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ABSTRACT 

ROBUST, TIME-CRITICAL, EVIDENCE-BASED 

ADAPTIVE DATA FUSION 

 

Mohammad Amin Javadi, PhD 

 

The University of Texas at Arlington, 2020 

 

Supervising Professor: Brian L. Huff 

 

Sensors have become inevitable part of many studies and working areas ranging 

from navigation, transportation and medical applications. A sensor can help a user in a 

variety of situations including dangerous, inaccessible, time and money-consuming 

circumstances. Applying multiple sensors simultaneously allows for improving the 

accuracy of measurement estimates for system states. As an example, a part of this study 

uses a GPS sensor to increase the accuracy of the position estimation obtained by an IMU 

in an indoor environment. The same GPS device with position outputs can also be studied 

to provide a new measuring dimension such as velocity. This way of sensors helping each 

other is covered in this study to achieve more accurate and robust estimates compared to 

when they contribute separately.  

This study is carried out to develop a new way of achieving better estimates of system 

states. An attempt to indicate the applicability and robustness is also provided for 

navigation purposes. This work is founded on evidence-based theory wherein pieces of 

evidence or facts are used to cross-check the outputs given by sources. It also applies the 

concept of meta-sensing in which proportional weights are assigned to the data from each 
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sensor based on how close the data from each sensor is to the others. This causes the 

estimates to be more robust and reliable in a real-time environment. The obtained 

outcomes show more reliable decision-making under the defined scenarios. 
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CHAPTER 1  

INTRODUCTION 

Many types of systems must consume streams of incoming data to make real-time 

automated control decisions. Automated stock trading applications, aircraft auto pilots, or 

automated driver assist applications such as auto breaking, or automated parallel parking 

are all potential examples of this class of system. Data streaming can happen from one or 

multiple sources of data. While using one source of data may not represent all 

characteristics of a system, applying multiple sources of data can increase the accuracy 

and robustness of the results. As an instance, a specialist may decide on the existence 

and growth trend of a brain tumor by considering the evidence from multiple sources of 

data such as Magnetic Resonance Imaging (MRI), physical disorder monitoring, etc. 

The appropriateness and quality of the control decisions made are directly dependent 

on the quality, and reliability of the data input as well as the capabilities and flexibility of the 

algorithms that process that data. Continuing advances in embedded data processing 

speeds and the availability of low-cost sensor technologies are expanding the potential for 

autonomous control. The ready availability of low-cost embedded sensors, however, does 

not ensure the availability of good system state information. Embedded controllers typically 

rely on one, or a few, sensor input streams to determine a system state. If the sensor data 

stream is interrupted or corrupted, the resulting control actions maybe incorrect. This fact 

indicates the need for further research into the creation of a more robust, adaptive sensor 

fusion techniques which perform well with faulty or noisy sensors and/or disruptive 

environmental conditions. 

The objective of this research is to present a real-time solution to the problem of how 

a system can determine its fused estimate dynamically for a system state variable from a 
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stream of sensor readings or data input sources. It is assumed that the input data streams 

cannot reliably provide input values at a fixed rate. This drives the proposed algorithm to 

examine the validity of incoming data from each sensor by using the values from other 

sensors and pieces of evidence to ensure that the system state estimator is robust to 

corrupted inputs. The applied approach explores anomalies in the incoming data by 

comparing each source of data with other sources and pieces of evidence, and assigns 

weights to each source to specify the fused estimate for each time step throughout the 

system operation. A variety of achievable data types such as acceleration, velocity, 

displacement etc. are also generated through mathematical functions for proper data 

analysis. This development is designed to identify added sources of verification to increase 

the reliability of the outputted data which will be discussed in the beginning of Chapter 3. 

This research presents a strategy for using multiple input data streams to generate 

system state estimates. This strategy utilizes underlying beliefs about the behavior of the 

system and knowledge of the potential failure modes and causes associated with the 

various data streams. The proposed technique is described as evidence-based because it 

attempts to use this knowledge of system and sensor behavior to filter the input data 

streams prior to their use by the control system. Rather than directly feeding in sensor 

stream inputs, this technique proposes the generation of “fused estimates” of critical 

system states and relying on these estimates as inputs into the control system. Applying 

the models and filtering strategies to fuse multiples of sources (sensors) enables a decision 

maker to have more reliable outputs. 

In an attempt to better illustrate this strategy, a simple skid-steer autonomous ground 

vehicle (AGV) is used as an example. It is assumed that to adequately control an AGV it is 

required to know its position and orientation relative to a navigation frame whose origin is 

arbitrarily defined as the vehicle’s location when it is parked in its charging station. This 
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vehicle will be commanded to various locations about its operating environment through a 

series of X (Northing) and Y (Easting) Cartesian coordinate positions. To simplify this 

problem, it is assumed that the AGV operates over level ground so that changes in altitude 

Z (Positive Down) can be ignored. To support waypoint navigation, it is assumed that the 

AGV is equipped with a low-cost control system and sensor suite that provides GPS, IMU 

(Inertial Measurement Unit), digital compass, and Lidar (Light Detection And Ranging) data 

streams. 

In the current study, the vehicle which contains four sensors: GPS, IMU, digital 

compass, and Lidar, will be able to fuse different data under distinct conditions one of which 

happens when an external magnetic field generates disturbing magnetic force which 

impacts the magnetometers mounted on the vehicle and causes them to drift.  

Due to the existence of environmental or noise factors, data from different sensors 

are fused using relative weights in such a way that when one or more sensors (sources) 

fail to transmit the data, the fusion algorithm still specifies navigation directions 

satisfactorily. 

The contribution of this research can be expressed in terms of the following: 

• Improved stability of the system state estimation under noisy situations through a 

novel evidence-based fusion algorithm, 

• Evidence-based noise filtration, 

• Dynamic weight-assignment data fusion based on graph theory, 

• Working models without characterizing sensor error distributions, 
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CHAPTER 2  

LITERATURE REVIEW 

Researchers continue to explore advancements in automated systems using sensors 

in order to obtain more robust outputs or estimates by applying more than one sensor or 

source of data (Xiao and Qin 2018). According to (Wieland and Marcus Wallenburg 2012), 

robustness is considered as a proactive strategy capable of resisting change without 

adapting its initial stable configuration. The concept of robustness in this research refers to 

an attempt to decrease the variation of data in the fused outputs. Especially, when one or 

more sensors produce distorted data, the system is required to generate a robust output 

using the data from the sensors that are believed to provide undistorted data based on 

pieces of evidence. As a clearer representation of robustness related to this research, three 

positioning sensors are considered on a vehicle collecting 20 displacement values each 

second. In each time step (1/20th of a second), three values are obtained and compared 

with each other. Three values of 0.08m, 0.1m, and 0.4 from all these sensors are assumed. 

A maximum speed of 32.19k/h or 0.447 meters per 20th of a second is also considered for 

the vehicle. All the sensors reported values within the range that the vehicle could travel; 

However, value from the third sensor is distant from the other two sensors. The researcher 

concluded that the value from the third sensor should be given less weight when averaging 

all three values to demonstrate the mean of displacement in a particular time step. In 

essence, the instability in the third sensor`s data compared to the data from the other two 

sensors caused the system to remove or de-weigh the distorted data such that the system 

could reach a stable configuration. This example conveys the algorithm robustness to 

outlying data, which reacts in terms of the weight assigned to each sensor in every time 

step. 
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Unreliability in sensor input data can be due to sensor failures or environmental 

effects that reduce the accuracy of the decision in the system. More reliable and less 

complicated algorithms would improve the decision-making process. Researchers may 

devise their own methodology or use a combination of methods to handle the reliability of 

data transferred to the system from different sensors. Fusion strategies and methodologies 

have been broadly discussed by many researchers and will be addressed in the next 

subsections. This study tries to explain these approaches in each part, address the 

resolutions suggested by the researchers and their drawbacks, and present strategies and 

contributions to overcome those gaps. 

2.1 Uncertainty and Data Fusion Methodologies 

Researchers use multiple sensors to reach more precise results as compared to use 

of a single sensor which can fail easily under a certain condition. For example, GPS signals 

may be blocked in a covered area and transmit no signal or false signals. Multiple sensors, 

however, can produce less failure rates when set up correctly. They may cover the failure 

caused by a sensor in a group of sensors. Uncertainty is the fundamental concept that has 

caused many researchers to provide more evidence for the purpose of improved 

robustness of system state estimates by either adding more sources of information or 

obtaining further facts from the existing sources through more analysis. 

After collecting the data, it needs to be fused and analyzed for which many fusion 

methodologies and algorithms have been proposed in a variety of situations. Despite the 

fact that outputs generated by these heterogeneous sources (sources with different natures 

such as a GPS and an IMU) are different they all can be considered for data fusion to 

provide similar outputs using novel approaches depending on the research application 
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such as in speech recognition (Safavi and Mporas 2017), (Ding and Lin 2017), (Du et al. 

2015) (Mitra et al. 2016), and medicine (Chromy and Klima 2017) (Zheng et al. 2017). 

Current study uses weights as proportional values of each sensor in every time 

period in which it is fusing the data. A similar strategy has also been used by (Xiao and Qin 

2018). What this research proposes, however, applies a piece of evidence such as the 

kinematics of the system or the data from other sensors. In other words, this work 

introduces the evidence and each sensor votes as a basis for fusion. That way, the fusion 

strategy in one time step may differ from other time steps. 

All the above-mentioned efforts are to handle uncertainty as much as possible which 

is still an open issue. For example, in wireless sensor network applications the collected 

data are often imprecise and uncertain (Xiao and Qin 2018). Several mathematical 

approaches have been discussed by researchers to deal with uncertainty out of which the 

most important are briefly explained as follows: 

(1) Bayes theory, which applies the probability distribution of the measured data and 

a conditional probability or likelihood to represent an estimate/output. Bayes fusion strategy 

applies Bayes` rule to combine successive measurements of the state of a system from a 

single source, which involves obtaining a new estimate for the target state given the 

previous old estimate (Mishra 2013) with examples on reconstructing sparse wireless 

signals (Ji et al. 2016), obtaining spatial maps from conflicting information (Bogaert and 

Gengler 2018), dynamic object tracking (Markovic and Petrovic 2014), multi-point gas 

detection (Hou et al. 2016), and power transformer condition evaluation (Li et al. 2018). 

This theory involves a prior knowledge and concept of conditional probability. This study, 

however, does not apply prior knowledge in order to avoid unexpected bias for estimation. 

(2) Dempster-Shafer (DS) Theory, that was first proposed by Dempster (Dempster 

1967) in his combination rule of belief functions and consequently developed by Shafer 
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(Shafer 1976) which does not need strict prior conditions as Bayesian theory of probability 

and includes great advantages of stating the uncertainty directly and deriving new evidence 

using a combination of other sources of evidence. This theory allows for belief functions to 

base degrees of belief for questions of interest even if degrees of belief do not have any 

mathematical properties. The fundamentals to DS theory include (a): The idea of obtaining 

degrees of belief for one question from subjective probabilities for a “related” question, (b) 

When degrees of belief are based on independent items of evidence, DS theory allows for 

them to be combined. Dempster-Shafer theory, however, carries a shortcoming when 

highly conflicting pieces of evidence are involved. Therefore, trials were carried out by 

researchers through several methods by either modifying Dempster`s combination rule or 

pre-processing the sources of evidence as referenced and discussed by (Xiao 2019), and 

also addressed as the decision-making process improvement in the fields of localization 

(Elkin et al. 2017), (Kasebzadeh et al. 2014), (Li et al. 2015a), medical sciences (Li et al. 

2015b), (Wang et al. 2016), (Moraru et al. 2018), (Gui et al. 2017), (Mulyani et al. 2016), 

and fault diagnosis (Hui et al. 2017b), (Tang et al. 2017), (Jiang et al. 2016), (Zhou et al. 

2018), (Jiang et al. 2017), (Xiao 2017), (Khazaee et al. 2016), (Lv et al. 2012), (Hui et al. 

2016), (Yao et al. 2017), and (Hui et al. 2017a). Weighting strategy in the current study, 

which will be discussed in the Chapter 3, presents a solution to combine all data from 

different sources regardless of the nature of the sources. 

(3) Fuzzy Logic, which is a methodology applied where data obtained from different 

sources are not precise, tries to deal with uncertainty in a reasonable computation 

framework. This theory extends the Boolean set theory and the related two-valued logic 

(Stover et al. 1996) proposed by (Zadeh 1965) who extended for those binary numbers to 

any value between 0 and 1, continuously spread. Instances of the fuzzy logic include 

enhanced accuracy of sensors using fuzzy logic data fusion (Al-Sharman et al. 2018), (Jian 
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et al. 2011), better data clustering (Majumder and Pratihar 2018), and medicine (Ahmadi 

et al. 2018) and (Mehranfar et al. 2017). Fuzzy logic also uses membership functions as a 

basis for transforming binary values, referred to as crisp values, into values within a range. 

It may create issues to find suitable membership values. Moreover, the transformation 

process and selecting the appropriate membership function, such as triangular, 

trapezoidal, and Gaussian (Jian et al. 2011) may be inconvenient. 

Researchers also tried to obtain fuzzy values for each sensor in every time period; 

however, this may ignore the real-time decision making process (Seiti and Hafezalkotob 

2018). As an example, in a study carried out by (Xiao and Qin 2018), they generated initial 

data 100 times but in a variation range of [-0.1,0.1] as their experimental settings; however, 

producing data and obtaining the desired outcome may be different than actually 

implementing the algorithm within real-time and dynamic framework. This means that how 

sensors would behave may not match lab-made experiments. Therefore, obtaining values 

in real-time and at every time period is presented as a novelty to be addressed in this 

research. 

2.2 Dealing With Noise and State Estimation 

Noise is considered as undesired irregular fluctuations which accompany the actual 

signal. All signals include degrees of noise depending on the sensor type and 

environmental factors. Therefore, avoiding or reducing noise has always been a 

considerable concern since real data can be totally disturbed in the presence of excessive 

noise. The need to eliminate noise has led researchers to estimate the outputs of a model, 

usually known as state. System states may sometimes be unavailable due to physical 

constraints, technological restrictions, expensive cost for measuring (Hu et al. 2016), or be 

incorrect because of the environmental noise/effects. About motion and position sensors 
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such as GPS and IMU (including gyroscope and accelerometer), researchers apply state 

estimation/filtering methods to obtain robust outputs to tackle the presence of noise or 

missing data. This includes a variety of applications such as localization, velocity 

estimation, navigation, etc. 

The Kalman filter (KF), invented by (Kalman 1960), is a very common filter to estimate 

a future state. Known as an appropriate linear estimator (Selin 1964), having a good 

performance with linear systems and the most famous including its various representations 

(Zaidner and Shapiro 2016), KF has been the most impressive approach among others. 

But due to drawbacks in various situations such as increased complexity of a model and 

the necessity for rapid change response, harder parameters calibration, linearity of the 

system, Gaussian probability distribution function, and prior knowledge of system 

measurement noise covariance (Q) and update measurement noise covariance (R) (Nada 

et al. 2018), etc., researchers on data fusion and analytics are persuaded to look for new 

methodologies as will be discussed further. 

As an instance, (Lin et al. 2016) used KF to analyze trajectory data and 

segmentation. However, if one attempts to use multiple sources of data for a single input 

of KF, such as the easting position of the AGV example in this study, another strategy for 

fusion is still needed. 

A more recent study by (Wang et al. 2019) showed the use of GPS improved by KF 

for outdoor environment and combination of IMU and magnetometer while indoor for better 

positioning estimation. They created a novel approach to estimate the heading angle using 

two adjacent data points. They declared less distortion in magnetic-interfered 

environments. However, their research is based on a few assumptions which may not 

always be true. For example, two adjacent data points obtained from magnetometer are 

considered the same under high-frequency data-collection conditions. 
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Another study by (Mishra 2013) introduced sliding windows using quadratic 

optimization to estimate the location and track the movement of a mobile robot platform 

wherein high variance and bias in the GPS data exists. Although their research included 

only GPS receivers and their contribution could handle levels of noise regarding one sensor 

type, the current study includes diverse sensors, resulting in the use of a novel approach 

toward noise reduction. A similar study to this work is done by (Kim and Lee 2016) to 

increase the positioning accuracy using GPS and IMU in which they used regular KF and 

added fuzzy IF-THEN rules to moderate the drawbacks known for KF such as the 

impossibility to gain very accurate system and measurement models for a real environment 

in a tunnel or under an overpass. Even worse for the GPS receiver, it carries low frequency 

and sensor errors. To overcome this, they innovated an algorithm to control the Q and R 

matrices. 

Another variation of KF is the Extended Kalman Filter (EKF). EKF is an extended 

format of KF which can be applied to nonlinear systems (Julier and Uhlmann 2004). It also 

provides a growth trend so that measurements from other sensors such as optical flow 

sensors and laser range finders can be added as further improvements in accuracy and 

robustness. In a recent study done by (Sun et al. 2019), positioning a ground vehicle for 

restaurant environment was established using odometry, IMU, and magnetometer, 

combined with EKF. They intended to show the use of low-cost sensors and reduction in 

labor costs. Similar to many other researches in this area their study suffers from Gaussian 

noise measurement assumption for IMU. It also ignores external interference. 

(Kim and Lee 2016) applied EFK as a core method for the positioning estimation but 

later question that by resorting to the fact that EKF is dependent on how accurate the 

system and measurement models are, which is the main drawback of EKF. 



11 

(Kim and Lee 2016) also used GPS and IMU inputs to the KF. In addition, their 

contribution is to control the system and measurement noise covariance by incorporating 

a fading factor, the GPS sensor bias, and the degree of reliability of GPS signal. A fading 

factor is built to apply a factor matrix to the predicted covariance matrix to deliberately 

increase the variance of the predicted state vector. The fact that they use two GPS devices 

raises the issue of having the same failure modes of the same sensors. This is well shown 

in Chapter 4 where the first experiment applies the same IMUs but the second experiment 

handles sensors of the same type as groups. Additionally, they are still feeding in the 

sensor output to the KF. Although it improves that, the question is now what if the sensor 

itself generates noisy or missing data? Then the whole algorithm is prone to fail or provide 

weak performance. The algorithm in this research, however, compares the same input, for 

instance position, from different sensors such as GPS, IMU and Lidar, and provides the 

fused estimate on a voting basis which will be reviewed in Chapter 3.2.3. In a close study 

to this work done by (Munguía 2014), Inertial Navigation System (INS) is used in a 

framework of EKF with the aid of GPS device for better estimates. The INS is a widely used 

dead reckoning system (navigation using a previously determined position rather than by 

using landmarks or electronic navigation methods) which fuses sensory information taken 

from inertial sensors (accelerometers) and rotational sensors (gyroscopes) in order to 

continuously estimate the position and the orientation of the body (vehicle, in the concept 

of the current study). 

Regarding the IMU noise, researchers may use other methods. For instance, (Pan 

et al. 2016) applied sensor calibration, digital-analog conversion and signal smoothing on 

the raw signals to reduce the IMU noise in a trajectory reconstruction concept. They also 

applied a low-pass filter based on the Exponential Weighted Moving Average (EWMA) to 

smoothen the IMU noise. Therefore, each scholar may use their own simple, heuristic or 
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more complicated filtering method to extract the actual signal from the noise efficiently. In 

the current study, initial noise from the IMU sensor and the error concluded from 

conversions are handled using pieces of evidence and the concept of equivalence to 

increase the reliability of the filtering process. Equivalence will be discussed in Chapter 3. 

Regarding the Lidar distance and intensity accuracy and noise, different methods are 

used as discussed in (Xu et al. 2019). They address laser echo signal calculations and 

more reliable de-noising methods (Chang et al. 2018), particularly when the detection 

range is large. This study uses a high-performance, indoor device and does not involve 

large area of detection. Therefore, Lidar noise is not a consideration. 

Most of the sensor fusion methods found in this literature review assume that sensor 

noise or bias follows a Gaussian or constant distribution. Gaussian noise refers to the 

statistical noise having the probability density function equal to that of the normal 

distribution (Barbu 2013). As an instance, (Guo et al. 2017) applies this assumption for a 

target-tracking model using several sensors. Even KF holds this assumption. Therefore, 

this motivated the current study to introduce an algorithm not dependent on a sensor error 

distribution type. 

Other variations of KF such as Adaptive Kalman Filter (AKF) and Unscented Kalman 

Filter (UKF) are also used by researchers. In an attempt to integrate INS and GPS for 

navigation purposes, (Mohamed and Schwarz 1999) showed a 50% improvement in 

estimating the navigation parameters by implementing an AKF when compared to that of 

a conventional KF. However, they mention drawbacks for AKF such as having a more 

complex algorithm leading to an additional estimation block. Also, it still needs tuning either 

Q or R or both. Afterwards, by initially representing the drawbacks of EKF, (Wan and van 

der Merwe 2000) introduced an improvement to UKF which was first invented by (Julier 

and Uhlmann 1997). According to (Wan and van der Merwe 2000), the state distribution in 
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EKF is approximated by a Gaussian random variable, then propagated analytically through 

the first-order linearization of the nonlinear system. This may produce large errors in the 

true posterior mean and covariance of the transformed Gaussian random variable, which 

may lead to sub-optimal performance and sometimes divergence of the filter. The UKF, 

however, addresses this problem by using a deterministic sampling approach. It also uses 

a Gaussian random variable to approximate the state distribution but is now represented 

using a minimal set of carefully chosen sample points. These sample points completely 

capture the true mean and covariance of the Gaussian random variable, and when 

propagated through the true nonlinear system, captures the posterior mean and covariance 

accurately to the 3rd order (Taylor series expansion) for nonlinearity. The EKF, in contrast, 

only achieves first-order accuracy. The computational complexity of the UKF is the same 

order as that of the EKF. 

Particle Filter (PF) is another well-known estimation technique with the capability to 

be used for nonlinear non-Gaussian models (Munguía 2014). PF is the recursive 

computations of Monte Carlo-based statistical signal processing (Gustafsson et al. 2002) 

which uses a set of samples (referred to as particles) to represent the posterior distribution 

of stochastic processes given noisy/partial observations. It uses the concept of sequential 

importance sampling and the Bayesian theory which approximates relevant distributions 

with random measures composed of particles (samples from the space of the unknowns) 

and their pertinent weights (Djuric et al. 2003). PF can be an alternative to EKF. It 

approximates continuous distributions using discrete random measures, which are 

composed of weighted particles, where the particles are samples of the unknown states 

from the state space, and the particle weights are probability masses computed through 

Bayes theory. In the implementation of particle filtering, importance sampling plays a 

crucial role and since the procedure is designed for sequential use, the method is also 
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called sequential importance sampling. The advantage of particle filtering over other 

methods is in that the exploited approximation does not involve linearization around current 

estimates but rather approximations in the representation of the desired distributions by 

discrete random measures. The key idea on the PF in comparison to EKF is finding an 

approximate solution using a complex model rather than an exact solution using a 

simplified model (Hsiao et al. 2005). On the other hand, a recognized problem with the 

particle filter is that its performance reduces rapidly when the dimension of the state space 

increases (Thrun 2002). In addition, it is essential to have a reliable way to detect 

divergence and to restart the filter. Due to the aforementioned complexities, this research 

avoids using this filter. 

2.3 Contribution Notes 

According to the above discussion, the methodologies of fusion strategies and 

appropriate modeling are still of considerable interest but distant from achieving the 

competence in analyzing different data concurrently (Fung et al. 2017). Therefore, the 

directions of this study are established toward an inclusive way of fusing data with the least 

possible rate of failures and better estimates throughout the operations. This is achievable 

through a novel algorithm for fusing the data using weight assignment. Preliminary work 

was implemented to utilize homogeneous sensors to include diverse operational scenarios 

in which system unpredictability in terms of linearity or non-linearity does not affect the 

fusion algorithm remarkably. System non-linearity refers to the system in which outputs are 

not merely a sum of inputs due to feedback or multiplicative effects between the 

components (Boeing 2016). A secondary experiment is also handled using heterogeneous 

sensors to reduce the bias caused by the same sensors. 
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CHAPTER 3  

METHODOLOGY 

In this chapter the concepts of evidence, sensor error independence, output 

equivalence, adaptive state estimation, and meta-sensing will be discussed. The ways 

these concepts contribute to the implementation of the proposed data fusion techniques 

will also be presented. The example of an AGV is used to present these concepts. 

Evidence – The term evidence is accepted in this research to address facts or 

information indicating whether a belief or proposition is true or valid (Oxford University 

Press 2019). Within the proposed data fusion strategy, attempts are made to discover facts 

or information about the system being controlled and the incoming data streams that 

increase the belief in the accuracy and validity of the data used as control system inputs. 

System knowledge that can be used to support the creation of evidence can include 

knowledge of a system`s kinematics and dynamics, verified performance constraints such 

as velocity and acceleration limits, knowledge of control inputs such as commanded speed 

and heading commands, and the underlying laws of physics such as the fact that a vehicle 

at rest cannot instantaneously move below the surface of the ground. This work also 

attempts to exploit the fact that the comparison of data generated from different senor data 

streams can be used as evidence to increase or decrease the belief that the senor data 

reflects the true state of the system. 

Sensor Error Independence – This work is premised on the belief that system state 

sensors frequently generate data that does not reflect the true state of the system and 

these errors in sensor output are due to the characteristics of the sensors deployed and 

the system operating environment. Simple examples include: (1) The output from a digital 
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compass which can be biased by the presence of near-by ferrous objects or magnets, (2) 

IMU outputs that exhibit unbounded cumulative output error due to the integration of scale 

factor and bias errors, (3) consumer-grade GPS receivers that demonstrate position errors 

of approximately 5 to 10 meters due to the effects of atmospheric conditions, multipath 

error, orbit errors, and line of site obstructions. Sensor input data stream accuracy and 

repeatability is negatively affected by many causes of error. The good news is that different 

types of sensors generally have different causes of error. The concept of sensor error 

independence attempts to utilize errors in the output data streams of a specific class of 

sensor that are not present in the output of different types of sensors. System state 

estimates, such as position, orientation, velocity, and acceleration in the case of an AGV, 

can be derived from multiple types of sensors. Due to the fact that the cause of error in one 

type of senor might not be present in a different sensor, it may be expected that errors in 

one sensor output stream will not be present in the data generated by a different sensor. 

To better illustrate this, in the AGV example mentioned earlier, a GPS and an IMU device 

have been used. Accelerometer readings in the IMU would change as far as the bumps 

which could impact the displacement gained in this way. However, this is not an error that 

affects displacement readings generated from GPS sensor. Therefore, the cause of error 

in an accelerometer would not cause any error to the GPS device in this real example. 

By comparing the instantaneous change in sensor outputs simultaneously from 

multiple classes of sensors, it is possible to observe when the information generated by 

one type of sensor deviates from the information generated from the majority of the other 

sensor types.  These uncollaborated shifts in sensor output may provide evidence that the 

value shift is caused by data errors generated by the sensor rather than an actual change 

in the state of the system being observed. This evidence can then be used to direct 
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algorithms to systematically reduce the influence of the sensor-induced data errors in the 

system state estimations. 

Output Equivalence – This concept explores whether sensors can detect faulty data 

when one sensor is distorted. It is one of the definitions applied in this research, which is, 

converting sensor data to obtain new outputs from the same sensor. This helps the 

algorithm to detect faulty data. As an instance, GPS position data may be converted to 

velocity and acceleration estimates by taking derivatives. While acceleration, velocity, or 

displacement from IMU can fail under a circumstance, similar values from GPS do not 

since GPS values have different failure modes. 

Adaptive State Estimation – The word state refers to an output such as displacement. 

When a state is estimated it means that various evidence or facts have been utilized to get 

a robust estimation. A robust estimation signifies that the estimated output is less prone to 

failure as compared to when no evidence or fact is used for estimation. What sensors or 

which facts to use under different situations also defines the concept of adaptive state 

estimation, indicating that it may involve different pieces of evidence at different times. 

Meta-Sensing – This innovative concept refers to the fact that a sensor output is 

checked with the same output of another sensor to examine how other sensors agree with 

an output of a particular sensor. Accordingly, each sensor will be given a weight based on 

how close the output of that particular sensor is to other sensors. This weight can be 

different in various time steps. 

3.1 Model Explanation 

The model used for this research applies inputs to the system, functions as the heart 

of the system, mechanisms as the control factors, and the outputs which are considered 
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as the product. To better demonstrate the mentioned relationship, the system 

representation used in this study is shown next. 

System
1- Data Collection, 2- Models (functions), 

3- Data Analysis

Inputs
Raw Data

Mechanisms
Adaptive Algorithms

Outputs
System State Information

 

Figure 3-1 General system representation 

Sensors transmit their data (Inputs)  into the system and the algorithms subscribe to 

their required data. Other sensors` relative or converted data and the evidence are also 

added to support the decision-making process referred to as “Mechanisms”. Using the 

math, codes and modeling tools, the data is analyzed in the “System”. As a conclusion, the 

fused outputs provide better estimates (Outputs). 

Applying the sensors and the structure of this work concludes the following system 

representation specific to the current study. 

System
1- Data Collection and Analysis using Matlab 

& Simulink, 2- Models (codes generated)

Inputs
Sensors data

(GPS,IMU`s, Lidar)

Mechanisms
Adaptive Algorithms

Outputs
Easting position, Northing position

Heading angle, Velocity

 

Figure 3-2 System representation of the current research 
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3.2 Sensor / Data Source Analysis and Modeling 

Data source analysis is inspired by the concepts of fusion strategies and state 

estimation methods discussed in Chapter 2. Sensor data value and system kinematics 

determine the ratio of contribution (weight) for each sensor and all weights sum to 1 for a 

model in a specific time step. 

Data from all sensors are obtained and go through the process. The modeling is 

performed based on evidence comparisons from different sources using the custom 

algorithms, standard functions, and libraries within the Matlab and Simulink development 

environments. The evidence-based sensor fusion algorithms are designed to detect shifts 

in sensor data values generated by anomalies within the system`s operational 

environment. There are a significant number of alternate sensor inputs that remain 

uninfluenced by the anomaly. These unaffected alternate sensor input streams are used 

to serve as two purposes. They can be used to provide evidence that the primary sensor 

values may be corrupted, which can be used by the fusion algorithm to systematically 

reduce the influence of the suspect primary sensor`s input stream on the system state 

estimation process. The uninfluenced secondary sensor input streams can also provide 

information used to generate state estimation values until the influence of the operational 

or environmental anomaly disappear and the primary sensor`s input stream can again be 

trusted. These anomalies may include special circumstances such as a covered area or 

the presence of magnetic field distortions where a particular sensor is blocked from 

receiving signals. 

The application of this research in navigation requires the use of specific input data 

streams which includes: position, heading angle, and velocity of a vehicle. These inputs 
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can be provided by using positioning and orientation sensors such as GPS, IMU, digital 

compass, and Lidar which are described as follows: 

GPS – This device has several useful outputs out of which this research applies 

latitude, longitude, and altitude. Other information including velocity and acceleration may 

also be extracted using Simulink models. 

IMU – It is a unit containing accelerometers (an electromechanical device by which 

the gravity, vibrations, and movement in one, two, or three axes can be sensed) and 

gyroscopes (a device which measures rotational motion) to calculate orientation, position 

and velocity. 

Digital compass – This device uses a three-axis magnetometer to measure the 

absolute orientation of the vehicle with respect to the geomagnetic north. It is useful when 

determining the heading of the vehicle. 

Lidar – This device includes a spinning motor to scan the surroundings and reports 

the ranges to the detected objects. Accuracy and width of the scanning area and range 

may not be the same on different devices. 

The next table displays the sensors` deliverables (related to this work) in a tabular 

format. 
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Table 3-1 Research sensors and deliverables 

Sensor Native Deliverable Derivatives 

GPS 1- Longitude and latitude 
2- Altitude 

1- Position   2- Velocity 
3- Acceleration 4- Heading 

IMU 1- Angular rate 
2- Acceleration (Body-frame) 

1- Orientation   2- Heading 
3- Acceleration (Inertial frame) 
4- Velocity        5- Position 

Digital 
Compass 1- Magnetic field values 1- Orientation 

2- Heading 

Lidar 1- Range 1- X and Y coordinates 
2- Heading       3- Velocity 

 

The data generated from the sensors are continuously monitored to detect distortion. 

This occurs to verify how trustable the data from each sensor is for the subsequent data 

fusion process. Relative weights, which sum to 1, are assigned to each contributing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

sensor using the concept of graph theory. This process is accomplished simultaneously for 

all possible pairs of outputs. 

Each sensor`s data is received in the ROS environment and published to Matlab for 

fusion purposes. The Robot Operating System (ROS) is a flexible platform which runs on 

the Ubuntu operating system. It uses reliable and independent procedures to manage a 

variety of sensors` outputs. That will be explained more in section 3.4. 

The AGV test platform used to support this research was equipped with GPS, IMU, 

digital compass, and Lidar sensors. A Pixhawk autopilot system supplied the GPS, IMU 

and digital compass sensors. Additional information about the Pixhawk unit is provided in 

Section 4.1. 

3.2.1 Sensor / Data Source Selection and Applications 

All sensors contribute to all models as long as they are consistent with other sensors. 

According to various situations, different combinations of sensors may be required to 
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handle or correct the fusion algorithm. The point is that when applying different sensors, 

all may provide a particular output either directly or indirectly through conversions, which 

after calculations they all can provide the same output with a high correlation. Each sensor 

might have a unique cause(s) of error but a combination of different sensors become robust 

against a variety of errors because when one sensor fails due to a specific error, other 

sensors do not fail since that specific error does not cause them to fail as they have different 

failure modes. 

Data that this research needs as the inputs for a navigation system includes: easting 

and northing positions (relative to true north), heading angle, and velocity. Parts of these 

inputs are provided directly while others require computations/conversions to yield the 

expected type of data. 

3.2.2 Sensor / Data Source Error Mode Independence and Data Correlation 

Retrieving data from sources with different failure modes concludes the advantage 

of independent functionality. This results in reduced possibility of errors occurring 

simultaneously. This study does not hold any assumption regarding sensor error 

distribution as an improvement to the gap mentioned in 2.2. Since each sensor is planned 

to contribute individually, error for each sensor is accompanied with that sensor. This way, 

even if the error for each sensor is not Gaussian or constant, the sensors` outputs are 

being compared to each other and weights are assigned. Therefore, not knowing the 

behavior of a sensor at a particular time step does not impact the performance of the 

algorithm. The following will discuss sensor error with regards to the sources used in this 

research to reveal failure modes that the upcoming algorithms will handle. 
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GPS – A common failure mode for a GPS receiver occurs when the device loses the 

lock on satellites or is surrounded by tall buildings which generates multi-path timing errors. 

This indicates that the signal is not reflected directly but leaps against surfaces to contact 

the sensor which generates error on the actual signal. 

IMU – A common failure mode when using an IMU unit is that the user often produces 

error due to manual data conversion. The IMU yields almost reliable data by itself; however, 

when part of the data such as acceleration is integrated to get velocity, the methods 

available produce errors in each step. Therefore, the errors are accumulated and the errors 

become larger than the real data. This means that the noise from one time step is 

transferred to the next and is augmented such that at a point the output includes further 

noise than the actual signal. Noise should be well handled while converting the IMU`s data 

such that the output contains the least noise possible. This is another contribution which 

will be discussed in section 3.2.3. 

Digital Compass – A common failure mode for a digital compass is when another 

magnetic source influences the magnetic field generated by the earth pole and output from 

a digital compass can be easily disturbed when the unit is placed near a magnet or other 

ferrous object. 

Lidar – This device may fail to measure the range or angle when confronted with high 

light beams or great brightness reflected from glazing surfaces. 

3.2.3 Equivalence 

In order to ensure equivalent outputs, pair-wise data correlation comparisons among 

all sensors are initially performed through experiments under normal circumstances before 

the actual run. This examines to what extent each sensor agrees with the others. As 
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another part of the initial test of equivalence, Matlab graphical tools, namely scopes, are 

also visually checked to see if they deliver almost the same outputs in a same scenario, 

i.e., the results from replicated scenarios should be consistent. Through equivalence 

conversions, sensor data is converted to another useful output that can be compared to 

the outputs of other sensors with different failure modes. 

The following sections discuss the selected sensors, the methods used to obtain the 

desired output, and how an output from a particular sensor can be mapped and compared 

to that of another sensor in the model within the Matlab and Simulink environment. 

GPS Block – This is another part of the whole model in Simulink exhibited in the next 

figure. 

 

Figure 3-3 GPS block in Simulink 

Collected latitude, longitude, and altitude readings from the GPS sensor are 

converted to positions toward X, Y, and Z axes in a local reference frame. The initial latitude 

and longitude values are set as the origin of the local reference frame. By using state-
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space blocks, position values are converted to velocity and acceleration values. 

Differentiating the position yields the velocity. 

State-space blocks are more accurate alternatives to taking direct derivatives. 

According to linear systems theory, the state-space model is a model that uses state 

variables to describe a system by a set of first-order differential or difference equations, 

rather than by one or more nth-order differential or difference equations and is represented 

as follows: 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵 

Equation 3-1 

Where x is the state vector, y is the output vector, u is the input (or control) vector, 

and A, B, C, and D are parameters demonstrating the state (or system) matrix, input matrix, 

output matrix, and feedthrough (or feedforward) matrix, respectively. The matrix 

coefficients must have the following characteristics. 

• A must be an n-by-n matrix, where n is the number of states. 

• B must be an n-by-m matrix, where m is the number of inputs. 

• C must be an r-by-n matrix, where r is the number of outputs. 

• D must be an r-by-m matrix. 

Experimental trials concluded the following matrices. 

𝐴𝐴 = � 0 1
−150 −40�          𝐵𝐵 = � 0

40�           𝐶𝐶 = �
1 0
0 1

3.5
�           𝐷𝐷 = �00� 

Equation 3-2 

Velocity X and Y obtained from this block contribute as follows for the velocity of the vehicle: 
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𝑉𝑉 = �𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 

Equation 3-3 

IMU 1 & 2 Blocks – The following is applicable to both IMU1 and IMU2 since they 

both use the same data processing strategy. Since two IMU sensor units were used in the 

experiments, two separate blocks were used in the Simulink model which output 

separately. A representation of one of the IMU blocks is shown below. 

 

Figure 3-4 IMU block in Simulink 

After obtaining IMU`s acceleration in all axes they are zeroed down. Maximum 

acceleration of the vehicle (robot in the second experiment) is 0.1m per 0.1s2. 

Instantaneous acceleration values larger than 0.1m/0.1s2 or lower than -0.1m/0.1s2 are 

substituted by their previous value. This filtered data is integrated to obtain velocity. 

The velocity and heading sensor inputs determine the position estimates after 

another integration step. Since the vehicle may have moved any angle other than strictly 
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east or west, it is necessary to compute the actual distance traversed on the “Easting” and 

“Northing” axes. As an illustration, if the vehicle is moving towards the north-east at an 

angle of 20 degrees with regard to true north, then the contribution of its displacement on 

the easting and northing axes is multiplied by cos(20o) and sin(20o), respectively. This block 

includes the code for a “unit circle” which assigns headings into 8 slices of 45o each to 

reflect their contributions to displacement on the easting and northing axes. This code is 

provided in the appendix. 

Lidar Block – This block collects the data from Lidar and extracts X and Y positions 

from scanned ranges. 

 

Figure 3-5 Lidar block in Simulink 

Since the data provided by the Lidar is a “single data type” a simple Matlab function 

is used for conversion (y = double(lidar_data)). 

Using a “unit delay” block to delay the data one time step, the current data and the 

data from one time step before are inputted to the next Matlab function called “Match Scan”. 

The Match Scan function matches two scans of data and outputs the difference of two 
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scans in terms of change in X(meters), Y(meters), and angle (initially in radians but 

converted to degrees for use in GNC). The corresponding code is provided in the Appendix. 

A “transfer function” is used for Lidar to achieve the velocity as a derivative of 

positions. Transfer function is another way of taking derivative. The following transfer 

function, obtained through experimental trials, was used for Lidar. 

𝑉𝑉 =
200

5𝑠𝑠2 + 4𝑠𝑠 + 2
 

Equation 3-4 

GPS Magnetic Field Block – This is another part of the model in Simulink, exhibited 

in the next figure. 

 

Figure 3-6 GPS Magnetic Field block in Simulink 

The first Matlab function coverts the magnetic field values to direction. The second 

Matlab function ensures that all values are within 0 to 360 degrees. All codes are provided 

in the Appendix. 
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GNC Block – This block handles all pre-processed outputs coming from the GPS, 

IMU`s, and Lidar blocks and fuses the required data based on the proposed algorithm. An 

overview of the GNC block is displayed below. 

 

Figure 3-7 GNC block in Simulink 

3.3 Sensor Fusion Model Selection 

Every two consecutive data values from all sensors are passed through a Matlab 

function. The first value is the current sensor reading and the second one is the value at 

one time period before. This is executed using a “delay block”. A delay block delays a 

signal for as many time periods as the user needs. These two data are differentiated to 

output the difference of change in value, called delta, for a specified time period. A Matlab 

function including two consecutive data and a delay block are shown next. 
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Figure 3-8 Delaying Matlab function and a delay block 

The advantage of this approach is that if noisy data causes a sensor to output outlying 

data, the distance from that particular sensor to other sensors will be large and that sensor 

will be de-weighed in that specific time step. 

For navigation purposes using x and y positions, heading, and velocity, algorithms 

should be implemented for the pre-processed data fusion in this study. Multi-sensor data 

fusion which continuously fuses data regardless of their relationships (whether they agree 

at a particular period of time or not) is also proven to fail in situations, particularly when an 

interfering factor from the environment distorts the data and causes a noisy incoming data, 

such that earlier stated where a magnet or a ferrous object deviates an active sensor. 

In case of any missing value, a large value such as 1000 is replaced as the value of 

difference such that algorithm largely de-weighs that particular sensor for the time period 

in which data was missing. Comparisons between the raw outputs, in which all outputs 

from all sensors are averaged, and the filtered data will be presented in Chapter 4. 

According to the above discussions, a decision in each time period is taken 

collectively. This was earlier referred to as “meta-sensing”. Navigation is handled in hard 

situations when a sensor transmits no or noisy data by replacing fused estimates through 

checking other sensors` readings. In addition, this study is dealing with raw data to work 
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with the worst-case scenario; however, one might be interested in initially filtering out the 

data on the Pixhawk and feeding them into the algorithms proposed in this research. 

3.3.1 Analysis To Direct The Data Fusion Activities 

This subsection provides details and an example on how the stated algorithm works. 

Weights are assigned using the graph theory concept which is explained below. 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑥𝑥�𝑒𝑒𝑖𝑖 . 𝑒𝑒𝑖𝑖� − 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒𝑖𝑖 . 𝑒𝑒𝑖𝑖�                    ∀𝑚𝑚 = 1. 2. …   .    ∀𝑗𝑗 = 2. 3. …     .     𝑚𝑚 ≠ 𝑗𝑗 

𝐷𝐷 = � 𝑑𝑑𝑖𝑖𝑖𝑖                                                      ∀𝑚𝑚 = 1. 2. …   .    ∀𝑗𝑗 = 2. 3. …     .       𝑚𝑚 ≠ 𝑗𝑗
𝑖𝑖=1.2.…
𝑖𝑖=2.3.…

 

𝑃𝑃𝑘𝑘 = 1 −
𝑑𝑑𝑖𝑖𝑖𝑖  
𝐷𝐷

                                                       ∀𝑚𝑚 = 1. 2. …  .  ∀𝑗𝑗 = 2. 3. …   .   ∀𝑘𝑘 = 1. 2. …   .   𝑚𝑚 ≠ 𝑗𝑗 

𝑁𝑁𝑘𝑘 = ‖𝑃𝑃𝑘𝑘‖                                                            ∀𝑘𝑘 = 1. 2. … 

𝑊𝑊𝑘𝑘 =
∑ 𝑃𝑃𝑘𝑘𝑛𝑛−1
𝑘𝑘=1

𝑚𝑚 − 1
                                                     ∀𝑘𝑘 = 1. 2. …  .   ∀𝑚𝑚 = 1. 2. … 

Equation 3-5 

Where 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑖𝑖 are the delta values for each sensor deducted from each other. 

Accordingly, 𝑑𝑑𝑖𝑖𝑖𝑖 would be the magnitude of all possible differences between all deltas. D is 

the summation of all 𝑑𝑑𝑖𝑖𝑖𝑖`s. Considering the sensors as nodes and the deltas edges 

connecting them based on the graph theory concept, 𝑃𝑃𝑘𝑘 is the magnitude/weight given to 

a particular edge between nodes i and j. Since 𝑃𝑃𝑘𝑘 is the possibility/weight and the 

summation of all 𝑃𝑃𝑘𝑘`s should be 1, then 𝑁𝑁𝑘𝑘 is defined as the normalized value of any 𝑃𝑃𝑘𝑘. 

Finally, 𝑊𝑊𝑘𝑘 denotes the weight assigned to each node based on the number of connected 

edges to a particular node. This method allows each node to get 1/(n-1)th weight of each 

adjacent edge given there are n nodes in the graph. The above concept is better illustrated 

in the following example. 
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In a network of 3 sensors, each sensor acts as a node. Assuming that in a particular 

time step the delta values (differences in displacement) are 2, 3, and 7, the below figure is 

the graph representation for this network. 

2
3

7

5
4

1A
B

C

 

Figure 3-9 An example on the fusion algorithm 

The graph ABC includes the vertices A, B, and C as nodes (deltas) and sides AB, 

AC, and BC as edges. The numbers associated with each node and edge represent the 

weight of that node and distance between the nodes, respectively. Therefore, we will obtain 

the values as follow: 

 𝑑𝑑12(𝐴𝐴𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑥𝑥(2.3) −𝑚𝑚𝑚𝑚𝑚𝑚(2.3) = 1 

  𝑑𝑑13(𝐴𝐴𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑥𝑥(2.7) −𝑚𝑚𝑚𝑚𝑚𝑚(2.7) = 5 

𝑑𝑑23(𝐴𝐴𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑥𝑥(3.7) −𝑚𝑚𝑚𝑚𝑚𝑚(3.7) = 4 

𝐷𝐷 = �𝑑𝑑12 + 𝑑𝑑13 + 𝑑𝑑23 = 1 + 5 + 4 = 10 

𝑃𝑃1(𝐴𝐴𝐴𝐴) = 1 −
1 
10

=
9 
10

                .       𝑃𝑃2(𝐴𝐴𝐴𝐴) = 1 −
5 
10

=
5 
10

             .          𝑃𝑃3(𝐴𝐴𝐴𝐴) = 1 −
4 
10

=
6 
10

 

𝑁𝑁1(𝐴𝐴𝐴𝐴) = 0.45                               .       𝑁𝑁2(𝐴𝐴𝐴𝐴) = 0.25                             .            𝑁𝑁3(𝐴𝐴𝐴𝐴) = 0.3 

𝑊𝑊1(𝐴𝐴) =
0.45 + 0.25

2
= 0.35    .      𝑊𝑊2(𝐴𝐴) =

0.45 + 0.3
2

= 0.375 .    𝑊𝑊3(𝐴𝐴) =
0.25 + 0.3

2
= 0.275 
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Based on the gained weights for each node (sensor), sensors will get their pertinent 

weights in that particular time step. Although the simple mean for these sensors is 4, the 

new mean using this method is 3.75. This means that 7 is given less weight and is 

recognized as an outlier. The same calculations for the datasets of [2,3,8] and [2,3,9] 

indicates assigning more weight toward two close numbers (2 and 3) and less weights to 

the outlier (8 and 9). 

Comparisons with more nods (4 and 5) will be conducted in Chapter 4. The above 

strategy is applied for velocity dimension where we want to decide how the weights should 

be distributed over four contributing sensors. The table below shows the final results on 

four experiments where each of which included four data points from four different sources. 

Table 3-2 4-noded graph experimental results 

         Weight 
Dataset w1 w2 w3 w4 Dataset 

Mean 
Weighted 

Mean 
[2,3,6,8] 0.2476 0.2571 0.2572 0.2381 4.75 4.7145 
[2,3,6,9] 0.25 0.2583 0.25835 0.23335 5 4.9252 
[2,5,8,9] 0.23335 0.25835 0.2583 0.25 6 6.0749 

[2,4,8,15] 0.25117 0.26046 0.26046 0.22791 7.25 7.0465 
 

As the table shows, when an outlier is farther from the other points, the algorithm 

gives less weight to that data so that the weighted mean tends to be closer to the other 

data points. 

This algorithm collects the data from all sensors in each time step, dynamically 

delays, continuously processes them, and yields the output as a single data for a given 

dimension such as position.  
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3.4 The Computing Infrastructure Middleware and its Necessity 

It is recommended that a cheap, accessible, easy-to-use, non-confounding, 

extendable, and reliable system be applied that does not result in complicating the 

algorithms and the processes. Several robot middleware systems such as The Carnegie 

Melon Navigation Toolkit (CARMEN), Lightweight Communications and Marshalling 

(LCM), Microsoft Robotics Studio, and Robot Operating System (ROS) have been 

introduced for the purpose of code sharing. However, ROS facilitates the simultaneous use 

of independent modules, such as sensors, as a complex robot control center (Crick et al. 

2017). ROS1 consists of nodes and topics for parallel execution and maintenance of all 

sensors` freely. The ROS package is installed and run on an Ubuntu platform. The ROS 

environment is executed by the “roscore” command which is a ROS Master server (node) 

that saves the names and paths for all the nodes. All other nodes must be registered in 

this Master node. A node is an agent communicating with the ROS Master and the other 

nodes via (1) topics (publish/subscribe) using specific message types, (2) services: 

request/response, like callback functions. The next figure indicates the links between ROS 

elements. 

 

Figure 3-10 ROS communication algorithm (Clearpath Robotics 2014) 

 
1 A few parts are extracted from materials taught in IE 5379 at UTA in Spring 2018. 
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Nodes can subscribe to or publish into Topics as shown below. 

 

Figure 3-11 Nodes and topic relationship (Martinez Romero 2014) 

A robot control system usually comprises many nodes. For example, one node 

controls a laser range-finder, one node controls the robot's wheel motors, one node 

performs localization, one node performs path planning, one node provides a graphical 

view of the system, and so on. 

The use of nodes in ROS provides several benefits to the overall system. There is 

additional fault tolerance as crashes are isolated to individual nodes. Code complexity is 

reduced in comparison to monolithic systems. Implementation details are also well hidden, 

even in other programming languages which can easily be substituted. 

Topics are named buses over which nodes exchange messages. Topics have 

anonymous publish/subscribe semantics, which decouple the production of information 

from their consumption. In general, nodes are not aware of who they are communicating 

with. Instead, nodes that are interested in data, subscribe to the relevant topic; nodes that 

generate data, publish to the relevant topic. There can be multiple publishers and 

subscribers to a topic. The ROS environment also creates asynchronous data distribution 

which does not interfere with any other transmission by other sensors or during the data 

processing, more importantly due to the fact that sample rates for all sensors are not the 

same. This environment will be outlined more in Chapter 4. 
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3.4.1 Data Processing Architecture and Structure 

All the designed algorithms work in numerical format in order to find the difference 

between two consecutive values. Therefore, if qualitative evidence is to be used along with 

the other sources, that needs to be digitized to count as a source. 

According to the case study used in this research, data is transferred to the Simulink 

platform as a tool for fusion purposes and storage (if set to store at all) as soon as they are 

received. Regarding the ROS topics applied, the following provides an overview of what 

topics the simulation model uses to collect the raw data from sensors. 

ROS Topics

GPS Lat, Lon, Alt IMU1 Acceleration IMU2 Acceleration GPS Magnetic Field Pixhawk Heading

Raw Data

Best Estimates

Fusion 
Algorithm

ROS Master Node
(roscore)

MAVROS Node
(Pixhawk&GPS Package)

Lidar Ranges

URG Node
(Lidar Package)

 

Figure 3-12 ROS nodes and topics applied in the research 
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ROS Master Node – This is the core part of implementing any other nodes. In other 

words, this node should be executed first so that other nodes can be configured to finally 

publish their topics. 

MAVROS Node – This node is a package which makes the relationship between the 

Pixhawk sensors and ROS environment possible. 

URG Node – This node provides the access to the data published by Lidar in ROS. 

ROS Topics – This includes all topics that are published by executed nodes in ROS. 

Here, it publishes the topics provided by “MAVROS Node” and “URG Node”. 

GPS Lat, Long, Alt – This topic obtains latitude, longitude, and altitude from the GPS 

sensor. This data is then converted to position values in x, y, and z axes. 

IMU1 Acceleration – This topic acquires the acceleration from the first accelerometer. 

This data is then converted to position values in x, y, and z axes. 

IMU2 Acceleration – This topic acquires the acceleration from the second 

accelerometer. This data is then converted to position values in x, y, and z axes. 

GPS Magnetic Field – This topic receives the magnetic fields in x, y, and z axes, and 

then enables us to convert them to heading angle value. 

Pixhawk Heading – This topic obtains the heading angle value from Pixhawk 

compass using the values from the Pixhawk built-in magnetometer. 

Lidar Ranges – This topic provides the ranges to the scanned objects. 

Raw Data – This shows the stream of data from the sensors. This sensor data can 

be subscribed to by any application using Simulink “Subscriber blocks”. 



38 

Fusion Algorithms – This implementation block refers to the fusion algorithm used to 

analyze the data ranging from noise reduction to filtering and evidence-based integration. 
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CHAPTER 4  

DATA ANALYSIS AND RESULTS 

This chapter shows the applicability of the previous chapters to better explain the 

model, its inputs, and outputs. Using measurement sensors, an appropriate software, 

regular Windows and Ubuntu platforms the experiments are implemented. All of the 

concepts and terminology explained in Chapter 3 are now combined to show their 

contribution to analyze the data. 

The first section of this chapter introduces the initial experimental setting. The second 

section shows a new experimental setting in a different environment in which more reliable 

outputs are drawn compared to the first experiment. The first experiment is described as 

follows. 

4.1 Software and Hardware Configurations 

The IMU sensors are calibrated using the Mission Planner software (version 1.3.62) 

on a Windows platform as shown below to ensure an appropriate accuracy in the area, 

specifically not to be largely affected by magnetic interference. 
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Figure 4-1 Sensor calibration process in Mission Planner software 

GPS, IMU1 and IMU2 data are read and subscribed to ROS, then published to 

Simulink and Matlab. A designed scenario for this research is moving on a predetermined 

path beside the UTA campus in an open area with a starting point at a latitude of 32.73441 

and a longitude of -97.12179. The sky was clear and the GPS sensor could get the required 

signals to determine the location. The required hardware for this research is configured as 

described below. 

Pixhawk – The Pixhawk was developed by an independent, open-hardware project 

to provide high-end autopilot hardware to the academic, hobby and industrial communities 

at low costs and high availability (Meier 2019). The sensors are connected and handled 

through this board. A Pixhawk contains two IMU`s. Each IMU has one gyroscope and one 

accelerometer (both measuring 3-axes). There is also one magnetometer and one 

barometer inside the Pixhawk. The next figure displays a Pixhawk. 
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Figure 4-2 Pixhawk (PX4) 

GPS – The U-Blox sensor (LEA-6H-0-002) is used for this study which includes both 

a GPS output and a magnetometer. This sensor is known for a 2-2.5m horizontal position 

accuracy, and a 9600 baud rate. Several tests in various fields show consistent results 

from this sensor. 

       

Figure 4-3 U-Blox GPS sensor 

4.2 Evidence-Based Data Fusion 

By simply averaging the outputs from all sensors the results can be noisy since one 

noisy sensor can distort good outputs from the others. Accordingly, different criteria are 

provided to evaluate the data streams from sensors as follows. Codes are provided in the 

Appendix. 

The deltas are all compared with each other to find out which deltas are closer to 

each other. This specifies their contribution. Summation of all these weights adds up to 1. 

At last, each weight is multiplied by its contributing sensor`s delta value. This is called the 

fused estimate at that particular time step. 
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4.3 Real-Time Data Collection In ROS 

A real-time data collection scenario is set up such that IMU2 transmits all noisy data 

so that the fusion algorithm can represent its capability to ignore that. Regarding the 

conversions from acceleration to velocity and displacement in IMU`s, customized filters are 

applied. Not properly filtering acceleration values produces drift in the computed velocity 

and displacement. Accelerometers are usually not able to record very low frequency 

signals. Drifting is more considerable when integrating acceleration and velocity; therefore, 

the main issue would be low or very low frequencies while noise is considered as a high 

frequency signal. Customized filters refer to a block or a structure to filter out a value based 

on a fact as discussed in section 3.2.3. 

Since the GPS sensor, IMUs, and digital compass are a part of the Pixhawk autopilot 

system, a software package called “MAVROS” was used with ROS to transfer data 

between the Pixhawk and Simulink. The implementation code and screenshots of both are 

displayed next. 

 

Figure 4-4 ROS start-up screen in a terminal on Ubuntu 
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Figure 4-5 MAVROS package start-up screen in a terminal on Ubuntu 

To obtain sensor data from the Pixhawk, subscriber blocks are created in each 

subsystem used in the Simulink model. A subscriber block is a gateway that can obtain 

sensor data and then the model can use that data. A subscriber block to get GPS 

coordinates is shown below. 

 

Figure 4-6 A representation of a subscriber block 

The subscriber blocks ask for data published by ROS topics. Data from GPS and 

IMUs are collected for 1.2 mins in a square area as indicated next. 
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Figure 4-7 Experiment 1 run 

The vehicle started from the bottom right corner of the image, at the intersection of 

UTA Blvd and Summit Ave, and traversed a square path to reach to its start point. Each 

edge of this area is around 150 m long. 

4.4 Results and Comparisons – Experiment 1 

This section discusses the results gained from the aforementioned fusion 

methodology as well as comparisons and comments which are provided as a conclusion. 

Results for each input of the navigation system including easting and northing positions 

(relative to true north), heading angle, and velocity are addressed separately. All codes are 

provided in Appendix. 

4.4.1 Easting Position 

Raw and truth outputs for the Easting (Y) position under normal conditions are shown 

in Figure 4-8. 
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Figure 4-8 Truth and raw values of all sensors for Easting (Y) axis – normal conditions 

As shown, the GPS values are closer to the truth and the IMU values are not perfectly 

reflecting the truth due to noise in IMU`s blocks. Figure 4-9 shows the fused values for the 

easting position. 

 

Figure 4-9 Fused, truth, & raw (averaged) values of Easting (Y) axis – normal conditions 
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Under normal conditions, fusion algorithm works fine and yields close estimates as 

raw (averaged) values. Subsequent to the discussion under normal conditions, a severe 

scenario will be addressed under noisy circumstances as follows. 

In this scenario the sensor outputs are overshadowed by environmental and 

destructive factors that cause drift and noise. In the defined scenario, IMU2 was given 

noisy signals with a mean of 5 meters and a variance of 10 meters as shown in figure 4-

10. That distorts the output but was ignored when the fusion methodology was applied. In 

conclusion, the researcher`s results improved the progressed displacement estimates. 

This included fixing data drifts and the noise of converted data The IMU2 noisy signal is 

displayed in Figure 4-10. 

 

Figure 4-10 Truth and raw values of all sensors for Easting (Y) axis – IMU2 noisy 

In figure 4-11, the raw data from all three sensors were averaged to combine all 

outputs together. It can clearly be seen that the raw data from GPS, IMU1, and the IMU2 

noisy data cannot estimate a true output. This indicates that the averaging method failed 
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to display what occurred to the vehicle.  When the fusion methodology was applied, the 

artificially noisy values from IMU2 were heavily discounted by the algorithm. In conclusion, 

the proposed data fusion method improved the displacement estimates. This included 

fixing data drifts and the errors inserted by the IMU2 noisy signals. 

 

Figure 4-11 Fused, truth, & raw (averaged) values of Easting (Y) axis – IMU2 noisy 

It can clearly be seen that the raw data from GPS, IMU1, and IMU2 noisy data cannot 

estimate a true output. Raw data from all three sensors were averaged to combine all 

outputs together. However, averaging method failed to display what occurred to the 

vehicle. 

4.4.2 Northing Position 

Raw and truth outputs for the Northing (X) position under normal conditions are 

shown in the next figure. 
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Figure 4-12 Truth & raw values of all sensors for Northing (X) axis – normal conditions 

As shown, GPS is closer to the truth and IMU`s values do not perfectly reflect the 

truth values due to noise in the IMU`s data processing blocks. The next figure shows the 

fused values of the northing position. 

 

Figure 4-13 Fused, truth, & raw (averaged) values of Northing (X) axis – normal conditions 
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Under normal conditions, the fusion algorithm works fine and yields similar estimates 

when compared to the raw (averaged) values. Subsequent to the discussion under normal 

conditions, a severe scenario will be addressed under noisy circumstances as follows. 

In many situations in which sensor outputs are overshadowed by environmental and 

destructive factors that cause drift or noise, obtaining stable estimates can be better 

achieved using the algorithm discussed above. 

This can be demonstrated by defining a scenario where the IMU2 sensor is again 

assigned noisy signals with a mean of 5 meters and a variance of 10 meters (figure 4-14). 

 

Figure 4-14 Truth and raw values of all sensors for Northing (X) axis – IMU2 noisy 

Raw data from all three sensors were averaged to combine all outputs together. 

However, the averaging method failed to display what occurred to the vehicle. Once again, 

it can clearly be seen that the raw data from the GPS and IMU1 when combined with the 

noisy IMU2 data cannot estimate a true output (figure 4-15). 
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Figure 4-15 Fused, truth, & raw (averaged) values of Northing (X) axis – IMU2 noisy 

When the proposed fusion method was applied, the noisy signal values attributed to 

IMU2 were again heavily discounted.  As a result, more robust displacement estimates 

were obtained. This included adjusting data drifts and the noise of converted data (figure 

4-15). 

4.4.3 Heading Angle 

To calculate the Heading Angle, Pixhawk internal magnetometer, GPS internal 

magnetometer, and converted latitude and longitude from the GPS have been utilized. Raw 

and truth outputs for the heading angle under normal conditions are shown in the next 

figure. 
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Figure 4-16 Truth and raw values of all sensors for Heading Angle – normal conditions 

Under normal conditions, the fusion algorithm generates closer estimates than the 

raw (averaged) values (figure 4-17).  We again simulated the condition where corrupted 

sensor values were introduced into the system.  
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Figure 4-17 Fused, truth, & raw (averaged) values of Heading Angle – normal conditions 

In many situations in which sensor outputs are overshadowed by environmental and 

destructive factors that cause drift or noise, obtaining stable estimates can be better 

handled using the proposed fusion algorithm. In the defined scenario, Heading Angle from 

“GPS LatLon” source contained noisy signals with a mean of 5 degrees and a variance of 

10 degrees. That could distort the output but was ignored when the fusion methodology 

was applied. Hence, more robust displacement estimates were achieved. This included 

adjusting data drifts and the noise of converted data. The GPS noisy signal is displayed in 

the figure 4-18. 
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Figure 4-18 Truth and raw values of all sensors for Heading Angle – GPS (latlon converted) noisy 

With noisy data from GPS (latlon converted) next figure describes the calculations of 

the algorithm. 

 

Figure 4-19 Fused, truth, & raw (averaged) values of Heading Angle – GPS (latlon converted) noisy 
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It can clearly be seen that the raw data from Pixhawk`s magnetometer, GPS 

magnetometer, and GPS (latlon converted) noisy data cannot estimate a true output. Raw 

data from all three sensors were averaged to combine all outputs together. However, the 

averaging method failed to display what occurred to the vehicle. 

4.4.4 Velocity 

The raw and the truth outputs for the Velocity under normal conditions are shown in 

figure 4-20. 

 

Figure 4-20 Truth and raw values of all sensors for Velocity – normal conditions 

As shown, the IMU`s values are closer to the truth and the GPS values do not 

perfectly reflect the truth due to the use of the state-space blocks to take the derivatives of 

the position values for GPS (converted). The GPS satellite also yielded unreliable data as 

it was not expected to output reliable values. Figure 4-21 shows the fused values of 

velocity. 
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Figure 4-21 Fused, truth, & raw (averaged) values of Velocity – normal conditions 

Under normal conditions, the fusion algorithm produces estimates that are similar to 

the averaged raw values. Subsequent to the discussion under normal conditions, a severe 

scenario will be described under noisy circumstances as follows. 

In many situations in which sensor outputs are overshadowed by environmental and 

destructive factors that cause drift or noise, obtaining stable estimates can be better 

handled using the algorithm discussed above. In the defined scenario, IMU2 contained 

noisy signals with a mean of 5 and a variance of 10 that could distort the output but was 

ignored when the fusion methodology was applied. Hence, more robust displacement 

estimates were achieved. This included adjusting for data drifts and the noise of converted 

data. The IMU2 noisy signal is displayed in the next figure. 
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Figure 4-22 Truth and raw values of all sensors for Velocity – IMU2 noisy 

With noisy data from IMU2 the next figure shows how the algorithm works. 

 

Figure 4-23 Fused, truth, & raw (averaged) values of Velocity– IMU2 noisy 

It can clearly be seen that the raw data from GPS (converted), GPS (satellite), IMU1, 

and IMU2 noisy data cannot estimate a true output. The raw data from all four sensors 
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were averaged to combine all outputs together. However, the averaging method failed to 

display what happened to the vehicle. In this scenario not only did the IMU2 sensor 

readings contain noise but GPS (satellite) yielded such distorted data that it was basically 

considered as noise. Under these conditions with multiple sources of poor data, the 

estimates generated by the fusion algorithm provided better estimates than the averaged 

values. 

4.5 Results and Comparisons – Experiment 2 

This experiment uses additional sensors to avoid failure modes occurring from the 

same sensors which happened in the first experiment. The sensors include: Pixhawk 

(fused values), magnetometer (raw magnetic fields), GPS, and Lidar. The purpose of 

implementing a new experiment is to monitor the outcome of the fusion when additional 

sensors are applied, and an environmental noise factor causes a sensor to generate false 

outputs or data is missing. The experiments were conducted on the fourth floor of Woolf 

Hall on the UTA Campus in an area where air handling equipment produce significant 

distortions to the earth’s magnetic fields.   This electromagnetic noise adversely affects the 

outputs of several of the sensors commonly found on inexpensive mobile platforms.  This 

was particularly the case for the magnetometers used in the specific experiments described 

in this work.  The test area for these experiments, which consisted of a 14-meter straight 

path down a hallway directly past the air handling equipment, was intentionally selected. 

In addition to this electromagnetic interference, sensors may still fail, or have missing 

values, at times due to reasons such as internal error. The experimental run is shown in 

figure 4-24. 
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Figure 4-24 Experiment 2 run 

Five scenarios are considered in this experiment. Each scenario follows the structure 

of previous experiment which consists of monitoring the fused estimates on Easting, 

Northing, Heading, and Velocity. They are also simulated using the GNC block described 

in section 3.2.3. Sensors used in each dimension are indicated below. 

Easting and Northing contributing sensors: IMU1 (converted position from acceleration), 

IMU2 (converted position from acceleration), GPS (converted position from latitude and 

longitude), and Lidar (converted position from ranges and angles). 

Heading contributing sensors: Fused heading from the Pixhawk (from two internal IMUs), 

Lidar, Gyro, IMU1 magnetometer(raw), IMU2 magnetometer(raw), and GPS 

magnetometer(raw). 
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Velocity contributing sensors: GPS (converted velocity from latitude and longitude), GPS 

(direct velocity from satellites), IMU1 (converted velocity from acceleration), IMU2 

(converted position from acceleration), and Lidar (converted velocity from ranges and 

angles). 

The following clarifies possible misunderstandings/discrepancies in the figures subsequent 

to these notes. 

• It is possible that one type of data from one sensor contributes more/less often 

than another type of converted data from the same sensor. An example of this may 

be seen in the Easting and Northing displacements from the IMU1 sensor. While 

IMU1 may contribute low/high in Easting, it may contribute differently in Northing. 

Although a sensor (such as IMU1) may have noisy data, how that data aligns with 

other sensors is the fundamental fact for which the weight is assigned. 

• Easting and Northing values gained from IMU1 and IMU2 depend on the fused 

heading in each scenario as explained in section 3.2.3. This is why their values 

may be different from one scenario to another. 

• The average value is shown in all scenarios for comparison purposes and remains 

the same. This signifies that the average signal in each scenario shows the 

average of all values presented in Scenario 0. 

• In order to simulate the results in the GNC block, Heading values are converted to 

radians. Heading values shown in all scenarios are in degrees for better 

understanding but they are converted to radians (multiplied by Pi/180) when used 

in the Simulink environment. This is for consistency purposes (GNC with other 

parts) in Simulink and has no effect on the results. 
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4.5.1 Scenario 0 - Average 

This scenario simply uses the average of raw values from all sensors. There is no 

fusion or algorithm happening in this scenario. Each sensor contributes individually. 

Scenario 0 intends to show what occurs when all inputs are combined without intelligence.  

Figure 4-25 shows Easting displacement. 

 

Figure 4-25 Easting displacement – Scenario 0 

To better illustrate the graph, a scaled Easting plot is shown below. 



61 

 

Figure 4-26 Scaled Easting displacement – Scenario 0 

In Easting displacement, the average value of all sensors shows 5m movement 

toward west. However, the expected traversed distance by the vehicle is almost zero. 

Figure 4-27 shows Northing displacement. 

 

Figure 4-27 Northing displacement – Scenario 0 
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In Northing displacement, the average value of all sensors shows 15.5m movement 

toward north. However, the expected traversed distance by the vehicle is almost 14m. 

Figure 4-28 shows Heading Angle. 

 

Figure 4-28 Heading angle – Scenario 0 

To better illustrate Gyro`s values, a scaled Heading plot is shown next. 
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Figure 4-29 Scaled Heading angle – Scenario 0 

In Heading Angle, the average value of all sensors shows a total range of 9 degrees 

in the entire run including many fluctuations. 

Figure 4-30 shows Velocity. 

 

Figure 4-30 Velocity – Scenario 0 
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To better illustrate the previous graph, a scaled Velocity plot is shown below. 

 

Figure 4-31 Scaled Velocity – Scenario 0 

In Velocity, the average value of all sensors shows fluctuating values. However, it is 

expected that the velocity would be more constant. 
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Figure 4-32 Animated traversed path – Scenario 0 

As the figures in scenario 0 show, using the average of all sensors leads to the wrong 

traversing path by the vehicle. The planned path using only the obtained Easting and 

Northing displacements, and Velocity is shown as a red dotted line in figure 4-32. The 

traversed path using the modified Easting and Northing displacements, Heading angle, 

and Velocity is shown as a solid blue line in figure 4-32. The traversed path applies 

modifications to the values for Easting and Northing displacements, Heading angle, and 

Velocity simultaneously in order for the GNC block to direct the vehicle. 

Scenario 0 concluded that relying only on the raw sensor values and averaging with 

no intelligence results in incorrect outputs that are not reliable. Improvements to this 

scenario will be discussed in the next scenarios. 
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4.5.2 Scenario 1 – Fusion Algorithm Added 

This scenario shows the effect of including the proposed fusion algorithm. All sensors 

contribute individually and no integration of the sensors occurs yet. Adding the fusion 

algorithm is a considerable step toward more stable and robust output. 

By allowing each sensor to vote individually, this scenario also intends to show how 

this can impact the fused estimates when sensors with the same failure modes behave 

incorrectly. 

Figure 4-33 shows Easting displacement weights. 

 

Figure 4-33 Easting weights – Scenario 1 

In the Easting weights, the IMUs provide the highest contribution among the sensors. 

This is due to their individual rights to vote which align with each other. In the next scenario, 
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where sensors with the same failure modes are grouped, their contribution will be 

diminished. 

Figure 4-34 shows Easting displacement. 

 

Figure 4-34 Easting displacement – Scenario 1 

To better illustrate the above graph, a scaled Easting plot is shown below. 

 

Figure 4-35 Scaled Easting displacement – Scenario 1 
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In Easting, the fused value of all sensors shows close to zero movement which is 

desirable. 

Figure 4-36 shows Northing displacement weights. 

 

Figure 4-36 Northing weights – Scenario 1 

In the Northing weights, the IMUs provide the highest contribution among the 

sensors. This is due to their individual rights to vote which align with each other. Starting 

from almost the middle of the run, their contribution decreases since their values start 

deviating. This fact is shown in the next figure. 

 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

Pe
rc

en
ta

ge

Time (mSec)

Northing weights

IMU1 IMU2 GPS Lidar



69 

Figure 4-37 shows Northing displacement. 

 

Figure 4-37 Northing displacement – Scenario 1 

In Northing, the fused value of all the sensors shows 14.34m movement which is 

desirable. However, it displays a concave shape in the middle of the run caused by the 

influence of the IMU1 and IMU2 values. 
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Figure 4-38 shows Heading weights. 

 

Figure 4-38 Heading weights – Scenario 1 

In Heading weights, all sensors are contributing randomly and there is no 

predominant sensor. 
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Figure 4-39 shows Heading Angle. 

 

Figure 4-39 Heading angle – Scenario 1 

In Heading, the fused value of all sensors shows a range of 7 degrees, performing 

better than the average. 
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Figure 4-40 shows Velocity weights. 

 

Figure 4-40 Velocity weights – Scenario 1 

In Velocity weights, the IMUs and Lidar have almost the same contribution which sum 

up to 75%. The rest is randomly distributed between the GPS(converted) and 

GPS(satellite) values. 
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Figure 4-41 shows Velocity. 

 

Figure 4-41 Velocity – Scenario 1 

To better illustrate the above graph, a scaled Velocity plot is shown below. 

 

Figure 4-42 Scaled Velocity – Scenario 1 
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At 11.7 seconds the fused velocity starts generating negative values. The difference 

(delta) values and the corresponding weights in that moment are shown below. 

Table 4-1 Justification of Velocity in Scenario 1 
 GPS (Converted) GPS (Satellite) IMU1 IMU2 Lidar 

Delta Value -0.289 -0.6056 0 0 -0.0012 
Weight 0.2028 0.047 0.2497 0.2497 0.25 

 
Multiplying the delta values by their corresponding weights and adding all of them 

together concludes -0.0877 as the fused estimate at this time step. This happens due to 

the fact that the first two sensors (velocity from converted latitude-longitude of the GPS, 

and direct velocity from GPS satellites) have the right to vote independently. Since none of 

them obtained an appropriate estimate in this time step (and the time steps after) they are 

contributing remarkably high and deviate the results. The IMU sensors are also impacting 

the fused value by having independent voting rights. The next scenario will show how 

grouping the same sensors (with the same failure modes) diminishes deviating impacts. 
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Figure 4-43 Animated traversed path – Scenario 1 

As the figures in scenario 1 show, the fused value leads to a better traversing path 

by the vehicle. The planned path using only the obtained Easting and Northing 

displacements, and Velocity is shown as a red dotted line in figure 4-43. The traversed 

path using the modified Easting and Northing displacements, Heading angle, and Velocity 

is shown as a solid blue line in figure 4-43. The traversed path applies modifications to the 

values for Easting and Northing displacements, Heading angle, and Velocity 

simultaneously in order for the GNC block to direct the vehicle. 

Scenario 1 concluded that including a smart fusion algorithm can perform remarkably 

better compared to when raw values are merely averaged. However, it showed that 
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allowing the sensors with the same failure modes, such as IMU1 and IMU2, to contribute 

individually can deviate the results which requires attention. Scenario 2 will deal with this 

issue. 

4.5.3 Scenario 2 – Grouping The Same-Class Sensors 

The previous scenario allowed for all sensors to be considered individually. This 

scenario is designed to show how grouping the sensors with the same failure modes, such 

as IMU1 and IMU2, can impact the fused estimates. Sensors that are in a group have 1/n 

right to vote where n is the number of sensors in that particular group. This grouping 

strategy is used for the rest of the scenarios starting from this scenario. 

Easting combines IMU1 and IMU2 as one group. They are simply averaged and one 

value (the average of IMUs) participates in the fusion process. 

Figure 4-44 shows Easting weights. 

 

Figure 4-44 Easting weights – Scenario 2 
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In Easting weights, most of the weights are distributed to the IMUs and Lidar. The 

GPS does not contribute remarkably since the values are not aligned with the other 

sensors. 

Figure 4-45 shows Easting displacement. 

 

Figure 4-45 Easting displacement – Scenario 2 

To better illustrate the above graph, a scaled Easting plot is shown below. 

 

Figure 4-46 Scaled Easting displacement – Scenario 2 
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In Easting, the fused value of all sensors shows close to zero movement which is 

desirable. 

Northing combines IMU1 and IMU2 as one group. They are simply averaged and one 

value (the average of the IMUs) participates in the fusion process. 

Figure 4-47 shows Northing weights. 

 

Figure 4-47 Northing weights – Scenario 2 

In the Northing weights, 50% of the weights are allocated to the IMUs mostly by the 

middle of the run. The GPS and Lidar contribute randomly in different time steps. 
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Figure 4-48 shows Northing displacement. 

 

Figure 4-48 Northing displacement – Scenario 2 

In Northing, considering the same-class sensors (IMU1 and IMU2) in one group 

decreases the fused Northing estimate to 13.41m, which is slightly lower than the previous 

scenario. The concavity of the fused values is also diminished remarkably. 

Figure 4-49 shows Heading weights. The Heading weights in this scenario combine 

the IMU1 magnetometer, IMU2 magnetometer, and GPS magnetometer into one group. 

They are simply averaged and one value (the average of the Magnetometers) participates 

in the fusion process. 
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Figure 4-49 Heading weights – Scenario 2 

In the Heading weights, Pixhawk contributes almost 30% most of the time. The rest 

is distributed randomly among the other sensors. 
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Figure 4-50 shows Heading Angle. 

 

Figure 4-50 Heading angle – Scenario 2 

By comparing the heading in this scenario with the fused estimate in the previous 

scenario it can clearly be seen that grouping sensors with similar failure modes decreases 

the fluctuations and causes the estimate to be less sensitive to the shifts with a total range 

of 4 degrees. 

Figure 4-51 shows Velocity weights. The Velocity weights in this scenario combine 

the IMU1 and IMU2 sensor readings into one group, and GPS (converted velocity from 

position) and GPS (direct velocity from satellites) sensor values from another group. They 

are simply averaged and one value (the average of the IMUs and the average of the GPSs) 

participates in the fusion process. 
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Figure 4-51 Velocity weights – Scenario 2 

In the Velocity weights, nearly all of the weights are dedicated to the IMUs and Lidar. 

The GPS values are merely given close to 5% in the entire run. Contrary to the previous 

scenario, the Velocity estimates are mostly influenced by the IMUs and Lidar values in this 

scenario. 
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Figure 4-52 shows Velocity. 

 

Figure 4-52 Velocity – Scenario 2 

In Velocity, grouping sensors with the same failure modes led to a rational fused 

estimate compared to the previous scenario. 
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Figure 4-53 Animated traversed path – Scenario 2 

As the figures in scenario 2 show, the fused value leads to a better traversing path 

by the vehicle. The planned path using only the obtained Easting and Northing 

displacements, and Velocity is shown as a red dotted line in figure 4-53. The traversed 

path using the modified Easting and Northing displacements, Heading angle, and Velocity 

is shown as a solid blue line in figure 4-53. The traversed path applies modifications to the 

values for Easting and Northing displacements, Heading angle, and Velocity 

simultaneously in order for the GNC block to direct the vehicle. 

Scenario 2 concluded that grouping the sensors with the same failure modes is a 

compelling rule to apply to the sensor weights in order to generate less distorted outputs. 

This rule is retained for scenarios 3 and 4. 
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4.5.4 Scenario 3 – System Model Added 

This scenario adds another input to the set of sensors, called the System Model, 

which is calculated to be the closest estimation of what was commanded to the vehicle. 

Considering a known and expected path for the vehicle to traverse, this System Model acts 

as an additional virtual sensor to the set of sensors with a separate and individual right to 

vote in the fusion process. This scenario performs as a transition mode from Scenario 2 to 

Scenario 4 in which a System Model is introduced as a guide but its weight will later be 

removed. 

Figure 4-54 shows Easting weights. 

 

Figure 4-54 Easting weights – Scenario 3 

In the Easting weights, the weights are mostly allocated to the IMUs, Lidar, and 

System Model. A small proportion is also devoted to GPS at times. Due to the fact that the 
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System Model, IMUs, and Lidar have closer values to each other, this led the three sensors 

to contribute almost equally. The GPS does not have close values to the other sensors and 

that is why the GPS is given trivial weights. The next figure shows Easting displacement. 

 

Figure 4-55 Easting displacement – Scenario 3 

To better illustrate the above graph, a scaled Easting plot is shown below. 

 

Figure 4-56 Scaled Easting displacement – Scenario 3 

In Easting, the fused value of all sensors shows close to zero movement which is 

desirable. 
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Figure 4-57 shows Northing weights. 

 

Figure 4-57 Northing weights – Scenario 3 

In the Northing weights, although Lidar is a reliable sensor it is not given significant 

weights in the entire run. This implies that delta values from Lidar did not agree remarkably 

to that of the other sensors. 
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Figure 4-58 shows Northing displacement. 

 

Figure 4-58 Northing displacement – Scenario 3 

In the Northing displacement, the fused value of all the sensors shows a 13.64m 

movement which is desirable. 
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Figure 4-59 shows Heading weights. 

 

Figure 4-59 Heading weights – Scenario 3 

In the Heading weights, the System Model and Pixhawk are allocated consistent 

percentage weights over the entire run. Other sensors contribute distinctly in different time 

steps. 
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Figure 4-60 shows Heading Angle. 

 

Figure 4-60 Heading angle – Scenario 3 

In the Heading Angle, the fused value of all the sensors shows a total range of 3 

degrees in the heading values. This demonstrates an increased performance compared to 

the previous scenarios. 
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Figure 4-61 shows Velocity weights. 

 

Figure 4-61 Velocity weights – Scenario 3 

In the Velocity weights, the IMUs, Lidar, and System Model are all given almost the 

same weights of 30% over the entire run. However, the GPSs have trivial weights. 
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Next figure shows Velocity. 

 

Figure 4-62 Velocity – Scenario 3 

In Velocity, adding System Model to Velocity decreased the variation slightly 

compared to the previous scenario. 
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Figure 4-63 Animated traversed path – Scenario 3 

As the figures in scenario 3 show, the fused value leads to a better traversing path 

by the vehicle. The planned path using only the obtained Easting and Northing 

displacements, and Velocity is shown as a red dotted line in figure 4-63. The traversed 

path using the modified Easting and Northing displacements, Heading angle, and Velocity 

is shown as a solid blue line in figure 4-63. The traversed path applies modifications to the 

values for Easting and Northing displacements, Heading angle, and Velocity 

simultaneously in order for the GNC block to direct the vehicle. 

Scenario 3 concluded that adding the System Model as an additional sensor helped 

decrease the fluctuations. It also allowed for closer estimates to expected values. This 

scenario is a transition state for the next scenario where the System Model will be present 

for voting purposes but holds zero weight. 
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4.5.5 Scenario 4 – System Model`s Weight Removed 

This scenario removes the weight from System Model introduced in the previous 

scenario, although it exists as guidance for other sensors. The intention is to use piece of 

data but to assign zero weight to it so that we do not deviate the output toward the System 

Model. 

Figure 4-64 shows Easting weights. 

 

Figure 4-64 Easting weights – Scenario 4 

In the Easting weights, Lidar and IMUs are allocated most of the weights. By 

removing the weight from the System Model in this scenario Easting weight shows close 

results to Scenario 2. 
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Figure 4-65 shows Easting displacement. 

 

Figure 4-65 Easting displacement – Scenario 4 

To better illustrate the above graph, a scaled Easting plot is shown below. 

 

Figure 4-66 Scaled Easting displacement – Scenario 4 

In Easting displacement, removing the weight from the System Model did not cause 

the fused estimate a considerable change compared to scenarios 2 and 3. 
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Figure 4-67 shows Northing weights. 

 

Figure 4-67 Northing weights – Scenario 4 

In the Northing weights, the GPS and IMUs are allocated considerable weights. 

Although Lidar is a reliable sensor in this study, due to not having close delta values to 

other sensors it is dedicated less weights than the other sensors. 
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Figure 4-68 shows Northing displacement. 

 

Figure 4-68 Northing displacement – Scenario 4 

In Northing displacement, the fused value of all the sensors shows a 13.54m 

movement which is desirable and slightly lower than the previous scenario. 
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Figure 4-69 shows Heading weights. 

 

Figure 4-69 Heading weights – Scenario 4 

In Heading weights, the Pixhawk contributes over 30% and other sensors contribute 

distinctly in different time steps. 
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Figure 4-70 shows Heading Angle. 

 

Figure 4-70 Heading angle – Scenario 4 

In Heading Angle, the fused value of all sensors shows a total range of 4 degrees. 
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Figure 4-71 shows Velocity weights. 

 

Figure 4-71 Velocity weights – Scenario 4 

In Velocity weights, the IMUs and Lidar are allocated most of the weight. Grouping 

GPS sensors caused them to receive a small portion of weight. The next figure shows 

Velocity. 

 

Figure 4-72 Velocity – Scenario 4 
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In Velocity, results show close outputs to scenarios 2 and 3. 

 

Figure 4-73 Animated traversed path – Scenario 4 

As the figures in scenario 4 show, the fused value leads to a desirable traversing 

path by the vehicle. The planned path using only the obtained Easting and Northing 

displacements, and Velocity is shown as a red dotted line in figure 4-73. The traversed 

path using the modified Easting and Northing displacements, Heading angle, and Velocity 

is shown as a solid blue line in figure 4-73. The traversed path applies modifications to the 

values for Easting and Northing displacements, Heading angle, and Velocity 

simultaneously in order for the GNC block to direct the vehicle. 
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Scenario 4 generates similar results to Scenario 3 where a System Model is added 

but its weight is removed. Scenario 3 was introduced as a transition stage to this scenario, 

meaning that Scenario 4 is more valid since the System Model is given zero weight.
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4.6 Performance Overview – Average and Fusion Scenarios 

To better understand the differences/improvements in each scenario, all of them are included in separate sheets for each 

dimension. Weights are also included for a greater realization on how the scenarios function. Scenario 0 (average) does not include 

figures for weights. The most important tables are shown in what follows and the remaining tables are presented in the Appendix. 

According to the results from the four fusion scenarios, including “System Model” may improve the performance. In the 

following tables where all figures are presented simultaneously, this fact is easier to see. The corresponding weight tables in 

Appendix also confirm this. A primary conclusion is that grouping the sensors with the same failure modes, and adding a System 

Model signal while using the proposed fusion algorithm shows reliable results. 
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Table 4-2 Easting displacement for all scenarios 
Scenario Easting Displacement Figures Scenario Easting Displacement Figures 

0 

 

1 

 

2 

 

3 

 

4 

 

 

As shown in Table 4-2, including the fusion algorithm and System Model concludes a closer estimate to expected movement 

of zero meters for Easting. The Easting weights are presented in the Appendix. 
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Table 4-3 Northing displacement for all scenarios 
Scenario Northing Displacement Figures Scenario Northing Displacement Figures 

0 

 

1 

 

2 

 

3 

 

4 

 

 

As shown in Table 4-3, including the fusion algorithm and System Model provides a closer estimate to the expected 

movement of 14 meters for Northing. The Northing weights are presented in the Appendix. 
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Table 4-4 Heading angle for all scenarios 
Scenario Heading Angle Figures Scenario Heading Angle Figures 

0 

 

1 

 

2 

 

3 

 

4 

 

 

As shown in Table 4-4, including the fusion algorithm and System Model produces a closer estimate to the expected range 

of approximately 0 degrees for Heading. Heading weights are presented in the Appendix. 
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Table 4-5 Velocity for all scenarios 
Scenario Velocity Figures Scenario Velocity Figures 

0 

 

1 

 

2 

 

3 

 

4 

 

 

As shown in Table 4-5, including the fusion algorithm and considering sensors in groups produces a closer estimate to the 

expected range of 0.46 meters/sec movement for Velocity. The Velocity weights are presented in the Appendix. 
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 The following figures show the fusion results. They do not present raw values, as shown in the discussed scenarios, for better 

concluding remarks and comparisons. 

 

Figure 4-74 Easting fusion results 

To better understand the details, a scaled Easting plot is shown next. 
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Figure 4-75 Easting fusion results – Scaled 

Adding the fusion algorithm in Scenario 1 improved the Easting estimate remarkably. When sensors with the same failure 

modes are grouped in Scenario 2, the results show less variability and larger range of change. In addition, adding a System Model 

in Scenarios 3-4 leads to lower variability and better outcomes compared to Scenario 2. 
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Figure 4-76 Northing fusion results 

The scenarios show a close pattern to each other for Northing. However, starting at 23 seconds Scenario 0 (simple average) 

includes a steeper slope than other scenarios and concludes a total movement of 16 meters. All other scenarios agree with the 

movement at a range of 14 meters. In addition, less concavity is represented starting from Scenario 1. 
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Figure 4-77 Heading fusion results 

Adding the fusion algorithm in Scenario 1 improved the Heading estimates. When sensors with the same failure modes are 

grouped in Scenario 2, the results show less variability and range of change. In addition, adding a System Model in Scenarios 3-4 

leads to slightly better outcomes compared to Scenario 2. 
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Figure 4-78 Velocity fusion results 

Scenario 1 in Velocity fails to output valid estimates. As explained in section 4.5.2, receiving incorrect values from several 

sensors leads to wrong estimation. However, starting from Scenario 2 the estimated velocity indicates feasible outputs as sensors 

with the same failure modes are grouped.
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

This chapter briefly expresses the achievements throughout the entire research and 

a few points in regards to the future work. 

5.1 Concluding Remarks 

This research designed an integrated system to implement dynamic sensor fusion 

using a set of homogeneous and heterogeneous sensors in a navigational framework. It 

was discussed and implemented such that it would be extendable to other applications as 

well where sources of evidence and noise exist. The adaptive concept was proposed which 

implied that sensors were contributing after they are compared to each other as well as 

sources of evidence which led to a more reliable way of fusing. The measuring parameters 

to accomplish the experimental components included the followings: 

• Easting estimated position using GPS, IMU, and Lidar sensors, 

• Northing estimated position using GPS, IMU, and Lidar sensors, 

• Heading angle using GPS, IMU, digital compass, and Lidar sensors, 

• Velocity using GPS, IMU, and Lidar sensors. 

Direct and converted values from sensors were utilized where required. This allowed 

for additional sources of evidence that each sensor`s output could be reviewed to ensure 

reliable contribution from every sensor.  

An argument on how good the discussed algorithm is and how it works includes the 

fact that there might be several facts or pieces of evidence for any application which can 

be helpful to reduce the limitations of the decision-making process. This information could 
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be the kinematics of the system or other relevant/recorded data. The significance is that 

they should be transformed from concept, theory or fact to comprehensible, easily-

readable, and mathematical outputs. This data extraction also requires an appropriate 

understanding of the system and subsystems characteristics. In other words, one should 

study and understand the system with which they are working to be able to access how 

well it can operate under different situations. 

Furthermore, this pre-processing filter controls the inputs and does the fusion 

operation subsequently. Even for a well-known fusion algorithm such as Kalman filter, the 

data is inputted without prior cleaning. Kalman filter also assumes Gaussian sensor errors 

but this study avoided the assumption regarding sensor errors distribution. The strategy 

presented in this research includes less complicated computations since limited outlying 

data can enter the system. 

The experiments showed that the averaging method can reflect sudden variations 

caused by the distorted data in only one sensor. However, the proposed fusion 

methodology generated a smoother trend and avoided sharp/sudden shifts. 

After implementing a second experimental run under the new environment, the 

results showed that when a group of sensors with the same failure modes are applied, they 

need to be grouped and not treated individually. Considering them separately creates a 

bias for a higher voting permission. This occurred in the first experimental run. The second 

experiment, however, applied several improvements. 

5.2 Future Work 

Adding more and diverse sources (sensors) according to the user`s knowledge may 

improve the decision-making process under more complicated and severe circumstances. 
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This diversity needs relevant sources according to the application based on the user`s 

selection.  In the navigational framework, dead-reckoning support can also be considered 

in which encoders provide estimation on the travelled distance. 

This research is applying the slowest sensor (GPS – 5 hz) as the leading sensor to 

determine the data collection frequency. Faster sensors such as an IMU (with a frequency 

of 1000 hz – 1000 data points in each second) only send in the data at a rate of the slowest 

sensor to match timing. This means that a considerable amount of the data from faster 

sensors is not being used. As an example, while GPS can send only two data points at 

times 0 and 0.2 (frequency of 5 hz, which means one data point every 0.2 of a second), 

IMU can send additional data points between times 0 and 0.2. IMU has a frequency of 1000 

hz meaning that it can send one data point every 0.001 of a second which is remarkably 

faster than the GPS. However, this research picks data from IMU only at time steps that 

GPS has a new data point available (every 0.2 of a second; times 0, 0.2, 0.4, 0.6, ...). One 

may try to include all of the data from faster sensors (IMU in this application) to increase 

accuracy and robustness. 

The algorithm applied in this research is extendable. It uses delta values as a basis 

for comparisons and weight assignment. Conducting comparisons and allocating weights 

can be done for actual values as well. In addition, combining the two mentioned strategies 

may lead to increased improvement which can be further examined in future work. 
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APPENDIX 

Difference Between Two Consecutive Data 

function [x1,u3]= fcn(u1,u2) 
u3=u1; 

x1=u1-u2; 

Fusion Algorithm – Easting Displacement 

function [d,I,Flag,Estimate,W1,W2,W3,W4,P1,P2,P3,P4,P5,P6] = fcn(I1,I2,I3,I4) 
%% Missing data %% 
% This code shows if a piece of data in a particular period is missing, 
% replace that by a big number so that it is actually removed 
% from calculations 
if isempty(abs(I1(1))) 
    I1 = 1000; 
end 
if isempty(abs(I2(1))) 
    I2 = 1000; 
end 
if isempty(abs(I3(1))) 
    I3 = 1000; 
end 
if isempty(abs(I4(1))) 
    I4 = 1000; 
end 
%% 
% Finding the distances between the nodes (sensors) 
d1 = max(I1(1),I2(1))-min(I1(1),I2(1)); d2 = max(I1(1),I3(1))-min(I1(1),I3(1)); 
d3 = max(I2(1),I3(1))-min(I2(1),I3(1)); d4 = max(I3(1),I4(1))-min(I3(1),I4(1)); 
d5 = max(I2(1),I4(1))-min(I2(1),I4(1)); d6 = max(I4(1),I1(1))-min(I4(1),I1(1)); 
% Finding the furthest distance 
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u = max([d1,d2,d3,d4,d5,d6]); 
% Giving the furthest edge(s) the lowest weights and the closest the highest 
P1 = 1-(d1/u); P2 = 1-(d2/u); P3 = 1-(d3/u); P4 = 1-(d4/u); P5 = 1-(d5/u); P6 = 1-(d6/u); 
% Normalizing the weights 
P = (P1+P2+P3+P4+P5+P6); 
N1 = P1/(P); N2 = P2/(P); N3 = P3/(P); N4 = P4/(P); N5 = P5/(P); N6 = P6/(P); 
% Assigning each node (sensor) a portion of its neighbors` weights 
W1 = sum(N1+N2+N6)/2; W2 = sum(N1+N3+N5)/2; 
W3 = sum(N2+N3+N4)/2; W4 = sum(N4+N5+N6)/2; 
%% 
W = W1+W2+W3+W4; 
W1 = W1/W; W2 = W2/W; W3 = W3/W; W4 = W4/W; 
Estimate = W1*I1(1)+W2*I2(1)+W3*I3(1)+W4*I4(1); 
Flag = 1; 
%% 
I = [I1(1) I2(1) I3(1) I4(1)]; 
d = [d1 d2 d3 d4 d5 d6]; 

Fusion Algorithm – Northing Displacement 

function [d,I,Flag,Estimate,W1,W2,W3,W4,P1,P2,P3,P4,P5,P6] = fcn(I1,I2,I3,I4) 
%% Missing data %% 
% This code shows if a piece of data in a particular period is missing, 
% replace that by a big number so that it is actually removed 
% from calculations 
if isempty(abs(I1(1))) 
    I1 = 1000; 
end 
if isempty(abs(I2(1))) 
    I2 = 1000; 
end 
if isempty(abs(I3(1))) 
    I3 = 1000; 
end 
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if isempty(abs(I4(1))) 
    I4 = 1000; 
end 
%% 
% Finding the ditances between the nodes (sensors) 
d1 = max(I1(1),I2(1))-min(I1(1),I2(1)); d2 = max(I1(1),I3(1))-min(I1(1),I3(1)); 
d3 = max(I2(1),I3(1))-min(I2(1),I3(1)); d4 = max(I3(1),I4(1))-min(I3(1),I4(1)); 
d5 = max(I2(1),I4(1))-min(I2(1),I4(1)); d6 = max(I4(1),I1(1))-min(I4(1),I1(1)); 
% Finding the furthest distance 
u = max([d1,d2,d3,d4,d5,d6]); 
% Giving the furthest edge(s) the lowest weights and the closest the highest 
P1 = 1-(d1/u); P2 = 1-(d2/u); P3 = 1-(d3/u); P4 = 1-(d4/u); P5 = 1-(d5/u); P6 = 1-(d6/u); 
% Normalizing the weights 
P = (P1+P2+P3+P4+P5+P6); 
N1 = P1/(P); N2 = P2/(P); N3 = P3/(P); N4 = P4/(P); N5 = P5/(P); N6 = P6/(P); 
% Assigning each node (sensor) a portion of its neighbors` weights 
W1 = sum(N1+N2+N6)/2; W2 = sum(N1+N3+N5)/2; 
W3 = sum(N2+N3+N4)/2; W4 = sum(N4+N5+N6)/2; 
%% 
W = W1+W2+W3+W4; 
W1 = W1/W; W2 = W2/W; W3 = W3/W; W4 = W4/W; 
Estimate = W1*I1(1)+W2*I2(1)+W3*I3(1)+W4*I4(1); 
Flag = 1; 
%% 
I = [I1(1) I2(1) I3(1) I4(1)]; 

d = [d1 d2 d3 d4 d5 d6]; 

Fusion Algorithm – Heading Angle 

function [d,I,Flag,Estimate,W1,W2,W3,W4,W5,W6,... 

P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15] = fcn(I1,I2,I3,I4,I5,I6) 

%% Missing data %% 

% This code shows if a piece of data in a particular period is missing, 

% replace that by a big number so that it is actually removed 
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% from calculations 

if isempty(abs(I1(1))) 

    I1 = 1000; 

end 

if isempty(abs(I2(1))) 

    I2 = 1000; 

end 

if isempty(abs(I3(1))) 

    I3 = 1000; 

end 

if isempty(abs(I4(1))) 

    I4 = 1000; 

end 

if isempty(abs(I5(1))) 

    I5 = 1000; 

end 

if isempty(abs(I6(1))) 

    I6 = 1000; 

end 

%% 

% Finding the ditances between the nodes (sensors) 

d1 = max(I1(1),I2(1))-min(I1(1),I2(1)); d2 = max(I1(1),I3(1))-min(I1(1),I3(1)); 

d3 = max(I2(1),I3(1))-min(I2(1),I3(1)); d4 = max(I3(1),I4(1))-min(I3(1),I4(1)); 

d5 = max(I2(1),I4(1))-min(I2(1),I4(1)); d6 = max(I4(1),I1(1))-min(I4(1),I1(1)); 

d7 = max(I1(1),I5(1))-min(I1(1),I5(1)); d8 = max(I5(1),I2(1))-min(I5(1),I2(1)); 

d9 = max(I5(1),I4(1))-min(I5(1),I4(1)); d10 = max(I5(1),I3(1))-min(I5(1),I3(1)); 

d11 = max(I6(1),I1(1))-min(I6(1),I1(1)); d12 = max(I6(1),I2(1))-min(I6(1),I2(1)); 

d13 = max(I6(1),I3(1))-min(I6(1),I3(1)); d14 = max(I6(1),I4(1))-min(I6(1),I4(1)); 

d15 = max(I6(1),I5(1))-min(I6(1),I5(1)); 

% Finding the furthest distance 

u = max([d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15]); 

% Giving the furthest edge(s) the lowest weights and the closest the highest 

P1 = 1-(d1/u); P2 = 1-(d2/u); P3 = 1-(d3/u); P4 = 1-(d4/u); P5 = 1-(d5/u); P6 = 1-(d6/u); 
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P7 = 1-(d7/u); P8 = 1-(d8/u); P9 = 1-(d9/u); P10 = 1-(d10/u); P11 = 1-(d11/u); 

P12 = 1-(d12/u); P13 = 1-(d13/u); P14 = 1-(d14/u); P15 = 1-(d15/u); 

% Normalizing the weights 

P = (P1+P2+P3+P4+P5+P6+P7+P8+P9+P10+P11+P12+P13+P14+P15); 

N1 = P1/(P); N2 = P2/(P); N3 = P3/(P); N4 = P4/(P); N5 = P5/(P); 

N6 = P6/(P); N7 = P7/(P); N8 = P8/(P); N9 = P9/(P); N10 = P10/(P); 

N11 = P11/(P); N12 = P12/(P); N13 = P13/(P); N14 = P14/(P); N15 = P15/(P); 

% Assigning each node (sensor) a portion of its neighbors` weights 

W1 = sum(N1+N2+N6+N7+N11)/2; W2 = sum(N1+N3+N5+N8+N12)/2; 

W3 = sum(N2+N3+N4+N10+N13)/2; W4 = sum(N4+N5+N6+N9+N14)/2; 

W5 = sum(N7+N8+N9+N10+N15)/2; W6 = sum(N11+N12+N13+N14+N15)/2; 

%% 

W = W1+W2+W3+W4+W5+W6; 

W1 = W1/W; W2 = W2/W; W3 = W3/W; W4 = W4/W; W5 = W5/W; W6 = W6/W; 

Estimate = W1*I1(1)+W2*I2(1)+W3*I3(1)+W4*I4(1)+W5*I5(1)+W6*I6(1); 

Flag = 1; 

%% 

I = [I1(1) I2(1) I3(1) I4(1) I5(1) I6(1)]; 

d = [d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15]; 

Fusion Algorithm – Velocity 

function [d,I,Flag,Estimate,W1,W2,W3,W4,W5,... 
P1,P2,P3,P4,P5,P6,P7,P8,P9,P10] = fcn(I1,I2,I3,I4,I5) 
%% Missing data %% 
% This code shows if a piece of data in a particular period is missing, 
% replace that by a big number so that it is actually removed 
% from calculations 
if isempty(abs(I1(1))) 
    I1 = 1000; 
end 
if isempty(abs(I2(1))) 
    I2 = 1000; 
end 
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if isempty(abs(I3(1))) 
    I3 = 1000; 
end 
if isempty(abs(I4(1))) 
    I4 = 1000; 
end 
if isempty(abs(I5(1))) 
    I5 = 1000; 
end 
%% 
% Finding the ditances between the nodes (sensors) 
d1 = max(I1(1),I2(1))-min(I1(1),I2(1)); d2 = max(I1(1),I3(1))-min(I1(1),I3(1)); 
d3 = max(I2(1),I3(1))-min(I2(1),I3(1)); d4 = max(I3(1),I4(1))-min(I3(1),I4(1)); 
d5 = max(I2(1),I4(1))-min(I2(1),I4(1)); d6 = max(I4(1),I1(1))-min(I4(1),I1(1)); 
d7 = max(I1(1),I5(1))-min(I1(1),I5(1)); d8 = max(I5(1),I2(1))-min(I5(1),I2(1)); 
d9 = max(I5(1),I4(1))-min(I5(1),I4(1)); d10 = max(I5(1),I3(1))-min(I5(1),I3(1)); 
% Finding the furthest distance 
u = max([d1,d2,d3,d4,d5,d6,d7,d8,d9,d10]); 
% Giving the furthest edge(s) the lowest weights and the closest the highest 
P1 = 1-(d1/u); P2 = 1-(d2/u); P3 = 1-(d3/u); P4 = 1-(d4/u); P5 = 1-(d5/u); P6 = 1-(d6/u); 
P7 = 1-(d7/u); P8 = 1-(d8/u); P9 = 1-(d9/u); P10 = 1-(d10/u); 
% Normalizing the weights 
P = (P1+P2+P3+P4+P5+P6+P7+P8+P9+P10); 
N1 = P1/(P); N2 = P2/(P); N3 = P3/(P); N4 = P4/(P); N5 = P5/(P); 
N6 = P6/(P); N7 = P7/(P); N8 = P8/(P); N9 = P9/(P); N10 = P10/(P); 
% Assigning each node (sensor) a portion of its neighbors` weights 
W1 = sum(N1+N2+N6+N7)/2; W2 = sum(N1+N3+N5+N8)/2; W3 = 

sum(N2+N3+N4+N10)/2; 
W4 = sum(N4+N5+N6+N9)/2; W5 = sum(N7+N8+N9+N10)/2; 
%% 
W = W1+W2+W3+W4+W5; 
W1 = W1/W; W2 = W2/W; W3 = W3/W; W4 = W4/W; W5 = W5/W; 
Estimate = W1*I1(1)+W2*I2(1)+W3*I3(1)+W4*I4(1)+W5*I5(1); 
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Flag = 1; 
%% 
I = [I1(1) I2(1) I3(1) I4(1) I5(1)]; 
d = [d1 d2 d3 d4 d5 d6 d7 d8 d9 d10]; 

IMU Acceleration Filter (Zeroing down) 

function [y,Flag] = fcn(Evidence,u,PrevEst) 

if u > Evidence || u < -(Evidence) 

    y = PrevEst; 

    Flag = 1; 

else 

    y = u; 

    Flag = 2; 

end 

Determining the Velocity Based on Heading Angle for IMUs (Northing) 

function y = fcn(vel,hdg) 
if (hdg>=0) && (hdg<=45) 
    y = 0+vel*cosd(hdg); 
elseif (hdg>45)&&(hdg<90) 
    y = vel*sind(90-hdg); 
elseif hdg == 90 
    y = 0; 
elseif (hdg>90)&&(hdg<=135) 
    y = vel*sind(hdg-90); 
elseif (hdg>135) && (hdg<180) 
    y = 0+vel*cosd(hdg); 
elseif hdg == 180 
    y = -vel; 
elseif (hdg>180) && (hdg<225) 
    y = 0+vel*cosd(hdg); 
elseif (hdg>=225)&&(hdg<270) 



129 

    y = vel*sind(hdg-90); 
elseif hdg == 270 
    y = 0; 
elseif (hdg>270)&&(hdg<=315) 
    y = vel*cosd(hdg-90); 
elseif (hdg>315) && (hdg<=360) 
    y = 0+vel*cosd(hdg); 
else 
    y = vel; 
end 

Determining the Velocity Based on Heading Angle for IMUs (Easting) 

function y = fcn(vel,hdg) 
if (hdg>=0) && (hdg<=45) 
    y = 0+vel*sind(hdg); 
elseif (hdg>45)&&(hdg<90) 
    y = vel*cosd(90-hdg); 
elseif hdg == 90 
    y = vel; 
elseif (hdg>90)&&(hdg<=135) 
    y = vel*cosd(hdg-90); 
elseif (hdg>135) && (hdg<=180) 
    y = 0+vel*sind(hdg); 
elseif (hdg>=180) && (hdg<225) 
    y = 0+vel*sind(hdg); 
elseif (hdg>=225)&&(hdg<270) 
    y = vel*cosd(hdg-90); 
elseif hdg == 270 
    y = -vel; 
elseif (hdg>270)&&(hdg<=315) 
    y = vel*cosd(hdg-90); 
elseif (hdg>315) && (hdg<=360) 
    y = 0+vel*sind(hdg); 
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else 
    y = vel; 
end 

Lidar MatchScan 

function [x,y,Heading] = Lidar(u1,u2) 

refRanges = u1; 

refAngles = linspace(-pi,pi,1081); 

currRanges = u2; 

currAngles = linspace(-pi,pi,1081); 

pose = matchScans(currRanges,currAngles,refRanges,refAngles); 

x = pose(1); 

y = pose(2); 

Heading = pose(3)*180/pi; 

if Heading > 360 && Heading < 720 

    Heading = Heading - 360; 

elseif Heading < -360 && Heading > -720 

    Heading = Heading + 360; 

end 

GPS Magnetic Field Conversion (1) 

function Direction = fcn(x,y) 

if y>0 

    Direction = 90-(atan(x/y))*(180/pi); 

elseif y<0 

    Direction = 270-(atan(x/y))*(180/pi); 

elseif y==0 && x<0 

    Direction = 180; 

elseif y==0 && x>0 

    Direction = 0; 

else 

    Direction = 1000; 
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end 

GPS Magnetic Field Conversion (2) 

function y = fcn(u) 

if u > 360 

    y = u-360; 

else 

    y = u; 

end 
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Table A-1 Easting weights for all scenarios 
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Table A-2 Northing weights for all scenarios 
Scenario Northing Weights Figures Scenario Northing Weights Figures 
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Table A-3 Heading angle weights for all scenarios 
Scenario Heading Weights Figures Scenario Heading Weights Figures 
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Table A-4 Velocity weights for all scenarios 
Scenario Velocity Weights Figures Scenario Velocity Weights Figures 
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