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ABSTRACT

Efficient Network Design for High Dimensional Data

XIN MIAO, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Vassilis Athitsos

Due to the powerful feature representation capabilities, deep learning has became a

powerful tool in the field of computer vision. Especially in the aspect of high-dimensional

images, deep learning can achieve fast inference compared with most traditional meth-

ods. This paper focuses on how to design an efficient neural network and apply it to two

high-dimensional images application, video facial landmarks detections and compressive

imaging system.

In this first part of this paper, we focus on landmarks detection for video facial im-

ages. Existing methods for facial landmarks detection mainly rely on cascaded regression.

It is an indirect method and progressively estimates shape increments in an iterative way.

Moreover, cascaded models extract handcrafted features, which fail to leverage the strength

of convolutional neural networks. In addition, those local descriptors need to be calculated

in each iteration based on updated shapes, which can be time consuming and makes it hard

to integrate feature learning into one single architecture for end-to-end learning. This pa-

per propose the a direct shape regression network (DSRN) which can achieve fast facial

landmarks prediction. Specifically, by deploying doubly convolutional layer and by using

the Fourier feature pooling layer proposed in this paper, DSRN efficiently constructs strong
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representations to disentangle highly nonlinear relationships between images and shapes.

It can run very fast with about 500 frames per second excluding face detection in the plat-

form of NVIDIA GTX 1080Ti GPU, which is promising for the prospect of practical video

facial landmarks detection.

In this second part of this paper, we proposes a deep learning framework for high

dimensional images reconstruction in the snapshot compressive imaging system. Snapshot

compressive imaging (SCI) refers to compressive imaging systems where multiple frames

are mapped into a single measurement, video compressive imaging and hyperspectral com-

pressive imaging are two representative aspects. In this manner, a two-dimensional (2D)

monochromatic camera can sample the scenes at video rate and thus saves memory, band-

width and cost significantly. While enjoying all these advantages, one important step in

SCI is that algorithms are required to reconstruct the 3D data-cube from every snapshot

measurement after the sensing process. Existing algorithms are either too slow or the per-

formance is not high which preclude wide applications of SCI. In this paper, we develop

a dual-stage deep learning model to reconstruct the desired 3D signal in SCI. It can be

used for both video reconstruction and hyperspectral images reconstruction. The only dif-

ference is just the training process for the deep network. Results on both simulation and

real datasets demonstrate the significant advantages of our network, which leads to a huge

improvement in PSNR on simulation data compared to the current state-of-the-art. Further-

more, our network can finish the reconstruction task within sub-seconds instead of hours

taken by the most recently proposed DeSCI algorithm, thus speeding up the reconstruction

>1000 times.

Keyword: Deep Learning; High Dimensional Images; Snapshot Compressive

Imaging; Facial Landmarks Detection
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CHAPTER 1

Introduction

In computer vision, we usually need to process high dimensional data. For ex-

ample, there are a lot of methods are designed for video analysis application like ac-

tion recognition [1, 2, 3, 4, 5, 6, 7, 8], semantic segmentation [9, 10], medical imag-

ing [11, 12, 13, 14, 15] and vehicle identification [16]. Also some quantization methods

were proposed to improve the speed of the network [17, 18]. Facial landmarks detection

is an application which need the model can do fast inference during the testing. How-

ever, most existing methods can not satisfy this requirement. Another example for high

dimensional data processing is snapshot compressive imaging (SCI). It refers to compres-

sive imaging systems where multiple frames are mapped into a single measurement, video

compressive imaging and hyperspectral compressive imaging are two representative as-

pects. However, due to the complicted process of the most of algorithms and limitation

of the computational resource, it is not easy to apply a fast method for a real high dimen-

sional data application. In the first part of this paper, we use deep learning method to solve

one of the video analysis task. We propose the a direct shape regression deep network for

end-to-end face alignment without relying on popular cascaded regression. It can run very

fast with about 500 frames per second excluding face detection in the platform of NVIDIA

GTX 1080Ti GPU, which is promising for the prospect of practical video facial landmarks

detection. In the second part of this paper, we propose an efficient deep netwok which can

be used in the compressive imaging and can do fast images reconstruction [19, 20].
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1.1 Deep Learning for Facial Landmarks Detection

Facial landmarks detection has recently drawn great popularity in computer vision

due to its prerequisite role in facial image analysis e.g. face recognition [21], face veri-

fication [22] and facial attribute analysis [23]. Facial landmarks detection is to estimate

a set of predefined key points, which is known as landmarks providing semantic descrip-

tion of facial shapes. Facial landmarks detection has been studied extensively in recent

years, while it remains an outstanding task. Its great challenges stem from the nonlinear

relationship between input images and output shapes, since images are usually represented

by low-level features while facial shapes contain high-level semantic meanings. Mean-

while, landmarks are spatially correlated, which can also be exploited for more robust and

accurate alignment.

Cascaded regression has dominated in facial landmark detection and made great

progress in the past decades. Nevertheless, the cascaded regression model suffers from

intrinsic shortcomings. It is indeed an indirect method and progressively estimates shape

increments in an iterative way, which highly depends on initialization. Therefore, the fi-

nal solution of cascade models would likely to be trapped in local optima if the initialized

shape is far from the true shape. Cascade models rely on local feature descriptors, and

only the regions around landmarks are passed through the feature extractor. As a result, the

smantic information of faces and correlations between landmarks are largely overlooked.

Moreover, cascaded models extract handcrafted features, e.g., SIFT [24], HoGs [25], which

fail to leverage the strength of convolutional neural networks. In addition, those local de-

scriptors need to be calculated in each iteration based on updated shapes, which however

can be time-consuming and would not be easily integrated in one single architecture for

end-to-end learning. Thus, it is not easy to apply the cascaded regression for the video

based facial landmarks detection which require the real time prediction.
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In this paper, we propose direct shape regression networks (DRSN) to directly pre-

dict facial landmarks from images without relying on cascaded regression. DSRN tackles

the aforementioned challenges by jointly modeling input-output relationships and land-

mark correlations in compact end-to-end learning architecture which composed of doubly

convolutional, Fourier embedding and low-rank learning layers.

DRSN incorporates the doubly convolutional module to fulfill feature extraction [26],

which is computationally more efficient due to less parameters while improving perfor-

mance compared to regular convolution. It well fits face alignment tasks where train-

ing samples are rather limited compared to other vision tasks, e.g., image classification.

In conjunction with the doubly convolutional module, DSRN introduces Fourier feature

embedding into the last convolutional layer to build strong holistic representations. The

Fourier embedding is derived from kernel approximation to leverage the strong ability of

kernel methods for nonlinear feature extraction [27], which enables handling the nonlinear

relationship between images and shapes. As a consequence, Fourier embedding accom-

plishes a nonlinear layer with a cosine activation function, which is readily learned in an

end-to-end way by back-propagation.

Meanwhile, previous cascaded face landmarks detection has largely overlooked the

landmark correlation and not yet been modeled explicitly. By properly exploiting the cor-

relation, it can not only help to recover occluded landmarks but also improve the overall

estimation performance. We propose encoding the correlation in a principled way. Specif-

ically, we design a new linear layer with a bottleneck structure by low-rank factorization

to replace the fully connected layer as the output layer. The low-rank learning is able to

explicitly encode the intrinsic correlations by forcing correlated outputs to share subsets

of features due to the low-rank factorization. More importantly, the low-rank layer can

efficiently learned due to its nature of linearity with suffering from bad local minimum.
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In this paper, our major contributions can be summarized in the following three as-

pects.

• We propose a direct shape regression model for end-to-end face landmarks detection

without relying on cascaded regression. Our method accomplishes a novel compact

convolutional learning architecture, which leverages the strengths of kernel methods

for nonlinear feature extraction and convolutional neural networks for multivariate

structured prediction.

• We propose a new feature extraction layer which is composed of a doubly convo-

lutional layer and a Fourier feature embedding layer to efficiently build strong fea-

ture representations, which enable disentangling the highly nonlinear relationship

between images and the associated shape of facial landmarks.

• Our model can run very fast with about 500 frames per second excluding face de-

tection in the platform of NVIDIA GTX 1080Ti GPU, which is promising for the

prospect of practical video facial landmarks detection.

The great effectiveness of the proposed DSRN has been verified exhaustively on

four benchmark static datasets including CelebA, MAFL, ALFW, 300-W and one video

based dataset 300-VW. Experimental results show that DSRN consistently achieves high

estimation accuracy on all datasets and produces new state-of-the-art performance, largely

surpassing previous methods by up to 30%. In contrast to cascaded models, once learned

in the training stage, DSRN can efficiently predict landmarks on new input face image

by simple matrix multiplications without further iterative optimization. More importantly,

our DSRN offers a general compact convolutional learning architecture for face alignment,

which can be readily used for real time video facial landmarks detection.
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1.2 Deep Learning for Compressive Imaging Systems

Snapshot compressive imaging (SCI) refers to compressive imaging systems where

multiple frames are mapped into a single measurement, video compressive imaging and

hyperspectral compressive imaging are two representative aspects. The first SCI system,

called coded aperture snapshot spectral imaging (CASSI), was developed in [28], which

modulates signals at different wavelengths by a coded aperture (physical mask) and a dis-

perser [29]. In this manner, a two-dimensional (2D) monochromatic camera can sample

the hyperspectral scenes at video rate [30] and thus saves memory, bandwidth and cost sig-

nificantly compared with that using a traditional spectrometer in addition to the high-speed

sensing. While enjoying all these advantages, similar to other computational imaging sys-

tems, one important step in SCI is that algorithms are required to reconstruct the 3D data-

cube from every snapshot measurement after the sensing process. Existing algorithms are

either too slow or the performance is not high.

Though deep learning based algorithms have started being used in computational

imaging systems [31, 32], significant challenges and questions exist in SCI reconstruction

using deep learning.

1) Limited training dataset is available. Firstly, the hyperspectral image itself is a high-

dimensional cube. Secondly, though some datasets [33, 34] can be downloaded, the

spectral wavelengths are usually different for different imaging systems. In order to

overcome this challenge, in addition to the generally used data argumentation tech-

niques, rotating and flipping, we further use the spectral interpolation to unify the datasets

to the same set of wavelengths.

2) The measurement of SCI is a single frame, while more than 20 spectral channels (24 is

used in our hyperspectral experiments) are to be generated (reconstructed). Therefore, a

deep generative model has to be used. It has been observed that for compressive imaging

reconstruction, a deeper generative model usually leads to better results [32]. However,
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this is challenging due to the large number of parameters in the network and also the

limited dataset mentioned above.

3) The third question this paper aims to address is that is it possible to adopt a small network

to boost up the quality of SCI reconstruction results?

Bearing these challenges and questions in mind, this paper makes the following con-

tributions [35, 36, 37, 38].

• A generative model based on U-net [39] is developed to reconstruct the 3D spectral

cube from the SCI measurement and masks.

• The self-attention generative adversarial network (GAN) [40] is integrated with the

U-net to exploit the non-local correlation in the hyperspectral images. This self-

attention GAN plus U-net constitutes the reconstruction stage of our network.

• A refinement stage composed of a small U-net and residual learning [41] is developed

to boost up the quality of reconstructed images from the first stage. In this stage, each

channel is performed independently.

• We have verified our proposed network on extensive “real-mask-in-the-loop" simu-

lation data and also the real data captured by our camera [30]. Our network offers

much better results than DeSCI for simulation data and higher performance for real

data, and it finishes the reconstruction in sub-seconds while DeSCI needs hours [42].
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CHAPTER 2

Direct Shape Regression Networks for End-to-End Facial Landmarks Detection

Firstly, we talk about the related work. Then, we introduce our direct shape regres-

sion network (DSRN). We start with the problem formulation (2.2) and describe in detail

the key components of DSRN, that is, the doubly convolutional layer (2.3), the Fourier

embedding layer (2.4) and the low-rank learning layer (2.5). Finally, we will show the

experimental results and discuss our DSRN.

2.1 Related Work

facial landmarks detection has been extensively studied and remarkable progress has

occurred over the past decades [43, 44, 45, 46]. Previous work mainly focused on cas-

caded regression, which relies on iterative optimization. Cascaded regression starts with

an initial shape which can be a random guess or the mean shape of training samples, and

iteratively refines the shape by a cascade of regressors. Building upon cascaded regression,

many improved variants have been developed which distinguish themselves by the shape

initialization strategies [46], shape-indexed features [47] or regressors [48].

Xiong et al. proposed a supervised descent method (SDM) [48] to address the cas-

caded regression problem by optimizing non-linear least squares based on SIFT [24] fea-

tures. Zhu et al. use a coarse-to-fine shape searching method to locate the landmarks. That

method is robust to large pose variation [49]. To achieve high performance, they employ

multiple hybrid handcrafted features, e.g., SIFT, HOG and BRIEF etc, as local descrip-

tors. Support vector regression and random forests are used by [50] for facial landmarks
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Figure 2.1: The architecture of our proposed direct shape regression network).

detection from the local image patch. By using Markov random field to model the spatial

relations of landmarks, they try to resolve the predictions uncertainties.

With the great success of deep learning in feature representation, some methods use

convolutional neural networks (CNNs) to learn the features or deep models to represent

the regressors. Sun et al. [51] constructed a deep convolutional network cascaded structure

to detect facial points, with multi-level regression networks. Liu et al.et al. [52] not

only consider the spatial domain, but also use recurrent neural networks (RNN) to get the

temporal information in the video-based facial landmarks detection datasets.

However, most deep learning-based models are still based on cascaded regression,

which is sensitive to improper shape initialization. Some recent methods [46, 53] attempt

to solve this problem by running algorithms more than one times, but the dependence on

shape initialization is still not totally avoided. Lv et al. [54] use a two-stage regression

method. It uses spatial transformer networks [55] to transform the full face and face parts

to canonical shape respectively in two stages. They call this step re-initialization. However,

this method does not optimize the network parameters in the two stages jointly. The first

end-to-end recurrent convolutional system for facial landmarks detection was proposed

in [56]. They use CNNs to extract features and a connected RNN to approximate the

cascaded process. The main difference from our end-to-end learning is that our method

is direct shape regression which starts with a raw image and directly predicts coordinates

of landmarks on facial shapes rather than estimating shape increments iteratively. Bulat et

8



al. [57] propose a method that can also map 2D facial landmarks to 3D. We should also

mention the method of [58], which is a facial alignment method explicitly designed to be

lightweight and suitable for devices with limited computational resources. Obviously, our

method has a different scope as it is designed for usage with modern desktop computers.

In contrast to those existing methods, our DSRN is, to the best of our knowledge,

the first method that achieves direct shape regression in an end-to-end learning framework,

without relying on cascaded regression. DSRN addresses the central issue of face land-

marks detection by effectively disentangling the highly nonlinear relationship between im-

ages and facial shapes while simultaneously encoding correlations of landmarks on the

shape. It leverages the strengths of neural networks for structured prediction and kernels

for nonlinear feature extraction.

2.2 Preliminaries

Facial landmarks detection is the task of finding a mapping from an input image I

to the facial shape S represented by the coordinates of landmarks in the form of a vector,

[x1, y1, ..., xN , yN ]> ∈ R2N , where N is the number of landmarks. DSRN directly predicts

shapes from images in an end-to-end learning architecture, which handles major challenges

of facial landmarks detection in one single framework. Specifically, the doubly convolu-

tional layer in conjunction with the Fourier embedding layer are used for effective nonlin-

ear feature extraction, to model the nonlinear relationship between images and shapes; the

linear low-rank learning layer explicitly encodes intrinsic correlations of landmarks in a

data-driven way for robust and improved estimation.
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2.3 Doubly Convolutional Layer

Image representation plays a fundamental role in facial landmarks detection. Hand-

crafted features, e.g., SIFT [24] and HoGs [25], were extensively used in previous meth-

ods [49, 59]. The convolutional neural network (CNN) has recently emerged as a powerful

tool for feature extraction and shown great success in diverse visual tasks.

However, the size of training data is relatively small in facial landmarks detection,

while images exhibit great appearance variation and face shapes show huge variability.

This poses great challenges to conventional CNNs. Instead of using regular convolutions,

we use a doubly convolutional module [26], which has shown improved performance in

term of both efficiency and effectiveness. The double convolution is inspired by the fact

that many of filters in regular convolutions are very similar or almost translated version of

each other, which induces huge redundancy. It can largely reduce the number of parameters

while improving the performance, which is well suited for facial landmarks detection.

In double convolutions, there are a set of meta filters with size L′ × L′ . The size of

effective filters is L × L where L < L
′ . So we can consider that there are (L

′ − L + 1)2

effective filters within each meta filter, and the group of effective filters are forced to be

translated versions of each other. When the input image is convolved with one meta filter,

it convolves with each effective filter in this meta filter, to produce (L
′−L+1)2 feature maps

for this meta filter. As a consequence, we use only one meta filter with L′ ×L′ parameters,

while obtaining the same number of feature maps as using (L
′ − L+ 1)2 individual filters

with (L
′ − L + 1)2 × L × L parameters. The structure of doubly convolutional layer is

shown in Fig 2.2.
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Figure 2.2: The structure of the doubly convolutional module.

2.4 Fourier Embedding Layer

To handle the complicated relationship between images and facial shapes, nonlinear

feature extraction is usually required to achieve high-level representations. The doubly

convolutional module produces a set of feature maps contained in X ∈ Rw×h×c with width

w, height h and the number of maps c. For a c dimensional vector of a spatial location

across the feature maps in X , we use notation x = [x1, x2, ..., xc]
> ∈ Rc. We need to

pool those w × h c-dimensional feature vectors into in a holistic representation for shape

regression.

In this work, we propose using Fourier embedding to pool feature maps by lever-

aging the great strength of kernels for nonlinear feature extraction, which enables filling

the semantic gap between images and shapes. The Fourier embedding is derived from

the approximation of shift invariant kernels [60, 61] which is underpinned by Bochner’s

Theorem [62].

Theorem 1 (Bochner [62]). A continuous shift-invariant kernel function k(x,x′) = k(x− x′)

on Rd is positive definite if and only if it is the Fourier transform of a unique finite non-

negative measure on Rd. Defining ζω(x) = ejω
>x, for any x,x′ ∈ Rd,

k(x− x′) =

∫
Rd

p(ω)ejω
>(x−x′)dω = Eω[ζω(x)ζω(x′)∗] (2.1)

11



where * is the conjugate and p(ω) is the Fourier transform of the kernel.

The kernel k(x,x′) can be approximated by drawing d random samples,

k(x,x′) ≈
d∑

i=1

〈√2

d
cos(ω>i x + bi),

√
2

d
cos(ω>i x′ + bi)

〉
(2.2)

where ω is sampled from the probablity distribution p(ω), and b is uniformly sampled over

[0, 2π].

Therefore, the corresponding approximated feature map φ(x) is

φ(xi) =

√
2

d
[cos(ω>i xi + bi)]1:d (2.3)

where φ(x) is called the random Fourier feature [60], and has been successfully used in

various kernel methods.

However, the great power of kernel approximation based on random Fourier features

remains largely underdeveloped, and this topic has recently attracted attention [63]. In

most of the existing kernel approximation methods, the sampling is independent of input

data distributions, and this usually requires high-dimensional feature maps to achieve ker-

nel approximation with satisfactory performance. Moreover, since no learning is involved,

the approximate feature maps would be of high redundancy and of low discriminant ability,

which compromises performance while inducing unnecessary computational cost. In addi-

tion, approximating the kernel with a fixed configuration does not necessarily lead to high

performance since it remains an open question how to choose the best kernel configuration.

Instead of approximating kernels by random sampling from data-independent distri-

butions, we learn the parameters {ω, b} from data in a supervised way, which enables more

compact but highly discriminative feature representations.
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Figure 2.3: The structure of Fourier embedding.

Define W = [ω1, · · · ,ωd] ∈ Rd×c and b = [b1, · · · , bd]. We define a nonlinear layer

of neural networks with cosine activations,

φi = cos(Wxi + b) (2.4)

where cos is an element-wise function, i indicates the i-th location in the feature mapX and

W is the weight matrix of the nonlinear layer. The induced Fourier embedding layer can

be seamlessly integrated with the doubly convolutional layer to achieve a fully end-to-end

learning architecture that can be trained via back-propagation.

To achieve a holistic representation, we concatenate the embedded feature vectors

into a single vector z = [φ1, · · · ,φi, · · · ,φp] ∈ RD, where p = w × h, i.e., the number

of locations. In contrast to feature pooling techniques by directly summing up the feature

vectors, the concatenation can well preserve the spatial information of images, which is of

great importance for predicting the spatial locations of facial landmarks.

2.5 Low-rank Learning Layer

We propose a simple but effective linear layer to encode correlations of landmarks by

low-rank learning. Having the holistic representation z, a straightforward way for predic-

tion is to use a fully connected layer with the regression matrix represented byM ∈ RQ×D,
13



where Q is the number of outputs, i.e., Q = 2N , which gives y = Mz. An identity acti-

vation function is used by default. Although sharing the holistic representations, landmark

correlations are not explicitly encoded. Low-rank constraints, such as the nuclear norm,

could be simply imposed to force the regression matrix M to be low rank, but this does not

always guarantee low-rankness of M , and can fail to fully capture the correlations. Instead

of using one fully connected layer, we propose linear low-rank learning layer to explicitly

encoding correlations of landmarks.

Specifically, we propose the low-rank learning layer by replacing the single matrix

M with multiplication of two low-rank matrices, which gives rise to

y = Mz = U>V z (2.5)

where U ∈ RP×Q, V ∈ RP×D and P ≤ Q. The linear function provides a low-rank layer to

explicitly encode inter-output correlations. U and V are learned in a data-driven way with-

out relying on any specific assumptions, and can adaptively capture specific correlations in

different applications.

Low-rank learning brings two attractive advantages compared to nuclear norm based

minimization. First, it establishes an overall mapping of M with guaranteed low rank-

ness to explicitly encode correlations; related outputs are forced to share similar regression

parameter patterns, and thus knowledge is transferred across correlated outputs. This can

significantly improve the overall prediction performance. Second, low-rank learning avoids

solving complicated rank-constrained problems and leverages the great effectiveness of lin-

ear learning, which enjoys great computational efficiency; by setting P � Q, the low-rank

learning can greatly reduce the number of parameters, which is especially advantageous

when using iterative optimization with stochastic gradient descent [64].

14



2.6 Experiments and Results

We have conducted extensive experiments on five benchmark datasets, and we pro-

vide a comprehensive comparison with state-of-the-art methods. The proposed direct shape

regression network (DSRN) consistently yields high accuracy for facial landmarks detec-

tion, and in most cases outperforms previous methods by large margins. Moreover, the

consistently high performance on the five diverse facial landmarks detection tasks demon-

strates the generality of our method.

2.6.1 Datasets

The five datasets are commonly used benchmarks for facial landmarks detection.

Faces in the datasets are collected in uncontrolled scenarios, demonstrating great variations,

which pose significant challenges for facial landmarks detection. We provide the detailed

description of those datasets to facilitate direct comparison with previous work under the

same experimental settings.

AFLW [65] contains a total of 24386 face images gathered from Flickr. In contrast

to other databases limited to frontal views or acquired under controlled conditions. AFLW

faces are collected in the wild, have large-scale pose variations up to ±90◦ and also have

large variety in face appearance (e.g., pose, expression, ethnicity, gender). Each image is

annotated with 21 landmarks. Following the experimental settings of cascaded composi-

tional learning (CLL) [47], we ignore the two ear points and use the same 20000 and 4386

images for training and test, respectively.

300W [66, 67] consists of several datasets including AFW [45], HELEN [68], LFPW [23],

XM2VTS [69]. In addition, it contains a challenging 135-image IBUG [70] set. Following

the same dataset configuration in [49], our training set of 3148 images consists of the full

set of AFW and the training sets of HELEN and LFPW. The full test set (689 images) is

divided into a “common subset” (554 images), which contains the test sets from LFPW
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Method Error Year
CDM [73] 5.43 2013
PCPR [53] 3.73 2013

ERT [74] 4.35 2014
SDM [48] 4.05 2013
LBF [75] 4.25 2014

PO-CR [76] 5.32 2015
CFSS [49] 3.92 2015
CLL [47] 2.72 2016

DAC-CSR [59] 2.27 2017
DRA-TSR [54] 2.17 2017

DSRN 1.86
Table 2.1: Comparison on AFLW.

and HELEN, and a “challenging subset” (135 images) which is from IBUG. 300W has a

68-points annotation for each face image.

CelebA [71] is a large-scale face dataset with 202599 images. CelebA provides 5

five landmarks of the facial shape for each image. The images show large pose variations

and background clutter. Because of large diversities and large quantities, CelebA is suitable

for training and testing a deep learning model. Following the original work [71], 182631

and 19926 images are used respectively for the training and test sets.

MAFL is a subset of CelebA. In order to benchmark with previous methods, we

following the experimental settings in [72]. Specifically, we sample the same 20000 faces

from CelebA and select the same 1000 faces for testing as in [72].

300VW [70] is a video-based facial landmarks detection dataset which contains 114

videos from different conditions. We extract face images from the same 50 videos as [70]

to train the model, and the remaining 64 videos are divided into three test sets.

2.6.2 Implementation Details

We use four doubly convolutional layers and four pooling layers for the feature ex-

traction task. Multiple feature maps are produced in each convolutional layer. Follow-
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ing each convolution operation, we use rectified linear unit as activation function and the

5× 5, 5× 5, 3× 3, 3× 3 max pooling. After that, the Fourier embedding layer is added to

the feature maps X ∈ R8×8×256. In Fourier embedding, we get X ′ ∈ R8×8×d fisrt, where

the value of d may be changed depending on the size of training samples and the number

of landmarks in the task. Then we do concatenation for X ′ .

In the low-rank learning layer, we do not use any nonlinear activtion functions but

just the linear function with identity activations. The commonly used weight decay and

batch normalization [77] techniques are also used. The parameter for weight dacay is

0.001. We employ the stochastic optimization algorithm Adam [78] to learn the parameters

of the neural network. The learning rate starts from 0.0005 and with 0.95 exponential decay

every 10000 iterations, and the mini-batch size is set to 64.

For all experiments, the original bounding box given by the dataset is used, without

any data augmentation. For the 300W dataset, due to the size of the training set being

relative small, we pre-train our model on the large-scale 300VW dataset which has the

same number, 68, of landmarks, and fine tune it on the training set of 300W to obtain the

final model.

We use the normalized mean error (NME) as the evaluation metric, which is defined

as follows:

NME =
1
N

∑N
i=1

√
(x̂i − xi)2 + (ŷi − yi)2

d
, (2.6)

where (x, y) and (x̂, ŷ) denotes the ground truth and predicted coordinates, respectively, N

denotes the number of landmarks on facial shapes, and d is the distance for normalization.

Following previous work, for 300W, CelebA, MAFL and 300VW, we use the inter-

ocular distance to normalize the mean error; for AFLW, we use face size to normalize mean

error since the inter-ocular distance of many faces is close to zero. For brevity, % is omitted
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AFLW MAFL 300VW

Figure 2.4: Comparions on AFLW, MAFL and 300VW in terms of CED.

Method
Common

Subset
Challenging

Subset
Full

Test set
RCPR [53] 6.18 17.26 8.35
SDM [48] 5.57 15.40 7.52

ESR [46] 5.28 17.00 7.58
GN-DPM [79] 5.78 - -

ERT [74] - - 6.40
CFAN [80] 5.50 16.78 7.69

LBF [81] 4.95 11.98 6.32
DDN [82] - - 5.59
CFSS [49] 4.73 9.98 5.76
MDM [56] 4.83 10.14 5.88

DRA-TSR [54] 4.36 7.56 4.99
DSRN 4.12 9.68 5.21
Table 2.2: Comparison on 300W.

in all tables. We also show the evaluation results in the form of cumulative error distribution

(CED) curve for comprehensive comparison.

2.6.3 Performance and Comparison

Our DSRN consistently achieves high performance on the five datasets and surpasses

previous methods in most cases.

On AFLW, as shown in Table 2.1, DSRN achieves the best error rate, 1.86%, com-

pared to the previous best error rate of 2.17% [54]. In Fig 2.4 (a), the curve of our DSRN
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Method CelebA MAFL
TCDCN [72] - 7.95

Cascaded CNN [51] - 9.73
CFAN [80] - 15.84
RCPR [53] 4.12 -
SDM [48] 4.35 -
CFSS [49] 3.95 -

DSRN 3.08 3.15
Table 2.3: Comparison on CelebA and MAFL.

Method Test 1 Test 2 Test 3 Year
SDM [48] 7.41 6.18 13.04 2013

TSCN [83] 12.54 7.25 13.13 2014
CFSS [49] 7.68 6.42 13.67 2015

TCDCN [72] 7.66 6.77 14.98 2016
TSTN [52] 5.36 4.51 12.84 2017

DSRN 5.33 4.92 8.85 -
Table 2.4: Comparison on 300VW.

is clearly above those of other methods, which also indicates the performance advantages.

Compared with those methods based on cascaded regression, our DSRN can detect the

landmarks for side faces accurately as shown by the intuitive illustration in the fourth and

seventh images of Fig 2.5 (a).

On 300W, our DSRN achieves competitive performance, which is better than all

previous methods except for [54], which gives better results on the challenging set and the

full test set. The challenges of 300W stem from the great variations of images while with

limited training data. As shown in Fig 2.5, our DSRN can accurately predict the landmarks

on faces with large orientations and diverse expressions.

On CelebA and MAFL, as can be seen in Table 2.3, our DSRN achieves the best

performance on both datasets, with error rates of 3.08% and 3.15% respectively, which are

significant improvements over the previous best error rates of 3.95% and 7.95% respec-

tively. In Fig 2.4 (b), we can see that there is a big gap between DSRN and TCDCN, which

uses the similar convolutional network with DSRN and takes advantage of face attributes,
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(a)

(b)

(c)

(d)

Figure 2.5: Illustrative results on (a) AFLW (b) 300W (c) CelebA (d)300VW .

but without Fourier embedding and low-rank learning layer. In the second and sixth im-

ages of Fig 2.5 (c), when the eyes in face images are occluded by sunglasses, DSRN can

still predict the landmarks correctly. This is because our low-rank learning can encode the

intrinsic correlation of landmarks.

On 300VW, as shown in Table 2.5, DSRN produces the highest accuracy on Test 1

and 3, where Test 3 is regarded as the most challenging subset. We have also compared with

TSTN [52] designed specifically for video-based facial landmarks detection by modeling

the temporal relationship across frames. Our method achieves overall better performance

than TSTN. Moreover, DSRN can run very fast with about 500 frames per second excluding

face detection in the platform of NVIDIA GTX 1080Ti GPU, which is promising for the

prospect of practical application. The intuitive results of 300VW are shown in Fig 2.5, our

DSRN can accurately predict the shapes of face images with great appearance variations.

Since the code for most methods are not realse, we only compare the speed for our

network with MDM and DRA-TSR, the result is showed in table 2.6. Titan X and 1080Ti
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Our network MDM DRA-TSR
speed (fps) 500 270 110

platform 1080 Ti 1080Ti Titan X
year 2018 2017 2017

Table 2.5: Comparison of speed for different methods.

have the same computational ability and the major difference is the memory. So we can

conclude that our network is much faster than the state of art methods.

2.7 Discussion

In this part, we propose the direct shape regression network (DSRN) for end-to-end

facial landmarks detection. DSRN consists of the doubly convolutional layer, the novel

Fourier embedding layer, and the low-rank learning layer. These layers enable jointly han-

dling nonlinear image-shape relationships and the intrinsic correlations between landmarks.

Our DSRN offers a new learning architecture that combines the strengths of kernels for

nonlinear feature extraction and neural networks for structured prediction. Experimental

results on five benchmark datasets have shown that our DSRN delivers high performance

on all datasets. The effectiveness of DSRN on the diverse facial landmarks detection tasks

and the fast inference time offer promise for real time landmarks prediction task.
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CHAPTER 3

Images Reconstruction for Compressive Imaging System

For the snapshot-spectral compressive imagaing system like CASSI system [28, 29],

the spectral scene is collected by the objective lens and spatially coded by a fixed mask.

Then the coded scene is spectrally dispersed by the disperser. Following this, the spatial-

spectral coded scene is detected by the charge-coupled device (CCD). A snapshot on the

CCD thus encodes tens of spectral bands of the scene. The number of coded frames for a

snapshot is determined by the dispersion property of the dispersive element and the pixel

sizes of the mask and the CCD.

For the snapshot-video compressive imagaing system like CACTI system [84], the

objective lens will collect the high-speed scene. Then it will be spatially coded by the

mask. The monochrome or color CCD will detect the coded scene for grapyscale and color

video capturing. Tens of temporal frames of the high-speed scene will be encoded by the

snapshot on the CCD.

Consider B-frames are modulated and encoded in SCI and each frame has n (=

nx × ny) pixels. Without considering optical details, mathematically, the measurement in

SCI can be modeled by [29]

y = Φx+ g , (3.1)

where Φ ∈ Rn×nB is the sensing matrix, x ∈ RnB is the desired signal, and g ∈ Rn

denotes the noise.

Though Eq. (3.1) has the formulation similar to compressive sensing (CS) [85, 86],

unlike traditional CS, the sensing matrix considered here is not a dense matrix, and it does
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not satisfy the Restricted Isometry Property (RIP). In SCI, the matrix Φ has a very specific

structure and can be written as

Φ = [D1, . . . ,DB] , (3.2)

where {Dk}Bk=1 are diagonal matrices defined by the following mask. Specifically, consider

that B spectral frames {Xk}Bk=1 ∈ Rnx×ny are modulated by shifted versions of the fixed

mask, {Ck}Bk=1 ∈ Rnx×ny , correspondingly. The measurement Y ∈ Rnx×ny is given by

Y =
∑B

k=1Xk �Ck +G , (3.3)

where � denotes the Hadamard (element-wise) product, and Dk = diag(vec(Ck)), for

k = 1, . . . , B. For all B pixels (in the B frames) at position (i, j), i = 1, . . . , nx;

j = 1, . . . , ny, they are collapsed to form one pixel in the snapshot measurement as

yi,j =
∑B

k=1 ci,j,kxi,j,k + gi,j . By defining x =
[
xT
1 , . . . ,x

T
B

]T, where xk = vec(Xk), we

have the vector formulation of Eq. (3.1). Thus, x ∈ RnxnyB, Φ ∈ Rnxny×(nxnyB), and the

compressive sampling rate in SCI is equal to 1/B. It has been proved recently in [87] that

the reconstruction of SCI is bounded even when B > 1.

3.1 Reconstruct Hyperspectral Images from a Snapshot Measurement

The target of network is to reconstruct the hyperspectral image cube from the single

measurement captured by the SCI camera. Recently, GAN [88] and variational autoen-

coder (VAE) [89] become the most convening generative models. Recent researches have

suggested that using U-net as the generative model in GAN is capable of solving diverse

problems [90, 91, 92]. In our task, in addition to the U-net plus GAN, the most recently pro-

posed self-attention mechanism is adapted to exploit both the non-local similarity of spatial

textures and the long-range spectral similarity. We propose an additional HCR strategy to

gradually reconstruct all channels which guarantees the quality of result and the accuracy

of spectral information.
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Figure 3.1: Imaging process of SCI and the network structure

Network reconstructs hyperspectral images withB (=24 in our experiments) spectral

channels that is high dimensional data. Even a deep U-net and HCR are used, it still does

not guarantee to reconstruct high quality images due to the large number of parameters and

the limited training data. In order to overcome this challenge, we propose to use another

refinement U-net which is shallower than the first U-net in the reconstruction stage. This

refinement stage improves the image quality of each spectral channel separately.

3.1.1 Reconstruction Stage

The reconstruction stage outputs the hyperspectral images and it aims to extract both

spatial and spectral information from the measurement.

3.1.1.1 Conditional GAN

The discriminator in conditional GAN (cGANs) [93] can also observe the inputs

from the generator. cGAN is appropriate for our SCI reconstruction as we aim to gener-

ate corresponding output hyperspectral images conditional on the input measurement and

masks. Specifically, the inputs masks are fixed (in a pre-built SCI system) while the input
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measurement depends on the captured scene. Thereby, the masks are not necessary to be

observed by the discriminator. The objective function of our cGAN can be expressed as

LGAN(G,D) = Ey,x[logD(y,x)]

+ Ey[log(1−D(y, G(y,Φ)))],

(3.4)

where G and D denotes the generator and discriminator, respectively.

3.1.1.2 Deeper U-net with Self-Attention

The U-net architecture detailed in Fig. 3.2 is used as the generator in our cGAN. As

mentioned before, our output hyperspectral images and the input measurement share the

same spatial structure, e.g., location of edges. The encoder and decoder can help capture

the shared low level information between input and output and remove the noise; but it may

also lose the location information from the measurement. To tackle this challenge, we add

the skip connection to help the location information pass through the network. Further-

more, since we are reconstructing high dimensional hyperspectral images, we employed

a deeper U-net. In particular, we have 3 times convolution operations with stride 1 after

the downsampling or upsampling (which is 2 in [39]); we also have 5 times downsampling

and upsampling in the encoder and decoder of U-net instead of 4. Experiment results in

Sec. 3.2.3.1 (Table 3.2) show that our deeper U-net achieves better (1.92dB higher PSNR)

results than the original U-net.

Attention module has been widely used in many computer vision tasks. Since the

convolution operator in U-net has a local receptive field, only multiple convolutional lay-

ers can capture the long range dependencies. Via adding the self-attention, the network

can learn the long range similarity in one layer easily. Self-attention learns an attention

map [94] which represents the extent that depends on all other location pixels when gen-

erating a specific location. In our self-attention layer, all spectral channels share the same
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attention map, as we not only want to capture the long range dependencies in space but also

to keep the spectral similarity in SCI reconstruction. The self-attention (Fig. 3.3) is not only

used in the generator but also in the discriminator. We have performed the experiments by

adding self-attentions to different layers of the network and found that imposing it on the

middle-to-high layer feature maps will lead to better results, but with larger attention maps.

Limited by the GPU memory, we show results by imposing the self-attention to the layer

who has 256 feature maps before the deconvolution in the decoder of the U-net in Fig.3.

64 64

128 128

256 256

512 512

1024 1024

512 512

256 256

128 128

64 64

1x1	conv

3x3	conv,	stride	1

Max	pooling,	stride	2

Deconvolution

Copy	and	concatenate
with	another	feature	map

residual	learning

Figure 3.2: U-net architecture used in the reconstruction stage of our network.

As depicted in Fig. 3.3, let θ ∈ Rc×h×w denote the feature map that we want to

impose the self-attention. By using 1 × 1 convolutions on θ, we can get three feature

spaces

f(θ) ∈ Rc′×h×w, g(θ) ∈ Rc′×h×w, h(θ) ∈ Rc×h×w,
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Figure 3.3: The self-attention module in our framework.

where c′ is an integer and we set c′ = c
8

in our experiments. We now use {f(θ), g(θ)} to

calculate the attention map. First, we reshape them to 2D matrices {f ′(θ), g′(θ)} ∈ Rc′×N ,

with N = h× w; then each entry of the attention mapA ∈ RN×N is calculated by

aj,i =
exp(sij)∑N
i=1 exp(sij)

, with sij = f ′(θi)
Tg(θj). (3.5)

aj,i represents that the extent of the model depends on the ith location when generating the

jth region. This attention mapA is then incorporated with the feature space h(θ). We first

reshape h(θ) to h′(θ) ∈ Rc×N and then imposeA on it, which arrives

ξ′ = A h′(θ)T ∈ RN×c. (3.6)

Following this, we reshape each channel (column) in ξ′ to get the output of the attention

layer ξ ∈ Rc×h×w. Lastly, then, we multiply the output of the attention layer ξ by a scale

learnable parameter γ and add it back to the input feature map θ. This leads to the final

result

z = γξ + θ. (3.7)
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3.1.1.3 Hierarchical Channel Reconstruction

It is challenging to reconstruct all 24 channels images from a single measurement

in one shot. Therefore, we propose a progressive reconstruction scheme, i.e., Hierarchical

Channel Reconstruction (HCR). HCR tries to recover a fraction of the spectral channels

and then reconstruct the entire channels based on the information we have recovered.

In our experiment, 24 spectral channels need to be reconstructed. We first reconstruct

[x1,x5,x9,x13,x17,x21] spectral channels with an interval of 4. Then we reconstruct the

[x1,x3,x5, . . . ,x23] spectral channels with an interval of 2. Finally, all the 24 channels

are reconstructed. The residual learning method is also employed. Details of the proposed

HCR are showed in Fig. 3.4. In this manner, our network reconstructs the hyperspectral

images gradually, where we have decomposed the 1 → 24 problem to 1 → 6 → 12 → 24

cascaded problems. In other words, if we can reconstruct partial spectral channels with cor-

rect spectral information, a simple interpolation method should be qualified to reconstruct

the entire channels. Table 3.2 shows HCR has improved the performance of λ -net.

Figure 3.4: The Hierarchical Channel Reconstruction module in our experiment.
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We define the intermediate outputs and the final output as I1(y,Φ), I2(y,Φ) and

G(y,Φ), respectively. The target of network is to reconstruct the signal and thus it is

reasonable to add the `2 loss into our objective function,

L`2(G) = Ey,x[‖x1 − I1(y,Φ)‖2 + ‖x2 − I2(y,Φ)‖2

+ ‖x−G(y,Φ)‖2], (3.8)

where x1 def
= [x1,x5,x9,x13,x17,x21] and x2 def

= [x1,x3,x5, . . . ,x23]. Eq. 3.8 denotes

that the generator not only aims to fool the discriminator but also enforces the output close

to the ground truth. Our final objective is

(G∗, D∗) = arg min
G

max
D
LGAN(G,D) + αL`2(G), (3.9)

where α is a parameter to balance these two terms. Via integrating this HCR strategy with

self-attention GAN , we have the output of the reconstruction stage

x′ = G∗(y,Φ) =
[
(x′1)

T, . . . , (x′B)T
]T
, (3.10)

which is the desired 3D hyperspectral image.

3.1.2 Refinement Stage

The reconstruction stage can capture the spectral information of the hyperspectral

image cube but it doesn’t have sufficient capability to offer high quality images, especially

the spatial resolution. Otherwise, an even deeper network should be used but this will

require larger training datasets. To overcome this challenge, we propose the refinement

stage to enhance the reconstruction quality. The input for refinement stage is a single frame

instead of all spectral channels in one shot. In this manner, the network treats each spectral

channel as an independent image, and it can extract the information across all spectral

channels. Given the fact that the input and output images share the same structure, we
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use another U-net as the basic architecture in the refinement stage; but this time we output

a single frame with high quality. Since each frame is of a small size, a shallow U-net is

sufficient for this task, i.e., 4 times down-sampling or deconvolution in the encoder and

decoder, respectively. Furthermore, we also add the residual learning to the input image,

which has improved (1.27dB in PSNR in Table 3.2) the final results.

We pass every single frame in the hyperspectral image cube obtained by the recon-

struction stage to the refinement stage. The `2 loss between the ground truth and the output

of the refinement stage is used as the objective function

L`2(refine) = Exi,x′i
[‖xi − x′i‖2], ∀i = 1, . . . , B. (3.11)

We train the network in the reconstruction stage first and fix the parameters; then we sent

the results to the refinement stage to train the second U-net. This separate training strategy

is mainly due to the size difference of the data. As mentioned above, the reconstruction

stage outputs the 3D hyperspectral image cube but the refinement stage processes each

spectral frame independently. It is possible to train both networks jointly. However, since

each batch in the reconstruction stage contains all channels of the same scene, while in the

refinement stage, we hope each batch consisting of different scenes (probably at different

spectral channels, too), we may need a huge memory to save these data and parameters.

Limited by the GPU memory, we perform our experiments via separate training.

3.1.3 Experiments

We compare network with several state-of-the-art methods including TwIST [95],

GAP-TV [96], and DeSCI [42]. We have also tried the sparse coding algorithms in [97, 98];

they perform worse than DeSCI and take even longer time to run. Similar cases exist in

other algorithms [99, 100] and thus ignored here due to space limit. Both peak-signal-

to-noise-ratio (PSNR) and structural similarity (SSIM) [101] are used as metrics to eval-
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uate the performance. As mentioned earlier, the most recently proposed DeSCI algo-

rithm delivers state-of-the-art results [42]. The network consistently produces high per-

formance results and surpasses DeSCI in the “Real-Mask-in-the-Loop" (MIL) simulation

data (Figs 3.7-3.6 and Table 3.1). Hereby the MIL-simulation denotes that we generate

the measurement using real masks captured by the CASSI camera, rather than randomly

generated ones. It is well known that the real captured data have noise inside and thus the

problem is more challenging. On real data (we can only have a single real data with ground

truth from the authors of CASSI), our network has also achieved better results than DeSCI

(Figs 3.12-3.9).

Though our network is the first network developed for CASSI reconstruction for

real data, we do compare with some other networks even they are developed for other

tasks. With some modifications, we have compared network with the networks developed

in [102, 103, 104] for CASSI reconstruction.

3.1.3.1 Training

All experiments are performed on a NVIDIA GTX 1080 Ti GPU. For a testing scene

with size 256× 256× 24, our framework can finish the reconstruction stage in 23ms (0.6s

on CPU). In the refinement stage, every frame of the scene can be processed in parallel

and finished within 10ms (0.4s on CPU). Without using the GPU, network can finish both

stages on an i7 CPU within 1 second.

Figure 3.5: 16 testing scenes used in the experiments.
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3.1.3.2 Data Augmentation

The data to train and validate the model is downloaded from [34]. We manually

chose 80 hyperspectral images as our training data to avoid the test scenes (Fig. 3.5) and

training data having the same content. Besides randomly flipping the image, we also ran-

domly rotate, scale, and translate the training images. The original dataset have a uniform

resolution of 1392 × 1300 × 31 in wavelength range from 400nm to 700nm with a 10nm

interval, while the real data captured by the SCI camera has 24 channels from 400nm

to 700nm, but with different intervals, i.e., with wavelengths: {398.62, 404.40, 410.57,

417.16, 424.19, 431.69, 439.70, 448.25, 457.38, 467.13, 477.54, 488.66, 500.54, 513.24,

526.8., 541.29, 556.78, 573.33, 591.02, 609.93, 630.13, 651.74, 674.83, 699.51}nm. To

mitigate this issue, we use the spectral interpolation to unify the datasets to the same wave-

length set as in [29]. Specifically, we perform data interpolation for every spatial location.

The hyperspectral images generated by our data augmentation are of size 1392×1300×24.

3.1.3.3 Training Details

We randomly crop 256 × 256 × 24 patches from the data obtained by the data aug-

mentation. The batch size is set to 20. We alternately update the parameters in G and D

in the reconstruction stage; α in Eq. (3.9) is set to 200. The input of the generator is the

concatenation of measurement and masks (Fig. 3.1 bottom-right). We have performed the

experiments to show that this performs better (2.09dB PSNR improvement) than only input

the measurement to the network in Table 3.2. During testing, we input every single chan-

nel of the hyperspectral image cube obtained by the reconstruction stage to the refinement

stage. Then we collect these B = 24 channel high quality images as the final output result.

The codes are available at https://github.com/xinxinmiao/lambda-net.
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Figure 3.6: Spectral curves of the reconstruction.

Figure 3.7: Example reconstructed images by 4 algorithms for four scenes.

3.1.3.4 “Real-Mask-in-the-Loop" Simulation Results

As mentioned above, in the MIL-simulation, we generate the measurements using

the real captured mask and the hyperspectral images consist of 24 spectral frames with

each of size 256 × 256 pixels. We have 16 testing scenes (Fig. 3.5) from the dataset [34].
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Table 3.1: PSNR in dB (left entry in each cell) and SSIM (right entry) of 16 different scenes
reconstructed by different algorithms.

Algorithm network GAP-TV TwIST DeSCI
Scene 1 36.29, 0.925 29.48, 0.800 26.77, 0.772 31.51, 0.896
Scene 2 30.07, 0.929 16.58, 0.805 13.14, 0.753 22.39, 0.806
Scene 3 34.19, 0.940 21.48, 0.769 23.66, 0.738 24.92, 0.822
Scene 4 28.90, 0.899 26.49, 0.822 26.08, 0.861 29.78, 0.907
Scene 5 34.58, 0.890 26.63, 0.688 22.45, 0.695 29.02, 0.844
Scene 6 28.09, 0.858 22.81, 0.614 20.11, 0.662 24.75, 0.797
Scene 7 36.15, 0.942 24.95, 0.699 26.20, 0.753 29.68, 0.881
Scene 8 32.64, 0.909 21.26, 0.695 18.38, 0.643 25.58, 0.823
Scene 9 33.83, 0.912 29.94, 0.812 28.09, 0.807 32.86, 0.937

Scene 10 28.63, 0.877 23.04, 0.706 20.84, 0.620 24.00, 0.748
Scene 11 35.21, 0.946 24.07, 0.754 21.75, 0.785 28.19, 0.912
Scene 12 34.77, 0.823 28.99, 0.758 26.75, 0.699 31.80, 0.863
Scene 13 32.07, 0.844 27.57, 0.650 24.54, 0.718 30.91, 0.823
Scene 14 33.73, 0.869 28.54, 0.764 26.27, 0.765 29.69, 0.852
Scene 15 29.88, 0.913 25.80, 0.801 23.84, 0.765 27.45, 0.864
Scene 16 30.54, 0.855 11.99, 0.293 20.50, 0.511 19.42, 0.305
average 32.29, 0.896 24.35, 0.715 23.09, 0.722 27.62, 0.818

The generated measurements and masks are used to reconstruct the hyperspectral images

by different algorithms. Table 3.1 lists the average PSNR and SSIM of these 16 scenes by

using all four algorithms. It can be seen that in average, our network surpasses the best

previous method DeSCI 4.67 dB. The only exception is Scene 4, which is a simple scene

with a large area being the same white screen. This fits the rank minimization model in

DeSCI and thus DeSCI offers 0.88dB higher PSNR. network performs better than DeSCI

on all other scenes. Exemplar reconstructed frames of various algorithms compared with

the truth are shown in Fig. 3.7. Obviously, network can provide both large-scale structures

and fine details of the scene. GAP-TV usually leads to blob artifacts and TwIST provides

blocky artifacts. DeSCI offers better results than GAP-TV and TwIST; however, as ob-

served in [42], it usually leads to over-smooth reconstruction. One important metric to
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evaluate the SCI algorithm is how good the spectral information they can reconstruct as

different objects have different spectral information, e.g. sky, tree, wall, etc. We plot the

spectral curves of a small region and calculate the correlation between the reconstruction

and ground truth in Fig. 3.6. Compared with other methods, network provides higher corre-

lation values for different objects. This clearly demonstrates that network can extract more

spectral information than other methods.

To quantitatively investigate different blocks of our proposed network, we performed

experiments with partial components in network, e.g., without GAN, without self-attention,

with results summarized in Table 3.2. It can be seen that all components play important

roles in our network; e.g., without GAN, the results degraded 2.81dB in PSNR; without

self-attention, the results degraded 3.52dB in PSNR, and without the refinement stage, the

results degraded 1.62dB in PSNR. As mentioned before, masks contain useful information,

and thus using masks along with the measurement improved the results by 2.09dB in PSNR.

Furthermore, residual learning in the refinement U-net has led to 1.27dB improvement in

PSNR and HCR imporves the result for 0.48dB.

Table 3.2: Comparison using different components of the model.

U-net [39] × × × × × ×
√

×
Reconstruction Deep U-net1

√ √ √ √ √ √
×

√

stage GAN
√ √

×
√ √ √ √ √

Self-attention
√ √ √

×
√ √ √ √

HCR
√

×
√ √ √ √ √ √

Refinement U-net2
√ √ √ √

×
√ √ √

stage residual learning
√ √ √ √

×
√ √

×

inputs measurement+masks
√ √ √ √ √

×
√ √

measurement × × × × ×
√

× ×
result PNSR 32.29 31.81 29.48 28.77 30.67 30.20 30.37 31.02
result SSIM 0.896 0.882 0.860 0.854 0.873 0.866 0.870 0.878

As mentioned before, we have also compared our network with other networks, with

our modifications for CASSI reconstruction. The results are summarized in Table 3.3,

where we can observe that network provides significant better results than other networks.
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Table 3.3: Compare with other deep networks.
Network Simu PSNR Simu SSIM Real PSNR
network 32.29 0.896 25.59

[4] 27.42 0.750 21.42
[5] 26.78 0.735 21.09
[6] 29.07 0.836 23.77

Truth

λ-net

GAP-TV

TwIST

DeSCI

Figure 3.8: Real data results: reconstructed bird data from measurement captured by the
real camera.

Figure 3.9: Real data results: reconstructed spectral of the bird data from measurement
captured by the real SCI camera.
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3.1.3.5 Real Data Results

The bird measurement data is captured by the CASSI system [29]. consisting of

24 spectral frames with each of size 1021 × 703 pixels. Due to the limitation of GPU

memory, we used 416× 416 pixels to perform our experiments1. In Fig. 3.12, we visualize

the reconstruction results of 6 channels using 4 algorithms. We can see that network can

provide marginally better (0.4dB) results than DeSCI and about 1dB higher PSNR than

GAP-TV and TwIST. Notably, only network can reconstruct the last frame at wavelength

699.5nm. Exemplar spectral curves are shown in Fig. 3.9. Owing to the mismatch between

the training dataset and this real data, the spectra are not perfect; even this, network can

still offer higher or comparable correlation values with other three algorithms.

As mentioned before, we only have one real data, i.e., the bird data, with ground truth

captured by CASSI. To further verify the universality of our network, we have modified the

network to the video CS system [105]. The results are comparable with DeSCI.

3.2 Reconstruct Video Images from a Snapshot Measurement

Another representative application of SCI system is video compressive imaging. We

can simply update the current model to reconstruct video frames from a snapshot measure-

ment. The first update we have done is removing the self-attention module. The reason is

for every single channel in the same feature maps they share the same attention map. It is

helpful because the object in the hyperspectral images are not moving. However, the object

is moving in videos throught the time axis, so every single channel should not have the

1It is possible to train multiple networks for different regions of the large area, since the mask values for

different places are different. However, the training takes too long and multiple GPUs are required, which is

beyond our capability. We believe this 416 × 416 region can demonstrate the performance of our proposed

network.
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same attention. That’s why we remove the self-attention module for video images recon-

struction.

3.2.1 Consistent loss

Since we have the mask that have used in our camear, it is reasonable to use this

information as much as possible in our framework. After we generate the video we want,

we can then generate the measurement as the same process happened in the camear. The

generated measurement should match the measurement that captured by our camera. So

we also add one consistent loss to make the generated measurement same as the captured

measurement.

Figure 3.10: Structure for consistent loss.

3.2.2 Total variation loss

In image processing, total variation denoising, also known as total variation reg-

ularization, is often used for removing noise from the image. Our refinement network

is designed to denoising for every single channel image in the framework which is also

proved can improve the PSNR for the reconstructed hyperspectral images. So, besides the

L2 loss the total variation loss will be also added to the generator to reduce the noise for

the generated video.

38



3.2.3 Experiment

The same as reconstruct hyperspectral images, we compare network with several

state-of-the-art methods including TwIST [95], GAP-TV [96], and DeSCI [42]. And also

we have two parts for the experiment simulation and real data. For simulation Peak-signal-

to-noise-ratio (PSNR) is used as metrics to evaluate the performance. On real data (we can

only have a single real data ), since we don’t have the groundtruth for the framese. We only

visulize the results.

The training data we used is called High-Speed-Video Slow-Motion Demonstra-

tions which can be downloaded from https://high-speed-video.colostate.edu/. There are

200 videos are used to train our deep network. For the testing data, two datasets, namely

Kobe and Traffic, used in [42] are also used in our simulation. On the other hand, we also

pick up one testing video from the High-Speed-Video Slow-Motion Demonstrations. The

same as [42], for the traffic dataset we employ related data to train the network.

3.2.3.1 Simulation Results

As mentioned above, we generate the measurements using shifted mask and the video

clip consist of 8 frames with each of size 256 × 256 pixels. We have 3 testing scenes.

The generated measurements and masks are used to reconstruct the frames by different

algorithms. Table 3.4 lists the PSNR of these 3 scenes by using all four algorithms. It

shows that out model gives best result for 2 testing scenes. For that ’Kobe’ dataset, our

model is worse than DeSCI, the main reason is our training dataset is totally different with

the basketball testing scene. Exemplar reconstructed frames are shown in Fig. 3.11. From

left to right are truth, our result, DeSCI, GAP-TV. Our result is the best one.
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Table 3.4: PSNR in dB (left entry in each cell) 3 different scenes reconstructed by different
algorithms.

Algorithm network Desci GAP-TV MMLE-MFA MMLE-GMM GMM-TP
Traffic 29.04 28.72 20.89 22.66 25.68 25.08
Kobe 25.75 33.25 26.45 24.63 27.33 24.47

Ballon 36.10 34.94 27.77 28.51 31.72 29.31

Figure 3.11: Reconstruction result for one of the simulation data

3.2.3.2 Real data Results

Because our camera caputre the measurement directly for the scene, we don’t have

the ground truth for the real data. We only visuliza the reconstruction result for the result

in Fig 3.12.

Figure 3.12: Result for real data
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CHAPTER 4

Conclusion

Many challenges for high dimensional images processing remain unsolved, even

though some existing works have achieved good performance in different applications and

it has attracted large attentions recently. The deep learning methods became very popu-

lar recently because it’s feature representation ability. This paper focus on how to design

the efficient deep learning networks for two computer vision applications, facial landmarks

detection and imges reconstruction for snapshot compressive imaging.

In this paper, we firstly propose the direct shape regression network (DSRN) for

end-to-end facial landmarks detection in a unified framework. Specifically, by deploying

doubly convolutional layer and by using the Fourier feature pooling layer proposed in this

paper, DSRN efficiently constructs strong representations to disentangle highly nonlinear

relationships between images and shapes; by incorporating a linear layer of low-rank learn-

ing, DSRN effectively encodes correlations of landmarks to improve performance. DSRN

leverages the strengths of kernels for nonlinear feature extraction and neural networks for

structured prediction, and provides the first end-to-end learning architecture for direct face

alignment. All empirical results demonstrate that DSRN consistently produces high per-

formance and in most cases surpasses state-of-the-art.

In addition, we also address the challenging problem in snapshot compressive imag-

ing: the slow reconstruction. Inspired by the recent advances of deep learning, especially

the emerging generative models, we have built a two-stage reconstruction network to re-

cover the images from a snapshot measurement. By integrating U-net into the GAN frame-

work, we have incorporated the nonlocal similarity in the images into the reconstruction
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network, thus have improved the performance of our model. The hierarchical channel re-

construction has been proposed to decompose the hard problem into several easier tasks.

The experiment results proved that HCR can further improve the performance. To further

enhance the quality of reconstructed images, we have adapted another small U-net with

residual learning to refine the results of the first stage. By processing each frame inde-

pendently, the parameters in this second U-net have decreased dramatically and thus it is

easy to train. The quality of reconstructed images has improved significantly due to this

refinement stage. Our proposed network has been verified by the real data captured by the

compressive camera. It not only achieves better results than the current state-of-the-art, but

also finishes the reconstruction in a short time. It is expected to use the compressive camera

with our network to build an end-to-end video-rate 3D imaging system, while enjoying the

benefits of low cost and low bandwidth.
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