  char  { cycles } Cycle to which scenario is applied  

Weight  float  Weight (or probability) of scenario  

Reference  bit  Scenario used to define deviations of other scenarios  

 

Notes:  

1. Primary Key: (Scenario). Cycle passed as text string.  

2. Used to identify scenarios and map scenarios to cycles. Each scenario can be mapped to 

only one cycle and each cycle must have at least one scenario. A stochastic cycle is defined 

when multiple scenarios are mapped to the same cycle.  

3. The default scenario (‘0’) should not be mapped to any cycle. The default scenario is 

always defined and is used define shared data applicable to all scenarios. Data is mapped 

to other scenarios is applied as overrides of default data.  

4. The Weight of scenarios mapped to each cycle should sum to one (100%). Scenarios with 

zero Weight have no direct contribution to the objective function except through constraint 

violations (e.g., load shedding) and associated penalties. A zero-weight scenario is a 

contingency scenario required only for reliability.  

5. The Reference flag is used to define values of other scenarios of a stochastic cycle as 

positive or negative deviations. When stochastic reserves are procured explicitly 
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(CYC_RSV), the reference scenario identifies deviations that must be met by “Up” 

reserves or “Down” reserves.  

 

4.1.21. SUBSTATION ID (SUB_ID) 

Field  Type  Description  

Substation  char  { locations } alias: station  

Name  char  Long name  

Area  int  { areas }  

 

Notes:  

1. Primary Key: (Substation). Area passed as text string.  

2. Optional data used to associate electrical nodes with areas. Physical area mapping can be 

used to define physical location of injectors, such as when used to identify “dynamically 

scheduled” generators.  

3. Area mapping is used only to organize substations and does not impact area power balance 

except where used to define injector mapping to area (INJ_ID) or to assign branch losses 

to areas.  
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4.2. Output Data 

4.2.1. Scenario Area Interval (ED_Ara) 

Record  Type  Description  

scn  char  { scenarios }  

ara  char  { areas }  

int  int  { intervals }  

Load  float  (MW) fixed area load  

Loss  float  (MW) resistive losses  

P  float  (MW) dispatch  

NetIC  float  (MW) net interchange: (+) export, (-) import (i.e., exports minus 

imports)  

Violation  float  (MW) violation of area power balance constraint  

Penalty  float  ($Unit) cost of violation  

SP  float  ($/MWh) shadow price of area power-balance constraint  

BalancePrice  float  ($/MWh) total shadow price including parent areas  

LoadPrice  float  ($/MWh) weighted LMP of fixed-load  

LoadCost  float  ($Unit) fixed-load cost (product of load, price and period length)  

SourcePrice  float  ($/MWh) weighted LMP of injector MW  

SourceRevenue  float  ($Unit) injector revenue (product of MW, price and period 

length)  

NetIcCost  float  ($Unit) net-interchange cost: (+) export, (-) import  
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NetIcRevenue  float  ($Unit) net-interchange revenue: (+) export, (-) import  

 

Notes:  

1. Primary Key: (scn, ara , int) 

2. Load is fixed load specified by input data and not affected by Violation (e.g., value does 

not change with load shedding). 

3. P is total dispatch of area injectors (generation minus load). P is zero in external areas.  

4. NetIC is sum of flow on paired injectors with source or sink in area, including sub-areas. 

5. Loss is additional load added to power-balance constraints when option “AddAreaLosses” 

is flagged and/or when modeling HVDC branches. 

6. SP and BalancePrice are determined by shadow price of power-balance constraints. These 

are based on the marginal cost to provide an additional MWh from marginal injectors. 

When interchange transactions are modeled (i.e., using paired injectors), marginal injectors 

can be outside the area. 

7. The additional MWh provided by marginal injectors is balanced by the slack bus and, thus, 

SP and BalancePrice include the locational impacts of wheeling costs, losses, or binding 

area power-balance constraints. As a result, SP and BalancePrice can depend on the 

location of the slack bus. Locational marginal price (LMP) at the reference bus is equal to 

SP and BalancePrice of area ‘0’ (i.e., the entire system) and at other areas if there are no 

wheeling costs, losses, or binding area power-balance constraints. SP and BalancePrice do 

not include impact of binding transmission constraints resulting from flow over the 
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physical network (i.e., “congestion” from constraints in the PN, PC, and NC libraries), 

except as included in the slack-bus LMP. 

8. LoadPrice is area locational marginal price (LMP) calculated using area load distribution 

(see PF library) and is not affected by reference-bus location (except for impact on loss 

factors). This is BalancePrice adjusted for cost of congestion to flow power from slack bus 

to area loads. LoadCost is product of Load and LoadPrice. 

9. SourcePrice is area LMP calculated using distribution of solved injector MW. 

SourceRevenue is product of injector MW and SourcePrice. 

10. NetIcCost is product of SourcePrice, period length, and total MW of paired injectors with 

source or sink in current area, including sub-areas. Area of SourcePrice should not be 

confused with “SourceArea” (IPR_ID). SourcePrice is weighted LMP of area injectors and 

is used as an estimate of marginal generation cost to increase generation for export, and to 

decrease generation with imports.  

11. NetIcRevenue identifies revenues associated with paired-injector imports and exports. 

Used weighted LMP of injectors in area of origin (for imports) and destination area (for 

exports). If an external area with no injectors, area distribution of “GenMw” (STE_NDE) 

is used. Difference in NetIcCost and NetIcRevenue identifies total “profit” from 

interchange. 

12. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

13. Tabular reports are identified by scn and have the following structure: 

a. Columns = ara 
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b. Rows = int 

14. Sparse fields: Violation, Penalty 

 

4.2.2. Scenario Injector Interval (ED_Inj) 

Record  Type  Description  

scn  char  { scenarios }  

inj  char  { injectors }  

int  int  { intervals }  

Cap  float  (MW) installed dispatch capacity  

Max  float  (MW) maximum dispatch capacity  

Min  float  (MW) minimum dispatch capacity  

P  float  (MW) dispatch  

RC  float  ($/MWh) change in objective cost for increase in dispatch  

Marginal  bit  Injector may be marginal  

LMP  float  ($/MWh) locational marginal price  

LoadPrice  float  ($/MWh) load-weighted locational marginal price of balance area  

BalancePrice  float  ($/MWh) area energy price from power-balance constraints  

CostTotal  float  ($Unit) Cost from all libraries  

CostOfEnergy  float  ($Unit) Product of energy and EnergyCost  

CostOfAdder  float  ($Unit) Product of energy and CostAdder  

CostOfRamp  float  ($Unit) Product of ramp MW and RampCost  
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Revenue  float  ($Unit) ED “revenue” (product of dispatch, price and period 

length)  

Mileage  float  (MW) total movement over aggregate period  

ViolationRR  float  (MW) violation of ramp-rate limit  

PenaltyRR  float  ($Unit) cost of ramp violation  

Up  bit  injector is up (committed or dispatch > 0) (for aggregate reports)  

UpCap  float  (MW) installed dispatch capacity; zero if not up (for aggregate 

reports)  

UpMax  float  (MW) maximum dispatch capacity; zero if not up (for aggregate 

reports)  

 

Notes:  

1. Primary Key: (scn, inj, int) 

2. Cap is “MaxMw” (INJ_ID), considering only the impact of “InstallDate” and “RetireDate” 

(INJ_INS) and deration by season (INJ_MAX). 

3. Max and Min identify dispatch limits. They are de-rated by fixed-dispatch 

(SCN_INJ_DSP) or dispatch limits (SCN_INJ_MAX), and are set to zero when off due to 

scheduled outage, forced outage, failed startup, or unavailable for commitment (un-

committed status after Stage1 cycle, unsatisfied “MinDown” requirements, startup time 

requirements, scheduled de-commitment, failed startup, and maintenance outages). 

4. MaxMw identifies capacity associated fixed-dispatch (SCN_INJ_DSP), dispatch limit 

(SCN_INJ_MAX), or post-Stage1 commitment status (0 if not committed). In contrast to 
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values reported by ED_Inj, MaxMw identified available dispatch before impact of forced 

outage (FO) or scheduled outage (SO). 

5. When an outage begins or ends in the middle of a period, a de-rated value is identified for 

MaxMw (to accurately represent available energy). CapMw is de-rated only when 

installation or retirement occurs in the middle of a period. 

6. Marginal identifies injectors that may be marginal-cost resources. Injectors can be marginal 

when their dispatch is variable (e.g., not on fixed schedule and not after stage-1 dispatch), 

and whose reduced cost (RC) is zero. This does not guarantee injectors are marginal, but 

logic should identify all potentially marginal injectors. 

7. LoadPrice is load weighted LMP for all load nodes in an injector’s balance area (i.e., not 

smaller area if mapped to a more granular area). BalancePrice is the shadow price of the 

power-balance constraints. Prices can vary by area when solving a multi-area model (with 

power-balance constraints for each) or when including power network (modelled by DC 

power-flow model using PN and PC libraries or by shift-factors using NC library). 

BalancePrice will be the same for all areas unless solving a multi-area model. 

8. LMP, LoadPrice and BalancePrice do not exist for paired injectors and are not reported. 

Paired-injector prices are based on difference in source-area and sink-area prices, adjusted 

for congestion cost. Area prices are based on marginal-injector costs. Though similar to 

area load prices (ED_Ara), changes in paired-injector flow are generally matched by 

changes in dispatch of marginal injectors and not by changes in distributed area load. 

Identification and weighting of marginal injectors can be difficult, but the net impact of 

prices, congestion and wheeling cost is identified by the paired-injector RC. 
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9. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

10. Tabular reports are identified by scn and have the following structure: 

a. Columns = inj 

b. Rows = int 

11. Sparse fields: ViolationRR, PenaltyRR. 

 

4.2.3. Scenario Fuel Area Interval (FD_Ara) 

Record  Type  Description  

scn  char  { scenarios }  

fue  char  { fuel types }  

ara  char  { areas }  

int  int  { intervals }  

Fuel  float  (FuelQuantity) fuel use  

Cost  float  ($Unit) cost of fuel  

CostOfScaling  float  ($Unit) cost added by scaling  

CostOfAdder  float  ($Unit) cost added by CostAdder  

 

Notes:  

1. Primary Key: (scn, fue, ara, int). 

2. Tabular reports are identified by scn and fue, and have the following structure: 

a. Columns = ara 
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b. Rows = int 

3. Compound tabular reports are identified by scn and have the following structure: 

a. Columns = (fue, ara) 

b. Rows = int 

 

      4.2.4. Scenario Fuel Unit Interval (FD_FueUth) 

Record  Type  Description  

scn  char  { scenarios }  

fue  char  { fuel types }  

uth  char  { thermal units }  

int  int  { intervals }  

Fuel  float  (FuelQuantity) fuel use  

Cost  float  ($Unit) cost of fuel  

CostOfScaling  float  ($Unit) cost added by scaling  

CostOfAdder  float  ($Unit) cost added by CostAdder  

 

Notes:  

1. Primary Key: (scn, fue, uth, int). 

2. Current logic allows only one fuel type to be mapped to each injector (i.e., fuel-mix 

modeling not supported, except through the definition of fuels).  

3. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 
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4. Tabular reports are identified by scn and fue, and have the following structure: 

a. Columns = uth 

b. Rows = int 

5. Compound tabular reports are identified by scn and have the following structure: 

a. Columns = (fue, uth) 

b. Rows = int 

 

      4.2.5. Scenario Unit Interval (HD_Uth) 

Record  Type  Description  

scn  char  { scenarios }  

uth  char  { thermal units } heat units and heat-based injectors  

int  int  { intervals }  

Rate  float  (MMBtu / hour) heat rate (base heat + incremental heat)  

Start  float  (MMBtu) startup heat  

Received  float  (MMBtu / hour) received heat from upstream units  

Exhaust  float  (MMBtu / hour) exhaust heat  

Cost  float  ($Unit) cost of heat  

 

Notes:  

1. Primary Key: (scn, uth, int). 

2. For thermal units that are injectors, Exhaust is reported only when used by downstream 

unit (i.e., in combined-cycle model). 
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3. For heat units, Received or Exhaust is reported, depending on LoadFlag status.  

4. Tabular reports are identified by scn and have the following structure: 

a. Columns = inj 

b. Rows = int 

 

      4.2.6. Scenario (MC_Hrzn) 

Record  Type  Description  

scn  char  { scenarios }  

hrzn  char  { horizons }  

FirstInterval  int  { intervals } First interval of horizon  

Cost  float  ($Unit) Real cost included in model results  

Noncost  float  ($Unit) Virtual cost included in model results  

Penalty  float  ($Unit) Penalty cost included in model results  

DeltaCost  float  ($Unit) Real cost from periods in DeltaTime of horizon  

DeltaNoncost  float  ($Unit) Virtual cost from periods in DeltaTime of horizon  

DeltaPenalty  float  ($Unit) Penalty cost from periods in DeltaTime of horizon  

AllCost  float  ($Unit) Real cost from all periods of horizon  

AllNoncost  float  ($Unit) Virtual cost from all periods of horizon  

AllPenalty  float  ($Unit) Penalty cost from all periods of horizon  

 

Notes: 

1. Primary Key: (scn, hrzn) 
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2. Results are reported for each horizon, including those solved before “StartDate”. 

3. Periods after a horizon’s “DeltaTime” of a horizon are re-solved in subsequent horizons. 

DeltaCost, DeltaNoncost and DeltaPenalty identify costs accruing in “DeltaTime”. 

AllCost, AllNoncost and AllPenalty identify costs from all periods of horizon, including 

those after “DeltaTime” that are re-solved by subsequent horizons. 

4. DeltaCost, DeltaNoncost and DeltaPenalty is same as Cost, Noncost and Penalty identify 

costs except when “StartDate” and “StopDate” fall within the horizon’s “DeltaTime”. 

5. Tabular reports not defined. 

 

4.2.7. Library Scenario Horizon (MC_Lib) 

Record  Type  Description  

scn  char  { scenarios }  

lib  char  { libraries }  

Cost  float  ($Unit) Real cost included in model results  

Noncost  float  ($Unit) Virtual cost included in model results  

Penalty  float  ($Unit) Penalty cost included in model results  

 

Notes:  

1. Primary Key: (scn, lib)  

2. Identifies by library total costs and penalties between the model “StartDate” and 

“StopDate” (MDL_ID), excluding costs associated results used to establish appropriate 

boundary conditions (i.e., those associated with “LeadTime” or after “StopDate”).  
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3. Tabular reports not defined. 

 

4.2.8. Library Scenario Horizon (MC_LibHrzn) 

Record  Type  Description  

scn  char  { scenarios }  

lib  char  { libraries }  

hrzn  char  { horizons }  

FirstInterv

al  

int  { intervals } First interval of horizon  

Cost  float  ($Unit) Real cost included in model results  

Noncost  float  ($Unit) Virtual cost included in model results  

Penalty  float  ($Unit) Penalty cost included in model results  

DeltaCost  float  ($Unit) Real cost from periods in DeltaTime of horizon  

DeltaNonc

ost  

float  ($Unit) Virtual cost from periods in DeltaTime of horizon  

DeltaPena

lty  

float  ($Unit) Penalty cost from periods in DeltaTime of horizon  

AllCost  float  ($Unit) Real cost from all periods of horizon  

AllNoncos

t  

float  ($Unit) Virtual cost from all periods of horizon  

AllPenalty  float  ($Unit) Penalty cost from all periods of horizon  
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Notes: 

1. Primary Key: (scn, lib, hrzn) 

2. Tabular reports have the following structure: 

a. Columns = lib 

b. Rows = hrzn, FirstInterval 

 

      4.2.9. Solution (MC_Solution) 

Record  Type  Description  

slv  char  { solves } Chronological order in which solution was solved  

cyc  char  { cycles }  

hrzn  char  { horizons }  

iter  char  { iterations }  

FirstInterval  int  { intervals } First interval of horizon  

LastInterval  int  { intervals } Last interval of horizon  

#Constraints  int  Number of individual constraints  

#Var  int  Number of individual variables  

#IntVar  int  Number of individual integer variables  

#NonZeros  int  Number of non-zeros  

GenTime  float  (second) CPU time to generate math problem  

SolveTime  float  (second) CPU time to solve math problem  

ElapsedTime  float  (second) Clock-time elapsed  
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#Iterations  int  Number of solver iterations  

#Nodes  int  Number of nodes evaluated in MIP tree  

Memory  float  (Mb) Current memory use  

Status  char  Solution status  

Objective  float  ($Unit) Value of objective function  

AllCost  float  ($Unit) Real cost from all periods of horizon  

AllNoncost  float  ($Unit) Virtual costs from all periods of horizon  

AllPenalty  float  ($Unit) Penalty cost from all periods of horizon  

 

Notes:  

1. Primary Key: (slv) 

2. Reports solver performance and other characteristics of each solver iteration. Always 

reported using vector format, even when tabular reports are generation for other results. 

3. The index slv identifies the order in which each iteration of each horizon was solved. This 

can be used to identify the value of GUI option “LastSolution” when a model run should 

be halted after solving the specified solution. 

4. Tabular reports not defined. 
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4.2.10. Interval (MS_Int) 

Record  Type  Description  

int  int  { intervals }  

StartTime  date  { time points } Time at start of interval  

StopTime  date  { time points } Time at end of interval  

 

Notes:  

1. Primary Key: (int)  

 

4.2.11. Scenario Area Interval (PC_Ara) 

Record  Type  Description  

scn  char  { scenarios }  

ara  char  { areas }  

int  int  { intervals }  

BalancePrice  float  ($/MWh) energy component of LMP adjusted by reference 

location  

LoadFlowPrice  float  ($/MWh) distribution-weighted LMP congestion component 

of fixed-load  

LoadLossPrice  float  ($/MWh) distribution-weighted LMP loss component of 

fixed-load  

LoadPrice  float  ($/MWh) distribution-weighted LMP of fixed-load  
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SourceFlowPrice  float  ($/MWh) distribution-weighted LMP congestion component 

of injector MW  

SourceLossPrice  float  ($/MWh) distribution-weighted LMP loss component of 

injector MW  

SourcePrice  float  ($/MWh) distribution-weighted LMP of injector MW  

Loss  exp  (MW) resistive losses approximated by linearized solution  

LossUpdate  exp  (MW) resistive losses from quadratic (I2R) calculation  

LossError  exp  (MW) difference between loss and update  

 

Notes: 

1. Primary Key: (scn, ara , int). 

2. Components of LMP are based on reference node (“ReferenceNodeName”) or load-

distributed reference (ARA_REF) which may be different from the slack bus. Components 

of locational marginal price (LMP) can be identified as (1) energy, (2) losses and (3) 

congestion. BalancePrice identifies energy component, LoadFlowPrice and 

SourceFlowPrice identify congestion components, LoadLossPrice and SourceLossPrice 

identify loss components, and LoadPrice and SourcePrice identify resulting LMPs.  

3. Loss factors and losses are calculated using shift-factors of the base topology and do not 

include impact of open branches modeled by FCPS.  

4. Loss, LossUpdate and LossError are based on all branches with resistance, even when 

penalty factor model is used and losses are already included in area loads (i.e., regardless 

of option “AddAreaLosses”). Values are reported only for power-balance areas. 
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5. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

6. Tabular reports are identified by scn and have the following structure:  

a. Columns = ara  

b. Rows = int  

 

      4.2.12. Scenario Branch Interval (PC_Brn) 

Record  Type  Description  

scn  char  { scenarios }  

brn  char  { branches }  

int  int  { intervals }  

Mw  float  (MW) flow  

Loss  exp  (MW) resistive losses approximated by linearized solution  

LossUpdate  exp  (MW) resistive losses from quadratic (I2R) calculation  

LossError  exp  (MW) difference between loss and update  

 

Notes:  

1. Primary Key: (scn, brn, int). 

2. Reports losses on branches with non-zero resistance. Losses on AC branches are added to 

loads in power-balance equations when option “AddAreaLosses” selected (in PN library). 

When using penalty-factor model, losses are not added as they should already be included 

in area load requirements. Losses of DC branches are always added to power-balance 



 

 

 

63 

equations (DC flows are controllable and impact of losses on DC branches cannot be 

captured by penalty-factor model). 

3. Reported losses are based on slack bus (“SlackBusName”) used to solve the model, and 

are not adjusted if a different Reference is used (i.e., “ReferenceNodeName” or ARA_REF 

data). However, reported shift factors, loss factors, area prices and congestion components 

of Locational Marginal Prices (LMPs) are adjusted based on the Reference. 

4. Loss, LossUpdate and LossError are reported when using either “AddAreaLosses” or 

penalty-factor model. 

5. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

6. Tabular reports are identified by scn and have the following structure:  

a. Columns = brn  

b. Rows = int  

 

      4.2.13. Scenario Injector Interval (PC_Inj) 

Record  Type  Description  

scn  char  { scenarios }  

inj  char  { injectors } Excludes “NetFlag” injectors  

int  int  { intervals }  

LMP  float  ($/MWh) locational marginal price  

BalancePrice  float  ($/MWh) energy component of LMP  

FlowPrice  float  ($/MWh) congestion component of LMP  
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LossPrice  float  ($/MWh) loss component of LMP  

LossFactor  exp  loss factor used to solve power flow  

LfUpdate  exp  loss factor updated using power flow solution  

LfError  exp  difference between loss factor and update  

 

Notes: 

1. Primary Key: (scn, inj, int). Excludes paired injectors and point-to-point injectors. 

2. Reported values are based on reference node or load-distributed reference which may be 

different from the slack bus. Loss factors are calculated using the base topology (branches 

opened by SCN_BRN_OPN) and do not include impact of open branches modeled by 

FCPS (SCN_FCP_OPN or SCN_FCP_OPT). 

3. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

4. Tabular reports are identified by scn and have the following structure: 

a. Columns = inj 

b. Rows = int 

 

      4.2.14. Scenario Node Interval (PC_Nd) 

Record  Type  Description  

scn  char  { scenarios }  

nd  char  { nodes } electrical nodes and aggregate nodes  

int  int  { intervals }  
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LMP  float  ($/MWh) locational marginal price  

BalancePrice  float  ($/MWh) energy component of LMP  

FlowPrice  float  ($/MWh) congestion component of LMP  

LossPrice  float  ($/MWh) loss component of LMP  

LossFactor  exp  loss factor used to solve power flow  

LfUpdate  exp  loss factor updated using power flow solution  

LfError  exp  difference between loss factor and update  

 

Notes: 

1. Primary Key: (scn, nd, int). 

2. Reported nodes must be identified by “ReportNode” (NDE_ID or NDA_ATT), except for 

node labeled “Reference” that reports LMPs of reference node or load-distributed 

reference. 

3. Reported values are based on reference node or load-distributed reference which may be 

different from the slack bus. Loss factors are calculated using the base topology (branches 

opened by SCN_BRN_OPN) and do not include impact of open branches modeled by 

FCPS (SCN_FCP_OPN or SCN_FCP_OPT). 

4. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

5. Tabular reports are identified by scn and have the following structure: 

a. Columns = nd 

b. Rows = int 
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      4.2.15. Topology Map (PC_Top) 

Record  Type  Description  

scn  char  { scenarios }  

int  int  { intervals }  

Topology  int  { topologies }  

 

Notes: 

1. Primary Key: (scn, int). 

2. Tabular report is labeled PC_Top and has the following structure: 

a. Columns = scn 

b. Rows = int 
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      4.2.16. Scenario Path Interval (PN_Pth) 

Record  Type  Description  

scn  char  { scenarios }  

pth  char  { paths } monitored paths  

int  int  { intervals }  

Mw  float  (MW) flow  

Min  float  (MW) minimum flow limit  

Max  float  (MW) maximum flow limit  

Violation  float  (MW) violation of flow limit  

MinEnforced  bit  Minimum limit enforced in solution  

MaxEnforced  bit  Maximum limit enforced in solution  

Binding  bit  Binding constraint  

SAC  bit  Security analysis constraint  

Penalty  float  ($Unit) cost of violation  

SP  float  ($/MWh) shadow price of MW limit  

Revenue  float  ($Unit) value (product of Mw and SP)  

 

Notes: 

1. Primary Key: (scn, pth, int). 

2. Reports all enforced or monitored paths. Additional paths can be reported using “cid” 

tables by providing the path with a “ConstraintID” (PTH_ID). 
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3. MinEnforced and MaxEnforced identifies constraints enforced in solution. A path can have 

a non-zero Violation when enforced or identified by security analysis (SAC). 

4. Binding identifies enforced paths with non-zero shadow price or paths with flow equal to 

their limit. A path can be binding only when enforced. Binding constraints include enforced 

paths with non-zero Violation. 

5. SAC identifies violated, binding or near-binding constraints identified by security analysis, 

which are enforced only if identified prior to the last iteration of the solution horizon. When 

multiple iterations are solved, SAC identifies constraints identified by any iteration. 

6. Aggregate reports are identified for first interval of aggregate periods that are fully defined 

by the solution horizon. 

7. Tabular reports are identified by scn and have the following structure: 

a. Columns = pth 

b. Rows = int 

8. Sparse fields: Violation, Penalty. 
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      4.2.17. Scenario Injector Interval (UC_Inj) 

Record  Type  Description  

scn  char  { scenarios }  

inj  char  { injectors } committed injectors  

int  int  { intervals }  

Commit  bit  commitment status (1=on, 0=off)  

SU  bit  first commitment interval  

SD  bit  first de-commitment interval  

Hot  bit  Startup from hot status  

Warm  bit  Startup from warm status  

Cold  bit  Startup from cold status  

Failed  bit  Failed startup (identified after solving commitment)  

StatusViolation  exp  violation of on status (+) or off status (-)  

TimeViolation  exp  (hour) violation of MinOn (+) or MinOff (-)  

BaseCost  float  ($Unit) Cost associated with “BaseCost” (not including cost 

curve)  

StartCost  float  ($Unit) Cost associated with “StartCost” (not including cost 

curve)  

Penalty  float  ($Unit) cost of commitment-constraint violations  
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Notes: 

1. Primary Key: (scn, inj, int). 

2. Aggregate reports are identified for first interval of aggregate periods that are fully 

defined by the solution horizon. 

3. Tabular reports are identified by scn and have the following structure: 

a. Columns = inj 

b. Rows = int 

4. Sparse fields: StatusViolation, TimeViolation, Penalty. 

 

4.2.18. Scenario Injector Status (UC_Status) 

Record  Type  Description  

scn  char  { scenarios }  

inj  char  { injectors } committed injectors  

int  int  { intervals }  

Change  int  change in commitment status (actual or attempted)  

StatusViolation  exp  violation of on status (+) or off status (-)  

TimeViolation  exp  (hour) violation of MinOn (+) or MinOff (-)  

 

Notes: 

1. Primary Key: (scn, inj, int). 

2. Intervals are reported only when a change in commitment status exists. Failed startups are 

also identified as an attempted change in status. 
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3. The value of Change is interpreted as follows: 

Startup from hot = 3 

Startup from warm = 2 

Startup from cold = 1 

Shutdown = -1 

4. Tabular reports are labeled UC_Change(<scn>), UC_StatusViolation (<scn>) and 

UC_TimeViolation (<scn>), and have the following structure: 

a. Columns = inj 

b. Rows = int 

5. Sparse fields: Change, StatusViolation, TimeViolation. 

 

4.2.19. Scenario Injector Status by Time Point (UC_TmpStatus) 

Record  Type  Description  

scn  char  { scenarios }  

inj  char  { injectors } committed injectors  

tmp  date  { time points }  

Change  int  change in commitment status (actual or attempted)  

 

Notes: 

1. Primary Key: (scn, inj, tmp). 

2. Time-point results are identified so that Change can used to define binary schedules 

(SCH_BIN) used as input data in other models. 
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3. Tabular reports are labeled UC_TmpChange(<scn>) and have the following structure: 

a. Columns = inj 

b. Rows = tmp 

4. Sparse fields: Change. 
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5. Tools 

This section will cover the tools that we used to develop and perform the experiments 

in detail. These are the tools that matched exactly or to most levels as to what we were 

expecting out of them.  

 

5.1. Power System Optimizer (PSO) 

PSO is a production power market cost simulator developed by Polaris Optimization 

Systems. An industry wide used tool that can precisely simulate the energy market. It is 

developed using the MILP approach of solving the SCUCED problem instead of heuristics 

and is consistent with the methods used by many ISOs. It supports vastly dynamic 

modelling of inputs, supports day ahead as well as intra-hour estimation capabilities, 

uncertainty forecasting using historical data and is extremely adaptable to changing system 

conditions.  

We used PSO in our experiments to generate the data to train our models. We did so 

by using the option to feed in historical data and used the forecasting feature to generate 

new system states. Our models are built using these outputs, which are extremely precise 

to actual system conditions for the given conditions would be.  

 

5.2. PyTorch  

PyTorch is a robust, scalable and production ready deep learning framework for Python. 

It contains a plethora of utils for deep learning with cuda and distributed training support. 

http://psopt.com/
http://psopt.com/
https://pytorch.org/
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It makes developing ML models extremely easy by using its utilities. Neural Networks is 

easy with torch.nn, as it has a wide range of pre-developed as well as pre-trained models 

which you can extend to create new models tailored to your needs. It also comes with easy 

ways to visualize your experiments and almost all of the graphs in this have been developed 

using this.  

 

5.3. PyTorch-Geometric (PyG) 

PyG is an extension to PyTorch and is tailored specifically for developing and Graph 

Neural Networks. Much like PyTorch, this has pre-developed algorithms for implementing 

various GNNs. These can be easily extended to create custom GNN models for specific 

use cases.  

It can be used together with PyTorch to benefit from features from PyTorch. We used 

PyG for implementing our GNN layers. 

 

5.4. Google Collab 

Google Collab is a Google service that provisions users with a Python Notebook 

runtime, which can be tailored to install any libraries that the project needs. It provides 

with a safe environment to install libraries and run scripts for quick prototyping. It runs on 

clouds with GPU support, which means faster testing rounds and easier updates.   

 

 

 

https://colab.google.com/
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6. Graph Neural Network (GNN) 

6.1. Understanding GNN 

Understanding GNN Graphs have been known to be one of the most popular manner 

to represent data that is structured and highly related. Graph Neural Networks provide ways 

of modelling associations between nodes in a graph and hence has been a hot topic between 

researchers. It has changed how data analysis can be performed on graphs with fast and 

accurate prediction ability. GNNs are type of Neural Networks that can be applied directly 

on graphs. Applications range from image classification, gene identification, brain 

connectomes and more.  

Each node in a graph represents a set of features which are identified by the node. Each 

node is associated with a set of labels. GNN is then used to train weights which can be used 

to predict labels for new nodes. The graphs in the question can be directed or un-directed 

graphs or graphs with edge weights, GNNs are flexible to accommodate these edge features 

to accommodate any constraints that edges may have.  

GNNs work by representing the states of the nodes in a recurrent manner and applying 

a Feed forward NN. This NN learns the biases and embeddings, GNNs do MessagePassing. 

This is basically Neighborhood Aggregation in which the nodes push their embeddings to 

their neighbor nodes through the edges.  Different NN can also be used to model which 
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can be used to capture the spatial relationships between nodes. These embeddings are then 

summed together to get new graph representation.  

Much like how traditional NNs introduced Convolutional Neural Networks, which help 

to speed up the learning and increase accuracy with hierarchical processing of data units, 

Graph Convolutional Networks (GCN) exist to do the same but on graph data. GCNs are 

extremely powerful NNs and have proven ability to perform extremely well with minimum 

training.  

        
Figure 3: Representation of learning with GCN 

 

Figure 3 demonstrates how a simple GCN can preserve the relationships between the 

nodes with minimal training. This [2] paper comprises of a recent comprehensive review 

of methods, applications and efficiency of GCN across different domains.  

 

6.2. Constructing GNN Based on ERCOT 7-Bus Model 

Chapter 3 covers in detail about how the 7-Bus model is and the constraints of each 

component of the system. This can be visualized as a classic graph model with different 

components of the system representing the nodes of the graph and the connecting 

transmission lines as edges connecting the nodes.  

https://miro.medium.com/max/2000/1*pCeWhIrEFXoEgsB5eEB6sw.png


 

 

 

77 

Each node of this system graph encapsulates its constraints and properties and can be 

represented as feature matrix for the node in the GNN. Each edge, since it is a transmission 

line, it comes with its set of constraints which represent the edge feature matrix which is 

used to model relationships between the nodes.  

We represented the injectors, buses, and areas as nodes. The injector node contains 

all the properties and constraints mentioned in Nodes/Buses. The bus (substations) which 

are directly connected with the Injectors are represented as nodes and provide a layer of 

abstraction between the network and the injector. These nodes are responsible for 

storing/transferring the energy from one point to another and do so by using transmission 

lines. Bus nodes relate to area nodes which comprise of the consuming areas of the system 

and to another substation nodes with transmission lines. The transmission lines are 

representing the edges connecting the nodes. Since they carry energy, they are subject to 

certain constraints (Branches) and limits which are encapsulated within the edges as 

attributes.  The area nodes are the ones that create the demand, this demand is associated 

with each area. These nodes contain the demand for a given time.  

For a given point time, the complete state of the network can thus be defined as a graph 

with all the required relations preserved. Different states of systems for each timestamp 

can be represented by multiple graphs in similar fashion. 

 

6.3. Creating own Dataset in PyTorch 

We have all the information we have but the next problem is how can we easily create 

graphs and generate a graph dataset that can be loaded to train the model. That is where 
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NetworkX and PyTorch come to rescue. NetworkX is a utility that is developed to easily 

create descriptive knowledge graphs with support for edge attributes as well. We used 

NetworkX to generate aforementioned graphs, with a simple adapter from NetworkX we 

created graphs which could then be added to a dataset. PyTorch amongst everything also 

provides a scalable method to implement custom Datasets, these datasets can be 

dynamically created and updated at scale. The main advantage of this is these Datasets 

don’t need to be loaded into memory completely to train the model, but rather can be loaded 

into memory in batches which is how we require these when training a neural network. 

These datasets can also be used in a distributed environment when training is distributed 

to multiple compute systems. PyTorch also provides easy framework to create the datasets 

and store them. The datasets can be downloaded from any cloud blob storages and 

processed ones can be stored back into blob storages as well. We used a combination of 

these two libraries to create dataset of graphs. We however did not experiment with cloud-

based blob storages, or with very large datasets, but people have praised these two to be 

the best ones currently.  
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7. Implementing GNN models on 7 Bus system 

This chapter will cover how the 2 GNN models were implemented on the 7 bus 

models to do deep learning and how the results were generated to verify the viability of the 

models for this specific problem. 

• Working of GNN: 

GNNs are a combination of an information diffusion mechanism and neural networks, 

representing a set of transition functions and a set of output functions.  

The information diffusion mechanism is defined by nodes updating their states and 

exchanging information by passing “messages” to their neighboring nodes until they reach 

a stable equilibrium.  

The process involves first a transition function that takes as input the features of 

each node, the edge features of each node, the neighboring nodes’ state, and the 

neighboring nodes’ features and outputs the nodes’ new state. 

Based on this understanding of GNN we have implemented 2 models which will be 

discussed in following chapters. 

7.1. GCNConv: Graph Convolutional Network Model 

7.2. NNConv: Message Passing Neural Networks 
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7.1. GCNConv: Graph Convolutional Network Model 

This model is referred from the [3] 

7.1.1. Concept 

Many approaches for semi-supervised learning using graph representations have been 

proposed in recent years, most of which fall into two broad categories:  

a. Graph Laplacian regularization – Graph Laplacian regularization means to get a 

better understanding on the role of normalization of the graph Laplacian matrix as well 

as impact of dimension reduction in graph learning  [4]. It includes propagation of 

labels, manifold regularization, and deep semi-supervised embedding. 

b. Graph embedding-based approaches - Graph embeddings can be learned by the skip-

gram model. DeepWalk learns embeddings via the prediction of the local neighborhood 

of nodes, sampled from random walks on the graph. LINE and node2vec extend 

DeepWalk with more sophisticated random walk or breadth-first search schemes [3].  

  

For all the above methods, a multistep pipeline including random walk generation and 

semi-supervised training is necessary. Each step of these models must be optimized 

separately. This can be alleviated by injecting label information in the process of learning 

embeddings.  
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7.1.1.1. Semi-Supervised Node Classification 

The paper [3] considers a two-layer GCN for semi-supervised node classification on a 

graph with a symmetric adjacency matrix A (binary or weighted). The forward model 

then takes the simple form: 

 

Figure 4: GCN Model Formula  [3] 

Where W(0) is an input-to-hidden weight matrix for a hidden layer with H feature maps. 

W(1) is a hidden-to-output weight matrix. The softmax activation function is applied row-

wise. For semi-supervised multiclass classification, cross-entropy error over all labels is 

evaluated. 

 

Figure 5: Multilayer GCN for semi-supervised learning with C input channels and F feature maps in the output   

layer.[3] 
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7.1.2. Model Setup 

We will be using PyTorch for its readily available implementations of GNN 

layers, I decided on using the GCNConv layer from the Pytorch-Geometric suite. This 

layer is implementation of the exact model for semi-supervised classification 

mentioned in [3]. We also used TOPKPooling operator from [5]for pooling layers and 

performed global mean pooling.  

We used 1-month data output from PSO as our ground truth data. Transformed 

the PSO outputs to graph data, where each timestamp represents a complete graph 

state. Similarly collecting each timestamp data, created a dataset to load into the 

model. Train and test dataset was creating using 70/30 split. 

We experimented with a 6-layer network with 2 GCNConv layers, 2 Pooling 

layers, 3 Linear layers and 1 dropout layer to get the final output. RELU activation 

function was used for each of the GCNConv and Linear layers.  

For training we used the Adam approximation loss function to calculate the 

training loss for each batch and for back propagation.    
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7.1.3. Hyperparameter Optimization 

Parameter optimization was performed using exhaustive search over set limits for 

each parameter and best results were selected for each group. The GCNConv model 

is defined as: 

GCNConv(in_channels, out_channels, improved=False, cached=False, bias=True, 

normalize=True, **kwargs)  

The GCNConv model has below parameters: 

▪ in_channels (int) – Size of each input sample. 

▪ out_channels (int) – Size of each output sample. 

▪ improved (bool, optional) – If set to True, the layer computes the transpose 

by adding 2*identity matrix. (default: False) 

▪ cached (bool, optional) – If set to True, the layer will cache the computation 

on first execution, and will use the cached version for further executions. 

(default: False) 

▪ bias (bool, optional) – If set to False, the layer will not learn an additive 

bias. (default: True) 

▪ normalize (bool, optional) – Whether to add self-loops and apply symmetric 

normalization. (default: True) 

▪ **kwargs (optional) – Additional arguments of 

torch_geometric.nn.conv.MessagePassing. 

From the above parameter’s list, we can control the model performance based on the 

out_channels for hidden layer connectivity, improved, bias and normalize. 
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Model was tested against multiple of each of these parameters and grouped to get the 

best one per group.  

For bias, normalize and improved the model was tested with hidden connectivity 

ranging from 7 till 98 with an interval of 7. From outputs, best connectivity was 

chosen based on min MSE.  

The created dataset was used in three different ways to predict different parameters. 

a. In the First experiment the model was trained to predict only commit status which 

can be one of 1 and 0.  

b. In the Second experiment model was trained to predict the dispatch for ED.  

c. Lastly, the model was fed with the input data and tried to predict UC and ED params 

together. 

Input data consisted of 31 days of network data for the 7-bus model simulated using 

PSO. The data was split between 30 days to train the model and 1 day to test the 

model. The error was measured using mean squared error method with ground truth 

being labels predicted by PSO. 
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7.1.4. Results/Observations 

All the below experiments are made using the below parameters combinations: 

Normalize Improved Bias 

True True True 

True True False 

True False True 

True False False 

False True True 

False True False 

False False True 

False False False 

 

For all the below experiments the hidden layer channel size is varied from 7 to 100 

in steps of 7. Epochs are in the range of 1 to 20. 
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7.1.4.1. Injector Commitment Prediction: 

 Input Variables: 8  Output Variables: 1 

             

              Figure 6: Injector Commitment Prediction Outputs 

Observations: The MSE is significantly reduced in case of Normalized – False, Improved 

– False and Bias – False with hidden channels as 63.  The lowest MSE is obtained by 

keeping Bias as True and others as False but the train and test MSE are almost same for 

20epochs, which might be the result of Overfitting.  
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7.1.4.2. Injector Dispatch Prediction: 

Input Variables: 8  Output Variables: 1 

              

Figure 7: Injector Dispatch Prediction Results 
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Observations: By keeping Normalized - False, improved – False, Bias – False and hidden 

channels – 70 the model performance was substantial and MSE was reduced significantly. 

With the above parameters the model performance was good even for predicting Injector 

commitment.  

For channels – 77, Normalized - True, improved – True, Bias – False, the model’s 

performance was worst. 
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7.1.4.3 Predicting UCED Together: 

Input Variables: 8  Output Variables: 6 

             

                                                        Figure 8: Predicting UCED together 
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Observations: 

The GCNconv model performed the best for predicting UC-ED together. No overfitting is 

observed for this experiment. The model performed best for when all the parameters were 

true and hidden channels were 28. However, this model performed worst when all 

parameters were False as compared to predicting UC and ED individually. 
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7.2. NNConv: Message Passing Neural Networks 

This model is referred from the paper [6] 

7.2.1. Concept 

Neural network architectures that operate directly on graph-valued inputs have been 

developed allowing “end-to-end” learning on molecular space. This approach is based on 

models that simultaneously learn both how to extract appropriate features as well as how 

to use these features to make accurate predictions. End-to-end learning techniques have 

supplanted traditional methods in image recognition and computer translation [7].  A 

number of approaches for end-to-end learning on molecules have recently been unified into 

a single theoretical framework known as Message Passing Neural Networks (MPNNs) and 

even more recently as graph networks [7]. We can learn edge features in MPNN by 

introducing hidden states for all edges in the graph. 

 In MPNNs, predictions are generated from input graphs with node and edge 

features. The network comprises a sequence of layers, including a number of message 

passing layers and a readout layer.  

 

7.2.1.1 Message Passing Layer:  

In the message passing layers, node-level state vectors are updated according to the 

graph’s connectivity and the current states of neighboring nodes. The message passing 

phase runs for T time steps and is defined in terms of message functions  and vertex update 

functions [6]. During the message passing phase, hidden states at each node in the graph 

are updated based on messages according to below equation: 
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                                                           Figure 9: MPNN Equations [6]  

 

7.2.1.2. The Readout Phase 

Following a number of message passing layers, the readout layer generates a single 

graph-level vector from node-level states [7]. The readout phase computes a feature vector 

for the whole graph using some readout function R [6]. The message functions, vertex 

update functions, and readout function R are all learned differentiable functions. R operates 

on the set of node states and must be invariant to permutations of the node states for the 

MPNN to be invariant to graph isomorphism [6].  

 

7.2.2 Model Setup 

As described in chapter 7.1.2, we will be using PyTorch for its readily available 

implementations of GNN layers, I decided on using the NNConv layer from the Pytorch-

Geometric suite. This layer is implementation of the continuous kernel-based 

convolutional operator from [6]. We also used a Sequential Neural Network which maps 

the edge features to shape  

[-1, in_channels * out_channels] and performed global mean pooling.  

We used 1-month data output from PSO as our ground truth data. Transformed the 

PSO outputs to graph data, where each timestamp represents a complete graph state. 
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Similarly collecting each timestamp data, created a dataset to load into the model. Train 

and test dataset were creating using 70/30 split. I experimented with a 6-layer network with 

2 NNConv layers, 2 Pooling layers, 3 Linear layers and 1 dropout layer to get the final 

output. RELU activation function was used for each of the NNConv and Linear layers.  For 

training we used the Adam approximation loss function to calculate the training loss for 

each batch and for back propagation.    

 

7.2.3. Hyperparameter Optimization 

Parameter optimization was performed using exhaustive search over set limits for each 

parameter and best results were selected for each group. 

The NNConv is defined as: 

NNConv(in_channels, out_channels, nn, aggr='add', root_weight=True, bias=True, 

**kwargs) 

The parameters for the NNConv are as follows: 

▪ in_channels (int) – Size of each input sample. 

▪ out_channels (int) – Size of each output sample. 

▪ nn (torch.nn.Module) – A neural network that maps edge features edge_attr of 

shape [-1, num_edge_features] to shape [-1, in_channels * out_channels] 

▪ aggr (string, optional) – The aggregation scheme to use ("add", "mean", "max"). 

(default: "add") 

▪ root_weight (bool, optional) – If set to False, the layer will not add the transformed 

root node features to the output. (default: True) 
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▪ bias (bool, optional) – If set to False, the layer will not learn an additive bias. 

(default: True) 

▪ **kwargs (optional) – Additional arguments of 

torch_geometric.nn.conv.MessagePassing. 

From the above parameter’s list, we can control the model performance based on the 

out_channels for hidden layer connectivity, aggr, bias and root_weight.  Model was tested 

against multiple of each of these parameters and grouped to get the best one per group.  

For aggr, bias and root_weight the model was tested with hidden connectivity ranging from 

7 till 98 with an interval of 7. From outputs, best connectivity was chosen based on min 

MSE.  

The created dataset was used in three different ways to predict different parameters. 

a. In the First experiment the model was trained to predict only commit status which 

can be one of 1 and 0.  

b. In the Second experiment model was trained to predict the dispatch for ED.  

c. Lastly, the model was fed with the input data and tried to predict UC and ED 

params together. 

Input data consisted of 31 days of network data for the 7-bus model simulated using PSO. 

The data was split between 30 days to train the model and 1 day to test the model. The 

error was measured using mean squared error method with ground truth being labels 

predicted by PSO. 
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7.2.4. Results 

All the below experiments are made using the below parameters combinations: 

Root Weight Bias 

True True 

True False 

False True 

False False 

 

For all the below experiments the hidden layer channel size is varied from 7 to 100 

in steps of 7. Epochs are in the range of 1 to 20. 

Also, aggregation feature of the following values was used to propagate the 

calculated features to the hidden layers. 

 

 

 

 

 

 

 

 

 

 

Aggregation 

Add 

Mean 

Max 
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7.2.4.1. Injector Commitment Prediction: 

Input Variables: 8  Output Variables: 1 

                                                   

                                          Figure 10: Predicting injector commitment with root weight and bias 

Observations: For Root Weight - True and Bias - True, the lowest MSE is obtained by 

keeping Aggregation as Max and hidden channels as 77. 
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                            Figure 11: Predicting injector commitment with root weight and no bias 

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by 

keeping Aggregation as Mean and hidden channels as 49  
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                           Figure 12: Predicting injector commitment without root weight but with bias 

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Add and hidden channels as 7. 
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                               Figure 13: Predicting injector commitment without root weight and no bias 

Observations: For Root Weight- False and Bias – False, the lowest MSE is obtained by 

keeping Aggregation as Max and hidden channels as 42  
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Overall injector commitment observations: We observe the least MSE with aggregation as 

Max, hidden channels as 77 and including root weight and bias. Removing the bias while 

adding the root weight seems to decrease the overfitting. Adding more epochs do help in 

increasing the accuracy but at the same time, it overfits the data as both the train and test 

accuracy seems to be similar.  
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7.2.4.2. Injector Dispatch Prediction: 

Input Variables: 8  Output Variables: 1 

                             

                                                  Figure 14: Predicting injector dispatch with root weight and bias 

Observations: For Root Weight- True and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Mean and hidden channels as 42  
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                                           Figure 15: Predicting injector dispatch with root weight and no bias 

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by 

keeping Aggregation as Mean and hidden channels as 91.  
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                                   Figure 16: Predicting injector dispatch without root weight but with bias 

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Add and hidden channels as 77.  
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                                 Figure 17: Predicting injector dispatch without root weight and bias 

Observations: For Root Weight- False and Bias – False, the lowest MSE is obtained by 

keeping Aggregation as Add and hidden channels as 84.  
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Overall injector dispatch observations: We observe the least MSE with aggregation as Add, 

hidden channels as 84 and excluding root weight and bias. When both root weight and bias 

are not added, the test accuracy seems to be enhanced as evident from the corresponding 

mean aggregation model. This is the only case where we do not see the model overfitting. 

As the epochs increase, the accuracy seems to be decreasing in some cases but at the same 

time, continuing to increase the epochs, do increase the accuracy. This proves that more 

forward and backward propagation is helping tune the weights of the nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.4.3 Predicting UCED Together: 
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Input Variables: 8  Output Variables: 6 

                           

                                             Figure 18: Predicting UCED with root weight and bias 

Observations: For Root Weight- True and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Mean and hidden channels as 21.  
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                                                    Figure 19: Predicting UCED with root weight and no bias 

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by 

keeping Aggregation as Max and hidden channels as 35. 
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                                Figure 20: Predicting UCED without root weight but with bias 

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Add and hidden channels as 77. 
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                                             Figure 21: Predicting UCED without root weight and bias 

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by 

keeping Aggregation as Max and hidden channels as 21. 
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Overall UCED observations: We observe the least MSE with aggregation as Max, hidden 

channels as 77 and including root weight and bias. Root weight and bias does not seem to 

be enhancing the model as the results are almost similar for 20 epochs in every case. There 

is slight overfitting in almost all models as the train and test accuracy are almost similar 

and correspondingly test accuracy seems to be always better than the train accuracy.  
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8. Related Work 

Unit Commitment and Economic dispatch has been extensively researched and numerous 

solutions have been proposed to solve this problem. [1] provides a comprehensive review 

of all the proposed studies to solve UCED problem till date. It lists a list of solutions with 

all of its advantages and weakness.  

This chapter will summarize a few of the solutions that were studied to get a better 

understanding of each of the solutions to come up with this thesis. 

8.1. Mixed Integer Linear Programming (MILP) 

MILP is an mathematical optimization technique where some of the variable are 

constrained to be integers while others can be non-integers and the objective functions and 

the constraints are linear. [8] provides with a novel approach for solving the UC ED 

problem using MILP. It allows for topology definition and has the ability to support 

constraints as well. It is an extremely powerful modeling tool with an ability to reach a 

globally optimal solution. However, it is extremely inefficient and slow compared to 

methods like heuristics. 

8.2. Genetics Algorithm 

Genetics algorithm is a search heuristics-based algorithm that takes inspiration from 

Darwin’s theory of natural evolution. It comprises of 5 different phases. Population, in this 

all candidates are populated. Fitness, in this phase each of the candidates from the 

population phase are passed through a fitness function. Selection, in this phase, best 

candidates are chosen based on their scores from the fitness test. Crossover, in this phase, 

two pairs of fit candidates are selected, and an offspring is created and added to the 
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population. Off springs inherit genes from parents. Mutation, in this phase certain 

probabilities are applied over the offspring to generate diversity within population to avoid 

premature convergence. The algorithm terminates when the population has converged and 

provides with a set of solutions. 

[9] provides a genetic algorithm-based solution for the UC ED problem. The proposed 

 solution in [9] implements a hybrid genetics algorithm comprised of integrating tabu search 

 into genetics algorithm. They have achieved results for applying their algorithm to the UC 

 ED problem and gives global optimal solution with lesser computation time.    

  

8.3. Artificial Neural Network 

Artificial Neural Networks have been widely used for a large domain of problems. They 

are famous for their ability to learn from its mistakes and that makes it extremely adaptable 

to wide range of problems.  [10] proposes a ANN based solution for solving the UC ED 

problem. The proposed solution generates optimal generation schedule for generators using 

operational and load constraints. It utilizes B-Coefficients for evaluating the transmission 

losses in the system. The methodology is tested with six thermal power plants and the 

results have been found accurate when compared with classical methods.  

ANN has proved capable of dealing with the variation of the data that the system may have 

and can be extremely flexible with the noise. However, the computation time augments 

exponentially for larger size problems 
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9. Conclusion and Future Work 

9.1. Conclusion 

GCN models like GCNConv: Graph Convolutional Network and NNConv MPNN was 

used to solve the Unit Commitment and Economic Dispatch problem. We represented the 

complex electric grid using a graph structure to retain all the nodes and edge constrains. 

We used the generated graph and applied two models on it. We conducted three 

experiments for which the results are as follows:  

1. Predicting Injector Commitment: 

GCNConv model performed better in this experiment compared to NNConv. The 

MSE error was reduced from 0.35 to 0.05. Running more epochs on NNConv model will 

help improving its performance. 

2. Predicting Injector Dispatch: 

NNConv model showed almost no overfitting for this experiment. However, 

GCNConv performed better comparatively.The MSE error was reduced from 0.16 to 0.02.  

3. Predicting UC-ED together: 

GCNConv performed the best for UC-ED predictions. However, the test MSE error 

is always less compared to train MSE error in NNConv.    

The models learned on the electric grid data was able to perform surprisingly better 

and generate results with some error as compared with the PSO results. Both of the models 

are fast and scalable as compared to the MILP based PSO solver.  
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9.2. Future Work 

All the above experiments were performed on a 7_Bus model. In Future we can perform 

the similar experiments on Real-Time Energy Market and observe the performance. It is 

expected that NNConv(MPNN) should give better results as it considers edge features as 

well as node features to perform convolution. Large number of Nodes and edges can be 

used to test the model behavior. Experiments can be made with different GNN models with 

proper parameter tuning.  
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