
FEATURE SELECTION AND DATA RECONSTRUCTION VIA ROBUST AND

FLEXIBLE LEARNING MODELS

by

DI MING

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2020



Copyright c© by Di Ming 2020

All Rights Reserved



To my parents, wife, and daughter.



ACKNOWLEDGEMENTS

First of all, I would like to thank my supervising professor Dr. Chris Ding for

constantly teaching, motivating, encouraging me, and also for his invaluable advices.

Without his helps and instructions, I can not finish my degree and thesis. I also would

like to express my gratitude to Dr. Jean Gao, Dr. Junzhou Huang, and Dr. Dajiang

Zhu for their constructive suggestions on my research, and taking time to serve in my

dissertation committee.

I also would like to extend my appreciation to my colleagues in the Data Science

Lab at the Department of Computer Science and Engineering. It is my great pleasure

to have this opportunity to work with so many smart people in my group, and I have

learned a lot from technical discussions with them. I also thank my friends who have

helped me a lot throughout the career.

Finally, I would like to express sincere gratitude to my parents who have consis-

tently encouraged and inspired me during my studies. Without their love, sacrifice,

patience, and support, it would not be possible for me to reach this stage in my ca-

reer. I am also deeply grateful to my wife for her patience and sacrifice. No matter

what kind of challenges, difficulties, and painful situations I was confronted with, she

is always on my side and supports me.

January 24, 2020

iv



ABSTRACT

FEATURE SELECTION AND DATA RECONSTRUCTION VIA ROBUST AND

FLEXIBLE LEARNING MODELS

Di Ming, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Chris Ding

Feature selection and data reconstruction are very important topics in machine

learning area. In today’s big data environment, many data could have high dimensions

and come with noise, corruption, etc. Thus, we develop robust and flexible learning

models so as to select the relevant features from the high-dimensional data spaces and

reconstruct the original clean data from the corrupted input data more efficiently and

more effectively.

To resolve the inflexibility of the widely used class-shared feature selection meth-

ods such as `2,1-norm, we derive LASSO from probabilistic selection on ridge regres-

sion which provides an independent point of view from the usual sparse coding point

of view, and further propose the probability-derived `1,2-norm based feature selection

to select discriminative features. On the other hand, we propose a novel “exclusive

`2,1” regularization to select robust and flexible feature. Exclusive `2,1 regularization

brings out joint sparsity at inter-group level and exclusive sparsity at intra-group level

simultaneously. As a result, it combines the advantages of both `2,1-norm (increase

the robustness) and `1,2-norm (provide the flexibility) regularizations together.
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For purpose of automatically recovering the original clean data from the noisy

input in unsupervised fashion, we propose a deep robust data reconstruction method

in the form of autoencoder networks using `1 loss, and introduce a smoothed ReLU

(sReLU) activation function to resolve the black spot problem in the outputs of the

network naively using `1 loss with popular ReLU. In addition, we propose a robust

PCA based low-rank and sparse data reconstruction method, and theoretically prove

the underlying connection between the regularization and the robustness. Towards re-

solving the corresponding multivariate optimization problem efficiently, we introduce

an “exact solver” based optimization algorithm to minimize robust L1-PCA models

via alternative optimization strategy.

Experimental result on benchmark datasets shows: (i) the feature selected by

robust and flexible learning models achieves a higher accuracy in classifying the multi-

class data; (ii) the data reconstructed by robust and flexible learning models obtains

a smaller noise-free error in recovering the corrupted noise data. Thus it can be seen

that the proposed robust and flexible learning models obtain better performance than

state-of-the-arts in real-world applications.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Today is an era of information explosion. The amount of data is increasing

rapidly. Thus, data analysis becomes very important to many real-world applica-

tions, since it can discover useful information from the massive data to support the

decision-making. The whole process of data analysis includes inspecting, cleansing,

transforming, and modeling data. In the thesis, we develop novel robust and flexible

models for feature selection and data reconstruction, which focuses on improving the

first two steps of data analysis. As a result, our works can help users to build better

machine learning models, and further improve the performance on many real-world

applications, such as classification, clustering, etc.

In today’s big data environment, many data has high-dimensions, for example

bio-microarray datasets with more than 10,000 features/genes [1] are commonplace.

Thus, selecting a subset of useful features is a very important topic in machine learn-

ing area. Feature selection, also known as variable selection, attribute selection, or

variable subset selection, is the process of identifying relevant/significant features and

screening out irrelevant/redundant noise features. The goal of feature selection is as

follows: (i) reduces the data sizes, so as to shorten training and testing times; (ii)

avoid the curse of dimensionality; (iii) enhance generalization by reducing overfitting;

(iv) simplifies the interpretation of the results, for example, gene-expression analysis

[2], proteomic biomarkers discovery [3], molecular cancer prediction [4]; (v) improve

the performance on real-world applications such as classification.
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Many real life data come with noise, corruption, etc. For example, photos

taken through a window are often compromised by dirt or rain on the window surface

[5]; As a result, data reconstruction/recovery is the very important topic in machine

learning and computer vision areas. The task aims at automatically recovering the

original clean data from the corrupted input in an unsupervised manner, also known as

denoising [6] and noise reduction [7] in other domains. The goal of data reconstruction

is as follows: (i) removes noise so as to improve the quality of the data; (ii) captures the

complicated intrinsic property of the noisy data; (iii) learns a lower-dimensional latent

representation of the data, which leads to easier learning and easier visualization with

fewer parameters; (iv) improve the performance on real-world applications such as

clustering.

As it can be seen the first two key steps of data analysis (i.e. data inspecting and

data cleaning) are of significant importance to users who want to build a better model

given the raw data. However, existing methods have some limitations and problems,

especially when data have high dimensions and noises. Thus, we are interested in de-

veloping robust and flexible models to improve the efficiency and the effectiveness of

feature selection and data reconstruction. To resolve the inflexibility of class-shared

feature selection approaches, we derive LASSO from a probabilistic point of view,

and use the probability-derived `1,2-norm to select discriminative features, which can

provide certain flexility for each class. In addition, “exclusive `2,1” regularization is

proposed to conduct robust flexible feature selection, which can increase the robust-

ness for using `1,2-norm alone and provide the flexibility for using `2,1-norm along.

On the other hand, linear models based on nuclear norm and other low-rank methods

are good at removing simple synthetic occlusions such as black rectangles, but cannot

achieve a good performance on complicated occlusions, for example sunglasses and

scarf in AR faces [8]. Thus, we propose a deep robust data reconstruction method
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using `1-autoencoder networks to capture complicated intrinsic property of the cor-

rupted input data. Besides, we present a robust PCA based low-rank and sparse data

reconstruction method, and propose an “exact solver” based optimization algorithm

to further improve the robustness of models and the quality of reconstructions.

1.2 Contribution

1.2.1 Probabilistic LASSO

We first propose selective ridge regression to measure the importance of each fea-

ture, and then derive LASSO from a probabilistic point of view. Based on probability-

derived `1,2-norm, we introduce a ranking method to select feature using a probabilis-

tic selection vector. Furthermore, we point out an interesting point that selecting less

number of features in selective ridge regression leads to the increase of regularization

strength in LASSO, which explains the reason why the weight variable has more zero

values with a larger hyperparameter in front of `1-norm. However, LASSO is a regres-

sion analysis method for two-class problem. Towards extending probabilistic LASSO

to multi-class problems, we add a probabilistic selection vector for each class sepa-

rately. Thus, we can apply `1,2-norm regularization to select discriminative features

for each class and provide certain flexility. That is to say, selected features are not

vigorously exact same for different classes. Experimental results on six benchmark

datasets (3 image and 3 bio-microarray datasets) show that our flexible feature selec-

tion method via probability-derived `1,2-norm has a better performance on multi-class

classification as compared to state-of-the-art algorithms.

1.2.2 Exclusive `2,1 Regularization

To combine the advantages of different sparsity-induced norms such as `2,1-

norm and `1,2-norm, a novel “exclusive `2,1” regularization (short for `2,1 with exclu-
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sive LASSO) is proposed to conduct robust flexible feature selection. Exclusive `2,1

regularization brings out joint sparsity at inter-group level and exclusive sparsity at

intra-group level simultaneously. Thus, it not only removes irrelevant noise features

(i.e. increase the robustness via `2,1-norm), but also selects discriminative features for

each class (i.e. provide the flexibility via `1,2-norm). Towards a better understanding

of exclusive sparsity, an efficient sorting-based explicit approach is proposed to solve

`1,2-norm based proximal operator-type problem. We further point out an interesting

property of ‖w‖21 regularization as compared to standard ‖w‖1 regularization. As

the regularization strength (i.e. the hyperparameter in front of regularization term)

increases, ‖w‖1 regularization shrinks all the elements in w to zero, while ‖w‖21 reg-

ularization will leave at least one element in w as nonzero. This is so-called exclusive

sparsity of `1,2-norm: all the elements in a vector are competing with each other,

and finally only one element can survive with nonzero value. Then, an efficient aug-

mented Lagrangian multiplier based optimization algorithm is proposed to solve the

exclusive `2,1 regularization in a row-wise fashion, which greatly reduces the compu-

tational cost and is well-suited for large-scale data. Experimental results on twelve

benchmark datasets (4 image, 1 spoken letter recognition, 5 bio-microarray, and 2 text

datasets) validates the effectiveness of our robust flexible feature selection method on

multi-class classification as compared to state-of-the-arts.

1.2.3 Deep `1-Autoencoder Networks

To remove the noise/corruption/occlusion from the input data in real-world ap-

plications, we propose a deep autoencoder network with `1 loss to conduct robust data

reconstruction. Compared to state-of-the-art linear models and low-rank methods,

our proposed multi-layer network is more capable of capturing the complicated intrin-

sic property of the corrupted input data. An interesting finding in this work is that:
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(i) autoencoder using ReLU with L1 loss produces output with black spots; (ii) au-

toencoder using ReLU with cross-entropy loss or L2 loss produce outputs (which is the

desired reconstructed images) without black spots. Then, the analysis of the gradient

of loss and activation functions motivates us to introduce a smoothed ReLU (sReLU)

activation for resolving the black spot problem associated with `1+ReLU networks.

Extensive experiments on two benchmark datasets are performed to verify the effec-

tiveness of our deep robust reconstruction method against various kinds of occlusions

such as circle, rectangle, cross, and sunglasses, which outperforms state-of-the-arts

with lower noise-free reconstruction errors. Additionally, experimental results show

that increasing number of layers in `1-autoencoder networks with smoothed ReLU as

activation steadily improves the quality of reconstructed images.

1.2.4 Robust L1-PCA

For purpose of automatically removing the noise in the data, we propose a

robust PCA based low-rank and sparse data reconstruction method in an unsuper-

vised fashion. Traditional robust PCA models usually have an assumption of the

underlying noises in the original feature space. More than that, our proposed robust

reconstruction method also models the underlying noises of principal directions and

components in the low-dimensional latent feature space. We further derive two tight

upper bounds of robust L1-PCA models, which theoretically proves the connection

between robustness and regularization. For solving L1-/L21-norm penalty based ro-

bust L1-PCA models, we introduce two alternative optimization algorithms. Firstly,

an augmented Lagrangian multiplier based optimization algorithm is presented to

decompose original problem into several subproblems, which can be resolved in a

matrix-based fashion with close-form solutions. To further improve the robustness

of reconstruction models and resolve the early-stopping problem of ALM based op-
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timization algorithms, we introduce an “exact solver” based optimization algorithm,

which minimizes the objective function with respect to a single entry of principal

directions or components at each time. Most importantly, exact solver can obtain the

globally optimal solution for each entry while fixing others in linear time. Experimen-

tal results on benchmark dataset show the proposed robust L1-PCA model achieves

better results on reconstructing the corrupted images as compared to state-of-the-

arts, and exact solver based optimization algorithm recovers the original clean image

with better quality and further improves the robustness of reconstruction models as

compared to the widely used ALM based optimization algorithm.

1.3 Organization

The rest of the thesis is organized as follows. At first, a probabilistic derivation

of LASSO and `1,2-norm feature selection is introduced in Chapter 2. Secondly, robust

flexible feature selection via exclusive `2,1 regularization is introduced in Chapter 3.

Next, deep robust data reconstruction using `1-autoencoder networks is introduced

in Chapter 4. In the following, robust PCA based low-rank and sparse data recon-

struction is introduced in Chapter 5. Finally, conclusion are given in Chapter 6.
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CHAPTER 2

A PROBABILISTIC DERIVATION OF LASSO AND L12-NORM FEATURE

SELECTIONS

2.1 Introduction

Feature selection is one of important tasks of machine learning. In today’s

big data environment, many data has high-dimensions, e.g., biology datasets with

around 10k features/genes [1] are commonplace. Selecting useful set of features re-

duces the data sizes, improves many learning models such as classification, regression,

etc, and more importantly simplifies the interpretation of machine learning results,

with many applications in gene-expression analysis [2], proteomic biomarkers discov-

ery [3], molecular cancer prediction [4].

Feature selection has been widely investigated in many applications with great

assistance to practical performance. The main focus in the literature is on the super-

vised learning, which evaluates the relevance between features and class labels. The

evaluation metric divides feature selection algorithms into three main categories [9],

which are filter, wrapper, and embedded methods. Independent of any specific learn-

ing models, filter-type methods such as F-statistic [10] and ReliefF [11] can quickly se-

lect features which are most correlated with class labels. However, redundant features

are usually remained in the subset of selected features via aforementioned algorithms.

Thus, mRMR [12] is proposed to maximize relevance and minimize redundancy si-

multaneously, which can effectively overcome the shortage of previous methods and

further improve the practical performance. On the contrary, wrapper-type methods

such as SVM-RFE [13] are dependent on a specific classifier to iteratively search the

7



best feature subset, but which has extremely high computational cost and potential

overfitting risk.

Recently, sparse coding based methods (also called embedded methods) become

popular in the study of feature selection. This approach combines the advantages of

above-mentioned two kinds of methods. The sparse model tries to find a compromise

between loss and penalty, e.g., classic Lasso [14] using `1-norm constraint, which is also

known as sparse coding in dictionary learning. To remove redundant noise features,

`1-SVM [15] is introduced to generate the sparse solution for two-class classification

problem. On the other hand, in multi-task setting, researchers [16, 17, 18, 19] focus

on designing a collaborative model to select class-shared features via `2,1-norm, which

is first proposed in [20] as rotational invariant `1-norm for purpose of robust subspace

factorization. During the same period, `1,∞-norm [21] is proposed to build a set of

jointly sparse models, by means of `1-ball projection [22]. Besides, sparse coding based

method has been applied to many other domains, such as sparse subspace learning

[23], sparse representation based classification [24], etc.

2.1.1 A Probabilistic View of LASSO

The `1 based LASSO and the closely related `1,2-norm feature selection are, in

some sense, a prescription using sparse coding. In this work, we show they can be

derived from a probability framework, thus provides a strong probabilistic foundation.

We further propose to use this probability-derived `1,2-norm feature selection.

In this approach, features selected from different classes are not vigorously enforced

to be exactly same.

However, most of feature selection methods, such as the widely used `1,2-norm,

aim at searching features across all the data instances with joint sparsity, which then

enforces the selected features to be exactly same for all classes.
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Here, we argue that it is better to allowing selected features to have certain

flexibility, not exactly same. In applications and real data, different classes could

have its own characteristics, e.g., cars and cups have different features. Thus, using

vigorously same set of features is not a natural way to pre-process/prescreen the data.

Motivated by exclusive feature learning [25, 26, 27, 28], in this work we propose a

flexible feature selection method via `1,2-norm regularization. In previous works, `1,2-

norm is used to either capture the negative correlation which creates competitions

between features across all the classes, or eliminate strongly correlated features in two-

class setting. Thus it can be seen that our proposed method has a clear difference

from them, since we enforce `1,2-norm on features for each class to select a subset of

important features which are most correlated with each class separately. Using the

flexible `1,2-norm feature selection obtains features that generally perform better in

many real datasets, including images and bio-microarray data.

The main contributions of this work include: (1) a probabilistic derivation of

LASSO and `1,2-norm, and illustrating how `1,2-norm is used to measure the impor-

tance of features for each class; (2) an effective algorithm with rigourous convergence

analysis is proposed to compute/select the features using `1,2-norm regularization,

which is a parameter-free method and quickly converges; (3) experimental results

on six benchmark datasets (including images and bio-microarray data) show that

our proposed flexible feature selection method has an overwhelmed advantage over

state-of-the-arts.

2.2 Notations and Definitions

Lower-case letters refer to scalars, boldface lower-case letters refer to vectors,

and boldface capital letters refer to matrices. n refers to the number of data instances.

d refers to the number of features or data dimensions. k refers to the number of
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classes. The i-th element of vector w is represented by wi. The i-th row and j-

th column of matrix W = (Wi,j) are denoted as wi and wj, respectively. Given a

matrix W ∈ Rd×k, the Frobenius-norm of matrix W is ‖W‖F =
√∑d

i=1

∑k
j=1W

2
ij.

In general, the `p,q norm of W is defined as

‖W‖p,q =

 k∑
j=1

(
d∑
i=1

|Wij|p
)q/p

1/q

,

with the computational mathematics convention that `p norm on the first (fastest

index) i and `q norm on the second fast index j. With this convention, the `2,1-norm

based feature selection uses ‖WT‖2,1 regularization; the `1,2-norm based feature se-

lection uses ‖W‖1,2 regularization; the exclusive LASSO uses ‖WT‖1,2 regularization.

2.3 A Probabilistic Derivation of LASSO and `1,2-Norm Feature Selection

First, the variables of the feature selection model are defined as follows. Training

data of n labeled feature vectors are denoted as X ∈ Rd×n = (x1, · · · ,xn), where

xi ∈ Rd. The corresponding class labels are denoted as Y ∈ Rn×k = (y1, · · · ,yk),

where yi ∈ Rk represents the class label for xi using one-hot encoding vector, i.e.,

if xi belongs to j-th class, Yij = 1; otherwise, Yij = 0. Weights to be learned for

the model are denoted as W ∈ Rd×k = (w1, · · · ,wk), where wi ∈ Rd represents the

coefficients/features correlated with i-th class.

Our starting point is the LASSO type feature selection formalism using `1,2-

norm:

min
Ŵ

∥∥∥XTŴ −Y
∥∥∥2
F

+ λ
∥∥∥Ŵ∥∥∥2

1,2
(2.1)

Here we use Ŵ to distinguish it from the following presentation.

We now present a new derivation of Eq.(2.1) from a probabilistic selection based

on ridge regression. We first expand Eq.(2.1) on Ŵ = (ŵ1, · · · , ŵk)
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min
Ŵ

k∑
j=1

(∥∥XT ŵj − yj
∥∥2
2

+ λ‖ŵj‖21

)
(2.2)

Now, we introduce a selection probability vector θj for class j and propose a

selection formalism

min
W,Θ

k∑
j=1

(∥∥∥XT (θ
1
2
j �wj)− yj

∥∥∥2
2

+ λ‖wj‖22

)
s.t. θj ≥ 0,1Tθj = 1, j = 1, · · · , k,

(2.3)

where Θ = (θ1, · · · ,θk) ∈ Rd×k, 1 is a vector of all 1’s with appropriate size, and �

is a element-wise Hadamard product, i.e., (a� b)i = aibi.

Both the optimization problems of Eq.(2.2) and Eq.(2.3) are convex and have

unique optimal solutions.

Theorem 2.3.1. Optimization problems Eq.(2.2) and Eq.(2.3) are equivalent. (A)

Once the optimal solution {ŵ∗j} for Eq.(2.2) is obtained, the optimal solution for

Eq.(2.3) is given by

Θ∗ij =

∣∣∣Ŵ ∗
ij

∣∣∣
‖ŵ∗j‖1

, w∗j = (θ∗j )
− 1

2 � ŵ∗j (2.4)

where i = 1, · · · , d is the feature/dimension index. (B) On the other direction, once

{θ∗j ,w∗j} for Eq.(2.3) is obtained, the optimal solution for Eq.(2.2) are given by ŵ∗j =

(θ∗j )
1
2 �w∗j .

The proof of this theorem is given in Lemma 2.4.1.

2.4 LASSO, Nonnegative Garrote and Selective Ridge Regression

Here we discuss LASSO [14], “selective” ridge regression (see Eq.(2.3)) and

nonnegative Garrote of Breiman [29].

In optimization problems Eq.(2.2) and Eq.(2.3), different classes are in fact

decoupled. Thus we can optimize them one class at a time. Thus the optimization of

Eq.(2.2) is, in essence, equivalent to the following form (we ignore the index j)
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min
ŵ

∥∥XT ŵ − y
∥∥2
2

+ λ‖ŵ‖21, (2.5)

This is LASSO, except that the `1 term is squared which does not affect the sparsity

of ŵ.

Optimization problem Eq.(2.3) is in essence what we would call the “selective”

ridge regression

min
w,θ

∥∥∥XT (θ
1
2 �w)− y

∥∥∥2
2

+ λ‖w‖22

s.t. θ ≥ 0,1Tθ = 1.

(2.6)

This formulation in some sense is close to the nonnegative Garrote:

min
θ

∥∥XT (θ �w0)− y
∥∥2
2

s.t. θ ≥ 0,1Tθ ≤ h,
(2.7)

where

w0 = arg min
w
‖XTw − y‖22 (2.8)

is the solution to ordinary least squares estimation, and h ≤ 1 is a constant. In

both Eq.(2.6) and Eq.(2.7), the selection vector θ has similar sparsity pattern of the

LASSO.

Lemma 2.4.1. Optimization problems Eq.(2.5) and Eq.(2.6) are equivalent.

Proof Starting from Eq.(2.6), we introduce a new variable ŵ = θ
1
2 �w, then

w = θ−
1
2 � ŵ. Thus, the optimization problem (2.6) is transformed into

min
ŵ,θ

∥∥XT ŵ − y
∥∥2
2

+ λ
d∑
i=1

(
ŵ2
i

θi

)
s.t. θ ≥ 0,1Tθ = 1.

(2.9)

When ŵ is fixed, solving problem (2.9) with respect to θ is

min
θ

d∑
i=1

(
ŵ2
i

θi

)
s.t. θ ≥ 0,1Tθ = 1,

(2.10)
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which can be solved using Lagrangian multiplier [30]. The optimal solution of θ is

computed as

θi =
|ŵi|∑d
i′=1 |ŵi′ |

=
|ŵi|
‖ŵ‖1

, (2.11)

where i = 1, · · · , d is the feature/dimension index.

With the result of Eq.(2.11), the objective function of Eq.(2.10) becomes

d∑
i=1

(
ŵ2
i

θi

)
= ‖ŵ‖21. (2.12)

As a result, optimization problem given in Eq.(2.9) is transformed into a problem

identical to problem (2.5). 2

Using Lemma 2.4.1, Theorem 2.3.1 can be easily proved. Eq.(2.4) in Theorem

2.3.1 comes from Eq.(2.11).

The above relationships among LASSO, nonnegative Garrote and selective ridge

regression provides a probability interpretation of LASSO. To gain further insights,

we can easily prove the following

Theorem 2.4.2. The following optimization

min
w,θ

∥∥∥XT (θ
1
2 �w)− y

∥∥∥2
2

+ λ‖w‖22,

s.t. θ ≥ 0,1Tθ = h.

(2.13)

where 0 < h ≤ 1 is a constant, is identical to

min
ŵ

∥∥XT ŵ − y
∥∥2
2

+ λ
h
‖ŵ‖21 . (2.14)

Once the optimal solution ŵ∗ to problem (2.14) is found, optimal solution to problem

(2.13) is given by

θ∗i =
h |ŵ∗i |
‖ŵ∗‖1

, w∗i = (θ∗i )
− 1

2 ŵ∗i , (2.15)

where i = 1, · · · , d is the feature/dimension index. When ŵ∗i = 0, w∗i = 0. Note that

1Tθ∗ = h.
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Theorem 2.4.2 implies that when we wish to select less number of features using

a smaller h < 1, we need to increase the regularization strength λ/h in front of squared

`1-norm, see Eq.(2.14).

2.4.1 A Ranking Method

Strictly speaking, in order to use LASSO to select m features, one has to set

λ appropriately to a value λm so that exactly m features in optimal solution ŵ∗ are

nonzero. The less number of features we desire, the stronger regularization we need

to apply — consistent with Theorem 2.4.2. We will call this method as strict λm

method. This strict λm method is computationally expensive.

The probability derivation of LASSO of Theorems 2.3.1 and 2.4.2, as the selec-

tion vector θ from the selective ridge regression, naturally provides a ranking scheme

of the features. Once we computed the solution to the LASSO problem Eq.(2.5), from

Eq.(2.11), the importance of feature i is proportional to |ŵ∗i |. In other words, we rank

the importance of features according to (|ŵ∗1|, · · · , |ŵ∗d|), and select the top m ranked

features from the sorted order. This ranking selection method is fast in practice.

These two selection methods usually lead to different selected feature sets. In

our experiments and from reading many research publications by other researchers,

the feature set selected from ranking method generally performs better than the

feature set selected via the strict λm method.

A simple explanation is that the strict λm method usually leads to a larger λm

as compared to the λ used in the ranking method. The larger λm used in LASSO

usually penalizes the regression too severely and thus altered the structural relation

among the features. In the ranking method, a smaller λ is used which does not alter

the relation among the features. This explanation is further strengthened from the

point of view of the selection vector θ in selective ridge regression.
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2.4.2 Beyond the Linear Regression Loss

In formulations Eqs.(2.1, 2.6, 2.13), the error/loss term uses linear regression.

But they can be any other forms of loss. The proofs of Theorems 2.3.1 and 2.4.2

only depend on the regularization term, and thus hold without any change. In other

words, the process from the `2 regularization to the `1,2 regularization is purely due

to the transformation of probabilistic selection.

2.5 Feature Selection Using `1,2-Norm

From here on, we use W to replace Ŵ in Eq.(2.1) for notational simplicity.

As explained earlier, flexible feature selection does not enforce rigourously that

features selected for every class are exactly same. This is naturally done in the `1,2

regularization based selection we propose in this work, written explicitly here for

clarity,

‖W‖21,2 =
k∑
j=1

(
d∑
i=1

|Wij|

)2

. (2.16)

As regularization strength parameter λ goes large, different elements in the `1

norm of j-th column of W (i.e.
∑d

i=1 |Wij|) for a fixed class j compete with each

other, and only a few elements (corresponding to different features) will survive (be

nonzero), i.e., these features being selected for class j.

To the best of our knowledge, however, flexible feature selection has not been

thoroughly investigated so far. The main trend in feature selection is using `2,1-norm

based formalisms [16, 17, 18, 19], enforcing joint sparsity and selecting rows of weight

matrix W.

We note that the competition and survival property explained above for ‖W‖21,2

also happens in exclusive lasso of Zhou et al. [26]. Their formulation is different from

our approach here. They use the regularization
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∥∥WT
∥∥2
1,2

=
d∑
i=1

(
k∑
j=1

|Wij|

)2

. (2.17)

As regularization strength parameter λ goes large, different elements in the `1

norm of i-th row of W (i.e.
∑k

j=1 |Wij|) for a fixed feature i compete with each other,

i.e., they are mutually exclusive, and only a few elements (corresponding to different

classes) will survive (be nonzero), i.e., feature i being selected for these classes. This

competition and survival property is the prominent feature of “exclusive LASSO”.

In Kong et al [27], they use exclusive group norm,
∑

g ‖wg‖21 (where g is the group

index) which is very similar to exclusive lasso, except only 2-class case is considered

there.

In summary, both our proposed `1,2-norm based feature selection ‖W‖21,2 and

the exclusive LASSO
∥∥WT

∥∥2
1,2

have the competition and survival property (i.e. the

“exclusive” property), and can be used for flexible feature selection. However, `2,1-

norm based feature selection
∥∥WT

∥∥
2,1

is not suitable for flexible feature selection.

2.6 Efficient Algorithms

We wish to solve the `1,2-norm based feature selection and the exclusive lasso

(eLASSO). They are expressed as

E(W) =
∥∥XTW −Y

∥∥2
F
, (2.18)

J12(W) = E(W) + λ‖W‖21,2, (2.19)

JeLASSO(W) = E(W) + λ
∥∥WT

∥∥2
1,2
. (2.20)

We use an iterative algorithm to solve the problem.

Let W0,W1, · · · ,Wt,Wt+1, · · · be the solutions at different stages. Our task

here is (A) derive an update algorithm Wt+1 = f(Wt), and (B) prove its convergence:

J(Wt+1) ≤ J(Wt).
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We use the auxiliary function approach widely adopted in nonnegative matrix

factorization [31, 32, 33] to derive an efficient algorithm. A function G(W,W̃) is the

auxiliary function of J(W), if it satisfies condition (C1)

J(W) ≤ G(W,W̃),∀W,W̃,

and condition (C2)

J(W) = G(W,W),∀W.

The key step is finding the auxiliary function for the objective J12(W) and

JeLASSO(W). We have

Theorem 2.6.1. An auxiliary function for J12(W) is

G12(W,Wt)

= E(W) + λ
∑k

j=1

(∑d
i=1

W 2
ij

|W t
ij |

)
‖wt

j‖1

= E(W) + λ
∑k

j=1 wT
j Djwj,

(2.21)

where

Dj = ‖wt
j‖1diag(1/|W t

1j|, · · · , 1/|W t
dj|), (2.22)

and wj is a column vector. An auxiliary function for JeLASSO is

GeLASSO(W,Wt)

= E(W) + λ
∑d

i=1

(∑k
j=1

W 2
ij

|W t
ij |

)
‖(wi)t‖1

= E(W) + λ
∑d

i=1 wiHi(w
i)T ,

(2.23)

where

Hi = ‖(wi)t‖1diag(1/|W t
i1|, · · · , 1/|W t

ik|), (2.24)

and wi is a row vector.

The proof of this theorem is given below.

In the following, we focus on deriving the update algorithm of `1,2-norm based

feature selection using J12(W). Algorithm for JeLASSO(W) can be obtained in iden-

tical fashion.
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2.6.1 The Update Algorithm

Using Theorem 2.6.1, the update algorithm is given by

Wt+1 = arg min
W

G12(W,Wt). (2.25)

This is solved by setting ∂G12(W,Wt)
∂W

= 0. The solution is

wt+1
j = (XXT + λDj)

−1(Xyj), (2.26)

where j = 1, · · · , k is the class index, and Dj is defined in Eq.(2.22).

Eq.(2.26) is the updating equation for the j-the column of weight matrix W.

Since G12(W,Wt) is a strict convex function in W, wt+1
j obtained is the global

optimal solution of J12(W).

This is a convergent update algorithm, because we have

J12(W
t+1) ≤ G12(W

t+1,Wt) ≤ G12(W
t,Wt) = J12(W

t).

The first inequality is due to the condition (C1) for the auxiliary function. The second

inequality comes from the fact that Wt+1 is the global optimal solution for Eq.(2.25).

The third equality comes from auxiliary function condition (C2).

In summary, we have derived the update algorithm outlined in Algorithm 1 and

proved its convergence.

Proof of Theorem 4.

Auxiliary function condition (C1):

J12(W
t+1) ≤ G12(W

t+1,Wt).

Let the difference between left-hand-side and right-hand-side of above inequality de-

fined as ∆ = LHS− RHS.

Thus, we obtain the following
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Algorithm 1 Efficient algorithm for solving the `1,2-norm based feature selection.

1: Input: Data matrix X ∈ Rd×n, labels Y ∈ Rn×k.

2: Output: W ∈ Rd×k, Dj ∈ Rd×d, j = 1, · · · , k.

3: Set t = 0.

4: Initialize Wt.

5: repeat

6: for each class j ∈ {1, · · · , k} do

7: Compute Dj via Eq.(2.22).

8: Compute wt+1
j via Eq.(2.26).

9: end for

10: Set t = t+ 1.

11: until Converges

∆ =

(
E(Wt+1) + λ‖Wt+1‖21

)
−

(
E(Wt+1) + λ

k∑
j=1

(
wt+1
j

)T
Dj

(
wt+1
j

))

= λ

(
k∑
j=1

∥∥wt+1
j

∥∥2
1

)
− λ

(
k∑
j=1

(
wt+1
j

)T
Dj

(
wt+1
j

))

= λ
k∑
j=1

[(
d∑
i=1

∣∣W t+1
ij

∣∣)2 − ( d∑
i=1

|W t+1
ij |2
|W t

ij|

)(
d∑
i=1

∣∣W t
ij

∣∣)]

= λ
k∑
j=1

[(
d∑
i=1

AijBij

)2
−
(

d∑
i=1

A2
ij

)(
d∑
i=1

B2
ij

)]
≤ 0

(2.27)

where Aij =
|W t+1

ij |√
|W t

ij|
, Bij =

√∣∣W t
ij

∣∣. The last inequality in Eq.(2.27) is obtained

according to the Cauchy-Schwarz1 inequality, which proves condition (C1).

1Given any two vectors x and y, the Cauchy-Schwarz inequality states, in the inner product

space, it is always true that (
∑

i xiyi)
2 ≤ (

∑
i x

2
i )(
∑

i y
2
i ).
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Auxiliary function condition (C2):

G12(W
t,Wt) = J12(W

t).

From the Eq.(2.21), we obtain the following

G12(W
t,Wt)

= E(Wt) + λ
∑k

j=1

(∑d
i=1

(W t
ij)

2

|W t
ij |

)
‖wt

j‖1

= E(Wt) + λ
∑k

j=1 ‖wt
j‖21

= J12(W
t),

(2.28)

which proves condition (C2). Thus, Theorem 2.6.1 is proved. 2

During the computation, many of the elements Wij become zero due to sparsity.

We therefore replace 1/|Wij| by 1/(|Wij|+ ε), where ε is a small number 1e−7.

2.7 Experiment

For purpose of verifying the effectiveness of our flexible feature selection method

via `1,2-norm, extensive experiments on six benchmark datasets are conducted in

comparison with six state-of-the-art algorithms.

2.7.1 Description of Benchmark Datasets

In our experiments, six benchmark datasets including image and bio-microarray

data are used to study the performance of feature selection methods on multi-class

classification. The description of all the datasets are given as follows.

Image dataset: there are three image datasets, including MNIST2 [34], Bi-

nAlpha3, AT&T4. Each instance is represented by a vector with all the pixel values in

2In MNIST, one hundred samples are randomly chosen out of each class to form a smaller dataset

in our experiments.
3https://cs.nyu.edu/~roweis/data.html
4http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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an image. In MNIST, handwritten digits from 0 to 9 are collected as samples. On the

other hand, samples in BinAlpha are composed of handwritten letters from A to Z.

Both digits and letters have been size-normalized and centered in a fixed-size image.

AT&T, also known as the ORL database of faces, is the widely used face recognition

dataset, in which images were taken at different times varying the lighting, facial

expressions, and facial details.

Microarray dataset: there are three microarray datasets, including Carcino-

mas [35, 36], Lung [37], TOX5 [38]. Each instance is represented by a vector with

all the genes expression values. Under the first-generation molecular classification

scheme, both Carcinomas and Lung are constructed to identify gene subsets whose

expression typifies each cancer class, and quantify the extent to which genes are re-

lated to specific tumor type. In another hand, TOX focuses on discovering the time-

course of changes in adipocyte morphology, adipokines and the global transcriptional

landscape in visceral white adipose tissue, during the development of diet-induced

obesity.

As compared to image dataset, microarray dataset usually involves a relatively

small number of data instances but following with a extremely high dimension of

features.

The detail of benchmark datasets is summarized in Table 2.1.

2.7.2 Classification Result and Analysis

Baseline methods: our `1,2-norm based flexible feature selection method is

compared to six state-of-the-art algorithms, including feature selection via `2,1-norm

[16, 17, 18], feature selection via `1,∞-norm [21], exclusive lasso (eLASSO) [26], mRMR

[12], F-statistic [10], ReliefF [11]. Towards a fair comparison, the hyperparameter λ

5http://featureselection.asu.edu/datasets.php
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Dataset #Classes #Instances #Features
MNIST 10 1000 784

BinAlpha 26 1014 320
AT&T 40 400 644

Carcinomas 11 174 9182
Lung 5 203 3312
TOX 4 171 5748

Table 2.1: Summary descriptions of dataset.

in sparse coding based models, such as `1,2, `2,1, `1,∞, is adjusted to achieve the same

number of nonzero elements in the weight matrix W.

Classifiers: k-nearest neighbor (KNN), support vector machine (SVM), and

linear regression (LR) with five-fold cross validation are used to evaluate the perfor-

mance of feature selection on classification. The average of classification performance

on different five folds are reported as the final accuracy. The parameter k in KNN

is set as 3. LIBSVM [39] is used as practical implementation of SVM, in which the

kernel is set as linear and C = 1.

Analysis of experimental results: As it can be seen in Fig. 2.1−2.6 that the

classification using aforementioned seven feature selection methods is performed on

six benchmark datasets. From left to right in each figure, classifiers that we used are

KNN, SVM, and LR respectively. The number of selected features for each method

ranges from 10 to 80, which is marked as the scale of x-axis. The y-axis shows the

averaged accuracy of five-fold cross validation.

Among these baseline methods, the simplest F-statistic has the worst perfor-

mance overall. As compared to F-statistic, another two filter-type methods, such as

mRMR and ReliefF, improve the classification accuracy greatly. Moreover, mRMR

can even beat sparse coding based methods for example `2,1-norm and `1,∞-norm in

some cases.
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(a) KNN (b) SVM (c) LR

Figure 2.1: `1,2 versus state-of-the-arts on MNIST dataset.

(a) KNN (b) SVM (c) LR

Figure 2.2: `1,2 versus state-of-the-arts on BinAlpha dataset.

(a) KNN (b) SVM (c) LR

Figure 2.3: `1,2 versus state-of-the-arts on AT&T dataset.

However, filter-type methods are inferior to sparse coding based methods in

general. Feature selection via `2,1-norm performs very close to feature selection via

`1,∞-norm when classifying not only images but also bio-microarray data, since both

methods share the same property that aims at searching a subset of class-shared

features across all the data instances. Only the results obtained on AT&T dataset,

`2,1 is obviously better than `1,∞ around 5.0%.
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(a) KNN (b) SVM (c) LR

Figure 2.4: `1,2 versus state-of-the-arts on Carcinomas dataset. F-statistic using top
10 and 20 features is not plotted in the figure, since the classification accuracy is way
below the scale of y-axis.

(a) KNN (b) SVM (c) LR

Figure 2.5: `1,2 versus state-of-the-arts on Lung dataset.

(a) KNN (b) SVM (c) LR

Figure 2.6: `1,2 versus state-of-the-arts on TOX dataset.

Among sparse coding based methods, eLASSO is an outstanding one which

selects exclusive features as the main purpose, only performing slightly lower than

our `1,2-norm based method around 1.0% on BinAlpha and AT&T. Nevertheless,

when the dimension of features becomes very large, eLASSO has a relatively bad

results on microarray datasets.
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Most importantly, our flexible feature selection method via `1,2-norm achieves

the best results on all the six benchmark datasets as compared to state-of-the-arts.

No matter which classifier is used here, `1,2 has an overwhelmed advantage over six

baseline methods. Besides, `1,2 has a stable performance without huge degradation,

when using any number of feature subsets. Contrarily, most of baseline methods have

a deteriorated performance in different degrees, when the number of selected features

is relatively small. However, `1,2 is better than others around 5%-10% using top 10

or 20 features. In summary, experimental results on benchmark datasets verify that

`1,2 based flexible feature selection is a more nature way to measure the importance

of features for each class than class-shared selections.

2.8 Conclusion

In this work, we derive LASSO and `1,2-norm feature selection from a prob-

abilistic framework. In addition, we further propose a feature selection approach

based on `1,2-norm, allowing certain flexibility that selected features do not have to

be exactly same for all classes. The resulting features lead to significantly better clas-

sification than state-of-the-art methods on six benchmark datasets, including images

and bio-microarray data.
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CHAPTER 3

ROBUST FLEXIBLE FEATURE SELECTION VIA EXCLUSIVE L21

REGULARIZATION

3.1 Introduction

Feature selection plays an important role in many machine learning tasks. The

main purpose is to remove irrelevant and redundant noise features in high-dimensional

data space. The selected features will help to reduce the computation cost and im-

prove the performance on real-world applications.

There are many research works on feature selection over the years. Generally,

feature selection methods can be divided into three main categories [9]: wrapper

method, filter method, and sparse coding based method (also known as embedded

method). The most representative wrapper method is support vector machine re-

cursive feature elimination (SVM-RFE) [13], but the computation cost is extremely

high. Contrarily, filter method is very efficient such as F-statistic [10], ReliefF [11],

minimum redundancy maximum relevance (mRMR) [12].

Recently, sparse coding based methods have been widely investigated by re-

searchers, and applied to the study of feature selections. Classic least absolute shrink-

age and selection operator (LASSO) [14] is a regression based analysis method that

incurs the sparsity on weights via `1-norm. `1-SVM [15] and hybrid huberized SVM

(HHSVM) [40] are introduced to further improve performance on two-class problem.

LASSO can be derived from probabilistic selection on ridge regression [41].

Towards solving multi-class problem, researchers start to search a subset of fea-

tures shared by all the classes, also known as multi-task feature learning (MTFL).
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`2,1-norm is the most widely used regularization, developed in [16, 17, 18, 19]. During

the same period, Quattoni et al of [21] propose the `1,∞-norm regularization, which

shares the similar property of row sparsity as `2,1-norm. As compared to class-shared

feature selection methods, exclusive lasso (eLASSO) [26, 28] proposes to capture the

negative correlation among different classes via `1,2-norm, which is first introduced

in [25] called as composite absolute penalties (CAP). In exclusive learning, discrim-

inative feature is selected for each class to provide certain flexibility. Based on this,

Kong et al of [27] propose to solve the mix of `1-norm and `1,2-norm, for purpose of

minimizing the feature correlation.

Motivated by previous works, we introduce a novel regularization called “ex-

clusive `2,1”, which is short for “`2,1 with exclusive lasso”. The “exclusive `2,1” reg-

ularization brings out joint sparsity at inter-group level and exclusive sparsity at

intra-group level simultaneously. Thus, this proposed regularization can combine the

advantages from different sparsity-induced penalties, which not only removes irrele-

vant noise features (i.e. increase the robustness via `2,1-norm regularization) but also

selects discriminative features for each class (i.e. provide the flexibility via `1,2-norm

regularization). As a result, “exclusive `2,1” successfully resolves the problems for

using `2,1-norm alone or using `1,2-norm alone.

The main contribution of this work includes: (i) a novel “exclusive `2,1” regular-

ization is proposed to conduct robust flexible feature selection; (ii) we point out some

interesting properties of ‖w‖21 regularization as compared to ‖w‖1 regularization; (iii)

a sorting based explicit approach is introduced to solve the `1,2-norm regularization

with analytic solution; (iv) an efficient augmented Lagrange multipliers (ALM) based

optimization algorithm is proposed to iteratively solve the “exclusive `2,1” regular-

ization in a row-wise fashion; (v) experimental results on twelve benchmark datasets

demonstrate that the proposed regularization outperforms state-of-the-arts.
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3.2 Notations and Definitions

Throughout this chapter, scalars, vectors, and matrices are denoted as lower-

case/capital letters, boldface lower-case letters, and boldface capital letters, respec-

tively.

The i-th element of vector w is represented by wi. Given a matrix W = (Wij) ∈

Rd×k, the i-th row is represented by wi (i.e. W = [w1; · · ·; wd]), and the j-th column

is represented by wj (i.e. W = [w1, · · ·,wk]). The Frobenius norm of W is ‖W‖F =√∑d
i=1

∑k
j=1W

2
ij. `2,1-norm of W is ‖W‖2,1 =

∑d
i=1 ‖wi‖2 =

∑d
i=1

(∑k
j=1W

2
ij

)1/2
.

`1,2-norm of W is ‖W‖21,2 =
∑d

i=1 ‖wi‖21 =
∑d

i=1

(∑k
j=1 |Wij|

)2
.

X = [x1, · · ·,xn] ∈ Rd×n represents n data points, where xi ∈ Rd, and the

corresponding class labels are defined as Y = [y1; · · ·; yn] ∈ Rn×k, where yi ∈ Rk is

one-hot encoding vector and yij = 1 or Yij = 1 means i-th sample belonging to j-th

class.

3.3 Exclusive `2,1 Regularization

In general, sparse coding based method can be formulated as

min
W∈Rd×k

f(W) + λΩ(W), (3.1)

where f(W) is the loss term to measure the difference/error between ground truth

(i.e. given class labels) and prediction, Ω(W) is the sparsity-induced regularization

term, and λ is the hyperparameter to control the level of sparsity in W.

Our work is motivated from the following observations. The `2,1 norm based

feature selection:

min
W∈Rd×k

f(W) + λ‖W‖2,1 (3.2)

incurs joint sparsity on rows (i.e. all the elements in a row are shrunk to zero values).

A selected non-zero row could still have some elements with small (in magnitude)
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numerical values. Suppose one of them is Wij. This implies i-feature is not highly

correlated with j-th class. For example, in object recognition, features related to

wheel should be selected for automobiles such as car, bus, truck, etc, but should not

be selected for animals such as bird, cat, horse, etc. Thus `2,1 alone is too rigid for

feature selection.

On the other end, exclusive lasso using `1,2-norm

min
W∈Rd×k

f(W) + λ‖W‖21,2 (3.3)

selects discriminative features for each class. Here, as λ increases, different elements

in squared `1-norm of i-th row wi are competing with each other to survive. Thus, at

least one element in row wi survive (remaining non-zero), as regularization strength

increases to a certain value. This is so-called “exclusive sparsity”. The problem with

exclusive lasso in this context is: all features will be selected, because for each feature

i, there will be some non-zero elements even at large regularization strength. For

example, in gene-expression analysis of smoking and non-smoking, each gene will be

selected at least for one case using `1,2-norm. As a results, those irrelevant noise genes

will not be screened out. This outcome is not what we desire, since we only want to

find out a few significant genes which are highly correlated with either smoking or

non-smoking. Thus, `1,2 along is not robust for feature selection.

Towards resolving above main concerns for using `2,1 regularization alone or us-

ing exclusive lasso alone, we propose to combine them together as a new regularization

defined as

Ω(W) = α ‖W‖2,1 + β ‖W‖21,2 , (3.4)

which is called as “exclusive `2,1”, short for “`2,1 with exclusive lasso”.

How two different type of sparsity-induced norms can work synergistically to

achieve the robust flexible feature selection goal?
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(i) As the regularization strength α increases, `2,1-norm enforces more and more

rows to zero, which thus helps `1,2-norm to eliminate those irrelevant noise rows. This

resolves the concern with exclusive lasso alone regularization.

(ii) As the regularization strength β increases, `1,2-norm enforces each row to

have at least one nonzero, which thus helps `2,1-norm to eliminate small (in mag-

nitude) nonzero elements in nonzero row. This resolves the concern with `2,1 alone

regularization.

3.3.1 An Illustration

We give an illustration here to describe the difference between above-mentioned

three sparsity-induced regularizations.

The synthetic data X, Y is given in Eq. (3.5), where d = 7, n = 8, k = 3.

XT =



0.463 0.319 −0.100 0.526 0.535 0.329 0.475

0.296 0.192 0.058 −0.076 0.152 0.313 −0.114

0.196 0.189 0.167 −0.280 0.267 −0.246 0.164

0.330 0.357 0.027 −0.001 0.118 0.058 0.191

0.332 0.035 −0.002 0.280 0.111 −0.043 0.104

−0.022 −0.026 0.770 0.189 0.196 −0.146 −0.121

−0.217 0.028 0.404 0.359 0.335 −0.282 −0.235

0.396 0.297 0.260 0.241 0.193 0.038 0.101



Y=



1 0 0

1 1 0

1 0 1

1 1 1

0 1 0

0 1 1

0 0 1

0 0 1


(3.5)

The loss function we used for this illustration is defined as

f(W) = ‖XTW −Y‖2F , (3.6)

which is the standard least square loss. The hyperparameter in front of different

norms is adjusted to obtain the same level of sparsity in W. The learned matrices
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are given in Eqs. (3.7, 3.8, 3.9), where the number of non-zero elements in the weight

matrix W is enforced to 12 for each regularization. Their differences are explained

as follows:

(i) W21 (`2,1-norm): a feature can be selected by all the classes (e.g. 3rd row

is selected for 1st, 2nd, and 3rd classes), or can be eliminated (e.g. 4th row is a zero

vector).

W21 =



0.764 0.587 0.378

0.097 0.033 0.082

0.054 0.531 1.003

-0.000 0.000 0.000

0.151 0.030 0.126

0.000 0.000 -0.000

0.000 -0.000 0.000



(3.7)

(ii) W12 (exclusive LASSO): a feature can be selected by some classes (e.g. 5th

row is selected for 1st and 3rd classes; 6th row is selected only for 3rd class), but can

not be eliminated since the weight matrix has no zero rows.

W12 =



0.336 0.352 0.000

0.287 0.000 0.358

0.000 0.070 0.758

−0.009 0.173 0.000

0.326 0.000 0.298

0.000 0.000 −0.344

0.333 -0.000 0.000



(3.8)

(iii) WexL21 (the proposed “exclusive `2,1” regularization): a feature can be se-

lected by all the classes (e.g. 2nd row is selected for 1st, 2nd, and 3rd classes), or can
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be selected by some classes (e.g. 3rd row is selected for 2nd and 3rd classes), or can

be eliminated (e.g. 4th row is a zero vector).

WexL21 =



0.192 0.114 0.000

0.132 0.014 0.090

0.000 0.041 0.358

0.000 0.000 0.000

0.133 -0.000 0.137

0.017 0.004 −0.024

0.000 0.000 0.000



(3.9)

Based on learned weight matrices in Eqs. (3.7, 3.8, 3.9), we summarize the

features selected by different approaches in Tables 3.1, 3.2, 3.3, where “3” represents

one feature is selected for certain class and “7” represents one feature is not selected

for certain class.

Thus it can be seen that the proposed exclusive `2,1 regularization combines

the advantages of different sparsity-induced regularizations, which not only removes

irrelevant noise features (i.e. increase the robustness via `2,1-norm), but also selects

discriminative features for each class (i.e. provide the flexibility via `1,2-norm).

3.4 Understanding the Exclusive Sparsity of `1,2-Norm

3.4.1 Interesting Property of ‖w‖21 Regularization

In this work we use ‖w‖21 regularization for flexible feature selection. Here we

point out some interesting properties of this regularization.

Consider ‖w‖21 regularization first. We investigate the following simple proximal

operator-type problem:

min
w∈Rd

‖w − a‖22+λ‖w‖21. (3.10)
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Dataset class-1 class-2 class-3
feature-1 3 3 3

feature-2 3 3 3

feature-3 3 3 3

feature-4 7 7 7

feature-5 3 3 3

feature-6 7 7 7

feature-7 7 7 7

Table 3.1: The relation between feature and class in `2,1 regularization.

Dataset class-1 class-2 class-3
feature-1 3 3 7

feature-2 3 7 3

feature-3 7 3 3

feature-4 3 3 7

feature-5 3 7 3

feature-6 7 7 3

feature-7 3 7 7

Table 3.2: The relation between feature and class in `1,2 regularization.

Dataset class-1 class-2 class-3
feature-1 3 3 7

feature-2 3 3 3

feature-3 7 3 3

feature-4 7 7 7

feature-5 3 7 3

feature-6 3 3 3

feature-7 7 7 7

Table 3.3: The relation between feature and class in exclusive `2,1 regularization.
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This is very similar to the standard `1-norm regularization problem

min
w∈Rd

‖w − a‖22+λ‖w‖1. (3.11)

which has been thoroughly studied in connection to lasso [14].

There exits a widely held belief that optimization problems Eq. (3.10) and

Eq. (3.11) behave very similarly and their solutions have identical sparsity pattern.

This belief come from the following reasoning. Problem (3.10) is equivalent to

min
w∈Rd

‖w − a‖22

s.t. ‖w‖21≤ t,

(3.12)

for some parameter t. And problem (3.11) is equivalent to

min
w∈Rd

‖w − a‖22

s.t. ‖w‖1≤ t,

(3.13)

for some parameter t.

However, this widely held belief is incorrect.

Let w∗`12 be the optimal solution for problem (3.10). Let w∗`1 be the optimal

solution for problem (3.11). We illustrate their significant differences in the following

two simple cases:

Case 1 is a simple problem in 2-dim. a = (2, 1). Optimal solutions are (com-

puted using algorithm explained later1)

λ = 0.1, w∗`1 = (1.95, 0.95), w∗`12 = (1.75, 0.75).

λ = 1, w∗`1 = (1.5, 0.5), w∗`12 = (1,0).

λ = 10, w∗`1 = (0; 0), w∗`12 = (0.1818; 0).

λ = 1000, w∗`1 = (0; 0), w∗`12 = (0.0020; 0).

1For standard ‖w‖1 regularization, Eq. (3.11) has the closed-form solution asw∗
`1

= sign(a)�[|a|−

λ/2]+. For ‖w‖21 regularization, we propose a sorting based explicit approach (see Theorem 3.4.5)

to solve Eq. (3.10), and the optimal solution w∗
`12

is given in Eq. (3.17).
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Clearly as λ increases above 1, w∗`1 is all zeros, but w∗`12 has non-zero component.

Case 2. Consider the dimension is one with a = 1. These problems can be

solved analytically. The solutions are

w∗`1 =

[
1− λ

2

]
+

, w∗`12 =
1

1 + λ
.

Clearly, when λ > 2, w∗`1 = 0, but w∗`12 is never zero not matter how large λ is.

These two cases show that as λ increases to large values, w∗`1 will become exact

zero for all components; while w∗`12 will become zero for d − 1 components and one

component approaches 1
1+λ

asymptotically.

3.4.2 Solving `1,2-Norm Regularization

Zhou et al of [26] illustrate the sparsity of `1,2-norm from a projection point of

view, then solve a min-max optimization problem. Kong et al of [27] use an iteratively

re-weighted method to solve `1,2-norm regularization, which needs to compute the

matrix inverse at each iteration.

However, both methods are not efficient, especially in high-dimensional data

space. Inspired by non-negative shrinkage thresholding operator [42], we introduce a

sorting based explicit approach to solve the `1,2-norm regularization, which can work

efficiently with augmented Lagrangian multiplier based optimization algorithm. Here,

we focus on solving the simplified formulation of `1,2-norm, i.e., the proximal operator

defined in Eq. (3.10), which then can be applied to solve multi-class classification

problem (3.22) explained later in section 3.5.

Lemma 3.4.1. The optimal solution w∗ of Eq. (3.10) has the following property of

its sign: for i = 1, · · ·, d, (i) if ai = 0, w∗i = 0; (ii) if ai 6= 0, sign(w∗i ) = sign(ai).

Proof of Lemma 3.4.1. If ai = 0, w∗i = 0 can be easily verified, since w∗i = 0 gives

the lower objective values of Eq. (3.10) as compared to w∗i 6= 0.
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If ai 6= 0, suppose the optimal solution is ŵ = (· · ·, c, · · · ), where ŵi = c and

sign(c) 6= sign(ai).

However, we can always find a better solution w̃ = (· · ·,−c, · · · ), where w̃i = −c,

to decrease the value of objective function given in Eq. (3.10), since we have the

following inequality

(w̃i − ai)2 = (|c| − |ai|)2 < (|c|+ |ai|)2 = (ŵi − ai)2,

and |ŵi| = |w̃i| = |c|.

Thus, we have the following inequality

‖ŵ − a‖22+λ‖ŵ‖21 > ‖w̃ − a‖22+λ‖w̃‖21,

which leads to the conclusion that sign(w∗i ) = sign(ai). 2

Lemma 3.4.2. The optimal solution w∗ of Eq. (3.10) has the following property of

its magnitude that for i = 1, · · ·, d:

|wi| − |ai|+ λ‖w‖1= 0, if |wi| > 0; (3.14)

−|ai|+ λ‖w‖1ξi = 0, ξi ∈ [0, 1], if |wi| = 0, (3.15)

where ξi ∈ [0, 1] is the subgradient of function f(x) = |x|, x ≥ 0 at x = 0.

Proof of Lemma 3.4.2. Eq. (3.10) can be rewritten as

min
w∈Rd

J(w) =
d∑
i=1

(|wi| − |ai|)2 + λ

(
d∑
i=1

|wi|

)2

(3.16)

since [sign(wi)]
2 = [sign(ai)]

2 = 1, according to Lemma 3.4.1,

Taking the derivative of J(w) w.r.t |wi| and setting ∂J(w)
∂|wi| = 0, we have the

same first-order optimality conditions defined in Eq. (3.14) and Eq. (3.15). 2

Proposition 3.4.3. As λ increases to large values, at least one element wi in w will

survive (i.e. remaining non-zero, |wi| > 0), given a 6= 0. Otherwise, w = 0 will lead

to a = 0 according to Eq. (3.15).
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Definition 3.4.4. Given a = [a1, · · ·, ad] ∈ Rd, S denotes a d-dimensional vector

with Si 6= Sj,
⋃d
i=1 Si = {1, · · ·, d}, and each element Si represents the indexes of the

descending order with respect to a, such as |aS1| ≥ |aS2| ≥ · · · ≥ |aSd |.

Theorem 3.4.5. Given the d-dimensional vector S with respect to a, the optimal

solution of Eq. (3.10) is given by

w∗ = sign(a)�
[
|a| − λτ

1 + λτ
µτ

]
+

, (3.17)

where � is the Hadamard product, i.e. [x � y]i = xiyi, [·]+ = max(·, 0), µτ =

1
τ

∑τ
i=1 |aSi|, and τ is the largest coordinate of S satisfying |aSτ | − λτ

1+λτ
µτ > 0.

Proof of Theorem 3.4.5. Suppose wS1 , wS2 , · · · , wSτ are non-zeros. By adding

Eq. (3.14) for S1, S2, · · ·, Sτ (i.e. the first τ indexes saved in S), we have

τ∑
i=1

|wSi | −
τ∑
i=1

|aSi |+ λτ‖w‖1= 0, (3.18)

which can be equivalently rewritten as

‖w‖1 =
τ

1 + λτ
µτ , (3.19)

where µτ = 1
τ

∑τ
i=1 |aSi |.

Thus, Lemma 3.4.2 and Eq. (3.19) give the optimal solution w∗ w.r.t its mag-

nitude as follows

|w∗Si | = |aSi | −
λτ

1 + λτ
µτ > 0, for i = 1, · · ·, τ, (3.20)

|w∗Si | = 0, for i = τ+1, · · ·, d, (3.21)

which is equivalent to the definition of w∗ in Eq. (3.17), since w∗Si = sign(w∗Si)|w
∗
Si | =

sign(aSi)|w∗Si |. 2

Corollary 3.4.6. Suppose j = arg max
i=1,···,d

|aj|. As regularization strength λ increases to

large values, the optimal solution w∗ of Eq. (3.10) is given by: (i) w∗i = 0, if i 6= j;

(ii) w∗i = 1
1+λ

ai, if i = j.
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Proof of Corollary 3.4.6. As regularization strength λ increases to large values,

only w∗j with the largest coefficient |aj| will survive (i.e. remaining non-zero, |w∗j | > 0),

while other w∗i (i 6= j) will be equal 0, according to Proposition 3.4.3. Thus, we have

τ = 1 and µτ = |aj|, which leads to

w∗j = sign(aj)
[
|aj| − λ·1

1+λ·1 |aj|
]

= sign(aj)
1

1+λ
|aj|

= 1
1+λ

aj,

which completes the proof. 2

As it can be seen that, w∗j approaches to 1
1+λ

asymptotically as λ increase

to large values, which once again verifies the interesting property of ‖w‖21 given in

section 3.4.1.

Next, we prove the optimality of w∗ given in Theorem 3.4.5.

Theorem 3.4.7. When τ is the largest coordinate of S satisfying |aSτ |− λτ
1+λτ

µτ > 0,

the solution w∗ defined in Eq. (3.17) achieves the global minimum of J(w).

Proof of Theorem 3.4.7. If τ = d, we have |w∗Si | > 0 for i = 1, · · ·, d, and each w∗Si

satisfies the optimality condition given in Eq. (3.14). Thus, w∗ is the global minimizer

of J(w).

If τ < d, we have |w∗Si | > 0 for i = 1, · · ·, τ , and |w∗Si | = 0 for i = τ +

1, · · ·, d. Since τ is the largest coordinate of S satisfying |aSτ | − λτ
1+λτ

µτ > 0, for

(τ +1)-th coordinate of S, we have |aSτ+1|−
λ(τ+1)

1+λ(τ+1)
µτ+1 < 0, which can be rewritten

equivalently as |aSτ+1 |− λτ
1+λτ

µτ < 0, i.e., |aSτ+1| < λ‖w‖1. This implies w∗Sτ+1
satisfies

the optimal condition defined in Eq. (3.15). In a similar way, we can obtain that w∗Si

satisfies the optimal condition defined in Eq. (3.15) for i = τ + 2, · · ·, d.

On the other hand, w∗Si satisfies the optimal condition defined in Eq. (3.14) for

i = 1, · · ·, τ , according to Eq. (3.20).

Thus, w∗ is the global minimizer of J(w), which completes the proof. 2

38



Once the largest τ is found out, we can easily obtain the optimal solution w∗ via

Eq. (3.17). Here is the question: how to find the largest coordinate τ of S satisfying

|aSτ | − λτ
1+λτ

µτ > 0?

In the following, we introduce an efficient algorithm to search the largest coor-

dinate τ satisfying |aSτ | − λτ
1+λτ

µτ > 0 in linear time, given d-dimensional vector S

representing indexes of the descending order |aS1| ≥ |aS2| ≥ · · · ≥ |aSd |.

Algorithm 2 Search the largest coordinate τ of S.

Input: a ∈ Rd, S ∈ Rd, λ.

Output: τ , µτ .

1: Initialize: τ = d, µτ = 1
d

∑d
i=1 |ai|.

2: while τ > 1 do

3: if |aSτ | − λτ
1+λτ

µτ > 0 then

4: break.

5: else

6: µτ = τ
τ−1µτ −

1
τ−1 |aSτ |.

7: end if

8: Set τ = τ − 1.

9: end while

10: return τ , µτ .

3.4.3 The Summary of Exclusive Sparsity

In Theorem 3.4.5 and Algorithm 2, an sorting-based explicit approach is pro-

posed to solve the `1,2-norm based optimization problem (3.10). Based on above-

mentioned results, we explain the exclusive sparsity of `1,2-norm in two aspects:

• Competitive: in the competition, winner i in w represents |w∗i | > 0, if |ai| −
λτ

1+λτ
µτ > 0; while, loser j in w represents |w∗j | = 0, if |aj| − λτ

1+λτ
µτ < 0.
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• Survival: if ‖w‖1= 0, then we have |ai| = 0 for i = 1, · · ·, d, according to the

optimality condition in Eq. (3.15). Thus, given a 6= 0, the optimal solution w∗

cannot become to a zero vector. That is to say, at least one element wi in w

can survive with |wi| > 0.

3.5 Optimization Algorithm

For purpose of selecting robust and flexible features, we are interested in the

following optimization problem

min
W

Jex21(W)=
∥∥XTW−Y

∥∥2
F

+ α‖W‖2,1 + β‖W‖21,2 (3.22)

where the least square loss is penalized by the proposed “exclusive `2,1” regularization,

and α, β are hyperparameters.

First, we add an auxiliary variable Z to make the optimization separable be-

tween `2,1-norm and `1,2-norm. Thus, original problem (3.22) becomes

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2

s.t. Z = W.

(3.23)

Then, augmented Lagrangian multiplier (ALM) [43] method is applied to en-

force the constraint of problem (3.23) explicitly

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2 + 〈Λ,Z−W〉+
ν

2
‖Z−W‖2F (3.24)

where 〈·, ·〉 is the inner product, i.e. 〈A,B〉 =
∑

ij AijBij, Λ is the Lagrangian

multiplier, and ν is the penalty parameter.

Problem (3.24) can be further rewritten as

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2 +
ν

2
‖Z−W + Λ/ν‖2F . (3.25)

Thus, our tasks are solving the variables Z, W and updating the parameters

Λ, ν.
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3.5.1 Solving for Z

Firstly, we solve Z while fixing W. As a result, problem (3.25) w.r.t Z becomes

Zt+1 = arg min
Z

νt
2
‖Z−Wt + Λt/νt‖2F + β‖Z‖21,2 . (3.26)

Since the optimizations w.r.t each row of Z are separable, we can minimize

problem (3.26) in a row-wise fashion. Thus, the optimization in Eq. (3.26) w.r.t zi

becomes

zit+1 = arg min
zi

νt
2

∥∥zi − e
∥∥2
2

+ β
∥∥zi∥∥2

1
, (3.27)

where i = 1, · · ·, d is the feature/row index, e = wi
t−λit/νt, wi

t is the i-th row of Wt,

and λit is the i-th row of Λt.

Using Theorem 3.4.5, the optimal solution of Eq. (3.27) is given by

zit+1 =sign(e)�
[
|e|− 2βτ

νt + 2βτ
µτ

]
+

(3.28)

where τ , µτ are computed using Algorithm 2, given the input (e, 2β/νt, S), and S is

a k-dimensional vector representing the indexes of descending order with respect to

e, i.e., |eS1| ≥ |eS2| ≥ · · · ≥ |eSk |.

3.5.2 Solving for W

Secondly, we solve W while fixing Z. As a result, problem (3.25) w.r.t W

becomes

Wt+1 = arg min
W

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 +
νt
2
‖Zt+1 −W + Λt/νt‖2F . (3.29)

Since `2,1-norm is defined on each row wi in W, here we also can solve W in the

similar way as Z.

To solve W in a row-wise fashion, we decompose the least square loss w.r.t wi

as follows
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∥∥XTW −Y
∥∥2
F

=

∥∥∥∥ d∑
i=1

(xi)Twi −Y

∥∥∥∥2
F

=
∥∥(xi)Twi −Y−i

∥∥2
F

= a‖wi‖22−2wibT + c

(3.30)

where Y−i = Y −
∑

j 6=i(x
j)Twj, a = ‖xi‖22, b = xiY−i, and c = Tr((Y−i)TY−i).

Thus, the optimization in Eq. (3.29) w.r.t wi becomes

wi
t+1 = arg min

wi

a‖wi − b/a‖22 + α
∥∥wi

∥∥
2

+
νt
2

∥∥zit+1 −wi + λit/νt
∥∥2
F
. (3.31)

where i = 1, · · ·, d is the feature/row index, zit+1 is the i-th row of Zt+1, and λit is the

i-th row of Λt.

Eq. (3.31) can be further rewritten as

wi
t+1 = arg min

wi

2a+ νt
2

∥∥wi − d
∥∥2
2

+ α
∥∥wi

∥∥
2

(3.32)

where d = 1
2a+νt

(2b + νtz
i
t+1 + λit).

Theorem 3.5.1. The optimal solution of

min
w
‖w − a‖22 + λ‖w‖2

is given by

w∗ = max(1− λ

2‖a‖2
, 0)a.

Proof of Theorem 3.5.1. Since w = ρa (ρ ∈ R+), the objective function becomes

λρ‖a‖2 + (ρ− 1)2‖a‖22.

By setting the derivative of the objective function w.r.t ρ to zero, we have

ρ∗ = max(1− λ

2‖a‖2
, 0).
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With the relation that w∗ = ρ∗a, the optimal solution of w is obtained as

w∗ = max(1− λ

2‖a‖2
, 0)a,

which completes the proof. 2

Using Theorem 3.5.1, the optimal solution of Eq. (3.32) is given by

wi
t+1 =

[
1− α

(2a+ ν)‖d‖2

]
+

d, (3.33)

where [x]+ = max(x, 0).

3.5.3 Updating Parameters

Finally, we update parameters Λ, ν at the end of t-th iteration as the following

Λt+1 = Λt + νt(Zt+1 −Wt+1), (3.34)

νt+1 = ρνt (3.35)

where ρ > 1 is a constant.

3.5.4 The Summary of Optimization Algorithm

The complete framework of the proposed augmented Lagrangian multiplier

(ALM) based optimization algorithm is summarized in Algorithm 3.

3.6 Experiments

3.6.1 Benchmark Datasets

Extensive experiments on twelve benchmark datasets are performed to evaluate

the effectiveness of feature selection methods on multi-class classification problems.

Among those benchmarks, there are 4 image datasets: MNIST2 [34], Yale3, YaleB4,

2In MNIST, 100 images are randomly selected out of each digit.
3http://vision.ucsd.edu/content/yale-face-database
4http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Algorithm 3 ALM based optimization algorithm for solving the “exclusive `2,1”

regularization based problem (3.22).

Input: data matrix X ∈ Rd×n, class labels Y ∈ Rn×k, hyperparameters α, β.

Output: weight matrix W ∈ Rd×k.

1: Initialize: t = 0, νt = 1/‖X‖F , ρ = 1.1, ε1 = 1e−8, ε2 = 1e−5, Λt = 0, random

initialization weights Wt.

2: repeat

3: for i ∈ {1, · · ·, d} do

4: Compute e via Eq. (3.27).

5: Compute the descending order S of e.

6: Compute τ , µτ via Algorithm 2 given (e, 2β/νt, S).

7: Compute zit+1 via Eq. (3.28).

8: end for

9: for i ∈ {1, · · ·, d} do

10: Compute Y−i, a, b via Eq. (3.30).

11: Compute d via Eq. (3.32).

12: Compute wi
t+1 via Eq. (3.33).

13: end for

14: Update Λt+1 via Eq. (3.34).

15: Update νt+1 via Eq. (3.35).

16: Set t = t+ 1.

17: until Convergence condition is satisfied:

|Jex21(Wt+1)− Jex21(Wt)|/Jex21(Wt) ≤ ε1,

‖Zt+1 −Wt+1‖∞ ≤ ε2.

18: return The optimal solution of weight matrix: W∗.
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PIE [44]; 1 spoken letter recognition dataset: ISOLET5; 5 bio-microarray datasets:

Carcinomas [36], Lung [37], Glioma [45], TOX [38], Tumor-14 [46]; and 2 text datasets:

CNAE-9 [47], 20-Newsgroups6. The detail of twelve benchmark datasets is summa-

rized in Table 3.4.

Dataset k n d
MNIST 10 1000 784

Yale 15 165 1024
YaleB 38 2414 1024
PIE 10 210 2420

ISOLET 26 1560 617
Carcinomas 11 174 9182

Lung 5 203 3312
Glioma 4 50 4434
TOX 4 171 5748

Tumor-14 14 190 16063
CNAE-9 9 1080 856

20-Newsgroups 20 2000 5000

Table 3.4: The summary description of twelve benchmark datasets. k, n, d denote
the number of classes, the number of data instances, the number of features for each
dataset, respectively.

3.6.2 Evaluation Metrics

In the experiments, our proposed exclusive `2,1 regularization based feature

selection method is compared to five state-of-the-arts, including three filter methods:

F-statistic [10], ReliefF [11], minimum redundancy maximum relevance (mRMR) [12],

and two sparse coding based methods: multi-task feature selection via `2,1-norm (`2,1)

[16, 17, 18, 19], exclusive Lasso (eLASSO) [26, 28].

5http://featureselection.asu.edu/datasets.php
6http://qwone.com/~jason/20Newsgroups/ In 20-Newsgroups, 100 documents are randomly

selected out of each newsgroup, and F-statistic method is used to prescreen 5,000 keywords.
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Towards evaluating the performance on classification, five-fold cross-validation

accuracy with SVM classifier are computed on average for each feature selection

method. We use LIBSVM [39] as the practical implementation of SVM, where the

kernel is set as linear and the parameter C is set as 1 (the default value) for all the

experiments.

When training different sparse coding based models, hyperparameters are ad-

justed to enforce the same level of sparsity in the learned weight matrix W for each

method.

For testing, three filter methods and `2,1 build k SVM classifiers, and each SVM

classifier uses the same feature subset, since they select a subset of features shared

by all the classes jointly. On the contrary, eLASSO and the proposed “exclusive

`2,1” method build k SVM classifiers, and each SVM classifier uses different feature

subsets, since they select discriminative features for each class separately. Then, the

final classification result is obtained via majority voting.

3.6.3 Analysis of the Results

3.6.3.1 Convergence Study

The convergence of our proposed ALM based optimization algorithm is shown in

Figure 3.1, where x-axis and y-axis denote the number of iterations and the objective

value respectively.

We used the same hyperparameter setting (α = 1, β = 1) for four benchmark

datasets. As it can be seen in Figure 3.1, our proposed optimization algorithm takes

around 100∼150 iterations to converge. Even though it is difficult to optimize two

non-smooth terms (i.e. `2,1-norm and `1,2-norm) simultaneously, our ALM based

algorithm is very efficient, and can converge fast in real applications.
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Figure 3.1: Convergence analysis of the proposed optimization algorithm on four
benchmark datasets.

3.6.3.2 Parameter sensitivity study

The effect of hyperparameters on the performance of our proposed feature selec-

tion method is studied in this section. The relation between α and β on MNIST and

TOX dataset is shown in Figures 3.2-3.3, where x-axis (the value of α) and y-axis (the

value of β) are changing from 0.001 to 1000, and z-axis is the five-fold cross-validation

classification accuracy. Besides, we increase the number of selected features from (a)

to (h), using top 10∼80 features. With the increasing of α and β, we have more zero

values (less features) in weight matrix W.

The classification performance is relatively lower when α and β are very small

or large, since small regularization strength is unable to find the structural sparsity in
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Figure 3.2: Parameter sensitivity analysis on MNIST dataset.
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Figure 3.3: Parameter sensitivity analysis on TOX dataset.
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W, and large regularization strength penalizes the loss severely thus cannot effectively

preserve the relation between X and Y.

Overall, our method is not sensitive to the hyperparameter, and does not change

too much while varying the value of α and β in different feature settings.

3.6.3.3 Classification Results Comparison

Experimental results of our proposed robust flexible feature selection method

versus five state-of-the-arts on twelve benchmark datasets are shown in Figure 3.4,

where x-axis denotes the number of selected features ranging from 10 to 80 with

the interval equal to 5, and y-axis denotes the average of five-fold cross-validation

classification accuracy.

In general, sparse coding based methods (`2,1, eLASSO, Ours) achieve better

performances than filter methods (F-Statistic, ReliefF, mRMR). Among those filter

methods, mRMR has relatively higher classification accuracy in most cases, since it

takes consideration of minimizing the correlation between features.

eLASSO performs better than filter methods in image and spoken letter recog-

nition datasets. However, its performance has a great degradation in bio-microarray

and text datasets, since `1,2-norm cannot remove a large amount of irrelevant noise

features in high-dimensional data space.

`2,1 has a very stable performance in all the datasets via selecting class-shared

features. In some cases, `2,1 performs even close to our method around top 60∼80

features.

Overall, our method obtains the best classification result on twelve benchmark

datasets. Additionally, in the small number of selected features setting, such as top

10∼20, our method has an overwhelming advantage over other methods, with around

5%∼10% improvement on accuracy.
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Figure 3.4: Five-fold cross-validation accuracy of the proposed feature selection
method versus state-of-the-arts on twelve benchmark datasets.
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3.7 Conclusion

In this work, we introduce a novel exclusive `2,1 regularization for robust flexi-

ble feature selection. Besides, a sorting-based explicit approach is proposed to solve

`1,2-norm, which further explains the exclusive sparsity of `1,2-norm. Then, an effi-

cient augmented Lagrangian multiplier based optimization algorithm is proposed to

iteratively solve the exclusive `2,1 regularization in a row-wise fashion. Experimental

results on twelve benchmark datasets verify the effectiveness of our proposed robust

flexible feature selection method, which outperforms five state-of-the-art methods on

multi-class classification problems.
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CHAPTER 4

DEEP ROBUST DATA RECONSTRUCTION USING L1-AUTOENCODER

NETWORKS

4.1 Introduction

Data reconstruction/recovery is the important topic in machine learning and

computer vision areas. The task aims at automatically recovering the original clean

data from the corrupted input in unsupervised manner, also known as denoising [6]

and noise reduction [7] in other domains.

Traditional machine learning methods, such as principal component analysis

(PCA) [48], treat images as one-dimensional vector. This data format is convenient for

subspace learning. Given the input data with corruption, PCA tries to approximately

reconstruct the original data in a low-dimensional space, via minimizing the squared

error of the difference between corrupted input and reconstruction. However, outliers

usually dominate the objective function of PCA due to the enlarged residuals after

squaring, which leads to the instability and ineffectiveness of reconstruction. For

purpose of diminishing this adverse influence, L1-PCA [49] is proposed to reform PCA

into the absolute value of the residuals using L1 loss. Since dealing with each residual

equally, L1-PCA is less sensitive to outliers, and even capable of generating more

robust and stable reconstructed results. On the other hand, Zhang et al of [50] applies

augmented Lagrange multipliers (ALM) [51] to minimize the non-differentiable L1-

norm, which decomposes the original problem into a sequence of sub-problems with

closed-form solutions. In addition, robust PCA (RPCA) [52] presents the original

PCA using a new formulation that the corrupted input data is equivalent to the
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summation of the reconstruction and the additive errors. To resolve this special

constraint, Wright et al of [52] propose proximal gradient (PG) with continuation

[53] to optimize a surrogate loss, which enforces nuclear norm [54] on reconstruction

and L1-norm on additive errors, so as to achieve a sparse and low-rank solutions. Thus

it can be seen that traditional methods focus on obtaining a low-rank approximation

of the original data. Nevertheless, they only take consideration of shallow models

using a simple and straightforward representation of the input data.

Recently, deep neural network is very popular in many research areas by means

of non-linear activations and multi-layer representations. As compared to traditional

machine learning methods, performance on a variety of problems in many fields have

been greatly improved through deep learning, such as classification [55], clustering

[56], object detection [57], semantic segmentation [58], speech recognition [59], image

caption [60], etc.

Among those applications using deep network, autoencoder (AE) [61] is most

relevant to data reconstruction topic, because its optimal solution when using linear

activation is strongly related to PCA. Autoencoder learns a nonlinear low-dimensional

latent representation for a set of data. To prevent overfitting, autoencoder enforces

regularization on parameters of deep network by weight decay [62] and dropout [63].

For data reconstruction, squared error (L2 loss) and cross-entropy loss are widely used

to define the network’s reconstruction loss.

Additionally, denoising autoencoder (dAE) [64] has been proposed to achieve

robust reconstruction. However, it is different from unsupervised methods that the

locations of corruption in the images are commonly available to perform the pretrain-

ing for dAE. In addition, the Gaussian noise assumption makes dAE deal with only

small noises. In practice, larger noises are usually existing in real applications, which

are most suitably treated with L1 loss.
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Although L1 loss has been mentioned in several deep learning works, such as

[65, 66, 67, 68, 69], to the best of our knowledge, there is no existing systematic

investigation on deep network with L1 loss, and no work on deep learning using L1

for data reconstruction in unsupervised manner.

Motivated by recent works, we propose a deep network in the form of autoen-

coder with L1 loss to achieve robust reconstruction and improve performance on cor-

rupted input data. As compared to traditional machine learning methods, our model

learns a deep and non-linear representation of the input data, and obtain much better

reconstruction quality against a variety of image occlusions.

A key contribution here is that we resolve the black spots problem in robust data

recovery using ReLU as activation with L1 loss. ReLU (rectified linear unit) is widely

adopted in deep learning due to its fast convergence [70], and good performance on

many tasks. However, our experiments in autoencoder networks for data recovery

reveal a new and interesting fact:

• Autoencoder using ReLU with cross-entropy loss or L2 loss produces outputs

(which is the desired reconstructed images) without black spots.

• Autoencoder using ReLU with L1 loss produces output with black spots.

The experiment results are shown in Fig. 4.1. This new finding presents a

challenge in robust data reconstruction/recovery, since L1 loss can do the robust

recovery while cross-entropy or L2 loss can not.

We analyzed ReLU activation function and find a smoothed version of ReLU

working with L1 loss can effectively remove black spots. This works for all the datasets

we have done in the experiments (see Fig. 4.10).

Our experimental results (see Fig. 4.7) also show that increasing the number of

layers in multi-layer L1-autoencoder framework with smoothed ReLU as activation

steadily improves the quality of reconstruction (i.e. the output of the network).
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Thus, the deep autoencoder network is a good network structure that provides a deep

representations of the input, and effectively eliminates occlusions as inconsistent with

main intrinsic properties of a set of data.

(a) AT&T

(b) AR

Figure 4.1: Black spot problem. Top: AT&T faces. Bottom: AR faces. 1st row:
input corrupted images. 2nd-5th rows: output of 3-layer autoencoder using L2+ReLU
(2nd), cross-entropy+ReLU (3rd), L1+ReLU (4th), L1+sReLU (5th).
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4.2 Deep Robust Data Reconstruction

A set of input data is represented by matrix X ∈ Rp×n, where X = (x1, · · ·, xn).

A data can be one-dimensional vector or two-dimensional matrix, such as a r-by-c

image I represented as vec(I) ∈ Rp, where p = r · c is the total number of pixels. The

code Z = (z1, · · ·, zn) ∈ Rd×n is the lower-dimensional (d� p) latent representation of

original input data. The reconstructed output is X̂ = (x̂1, · · ·, x̂n) ∈ Rp×n, recovered

from Z.

In real life applications, the input data can be noisy, corrupted, etc. Our task

is to reconstruct the noise-free data X̂ from the corrupted input X automatically.

The difficulty is that the recovery is done in an unsupervised manner, i.e., no prior

knowledge on the noise. For example, the locations of those occlusions are unknown

(see Fig. 4.1).

4.2.1 Robust Autoencoder with `1 Loss

In this work, we propose a robust L1-autoencoder network for data reconstruc-

tion. The (2`+1)-layers autoencoder (AE) [61] network has total 2` nested functions,

where the code is generated as

Z = f`{· · · f3{f2[f1(X, θ1), θ2], θ3} · · ·, θ`}, (4.1)

and the output of the entire network is generated as

X̂ = f2`{· · · f`+3{f`+2{f`+1(Z, θ`+1), θ`+2}, θ`+3} · · ·, θ2`}, (4.2)

where θi is the parameters in i-th layer.

Suppose the output of (i−1)-th layer is Hi−1, then we have Hi = fi(Hi−1, θi) =

σ(θiHi−1), where σ(·) is the activation function, such as tanh, sigmoid, and ReLU

(rectified linear unit) [55].
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For robust reconstruction, we are interested in the following L1 loss based op-

timization problem

min
θ1,··· ,θ2`

∥∥∥X − X̂∥∥∥
1

+ λ

(
2∑̀
i=1

1

2
‖θi‖22

)
, (4.3)

where λ is the hyperparameter controlling the importance of the L2-regularization

term.

A multi-layer `1-autoencoder network is shown in Fig. 4.2. The top subfigure

is the process of initializing network’s parameters using stacked autoencoder (SAE)

[64] method, where the hidden output of the i-th autoencoder is feeded to (i+ 1)-th

autoencoder as the input. Then, we repeat this process until all the l autoencoders are

initialized. Finally, those l encoders are unrolled with tied weights and concatenated

to form a deep L1-autoencoder network for robust data reconstruction (see the bottom

subfigure).

Thus, we have θi = {Wi, bi}, for i = 1, · · ·, l, and θi = {W T
2l+1−i, b

T
2l+1−i}, for

i = l + 1, · · ·, 2l + 1. Here, we use the `1 loss to measure the absolute difference

between the corrupted input data and the reconstructed output.
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Figure 4.2: Deep robust reconstruction network (bottom) and the parameter initial-
ization (top).
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4.2.2 Analysis of Black Spot Problem

Compared to tanh and sigmoid activations, rectified linear unit (ReLU) activa-

tion [55] can substantially accelerate the convergence of deep network using gradient

descent, due to its linear and non-saturating form. However, in autoencoder networks

using L1 loss, we find the output images have many pixels (neurons) with zero values,

which gives the black spots in the greyscale image as shown in Fig. 4.1.

Leaky ReLU is an available choice to overcome this problem. However its output

has negative values while the input image data are nonnegative. Thus, leaky ReLU

is not suitable.

Our finding (as explained in section 4.1 Introduction) that L1 loss with ReLU

outputs the image with black spot while cross-entropy or L2 loss with ReLU do not

have black spot problem motivates us to consider the computational aspects of these

loss functions, when the network output value x̂ is small and positive, since this is

the region that the black spot problem occurs.

A complete analysis of the nonlinear network is difficult. Here we do analysis

on highly simplified network structure with network internal parameters ignored. Let

x be the network input. L1 loss is `1 = |x̂− x|, L2 loss is `2 = (x̂− x)2, cross entropy

loss is `CE = −x log x̂− (1− x) log(1− x̂).

Clearly, L1 loss has large (magnitude 1) positive or negative gradient: ∂`1/∂x̂ =

sign(x̂− x). Cross-entropy loss has only large negative gradient ∂`CE/∂x̂ = −x/x̂ +

(1− x)/(1− x̂). L2 loss has small gradient ∂`2/∂x̂ = 2(x̂− x) (in L2 loss, x ' x̂).

All networks use gradient descent type algorithm. Thus when x̂ is small, L1

loss could drive x̂ even smaller or zero when the gradient is positive, and cause the

black spot problem. Cross entropy will drive x̂ larger by the large negative gradient.

L2 loss will not change x̂ much. Thus cross-entropy and L2 loss unlikely cause the

black spot problem.
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4.2.3 Smoothed ReLU (sReLU) Activation

The gradient of the loss function affects the output layer through the gradient

of activation function. Thus, we study the gradient of activation function.

The ReLU activation σ(z) = max(z, 0) has the gradient σ′(z) = 1 for z > 0 and

σ′(z) = 0 for z ≤ 0. This activation gradient behavior combined with the gradient

from the L1 loss causes the black spot problem.

The reasoning is the following. (i) When x̂ is small and positive. This implies

the activation has an input z from the hidden layers which is small and positive. Thus

σ′(z) = 1 is large. This combined with large positive gradient from the L1 loss helps

drive x̂ to zero. (ii) When x̂ = 0. This implies z ≤ 0. Thus σ′(z) = 0. There is little

chance that x̂ will rise from zero. These two facts cause the black spot problem.

This analysis motivates us to propose a smoothed version of ReLU such that

when z ≤ 0, the activation has a small nonzero gradient. With this change, when

x̂ = 0, the small gradient from the activation combined with the large negative

gradient of the L1 loss (x is always nonnegative) will help x̂ to rise up from zero.

The smoothed ReLU is motivated in the following way. First, the ReLU function

max(x, 0) can be expressed as

max(x, 0) = lim
s→∞

1

s
log(1 + esx). (4.4)

Thus, we define the smoothed ReLU (sReLU) activation function σ(x) as

σ(x) =
1

s
log(1 + esx). (4.5)

The sReLU function and its gradients are shown in Fig. 4.3. sReLU is much more

smooth than ReLU, especially the gradients. The case when s = 1 is same as the

softplus function [71]. However, as shown in Fig. 4.3, s = 1 deviates significantly

from the ReLU and is not a good approximation. In practical applications, we use
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(a) the function itself (b) gradient of the function

Figure 4.3: ReLU versus sReLU. Left: the function itself. Right: gradient of the
function. Black is ReLU. Blue, red, yellow, green and megenta are sReLU with s=1,
5, 10, 20 and 30 respectively.

s = 10 ∼ 30. The gradient of sReLU is σ′sReLU(x) = 1/(1 + e−sx), which is almost

identical to the classical sigmoid function σsigmoid(x) = 1/(1 + e−x). This intrinsic

connection to the sigmoid function remains to be further explored.

Reconstructed result using ReLU and sReLU as activation is shown in Fig. 4.1.

Black spots appear in ReLU based networks with L1 loss. More details are explained

in section 4.2.4.

4.2.4 Network Structure

4.2.4.1 Mathematical Formulation of Autoencoder

The simplest autoencoder for reconstruction with L1 loss is a three layer neural

network. With input X, hidden Z, and reconstruction X̂ defined as

A1 = W1X + b1, (4.6)

Z = fθ1(X) = σ(A1), (4.7)

A2 = W2Z + b2, (4.8)

X̂ = fθ2(Z) = σ(A2), (4.9)
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where θ1 ={W1, b1}, θ2 ={W2, b2}, and σ(·) is sReLU.

In the following experiments, we also construct 5-layer and 7-layer networks.

Results on benchmark datasets show deeper networks steadily improve the quality of

reconstructed results. The mathematical formulation of multi-layer autoencoders is

very similar to above formulae for 3-layer autoencoder, and will not be repeated here.

4.2.4.2 Memory-efficient Gradient of sReLU

We strive to save memory in actual computer implementation. When using

sigmoid activation, because of the relationship σ′sigmoid(x) = σsigmoid(x)(1−σsigmoid(x)),

the derivatives are not computed and not saved in memory.

For network using ReLU activation, this technique can not be utilized. But

for network using sReLU, this technique can be used, because the gradient of sReLU

activation can be expressed as

σ′sReLU(x) = 1− e−sσsReLU(x), (4.10)

Thus the gradient need not to be computed and stored.

4.2.4.3 Approximation to L1 Loss

These autoencoders use smoothed ReLU as activation and L1 loss of Eq.(4.3).

The L1 loss ‖A‖1 =
∑

ij |Aij| involves function f(x) = |x| which is non-differentiable

at x = 0, and has large gradient jump from f ′(x) = −1 to f ′(x) = 1 as x chances

small negative value to a small positive value. To remove the non-differentiability

and numerical uncertainty when x is close to zero, we use a smoothed version to

approximate the L1 loss term∥∥∥X − X̂∥∥∥
1
'
√∥∥∥X − X̂∥∥∥2

F
+ ε2, (4.11)
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where ε is set to a small value depending on application. For image recovery, the

input X and output X̂ are pixel values. When image pixel values are on 0 to 255

scale, setting ε =
√

0.1 is sufficient since the minimum pixel value difference is 1. If we

normalize each pixel value to be within [0, 1], then setting ε =
√

0.1/256 is sufficient.

Compared to hard L1 loss, when x changes from x = −ε to x = ε, the gradient of L1

loss changes from -1 to +1, but the gradient of smoothed L1 loss changes very little.

Thus the smoothed L1 loss significantly improves the numerical stability.

4.2.5 Network Parameter Initialization

Traditionally autoencoder are pretrained by restricted Boltzmann machine [72],

which is most suitable, however, for sigmoid activation based model. This pretraining

strategy is inappropriate to initialize parameters of the proposed autoencoder with L1

loss especially using smoothed ReLU as activation. Otherwise, finetuning stage will

converge early and get stuck at a bad local minima with high loss, due to unmatched

activation units. Consequently, it always generates poorly reconstructed results.

The efficient pretraining on the proposed L1 loss autoencoder using sReLU pro-

ceeds this way. We initialize parameters in stepwise fashion using stacked autoencoder

(SAE) [73] approach, where the input of (i+1)-th encoder is assigned as the hidden

unit output of the i-th encoder. Connection weights in single autoencoder are gen-

erated using Xavier’s initializer [74]. After greedy pretraining, all the encoders are

unrolled with tied weights and concatenated to form multi-layer autoencoder, which

then is finetuned to minimize the L1 loss for robust data reconstruction.

4.2.6 Network Output Layer: No Activation

The output layer of most autoencoders use same activations as inner layers,

for example [61]. This is natural. The input image pixel values are nonnegative;
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the output before activation (A2 in Eq.(4.9)) has mixed signs. Thus the activation

naturally bring values to nonnegative, comparable to input X as in Eq.(4.3). Thus,

X̂ ≥ 0 can be satisfied automatically after activation.

(a) AT&T

(b) AR

Figure 4.4: ReLU versus sReLU. Top: AT&T faces; Bottom: AR faces. 1st row:
input corrupted images. 2nd-3rd rows: output of 7-layer autoencoder using L1+ReLU
(2nd), L1+sReLU (3rd).

For having better understanding of whether the above black spot problem is due

to ReLU (in context of L1 loss), we do experiment on autoencoder network where no

ReLU activation is applied at output layer. The results are shown in Fig. 4.4. Even

though black spot disappeared in the network without ReLU activation, the quality

of the output is not as good as the output of sReLU based networks.
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4.3 Experiments and Analysis

4.3.1 Benchmark Datasets

To evaluate the proposed robust data reconstruction model, extensive experi-

ments on two benchmark datasets (i.e. AT&T and AR) are performed to recover the

original clean data from the corrupted input data in this section.

AT&T: faces are collected by AT&T Laboratories Cambridge, including ten

different images of each of 40 distinct subjects. Under varying lighting and facial

expression, frontally upright images were taken at different times.

AR: cropped images [8] from 100 individuals are obtained in two sections.

Each person has 14 natural face images (different expression and illumination) and

12 occluded face images (sun glasses and scarf).

The detail of benchmark datasets is summarized in Table 4.1, where face images

are transformed to fixed ratios in greyscale mode. In AT&T dataset, 40 persons are

equally divided into four groups. Similarly, 20 men and 20 women from AR dataset

are selected out of 100 individuals to form four groups.

Dataset #Images #Dimensions #Class
AT&T 400 56×46=2576 40

AR 2600 55×40=2200 100

Table 4.1: Description of benchmark datasets.

4.3.2 Occluded Images

For purpose of studying the effectiveness of reconstruction methods, in subse-

quent experiments, four occlusions are added into images to evaluate the performance

qualitatively and quantitatively.

Details of the occlusions are shown in Fig. 4.5.
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(a) AT&T

(b) AR

Figure 4.5: Occluded images. Top: AT&T faces; Bottom: AR faces.
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In AT&T dataset, three types of synthetic occlusions are randomly added into

ten face images of each individual, including one cross, two rectangles, and two circles

(see Fig. 4.5-(a)). Pixels in the occlusion are set to zero values (black pixels).

In AR dataset, face images are naturally occluded by sun glasses and scarf.

Since the scarf has large size, it is difficult to reconstruct original faces without heavy

distortion. Thus, for each individual, only one sun glasses image (see Fig. 4.5-(b)) is

selected as real occlusion to form the input with other fourteen natural faces.

4.3.3 Evaluation metrics

Standard unsupervised metric and protocols are used to study the effectiveness

of reconstruction. We evaluate the performance using relative noise-free reconstruc-

tion error (ERR) defined as

ERR =

∥∥∥X0 − X̂
∥∥∥
F

‖X0‖F
, (4.12)

where X0 is the original uncorrupted image (Ground Truth), and X̂ is the result

reconstructed from corrupted image X =X0+E. In unsupervised learning tasks, E

represents unknown different type of occlusions.

Since ground truth is not available for sun glasses occlusion in AR, reconstruc-

tion error is calculated with respect to other fourteen uncorrupted images, only if

the occlusion is removed successfully. Additionally, errors of four different groups are

marked as 1st-4th columns respectively in Figs. 4.6, 4.8, 4.9, and the average of four

errors is shown in the legend for each methods.

4.3.4 Network Implementation

The performance of our L1 loss network with sReLU as activation is investigated

in different layers/depths.
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The relevant setting of the architecture of L1-autoencoder networks is given in

Table 4.2.

Data set 3 Layers (3L) 5 Layers (5L) 7 Layers (7L)
AT&T 2576-8-2576 2576-20-8-20-2576 2576-30-20-8-20-30-2576

AR 2200-9-2200 2200-20-9-20-2200 2200-30-20-9-20-30-2200

Table 4.2: The architecture of L1-autoencoder networks for AT&T and AR.

In training, each batch we feed face images of ten persons from one group

(AT&T: 100 images, AR: 150 images) into the network. Hyperparameter λ is searched

in the set {0.0001, 0.001, 0.01, 0.1} to achieve the best result. Scale parameter s in

smoothed ReLU is fixed as 10.

Towards fast convergence, conjugate gradient (CG) is used to pretrain param-

eters of each autoencoder in 200 epochs. Then, the unrolled multi-layer autoencoder

is finetuned by limited-memory BFGS (L-BFGS) [75] in 10 epochs, where the max

iteration of L-BFGS optimizer is set to 400.

4.3.5 Deep `1-Autoencoder Result: ReLU versus sReLU

Here we present the proposed L1-autoencoder results, emphasizing the compar-

ison between sReLU and ReLU.

As it can be seen in Fig. 4.1 that even though occlusions are removed, there

are many black spots in reconstructed faces by L1+ReLU. Conversely, black spots

disappeared in the output of other networks. Nevertheless, L2+ReLU and cross-

entropy+ReLU fail to remove most of the occlusions.

On the contrary, L1+sReLU achieves the best result that all the occlusions are

eliminated, and the network output does no produce any black spots. This is the

motivation for smoothed ReLU (sReLU) to replace hard ReLU.
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(a) AT&T (b) AR

(C) AT&T (d) AR

Figure 4.6: Comparison of L1+ReLU versus L1+sReLU. (a,b): Convergence of log of
training objectives. (c,d): Noise-free reconstruction error.

On the other hand, we did the experiment without activation at the output

layer of the network, mentioned in sec 4.2.6. It is obvious in Fig. 4.4 that the output

of L1-autoencoder using sReLU recovers more facial details, which outperforms the

reconstruction results using ReLU.

Due to numerical instability incurred by non-smooth gradients, networks using

ReLU have early convergence problem, see Fig 4.6-(a,b). That is the reason why

sReLU based networks achieve lower noise-free reconstruction error (ERR) than ReLU

based networks, see Fig 4.6-(c,d).

Thus it can be seen that sReLU resolves black spot problem of ReLU as ac-

tivation in L1 loss networks. From visualized and statistical results, sReLU based

network performs better in reconstruction than ReLU based network.
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4.3.6 Deep versus Shallow `1-Autoencoder Networks

For purpose of further improving reconstructed results of 3-layer L1-networks

(see Fig. 4.1), more hidden layers are added into L1-networks to build a deep robust

reconstruction model. The comparison between shallow and deep L1 networks are

shown in Fig. 4.7.

(a) AT&T

(b) AR

Figure 4.7: Deep versus shallow networks. Top: AT&T faces. Bottom: AR faces. 1st
row: input corrupted images. 2nd row: output of 3-layer network. 3rd row: output
of 5-layer network. 4th row: output of 7-layer network.
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As it can be seen in Fig. 4.7, the quality of the reconstruction is improved

steadily with the increase of the number of layers. Deeper 5-layer and 7-layer net-

works recover more facial details than 3-layer networks, such as hair and glass in

AT&T faces, and eye and complexion in AR faces. Contrarily, shallow 3-layer net-

work cannot capture the complex structure of the input data, so as to lose too much

facial information.

Statistics in Fig. 4.8 also shows similar results that shallow L1 network per-

forms worse than deep L1 network since 5/7-layer networks obtain lower noise-free

reconstruction error.

(a) AT&T (b) AR

Figure 4.8: Deep versus shallow networks in relative noise-free reconstruction error
(ERR). Left: AT&T faces. Right: AR faces.

4.3.7 Deep `1-Autoencoder versus State-of-the-arts

The proposed L1-autoencoder using sReLU as activation is compared against

state-of-the-arts, including traditional machine learning methods: singular value de-

composition (SVD), L1 loss based PCA (L1-PCA) [49], and Robust PCA (RPCA)

[52]. Additionally, deep learning method is taken into consideration such as sigmoid

based autoencoder [61] (AE ) using L2 loss, which uses the same network architecture

(see Table 4.2) as our method.

71



The relative noise-free reconstruction errors (ERR) is calculated on recon-

structed results from five unsupervised algorithms, and is shown in Fig. 4.9 where

statistical values in legend is the average of errors from four columns, since each

benchmark dataset has been divided into four groups (explained in section 4.3.1).

For traditional machine learning methods, model parameters of SVD, L1-PCA,

RPCA are finetuned to achieve the best robust and low-rank reconstruction results.

For AE method, the best result obtained from the outputs of 3/5/7-layer networks is

reported here.

(a) AT&T (b) AR

Figure 4.9: L1-autoencoder versus state-of-the-arts in relative noise-free reconstruc-
tion error (ERR). Left: AT&T faces. Right: AR faces.

As shown in the Fig. 4.9, robust models (L1-PCA, RPCA, Ours) has lower er-

rors than L2-loss model, such as SVD and AE. Because of non-linear transformations

used in networks, AE obtains slightly better results as compared to SVD. Most impor-

tantly, the proposed L1-autoencoder using sReLU have a statistically overwhelming

advantage over other methods, with the lowest reconstruction errors. Additionally,

performance can be further improved from shallow 3-layer network (Ours-s) to deep

7-layer network (Ours-d). Thus, our deep L1 networks has the strongest robustness

among those methods when dealing with various corrupted data. In summary, sta-

tistical results verify the effectiveness of our robust reconstruction method.
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(a) AT&T

(b) AR

Figure 4.10: Deep L1-autoencoder network versus state-of-the-arts. Top (a): AT&T
faces. Bottom (b): AR faces. Results from five different methods.
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In order to compare visualized performance among five unsupervised methods,

reconstructed results from two persons in AT&T and AR are shown in Fig. 4.10. For

each method, the best result by tuning parameters is shown in each row.

Firstly, the result on AT&T faces is analyzed as follows. Both SVD and AE fails

to remove occlusions completely. Based on SVD’s result, L1-PCA improves perfor-

mance a lot since it eliminates most of occlusions. RPCA has a slightly better recon-

struction than L1-PCA since it generates smoother results, for example 4th and 5th

faces. Among these methods, our deep L1-autoencoder achieves best reconstructed

results, which substantially improves the facial details.

Secondly, it is the explanation for experimental results on AR faces. Towards

removing sun glasses, SVD loses too much information so that recovered faces look to-

tally different from original input faces. As compared to RPCA and AE, L1-PCA com-

pletely eliminates all the dark pixels of sun glasses around the eye. L1-autoencoder

network also achieves best result that occlusions are removed and more facial details

are recovered, such as facial expression around the mouth at 6th and 9th faces.

4.4 Conclusions

In this work, we presented deep autoencoder networks with L1 loss for robust

data reconstruction in presence of corrupted images. We found that naively using L1

loss with popular ReLU often has black spot problem. Analysis of this problem leads

us to introduce a smoothed ReLU activation that effectively resolves the black spot

problem associated with ReLU as activation. The proposed reconstruction method is

capable of removing various occlusions added into face images, meanwhile recovering

as many originally uncorrupted pixels as possible without any distortions. Extensive

experimental results show that our deep robust reconstruction method outperforms

state-of-the-arts quantitatively and qualitatively.
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CHAPTER 5

ROBUST PCA BASED LOW-RANK AND SPARSE DATA RECONSTRUCTION

5.1 Introduction

Nowadays, data usually lies in thousand- or even million-dimensional observa-

tion spaces, such as image, audio, video, web, bioinformatic, etc. Thus, finding the

lower-dimensional structure of high dimensional data becomes an very important task

in machine learning and data mining areas.

Principal component analysis (PCA) [48] is the widely used method for lower-

dimensional subspace learning and dimension reduction. Lots of research works in-

dicate that the data usually have a low intrinsic complexity, such as the data is

low-rank [76], basis could be sparse [77], or the data lies in low-dimensional mani-

fold [78, 79]. When we assume that data points lie in low-dimensional manifold and

the manifold is linear or nearly-linear, the low-dimensional structure of data can be

effectively captured by a linear subspace spanned by the principal PCA directions.

PCA is exploiting the best low-rank representation of the given data, and the optimal

solution of principal directions and principal components can be stably and efficiently

computed by singular value decomposition (SVD).

In a d-dimensional space, n data points are represented as matrix form: X =

(x1,x2, · · ·,xn) ∈ Rd×n, where xi ∈ Rd. Principal directions are defined as U =

(u1,u2, · · ·,uk) ∈ Rd×k, and principal components are defined as V = (v1,v2, · · ·,vk)

∈ Rn×k, where Vij means the i-th data’s projection along the j-th principal direction.

There are two formulations of standard PCA. One is the covariance based approach.

First, we compute the covariance matrix C =
∑n

i=1(xi − x)(xi − x)T = XXT , where
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we assume the data are already centered, i.e. x = 0, and drop the constant factor 1
n−1

which does not affect U. Thus, the principal directions of PCA model are obtained

as follow

max
U

Tr(UTXXTU)

s.t. UUT = I.
(5.1)

Another one is the matrix low-rank approximation based PCA model, i.e., X ' UVT .

The goal is to recover U and V via minimizing the squared error of the difference

between the original data X and the low-rank approximation/reconstruction UVT ,

which can be mathematically formulated as

min
U,V

∥∥X−UVT
∥∥2
F

=
∑
ij

[
Xij −

(
UVT

)
ij

]2
, (5.2)

where the rank of U and V is equal to k. In practical applications, k � n. The opti-

mal solution of Eq. (5.2) can be efficiently obtained by singular value decomposition

of the input data X. According to SVD’s result, we can further prove the equivalence

between the solution of Eq. (5.1) and the solution of Eq. (5.2).

However, classical PCA using `2 loss becomes ineffective when dealing with

grossly corrupted or outlying preservations [48]. Thus, classical PCA is not applicable

to practical applications, since noises or outliers are usually existing in the collected

input data. A number of approaches have been exploited to improve the robustness

of PCA in the literature.

Towards achieving robust solutions in noisy environment, L1-PCA [49] is pro-

posed to minimize the following objective function, defined as the absolute value of

the difference between the noisy input Xij and the reconstruction (UVT )ij,

min
U,V

∥∥X−UVT
∥∥
1

=
∑
ij

∣∣∣Xij −
(
UVT

)
ij

∣∣∣ , (5.3)

where `1-norm is defined as ||A||1 =
∑

ij |Aij|. It is well known that `1-norm is much

more robust to corruptions/outliers than `2-norm. The `1 loss models implicit noises
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of the input data using Laplacian distribution, as compared to Gaussian distribution

assumed by `2 loss. Ke et al of [49] introduces an alternative optimization method to

minimize the `1 loss. Unknown variables U, V are alternatively minimized until the

loss function converges. At each iteration, one unknown variable is solved by standard

convex linear/quadratic programming, while fixing another unknown variable.

However, the computation cost of above-mentioned alternative algorithm is

extremely expensive, since the optimization is conducted in column-wise fashion. As

a result, Zhang et al of [50] proposes an efficient matrix based optimization algorithm.

First, an auxiliary variable E is introduced into L1-PCA, i.e., E = X−UVT . Then,

Eq. (5.3) can be rewritten equivalently as

min
E,U,V

‖E‖1

s.t. X−UVT − E = 0.

(5.4)

Then, the Lagrangian multiplier A and the penalty parameter µ are introduced to

enforce the equality constraint explicitly. Thus, the augmented Lagrangian multiplier

(ALM) based formulation of L1-PCA is obtained as

min
E,U,V

‖E‖1 +
〈
A,X−UVT−E

〉
+
µ

2

∥∥X−UVT−E
∥∥2
F
, (5.5)

which can be decomposed into a sequence of sub-problems with respect to E,U,V,

and each sub-problem can be computed efficiently with closed-form solutions. As

it can be seen that the computation is based on matrix manipulation, ALM based

optimization algorithm is more efficient than alternative minimization using convex

linear/quadratic programming.

Additionally, Robust PCA (RPCA) [52] reformulates classical PCA as X =

A + E, which aims at recovering a low-rank matrix A from corrupted input X with

unknown sparse error E. Because of the difficulty in directly minimizing the rank of
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A and the sparsity (i.e. `0-norm) of E, the following convex surrogate is introduced

to achieve the low-rank reconstruction and the sparse error,

min
A,E

‖A‖∗ + λ‖E‖1

s.t. X = A + E.

(5.6)

Then, proximal gradient (PG) [53] is applied to solve a relaxed version of problem

(5.6), where the constraint is treated as a penalty term,

min
A,E

µ‖A‖∗ + µλ‖E‖1 +
1

2
‖X−A− E‖2F . (5.7)

The solution of sub-problems with respect to A,E can be computed efficiently via soft-

thresholding operator and singular value thresholding operator [54]. The optimization

algorithm converges until the Frobenius norm of the subgradient of Eq. (5.7) becomes

sufficiently small.

Inspired by previous works, we propose robust PCA based low-rank and sparse

data reconstruction method. As compared to RPCA which models an additive error

on the input data, our proposed robust method models additive errors on principal

directions and principal components. Besides, additive errors are enforced to be sparse

and bounded. Thus it can be seen our method models the noise of principal directions

and principal components in lower-dimensional latent subspace, while RPCA method

models the noise of the input data in original feature space.

However, the optimization becomes very difficult since four unknown variables

are minimized simultaneously. At the same time, additive errors should be sparse

and bounded. If we adopt alternative minimization strategy used in L1-PCA [49],

the optimization of the proposed loss function will become highly non-convex with

respect to unknown variables, and the optimization process will become very unstable.

As a result, the loss function will easily get converged to a local minima with bad

solutions.
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Instead of minimizing the original loss directly, we try to find a tight upper

bound of the loss, which could be minimized more easier. This idea is motivated by

re-weighted method and auxiliary function used in non-negative matrix factorization

[80], structural sparsity learning [81], graph embedding [82], etc. The theory explains

how minimizing the tight upper bound leads to the decrease of the original loss.

Thus, we derive tight upper bounds (i.e. L1-/L21-norm penalty based robust

L1-PCA model) for the proposed reconstruction loss. Besides, we prove the underly-

ing connection between robustness and regularization. Even though lots of research

works show that the regularization helps improving the robustness of machine learn-

ing models, our work is the first theoretical proof from a robust point of view in the

literature. Towards minimizing the derived tight upper bounds efficiently, we first

introduce an augmented Lagrangian multiplier (ALM) based optimization algorithm

in matrix-based fashion. Next, we introduce an “exact solver” based optimization

algorithm to further improve the robustness of the reconstructed results.

Extensive experimental results on benchmark dataset show that our robust L1-

PCA model obtains better performances in data reconstruction than state-of-the-arts.

The proposed robust L1-PCA model not only learns a low-rank subspace to capture

the intrinsic structure of the noisy input data, but also reconstructs the original clean

data with a good quality.

5.2 Mathematical Formulation of Robust L1-PCA Model

In RPCA model, Wright et al of [52] explicitly introduces an additive error

term E. Thus, the noisy input data X is decomposed into the summation of the

reconstruction A and the error E, i.e., X = A + E.

Instead of modeling the underlying noise in the original feature space, we pro-

pose a novel robust L1-PCA Model to model additive errors δU and δV on U (prin-
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cipal directions) and V (principal components). That is to say, we aims at modeling

the noises in lower-dimensional latent subspace, so as to achieve robust solutions of

U and V.

With respect to U, δU, V, δV, the robust L1-PCA model is defined as

min
U,δU,V,δV

∥∥∥X− (U + δU) (V + δV)T
∥∥∥
1

s.t. ‖δu1‖1 ≤ α1, · · · , ‖δuk‖1 ≤ αk

‖δv1‖1 ≤ β1, · · · , ‖δvk‖1 ≤ βk

(5.8)

where δui and δvi are i-th column of corresponding matrices δU and δV, αi and

βi are penalty parameters to control the magnitude of ‖δui‖1 and ‖δvi‖1. Since the

underlying noise is assumed to be sparse and bounded, here `1-norm is enforced on

additive error terms δui and δvi.

As discussed before, optimizing four unknown variables U, δU, V, δV in prob-

lem (5.8) simultaneously is very unstable, especially using the alternative minimiza-

tion technique. Thus, we derive two tight upper bounds for problem (5.8): (i) L1-norm

penalty based robust L1-PCA model; (ii) L21-norm penalty based robust L1-PCA

model. Details of the derivation are explained as follows.

5.2.1 L1-norm Penalty Based Robust L1-PCA Model

To simplify the optimization, we transform the loss function defined in Eq. (5.8)

as the following. Firstly, the triangularity of L1-norm is applied to obtain a upper

bound of the original L1-norm based loss function∥∥∥X− (U + δU) (V + δV)T
∥∥∥
1

=
∥∥(X−UVT )− δUVT −UδVT − δUδVT

∥∥
1

≤
∥∥X−UVT

∥∥
1

+
∥∥δUVT

∥∥
1

+
∥∥UδVT

∥∥
1

+
∥∥δUδVT

∥∥
1
.

(5.9)
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Then, we derive a upper bound for the second term ||δUVT ||1 in the right-

hand-side of Eq. (5.9)∥∥δUVT
∥∥
1

=
∑
ij

∣∣∣(δUVT
)
ij

∣∣∣
=

∑
ij

∣∣∣∣∑
h

δUihVjh

∣∣∣∣
≤

∑
ij

∑
h

|δUih| |Vjh|

=
∑
h

(∑
i

|δUih|
)(∑

j

|Vjh|

)

=
∑
h

‖δuh‖1‖vh‖1

≤ λ

(∑
h

‖vh‖1
)

= λ‖V‖1,

(5.10)

where δuh and vh represent the h-th column of the corresponding matrices δU and

V, respectively. The first inequality in Eq. (5.10) is obtained according to the trian-

gularity of L1-norm, i.e.,

∥∥aTb
∥∥
1

=
∣∣∣∑

i

aibi

∣∣∣ ≤∑
i

|aibi| =
∑
i

|ai||bi|. (5.11)

The second inequality is based on the following condition

‖δuh‖1 ≤ λ, (5.12)

where we assume the magnitude of additive noise δuh (which is enforced on principal

direction uh, for h = 1, 2, · · ·, k) is explicitly controlled by the same hyperparameter

λ, i.e., α1 = · · · = αk = λ.

For a more complex setting, we can assume the level of each additive noise is

controlled by different hyperparameter (i.e. λ1, λ2, · · · , λk). However, it requires a lot

of training time to grid-search optimal hyperparameters in a high-dimensional space.
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Besides, data reconstruction is an unsupervised learning task that we don’t have any

prior knowledge that which principal direction should have a lower level of noise,

while which principal direction should have a higher level of noise. For the generality

reason, thus we treat the level of additive noise in each principal direction equally by

using the same hyperparameter λ.

Via the same above-mentioned procedures, the upper bounds of the third and

fourth terms in the right-hand-side of Eq. (5.9) are derived as

∥∥UδVT
∥∥
1
≤ λ‖U‖1, (5.13)

where the inequality is based on the assumption that ‖δvh‖1 ≤ λ, and

∥∥δUδVT
∥∥
1
≤ kλ2, (5.14)

where the inequality is based on the assumptions that ‖δuh‖1 ≤ λ and ‖δvh‖1 ≤ λ,

i.e., α1 = · · · = αk = λ, β1 = · · · = βk = λ. Without loss of the generality, here we

also treat the level of additive nose in each principal component equally.

Combining the results in Eq. (5.10), Eq. (5.13), Eq. (5.14) together, finally the

tight upper bound of problem (5.8) is obtained as∥∥∥X− (U + δU) (V + δV)T
∥∥∥
1

≤
∥∥X−UVT

∥∥
1

+ λ‖U‖1 + λ‖V‖1 + kλ2.

(5.15)

Since the last term of Eq. (5.15) is irrelevant to the optimization of U and V, after

ignoring this constant, the robust L1-PCA model defined in Eq. (5.8) is simplified to

minimize the following upper bound

min
U,V

∥∥X−UVT
∥∥
1

+ λ‖U‖1 + λ‖V‖1, (5.16)

where λ is the hyperparameter to control the level of sparsity in principal directions

U and principal components V.
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Thus it can be seen that adding noises δU and δV into L1-PCA model are

equivalent to enforcing sparsity-induced L1-norm on corresponding variables U and

V. That is to say, the underlying connection between robustness and regularization is

built through our derivation. From a robust point of view, we theoretically prove the

well-known fact that the regularization helps improving the robustness of machine

learning models.

5.2.2 L21-norm Penalty Based Robust L1-PCA Model

With different assumption on additive noises, we can derive another tight upper

bound of the second term in the right-hand-side of Eq. (5.9) as follow

∥∥δUVT
∥∥
1

=

∥∥∥∥∑
h

δuhv
T
h

∥∥∥∥
1

≤
∑
h

∥∥δuhvTh∥∥1
=

∑
h

d∑
j=1

∥∥∥〈δujh ·~1,vh〉∥∥∥
1

≤
∑
h

d∑
j=1

(√
n
∣∣δujh∣∣) (‖vh‖2)

=
∑
h

√
n ‖δuh‖1‖vh‖2

≤
(√

n λ√
n

)(∑
h

‖vh‖2
)

= λ‖V‖21,

(5.17)

where δuh and vh are the h-th column of corresponding matrices δU and V respec-

tively, δujh is the j-th element in column vector δuh, and ~1 is the vector with n

elements and all ones. The first inequality in Eq. (5.17) is obtained according to the

triangularity of L1-norm, i.e.,∥∥∥aT1 b1 + · · ·+ aTnbn

∥∥∥
1
≤
∥∥∥aT1 b1

∥∥∥+ · · ·+
∥∥∥aTnbn

∥∥∥
1
. (5.18)
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The second inequality in Eq. (5.17) is obtained using Cauchy Schwarz inequality, i.e.,

given x and y, we have the following inequality in dot-product space

|〈x,y〉| ≤ ‖x‖‖y‖, (5.19)

where x = δujh ·~1 and y = vh. The third inequality is based on the following condition

‖δuh‖1 ≤
λ√
n
, (5.20)

where we assume the magnitude of additive noise δuh (which is enforced on principal

direction uh, for h = 1, 2, · · ·, k) is explicitly controlled by the same hyperparameter

λ/
√
n, i.e., α1 = · · · = αk = λ/

√
n.

By using the same above-mentioned procedures, the upper bounds of the third

and fourth terms in the right-hand-side of Eq. (5.9) are derived as∥∥UδVT
∥∥
1
≤ λ‖U‖21, (5.21)

where the inequality is based on the assumption that ‖δvh‖1 ≤
λ√
d
, and∥∥δUδVT

∥∥
1
≤ kλ2√

nd
, (5.22)

where the inequality is based on the assumptions that ‖δuh‖1 ≤
λ√
n

and ‖δvh‖1 ≤
λ√
d
,

i.e., α1 = · · · = αk = λ/
√
n, β1 = · · · = βk = λ/

√
d. Without loss of the generality,

here we also treat the level of additive nose in each principal component equally.

Combining the results in Eq. (5.17), Eq. (5.21), Eq. (5.22) together, another

tight upper bound of problem (5.8) is obtained as∥∥∥X− (U + δU) (V + δV)T
∥∥∥
1

≤
∥∥X−UVT

∥∥
1

+ λ‖U‖21 + λ‖V‖21 + kλ2√
nd
.

(5.23)

Ignoring the last constant term, the robust L1-PCA model defined in Eq. (5.8) is

simplified to minimize the following upper bound

min
U,V

∥∥X−UVT
∥∥
1

+ λ‖U‖21 + λ‖V‖21, (5.24)
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where λ is the hyperparameter to control the level of sparsity in principal directions

U and principal components V.

Thus, adding noises δU and δV into L1-PCA model are equivalent to enforcing

sparsity-induced L21-norm on corresponding variables U and V.

With different assumptions on additive noises of principal directions and prin-

cipal components, we derived two tight upper bounds for robust L1-PCA model. For

L1-norm penalty based robust L1-PCA model, the magnitude of additive noise is

controlled by λ. For L21-norm penalty based robust L1-PCA model, the magnitude

of additive noise is controlled by λ and its length.

5.3 Augmented Lagrangian Multiplier Based Optimization Algorithm

In the previous section, we derive two tight upper bounds for robust L1-PCA

models in the form of L1-norm penalty and L21-norm penalty, see Eq. (5.16) and

Eq. (5.24). As it can be seen in the derived tight upper bounds, we only have two

unknown variables and one hyperparameter, which greatly simplifies the optimization

of the original problem (5.8).

Towards minimizing the L1-/L21-norm penalty based robust L1-PCA models,

in the following, we propose an augmented Lagrangian multiplier based optimization

algorithm, which can work efficiently with proximal operators such as L1-norm and

L21-norm regularizations. All the computations can be implemented in matrix-based

fashion.

5.3.1 Efficient Optimization Algorithm for Solving L1-norm Penalty Based Robust

L1-PCA Model

As it can be seen in Eq. (5.16), we have a multivariate optimization problem,

where two unknown variables U, V need to be minimized. The first idea that comes
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into the mind is using the alternative optimization method. However, computing

the derivative with respect to one variable while fixing another variable becomes

impractical, since those three L1-norm based terms in the objective function are non-

smooth and non-differentiable.

To resolve this difficulty, we apply augmented Lagrangian multiplier [43] to

solve the optimization problem (5.16). First, we introduce three auxiliary variables

E, F, and G to make the optimization separable between loss and penalty. Thus, the

original optimization problem (5.16) becomes to

min
U,V,E,F,G

‖E‖1 + λ‖F‖1 + λ‖G‖1

s.t. X−UVT − E = 0,

U− F = 0,

V −G = 0.

(5.25)

Even though the original unconstrained problem is transformed into an constrained

problem, the optimization becomes much more easier. Before, the optimization with

respect to U or V are in both L1 loss and L1 regularization, which is hard to solve.

After adding auxiliary variables, the optimization with respect to U or V are decom-

posed into independent subproblems.

Then, we introduce three Lagrangian multipliers Ω, Σ, and Λ to enforce the

equality constraints in problem (5.25) explicitly. Thus, the Lagrangian function is

defined as

L(U,V,E,F,G,Ω,Σ,Λ, µ) = ‖E‖1 + λ‖F‖1 + λ‖G‖1

+
〈
Ω,X−UVT − E

〉
+ µ

2

∥∥X−UVT − E
∥∥2
F

+ 〈Σ,U− F〉+ µ
2
‖U− F‖2F

+ 〈Λ,V −G〉+ µ
2
‖V −G‖2F

(5.26)
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where 〈·, ·〉 is inner product, i.e., 〈A,B〉 = tr(ATB), µ is penalty parameter, and Ω,

Σ, Λ are Lagrangian multipliers.

Eq. (5.26) can be further rewritten to the following equivalent formulation

min
U,V,E,F,G

‖E‖1 + λ‖F‖1 + λ‖G‖1

+ µ
2

∥∥∥X−UVT − E + Ω
µ

∥∥∥2
F

+ µ
2

∥∥∥U− F + Σ
µ

∥∥∥2
F

+ µ
2

∥∥∥V −G + Λ
µ

∥∥∥2
F
.

(5.27)

As compared to the original optimization problem (5.16), the optimization with

respect to three L1-norm based terms are decoupled in problem (5.27). Thus, we

can apply the alternative minimization method to solve problem (5.27), which can

be decomposed to several subproblems with respect to one unknown variable while

fixing the rest of unknown variables.

Details of the optimization with respect to each subproblem are explained in

the following.

5.3.1.1 Solving for E, F, G

The optimization with respect to E, F, G is decomposed as follows:

(i) Fixing F, G, U, V, the optimization with respect to E becomes to

min
E
‖E‖1 +

µ

2

∥∥∥∥X−UVT − E +
Ω

µ

∥∥∥∥. (5.28)

(ii) Fixing E, G, U, V, the optimization with respect to F becomes to

min
F

λ‖F‖1 +
µ

2

∥∥∥∥U− F +
Σ

µ

∥∥∥∥2
F

. (5.29)

(iii) Fixing E, F, U, V, the optimization with respect to G becomes to

min
G

λ‖G‖1 +
µ

2

∥∥∥∥V −G +
Λ

µ

∥∥∥∥2
F

. (5.30)
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All the three subproblems are L1-norm based proximal operator-type problem. Thus,

we first introduce a general optimization problem with respect to L1-norm, which

then can be applied to solve each subproblem in a similar way.

Theorem 5.3.1. Given the L1-norm based proximal operator-type problem

min
B

α‖B‖1 +
1

2
‖B−A‖2F , (5.31)

the optimal solution B∗ of Eq. (5.31) is given by

B∗ij = sign(Aij) ·max (|Aij| − α, 0). (5.32)

Proof of Theorem 5.3.1. If the entries in matrix B are not correlated, Eq. (5.31)

can be simplified to the optimization problem with respect to a single entry

min
b

α|b|+ 1

2
(b− a)2.

Since sign(b) = sign(a), the objective function becomes to

min
b

α|b|+ 1

2
(|b| − |a|)2.

By setting derivative with respect to |b| to zero, we have |b∗| − |a|+α = 0. Thus, the

optimal solution is obtained as b∗ = sign(a) ·max(|a| − α, 0). By setting a = Aij and

b∗ = B∗ij, we have the same optimal solution given in Eq. (5.32). 2

Reorganizing the terms in Eqs. (5.28-5.30), the subproblem with respect to E,

F, G can be reduced to the same mathematical formulation defined in Eq. (5.31).

Thus, by using Theorem 5.3.1, the optimal solutions of E∗, F∗, G∗ are obtained as

follows

E∗ij = sign
(
X̃ij

)
·max

(∣∣∣X̃ij

∣∣∣− 1

µ
, 0

)
, (5.33)

F∗ij = sign
(
Ũij

)
·max

(∣∣∣Ũij

∣∣∣− λ

µ
, 0

)
, (5.34)

G∗ij = sign
(
Ṽij

)
·max

(∣∣∣Ṽij

∣∣∣− λ

µ
, 0

)
, (5.35)

where X̃ = X−UVT + Ω/µ, Ũ = U + Σ/µ, Ṽ = V + Λ/µ.
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5.3.1.2 Solving for U, V

The optimization with respect to U, V is decomposed as follows:

(i) Fixing E, F, G, V, the optimization with respect to U becomes to

min
U

µ

2

∥∥∥X̃−UVT
∥∥∥2
F

+
µ

2
‖U−C‖2F , (5.36)

where X̃ = X− E + Ω/µ, C = F−Σ/µ.

(ii) Fixing E, F, G, U, the optimization with respect to V becomes to

min
V

µ

2

∥∥∥X̃−UVT
∥∥∥2
F

+
µ

2
‖V −D‖2F , (5.37)

where X̃ = X− E + Ω/µ, D = G−Λ/µ.

As it can be seen that all the terms in Eq. (5.36) and Eq. (5.37) are smooth

and differentiable, the derivative can be computed directly. By setting derivatives of

Eq. (5.36) and Eq. (5.37) with respect to U and V to zero respectively, we obtain the

optimal solutions of U∗ and V∗

U∗ =
(
C + X̃V

) (
VTV + I

)−1
, (5.38)

V∗ =
(
D + X̃TU

) (
UTU + I

)−1
, (5.39)

where I is k-by-k identity matrix.

5.3.1.3 Updating Parameters: Ω, Σ, Λ, µ

Finally, we update parameters Ω, Σ, Λ, ν at the end of each iteration as the

following

Ω⇐ Ω + µ ·
(
X−UVT − E

)
, (5.40)

Σ⇐ Σ + µ · (U− F) , (5.41)

Λ⇐ Λ + µ · (V −G) , (5.42)

µ⇐ ρ · µ. (5.43)
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5.3.2 Efficient Optimization Algorithm for Solving L21-norm Penalty Based Robust

L1-PCA Model

Since L21-norm shares the same non-smooth and non-differentiable property as

L1-norm, we also apply aforementioned ALM method to solve the L21-norm penalty

based robust L1-PCA model.

First, we introduce three auxiliary variables E, F, and G to make the optimiza-

tion separable between L1-norm based loss and L21-norm based regularization. Thus,

the original optimization problem (5.24) becomes to

min
U,V,E,F,G

‖E‖1 + λ‖F‖21 + λ‖G‖21

s.t. X−UVT − E = 0,

U− F = 0,

V −G = 0.

(5.44)

By using ALM method, Eq. (5.44) can be further rewritten as

min
U,V,E,F,G

‖E‖1 + λ‖F‖21 + λ‖G‖21

+ µ
2

∥∥∥X−UVT − E + Ω
µ

∥∥∥2
F

+ µ
2

∥∥∥U− F + Σ
µ

∥∥∥2
F

+ µ
2

∥∥∥V −G + Λ
µ

∥∥∥2
F
,

(5.45)

where Ω, Σ, Λ are Lagrangian multipliers, and µ is the penalty parameter.

Thus it can be seen that the difference between problem (5.27) and prob-

lem (5.45) is only the optimization with respect to F and G. The optimal solution of

variables E, U, V and the update of parameters Ω, Σ, Λ, µ given in previous section

can be reused here to solve the L21-norm penalty based Robust L1-PCA model.

5.3.2.1 Solving for E

Same as Eq. (5.33).
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5.3.2.2 Solving for F, G

The optimization with respect to F, G is decomposed as follows:

(i) Fixing E, G, U, V, the optimization with respect to F becomes to

min
F

λ‖F‖21 +
µ

2

∥∥∥∥U− F +
Σ

µ

∥∥∥∥2
F

. (5.46)

(ii) Fixing E, F, U, V, the optimization with respect to G becomes to

min
G

λ‖G‖21 +
µ

2

∥∥∥∥V −G +
Λ

µ

∥∥∥∥2
F

. (5.47)

As compared to previous subsection, the regularization enforced on F and G

has been changed from L1-norm to L21-norm. Now, these two subproblems become

to the L21-norm based proximal operator-type problem. Thus, we first introduce a

general optimization problem with respect to L21-norm, which then can be applied

to solve each subproblem in a similar way.

Theorem 5.3.2. Given the L21-norm based proximal operator-type problem

min
B

α‖B‖21 +
1

2
‖B−A‖2F , (5.48)

the optimal solution B∗ of Eq. (5.48) is given by

bi = ai ·max

(
1− α

‖ai‖2
, 0

)
, (5.49)

where ai and bi are i-th column of the corresponding matrices A and B respectively.

Proof of Theorem 5.3.2. If the columns in matrix B are not correlated, Eq. (5.48)

can be simplified to the optimization problem with respect to a single column

min
x

α‖x‖2 +
1

2
‖x− y‖22.

Since x = ρy (ρ ∈ R+), the objective function becomes to

min
ρ

αρ‖y‖2 +
(ρ− 1)2

2
‖y‖22.
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By setting derivative with respect to ρ to zero, we have α‖y‖2 + (ρ − 1)‖y‖22 = 0.

Thus, the optimal solution of ρ is ρ∗ = max(1−α/‖y‖2, 0). According to the relation

x∗ = ρ∗y, the optimal solution of x is obtained as x∗ = y ·max(1−α/‖y‖2, 0). Thus,

the optimal solution defined in Eq. (5.49) is obtained by setting x∗ = ai and y = bi,

where ai and bi are i-th column of matrices A and B respectively. 2

Reorganizing the terms in Eqs. (5.46-5.47), the subproblem with respect to F

and G can be reduced to the same mathematical formulation defined in Eq. (5.48).

Thus, by using Theorem 5.3.2, we obtain the optimal solutions of F∗ and G∗ as the

following

f∗i = ũi ·max

(
1− λ/µ

‖ũi‖2
, 0

)
, (5.50)

g∗i = ṽi ·max

(
1− λ/µ

‖ṽi‖2
, 0

)
, (5.51)

where f∗i , g∗i , ũi, ṽi are i-th column of the corresponding matrices F∗, G∗, Ũ, Ṽ

respectively, Ũ = U + Σ/µ, and Ṽ = V + Λ/µ.

5.3.2.3 Solving for U, V

Same as Eqs. (5.38-5.39).

5.3.2.4 Updating Parameters: Ω, Σ, Λ, µ

Same as Eqs. (5.40-5.43).

5.3.3 Implementation Details of ALM Based Optimization Algorithm

The complete algorithm for solving L1-/L21-norm penalty based robust L1-PCA

models is summarized in Algorithm 4. Since the proposed ALM based algorithm uses

alternative optimization technique, the optimal solution of U and V is obtained iter-

atively until the objective function J defined in Eq. (5.16) and Eq. (5.24) converges.
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Algorithm 4 ALM Based Optimization Algorithm for Solving L1-/L21-norm Penalty

Based Robust L1-PCA Models.

Input: data matrix X ∈ Rd×n, rank k, hyperparameter λ.

Output: principal directions U ∈ Rd×k, principal components V ∈ Rn×k.

1: Parameter settings:

E = 0, F = 0, G = 0, Ω = 0, Σ = 0, Λ = 0.

t = 0, ρ = 1.1, µ = 1/
∑

ij X2
ij.

2: Initialization:

(i) SVD initialization: U(t),V(t) = svd(X, k);

(ii) Random initialization: U(t) = rand(p, k), V(t) = rand(n, k).

3: repeat

4: Computing E(t+1) using Eq. (5.33)

5: (i) For L1-norm penalty, computing F(t+1) using Eq. (5.34);

(ii) For L21-norm penalty, computing F(t+1) using Eq. (5.50).

6: (i) For L1-norm penalty, computing G(t+1) using Eq. (5.35);

(ii) For L21-norm penalty, computing G(t+1) using Eq. (5.51).

7: Computing U(t+1) using Eq. (5.38).

8: Computing V(t+1) using Eq. (5.39).

9: Updating Ω(t+1) using Eq. (5.40).

10: Updating Σ(t+1) using Eq. (5.41).

11: Updating Λ(t+1) using Eq. (5.42).

12: Updating µ(t+1) using Eq. (5.43).

13: t = t+ 1.

14: until Objective function J converges, i.e., |Jt − Jt−1|/Jt < 1e− 6.

15: return Optimal solutions: U∗, V∗.
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Regarding the starting point of the optimization, we provide two ways to ini-

tialize U(0),V(0): (i) random initialization; (ii) svd initialization. According to our

preliminary experiments, optimization using svd initialization usually obtains better

result than using random initialization. Besides, optimization using random initial-

ization needs more iterations to converge.

After computing the optimal solution of variables E, F, G, U, V, parameters

Ω, Σ, Λ, µ are updated at the end of each iteration.

Finally, the proposed optimization algorithm converges when |Jt − Jt−1|/Jt <

1e− 6. That is to say, the reduction in the objective function value of Eq. (5.16) and

Eq. (5.24) is sufficiently small.

5.4 Exact Solver Based Optimization Algorithm

Even though it is very efficient for minimizing the derived tight upper bounds,

the proposed ALM based optimization algorithm usually has an early stopping prob-

lem, i.e., the objective function converges to a bad local minima that the reconstructed

results are still noisy. Thus, it requires more training time to finetune the hyperpa-

rameters in robust L1-PCA model to obtain a good solution.

To resolve the above-mentioned problems, we introduce a “exact solver” based

optimization algorithm to further improve the robustness of the reconstructed results.

In the “exact solver” method, one element of principal directions and principal com-

ponents is optimized at each time. The global minimum of objective function with

respect to a single element can be obtained in linear time.

5.4.1 Expansion of Objective Function

Before introducing the exact solver based algorithm, first we expand both loss

and penalty terms in Eq. (5.16) and Eq. (5.24) as the following. Here, we simplify the
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robust L1-PCA model with respect to a single entry (i0, h0) of matrix U (i0 = 1, · · ·, d,

h0 = 1, · · ·, k), while assuming the rest of the entries (i 6= i0, h 6= h0) are fixed.

The L1-norm based loss term in Eq. (5.16) and Eq. (5.24) is expanded as

Jloss(U,V)

=
∥∥X−UVT

∥∥
1

=
∑
i 6=i0

∑
j

∣∣∣Xij −
∑
h

UihVjh

∣∣∣+
∑
j

∣∣∣Xi0j −
∑
h6=h0

Ui0hVjh −Ui0h0Vjh0

∣∣∣
=

∑
j

∣∣∣X̃i0j −Ui0h0Vjh0

∣∣∣+ const(i 6= i0),

(5.52)

where X̃i0j = Xi0j −
∑

h6=h0 Ui0hVjh.

The L1-norm based penalty term in Eq. (5.16) is expanded as

Jpenalty−L1(U) = ‖U‖1

=
∣∣∣Ui0h0

∣∣∣+
∑
i 6=i0

∑
h6=h0

∣∣∣Uih

∣∣∣
=

∣∣∣Ui0h0

∣∣∣+ const(i 6= i0, h 6= h0).

(5.53)

The L21-norm based penalty term in Eq. (5.24) is expanded as

Jpenalty−L21(U) = ‖U‖21

=
(
U2
i0h0

+
∑
i 6=i0

U2
ih0

)0.5
+
∑
h6=h0

(∑
i

U2
ih

)0.5
=

(
U2
i0h0

+ c
)0.5

+ const(h 6= h0),

(5.54)

where c =
∑

i 6=i0 U2
ih0

.

Via transposing L1-norm based loss term as
∥∥X−UVT

∥∥
1

=
∥∥XT −VUT

∥∥
1
,

then we can apply above procedure to decompose the objective function with respect

to a single entry (j0, h0) of matrix V (j0 = 1, · · ·, n, h0 = 1, · · ·, k), while assuming

the rest of the entries (j 6= j0, h 6= h0) are fixed.
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5.4.2 Minimization of Objective Function

After the expansion, we can minimize the simplified objective function with

respect to a single element at each time.

Combining the results in Eqs. (5.52-5.54) together, the L1-norm penalty based

robust L1-PCA model defined in Eq. (5.16) becomes to the following optimization

problem with respect to u,

min
u

J1(u) = ‖x̃− u · v‖1 + λ |u| , (5.55)

where u is the (i0, h0)-th entry of the corresponding matrix U, x̃ is the transpose

of i0-th row of the corresponding matrix X̃, v is the h0-th column of corresponding

matrix V.

On the other hand, the L21-norm penalty based robust L1-PCA model defined

in Eq. (5.24) becomes to the following optimization problem with respect to u,

min
u

J21(u) = ‖x̃− u · v‖1 + λ
√
u2 + c, (5.56)

where u, x̃, v have same definitions as Eq. (5.55), and c =
∑

i 6=i0 U2
ih0

.

Next, we will explain the details of the “exact solver” method, which can obtain

the global optimal solution u∗ of J1(u) and J21(u), i.e., the optimal solution U∗i0h0 of

problem (5.16) and problem (5.24), for i0 = 1, · · ·, d, h0 = 1, · · ·, k.

5.4.2.1 Solving for J1(u)

First, we rewrite J1(u) defined in Eq. (5.55) equivalently as

J1(u) = ‖x̃− u · v‖1 + λ |u|

=
n∑
i=1

|vi|
∣∣∣ x̃ivi − u∣∣∣+ λ |0− u|

=
n∑
i=0

|bi| |ai − u|

(5.57)
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where a = (0, x̃1/v1, · · · , x̃n/vn)T , b = (λ, v1, · · · , vn)T .

Next, we compute the gradient of J1(u) with respect to u as

∇J1(u) =
n∑
i=0

|bi| · sign(u− ai). (5.58)

It is obvious that the gradient changes when u is crossing any ai for i = 0, · · ·, n, since

sign(u− ai) turns from −1 to +1 at the endpoint ai.

For simplicity of the gradient analysis of J1(u), we sort a = (a0, a1, · · ·, an)T in

an ascending order I, where aI0 ≤ aI1 ≤ aI2 ≤ · · · ≤ aIn . Then, the entire coordinate

axis of u can be divided into n + 2 intervals, according to these n + 1 end points of

a. Thus, when u is in each interval, the gradient can be analyzed as follows:

(i) if u ∈ (−∞, aI0), ∇J1(u) = −
∑n

i=0|bi|.

(ii) if u ∈ (aIn ,+∞), ∇J1(u) =
∑n

i=0|bi|.

(iii) if u ∈ (aIk , aIk+1
), 0 < k < n, ∇J1(u) =

∑k
i=0|bIi |−

∑n
j=k+1

∣∣bIj ∣∣, which is

in-between the result of (i) and (ii).

(iv) given u1 ∈ (aIk , aIk+1
) and u2 ∈ (aIk+1, aIk+2

), the following inequality can

be obtained according to (iii): ∇J1(u2)−∇J1(u1) = 2|bIk+1
| > 0.

Thus it can be seen when u passes through all the intervals (−∞, aI0), (aI0 , aI1),

· · ·, (aIn−1 , aIn), (aIn ,+∞) sequentially, ∇J1(u) is increasing monotonously from neg-

ative to positive according to (i)-(iv). That is to say, (i)-(iv) proves the convexity of

problem (5.55). As a result, the global minimum of J1(u) can be achieved in certain

interval, which has the smallest absolute value of gradient.

Based on the above analysis of the gradient and the convexity, we have the

following theorem to solve J1(u).

Theorem 5.4.1. The optimal solution of J1(u) is given by,

u∗ = argmin
u∈S

J1(u), (5.59)

where S = {0, x̃1/v1, x̃2/v2, · · ·, x̃n/vn}.
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Proof of Theorem 5.4.1. First, all the endpoints in the set S are sorted in an

ascending order I. Given any interval (SIk ,SIk+1
), we have ∇J1(u) =

∑k
i=0 |bIi | −∑n

j=k+1 |bIj |. In this interval, J1(u) is a linear function, since ∇J1(u) is a constant.

Thus, the local minimum of J1(u) can be obtained by either SIk or SIk+1
, which one

of them is decided by the sign of ∇J1(u).

Obviously, J1(u) is a piecewise-linear function, when u passes through all the

intervals along entire coordinate axis of u, i.e., (−∞,SI0), (SI0 ,SI1), · · · ,
(
SIn−1 ,SIn

)
,

(SIn ,+∞). When u approaches to ±∞, J1(u) goes to infinity. Thus, the global

minimum of the objective function J1(u) is obtained from one of endpoints in the set

S, which completes the proof. 2

5.4.2.2 Solving for J21(u)

The objective function J21(u) defined in Eq. (5.56) is rewritten equivalently as

J21(u) = ‖x̃− u · v‖1 + λ
√
u2 + c

=
n∑
i=1

|vi|
∣∣∣ x̃ivi − u∣∣∣+ λ

√
u2 + c

=
n∑
i=0

|bi| |ai − u|+ λ
√
u2 + c,

(5.60)

where a = (0, x̃1/v1, · · ·, x̃n/vn)T , b = (0, v1, · · ·, vn)T .

Thus, the gradient of J21(u) with respect to u is computed as

∇J21(u) =
n∑
i=0

|bi| · sign (u− ai) + λ
u√
u2 + c

. (5.61)

As compared to∇J1(u), it becomes more difficult to analyze∇J21(u), since∇
√
u2 + c

varies in certain interval.

Following the same procedure of solving J1(u), we still divide the entire coor-

dinate axis of u into n+ 2 intervals, using these n+ 1 end points from the ascending

order I of a. Due to the reason that ∇
√
u2 + c turns from negative to positive when
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u crosses 0, 0 still can be treated as one of the endpoints. If u∈ (−∞, aI0), ∇J21(u)

is negative, and can go to negative infinity when u→−∞. If u∈(aIn ,+∞), ∇J21(u)

is positive, and goes to positive infinity when u→+∞.

However, the variation tendency of ∇J21(u) is not very obvious, when u ∈

(aIk , aIk+1
). On the contrary, it is more easier to make a comparison between the

gradients in any two adjacent intervals.

Given u1∈ (aIk , aIk+1
) and u2∈ (aIk+1, aIk+2

), we have the following inequality

for the first term of J21(u)

∇‖x̃− u1 · v‖1 ≤ ∇‖x̃− u2 · v‖1, (5.62)

according to the gradient analysis of J1(u) when u1≤ u2. Besides, we can establish

the following inequality for the second term of J21(u)

∇
√

(u1)2 + c ≤ ∇
√

(u2)2 + c, (5.63)

since ∇
√

(u)2 + c is a monotonously increasing function, which is based on the fact

that ∇2
√

(u)2 + c = c/ (u2 + c)
2.5
> 0.

Combining the results in Eqs. (5.62-5.63) together, we have the following equal-

ity for the gradient of J21(u)

∇‖x̃− u1 · v‖1 + λ · ∇
√

(u1)2 + c ≤ ∇‖x̃− u2 · v‖1 + λ · ∇
√

(u2)2 + c. (5.64)

That is to say, ∇J21(u1) ≤ ∇J21(u2).

On the other hand, when u approaches to ±∞, the gradient of J21(u1) ap-

proaches to ±∞ respectively.

As it can be seen when u passes through all the intervals, ∇J21(u) is increasing

monotonously from negative to positive. Thus, the global minimum of the objective

function J21(u) can be obtained in certain interval with the smallest absolute value

of gradient, which also proves the convexity of J21(u).
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Based on the above analysis of the gradient and the convexity, we have the

following theorem to solve J21(u).

Theorem 5.4.2. Let ũ = argmin
u∈S

J21(u), where S = {0, x̃1/v1, · · · , x̃n/vn}. The

optimal solution of J21(u) is given by

u∗ =



ũ, if ∇J21(ũ− ε) < 0, ∇J21(ũ+ ε) > 0

sign (−d(ũ+ ε)) c|d(ũ+ε)|√
λ2−d2(ũ+ε)

, if ∇J21(ũ± ε) < 0

sign (−d(ũ− ε)) c|d(ũ−ε)|√
λ2−d2(ũ−ε)

, if ∇J21(ũ± ε) > 0

(5.65)

where d(u) = ∇‖x̃− u · v‖1, and ε is a small positive number.

Proof of Theorem 5.4.2. Since ũ achieves the minimum of J21(u) among these

endpoints in the set S, ũ should be either the left endpoint or the right endpoint in

certain interval, where |∇J21(u)| is the smallest.

Suppose the optimal interval is
(
SIk ,SIk+1

)
. If ∇J21(ũ± ε) < 0, ũ should be

the left endpoint SIk . If ∇J21(ũ± ε) > 0, ũ should be the right endpoint SIk+1 .

However, we will not have any optimal interval, if ∇J21(u) could not approach

to zero. That is to say, the optimal solution u∗ should be the endpoint ũ, where

∇J21(ũ− ε) < 0 and ∇J21(ũ+ ε) > 0. In this case, we will have |d(ũ)| > λ, since

∇J21(ũ) 6= 0 and −1 < ∇
√
ũ2 + c < 1.

On the other hand, when |d(u)| < λ, we have ∇J21(u) = 0 in the optimal

interval
(
SIk ,SIk+1

)
. If ∇J21(ũ± ε) < 0, ũ = SIk and d(ũ + ε) = d(u∗), since d(·)

is a constant in the corresponding interval. By setting ∇J21(u∗) = 0, we have the

following equality

d(ũ+ε) + λ
u∗√

(u∗)2 + c
= 0, (5.66)

which gives the optimal solution u∗ as

u∗ = sign (−d(ũ+ ε))
c|d(ũ+ ε)|√
λ2 − d2(ũ+ ε)

. (5.67)
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If ∇J21(ũ± ε) > 0, ũ = SIk+1
and d(ũ− ε) = d(u∗). Then, the optimal solution u∗ is

obtained in the similar way as

u∗ = sign (−d(ũ− ε)) c|d(ũ− ε)|√
λ2 − d2(ũ− ε)

. (5.68)

Based on the above analysis of three cases, we have the optimal solution u∗ of

J21(u) defined in Eq. (5.65), which completes the proof. 2

5.4.3 Implementation Details of Exact Solver Based Optimization Algorithm

As it can be seen in Eq. (5.59) and Eq. (5.65), the exact solver of J1(u) and

J21(u) is very efficient that the optimal solution u∗ can be obtained in linear time.

To minimize L1-/L21-norm penalty based robust L1-PCA models, we apply

exact solver to obtain the optimal solution with respect to a single entry of U and V

at each time. Once all the elements of U are updated, V will be updated element-

by-element in the following. Thus, we can minimize U and V alternatively until the

objective function converges.

In the previous section, we only discussed the case that exact solver is applied to

update the elements of matrix U, i.e., principal directions. To update the elements of

matrix V, i.e., principal components, we can reuse these exact solvers via transposing

the L1-norm based loss term.

After transpose, ‖X−UVT‖1 becomes to ‖Y−VUT‖1, where Y = XT . Thus,

matrix V can be updated using same exact solvers with following replacements such

as

u← v,v← u, x̃← ỹ,

where v is the (j0, h0)-th entry of the corresponding matrix V (j0 = 1, · · ·, n, h0 =

1, · · ·, k), u is the h0-th column of the corresponding matrix U, ỹ is the transpose of

the j0-th row of the corresponding matrix Ỹ.
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Algorithm 5 UPDATE-L1(X, U, V, d, k, λ)

Input: X, U, V, d, k, λ.

Output: U.

1: for i0 = 1 to d do

2: for h0 = 1 to k do

3: X̃ = X−UVT + Uh0(Vh0)
T .

4: x̃ = (X̃i0)T .

5: v = Vh0 .

6: Ui0h0 = argmin
u

J1(u, x̃,v, λ) via Eq. (5.59).

7: end for

8: end for

9: return U∗.

Algorithm 6 UPDATE-L21(X, U, V, d, k, λ)

Input: X, U, V, d, k, λ.

Output: U.

1: for i0 = 1 to d do

2: for h0 = 1 to k do

3: X̃ = X−UVT + Uh0(Vh0)
T .

4: c = ‖Uh0‖
2
2 −U2

i0h0
.

5: x̃ = (X̃i0)T .

6: v = Vh0 .

7: Ui0h0 = argmin
u

J21(u, x̃,v, c, λ) via Eq. (5.65).

8: end for

9: end for

10: return U∗.
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Algorithm 7 Exact Solver Based Optimization Algorithm for Solving L1-/L21-norm

Penalty Based Robust L1-PCA Model.

Input: data matrix X ∈ Rd×n, rank k, hyperparameter λ.

Output: principal directions U ∈ Rd×k, principal components V ∈ Rn×k.

1: Parameter settings: t = 0, ε = 1e− 6, Y = XT .

2: Initialization:

(i) SVD initialization: U(t),V(t) = svd(X, k);

(ii) Random initialization: U(t) = rand(p, k), V(t) = rand(n, k).

3: repeat

4: (i) For L1-norm penalty, U(t+1) = UPDATE-L1(X,U(t),V(t), d, k, λ);

(ii) For L21-norm penalty, U(t+1) = UPDATE-L21(X,U(t),V(t), d, k, λ).

5: (i) For L1-norm penalty, V(t+1) = UPDATE-L1(Y,V(t),U(t+1), n, k, λ);

(ii) For L21-norm penalty, V(t+1) = UPDATE-L21(Y,V(t),U(t+1), n, k, λ).

6: t = t+ 1.

7: until Objective function converges, i.e., |Jt − Jt−1|/Jt < ε.

8: return Optimal solutions: U∗, V∗.

The exact solver based optimization algorithm for solving L1-/L21-norm penalty

based robust L1-PCA model is summarized in Algorithms 5-7.

First, we introduce the subroutine of exact solver for updating matrix U, where

Algorithm 5 solves the L1-norm penalty via Theorem 5.4.1 and Algorithm 6 solves

the L21-norm penalty via Theorem 5.4.2. On the other hand, we can update matrix

V using the same subroutine, via transposing the L1-norm based loss term.

The completed framework of optimizing robust L1-PCA models is given in Al-

gorithm 7. We also initialize U and V via SVD initialization or random initialization,

which is already explained in ALM based optimization algorithm. Then, at each it-
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eration, U and V are updated alternatively via exact solvers, see Algorithms 5-6.

Finally, the optimization algorithm coverges until |Jt − Jt−1|/Jt is smaller than the

threshold ε.

5.5 Experiments

5.5.1 Benchmark Dataset

Extensive experiments on benchmark dataset are performed to evaluate the

effectiveness of the proposed robust model and the optimization algorithm.

In the benchmark dataset, four hundreds face images are collected by AT&T

Laboratories Cambridge, including ten different images of each of forty distinct per-

sons. Each face image was taken under varying lighting and facial expression.

Figure 5.1: Corrupted face images of AT&T dataset.
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In the experiments, the original face image is resized to a lower ratio 56 × 46.

Each face image is represented by a 2576-dimensional vector. Towards verifying the

robustness of the proposed data reconstruction model, we add rectangular noises at

a random position in each face image.

The detail of the corrupted face image is shown in Figure 5.1, where the rect-

angular corruption is filled with black pixels.

5.5.2 Result and Analysis

In the following, we apply robust PCA based low-rank and sparse data recon-

struction method to reconstruct corrupted face images. The effectiveness/robustness

of the proposed model is evaluated based on the quality of reconstructed results.

5.5.2.1 Robustness of L1-/L21-norm Penalty

With assumption of the underlying noise in the principal directions and princi-

pal components, we derive the L1-/L21-norm penalty based robust L1-PCA models.

Our derivation mathematically proves the connection between robustness and regu-

larization. To further verify this fact, we apply robust L1-PCA models to reconstruct

the corrupted face images.

In the experiments, we apply data reconstruction methods (including L2-PCA,

L1-PCA, L1-norm penalty based robust L1-PCA, and L21-norm penalty based robust

L1-PCA) to reconstructed the corrupted face images shown in Figure 5.1. The rank

parameter k is set as 15. The result of L2-PCA (i.e. the SVD result of the corrupted

input data) is used as the initialization for other three methods. The reconstructed

results are shown in Figure 5.2.

As it can be seen in Figure 5.2-(a), L2-PCA completely fails to reconstruct the

corrupted input data, since L2 is not robust enough when dealing with a large number
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(a) L2-PCA (b) L1-PCA

(c) Robust L1-PCA with L1-Penalty (d) Robust L1-PCA with L21-Penalty

Figure 5.2: Robust L1-PCA versus state-of-the-arts. Reconstructed results from four
different methods.
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of noises. On the contrary, L1-PCA is capable of removing most of the rectangular

noises, see Figure 5.2-(b), meanwhile recovering the original faces with a good quality.

Our proposed robust L1-PCA models can further improve the robustness of the re-

constructed results as compared to L1-PCA, see Figure 5.2-(c,d), where the remaining

noises shown in Figure 5.2-(b) are all removed out.

(a) L2-PCA

(b) L1-PCA

(c) Robust L1-PCA with L1-Penalty

(d) Robust L1-PCA with L21-Penalty

Figure 5.3: Robust L1-PCA versus state-of-the-arts. Learned principal directions
from four different methods.

On the other hand, learned principal directions are shown in Figure 5.3. Both

L2-PCA and L1-PCA learn noisy principal directions, see Figure 5.3-(a,b), since L2-

PCA models small noises and L1-PCA models large noises in original feature space.

However, L1-PCA with L1-/L21-penalty learns clean principal directions, see Fig-

ure 5.3-(c,d), because large noises are modeled in latent feature space. Thus, L1-/L21-

penalty terms can help L1-PCA model to remove the noises in principal directions.

As a conclusion, L1-PCA with L1-/L21-penalty achieves the best result among

these methods. Thus, the fact that the regularization helps improving the robustness

of machine learning models is verified.
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5.5.2.2 Effectiveness of Exact Solver

In the following, we conduct experiments on the corrupted face images to verify

the effectiveness of exact solver based optimization algorithm, as compared to ALM

based optimization algorithm.

Details of the comparison are explained as follows. First, principal directions

U(0) and principal components V(0) are initialized by the results of SVD. Starting

from U(0)(V(0))T , ALM based optimization algorithm reconstructs the corrupted face

image as U(1)(V(1))T . To further improve the reconstructed result U(1)(V(1))T , exact

solver based optimization algorithm is applied to obtain the final reconstructed result

as U(2)(V(2))T .

First of all, we apply optimization algorithms to solve the L1-norm penalty

based robust L1-PCA model. Here, we use the first 10 person in AT&T dataset as

the input matrix X ∈ R2576×100 (d = 2576, n = 100), and set the rank k to 20. The

comparison results between ALM and exact solver are shown in Figures 5.4-5.5. In

Figure 5.4-(a), ALM based optimization algorithm removes most of the corruptions

(see Figure 5.1) in face images. In Figure 5.4-(b), exact solver based optimization

algorithm removes all the remaining rectangular noises shown in the ALM results, for

example 10th face image in 1st row and 2nd face image in 2nd row. Thus it can be

seen that exact solver obtains a better reconstructed result than ALM. Additionally,

ALM learns the noisy principal directions such as 1st and 4th face images in 2nd row,

see Figure 5.5-(a), that’s why the reconstructed result still has a few corruptions.

On the contrary, exact solver learns the clean principal directions, see Figure 5.5-(b),

and recovers the original face images with a good quality. As a result, exact solver

improves the robustness of ALM in solving the L1-norm penalty based robust L1-PCA

model, which verifies the effectiveness of exact solver based optimization algorithm.
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(a) ALM (b) Exact Solver

Figure 5.4: Exact Solver versus ALM. Reconstructed results of L1-norm penalty based
robust L1-PCA model from two optimization algorithms.

(a) ALM

(b) Exact Solver

Figure 5.5: Exact Solver versus ALM. Learned principal directions of L1-norm penalty
based robust L1-PCA model from two optimization algorithms.
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Secondly, we apply optimization algorithms to solve the L21-norm penalty based

robust L1-PCA model. Here, we use the first 20 person in AT&T dataset as the input

matrix X ∈ R2576×200 (d = 2576, n = 200), and set the rank k as 40. The comparison

results between ALM and exact solver are shown in Figures 5.6-5.7, where Figure 5.6

shows the reconstructed results and Figure 5.7 shows the learned principal directions.

On the one hand, exact solver obtains better reconstructed results as compared to

ALM, see Figure 5.6, for example 5th face image in 5th row, 3rd face image in 8th

row, and 5th face in 9th row. On the other hand, exact solver learns the clean

principal directions in Figure 5.7-(b), while ALM learns the noisy principal directions

in Figure 5.7-(a). As a result, exact solver improves the robustness of ALM in solving

the L21-norm penalty based robust L1-PCA model, which also verifies the effectiveness

of exact solver based optimization algorithm.

(a) ALM (b) Exact Solver

Figure 5.6: Exact Solver versus ALM. Reconstructed results of L21-norm penalty
based robust L1-PCA model from two optimization algorithms.
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(a) ALM

(b) Exact Solver

Figure 5.7: Exact Solver versus ALM. Learned principal directions of L21-norm
penalty based robust L1-PCA model from two optimization algorithms.

5.6 Conclusion

In this work, we introduce robust PCA based low-rank and sparse data recon-

struction method, which models the underlying noises in the lower-dimensional latent

feature space. For purpose of simplifying the corresponding multivariate optimiza-
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tion problem, we derive the tight upper bounds of robust L1-PCA models, i.e., the

L1-/L21-norm penalty based robust L1-PCA model. At the same time, our derivation

theoretically proves the connection between the robustness and the regularization

from a robust point of view.

Then, an efficient augmented Lagrangian multiplier based optimization algo-

rithm is proposed to minimize the derived tight upper bounds, where the original

problem is decomposed into several subproblems with close-form solutions. To further

improve the robustness of the reconstructed results, we present an exact solver based

optimization algorithm. Exact solver minimizes the L1-/L21-norm penalty based ro-

bust L1-PCA models with respect to a single entry of principal directions and principal

components at each time. Because of resolving this simplified optimization problem

in linear time, exact solver works efficiently with alternative optimization technique.

Experimental results on AT&T datasets show that L1-/L21-norm penalty based

robust L1-PCA models obtain better reconstructed results of the corrupted face im-

ages than other methods, such as L2-PCA and L1-PCA. On the other hand, exact

solver based optimization can further improves the robustness of reconstructed results,

as compared to augmented Lagrangian multiplier based optimization algorithm. Thus

it can be seen that experimental results verify the effectiveness of the proposed robust

data reconstruction model and the proposed optimization algorithm.
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CHAPTER 6

CONCLUSION

Feature selection and data reconstruction are crucial to data analysis, since it

helps users to build better machine learning models for real-world applications such

as classification, clustering, etc. As a result, we focus on developing several robust

and flexible learning models to improve the efficiency and the effectiveness of feature

selection and data reconstruction, which can pave the way for data modeling, that is

the key step of data analysis.

First, we derive LASSO from a probabilistic point of view. The proposed prob-

abilistic selective ridge regression further explains the sparsity of `1-norm, and in-

troduces a new ranking method to measure the importance of features. Based on

probabilistic LASSO, we extend this two-class method to solve multi-class problem,

where we are adding a probabilistic selection vector for each class separately. Thus,

we apply this probability-derived `1,2-norm to select discriminative features for each

class, so as to provide certain flexibility in feature selection. An auxiliary function

is introduced to iteratively optimize `1,2-norm regularized linear regression problem,

with vigorous convergence guarantee. Empirical studies show that our `1,2-norm based

flexible feature selection resolves the inflexibility of class-shared feature selection such

as the widely used `2,1-norm, and further improves the performance on multi-class

classification.

Additionally, we propose a novel “exclusive `2,1” regularization (short for `2,1

with exclusive lasso) to select robust and flexible features, which synergistically com-

bines the advantages of different sparsity-induced norms. Exclusive `2,1 regularization
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not only increases the robustness via `2,1-norm but also provides the flexibility via

`1,2-norm. To resolve the inefficiency of existing solvers such as re-weighted method

and coordinate descent method, we propose a sorting-based explicit approach to solve

`1,2-norm based proximal operator-type problem. Besides, we also point out some in-

teresting property of ‖w‖21 regularization as compared to ‖w‖1 regularization, which

helps us to have a better understanding of so-called “exclusive sparsity” of `1,2-norm.

Finally, an augmented Lagrangian multiplier based optimization method is presented

to iteratively solve the exclusive `2,1 regularization in a row-wise fashion, which greatly

reduces the computational cost and is well-suited for large-scale data. Empirical stud-

ies show that the proposed optimization algorithm converges fast and is very efficient

in real-world applications; the performance of exclusive `2,1 regularization is not sensi-

tive to the change of hyperparameters; and the proposed exclusive `2,1 regularization

achieves higher classification accuracy on multi-class problems as compared to state-

of-the-arts, such as `2,1 and exclusive lasso.

In this thesis, we also present deep `1-autoencoder networks for data reconstruc-

tion. As compared to linear methods using nuclear norm and other low-ranks models,

our proposed deep robust data reconstruction model is more capable of capturing the

complicated intrinsic property of the corrupted input data, because of multi-layer and

non-linear architectures. To resolve the black spot problem incurred by `1 loss based

networks using ReLU activation, we further introduce a smoothed version of ReLU

(sReLU), which can provide a small positive gradient when the input is smaller than

0. Thus, sReLU has the strength to drive black spots in the reconstructed output up

from zero. As a result, the proposed `1-autoencoder networks using sReLU activation

will not produce the black spot any more, and further improve the quality of recon-

structed results as the number of layers is increasing. Empirical studies show that

our proposed `1-autoencoder network is able to remove various kinds of occlusions in
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the input data, and achieves a lower noise-free reconstruction error as compared to

state-of-the-arts such as robust PCA and L1-PCA.

On the other hand, we propose a robust PCA based low-rank and sparse data

reconstruction method to automatically remove the noise in the data. In the proposed

robust L1-PCA method, the underlying noises in principal directions and components

are modeled by Laplacian distribution. Based on the robust L1-PCA model, we derive

two tight upper bounds of the original objective function, meanwhile which theoret-

ically proves that the regularization improves the robustness of learning models. To

optimize L1-/L21-norm penalty based robust L1-PCA models, we first introduce an

augmented Lagrangian multiplier based optimization algorithm. Then, “exact solver”

algorithm is proposed to further improve the robustness of the data reconstruction.

Empirical studies show that our proposed robust L1-PCA models obtain better recon-

structed results as compared to state-of-the-arts. Additionally, the proposed exact

solver based optimization algorithm solves the multivariate problem more efficiently

as compared to standard ALM based optimization algorithm, thus further improving

the quality of the reconstruction.

In summary, we developed several robust and flexible learning models to conduct

feature selection and data reconstruction from different point of views. It turns out

that our proposed novel approaches not only successfully resolves the problems and

limitations of existing methods, but also further improves the performance on real-

world applications.
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