

INTRINSIC CURIOSITY IN REINFORCEMENT LEARNING

BY IMPROVING NEXT STATE PREDICTION

by

PAUL LEWIS LOBO

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science at

The University of Texas at Arlington

May 2020

Arlington, Texas

Supervising Committee:

Deokgun Park, Supervising Professor

Manfred Huber

Won Hwa Kim

Copyright by

Paul Lewis Lobo

2020

i

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Deokgun Park for his immense support and guidance throughout

my entire two years here at the University of Texas at Arlington. I would also like to thank Dr. Manfred

Huber and Dr. Won Hwa Kim for being a part of my committee. Finally, I would like to thank Dr. C.Y

Choi, Dr. Michael Ward and Peace Ossom-Williamson for giving me amazing opportunities to work with

them during my time here.

ii

LIST OF FIGURES

Figure 3: Image from [2] that shows the simple clipping approach to ensure stability. 11

Figure 5: Variational Auto Encoder .. 14

Figure 6: Formulation of Curiosity using an Inverse Dynamics model from [12] 16

Figure 7: Results from [12] showing how Intrinsic Motivation is used in increasingly difficult tasks. 17

Figure 8: Architecture for Intrinsic Motivation using Next State Prediction. ... 19

Figure 9: Images from the Doom My Way Home Environment depicting various textures on the walls .. 24

Figure 10: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Dense Doom My

Way Home Task .. 26

Figure 11: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Sparse Doom My

Way Home Task .. 27

Figure 12: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Very Sparse Doom

My Way Home Task .. 28

Figure 13: A comparison of the effects of A VAE Memory and a Recurrent Layer on the Very Sparse Doom

My Way Home Task .. 29

Figure 14: Integrating Learning Progress with the Very Sparse tasks .. 31

iii

LIST OF TABLES

Table 1: Hyperparameters for Dense Task…………………………………………………………...…….25

Table 2: Hyperparameters for Sparse Task………………………………………………………..………26

Table 3: Hyperparameters for Very Sparse Task.…………………………………………………………27

Table 4: Hyperparameters for Intrinsic reward with Learning Progress …………………………………30

iv

ABSTRACT

INTRINSIC CURIOSITY IN REINFORCEMENT LEARNING

BY IMPROVING NEXT STATE PREDICTION

PAUL LEWIS LOBO, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Deokgun Park

In Reinforcement Learning, an agent receives feedback from the environment in the form of an extrinsic

reward. It learns to take actions that maximize this extrinsic reward. However, to start learning, the agent

needs to be able to get feedback from the environment by using random actions. This works in environments

with frequent rewards, however, in environments where the rewards are sparse the probability of reaching

any reward even once becomes very low. One way to explore an environment efficiently is for the agent to

generate its own intrinsic reward by using the prediction error from a model that is trained to predict the

next state based on the current state and action. This intrinsic reward is like the phenomena of curiosity and

leads the agents to revisit states where the prediction error is large. Since predicting the next state in pixel

space is not a trivial task, efforts have been made to reduce the complexity by using different ways to extract

a smaller feature space to make the prediction on. This thesis explores a couple of ways to stabilize the

training when using a Variational Autoencoder (VAE) to reduce the complexity of the next state prediction.

It looks at using a memory to train the VAE so that it does not overfit to a batch, it uses a recurrent layer to

improve the next state prediction and it integrates the concept of Learning Progress so that the agent does

not get stuck trying to predict something it cannot control.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: REINFORCEMENT LEARNING FUNDAMENTALS ... 3

2.1 State .. 3

2.2 Action .. 3

2.3 Policy .. 3

2.4 Reward .. 4

2.5 Cumulative Reward .. 4

2.6 Discounted Cumulative Reward ... 4

2.7 Reinforcement Learning Methods .. 5

2.7.1 Q Learning ... 5

2.7.2 Deep Q Learning .. 6

2.7.3 Policy Gradients ... 7

2.7.4 Actor Critic .. 8

2.7.5 Proximal Policy Optimization .. 9

CHAPTER 3: NEED FOR INTRINSIC MOTIVATION ... 12

3.1 Sparse Rewards ... 12

3.2 Reward Shaping .. 13

3.3 Extrinsic vs Intrinsic Rewards .. 13

3.4 Different Formulations of Intrinsic Reward .. 13

vi

3.4.1 Next State Prediction in Pixel Space .. 13

3.4.2 Next State Prediction Using a VAE ... 14

3.4.3 Exploration by Random Network Distillation ... 15

3.4.4 Inverse Dynamics ... 15

CHAPTER 4: IMPROVING NEXT STATE PREDICTION ... 17

4.1 Architecture... 18

4.2 VAE Memory.. 20

4.3 Recurrent Layer for Next Step prediction ... 21

4.4 Learning Progress ... 21

CHAPTER 5: EXPERIMENTS .. 23

5.1 Environment .. 23

5.2 Intrinsic vs Vanilla PPO .. 24

5.2.1 Dense Task ... 24

5.2.2 Sparse Task .. 26

5.2.3 Very Sparse Task ... 27

5.3 Effect of VAE Memory and RNN .. 29

5.4 Effect of Learning Progress .. 30

Chapter 6: CONCLUSION ... 32

Chapter 7: FUTURE WORK .. 33

Chapter 8: REFERENCES .. 34

1

CHAPTER 1:

INTRODUCTION

Reinforcement Learning algorithms have been proven to work well when the environment provides

frequent feedback to the agent. This feedback that is received from the environment is called an Extrinsic

reward. In order for the agent to maximize the reward that it receives from the environment, it first takes

random actions until it can reach the reward enough times to be able to improve its policy to by increasing

the probability of taking actions that lead to these rewards. However, in environments where the rewards

are sparse, the probability of reaching the reward initially becomes very low if we take random actions.

This leads to the problem of how to explore the environment efficiently. One way to do so is for the agent

to supplement the extrinsic reward with a reward that it generates itself that would lead it to revisit new

states more often. This kind of reward generated by itself is called an Intrinsic reward [18] and is like the

phenomena of curiosity. There have been many different approaches to defining an intrinsic reward by

using prediction error in a compressed pixel space using a Variational Auto Encoder [19, 20]. Instead of

predicting the next state in pixel space, the paper [12] introduced a way to extract features that are dependent

only on the action taken. They showed that this works well in a maze that had various textures on the wall

which tend to distract agents trying to predict the next state in pixel space. However, [15] showed us that

this kind of Inverse Dynamics model is not able to perform well when encountering white noise. They

introduced a TV with static on it and gave the agent an action to turn off the TV. Since the agent still gets

distracted by the white noise on the TV, it shows that the Inverse Dynamics model is not able to completely

remove the coupling between features that do not affect which action should be taken.

Since, predicting the next state in pixel space can be very complex due to the number of variables that need

to be predicted for an image, methods [19, 20] have shown that we can use a Variational Auto Encoder [5]

2

to compress an image and reduce the size of the problem. This thesis investigates three methods that could

improve the performance of the intrinsic agent using prediction error in compressed latent space. The first

is to stabilize the training of the Variational Auto Encoder by providing a replay memory like that used in

[13]. The second is to add a recurrent layer to the prediction module. This simple technique has been

overlooked in [15]. Finally, we see whether we can incorporate the notion of Learning Progress [17] to

prevent a curious agent from getting distracted by trying to learn to predict things that it cannot control.

In Chapter 2 we start with the basic introduction to Reinforcement Learning concepts. In Chapter 3 we look

at some of the main model free Reinforcement Learning algorithms. Chapter 4 introduces us to the problem

of sparse rewards, and we look at some of the approaches used to solve sparse environments. In Chapter 5

we look at how we can improve the performance of an intrinsic agent using a Variational Auto Encoder to

reduce the complexity of predicting the next state in pixel space. And finally, in Chapter 6 we compare the

results on the My Way Home task [21].

3

CHAPTER 2:

REINFORCEMENT LEARNING FUNDAMENTALS

In a Reinforcement Learning problem, an agent learns to interact with an environment by performing

actions and receiving feedback from the environment in terms of a reward signal. Since we do not tell the

agent what actions to take, it is up to the agent to try different actions in different scenarios and learn what

actions to take to maximize the reward signal from the environment. It does this by increasing the chance

of taking an action that leads to higher rewards and reducing the chance of taking an action that leads to

low rewards. We rely heavily on [9] for some of the concepts mentioned below.

2.1 State

A state encompasses all the information required for an agent to decide what action it should take. For

example, in a game it could be the pixels that are viewed on the screen or it could be a vector representation

of some numbers that each contain some information used to distinguish one state from another. The current

state is denoted as 𝑆𝑡.

2.2 Action

An action is used to affect the environment. Different actions at the same state could lead to different

outcomes. An action could be of different types. The most common and discrete or continuous.

2.3 Policy

A policy can be thought of as a mapping from a state to an action. It tells us what action a to take when in

a state s. The policy could be deterministic where we always take the current best action, or it could be

4

stochastic where it contains a probability distribution over all the actions that could be performed in the

given state.

Deterministic Policy: 𝜋(𝑠)

Stochastic Policy: 𝜋(𝑠|𝑎) = Ρ[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

2.4 Reward

A reward is single number received from an environment when an action a is performed in state s. The goal

of the agent is to maximize the total reward received by the agent over time. The reward signal helps us

determine what are good and bad actions. If the reward that is received in the sequence after taking an

action is low, it allows the agent to change its policy to reduce taking such an action in that state. Whereas

if the reward received when taking an action is high it allows the agent to alter its policy to increase the

chance of taking that action in that state. When taking an action 𝐴𝑡 at state 𝑆𝑡 we receive reward 𝑅𝑡+1 and

next state 𝑆𝑡+1.

2.5 Cumulative Reward

In Reinforcement Learning it is important to note that the agent does not just maximize the reward at the

current state, it is necessary to maximize the reward over an entire episode or trajectory. This is since an

agent should not try to achieve a short-term reward that could lead it to get stuck or not be able to reach

future rewards that are higher. The cumulative reward is represented as 𝐺𝑡.

Cumulative Reward: 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑇 = ∑ 𝑅𝑡+𝑘+1
∞
𝑘=0

2.6 Discounted Cumulative Reward

Another vital concept in reinforcement learning is that of discounting rewards. The reason to this is so that

an agent gives slightly less importance to rewards it receives further in the future. This is done as it is

difficult to predict very far into the future. If an agent could receive the same reward 10 steps into the future

5

vs 100 steps into the future it will try give more priority to the reward that could be received within 10

steps. The discount factor is given by gamma or 𝛾. The value of gamma is generally < 1. If it is q then there

is no discounting and if it is 0 it will not consider future any rewards.

Discounted Cumulative Reward: 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0

2.7 Reinforcement Learning Methods

2.7.1 Q Learning

The Q Function can be thought of as a function parametrized by the current state and action and it returns

the expected Cumulative Future Discounted Reward from that state until the terminal state. When the state

space is small, we can build a table that encompass all states and actions. If the number of states is n and

number of actions is m, the q table would be of size n by m.

The Q function is given by: 𝑄𝜋 = 𝐸[𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ |𝑠𝑡, 𝑎𝑡]

We learn the Q function by optimizing the bellman equation:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

We then try to maximize our score function by taking the action with the best Q Value.

The entire algorithm from [9] is given as:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠), 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦, 𝑎𝑛𝑑 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 − 𝑠𝑡𝑎𝑡𝑒, .) = 0

𝑅𝑒𝑝𝑒𝑎𝑡 (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒):

6

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆

 𝑅𝑒𝑝𝑒𝑎𝑡 (𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒):

 𝐶ℎ𝑜𝑜𝑠𝑒 𝐴 𝑓𝑟𝑜𝑚 𝑆 𝑢𝑠𝑖𝑛𝑔 𝑝𝑜𝑙𝑖𝑐𝑦 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑄 (𝑒. 𝑔. ∈ −𝑔𝑟𝑒𝑒𝑑𝑦)

 𝑇𝑎𝑘𝑒 𝑎𝑐𝑡𝑖𝑛𝑜 𝐴, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑅, 𝑆′

 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)]

 𝑆 ← 𝑆′

 𝑢𝑛𝑡𝑖𝑙 𝑆 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

The intuition behind this is that if we are we move from a good state to a state with all bad future estimates,

the current Q value would decrease and when we move to a state that has a better Q value then we would

increase the current Q Value.

We do not actually have to wait until the end of the episode to calculate the future discounted reward.

Instead we use the estimated future discounted reward by looking up our Q Table and taking the maximum

value over all possible actions. This approach is called a Temporal Difference Method.

2.7.2 Deep Q Learning

As the number of states grows in a problem it becomes computationally infeasible to build such large tables

for the Q table. With the advent of Neural Networks, it becomes possible to use a Neural network as a

function approximator for the state space. The input to the neural network is the current state and it outputs

the Q value for each possible action. The paper Playing Atari with Deep Reinforcement Learning [13]

showed that this approach works on multiple different Atari games. The additional difference compared to

Q Learning is that you generally add a memory called an experienced replay so that the neural network

does not overfit to the current trajectory.

The Deep Q Learning algorithm from [13] is given as:

7

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝐷 𝑡𝑜 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑁

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑄 𝑤𝑖𝑡ℎ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

for episode = 1, M do

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑠1 = {𝑥1} 𝑎𝑛𝑑 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑑 ∅1 = ∅(𝑠1)

 𝑓𝑜𝑟 𝑡 = 1, 𝑇 𝑑𝑜

 𝑊𝑖𝑡ℎ 𝑝𝑜𝑟𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∈ 𝑠𝑒𝑙𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑠𝑒𝑙𝑐𝑡 𝑎𝑡 = 𝑚𝑎𝑥𝑎𝑄∗(∅(𝑠𝑡), 𝑎; 𝜃)

 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖𝑛 𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟𝑡 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔𝑒 𝑥𝑡+1

 𝑆𝑒𝑡 𝑠𝑡+1 = 𝑠𝑡, 𝑎𝑡 , 𝑥𝑡+1𝑎𝑛𝑑 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∅𝑡+1 = ∅(𝑠𝑡+1)

 𝑆𝑡𝑜𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (∅𝑡 , 𝑎𝑡 , 𝑟𝑡, ∅𝑡+1)𝑖𝑛 𝐷

 Sample random minibatch of transitions (∅𝑡, 𝑎𝑡 , 𝑟𝑡 , ∅𝑡+1) 𝑓𝑟𝑜𝑚 𝐷

 𝑆𝑒𝑡 𝑦𝑖 = {
𝑟𝑗 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ∅𝑗+1

𝑟𝑗 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(∅𝑗+1, 𝑎′ ; 𝜃) 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ∅𝑗+1

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑎 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 𝑜𝑛 (𝑦𝑖 − 𝑄(∅𝑗, 𝑎𝑗; 𝜃))2

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑓𝑜𝑟

2.7.3 Policy Gradients

One of the drawbacks of Value based methods is that when the number of actions is continuous, it is

impossible to learn a Value for each possible action in a continuous scale. To overcome this, we use Policy

Gradient based methods which directly learn a probability distribution for which action to take given a state.

8

One of the basic policy gradient algorithms is called REINFORCE which is given by

Input: a differentiable policy parametrization π(a|s, θ)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃 ∈ 𝑅𝑑′

𝑅𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟𝑒𝑣𝑒𝑟:

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑆0, 𝐴0, 𝑅1 … 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇

 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝 𝑓𝑟𝑜𝑚 𝑡 = 0, … 𝑇 − 1:

 𝐺 ← 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑝 𝑡

 𝜃 ← 𝜃 + 𝛼𝛾𝑡𝐺∇𝜃 ln 𝜋(𝐴𝑡 , |𝑆𝑡, 𝜃)

2.7.4 Actor Critic

In policy gradient methods we have shown that we can directly learn a probability distribution for each

action given a state. To maximize the score, we need to maximize the following equation:

∇𝐽(𝜃) = 𝐸𝜋[∇ log (𝜋(𝜏))𝑟(𝜏)]

This method is a Monte Carlo method as we need the reward for an entire trajectory before we can make

an update. Since different trajectories are taken from one step it suffers from high variance. Some of these

drawbacks can be overcome by using Actor Critic methods. To do so we replace the rewards from the

trajectory with a Q Value estimate effectively converting the Monte Carlo approach to a Temporal

Difference approach. The optimization function becomes:

∇𝐽(𝜃) = 𝐸𝜋[∇ log (𝜋(𝜏))𝑄(𝑠𝑡, 𝑎𝑡)]

To get the Q Value, we need to run two networks. One to output the probability distribution for each action

and one to output the Q Value for each action.

The Advantage Actor Critic method reduces the variance further by using a baseline.

9

Here the advantage is the Q value of an action given a state minus the average Value of that state. It is

basically tells us how much better or worse that action is compared to the average Value of the state.

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡)

Instead of having to use three networks, one for the policy, one for the Q function and one for the Value

function, we can replace the Q function with the current reward plus the discount Value function of the next

state.

The advantage becomes:

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑅𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)

Finally, the Advantage Actor Critic optimization function becomes:

∇𝐽(𝜃) = 𝐸𝜋[∇ log (𝜋(𝜏))𝐴(𝑠𝑡, 𝑎𝑡)]

2.7.5 Proximal Policy Optimization

The main goals behind the paper “Proximal Policy Optimization” [2] was to first Limit the updates to ensure

stable learning, second to use Off Policy updates to increase sample efficiency and third to be simple to

implement. The problem with Advantage Actor Critic is that it is still very prone to the step size when doing

gradient descent. If the step size is too small it takes very long to learn while if the step size is large, it

causes very bad drop offs in performance due to high variability in trajectories. The paper Trust Region

Policy Optimization [14] (TRPO) addressed this problem by adding a constraint on the KL divergence

between the old policy and new policy. However, this method is complex to implement, does not scale to

large scale networks and does not allow sharing of layers between the Value function and Policy function.

With that in mind, the goals of the Proximal Policy Optimization paper were to first limit the updates at

each step to ensure stable training, second to use off policy samples to increase sample efficiency and third

to be simple to implement. They introduced a new clipped surrogate objective function which is simple to

10

implement. Like TRPO, they use the ratio between the new policy and old policy. If the Ratio is greater

than 1 it means that the current action is more likely under the new policy, if it is negative it means the

action is less likely. However, unlike TRPO instead of using the KL divergence to constrain how large an

update can be, the use a simple clip function that limits how far the ratio can vary from 1. For example, we

could limit the ratio between 0.8 to 1.2. Due ensures much more stable training, is simple to implement and

scales well to large problems.

Advantage Actor Critic Loss:

𝐿𝑃𝐺(𝜃) = 𝐸𝑡̂[∇𝜃 log 𝜋𝜃(𝑎𝑡 , 𝑠𝑡)𝐴𝑡̂]

Like TRPO, instead of using the log of the policy we can use the ratio between the new policy and new

policy.

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡,𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡,𝑠𝑡)
, ℎ𝑒𝑟𝑒 𝑟𝑡(𝜃) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑜𝑙𝑖𝑐𝑦 𝑎𝑛𝑑 𝑜𝑙𝑑 𝑝𝑜𝑙𝑖𝑐𝑦.

The surrogate objective function that is maximized in TRPO is:

𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡̂ [
𝜋𝜃(𝑎𝑡,𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡,𝑠𝑡)
𝐴̂𝑡] = 𝐸𝑡̂[𝑟𝑡(𝜃)𝐴̂𝑡]

The Clipped Objective Function introduced in PPO becomes:

𝐿𝐶𝑃𝐼𝑃(𝜃) = 𝐸𝑡̂[min (𝑟𝑡(𝜃) 𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1− ∈, 1+∈) 𝐴̂𝑡)]

11

Figure 1: Image from [2] that shows the simple clipping approach to ensure stability.

Since we take the minimum between the clipped and unclipped objective function, we can consider two

cases. In the first case when the advantage is greater than zero, the maximum that it can to it 1 + epsilon.

Whereas when the advantage is negative, the minimum that it can go to is 1 – epsilon.

Comparing this with TRPO, it effectively optimizes the same objective function however instead of adding

a complex KL divergence constraint, it adds a simple clip function that is efficient and works very well.

12

CHAPTER 3:

NEED FOR INTRINSIC MOTIVATION

3.1 Sparse Rewards

Model free Reinforcement Learning algorithms have been proven to work well in various tasks when the

rewards received from the environment are frequent. Since they constantly receive feedback from the

environment, they can learn quite quickly. However, in environments where rewards are sparse, the agent

needs to try many sequences of actions in order to receive any reward at all. As the environment gets more

complex using random action would not lead to any results as the probability of reaching the reward by just

taking random actions can be very low. Even if the agent can reach the reward once, it is not enough as it

needs to be able to do so a few times to make any decent progress.

A very simple example of this is the Continuous Mountain Car problem in Open AI’s Gym [10]. In this

problem, a car needs to build up momentum in order to reach the flag at the top of the mountain. Since the

car is underpowered, by just taking the action right it is not able to reach the top. The car also receives a

negative reward proportional to the amount of energy it uses at each step. Since using random actions does

not lead to reaching the reward, instead of learning to keep exploring the environment, it learns to reduce

the amount of energy spent and eventually stops taking any actions. Even some of the most advanced model

free algorithms like Proximal Policy Optimization [2] struggle to solve this task.

13

3.2 Reward Shaping

The Mountain Car problem mentioned above can be solved by changing the reward structure, instead of

keeping a single reward at the top of the mountain we could give the agent a reward proportional to the

distance it is from the flag. This simple change in the reward structure would make the environment simple

to solve. This change is the reward is called reward shaping and is a tool that can be used to reduce the

complexity of an environment. However, we cannot possibly do this for every environment, especially if

we want the agent to come up with its own method to reach the goal.

3.3 Extrinsic vs Intrinsic Rewards

To overcome such a problem, it is necessary to introduce a better way to efficiently explore an environment

instead of just taking random actions. One way to do so is for the agent to generate a reward based on it

reaching new interesting states. This kind of reward generated from within the agent is called an Intrinsic

reward and it can be likened to the curiosity of a human when interacting with something new. Extrinsic

reward on the other hand is something external to the agent and this is generally the reward received from

the environment. We are now going to look at some of the different methods of formulating an intrinsic

reward.

3.4 Different Formulations of Intrinsic Reward

3.4.1 Next State Prediction in Pixel Space

A very simple approach to the Intrinsic reward, is to use the prediction of the next state based on the current

state and action taken. For new states, the agent will not be able to predict what happens when it tries out

all the possible actions for that state. As the agent reaches the same state more often its prediction of what

happens based on what action it takes gets better and the intrinsic reward is reduced. As the reward is

reduced, the agent tries to reach new states that gives it a better reward. We could use the prediction error

14

between the next state and the predicted next state as the intrinsic reward. By using pixel space, we use the

prediction error of the difference in pixel values between the actual next state and the predicted next state.

3.4.2 Next State Prediction Using a VAE

The problem with using Pixel space for the intrinsic reward is that the number of variables that need to be

predicted is very large. For example, even for very small colored images of size 64 by 64 would mean

predicting 64 * 64 * 3 or 12,288 variables. This is not a trivial task, and the performance generally degrades

in more complex environments. One way to improve this method is to use a Variational Auto Encoder [5]

(VAE) to compress each image. A VAE can be used to compress an image into a much smaller latent

representation.

Figure 2: Variational Auto Encoder

However, unlike normal Auto Encoders that just compress the data into smaller dimensions, in a VAE we

also regularize the latent representation to be similar to a unit gaussian distribution. In a plain Auto Encoder,

close points in the latent space could be complete dissimilar once decoded. There could also be points that

15

do not represent anything once decoded. Since A VAE’s latent space is regularized to be similar to a unit

gaussian, variables close to each other in latent space would be similar once decoded.

By encoding the data into a much smaller space, we reduce the complexity of predicting the next state

drastically. For example, using the same image of 64 by 64 by 3 we could compress it into a vector of just

64. So instead of having to predict 12288 variables we just need to predict 64 variables.

3.4.3 Exploration by Random Network Distillation

The paper “Exploration by Random Network Distillation” [11] showed that the prediction error between a

neural network with that of a fixed randomly initialized neural network works quite well and is also

computationally very efficient. They showed very good results on tasks like Montezuma’s revenge which

is traditionally proven to be a very difficult task for Reinforcement Learning agents to solve. Their approach

is that neural networks tend to give lower prediction errors on examples that they have been previously

trained on. So, by using a fixed network as the target, novel experiences would tend to have a larger error

and thus a bigger intrinsic reward.

3.4.4 Inverse Dynamics

The main goal of the paper “Curiosity-driven Exploration by Self-supervised Prediction” [12] was to reduce

how much the intrinsic reward depends on features of the environment that do not affect the agent’s actions.

In this paper the authors show another way to formulate an intrinsic reward that does not depend on

predicting the next state in pixel space. Their idea is to use a feature space which is only affected by what

is necessary for an agent to take an action.

In order to do this, they use an inverse dynamics model to output the agents action given the current and

next state. The feature space learned while predicting the action has no influence of factors not necessary

to take the action. They then use this feature space to train a model that predicts the feature representation

of the next state given the current state and action.

16

Figure 3: Formulation of Curiosity using an Inverse Dynamics model from [12]

In the diagram above, the Intrinsic Curiosity Module first consists of the inverse dynamics model that learns

to predict what action the agent took when in state St that resulted in state St+1. This can be broken up into

two steps. First St and St+1 is passed into the same sub module that encodes them into the feature space.

They are then both used to predict the action at.

This amounts to training a Neural Network parametrized by weights I as below:

𝑎̂𝑡 = 𝑔(𝑠𝑡, 𝑠𝑡+1; 𝜃𝐼)

With Loss function:

𝑚𝑖𝑛 𝐿𝐼(𝑎̂𝑡 , 𝑎𝑡)

The forward dynamics model can be expressed as:

𝜑̂(𝑠𝑡+1) = 𝑓(𝜑(𝑠𝑡), 𝑎𝑡; 𝜃𝐹)

With Loss function:

𝐿𝐹 =
1

2
[𝜑̂(𝑠𝑡+1) − 𝜑(𝑠𝑡+1)]2

2

17

CHAPTER 4:

IMPROVING NEXT STATE PREDICTION

When using a next state prediction model for intrinsic curiosity, we run into problems whenever the

environment is stochastic in nature. For example, if an agent encounters a tree that has leaves blowing in

the wind, it is impossible to accurately predict the movement of each leaf. Similarly, if an agent encounters

a TV with static noise which is completely random, the agent will not be able to predict the next state. The

agent would continuously receive high rewards in these scenarios and would not stop exploring the rest of

the environment. The paper “Curiosity-driven Exploration by Self-supervised Prediction” [12] showed that

by using an inverse dynamic model it is possible to train a feature set that removes factors that do not affect

the policy. As explained in section 4.4.4, they train the inverse dynamics model to predict the action taken

by using the current state and next state. They then use the feature space from the inverse dynamics model

of the current state and the actual action taken to predict the feature space of the next state. This prediction

error is used as the intrinsic reward.

Figure 4: Results from [12] showing how Intrinsic Motivation is used in increasingly difficult tasks.

18

The results from the paper show that their version of Intrinsic Curiosity works on increasingly difficult

tasks. The task shown in the figure shows three versions of the Viz Doom “My Way Home” task where the

agent needs to navigate rooms to find an amour chest which gives it an extrinsic reward. Each room/corridor

has textures on the walls then tends to distract agents using a next state prediction model as a form of

intrinsic reward. In the Dense version of the task, the agent is spawned in random rooms. As it often spawns

quite close to the reward it is not considered a sparse task. In the Sparse version of the task the agent is

forced to always spawn in room 13 which is approximately 270 steps away from the goal whereas in the

Very Sparse Setting, the goal is 350 steps away from the goal. By increasing the distance between the agent

and the goal we increase the sparseness of the environment.

However, when the paper compared different intrinsic motivation models, they claimed that using a

Variational Auto Encoder for the next step prediction proved to be unstable. They then went on to compare

the model to a model using next step prediction error in pixel space. Since the number of variables to predict

are very high in pixel space, its performance degrades on the sparser environments.

In the Very Sparse setting, on average, their agent reaches the goal just over 60 percent of the time. In the

following section we are going to see if we can improve on the performance of this inverse dynamics model.

Another interesting finding in the paper “Large-Scale Study of Curiosity-Driven Learning” [15] showed

that the Inverse Dynamics model did not do very well when solving an environment that had a TV

displaying static. The agent was not able to ignore the stochastic nature of the static on the TV and would

get drawn to it and get stuck.

4.1 Architecture

We first define a common architecture for all our experiments. We then compare the performance of adding

a memory for the VAE to stabilize its training. We then add a recurrent layer in the next step prediction

19

model. Finally, we integrate the concept of learning progress. The initial architecture uses a frame stack of

4. This is to give the agent context into which direction it is moving. Each frame is sent to a Variational

Autoencoder to compress the image into a latent representation of size 32. The stacked latent

representations of each frame are concatenated with a one hot encoded representation of the action and is

sent to the prediction module. The Same stacked latent representation of the Next state is used to calculate

the prediction error. We use the L2 norm. Since we have 128 latent variables to be predicted, we add an

Intrinsic coefficient so that the cumulative sum of the intrinsic rewards over an episode do not become

larger than the extrinsic reward. It should also be noted that we do not share the latent representation

between the Variational Autoencoder and that of the network trying to maximize the score.

Figure 5: Architecture for Intrinsic Motivation using Next State Prediction.

20

Each observation is obtained by reducing the size of each image to 64 by 64. An action repeat of 4 is used

and the final observation is obtained by stacking the last 4 states.

The VAE encoder consists of 4 Convolutional layers and a single dense layer. The output of each layer is

then passed to a Batch Normalization layer. The Convolutional layers all have relu activation functions.

The Decoder consists of a Dense layer and then 4 Convolutional transpose layers. Each having relu

activation functions and the output of each layer is then sent to a batch normalization layer.

The Next State Prediction module consists of a Dense Layer of size 256 then it passed through a LSTM

layer with hidden size 512 and tanh for its activation function. Then it is passed to two more Dense Layers

of size 256. Finally, it is passed through another Dense layer with size 128 to represent the 4 stacked VAE

encoded frames.

4.2 VAE Memory

The use of a Variational Auto Encoder is generally unstable when being used to predict the next state in

Reinforcement Learning. Consider the example of a maze, the agent generally receives high rewards when

encountering a new room. As the agent explores the new room, most of the frames that are generated are

from the new room as the agent’s policy will constantly take the agent to that room. Since the distribution

of images is imbalanced it leads to stability problems when training the Variational Auto Encoder. To

overcome this problem, it is possible to use a memory mechanism like that of an experienced replay which

was introduced in [13] which was used to stabilize the performance of a Q Learning agent. Like the

experienced replay, we can use a memory that adds all the frames that are sampled from the environment.

We then sample mini batches from the memory to make updates to the Variational Auto Encoder model.

It should be noted that the intrinsic reward is generated from the Next State Prediction model which cannot

be trained using a memory as that would reduce the need to revisit states. The prediction module should be

21

improved only when the agent revisits states with high prediction error. The use of the memory greatly

improves the stability of training the Variational Auto Encoder.

4.3 Recurrent Layer for Next Step prediction

Using a recurrent layer when designing the Next State Prediction module has often been overlooked. The

World Model [1] used a Variational Auto Encoder to compress the current state into a latent representation

and then used a Recurrent Network with a Mixture Density Network to learn how to predict the next state.

They managed to attain state of the art results in the Gym Car Racing [3] environment and even showed

that they could train an agent inside a model’s dreams. The use of a recurrent layer is often overlooked

when designing a next state prediction model to be used in an intrinsic reward formulation. Especially in

Partially observable environments, the agent needs to be able to remember its surroundings to predict the

next state. For example, if the agent goes close to a wall that has a repeated texture on it and then tries to

go right, it is impossible to say whether it will still see the same pattern or reach the end of the texture.

4.4 Learning Progress

One of the problems with using an intrinsic reward, is that an agent could be drawn to areas in the

environment that are stochastic in nature. In the example of leaves moving in a breeze or the static on a TV,

the next step prediction module would always have a high error as it is not possible to predict these events

accurately. The agent gets drawn to these sources of high prediction error and does not explore the rest of

the environment. To overcome this issue, we need to integrate learning progress to the prediction module.

The paper “Intrinsic Motivation Systems for Autonomous Mental Development” [16] formulated that the

learning progress is the reduction in prediction error on consecutive visits to the same state. So, if the error

reduces that means that the agent can learn something from revisiting the state, however if the error

increases or stays constant it means that the prediction module is unable to gain any information from

visiting the state. However, the method shown to incorporate learning progress stores all trajectories in

22

memory. They use a method to approximate similar states and then calculates whether the error reduces

when revising a grouped state. This method is not scalable to more complex environments. Another method

that is mentioned in [17] is to use the decrease in error between the output of the prediction module before

and after an update is made. For this to work, the learning rate of the prediction module needs to be small.

This form of learning progress can be easily implemented when using a neural network to make the

prediction of the next state.

23

CHAPTER 5:

EXPERIMENTS

5.1 Environment

The Environment, Doom My Way Home was created by [21]. It is based a setting in the game doom where

the agent needs to navigate through multiple rooms to reach a piece of armor. On reaching the armor the

agent in rewarded with a score of 1.0. There is a time limit of 2100 steps. This environment tends to distract

agents that try to predict the next state in pixel space due to the numerous textures on the walls of the rooms.

Since it is difficult to predict exactly how the textures move when the agent’s view changes. In the original

task there are 17 rooms attached by corridors, and the agent is spawned randomly in any of the rooms. Since

the agent sometimes spawns close to the reward, it can learn quite quickly, and the task is considered a

dense task. However, [12] showed that by forcing the agent to always spawn far from the reward, the task

is converted into a sparse task. There are two sparse tasks, one sparse where the agent is spawned 270 steps

away from the reward and a very sparse task where the agent is spawned approximately 350 steps away

from the reward.

24

Figure 6: Images from the Doom My Way Home Environment depicting various textures on the walls

We first look at how our architecture compares against a Vanilla PPO agent on Dense, Sparse and Very

Sparse Doom My Way Home Tasks.

5.2 Intrinsic vs Vanilla PPO

5.2.1 Dense Task

In the Dense task, the agent encounters the reward much more often, so we can increase the entropy

parameter to 0.01 instead of using 0.001 like the other experiments.

25

Table 1: Hyperparameters for Dense Task

PPO Hyperparameters GAMMA = 0.99

N_STEPS = 128

ENTROPY_REG = 0.01

LEARNING_RATE = 1e-4

VALUE_COEFFICIENT = 0.5

MAX_GRAD_NORM = 0.5

LAMBDA = .95

MINI_BATCHES = 4

NO_PT_EPOCHS = 3

EPSILON = .2

EPOCHS = 100000000

N_ENVS = 20

VAE Hyperparameters VAE_LEARNING_RATE = 0.0001

VAE_Z_SIZE = 32

VAE_KL_TOLERANCE = 0.5

Next State Prediction PREDICTION_LEARNING_RATE = 0.001

INTRINSIC_COEFFICIENT = 0.000005

EXTRINSIC_COEFFICIENT = 10.0

26

Figure 7: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Dense Doom My Way Home Task

5.2.2 Sparse Task

Table 2: Hyperparameters for Sparse Task

PPO Hyperparameters GAMMA = 0.99

N_STEPS = 128

ENTROPY_REG = 0.01

LEARNING_RATE = 1e-4

VALUE_COEFFICIENT = 0.5

MAX_GRAD_NORM = 0.5

LAMBDA = .95

MINI_BATCHES = 4

NO_PT_EPOCHS = 3

EPSILON = .2

EPOCHS = 100000000

N_ENVS = 20

27

VAE Hyperparameters VAE_LEARNING_RATE = 0.0001

VAE_Z_SIZE = 32

VAE_KL_TOLERANCE = 0.5

Next State Prediction PREDICTION_LEARNING_RATE = 0.001

INTRINSIC_COEFFICIENT = 0.000005

EXTRINSIC_COEFFICIENT = 10.0

Figure 8: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Sparse Doom My Way Home Task

5.2.3 Very Sparse Task

Table 3: Hyperparameters for Very Sparse Task

PPO Hyperparameters GAMMA = 0.99

N_STEPS = 128

ENTROPY_REG = 0.01

LEARNING_RATE = 1e-4

VALUE_COEFFICIENT = 0.5

28

MAX_GRAD_NORM = 0.5

LAMBDA = .95

MINI_BATCHES = 4

NO_PT_EPOCHS = 3

EPSILON = .2

EPOCHS = 100000000

N_ENVS = 20

VAE Hyperparameters VAE_LEARNING_RATE = 0.0001

VAE_Z_SIZE = 32

VAE_KL_TOLERANCE = 0.5

Next State Prediction PREDICTION_LEARNING_RATE = 0.001

INTRINSIC_COEFFICIENT = 0.000005

EXTRINSIC_COEFFICIENT = 10.0

Figure 9: A comparison of our Intrinsic Formulation vs a Vanilla PPO algorithm on the Very Sparse Doom My Way Home Task

29

We can see that in the Dense Task, there is very little difference between a Vanilla PPO agent and an

Intrinsic agent. This is because the rewards are frequent, and the agent can learn quite quickly. In the Sparse

and Very Sparse task we see a significant difference. The Very Sparse task tends to converge faster than

the Sparse task. This can be attributed to the fact that in the Sparse task the agent is spawned in a room

whereas in the Very Sparse task the agent is spawned in a corridor that does not have any textures on the

walls.

5.3 Effect of VAE Memory and RNN

Figure 10: A comparison of the effects of A VAE Memory and a Recurrent Layer on the Very Sparse Doom My Way Home Task

We can see that removing the VAE memory causes the agent to take much longer to consistently reach the

target. This can be attributed to the VAE being unstable when overfitting to a batch. Removing the

Recurrent layer also causes a slower convergence although it is not as much of a difference as the VAE

memory.

30

5.4 Effect of Learning Progress

Table 4: Hyperparameters for Intrinsic reward with Learning Progress

PPO Hyperparameters GAMMA = 0.99

N_STEPS = 128

ENTROPY_REG = 0.001

LEARNING_RATE = 1e-4

VALUE_COEFFICIENT = 0.5

MAX_GRAD_NORM = 0.5

LAMBDA = .95

MINI_BATCHES = 4

NO_PT_EPOCHS = 3

EPSILON = .2

EPOCHS = 100000000

N_ENVS = 20

VAE Hyperparameters VAE_LEARNING_RATE = 0.0001

VAE_Z_SIZE = 32

VAE_KL_TOLERANCE = 0.5

Next State Prediction PREDICTION_LEARNING_RATE = 0.0001

INTRINSIC_COEFFICIENT = 0.0005

EXTRINSIC_COEFFICIENT = 10.0

31

Figure 11: Integrating Learning Progress with the Very Sparse tasks

This shows that although this implementation of Learning Progress works, it takes longer to converge due

to the need to reduce the learning rate of the prediction model. If we keep the Learning rate of the prediction

model too high, the model tends to overfit to initial trajectories that lead to big reductions in error. The

model finds it difficult to get out of this as the entropy of the policy drops too low. We can also infer that

when we use just the prediction error, exploring a new room would have a much higher reward compared

to when integrating learning progress. When using Leaning Progress, we will spend longer exploring a

room as we will explore it until the reduction in error is lower than the reduction in error received from

exploring a new room.

32

CHAPTER 6:

CONCLUSION

From the results, we first see how stabilizing the training of the Variational Auto Encoder can speed up the

convergence of a Reinforcement Learning agent. We then see how adding a Recurrent Layer in the Next

State Prediction module can give the agent context to its surroundings and helps improve prediction and

thereby results in faster convergence. Finally, we look at how we can incorporate the concept of Learning

Progress when training the Next State Prediction module. Although this slowed down convergence, it is a

necessary element for a curious Reinforcement Learning agent to prevent the agent from constantly getting

drawn to stochastic areas of the environment where the prediction module cannot be improved.

33

CHAPTER 7:

FUTURE WORK

There are a couple of ways that this work can be extended. The first is to use a similar architecture like the

World Model [1] that uses a Mixture Density Network [6] to predict the next state. This can help improve

models in more complex environments that have more possible outcomes of the next state. For example,

learning to predict the movement of a character in the environment. We can then test the model on an

environment that contains sources of constant unpredictability like adding a TV with white noise being

displayed on it. Finally, we could integrate the option architecture [9] that allows temporal abstraction by

using an intrinsic reward to learn sub tasks in an environment.

34

CHAPTER 8:

REFERENCES

[1] David Ha and Jurgen Schmidhuber, World Models, March 2018. URL

https://arxiv.org/abs/1803.10122.

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, Proximal Policy

Optimization, July 2017. URL https://arxiv.org/pdf/1707.06347.pdf

[3] Car Racing, https://github.com/openai/gym/blob/master/gym/envs/box2d/car_racing.py

[4] VizDoom, https://github.com/mwydmuch/ViZDoom

[5] Diederik P Kingma, Max Welling, Auto-Encoding Variational Bayes, Dec 2013,

https://arxiv.org/abs/1312.6114

[6] Christopher M. Bishop, Mixture Density Networks, Feb 1994,

https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf

[7] Nikolaus Hansen, The CMA Evolution Strategy: A Tutorial, April 2016,

https://arxiv.org/abs/1604.00772

[8] Vijay R. Konda John N. Tsitsiklis, Actor-Critic Algorithms, https://papers.nips.cc/paper/1786-actor-

critic-algorithms.pdf

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cambridge, 1998,

https://mitpress.mit.edu/books/reinforcement-learning

https://arxiv.org/abs/1803.10122
https://arxiv.org/pdf/1707.06347.pdf
https://github.com/openai/gym/blob/master/gym/envs/box2d/car_racing.py
https://github.com/mwydmuch/ViZDoom
https://arxiv.org/abs/1312.6114
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://arxiv.org/abs/1604.00772
https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
https://mitpress.mit.edu/books/reinforcement-learning

35

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,

Wojciech Zaremba, Open AI Gym, 2016, https://arxiv.org/abs/1606.01540

[11] Yuri Burda, Harrison Edwards, Amos Storkey, Oleg Klimov, Exploration by Random Network

Distillation, 2018, https://arxiv.org/abs/1810.12894

[12] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell, Curiosity-driven Exploration by

Self-supervised Prediction, 2017, https://pathak22.github.io/noreward-rl/

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, Martin Riedmiller, Playing Atari with Deep Reinforcement Learning, 2013,

https://arxiv.org/abs/1312.5602

[14] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel, Trust Region

Policy Optimization, 2015, https://arxiv.org/abs/1502.05477

[15] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, Alexei A. Efros, Large-

Scale Study of Curiosity-Driven Learning, 2018, https://arxiv.org/pdf/1808.04355.pdf

[16] Pierre-Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner, Intrinsic Motivation Systems for

Autonomous Mental Development,

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4141061&tag=1

[17] Schmidhuber J, Curious model-building control systems. In Proceedings of the International Joint

Conference on Neural Networks, https://mediatum.ub.tum.de/doc/814953/file.pdf

[18] P.Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computational approaches.

Frontiers in neurorobotics, 2009, https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007/full

[19] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational

information maximizing exploration, 2016, https://arxiv.org/abs/1605.09674

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1810.12894
https://pathak22.github.io/noreward-rl/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1808.04355.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4141061&tag=1
https://mediatum.ub.tum.de/doc/814953/file.pdf
https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007/full
https://arxiv.org/abs/1605.09674

36

[20] Shakir Mohamed and Danilo J. Rezende, Variational Information Maximisation for Intrinsically

Motivated Reinforcement Learning, 2015, https://arxiv.org/abs/1509.08731

[21] Gym Doom My Way Home https://github.com/ppaquette/gym-doom

https://arxiv.org/abs/1509.08731
https://github.com/ppaquette/gym-doom

