

Using Graph Convolutional Network and Message Passing Neural Networks for Solving

Unit Commitment and Economic Dispatch in a day ahead Energy Trading Market based

on ERCOT Nodal Model.

by

Pradnya Sanjay Gaikwad

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2020

 II

Copyright © by Pradnya Sanjay Gaikwad 2020

All Rights Reserved

 III

Acknowledgments

I would like to express my sincere gratitude to my supervising professor, Dr. Ramez

Elmasri who has been a great motivating factor and a constant source of encouragement throughout

my masters' research. Without his guidance and excellent foresight this thesis would have only

remained a great idea.

I would like to thank my colleague, Yashodhan Kumthekar, who helped me with the

research and kept pushing forward to achieve even more results. I am sincerely thankful to Dr.

Leonidas Fegaras and Prof. David Levine for giving valuable suggestions and serving on my

committee. I am also thankful to Dr. Upa Gupta, who directed us in the initial phases of this project.

My heartfelt thanks to my parents, for their constant support and inspiration. They are the

reason that this was possible in the first. I am also thankful for my friends who in some or other

way have always had my back.

May 17th, 2020

 IV

Abstract

Using Graph Convolutional Network and Message Passing Neural Networks for Solving

Unit Commitment and Economic Dispatch in a day ahead Energy Trading Market based

on ERCOT Nodal Model.

Pradnya Sanjay Gaikwad, MS

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Ramez Elmasri

Various machine learning applications will pre-process graphical representations

into a vector of real values which in turn loses information regarding graph structure. Graph

Neural Networks (GNNs) are a combination of an information diffusion mechanism and

neural networks, which represent a set of transition functions and a set of output functions.

Graph Convolution Network (GCN) is based on the optimized variant of CNN which

operates on graph and is a scalable approach for semi-supervised learning on structured

graph data. Message Passing Neural Networks (MPNNs) summaries the cohesions

between many of the existing Neural Network models for structured graph data. This thesis

proves the viability of semi-supervised learning GCN model and supervised learning

MPNNs to solve the crucial problems like the Unit Commitment (UC) and Economic

Dispatch (ED) for the energy market. Power System Optimizer (PSO), a MILP based

solution which simulates energy market accurately, but is extremely reluctant to scale in

both time and compute. This thesis aims at representing the complex structure of the energy

 V

network using GNN and training the models to simulate the market with increased

flexibility to scale in time and compute.

 VI

Table of Contents

Acknowledgments ... III

Abstract .. IV

1. Introduction ... 1

1.1. Energy trading market ... 1

1.2. Role of ERCOT and Power System Optimizer (PSO) .. 1

1.3. Proposed Work ... 4

2. Motivation and Background .. 5

2.1. Unit Commitment (UC) ... 5

2.2. Economic Dispatch (ED) ... 5

3. ERCOT 7-Bus Model and its Components ... 7

3.1. Areas .. 7

3.2. Injectors ... 8

3.3. Nodes/Buses .. 9

3.4. Substation .. 9

3.5. Branches .. 9

4. Data description ... 10

4.1. Input Data .. 10

4.2. Output Data ... 46

5. Tools .. 73

 VII

5.1. Power System Optimizer (PSO) .. 73

5.2. PyTorch ... 73

5.3. PyTorch-Geometric (PyG)... 74

5.4. Google Collab .. 74

6. Graph Neural Network (GNN) .. 75

6.1. Understanding GNN .. 75

6.2. Constructing GNN Based on ERCOT 7-Bus Model ... 76

6.3. Creating own Dataset in PyTorch .. 77

7. Implementing GNN models on 7 Bus system ... 79

7.1. GCNConv: Graph Convolutional Network Model .. 80

7.1.1. Concept .. 80

7.1.2. Model Setup ... 82

7.1.3. Hyperparameter Optimization ... 83

7.1.4. Results/Observations ... 85

7.2. NNConv: Message Passing Neural Networks ... 91

7.2.1. Concept .. 91

7.2.2 Model Setup .. 92

7.2.3. Hyperparameter Optimization ... 93

7.2.4. Results.. 95

8. Related Work ... 111

8.1. Mixed Integer Linear Programming (MILP) ... 111

8.2. Genetics Algorithm .. 111

8.3. Artificial Neural Network .. 112

 VIII

9. Conclusion and Future Work... 113

9.1. Conclusion ... 113

9.2. Future Work ... 114

10. References ... 115

 IX

Table of Figures

Figure 1: ERCOT Nodal Market Design for Texas .. 2

Figure 2 ERCOT 7-Bus Model and its Components .. 7

Figure 3: Representation of learning with GCN ... 76

Figure 4: GCN Model Formula [3] .. 81

Figure 5: Multilayer GCN for semi-supervised learning with C input channels and F

feature maps in the output layer.[3] .. 81

Figure 6: Injector Commitment Prediction Outputs ... 86

Figure 7: Injector Dispatch Prediction Results ... 87

Figure 8: Predicting UCED together... 89

Figure 9: MPNN Equations [6] ... 92

Figure 10: Predicting injector commitment with root weight and bias 96

Figure 11: Predicting injector commitment with root weight and no bias 97

Figure 12: Predicting injector commitment without root weight but with bias 98

Figure 13: Predicting injector commitment without root weight and no bias 99

Figure 14: Predicting injector dispatch with root weight and bias 101

Figure 15: Predicting injector dispatch with root weight and no bias 102

Figure 16: Predicting injector dispatch without root weight but with bias 103

Figure 17: Predicting injector dispatch without root weight and bias 104

Figure 18: Predicting UCED with root weight and bias ... 106

Figure 19: Predicting UCED with root weight and no bias .. 107

Figure 20: Predicting UCED without root weight but with bias 108

Figure 21: Predicting UCED without root weight and bias .. 109

1

1. Introduction

1.1. Energy trading market

Energy trading markets are exactly like any other commodity markets. Wholesale

energy is traded as commodities. Energy prices are driven by the market supply and

demand of the energy. Higher demand higher the prices, higher the supply lowers the

prices.

Several external factors also affect the supply and demand of the energy. For example,

any faults or outages in transmission lines can affect the supply of energy. Consider

weather, when temperature is hot more energy is consumed for air conditioning, thus

increasing the demand, and decreasing the supply due to transmission losses.

1.2. Role of ERCOT and Power System Optimizer (PSO)

The Electric Reliability Council of Texas (ERCOT) manages the flow of electric power

to Texas. It represents about 90% of Texas electric load. It provides a central place where

generation is dispatched onto the grid. ERCOT’s primary responsibility is Reliability i.e.

to match generation with demand and operate transmission system within established

limits.

Figure 1. shows the ERCOT’s Nodal market design for Texas state. The Nodal market

is responsible for dispatching energy to follow the system demand. It also ensures sufficient

Capacity is on-line to meet the forecasted demand. ERCOT’s congestion management

system keeps transmission system operating within limits and avoiding congestion on

transmission lines.

2

As the independent system operator for the region, ERCOT schedules power on an

electric grid that connects more than 46,500 miles of transmission lines and 650+

generation units.

Figure 1: ERCOT Nodal Market Design for Texas

The main problem that ERCOT or any other energy market faces is Economic

Dispatch and Unit Commitment. Unit commitment (UC) aims at optimizing the total cost

of power generation in a specific period, by forming an adequate scheduling of the

generating units. The economic dispatch (ED) problem concerns with finding how much

power each unit should generate for a given demand, by minimizing the total operational

costs. Unit Commitment and Economic Dispatch are crucial to meet generation

3

requirements and satisfy the real-time system demand and Day-Ahead market system

demand.

ERCOT uses Power System Optimizer (PSO) simulator for solving the above problem.

Power System Optimizer (PSO) is a simulator that takes variables that defines

supply and demand of energy and derives (simulates) the market prices for every hour by

solving a mixed integer linear problem. It simulates the production cost and supports the

modeling of multi-level, nested time intervals that simultaneously optimize energy and

ancillary services dispatch and can simulate uncertainties.

PSO's modeling approach is based on the use of Mixed Integer Programming (MIP)

algorithms. We can give forecasted values for these variables (weather forecasts,

transmission outages prediction) and simulate the market to understand the behavior of

market in the future. Energy can be traded at an auction a day before (Day-Ahead Market)

or on the very day it is generated and consumed (Real-Time spot market).

The disadvantage of PSO that it is not time efficient and hence cannot be used to

simulate market in real time. To simulate next 2 weeks of markets, PSO needs 90 minutes

approximately. Another disadvantage of PSO is that it does not scale out. We need to scale

out the computation manually meaning, we can ask the simulator to simulate 1 year of data

in biweekly partition. Simulator in return runs the 26 biweekly market simulation as the

year contains 26 bi-weeks and combines the result. Then, 26 outputs are merged to give

final output. It will take approximately 150 mins to finish simulation of 1-year timeframe.

We can also run the simulator to simulate 1 year of data without any partition where

4

simulator will run PSO in 1 big single run which will take 20 hours to finish and sometimes

fail due to memory constraints.

1.3. Proposed Work

Graph Neural Networks (GNNs) have developed as a fascinating application to a

variety of problems. This thesis focuses on extending the application of GNN to simulate

the unregulated energy market and solve the UC ED problem. The UC ED problem is

heavily dependent on the structured graph data and GNN gives the ability to process the

structured graph data and its spatial properties.

Out of the various models available for GNN, this thesis experiments with supervised

and semi-supervised models i.e. Message Passing Neural Network (MPNNs) and Graph

Convolution Networks (GCNs). MPNN are famous for considering edge constraints along

with node constraints as part of its convolution. CNNs work by extracting local properties

of the data with use of local features which are shared across the complete graph. We will

be leveraging above features of these models on our dataset to solve the UC ED problem

and give better accuracy than the traditional MILP solution.

To represent the energy market problem, we will be using the 7_Bus model that is

provided to us by Vistra energy. It is an accurate, but small representation of what Vistra

uses, and which is compatible with the PSO software. We are training our GNN models

based on 1 month of data generated by PSO on the 7_Bus Model. The accuracy of our

GNN models will be computed by calculating the Mean Squared Error (MSE) between

PSO output and GNN outputs.

5

2. Motivation and Background

We saw in chapter 1 the vastness of the energy trading market. There are multiple

factors which affect the supply and demand of energy every day. It is thus a challenge to

constantly balance out demand and supply of the energy. This section will focus on

problems faced by ERCOT and the existing solutions for them.

2.1. Unit Commitment (UC)

One of the most important problem faced in the energy sector is Unit Commitment

(UC). UC refers to finding optimal schedule and a production level for power system’s

each generating unit over a given time period, subject to a given load forecast and spinning

reserve constraints [1]. Altogether UC aims to balance demand with supply while

optimizing costs.

The total energy generation cost consists of start-up costs, shutdown costs, ramp-up

cost, ramp-down cost, fuel costs. Solving UC determines the best possible commitment

status for an injector, the start-up/shutdown sequences, and the power dispatch for all

available units. The UC optimization problem has the following form [1]:

Total production costs = Fuel cost + Start-up cost + Shutdown cost + Maintenance cost

2.2. Economic Dispatch (ED)

Economic dispatch (ED), playing an important role in the power system operation

and planning, has received significant attention in recent years. The purpose of ED is

to schedule the committed generating unit outputs. ED also minimizes the operating

6

cost and meet the load demand of a power system and satisfy all the constraints [2].

The conventional solution methods for ED includes linear programming, Lagrange

relaxation, nonlinear programming, quadratic programming, dynamic programming,

etc.

As discussed in ERCOT use a market simulator called as PSO, which provides an

accurate solution to UC and ED problems. PSO helps to simulate market very accurately,

however it fails to scale efficiently. Which makes it un-suitable for Real-Time trading. It

takes longer to run, requires to be scaled out manually or even fail due to memory

constraints.

7

3. ERCOT 7-Bus Model and its Components

We introduced ERCOT and ISO in 1.2. Role of ERCOT and Power System

Optimizer (PSO). This chapter will describe in detail the 7-Bus Model which we used in

our thesis provided by Vistra Energy. The main components of the models include the

Areas, Injectors, Branches, Buses, etc. The following diagram show the 7-Bus Model.

Figure 2 ERCOT 7-Bus Model and its Components

3.1. Areas

End users in the system are consumers that consume the energy produced and

paying for it to maintain the balance. There can be millions and millions of consumers that

are involved in the system. So, for abstraction these are grouped by geographical regions

and each of this region is called “Area”. These can also be classified based on demand into

“Load zones”.

8

An area is a geographical area with preferably non-commercial establishments and

households. These are considered as a separate entity as the energy required here varies

vastly depending on various constraints like weather, time of the day, events, festivals etc.

Thus, these require different set of constraints than Load Zones. As shown in Figure 2 the

model has 3 areas:

a. E-City Area

b. Munchkin Area

c. Winkle Area

All the above areas belong to a parent area which is the complete system in this case. The

parent area is labelled as 0.

3.2. Injectors

The cycle starts from generators which generate energy to supply to the grid. These

come in all shapes and sizes, require different fuels to run, differ in capacities, require to

be maintained. Basically, there are a multitude of constraints that can be associated with

each generation unit. These are also referred to as injectors since they are injecting the

energy into the grid. As shown in Figure 2 the model has 5 injectors:

a. Dorothy Gale

b. Toto

c. Won Wiz Oz

d. Wicked Witch East

e. Wicked Witch West

The constraints for all the injectors are explained in the chapter 4

9

3.3. Nodes/Buses

Node identifies physical connection to a transmission network. Every Node belongs to

an Area. Injector dispatches power to its connected Node. A generator/injector can have a

power-balance “Area” different from the area of its Node. An injector is unavailable if

Node is not specified. Electrical Nodes are mapped to substations to support data

management.

Electrical Nodes are valid only when mapped to branches. Nodes are mapped when

used to identify a branch “FrEnode” and “ToEnode”.

3.4. Substation

Substations are used to map Electrical Nodes. Substations belong to a given area and

are mapped to a Node at a given time.

3.5. Branches

Branches are the transmission lines which connects one Node to another. As

transmission lines have certain constraints similarly branches also have few constraints

which are explained in chapter 4.1. Input Data Resistance is used to calculate losses, and

Reactance is used to calculate sensitivities of branch flows to changes in power injections

and phase-shifter angles. Branch limits are assumed to be physical limits that apply to flow

in either direction

10

4. Data description

4.1. Input Data

4.1.1. AREA ID (ARA_ID)

Field Type Description

Area char {areas}

Name char Long name

ParentArea char {areas}

Balance bit Power balance constraint enforced for area

External bit External-area logic enforced

Notes:

1. Primary Key: (Area). ParentArea passed as text string.

2. The default “system” area (Area = ‘0’) is always defined. It is enforced as a balancing area

if Balance is not flagged for any area.

3. Additional areas are always sub-areas of the system area “0”. Sub-areas can have power-

balance constraints enforced instead of or in addition to balancing constraints on the system

area. Balance is automatically enforced for system area if not identified for any sub areas.

4. When an area is flagged as External, it is modeled as having only aggregate load and

generation. Injectors mapped to the area are ignored, and generation is the sum of the area

load schedule (ARA_SCH_LOD) and interchange (IPR_ID). Note that external generators

scheduled to meet internal loads (sometimes referred to as “dynamically scheduled”)

should be mapped to the internal balancing area that they serve.

11

5. All areas must be a balance areas or child of a balance area, even if flagged as External.

4.1.2. BRANCH ID (BRN_ID)

Field Type Description

Branch char {branches}

Name char Long name

FrEnode char { electrical nodes } starting node of branch (“from”)

ToEnode char { electrical nodes } ending node of branch (“to”)

Circuit char Circuit identifier for multi-circuit branches

Voltage float (Kilovolt) Nominal voltage of branch

Resistance float (per unit) Branch resistance R

Reactance float (per unit) Branch reactance X

NormalLimit float (MW) Normal bi-directional limit

CtgLimit float (MW) Contingency bi-directional limit

Solve bit Branch shift-factors solved and saved in case file

Enforce bit Branch constraint is enforced in all periods

Monitor bit Branch constraint is monitored when running feasibility

analysis

Switchable bit Identifies branch that may be opened

Penalty float ($/MWh) Penalty for flow violation

AngleLimit float (rad) Maximum difference in open-circuit voltage angles

12

HVDC bit Branch is high voltage direct current line

CID char { Constraint IDs } name used to add path to set of Constraint

IDs

Notes:

1. Primary Key: (Branch). FrEnode and ToEnode passed as text strings.

2. Circuit is optional field used to identify branches of multi-circuit lines (i.e., “parallel”

branches). PSO automatically identifies multi-circuit lines as those mapped to the same

FrEnode and ToEnode, or mapped to nodes that are electrically equivalent. Branch must

be a unique key, even when representing different circuits of the same line.

3. Because Resistance and Reactance are “per unit” values, Voltage is not used. Resistance is

used to calculate losses, and Reactance is used to calculate sensitivities of branch flows to

changes in power injections and phase-shifter angles.

4. Modeling marginal losses (with option “AddAreaLosses”) can have a significant impact

on computation performance. Because losses are separately calculated for each line with

positive Resistance, performance can be improved by limiting the number of lines with

losses (i.e., by using Resistance = 0 for low-voltage lines).

5. Branch limits are assumed to be physical limits that apply to flow in either direction. Limits

that differ based on flow direction (such as when used to enforce voltage stability

constraints or agreements between neighboring BAs) should be specified using paths.

6. NormalLimit identifies default non-contingency limit (aka long-term or steady-state limit),

and CtgLimit identifies default contingency limit (aka short-term or emergency limit). The

13

default CtgLimit cannot be more restrictive than the default NormalLimit but, when

appropriate, more restrictive limits can be specified for specific contingency constraints

(PTH_CTG). If NormalLimit = 0, limits are ignored. If CtgLimit = 0, NormalLimit is used

as contingency limit.

7. When Solve is flagged, shift factors are solved and stored in a “case file”. This allows all

shift factors for the “core topology” to be solved up front where needed in the current or a

future model. Branches need shift factors when reported, enforced, monitored, switched,

associated with phase-shifter, or used in definition of path, contingency or losses. Once

solved, these shift factors can be used in future runs without re-solving. When a branch is

not in the case file but is flagged as Solve or is used where shift factors are needed, the case

file is resolved.

8. When Enforce is flagged, branch limit is enforced and flows in excess of the limit are

penalized. When Monitor is flagged, flows are not calculated and limit is not enforced

unless feasibility analysis is used (CYC_SAI). When “RunAnalysis” is flagged, branch

flows are calculated and reported, and flows in excess of the limit are reported as violations

without penalty. When neither Enforce nor Monitor is flagged, branch violations are not

reported.

9. The Switchable flag identifies branches that may be switched to define new topologies.

Switchable branches are also identified when associated with an open-branch schedule

(SCN_BRN_OPN or SCN_FCP_OPN) or optimized switch branch (SCN_FCP_OPT) in

the PS library.

14

10. Use of Enforce, Monitor and Switchable flags should be minimized as these increase data

processing and memory requirements needed to calculate additional sensitivity data for

each topology. The Solve flag also increases requirements needed to load case-file data,

but has a much smaller impact.

11. A non-zero Penalty identifies a branch-specific penalty cost.

12. A non-zero AngleLimit identifies a branch-specific “MaxPhaseAngleDifference” when

Switchable branches are modeled using Flow Canceling Phase Shifters (FCPS). The

default value of 1.5 radians should be sufficiently large, but higher angles may be needed

for branches in weakly-connected areas, typically with lower voltage. However,

AngleLimit should not be any larger than necessary because smaller AngleLimit can

improve solver performance.

13. When HVDC branch resistance is identified, associated losses are included in the power-

balance constraints (i.e., added to area loads). The impact of HVDC losses cannot be

captured using the penalty-factor model.

14. When HVDC branches are added to a model that does not have congestion, flows can vary

without having an impact of costs (i.e., solution is “degenerate”). When losses are modeled

and HVDC flows can reverse direction, the linearized “loss factor” model can cause HVDC

flows to be optimized to create “negative losses”. This can be avoided by constraining

HVDC flows to be unidirectional. When solving an iterative model (i.e., using

“MaxIterations” in table CYC_ID) with HVDC losses, PSO will fix HVDC flows to zero

when flow reverses between first and second iterations.

15

15. When CID is specified, results for branch will be included in all reports that use “cid” as

index. Results for branches and paths provided by other reports (that use “pth” as index)

only include those flagged as “Enforce” or “Monitor” or that are HVDC. CID can be used

to identify a subset of these paths or to specify additional paths that are not enforced or

monitored.

4.1.3. CYCLE ID (CYC_ID)

Field Type Description

Cycle char { cycles }

Name char Long name of cycle

DeltaTime int (TimeUnit) Time between start of each horizon of the cycle

LeadTime int (TimeUnit) Time between start of the cycle and model StartDate

DecisionTime int (TimeUnit) Time in advance of each horizon to begin analysis

OrderTime int (TimeUnit) Time in advance of each horizon to announce

controls

MipGap int MIP convergence tolerance

Notes:

1. Primary Key: (Cycle)

2. In the absence of an explicit cycle model, the default cycle (Cycle = ‘0’) is automatically

defined with a single horizon.

3. Each cycle defines a chronological rolling horizon model when a positive value is specified

for DeltaTime.

16

4. LeadTime identifies the amount of time that the start of a cycle (i.e., beginning of the first

horizon) leads the model “StartDate” (MDL_ID). LeadTime allows users to stagger the

start of cycles when they do not coincide.

5. Horizons of all cycles are solved chronologically based on the “decision time” of each

horizon, defined by the starting time of each horizon minus DecisionTime. DecisionTime

is also used by the Sequence Model (TS library) to identify schedule data used as the

forecast for solving each horizon. Larger values for DecisionTime will reduce access to

more-accurate forecasts available closer to real-time operations, but can also give longer

time to respond to control orders (e.g., for generators with longer startup time).

6. Except when used to define the solution order of horizons, DecisionTime is rounded to the

nearest integer multiple of IntervalLength (MDL_ID) so that the decision time of each

horizon can be associated with a time point in the model calendar.

7. OrderTime is the time when control decisions are announced prior to the start of each

horizon. This reflects the amount of time following DecisionTime required to process data

and issue orders. For example, this is used to identify the earliest period in a horizon that

units can startup based on startup time requirements. OrderTime cannot be greater than

DecisionTime. If not identified, OrderTime is assumed to be the same as DecisionTime.

8. If an injector’s startup time exceeds available notification time in a cycle, the injector will

have restricted availability for startup the cycle’s horizons. If startup time exceeds the sum

of notification time and the cycle’s DeltaTime, then the injector cannot be started in the

cycle. Insufficient notification time to start an injector can be addressed by applying: (1) a

must-run schedule, (2) Stage1 commitment in an earlier cycle, or (3) "LastPeriod" logic

17

(INJ_STG_CMT) so that commitment decisions later in the horizons can be enforced as

Stage1 in the current cycle.

9. Cycles are ordered from longest to shortest DeltaTime (e.g., a day-ahead cycle with 24-

hour DeltaTime comes before an hour-ahead cycle with shorter DeltaTime). Cycles with

the same DeltaTime are ordered from longest to shortest LeadTime, DecisionTime, and

OrderTime. Though cycles may have identical values for DeltaTime, DecisionTime, and

OrderTime, all values must be ordered from longest to shortest consistent with the cycle

order.

10. The number of horizons solved in each cycle will be sufficient to solve all intervals in the

solution horizon as periods in the DeltaTime of a horizon.

11. The values of LeadTime and DecisionTime must be consistent with the amount of time

between the first interval (or “MinDate”) and the “StartInterval” (or “StartDate”) specified

for the model (MDL_ID).

12. The definition of cycles must be consistent with the amount of time between the

“StopInterval” (or “StopDate”) and the “MaxInterval (or “MaxDate”) specified for the

model (MDL_ID). Additional time is required to solve intervals that are beyond the

“DeltaTime” of the last horizons of each cycle. Additional time is also required when the

set of solution intervals is not an even multiple of intervals in the DeltaTime of each cycle.

13. Cycle-specific MipGap identifies override of convergence tolerance for mixed-integer

programming (MIP) optimization problems specified by option “MipGap”. Negative

values can be used to set MipGap to zero.

18

14. MaxSolveTime identifies the maximum solver time to solve each horizon (or to solve each

iteration of a horizon when MaxIterations > 0). If not specified, solver time is not

constrained and will continue until required convergence tolerance is reached (i.e.,

“MipGap” for mixed integer models).

15. By default, a horizon is solved once before progressing to the next horizon. This can

provide sufficient solution accuracy when prior cycles or earlier horizons of the current

cycle identify monitored constraints that should be enforced, power-flow for loss-factor

estimates, or coupling FCPS. However, additional iterations may be used to identify (1)

additional enforced constraints, (2) more accurate linearized loss factors, (3) more accurate

power flow in contingency topologies when using FCPS, or (4) co-optimization of unit

commitment and optimized switching.

16. MaxIterations identifies the maximum number of times a horizon is solved. Iterations are

halted earlier if not needed. If not specified, MaxIterations is 1.

4.1.4. CYCLE PERIOD ID (CYC_PRD_ID)

Field Type Description

Cycle char { cycles }

Period int { Periods }

Length int (TimeUnit) Period length

Notes:

1. Primary Key: (Cycle, Period)

19

2. The definition of periods is mandatory when solving rolling-horizon models. The total

length of all periods defines the horizon length of the associated cycle.

3. Periods must be labeled with consecutive integers starting with ‘1’ for each cycle.

4. Periods must be integer multiples of IntervalLength and can be used to aggregate intervals

into coarser time steps. This reduces the size of a model and improves the computational

performance of optimization problems. When periods are not defined, IntervalLength is

used.

5. Within the “DeltaTime” of a cycle (CYC_ID), periods must have an equal Length, and

DeltaTime must be an integer multiple of this “characteristic period length”. If the

beginning of a cycle were allowed to fall in the middle of a period from a previous horizon,

interpolation of previous results could lead to inaccurate and confusing results.

6. The value Length should not decrease with increasing period must be an integer multiple

of the characteristic period length.

7. Solved values are mapped by interval using period definitions associated with the horizon.

Solutions are passed to subsequent horizons by aggregating these interval values using

period mapping associated with each horizon. When solved values exist for some but not

all intervals of a period, the values are ignored and the associated period variables are free.

Solved values for these intervals will be overwritten with the new solution. Period lengths

should be structured so that periods in one horizon are fully contained in periods of the

previous horizon where they overlap.

20

4.1.5. FUEL ID (FUE_ID)

Field Type Description

FuelType char { fuel types } alias: fuel

Name char Long name

Quantity char Fuel quantity (e.g., tons, Mcf, barrels, MMBtu)

Heat float (MMBtu/FuelQuantity) Fuel heat content

Cost float ($/FuelQuantity) Default cost of fuel

Notes:

1. Primary Key: (FuelType)

2. Fuel types may be used to represent different fuels or be used to represent the same fuel

used for different purposes (e.g., for different injectors, different locations, etc.).

3. Any unit can be used for Quantity, but it must be used consistently to define all data

associated with the fuel type.

4. For compressible fuels (i.e., gas), Quantity and associated Heat and Cost should be based

on standard temperature and pressure.

5. Default Cost of fuels is used when unit-specific or pool-specific cost is not specified.

21

4.1.6. FUEL THERMAL UNIT (FUE_UTH)

Field Type Description

FuelType char { fuel types }

ThermalUnit char { thermal units } alias: thermalunit

FuelFactor float Adjustment factor applied to total required fuel

Cost float ($/FuelQuantity) Unit-specific cost of fuel

CostAdder float ($/FuelQuantity) Addition component added fuel cost

Notes:

1. Primary Key: (FuelType, ThermalUnit).

2. FuelFactor identifies fuel or fuel-mix used by unit. May also be used to calibrate a unit’s

fuel consumption, but value (or sum of values) should be close to 1. FuelFactor does not

change a unit’s heat rate but, instead, it scales total fuel consumption required to provide a

quantity of heat to identify a unit-specific heat-content for fuel.

3. Unit-specific Cost of fuels overrides default and pool-specific costs if specified.

4. CostAdder is added to Cost or default costs (FUE_ID or SCN_FUE_CST). This cost is

added as an independent component even when time varying costs are specified

(SCN_FUE_UTH_CST).

22

4.1.7. HEATCURVE ATT (HCV_ATT)

Field Type Description

HeatCurve char { heat curves } alias: curve

TotalHeat bit Curve is defined by total heat-rate data (MMBtu/hour)

BaseHeat float (MMBtu/hour) Base heat added incremental heat-rate curve

NonConvex bit Curve known to be non-convex

Notes:

1. Primary Key: (HeatCurve)

2. Implementation of curve logic (and validation to produce convex curves) parallels

implementation for cost curves except than MMBtu is used in place of $. See CV library

for details.

3. When used with an incremental heat-rate curve, BaseHeat is added to total heat before

identifying incremental-heat-rate points. BaseHeat is ignored when a total heat-rate curve

is used; total heat-rate data should already include BaseHeat. “BaseHeat” specified by table

INJ_HEA is always added so it can be used as an injector-specific adder.

23

4.1.8. HEATCURVE POINT (HCV_PNT)

Field Type Description

HeatCurve char { heat curves } alias: curve

Point int { points } Vertices of the heat curve

X float (MW) Generation level in MW

Y float (MMBtu/MWh or MMBtu/hour) Incremental or total heat rate

Notes:

1. Primary Key: (HeatCurve, Point)

2. If “TotalHeat” curve (HCV_ATT), Point = 0 may be specified with X = 0 MW. This will

be interpreted as “BaseHeat” for curve.

24

4.1.9. INJECTOR COMMIT (INJ_CMT)

Field Type Description

Injector char { injectors }

MinDispatch float (MW) Minimum dispatch when committed

MinOn float (hours) Minimum time committed after startup

MinOff float (hours) Minimum time de-committed after shutdown

BaseCost float ($/hour) Cost rate when committed

HotStartCost float ($) Cost to start unit from hot status

WarmStartCost float ($) Cost to start unit from warm status

ColdStartCost float ($) Cost to start unit from cold status

TimeToWarm float (hours) Time after shutdown to go from hot to warm status

TimeToCold float (hours) Time after shutdown to go from hot to cold status

HotUpTime float (hours) Time from startup notification to on-line when initially

hot

WarmUpTime float (hours) Time from startup notification to on-line when initially

warm

ColdUpTime float (hours) Time from startup notification to on-line when initially

cold

Notes:

1. Primary Key: (Injector)

25

2. Startup is deemed to occur when an injector is synchronized with the grid (breaker closed),

and shutdown when it is de-synchronized (breaker opened). Thus, the time used for

ramping between 0 MW and MinDispatch counts towards MinOn requirements and does

not count towards MinOff.

3. Commitment constraints are enforced only if non-zero values are specified for

MinDispatch or BaseCost; otherwise, there is no reason to ever turn a unit off once

committed.

4. Startup and shutdown ramping is based on normal dispatch ramp rates (INJ_ID). Startup

and shutdown ramp rates cannot vary by scenario, and are currently based on the lowest

non-zero values of each injector.

5. BaseCost is cost when injector is committed at 0 MW. It should include costs at low

dispatch levels where these costs are greater than the mimimum incremental cost. BaseCost

is added to any other costs identified by a cost curve or heat requirements. When used in

combination with heat model (HD library), BaseCost may be used to account for

maintenance costs.

6. When commitment constraints are not enforced for specified injector, BaseCost is added

to incremental costs by prorating over scheduled “MaxMw” (INJ_ID and/or

SCN_INJ_MAX). Costs are ignored when option “IgnoreBaseCostWhenRelaxed” is

flagged and commitment constraints are relaxed.

7. Startup costs (HotStartCost, WarmStartCost , ColdStartCost) should include costs

associated with subsequent shutdown. Once a unit is started, shutdown costs are “sunk”

costs that cannot be avoided.

26

8. When commitment constraints are relaxed, startup costs are ignored unless option

“EnforceStartCostWhenRelaxed” is flagged.

9. The timing of startup orders is based on OrderTime (CYC_ID). Injectors cannot be started

until startup-time requirements (HotUpTime, WarmUpTime, ColdUpTime) have been

satisfied. An injector’s status (hot, warm, or cold) is based on the amount of time since the

last shutdown at the time startup orders are issued.

10. Startup-time requirements constrain only the first startup in a horizon. Subsequent startups

in the same horizon are constrained by MinOff requirements.

11. ColdUpTime also constrains the amount of “non-spinning” reserves that can be assigned

to an injector when not committed. ColdUpTime identifies time lost before an inject can

begin ramping from 0 MW, reducing the remaining “activation time” to supply reserves

(RSV_ID).

4.1.10. INJECTOR HEATCURVE (INJ_HCV)

Field Type Description

Injector char { injectors }

HeatCurve char { heat curves }

Notes:

1. Primary Key: (Injector). HeatCurve passed as text string.

2. “IncHeat” and “BaseHeat” (INJ_HEA) are enforced even when an injector is mapped to a

curve (i.e., costs are additive).

27

4.1.11. INJECTOR ID (INJ_ID)

Field Type Description

Injector char { injectors }

Name char Long name

Area char { areas } Area used to identify power balance

LoadFlag bit Identifies injector that withdraws power

Link bit Identifies injector with source and sink at different locations

MaxMw float (MW) Max dispatch under any condition (nameplate capacity)

MinMw float (MW) Min negative dispatch under any condition

RaiseRR float (MW/minute) Maximum rate allowed for increasing power

LowerRR float (MW/minute) Maximum rate allowed for decreasing power

RampCapOnly bit Ramp rates enforced only on capacity during startup &

shutdown

EnergyCost float ($/MWh) Cost of energy

CostAdder float ($/MWh) Cost component added to EnergyCost

RampUpCost float ($/MW) Cost of increasing dispatch (“mileage” cost)

RampDnCost float ($/MW) Cost of decreasing dispatch (“mileage” cost)

28

Notes:

1. Primary Key: (Injector). Area passed as text strings.

2. An injector must be a load (non-negative withdrawal of power) or a generator (non-

negative injection of power). This also applies to specialized models (such as for energy

storage) which must also be classified as load or generator based on an appropriate

convention (e.g., determined by source-data convention).

3. Area identifies balancing areas that include the injector. All injectors (except for paired

injectors discussed later) must be mapped to a balancing area or the sub-area of a balancing

area. When mapped to a sub area, the injector’s balancing area is inferred by the

parent/child relationships between areas. By default, all injectors are mapped to the default

area (Area = ‘0’) which represents the entire system. Power-balance is enforced at the

system level if not enforced in sub areas.

4. LoadFlag identifies injectors that are loads and adjusts interpretation of capacity limits,

costs, ramp-rates, and other parameters. When a load increases its dispatch, it withdraws

additional power from the grid.

5. Link identifies injectors with source and sink at different locations. There are two injector

types: (1) “Paired Injectors” (IPR_ID) that identify flows of power from one balance area

to another, and (2) “Point-to-Point bids” (PTP_ID) that identify flow of power from one

node to another node in the power grid.

6. When an injector is flagged as a load, MaxMw and MinMw are limits on power

withdrawals, and RaiseRR and LowerRR are limits on ramping.

29

7. The value of MaxMw must be positive. If modeling loads that withdraw power from the

grid, LoadFlag should be used.

8. The value of MinMw should be zero or negative. Note that the minimum dispatch when

committed (and not starting up or shutting down) is a positive number and is enforced by

the Unit Commitment Model.

9. A variety of models may require negative MinMw: Storage units (SRG_ID) and models

bases on “paired injectors” (IPR_ID), including area interchange, transactions, and

financial transmission rights (FTRs). For these models, LoadFlag should not be used. When

LoadFlag is combined with negative MinMw, this is interpreted as representing “behind

the meter” distributed generation.

10. For loads, RaiseRR is the rate at which the load can increase, and LowerRR is the rate at

which the load can decrease. Thus, the RaiseRR capacity of a load contributes to down

reserves, and the LowerRR capacity of a load contributes to up reserves (see Reserve

Requirements section). Zero values are ignored (i.e., no ramp limit).

11. Ramp rate constraints can significantly increase optimization time. To improve

computational performance the flag RampCapOnly identifies that ramp limits are enforced

as a reduced MaxMw limit in periods after startup and before shutdown. In many models,

the biggest impact of ramp-rate constraints is to limit the capacity immediately available

after startup and before shutdown. By replacing constraints that are enforced in every

period with a smaller number of constraints, the RampCapOnly flag may improve

computational performance while maintaining the most important impacts of ramp-rate

constraints.

30

12. EnergyCost is the cost of power consumption. In general, this can be interpreted as the

variable operating and maintenance cost (VOM) when not included separately as fuel cost).

EnergyCost is applied even if a cost-curve is also associated with an injector. EnergyCost

can be used in combination with other cost models (e.g., heat and fuel costs) to represent

other operating costs and benefits (e.g., emissions cost or a production tax credit for

generation from renewable sources). Negative price are allowed.

13. CostAdder is added to EnergyCost, and can be used to separately report components of

injector costs. This is useful when costs are calibrated (e.g., to match historical data), and

users want to preserve original EnergyCost. This is also useful even if energy costs are

accurate but offers are different from costs (i.e., not equal to VOM) in market models.

14. RampUpCost and RampDnCost identify cycling costs. Ramp cost is cost per MW/minute

of ramping accumulated over time: (ramp cost) x (ramp rate) x (ramp time). For example,

$1/MW x (1 MW/minute) x (1 hour) = $60.

4.1.12. INJECTOR INITIAL MW (INJ_INI)

Field Type Description

Injector char { injectors }

Mw float (MW) initial MW injection (+) or withdrawal (-) by injector

EnforceMw bit Identifies that MW=0 is enforced.

TimeInStatus float (hours) Time in current commitment status

31

Notes:

1. Primary Key: (Injector)

2. Mw is used to enforce ramp constraints at beginning of first horizon. If zero and

EnforceMw not flagged, initial MW not defined (i.e., initial ramp constraint not enforced).

3. TimeInStatus is used to enforce “MinOn” and “MinOff” (INJ_CMT) at beginning of first

horizon. Positive values identify that injector is committed at beginning of first horizon

and negative values identify that injector is not committed. If zero, initial status is not

defined and does not constrain subsequent status.

4. Initial values are used at the beginning of the first cycle and, in subsequent cycles, initial

values are taken from prior cycle. After the first horizon of a cycle, initial values are

determined by results from previous horizon of the same cycle.

4.1.13. INJECTOR NETWORK (INJ_NET)

Field Type Description

Injector char { injectors }

Node char { nodes } Electrical location (electrical node or aggregate node)

PhysicalArea char { areas } Physical area if different from balance area

LossFactor exp (MW/MW) Change in system losses with change in dispatch

IgnoreLoss bit Resistive losses ignored in penalty-factor model

32

Notes:

1. Primary Key: (Injector). PhysicalArea and Node passed as text strings.

2. Node identifies physical connection to a transmission network. Note that a generator can

have a power-balance “Area” (INJ_ID) different from the area of its Node (aka

“dynamically scheduled” generators). An injector is unavailable if Node is not specified

and option “IgnoreUnmappedInjectors” is set.

3. When an injector has no Node mapping, power-flow impact is based on generation or load

distribution (PF library) of the injector’s “Area” (INJ_ID) or, if specified, PhysicalArea.

For example, area mapping can be used to evaluate general power-flow impacts of new

generation or load without a detailed interconnection specification.

4. LossFactor is user specified the incremental chance in net system losses with each MW

change in injector dispatch (i.e., where is system loss and is injector dispatch) and is used

to define penalty factor applied as multiplier of costs of delivered energy and services (i.e.,

for dispatch, commitment, heat, fuel and reserves).

5. Penalty-factor models assume system losses are already included in area load forecasts and

need not be separately calculated (this is typical case where power utilities have better

metering of generation than load), and penalty factors are used to reflect the impact that

losses should have on dispatch (e.g., “merit order” of generator dispatch). Thus, LossFactor

does not affect power and heat output (e.g., maximum limits) or power balance (i.e., the

increase in generator output needed to compensate for losses).

6. When also modeling resistive losses (BRN_ID), LossFactor is applied as additional

multiplier of costs. Care should be taken to avoid double counting when both are used.

33

7. IgnoreLoss identifies that resistive losses are ignored when calculating penalty factors.

This can be used to override calculated injector loss factors (based on branch resistance

and prior power flow) to apply user-specified or to set loss factors to zero for specified

injectors. LossFactor and IgnoreLoss do not impact locational marginal prices (LMPs).

4.1.14. INJECTOR STAGE1 COMMITMENT (INJ_STG_CMT)

Field Type Description

Injector char { injectors }

Cycle char { cycles } Cycle in which commitment is Stage1 decision

LastPeriod int Last period of Stage1 decisions

Notes:

1. Primary Key: (Injector). Cycle is passed as text string.

2. An injector’s Cycle is the cycle in which commitment decisions are finalized. In any

subsequent cycles, commitment is assumed fixed at results from the identified Cycle

(however, results can be overridden by forced outages and failed starts; see CYC_INJ_FOP

and INJ_FSP).

3. When any injector is mapped to the null cycle (‘0’), validation will be applied to verify that

all commit-able injectors are mapped to a cycle.

4. When dispatch decisions after DeltaTime should be assigned as Stage1 decisions,

LastPeriod identifies the last period that is Stage1 in each horizon. Prior periods are also

34

Stage1 decisions or are solved in earlier horizons as Stage1 decisions. Not needed when

Stage1 decisions coincide with DeltaTime.

5. Uses standard implementation for stage specification. See INJ_STG_DSP for further

description.

4.1.15. LIBRARY REPORT SUPRESS (LIB_RPT)

Field Type Description

Library char { libraries } alias: modellibrary

NoInterval bit Supress interval results

NoAggHour bit Supress aggregate hour results

NoAggDay bit Supress aggregate day results

NoAggMonth bit Supress aggregate month results

NoAggYear bit Supress aggregate year results

Notes:

1. Primary Key: (Library)

2. Suppresses default reporting of results (i.e., “Default” results identified by PSO Results

Reports). NoInterval, NoAggHour, NoAggDay, NoAggMonth, and NoAggYear identify

results that should not be reported. NoInterval suppresses interval results (i.e., the most-

35

granular results of a model) of identified Library. NoAggHour, NoAggDay, NoAggMonth,

and NoAggYear suppress aggregate results with identified granularity.

3. NoInterval suppresses interval results regardless of interval length. For example, if interval

length is = 1 hour, Hourly results are suppressed even if NoAggHour is not flagged.

4. Libraries are identified by their two-character acronym by lower-case letters (e.g., “ed”,

“uc”, etc.). Library = 0 can be used to identify all libraries.

5. “Default” results controlled by LIB_RPT. In addition, “standard” are always reported and

cannot be suppressed, and “detailed” results are not reported unless requested (see PSO

Results Reports).

6. Specific results (including “detailed” reports) are reported by adding report names to the

list of options (i.e., “configuration parameters”). For example, “ED_Inj” added to the list

of options causes this default report to be written, even if LIB_RPT identifies that “ed”

results are suppressed.

7. When writing tabular reports, each field is written to a separate CSV file or Excel tab.

Adding “ED_Inj” added to the list of options causes all fields of the table to be written

while adding “ED_InjP” causes only the “P” field to be written. Names of table and field

reports are case sensitive.

8. Specific aggregate results can be reported by adding aggregate report names to the list of

options (e.g., “ED_Inj_d” or “ED_InjP_d”).

36

4.1.16. MODEL ID (MDL_ID)

Field Type Description

Name char Long name for model

MajorRelease int Major release number

MinorRelease int Minor release number

BranchRelease int Branch number

TimeUnit char Units associated with interval length

IntervalLength int (TimeUnit) Length of each interval

MaxInterval int Last interval used to specify model data

StartInterval int Start interval of model’s solution horizon

StopInterval int Stop interval of model’s solution horizon

MinDate date First date used to specify model data

MaxDate date Last date used to specify model data

StartDate date Start date of model’s solution horizon

StopDate date Stop date of model’s solution horizon

Notes:

1. Primary Key: not applicable (scalar data)

2. Version data is used to ensure model changes and data structures are synchronized and also

allows software to be backwards compatible (i.e., it can run older data models). Major and

minor releases are identified by MajorRelease and MinorRelease. Previously defined tables

37

cannot be re-organized without a change in MinorRelease. BranchRelease identifies “beta”

releases with prototype or custom implementations.

3. Valid TimeUnit values are “minute”, “hour”, “day” or “week”. Must be specified. Longer

values (e.g., month or year) can be approximated by using IntervalLength.

4. IntervalLength is the shortest time increment used by model time step and input data

specified by interval or date. To minimize memory and data-processing requirements,

IntervalLength should be as large as possible based on model and data. Currently, it is

assumed that IntervalLength should not be less than one minute can be specified as an

integer multiple of time units.

5. Time data must align with intervals, which can be difficult when using intervals longer

than 1 day. Months vary from 28 to 31 days, and years can be 365 or 366 days. As a result,

the beginning and end of months and years will not be included in the set of valid time

points when multi-day or weekly intervals are used. Where values are specified in years

(e.g., “DiscountRate” in UE library), it is assumed that 1 year = 365.25 days or 8766 hours.

Nevertheless, aggregate values are based on calendar length of each month and year (i.e.,

considering varying length).

6. Time-varying data must be modeled using either interval data or time points. If interval

data is used, then all mapping to time (e.g., by schedules) must be by interval. If time-point

data is used, then all mapping to time must use dates. In general, interval data is more

appropriate for simple or abstract models with a limited number of intervals. Time-point

data is more appropriate for models of real systems, particularly when integrating data from

different sources.

38

7. When interval data is used, intervals are identified (i.e., labeled) by consecutive integers

from ‘1’ to MaxInterval, and intervals that are outside of this range are not recognized.

8. When interval data is used, StartInterval and StopInterval identify the first and last interval

of the “solution horizon”. Intervals before the StartInterval may be included in the model

definition when control decisions are made in advance (i.e., “LeadTime” in table

CYC_ID). Intervals after the StopInterval may also be included in the model definition to

avoid myopic decisions.

9. If StartInterval and/or StopInterval are not identified, StartInterval is set to 1 and

StopInterval is set to MaxInterval.

10. When time-point data is used, dates are identified by MinDate and MaxDate. Dates outside

this range are not recognized.

11. When time-point data is used, the maximum interval is calculated based on TimeUnit,

IntervalLength, and the difference between MinDate and MaxDate.

12. When time-point data is used, StartDate and StopDate identify the beginning and end of

the solution horizon.

13. MinDate identifies the date at the beginning of the first interval even when interval data is

used. If not specified, DefaultMinDate is used.

39

4.1.17. ELECTRICAL NODE ID (NDE_ID)

Field Type Description

Enode char { electrical nodes } alias: enode

Name char Long name

Busbar char { electrical nodes }

Substation char { substations }

ReportNode bit Nodal LMPs and other results should be calculated and reported

Notes:

1. Primary Key: (Enode). Busbar, Substation and Area passed as text strings.

2. Electrical nodes are valid only when mapped to branches. Nodes are mapped when used to

identify a branch “FrEnode” and “ToEnode” (BRN_ID) or when indirectly mapped by

Busbar.

3. Mapping electrical nodes to same Busbar identifies inoperable zero-impedance

connections. This avoids the need to use dummy branches or jumpers to establish

connectivity. The combined use of both bus bars and electrical nodes allows users to

distinguish between electrical and physical connections. This can also be useful when

combining data from datasets that use inconsistent naming or mapping conventions. This

can also be useful to track power-flow values of different injectors connected to the same

bus.

4. Any node from among a group of electrically-identical nodes may be a Busbar. In general,

it will be easier to manage data if bus bars are electrical nodes used as branch terminals

40

(i.e., branch “FrEnode” or “ToEnode”) except when breakers or transformers are also

modeled.

5. Default logic calculates and reports locational marginal prices (LMPs) for injectors but not

electrical nodes. The flag ReportNode identifies additional LMPs that are reported.

4.1.18. SCHEDULE TIMEPOINT (SCH_TMP)

Field Type Description

Schedule char { schedules }

Time date { time points }

Value exp Schedule value associate with time point

Enforce bit Identifies that Value=0 should be enforced.

Notes:

1. Primary Key: (Schedule, Time)

2. Time-point schedules are converted to interval schedules using linear interpolation unless

“StepChange” is flagged (SCH_ATT). By definition, time points are always at the

boundary between intervals (since an interval is the smallest time increment in the model).

Thus, every interval is fully contained between time points.

3. A time-point schedule is not defined before the first time point or after the last time point

(i.e., the value of the time point values are not extrapolated).

4. When Enforce flag is not used, zero values are ignored. If the Enforce flag is used, it must

be specified for all other values in the same schedule that are to be enforced.

41

5. For tabular data, tabs in Excel are labeled SCH_TMP_TV for Value and SCH_TMP_TE

for Enforce and have the following structure:

a. Columns = Schedule

b. Rows = Time

c. Data = Value, Enforce

6. Multiple Excel tabs can be used to specify input data when the option

“NumberOfExcelTabs” is identified. Tab names are identified as SCH_TMP1,

SCH_TMP2, SCH_TMP3 and so on (or SCH_TMP_TV1, SCH_TMP_TE1).

4.1.19. SCENARIO AREA LOAD (SCN_ARA_LOD)

Field Type Description

Scenario char { scenarios }

Area char { areas }

Load float (MW) Static fixed load

Enforce bit Identifies that Load = 0 should be enforced.

ScaleFactor float Factor used to scale Schedule and Sequence

Schedule char { schedules }

Sequence char { sequences }

42

Notes:

1. Primary Key: (Scenario, Area). Schedule and Sequence passed as text strings.

2. Table identifies fixed active-power loads that are not associated with a specific device and

location. When power-flow impacts need to be considered, area loads are distributed based

on weighs applied to specified electrical nodes (see STE_NDE).

3. When parent-area mapping exists, sub-area load schedules are aggregated to establish

parent area load schedules when parent-area schedules are not identified.

4. All loads must be mapped to a balancing area or the sub-area of a balancing area.

General notes for scenario data:

1. When flagged, Enforce will cause all intervals to have an enforced value. Time-varying

values will be used where enforced by Schedule and Sequence. The static scenario value

(i.e., Load) is enforced in all other intervals. Time varying Schedule and Sequence values

are enforced only in periods which have enforced values in all intervals of the period.

2. The optional parameter ScaleFactor is applied to Schedule and Sequence to define time-

varying values when they differ only by a constant scaling factor. ScaleFactor is an attribute

of the Schedule and Sequence mapping: When assigned to the default scenario ‘0’, it is

applied only to schedules and sequences also associated with the default scenario. Non-

default scenarios that do not have a ScaleFactor will be assigned a value of 1.

3. If ScaleFactor is not assigned a value or is assigned the value of 0, then ScaleFactor = 1. If

it is desired that ScaleFactor = 0 be used, this can be achieved by setting Enforce = 1 with

default value of 0 or null and with no Schedule or Sequence specified.

43

4. Load (or other appropriate static value), Enforce, ScaleFactor, Schedule or Sequence

mapped to the default scenario (Scenario = ‘0’) is used as default data for all scenarios

without explicit mapping. When multiple methods are used to map static and/or time-

varying data, the following priority identifies data associated with each period:

Sequence, Schedule, and static data (including any mapping to the default scenario). For

example, when both static and time-varying data are specified, Load and/or Enforce

identify default values for periods without enforced Schedule or Sequence values. Priority

order is as follows:

a. Sequence of non-default scenario

b. Sequence of default scenario

c. Schedule of non-default scenario

d. Schedule of default scenario

e. Static value (e.g., Load) of non-default scenario

f. Static value (e.g., Load) of default scenario

g. Static default value

Area load does not have a static default value. Static default values exist for other types

of scenario data (e.g., SCN_INJ_MAX).

44

4.1.20. SCENARIO CYCLE (SCN_CYC)

Field Type Description

Scenario char { scenarios }

Cycle char { cycles } Cycle to which scenario is applied

Weight float Weight (or probability) of scenario

Reference bit Scenario used to define deviations of other scenarios

Notes:

1. Primary Key: (Scenario). Cycle passed as text string.

2. Used to identify scenarios and map scenarios to cycles. Each scenario can be mapped to

only one cycle and each cycle must have at least one scenario. A stochastic cycle is defined

when multiple scenarios are mapped to the same cycle.

3. The default scenario (‘0’) should not be mapped to any cycle. The default scenario is

always defined and is used define shared data applicable to all scenarios. Data is mapped

to other scenarios is applied as overrides of default data.

4. The Weight of scenarios mapped to each cycle should sum to one (100%). Scenarios with

zero Weight have no direct contribution to the objective function except through constraint

violations (e.g., load shedding) and associated penalties. A zero-weight scenario is a

contingency scenario required only for reliability.

5. The Reference flag is used to define values of other scenarios of a stochastic cycle as

positive or negative deviations. When stochastic reserves are procured explicitly

45

(CYC_RSV), the reference scenario identifies deviations that must be met by “Up”

reserves or “Down” reserves.

4.1.21. SUBSTATION ID (SUB_ID)

Field Type Description

Substation char { locations } alias: station

Name char Long name

Area int { areas }

Notes:

1. Primary Key: (Substation). Area passed as text string.

2. Optional data used to associate electrical nodes with areas. Physical area mapping can be

used to define physical location of injectors, such as when used to identify “dynamically

scheduled” generators.

3. Area mapping is used only to organize substations and does not impact area power balance

except where used to define injector mapping to area (INJ_ID) or to assign branch losses

to areas.

46

4.2. Output Data

4.2.1. Scenario Area Interval (ED_Ara)

Record Type Description

scn char { scenarios }

ara char { areas }

int int { intervals }

Load float (MW) fixed area load

Loss float (MW) resistive losses

P float (MW) dispatch

NetIC float (MW) net interchange: (+) export, (-) import (i.e., exports minus

imports)

Violation float (MW) violation of area power balance constraint

Penalty float ($Unit) cost of violation

SP float ($/MWh) shadow price of area power-balance constraint

BalancePrice float ($/MWh) total shadow price including parent areas

LoadPrice float ($/MWh) weighted LMP of fixed-load

LoadCost float ($Unit) fixed-load cost (product of load, price and period length)

SourcePrice float ($/MWh) weighted LMP of injector MW

SourceRevenue float ($Unit) injector revenue (product of MW, price and period

length)

NetIcCost float ($Unit) net-interchange cost: (+) export, (-) import

47

NetIcRevenue float ($Unit) net-interchange revenue: (+) export, (-) import

Notes:

1. Primary Key: (scn, ara , int)

2. Load is fixed load specified by input data and not affected by Violation (e.g., value does

not change with load shedding).

3. P is total dispatch of area injectors (generation minus load). P is zero in external areas.

4. NetIC is sum of flow on paired injectors with source or sink in area, including sub-areas.

5. Loss is additional load added to power-balance constraints when option “AddAreaLosses”

is flagged and/or when modeling HVDC branches.

6. SP and BalancePrice are determined by shadow price of power-balance constraints. These

are based on the marginal cost to provide an additional MWh from marginal injectors.

When interchange transactions are modeled (i.e., using paired injectors), marginal injectors

can be outside the area.

7. The additional MWh provided by marginal injectors is balanced by the slack bus and, thus,

SP and BalancePrice include the locational impacts of wheeling costs, losses, or binding

area power-balance constraints. As a result, SP and BalancePrice can depend on the

location of the slack bus. Locational marginal price (LMP) at the reference bus is equal to

SP and BalancePrice of area ‘0’ (i.e., the entire system) and at other areas if there are no

wheeling costs, losses, or binding area power-balance constraints. SP and BalancePrice do

not include impact of binding transmission constraints resulting from flow over the

48

physical network (i.e., “congestion” from constraints in the PN, PC, and NC libraries),

except as included in the slack-bus LMP.

8. LoadPrice is area locational marginal price (LMP) calculated using area load distribution

(see PF library) and is not affected by reference-bus location (except for impact on loss

factors). This is BalancePrice adjusted for cost of congestion to flow power from slack bus

to area loads. LoadCost is product of Load and LoadPrice.

9. SourcePrice is area LMP calculated using distribution of solved injector MW.

SourceRevenue is product of injector MW and SourcePrice.

10. NetIcCost is product of SourcePrice, period length, and total MW of paired injectors with

source or sink in current area, including sub-areas. Area of SourcePrice should not be

confused with “SourceArea” (IPR_ID). SourcePrice is weighted LMP of area injectors and

is used as an estimate of marginal generation cost to increase generation for export, and to

decrease generation with imports.

11. NetIcRevenue identifies revenues associated with paired-injector imports and exports.

Used weighted LMP of injectors in area of origin (for imports) and destination area (for

exports). If an external area with no injectors, area distribution of “GenMw” (STE_NDE)

is used. Difference in NetIcCost and NetIcRevenue identifies total “profit” from

interchange.

12. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

13. Tabular reports are identified by scn and have the following structure:

a. Columns = ara

49

b. Rows = int

14. Sparse fields: Violation, Penalty

4.2.2. Scenario Injector Interval (ED_Inj)

Record Type Description

scn char { scenarios }

inj char { injectors }

int int { intervals }

Cap float (MW) installed dispatch capacity

Max float (MW) maximum dispatch capacity

Min float (MW) minimum dispatch capacity

P float (MW) dispatch

RC float ($/MWh) change in objective cost for increase in dispatch

Marginal bit Injector may be marginal

LMP float ($/MWh) locational marginal price

LoadPrice float ($/MWh) load-weighted locational marginal price of balance area

BalancePrice float ($/MWh) area energy price from power-balance constraints

CostTotal float ($Unit) Cost from all libraries

CostOfEnergy float ($Unit) Product of energy and EnergyCost

CostOfAdder float ($Unit) Product of energy and CostAdder

CostOfRamp float ($Unit) Product of ramp MW and RampCost

50

Revenue float ($Unit) ED “revenue” (product of dispatch, price and period

length)

Mileage float (MW) total movement over aggregate period

ViolationRR float (MW) violation of ramp-rate limit

PenaltyRR float ($Unit) cost of ramp violation

Up bit injector is up (committed or dispatch > 0) (for aggregate reports)

UpCap float (MW) installed dispatch capacity; zero if not up (for aggregate

reports)

UpMax float (MW) maximum dispatch capacity; zero if not up (for aggregate

reports)

Notes:

1. Primary Key: (scn, inj, int)

2. Cap is “MaxMw” (INJ_ID), considering only the impact of “InstallDate” and “RetireDate”

(INJ_INS) and deration by season (INJ_MAX).

3. Max and Min identify dispatch limits. They are de-rated by fixed-dispatch

(SCN_INJ_DSP) or dispatch limits (SCN_INJ_MAX), and are set to zero when off due to

scheduled outage, forced outage, failed startup, or unavailable for commitment (un-

committed status after Stage1 cycle, unsatisfied “MinDown” requirements, startup time

requirements, scheduled de-commitment, failed startup, and maintenance outages).

4. MaxMw identifies capacity associated fixed-dispatch (SCN_INJ_DSP), dispatch limit

(SCN_INJ_MAX), or post-Stage1 commitment status (0 if not committed). In contrast to

51

values reported by ED_Inj, MaxMw identified available dispatch before impact of forced

outage (FO) or scheduled outage (SO).

5. When an outage begins or ends in the middle of a period, a de-rated value is identified for

MaxMw (to accurately represent available energy). CapMw is de-rated only when

installation or retirement occurs in the middle of a period.

6. Marginal identifies injectors that may be marginal-cost resources. Injectors can be marginal

when their dispatch is variable (e.g., not on fixed schedule and not after stage-1 dispatch),

and whose reduced cost (RC) is zero. This does not guarantee injectors are marginal, but

logic should identify all potentially marginal injectors.

7. LoadPrice is load weighted LMP for all load nodes in an injector’s balance area (i.e., not

smaller area if mapped to a more granular area). BalancePrice is the shadow price of the

power-balance constraints. Prices can vary by area when solving a multi-area model (with

power-balance constraints for each) or when including power network (modelled by DC

power-flow model using PN and PC libraries or by shift-factors using NC library).

BalancePrice will be the same for all areas unless solving a multi-area model.

8. LMP, LoadPrice and BalancePrice do not exist for paired injectors and are not reported.

Paired-injector prices are based on difference in source-area and sink-area prices, adjusted

for congestion cost. Area prices are based on marginal-injector costs. Though similar to

area load prices (ED_Ara), changes in paired-injector flow are generally matched by

changes in dispatch of marginal injectors and not by changes in distributed area load.

Identification and weighting of marginal injectors can be difficult, but the net impact of

prices, congestion and wheeling cost is identified by the paired-injector RC.

52

9. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

10. Tabular reports are identified by scn and have the following structure:

a. Columns = inj

b. Rows = int

11. Sparse fields: ViolationRR, PenaltyRR.

4.2.3. Scenario Fuel Area Interval (FD_Ara)

Record Type Description

scn char { scenarios }

fue char { fuel types }

ara char { areas }

int int { intervals }

Fuel float (FuelQuantity) fuel use

Cost float ($Unit) cost of fuel

CostOfScaling float ($Unit) cost added by scaling

CostOfAdder float ($Unit) cost added by CostAdder

Notes:

1. Primary Key: (scn, fue, ara, int).

2. Tabular reports are identified by scn and fue, and have the following structure:

a. Columns = ara

53

b. Rows = int

3. Compound tabular reports are identified by scn and have the following structure:

a. Columns = (fue, ara)

b. Rows = int

 4.2.4. Scenario Fuel Unit Interval (FD_FueUth)

Record Type Description

scn char { scenarios }

fue char { fuel types }

uth char { thermal units }

int int { intervals }

Fuel float (FuelQuantity) fuel use

Cost float ($Unit) cost of fuel

CostOfScaling float ($Unit) cost added by scaling

CostOfAdder float ($Unit) cost added by CostAdder

Notes:

1. Primary Key: (scn, fue, uth, int).

2. Current logic allows only one fuel type to be mapped to each injector (i.e., fuel-mix

modeling not supported, except through the definition of fuels).

3. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

54

4. Tabular reports are identified by scn and fue, and have the following structure:

a. Columns = uth

b. Rows = int

5. Compound tabular reports are identified by scn and have the following structure:

a. Columns = (fue, uth)

b. Rows = int

 4.2.5. Scenario Unit Interval (HD_Uth)

Record Type Description

scn char { scenarios }

uth char { thermal units } heat units and heat-based injectors

int int { intervals }

Rate float (MMBtu / hour) heat rate (base heat + incremental heat)

Start float (MMBtu) startup heat

Received float (MMBtu / hour) received heat from upstream units

Exhaust float (MMBtu / hour) exhaust heat

Cost float ($Unit) cost of heat

Notes:

1. Primary Key: (scn, uth, int).

2. For thermal units that are injectors, Exhaust is reported only when used by downstream

unit (i.e., in combined-cycle model).

55

3. For heat units, Received or Exhaust is reported, depending on LoadFlag status.

4. Tabular reports are identified by scn and have the following structure:

a. Columns = inj

b. Rows = int

 4.2.6. Scenario (MC_Hrzn)

Record Type Description

scn char { scenarios }

hrzn char { horizons }

FirstInterval int { intervals } First interval of horizon

Cost float ($Unit) Real cost included in model results

Noncost float ($Unit) Virtual cost included in model results

Penalty float ($Unit) Penalty cost included in model results

DeltaCost float ($Unit) Real cost from periods in DeltaTime of horizon

DeltaNoncost float ($Unit) Virtual cost from periods in DeltaTime of horizon

DeltaPenalty float ($Unit) Penalty cost from periods in DeltaTime of horizon

AllCost float ($Unit) Real cost from all periods of horizon

AllNoncost float ($Unit) Virtual cost from all periods of horizon

AllPenalty float ($Unit) Penalty cost from all periods of horizon

Notes:

1. Primary Key: (scn, hrzn)

56

2. Results are reported for each horizon, including those solved before “StartDate”.

3. Periods after a horizon’s “DeltaTime” of a horizon are re-solved in subsequent horizons.

DeltaCost, DeltaNoncost and DeltaPenalty identify costs accruing in “DeltaTime”.

AllCost, AllNoncost and AllPenalty identify costs from all periods of horizon, including

those after “DeltaTime” that are re-solved by subsequent horizons.

4. DeltaCost, DeltaNoncost and DeltaPenalty is same as Cost, Noncost and Penalty identify

costs except when “StartDate” and “StopDate” fall within the horizon’s “DeltaTime”.

5. Tabular reports not defined.

4.2.7. Library Scenario Horizon (MC_Lib)

Record Type Description

scn char { scenarios }

lib char { libraries }

Cost float ($Unit) Real cost included in model results

Noncost float ($Unit) Virtual cost included in model results

Penalty float ($Unit) Penalty cost included in model results

Notes:

1. Primary Key: (scn, lib)

2. Identifies by library total costs and penalties between the model “StartDate” and

“StopDate” (MDL_ID), excluding costs associated results used to establish appropriate

boundary conditions (i.e., those associated with “LeadTime” or after “StopDate”).

57

3. Tabular reports not defined.

4.2.8. Library Scenario Horizon (MC_LibHrzn)

Record Type Description

scn char { scenarios }

lib char { libraries }

hrzn char { horizons }

FirstInterv

al

int { intervals } First interval of horizon

Cost float ($Unit) Real cost included in model results

Noncost float ($Unit) Virtual cost included in model results

Penalty float ($Unit) Penalty cost included in model results

DeltaCost float ($Unit) Real cost from periods in DeltaTime of horizon

DeltaNonc

ost

float ($Unit) Virtual cost from periods in DeltaTime of horizon

DeltaPena

lty

float ($Unit) Penalty cost from periods in DeltaTime of horizon

AllCost float ($Unit) Real cost from all periods of horizon

AllNoncos

t

float ($Unit) Virtual cost from all periods of horizon

AllPenalty float ($Unit) Penalty cost from all periods of horizon

58

Notes:

1. Primary Key: (scn, lib, hrzn)

2. Tabular reports have the following structure:

a. Columns = lib

b. Rows = hrzn, FirstInterval

 4.2.9. Solution (MC_Solution)

Record Type Description

slv char { solves } Chronological order in which solution was solved

cyc char { cycles }

hrzn char { horizons }

iter char { iterations }

FirstInterval int { intervals } First interval of horizon

LastInterval int { intervals } Last interval of horizon

#Constraints int Number of individual constraints

#Var int Number of individual variables

#IntVar int Number of individual integer variables

#NonZeros int Number of non-zeros

GenTime float (second) CPU time to generate math problem

SolveTime float (second) CPU time to solve math problem

ElapsedTime float (second) Clock-time elapsed

59

#Iterations int Number of solver iterations

#Nodes int Number of nodes evaluated in MIP tree

Memory float (Mb) Current memory use

Status char Solution status

Objective float ($Unit) Value of objective function

AllCost float ($Unit) Real cost from all periods of horizon

AllNoncost float ($Unit) Virtual costs from all periods of horizon

AllPenalty float ($Unit) Penalty cost from all periods of horizon

Notes:

1. Primary Key: (slv)

2. Reports solver performance and other characteristics of each solver iteration. Always

reported using vector format, even when tabular reports are generation for other results.

3. The index slv identifies the order in which each iteration of each horizon was solved. This

can be used to identify the value of GUI option “LastSolution” when a model run should

be halted after solving the specified solution.

4. Tabular reports not defined.

60

4.2.10. Interval (MS_Int)

Record Type Description

int int { intervals }

StartTime date { time points } Time at start of interval

StopTime date { time points } Time at end of interval

Notes:

1. Primary Key: (int)

4.2.11. Scenario Area Interval (PC_Ara)

Record Type Description

scn char { scenarios }

ara char { areas }

int int { intervals }

BalancePrice float ($/MWh) energy component of LMP adjusted by reference

location

LoadFlowPrice float ($/MWh) distribution-weighted LMP congestion component

of fixed-load

LoadLossPrice float ($/MWh) distribution-weighted LMP loss component of

fixed-load

LoadPrice float ($/MWh) distribution-weighted LMP of fixed-load

61

SourceFlowPrice float ($/MWh) distribution-weighted LMP congestion component

of injector MW

SourceLossPrice float ($/MWh) distribution-weighted LMP loss component of

injector MW

SourcePrice float ($/MWh) distribution-weighted LMP of injector MW

Loss exp (MW) resistive losses approximated by linearized solution

LossUpdate exp (MW) resistive losses from quadratic (I2R) calculation

LossError exp (MW) difference between loss and update

Notes:

1. Primary Key: (scn, ara , int).

2. Components of LMP are based on reference node (“ReferenceNodeName”) or load-

distributed reference (ARA_REF) which may be different from the slack bus. Components

of locational marginal price (LMP) can be identified as (1) energy, (2) losses and (3)

congestion. BalancePrice identifies energy component, LoadFlowPrice and

SourceFlowPrice identify congestion components, LoadLossPrice and SourceLossPrice

identify loss components, and LoadPrice and SourcePrice identify resulting LMPs.

3. Loss factors and losses are calculated using shift-factors of the base topology and do not

include impact of open branches modeled by FCPS.

4. Loss, LossUpdate and LossError are based on all branches with resistance, even when

penalty factor model is used and losses are already included in area loads (i.e., regardless

of option “AddAreaLosses”). Values are reported only for power-balance areas.

62

5. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

6. Tabular reports are identified by scn and have the following structure:

a. Columns = ara

b. Rows = int

 4.2.12. Scenario Branch Interval (PC_Brn)

Record Type Description

scn char { scenarios }

brn char { branches }

int int { intervals }

Mw float (MW) flow

Loss exp (MW) resistive losses approximated by linearized solution

LossUpdate exp (MW) resistive losses from quadratic (I2R) calculation

LossError exp (MW) difference between loss and update

Notes:

1. Primary Key: (scn, brn, int).

2. Reports losses on branches with non-zero resistance. Losses on AC branches are added to

loads in power-balance equations when option “AddAreaLosses” selected (in PN library).

When using penalty-factor model, losses are not added as they should already be included

in area load requirements. Losses of DC branches are always added to power-balance

63

equations (DC flows are controllable and impact of losses on DC branches cannot be

captured by penalty-factor model).

3. Reported losses are based on slack bus (“SlackBusName”) used to solve the model, and

are not adjusted if a different Reference is used (i.e., “ReferenceNodeName” or ARA_REF

data). However, reported shift factors, loss factors, area prices and congestion components

of Locational Marginal Prices (LMPs) are adjusted based on the Reference.

4. Loss, LossUpdate and LossError are reported when using either “AddAreaLosses” or

penalty-factor model.

5. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

6. Tabular reports are identified by scn and have the following structure:

a. Columns = brn

b. Rows = int

 4.2.13. Scenario Injector Interval (PC_Inj)

Record Type Description

scn char { scenarios }

inj char { injectors } Excludes “NetFlag” injectors

int int { intervals }

LMP float ($/MWh) locational marginal price

BalancePrice float ($/MWh) energy component of LMP

FlowPrice float ($/MWh) congestion component of LMP

64

LossPrice float ($/MWh) loss component of LMP

LossFactor exp loss factor used to solve power flow

LfUpdate exp loss factor updated using power flow solution

LfError exp difference between loss factor and update

Notes:

1. Primary Key: (scn, inj, int). Excludes paired injectors and point-to-point injectors.

2. Reported values are based on reference node or load-distributed reference which may be

different from the slack bus. Loss factors are calculated using the base topology (branches

opened by SCN_BRN_OPN) and do not include impact of open branches modeled by

FCPS (SCN_FCP_OPN or SCN_FCP_OPT).

3. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

4. Tabular reports are identified by scn and have the following structure:

a. Columns = inj

b. Rows = int

 4.2.14. Scenario Node Interval (PC_Nd)

Record Type Description

scn char { scenarios }

nd char { nodes } electrical nodes and aggregate nodes

int int { intervals }

65

LMP float ($/MWh) locational marginal price

BalancePrice float ($/MWh) energy component of LMP

FlowPrice float ($/MWh) congestion component of LMP

LossPrice float ($/MWh) loss component of LMP

LossFactor exp loss factor used to solve power flow

LfUpdate exp loss factor updated using power flow solution

LfError exp difference between loss factor and update

Notes:

1. Primary Key: (scn, nd, int).

2. Reported nodes must be identified by “ReportNode” (NDE_ID or NDA_ATT), except for

node labeled “Reference” that reports LMPs of reference node or load-distributed

reference.

3. Reported values are based on reference node or load-distributed reference which may be

different from the slack bus. Loss factors are calculated using the base topology (branches

opened by SCN_BRN_OPN) and do not include impact of open branches modeled by

FCPS (SCN_FCP_OPN or SCN_FCP_OPT).

4. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

5. Tabular reports are identified by scn and have the following structure:

a. Columns = nd

b. Rows = int

66

 4.2.15. Topology Map (PC_Top)

Record Type Description

scn char { scenarios }

int int { intervals }

Topology int { topologies }

Notes:

1. Primary Key: (scn, int).

2. Tabular report is labeled PC_Top and has the following structure:

a. Columns = scn

b. Rows = int

67

 4.2.16. Scenario Path Interval (PN_Pth)

Record Type Description

scn char { scenarios }

pth char { paths } monitored paths

int int { intervals }

Mw float (MW) flow

Min float (MW) minimum flow limit

Max float (MW) maximum flow limit

Violation float (MW) violation of flow limit

MinEnforced bit Minimum limit enforced in solution

MaxEnforced bit Maximum limit enforced in solution

Binding bit Binding constraint

SAC bit Security analysis constraint

Penalty float ($Unit) cost of violation

SP float ($/MWh) shadow price of MW limit

Revenue float ($Unit) value (product of Mw and SP)

Notes:

1. Primary Key: (scn, pth, int).

2. Reports all enforced or monitored paths. Additional paths can be reported using “cid”

tables by providing the path with a “ConstraintID” (PTH_ID).

68

3. MinEnforced and MaxEnforced identifies constraints enforced in solution. A path can have

a non-zero Violation when enforced or identified by security analysis (SAC).

4. Binding identifies enforced paths with non-zero shadow price or paths with flow equal to

their limit. A path can be binding only when enforced. Binding constraints include enforced

paths with non-zero Violation.

5. SAC identifies violated, binding or near-binding constraints identified by security analysis,

which are enforced only if identified prior to the last iteration of the solution horizon. When

multiple iterations are solved, SAC identifies constraints identified by any iteration.

6. Aggregate reports are identified for first interval of aggregate periods that are fully defined

by the solution horizon.

7. Tabular reports are identified by scn and have the following structure:

a. Columns = pth

b. Rows = int

8. Sparse fields: Violation, Penalty.

69

 4.2.17. Scenario Injector Interval (UC_Inj)

Record Type Description

scn char { scenarios }

inj char { injectors } committed injectors

int int { intervals }

Commit bit commitment status (1=on, 0=off)

SU bit first commitment interval

SD bit first de-commitment interval

Hot bit Startup from hot status

Warm bit Startup from warm status

Cold bit Startup from cold status

Failed bit Failed startup (identified after solving commitment)

StatusViolation exp violation of on status (+) or off status (-)

TimeViolation exp (hour) violation of MinOn (+) or MinOff (-)

BaseCost float ($Unit) Cost associated with “BaseCost” (not including cost

curve)

StartCost float ($Unit) Cost associated with “StartCost” (not including cost

curve)

Penalty float ($Unit) cost of commitment-constraint violations

70

Notes:

1. Primary Key: (scn, inj, int).

2. Aggregate reports are identified for first interval of aggregate periods that are fully

defined by the solution horizon.

3. Tabular reports are identified by scn and have the following structure:

a. Columns = inj

b. Rows = int

4. Sparse fields: StatusViolation, TimeViolation, Penalty.

4.2.18. Scenario Injector Status (UC_Status)

Record Type Description

scn char { scenarios }

inj char { injectors } committed injectors

int int { intervals }

Change int change in commitment status (actual or attempted)

StatusViolation exp violation of on status (+) or off status (-)

TimeViolation exp (hour) violation of MinOn (+) or MinOff (-)

Notes:

1. Primary Key: (scn, inj, int).

2. Intervals are reported only when a change in commitment status exists. Failed startups are

also identified as an attempted change in status.

71

3. The value of Change is interpreted as follows:

Startup from hot = 3

Startup from warm = 2

Startup from cold = 1

Shutdown = -1

4. Tabular reports are labeled UC_Change(<scn>), UC_StatusViolation (<scn>) and

UC_TimeViolation (<scn>), and have the following structure:

a. Columns = inj

b. Rows = int

5. Sparse fields: Change, StatusViolation, TimeViolation.

4.2.19. Scenario Injector Status by Time Point (UC_TmpStatus)

Record Type Description

scn char { scenarios }

inj char { injectors } committed injectors

tmp date { time points }

Change int change in commitment status (actual or attempted)

Notes:

1. Primary Key: (scn, inj, tmp).

2. Time-point results are identified so that Change can used to define binary schedules

(SCH_BIN) used as input data in other models.

72

3. Tabular reports are labeled UC_TmpChange(<scn>) and have the following structure:

a. Columns = inj

b. Rows = tmp

4. Sparse fields: Change.

73

5. Tools

This section will cover the tools that we used to develop and perform the experiments

in detail. These are the tools that matched exactly or to most levels as to what we were

expecting out of them.

5.1. Power System Optimizer (PSO)

PSO is a production power market cost simulator developed by Polaris Optimization

Systems. An industry wide used tool that can precisely simulate the energy market. It is

developed using the MILP approach of solving the SCUCED problem instead of heuristics

and is consistent with the methods used by many ISOs. It supports vastly dynamic

modelling of inputs, supports day ahead as well as intra-hour estimation capabilities,

uncertainty forecasting using historical data and is extremely adaptable to changing system

conditions.

We used PSO in our experiments to generate the data to train our models. We did so

by using the option to feed in historical data and used the forecasting feature to generate

new system states. Our models are built using these outputs, which are extremely precise

to actual system conditions for the given conditions would be.

5.2. PyTorch

PyTorch is a robust, scalable and production ready deep learning framework for Python.

It contains a plethora of utils for deep learning with cuda and distributed training support.

http://psopt.com/
http://psopt.com/
https://pytorch.org/

74

It makes developing ML models extremely easy by using its utilities. Neural Networks is

easy with torch.nn, as it has a wide range of pre-developed as well as pre-trained models

which you can extend to create new models tailored to your needs. It also comes with easy

ways to visualize your experiments and almost all of the graphs in this have been developed

using this.

5.3. PyTorch-Geometric (PyG)

PyG is an extension to PyTorch and is tailored specifically for developing and Graph

Neural Networks. Much like PyTorch, this has pre-developed algorithms for implementing

various GNNs. These can be easily extended to create custom GNN models for specific

use cases.

It can be used together with PyTorch to benefit from features from PyTorch. We used

PyG for implementing our GNN layers.

5.4. Google Collab

Google Collab is a Google service that provisions users with a Python Notebook

runtime, which can be tailored to install any libraries that the project needs. It provides

with a safe environment to install libraries and run scripts for quick prototyping. It runs on

clouds with GPU support, which means faster testing rounds and easier updates.

https://colab.google.com/

75

6. Graph Neural Network (GNN)

6.1. Understanding GNN

Understanding GNN Graphs have been known to be one of the most popular manner

to represent data that is structured and highly related. Graph Neural Networks provide ways

of modelling associations between nodes in a graph and hence has been a hot topic between

researchers. It has changed how data analysis can be performed on graphs with fast and

accurate prediction ability. GNNs are type of Neural Networks that can be applied directly

on graphs. Applications range from image classification, gene identification, brain

connectomes and more.

Each node in a graph represents a set of features which are identified by the node. Each

node is associated with a set of labels. GNN is then used to train weights which can be used

to predict labels for new nodes. The graphs in the question can be directed or un-directed

graphs or graphs with edge weights, GNNs are flexible to accommodate these edge features

to accommodate any constraints that edges may have.

GNNs work by representing the states of the nodes in a recurrent manner and applying

a Feed forward NN. This NN learns the biases and embeddings, GNNs do MessagePassing.

This is basically Neighborhood Aggregation in which the nodes push their embeddings to

their neighbor nodes through the edges. Different NN can also be used to model which

76

can be used to capture the spatial relationships between nodes. These embeddings are then

summed together to get new graph representation.

Much like how traditional NNs introduced Convolutional Neural Networks, which help

to speed up the learning and increase accuracy with hierarchical processing of data units,

Graph Convolutional Networks (GCN) exist to do the same but on graph data. GCNs are

extremely powerful NNs and have proven ability to perform extremely well with minimum

training.

Figure 3: Representation of learning with GCN

Figure 3 demonstrates how a simple GCN can preserve the relationships between the

nodes with minimal training. This [2] paper comprises of a recent comprehensive review

of methods, applications and efficiency of GCN across different domains.

6.2. Constructing GNN Based on ERCOT 7-Bus Model

Chapter 3 covers in detail about how the 7-Bus model is and the constraints of each

component of the system. This can be visualized as a classic graph model with different

components of the system representing the nodes of the graph and the connecting

transmission lines as edges connecting the nodes.

https://miro.medium.com/max/2000/1*pCeWhIrEFXoEgsB5eEB6sw.png

77

Each node of this system graph encapsulates its constraints and properties and can be

represented as feature matrix for the node in the GNN. Each edge, since it is a transmission

line, it comes with its set of constraints which represent the edge feature matrix which is

used to model relationships between the nodes.

We represented the injectors, buses, and areas as nodes. The injector node contains

all the properties and constraints mentioned in Nodes/Buses. The bus (substations) which

are directly connected with the Injectors are represented as nodes and provide a layer of

abstraction between the network and the injector. These nodes are responsible for

storing/transferring the energy from one point to another and do so by using transmission

lines. Bus nodes relate to area nodes which comprise of the consuming areas of the system

and to another substation nodes with transmission lines. The transmission lines are

representing the edges connecting the nodes. Since they carry energy, they are subject to

certain constraints (Branches) and limits which are encapsulated within the edges as

attributes. The area nodes are the ones that create the demand, this demand is associated

with each area. These nodes contain the demand for a given time.

For a given point time, the complete state of the network can thus be defined as a graph

with all the required relations preserved. Different states of systems for each timestamp

can be represented by multiple graphs in similar fashion.

6.3. Creating own Dataset in PyTorch

We have all the information we have but the next problem is how can we easily create

graphs and generate a graph dataset that can be loaded to train the model. That is where

78

NetworkX and PyTorch come to rescue. NetworkX is a utility that is developed to easily

create descriptive knowledge graphs with support for edge attributes as well. We used

NetworkX to generate aforementioned graphs, with a simple adapter from NetworkX we

created graphs which could then be added to a dataset. PyTorch amongst everything also

provides a scalable method to implement custom Datasets, these datasets can be

dynamically created and updated at scale. The main advantage of this is these Datasets

don’t need to be loaded into memory completely to train the model, but rather can be loaded

into memory in batches which is how we require these when training a neural network.

These datasets can also be used in a distributed environment when training is distributed

to multiple compute systems. PyTorch also provides easy framework to create the datasets

and store them. The datasets can be downloaded from any cloud blob storages and

processed ones can be stored back into blob storages as well. We used a combination of

these two libraries to create dataset of graphs. We however did not experiment with cloud-

based blob storages, or with very large datasets, but people have praised these two to be

the best ones currently.

79

7. Implementing GNN models on 7 Bus system

This chapter will cover how the 2 GNN models were implemented on the 7 bus

models to do deep learning and how the results were generated to verify the viability of the

models for this specific problem.

• Working of GNN:

GNNs are a combination of an information diffusion mechanism and neural networks,

representing a set of transition functions and a set of output functions.

The information diffusion mechanism is defined by nodes updating their states and

exchanging information by passing “messages” to their neighboring nodes until they reach

a stable equilibrium.

The process involves first a transition function that takes as input the features of

each node, the edge features of each node, the neighboring nodes’ state, and the

neighboring nodes’ features and outputs the nodes’ new state.

Based on this understanding of GNN we have implemented 2 models which will be

discussed in following chapters.

7.1. GCNConv: Graph Convolutional Network Model

7.2. NNConv: Message Passing Neural Networks

80

7.1. GCNConv: Graph Convolutional Network Model

This model is referred from the [3]

7.1.1. Concept

Many approaches for semi-supervised learning using graph representations have been

proposed in recent years, most of which fall into two broad categories:

a. Graph Laplacian regularization – Graph Laplacian regularization means to get a

better understanding on the role of normalization of the graph Laplacian matrix as well

as impact of dimension reduction in graph learning [4]. It includes propagation of

labels, manifold regularization, and deep semi-supervised embedding.

b. Graph embedding-based approaches - Graph embeddings can be learned by the skip-

gram model. DeepWalk learns embeddings via the prediction of the local neighborhood

of nodes, sampled from random walks on the graph. LINE and node2vec extend

DeepWalk with more sophisticated random walk or breadth-first search schemes [3].

For all the above methods, a multistep pipeline including random walk generation and

semi-supervised training is necessary. Each step of these models must be optimized

separately. This can be alleviated by injecting label information in the process of learning

embeddings.

81

7.1.1.1. Semi-Supervised Node Classification

The paper [3] considers a two-layer GCN for semi-supervised node classification on a

graph with a symmetric adjacency matrix A (binary or weighted). The forward model

then takes the simple form:

Figure 4: GCN Model Formula [3]

Where W(0) is an input-to-hidden weight matrix for a hidden layer with H feature maps.

W(1) is a hidden-to-output weight matrix. The softmax activation function is applied row-

wise. For semi-supervised multiclass classification, cross-entropy error over all labels is

evaluated.

Figure 5: Multilayer GCN for semi-supervised learning with C input channels and F feature maps in the output

layer.[3]

82

7.1.2. Model Setup

We will be using PyTorch for its readily available implementations of GNN

layers, I decided on using the GCNConv layer from the Pytorch-Geometric suite. This

layer is implementation of the exact model for semi-supervised classification

mentioned in [3]. We also used TOPKPooling operator from [5]for pooling layers and

performed global mean pooling.

We used 1-month data output from PSO as our ground truth data. Transformed

the PSO outputs to graph data, where each timestamp represents a complete graph

state. Similarly collecting each timestamp data, created a dataset to load into the

model. Train and test dataset was creating using 70/30 split.

We experimented with a 6-layer network with 2 GCNConv layers, 2 Pooling

layers, 3 Linear layers and 1 dropout layer to get the final output. RELU activation

function was used for each of the GCNConv and Linear layers.

For training we used the Adam approximation loss function to calculate the

training loss for each batch and for back propagation.

83

7.1.3. Hyperparameter Optimization

Parameter optimization was performed using exhaustive search over set limits for

each parameter and best results were selected for each group. The GCNConv model

is defined as:

GCNConv(in_channels, out_channels, improved=False, cached=False, bias=True,

normalize=True, **kwargs)

The GCNConv model has below parameters:

▪ in_channels (int) – Size of each input sample.

▪ out_channels (int) – Size of each output sample.

▪ improved (bool, optional) – If set to True, the layer computes the transpose

by adding 2*identity matrix. (default: False)

▪ cached (bool, optional) – If set to True, the layer will cache the computation

on first execution, and will use the cached version for further executions.

(default: False)

▪ bias (bool, optional) – If set to False, the layer will not learn an additive

bias. (default: True)

▪ normalize (bool, optional) – Whether to add self-loops and apply symmetric

normalization. (default: True)

▪ **kwargs (optional) – Additional arguments of

torch_geometric.nn.conv.MessagePassing.

From the above parameter’s list, we can control the model performance based on the

out_channels for hidden layer connectivity, improved, bias and normalize.

84

Model was tested against multiple of each of these parameters and grouped to get the

best one per group.

For bias, normalize and improved the model was tested with hidden connectivity

ranging from 7 till 98 with an interval of 7. From outputs, best connectivity was

chosen based on min MSE.

The created dataset was used in three different ways to predict different parameters.

a. In the First experiment the model was trained to predict only commit status which

can be one of 1 and 0.

b. In the Second experiment model was trained to predict the dispatch for ED.

c. Lastly, the model was fed with the input data and tried to predict UC and ED params

together.

Input data consisted of 31 days of network data for the 7-bus model simulated using

PSO. The data was split between 30 days to train the model and 1 day to test the

model. The error was measured using mean squared error method with ground truth

being labels predicted by PSO.

85

7.1.4. Results/Observations

All the below experiments are made using the below parameters combinations:

Normalize Improved Bias

True True True

True True False

True False True

True False False

False True True

False True False

False False True

False False False

For all the below experiments the hidden layer channel size is varied from 7 to 100

in steps of 7. Epochs are in the range of 1 to 20.

86

7.1.4.1. Injector Commitment Prediction:

 Input Variables: 8 Output Variables: 1

 Figure 6: Injector Commitment Prediction Outputs

Observations: The MSE is significantly reduced in case of Normalized – False, Improved

– False and Bias – False with hidden channels as 63. The lowest MSE is obtained by

keeping Bias as True and others as False but the train and test MSE are almost same for

20epochs, which might be the result of Overfitting.

87

7.1.4.2. Injector Dispatch Prediction:

Input Variables: 8 Output Variables: 1

Figure 7: Injector Dispatch Prediction Results

88

Observations: By keeping Normalized - False, improved – False, Bias – False and hidden

channels – 70 the model performance was substantial and MSE was reduced significantly.

With the above parameters the model performance was good even for predicting Injector

commitment.

For channels – 77, Normalized - True, improved – True, Bias – False, the model’s

performance was worst.

89

7.1.4.3 Predicting UCED Together:

Input Variables: 8 Output Variables: 6

 Figure 8: Predicting UCED together

90

Observations:

The GCNconv model performed the best for predicting UC-ED together. No overfitting is

observed for this experiment. The model performed best for when all the parameters were

true and hidden channels were 28. However, this model performed worst when all

parameters were False as compared to predicting UC and ED individually.

91

7.2. NNConv: Message Passing Neural Networks

This model is referred from the paper [6]

7.2.1. Concept

Neural network architectures that operate directly on graph-valued inputs have been

developed allowing “end-to-end” learning on molecular space. This approach is based on

models that simultaneously learn both how to extract appropriate features as well as how

to use these features to make accurate predictions. End-to-end learning techniques have

supplanted traditional methods in image recognition and computer translation [7]. A

number of approaches for end-to-end learning on molecules have recently been unified into

a single theoretical framework known as Message Passing Neural Networks (MPNNs) and

even more recently as graph networks [7]. We can learn edge features in MPNN by

introducing hidden states for all edges in the graph.

 In MPNNs, predictions are generated from input graphs with node and edge

features. The network comprises a sequence of layers, including a number of message

passing layers and a readout layer.

7.2.1.1 Message Passing Layer:

In the message passing layers, node-level state vectors are updated according to the

graph’s connectivity and the current states of neighboring nodes. The message passing

phase runs for T time steps and is defined in terms of message functions and vertex update

functions [6]. During the message passing phase, hidden states at each node in the graph

are updated based on messages according to below equation:

92

 Figure 9: MPNN Equations [6]

7.2.1.2. The Readout Phase

Following a number of message passing layers, the readout layer generates a single

graph-level vector from node-level states [7]. The readout phase computes a feature vector

for the whole graph using some readout function R [6]. The message functions, vertex

update functions, and readout function R are all learned differentiable functions. R operates

on the set of node states and must be invariant to permutations of the node states for the

MPNN to be invariant to graph isomorphism [6].

7.2.2 Model Setup

As described in chapter 7.1.2, we will be using PyTorch for its readily available

implementations of GNN layers, I decided on using the NNConv layer from the Pytorch-

Geometric suite. This layer is implementation of the continuous kernel-based

convolutional operator from [6]. We also used a Sequential Neural Network which maps

the edge features to shape

[-1, in_channels * out_channels] and performed global mean pooling.

We used 1-month data output from PSO as our ground truth data. Transformed the

PSO outputs to graph data, where each timestamp represents a complete graph state.

93

Similarly collecting each timestamp data, created a dataset to load into the model. Train

and test dataset were creating using 70/30 split. I experimented with a 6-layer network with

2 NNConv layers, 2 Pooling layers, 3 Linear layers and 1 dropout layer to get the final

output. RELU activation function was used for each of the NNConv and Linear layers. For

training we used the Adam approximation loss function to calculate the training loss for

each batch and for back propagation.

7.2.3. Hyperparameter Optimization

Parameter optimization was performed using exhaustive search over set limits for each

parameter and best results were selected for each group.

The NNConv is defined as:

NNConv(in_channels, out_channels, nn, aggr='add', root_weight=True, bias=True,

**kwargs)

The parameters for the NNConv are as follows:

▪ in_channels (int) – Size of each input sample.

▪ out_channels (int) – Size of each output sample.

▪ nn (torch.nn.Module) – A neural network that maps edge features edge_attr of

shape [-1, num_edge_features] to shape [-1, in_channels * out_channels]

▪ aggr (string, optional) – The aggregation scheme to use ("add", "mean", "max").

(default: "add")

▪ root_weight (bool, optional) – If set to False, the layer will not add the transformed

root node features to the output. (default: True)

94

▪ bias (bool, optional) – If set to False, the layer will not learn an additive bias.

(default: True)

▪ **kwargs (optional) – Additional arguments of

torch_geometric.nn.conv.MessagePassing.

From the above parameter’s list, we can control the model performance based on the

out_channels for hidden layer connectivity, aggr, bias and root_weight. Model was tested

against multiple of each of these parameters and grouped to get the best one per group.

For aggr, bias and root_weight the model was tested with hidden connectivity ranging from

7 till 98 with an interval of 7. From outputs, best connectivity was chosen based on min

MSE.

The created dataset was used in three different ways to predict different parameters.

a. In the First experiment the model was trained to predict only commit status which

can be one of 1 and 0.

b. In the Second experiment model was trained to predict the dispatch for ED.

c. Lastly, the model was fed with the input data and tried to predict UC and ED

params together.

Input data consisted of 31 days of network data for the 7-bus model simulated using PSO.

The data was split between 30 days to train the model and 1 day to test the model. The

error was measured using mean squared error method with ground truth being labels

predicted by PSO.

95

7.2.4. Results

All the below experiments are made using the below parameters combinations:

Root Weight Bias

True True

True False

False True

False False

For all the below experiments the hidden layer channel size is varied from 7 to 100

in steps of 7. Epochs are in the range of 1 to 20.

Also, aggregation feature of the following values was used to propagate the

calculated features to the hidden layers.

Aggregation

Add

Mean

Max

96

7.2.4.1. Injector Commitment Prediction:

Input Variables: 8 Output Variables: 1

 Figure 10: Predicting injector commitment with root weight and bias

Observations: For Root Weight - True and Bias - True, the lowest MSE is obtained by

keeping Aggregation as Max and hidden channels as 77.

97

 Figure 11: Predicting injector commitment with root weight and no bias

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by

keeping Aggregation as Mean and hidden channels as 49

98

 Figure 12: Predicting injector commitment without root weight but with bias

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Add and hidden channels as 7.

99

 Figure 13: Predicting injector commitment without root weight and no bias

Observations: For Root Weight- False and Bias – False, the lowest MSE is obtained by

keeping Aggregation as Max and hidden channels as 42

100

Overall injector commitment observations: We observe the least MSE with aggregation as

Max, hidden channels as 77 and including root weight and bias. Removing the bias while

adding the root weight seems to decrease the overfitting. Adding more epochs do help in

increasing the accuracy but at the same time, it overfits the data as both the train and test

accuracy seems to be similar.

101

7.2.4.2. Injector Dispatch Prediction:

Input Variables: 8 Output Variables: 1

 Figure 14: Predicting injector dispatch with root weight and bias

Observations: For Root Weight- True and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Mean and hidden channels as 42

102

 Figure 15: Predicting injector dispatch with root weight and no bias

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by

keeping Aggregation as Mean and hidden channels as 91.

103

 Figure 16: Predicting injector dispatch without root weight but with bias

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Add and hidden channels as 77.

104

 Figure 17: Predicting injector dispatch without root weight and bias

Observations: For Root Weight- False and Bias – False, the lowest MSE is obtained by

keeping Aggregation as Add and hidden channels as 84.

105

Overall injector dispatch observations: We observe the least MSE with aggregation as Add,

hidden channels as 84 and excluding root weight and bias. When both root weight and bias

are not added, the test accuracy seems to be enhanced as evident from the corresponding

mean aggregation model. This is the only case where we do not see the model overfitting.

As the epochs increase, the accuracy seems to be decreasing in some cases but at the same

time, continuing to increase the epochs, do increase the accuracy. This proves that more

forward and backward propagation is helping tune the weights of the nodes.

7.2.4.3 Predicting UCED Together:

106

Input Variables: 8 Output Variables: 6

 Figure 18: Predicting UCED with root weight and bias

Observations: For Root Weight- True and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Mean and hidden channels as 21.

107

 Figure 19: Predicting UCED with root weight and no bias

Observations: For Root Weight- True and Bias – False, the lowest MSE is obtained by

keeping Aggregation as Max and hidden channels as 35.

108

 Figure 20: Predicting UCED without root weight but with bias

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Add and hidden channels as 77.

109

 Figure 21: Predicting UCED without root weight and bias

Observations: For Root Weight- False and Bias – True, the lowest MSE is obtained by

keeping Aggregation as Max and hidden channels as 21.

110

Overall UCED observations: We observe the least MSE with aggregation as Max, hidden

channels as 77 and including root weight and bias. Root weight and bias does not seem to

be enhancing the model as the results are almost similar for 20 epochs in every case. There

is slight overfitting in almost all models as the train and test accuracy are almost similar

and correspondingly test accuracy seems to be always better than the train accuracy.

111

8. Related Work

Unit Commitment and Economic dispatch has been extensively researched and numerous

solutions have been proposed to solve this problem. [1] provides a comprehensive review

of all the proposed studies to solve UCED problem till date. It lists a list of solutions with

all of its advantages and weakness.

This chapter will summarize a few of the solutions that were studied to get a better

understanding of each of the solutions to come up with this thesis.

8.1. Mixed Integer Linear Programming (MILP)

MILP is an mathematical optimization technique where some of the variable are

constrained to be integers while others can be non-integers and the objective functions and

the constraints are linear. [8] provides with a novel approach for solving the UC ED

problem using MILP. It allows for topology definition and has the ability to support

constraints as well. It is an extremely powerful modeling tool with an ability to reach a

globally optimal solution. However, it is extremely inefficient and slow compared to

methods like heuristics.

8.2. Genetics Algorithm

Genetics algorithm is a search heuristics-based algorithm that takes inspiration from

Darwin’s theory of natural evolution. It comprises of 5 different phases. Population, in this

all candidates are populated. Fitness, in this phase each of the candidates from the

population phase are passed through a fitness function. Selection, in this phase, best

candidates are chosen based on their scores from the fitness test. Crossover, in this phase,

two pairs of fit candidates are selected, and an offspring is created and added to the

112

population. Off springs inherit genes from parents. Mutation, in this phase certain

probabilities are applied over the offspring to generate diversity within population to avoid

premature convergence. The algorithm terminates when the population has converged and

provides with a set of solutions.

[9] provides a genetic algorithm-based solution for the UC ED problem. The proposed

 solution in [9] implements a hybrid genetics algorithm comprised of integrating tabu search

 into genetics algorithm. They have achieved results for applying their algorithm to the UC

 ED problem and gives global optimal solution with lesser computation time.

8.3. Artificial Neural Network

Artificial Neural Networks have been widely used for a large domain of problems. They

are famous for their ability to learn from its mistakes and that makes it extremely adaptable

to wide range of problems. [10] proposes a ANN based solution for solving the UC ED

problem. The proposed solution generates optimal generation schedule for generators using

operational and load constraints. It utilizes B-Coefficients for evaluating the transmission

losses in the system. The methodology is tested with six thermal power plants and the

results have been found accurate when compared with classical methods.

ANN has proved capable of dealing with the variation of the data that the system may have

and can be extremely flexible with the noise. However, the computation time augments

exponentially for larger size problems

113

9. Conclusion and Future Work

9.1. Conclusion

GCN models like GCNConv: Graph Convolutional Network and NNConv MPNN was

used to solve the Unit Commitment and Economic Dispatch problem. We represented the

complex electric grid using a graph structure to retain all the nodes and edge constrains.

We used the generated graph and applied two models on it. We conducted three

experiments for which the results are as follows:

1. Predicting Injector Commitment:

GCNConv model performed better in this experiment compared to NNConv. The

MSE error was reduced from 0.35 to 0.05. Running more epochs on NNConv model will

help improving its performance.

2. Predicting Injector Dispatch:

NNConv model showed almost no overfitting for this experiment. However,

GCNConv performed better comparatively.The MSE error was reduced from 0.16 to 0.02.

3. Predicting UC-ED together:

GCNConv performed the best for UC-ED predictions. However, the test MSE error

is always less compared to train MSE error in NNConv.

The models learned on the electric grid data was able to perform surprisingly better

and generate results with some error as compared with the PSO results. Both of the models

are fast and scalable as compared to the MILP based PSO solver.

114

9.2. Future Work

All the above experiments were performed on a 7_Bus model. In Future we can perform

the similar experiments on Real-Time Energy Market and observe the performance. It is

expected that NNConv(MPNN) should give better results as it considers edge features as

well as node features to perform convolution. Large number of Nodes and edges can be

used to test the model behavior. Experiments can be made with different GNN models with

proper parameter tuning.

115

10. References

[1] I. Abdou and M. Tkiouat, “Unit commitment problem in electrical power system:

A literature review,” Int. J. Electr. Comput. Eng., vol. 8, no. 3, pp. 1357–1372,

2018, doi: 10.11591/ijece.v8i3.pp1357-1372.

[2] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks : a

comprehensive review,” Comput. Soc. Networks, 2019, doi: 10.1186/s40649-019-

0069-y.

[3] T. N. Kipf and M. Welling, “SEMI-SUPERVISED CLASSIFICATION WITH

GRAPH CONVOLUTIONAL NETWORKS,” Iclr, pp. 1–14, 2017.

[4] R. K. Ando and T. Zhang, “Learning on graph with Laplacian regularization,”

Adv. Neural Inf. Process. Syst., pp. 25–32, 2007, doi:

10.7551/mitpress/7503.003.0009.

[5] H. Gao and S. Ji, “Graph U-nets,” 36th Int. Conf. Mach. Learn. ICML 2019, vol.

2019-June, pp. 3651–3660, 2019.

[6] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural

Message Passing for Quantum Chemistry,” 34th Int. Conf. Mach. Learn. ICML

2017, vol. 3, pp. 2053–2070, 2017.

[7] P. C. St John et al., “Message-passing neural networks for high-throughput

polymer screening,” J. Chem. Phys., vol. 150, no. 23, 2019, doi:

10.1063/1.5099132.

