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ABSTRACT 

Clutter is common in applications of radar imaging and can adversely impact target imaging by 
contributing scattered energy that is not accounted for in target signal models.  One potential 
source of clutter is moving foliage in the vicinity of the target, such as a target embedded in a 
forest.  ISAR imaging of moving clutter results in an equivalent current image that changes over 
each imaging sample.  The stochastic nature of this clutter equivalent current presents 
challenges in detecting and imaging a weak embedded target using traditional algorithms.  This 
dissertation proposes a multiscale model and analysis method to characterize the multiscale 
statistical properties of the clutter equivalent current density.  It is hypothesized that clutter 
scattering phenomenon is related to vegetation structure, and the resulting multiscale 
properties of the projected clutter equivalent current can be modeled and analyzed to reveal 
these clutter scattering characteristics.  Simulation methods are proposed which use these 
multiscale characteristics to generate additional representative samples of the ISAR clutter 
equivalent current.  The proposed analysis and simulation methods are validated using known 
simulation data and applied to physical clutter ISAR measurements.  Simulation fidelity of the 
two proposed simulation methods is evaluated with image similarity measures.  Hypotheses 
relating multiscale characteristics of the multiscale model to scattering phenomenon are 
proposed and tested.  Finally, applications for analysis and simulation are presented, 
demonstrating the value of the proposed methods in a variety of real problems. 
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1 INTRODUCTION 

Inverse synthetic aperture radar (ISAR) imaging is an active remote sensing technique that 
estimates spatial locations of concentrated target scattering from the measured backscattered 
electromagnetic field.  When an incident wave hits the target, a current density is excited in the 
target volume which results in a total radiated field.  Inverse techniques are used to find a 
target equivalent current density that will produce the measured scattered field.  The scattered 
field from a target volume is unique but the equivalent current that produces a measured 
scattered field is not unique.  Many ISAR imaging methods make assumptions about the target 
to decrease the complexity of the inverse problem.  These assumptions and simplifications 
result in less complex solutions, but may not account for nonlinear interactions and higher-
order scattering within the target, resulting in unintended artifacts in the ISAR image [1] [2]. 
 
Clutter is present in most radar images due to the presence of non-target scatterers in the 
vicinity of the target.  Mitigation or removal of clutter is one of the primary challenges in target 
imaging and detection.  One possible source of clutter in ISAR imaging is vegetation.  Wind 
causes spatial motion in vegetation, resulting in a backscattered field that changes over image 
samples.  In some applications where the clutter is very strong relative to the target, such as a 
target embedded in vegetation, the clutter can make detection or imaging of the target 
difficult.  Removal or mitigation of the contributions of scattering from moving vegetation is 
needed in this case [3].  Multiple scattering and nonlinear interactions within the clutter cause 
simple scattering models to break down and presents a significant challenge to accurate 
imaging.  This dissertation will show that the estimated two-dimensional projection of the 
clutter equivalent current in the imaging plane can be estimated by a second-order multiscale 
model whose parameters are estimated by a proposed multiscale analysis method.  This model 
can then be used to generate additional representative samples that aid in ISAR imaging of 
targets embedded in clutter and provide representative training data for deep learning 
applications. 

1.1 RELATED STATE OF THE ART MATERIAL 
The latest research in topics related to this dissertation are reviewed here with a focus on 
general ISAR imaging, clutter suppression and target detection in radar applications, research 
into foliage and vegetation clutter, and deep learning for radar imaging.  The intent here is to 
show that the approaches in this dissertation are novel and applicable to a wide range of 
ongoing research.  Deep learning is being increasingly used to solve complex ISAR and clutter 
suppression problems and in almost all deep learning applications, performance is based on the 
availability of representative training data. 
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1.1.1 ISAR Imaging 
ISAR is a broad field and it is appropriate to first discuss what is considered outside the scope of 
this dissertation and will not be discussed in the areas of modern ISAR research.  A significant 
amount of research in the area of target autofocus and prediction of the motion of 
uncooperative ISAR targets has occurred in the last few years and this is beyond the scope of 
this dissertation.  This dissertation will be focused on the specific case of monostatic ISAR, 
where the transmit and receive antennas are co-located, although some of the contributions in 
this dissertation can be applied to the bistatic case or multiple-input multiple-output (MIMO) 
measurement scenarios.  Interferometric techniques have been a popular area of research for 
ISAR.  This involves use of the interferometric combination of multiple ISAR images to increase 
the imaging dimension.  For the latest applicable research, we will focus on recent research 
related to imaging techniques using monostatic ISAR of cooperative targets.  Generally, this 
scope covers super-resolution imaging techniques, sparse apertures and imaging methods that 
use compressive sensing (CS) techniques, and deep learning for ISAR.   

1.1.1.1 Super-Resolution ISAR Imaging 
ISAR imaging is based on Fourier theory, which leads to the conclusion that spatial resolutions 
are limited by the received signal bandwidth and coherent processing interval (CPI).  Due to the 
Fourier relationship between signal phase and spatial range, it can be shown that the range is 
inversely proportional to the signal bandwidth [4].  Similarly, cross range is inversely 
proportional to the CPI [5]. Super-resolution research is well established and has made other 
advancements in ISAR imaging possible.  Here we discuss super-resolution ISAR imaging as a 
segue into compressive sensing (CS) techniques. The original direct Fourier inversion methods 
for focusing scatterer Doppler histories resulted in resolution limitations in ISAR imaging.  
Super-resolution techniques for ISAR imaging can be traced back to work by Ralph Schmidt in 
1986 [6].  Here it was proposed that the backscattered signal from a collection of point 
scatterers could be separated into signal and noise subspaces.  Schmidt showed that the signal 
and noise subspaces are orthogonal and scattering center locations can be parametrically 
estimated by exploiting this orthogonal relationship.  This technique is referred to as “super-
resolution” imaging because it results in much higher resolution over standard inverse Fourier 
focusing techniques, which are limited by the number of measurements.  This was extended to 
the three-dimensional case and eventually led to three-dimensional ISAR measurements of a fir 
tree presented by Fortuny and Sieber in 1999 [7].  Many techniques have been developed to 
move past the Fourier resolution limitation.  These can be grouped into two main categories: 
point source and distributed-source techniques [8]. 
 
Point-source techniques operate under the assumption that the target can be modeled as a 
collection of individual point scatterers, and these techniques seek to estimate their amplitude 
and position.  This assumption is valid for targets that have a limited number of major 
scattering centers but is not effective in cases where the target is very distributed with complex 
scattering mechanisms.  Additionally, point-source techniques generally require a priori 
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knowledge of the number of scattering centers.  Point-source super-resolution techniques 
include MUSIC [9], ESPRIT [10], CLEAN [11], RELAX [12], and bandwidth extrapolation 
techniques [13]. 
 
Distributed-source techniques assume that the spatial scene is a continuous function sampled 
on a regular grid and filtered by a point spread function (PSF).  Distributed-source techniques 
include deconvolution and spectral estimation.  Deconvolution techniques seek to invert the 
PSF and estimate the high-resolution target reflectivity function and include minimum mean-
squared error (MMSE) [14] and singular value decomposition (SVD) [15].  Spectral estimation 
techniques seek to estimate the parameters of multiple sinusoids that correspond to single 
scatterers and include Capon’s minimum variance method (MVM) [16], the amplitude and 
phase estimation of a sinusoid (APES) [17], and super-spatially variant apodization (SSVA) [18]. 
 
In addition to these methods, compressive sensing (CS) has been a very popular area of 
research in multi-dimensional radar imaging.  CS depends on the fact that the spatial ISAR 
image is a sparse representation of the measured ISAR data in the Fourier domain.  The Fourier 
transform satisfies the restrictive isometry property (RIP) [19] and serves as a basis for the 
signal representation [8].  Major contributions to the application of CS to radar imaging include 
[19] and [20].  The application of CS to ISAR imaging is straight-forward, but a significant 
amount of recent research exists over a variety of topics.  Many of these topics are applying CS 
to more specific radar imaging applications.  In [21], Kang et al apply CS techniques to bistatic 
ISAR imaging, while simultaneously performing translational and rotational motion 
compensation, and bistatic distortion compensation.  Other recent research involves 
improvements in optimization algorithms [22] [23], waveform design and optimization [24] 
[25], and application to specific radar systems.  Comparison of CS with other super-resolution 
imaging techniques concludes that CS can exceed the performance of super-resolution 
techniques in most applications [8]. 

1.1.2 Clutter Suppression and Target Detection in Radar Applications 
Most clutter suppression research for radar is focused on efficient target detection in the 
presence of heterogeneous clutter.  As opposed to imaging, these applications are generally 
concerned with target detection.  Target detection algorithms use estimated clutter statistics to 
determine when a target is present.  The suppression of clutter can be more difficult than noise 
because noise generally has a Gaussian distribution, where clutter does not.  Target detection 
in sea clutter is a particularly difficult problem due to the nature of scattering from ocean 
waves.  A significant amount of research has been concentrated on modeling ocean clutter in 
different sea states. 
 
In 2013, Jean-François Degurse et al discuss the need for representative clutter data with no 
target present in using maximum likelihood estimation methods.  In this case, the known target 
information is removed from the covariance matrix using the APES algorithm, which also 
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removes some of the clutter, resulting in degraded clutter suppression.  Two new algorithms 
are proposed that use deterministic-aided space-time adaptive processing (STAP) to overcome 
this limitation.  It is shown that this is an improvement over the current methods in detection 
and clutter rejection [26]. 
 
X. Zhang et al propose methods for improving high frequency surface wave radar (HFSWR), 
which is a method for ocean environment monitoring, target detection, and target tracking 
over the horizon.  The challenge in this application is overcoming non-homogeneous 
ionospheric clutter.  A new algorithm is proposed based on correlation between target and 
clutter in the measured data.  This also involves a strategy for training data selection and 
demonstrates improved detection of weak targets in nonhomogeneous ionospheric clutter 
[27]. 
 
In 2016, Zaimbashi investigates target detection in clutter using clutter whitening and an 
adaptive clutter detector that estimates clutter parameters from the sample covariance matrix.  
Subspace-based and covariance matrix-based detectors are investigated for a mono-static radar 
system.  Simulations show that the subspace-based detector generally outperforms the sample 
covariance matrix detector [28]. 
 
In 2017, Sai Guo et al investigate the feasibility of applying a deep learning approach to sea 
clutter suppression and target detection in an inhomogeneous oceanic environment.  Deep 
convolutional auto-encoders are used to learn and filter sea clutter and detect the target.  The 
use of deep learning allows the removal of complex clutter patterns and does not require 
estimation of the clutter covariance matrix.  Clutter suppression performance is demonstrated 
with simulated and measured data [29].  This group continues to research deep convolutional 
techniques for radar applications [30]. 
 
In 2018, Ling Zhang et al use region-based convolutional neural networks (R-CNN) to separate 
target and clutter is HFSWR using target and clutter features.  Field experimental results show 
that the Faster R-CNN based method can automatically detect the clutter and interference with 
decent performance and classify them with high accuracy [31]. 
 
In 2019, Jun Liu et al address the problem of target detection in multiple-input, multiple output 
(MIMO) radar when the clutter covariance matrix is unknown.  By exploiting the Toeplitz or 
persymmetric structure of the clutter covariance matrix, adaptive detectors are employed that 
do not require training data.  Analytical expressions for the probability of false alarm and 
detection probability are derived for the proposed detector that takes the persymmetry into 
account. Numerical examples are provided to show that the proposed detectors outperform 
the conventional counterparts [32]. 
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1.1.3 Research in Foliage and Vegetation Clutter 
Some recent research has been dedicated specifically to vegetation clutter and clutter in 
windblown environments.  See references [33] [34] [35] for research into clutter in windblown 
environments.  These are generally focused on measuring the second-order RCS statistics and 
characteristics of the radar return from windblown grass and forestation. 
 
In 2017, Paula Gómez-Pérez et al use S-Band and C-Band radar measurements to characterize 
the attenuations provided by vegetation environments [36].  The paper measures forest 
attenuation from different types trees and quantifies degradation of target detection over a 
range of frequencies. 
 
Alessio Izzo et al present a multi-model approach for constant false alarm ratio (CFAR) 
detection of vehicles through foliage in foliage penetrating SAR images.  This paper discusses 
the challenges of target detection in foliage due to non-target scatterers such as branches, 
trunks, and other foliage structures and that clutter modeling has been identified as a viable 
solution to mitigate tree and trunk detections.  Physical and statistical models are combined, 
and performance is improved by considering both models simultaneously [37].  
 
Raghu Raj et al present a novel hybrid computational electromagnetic (CEM) modeling 
framework for simulating the backscatter from forest clutter when sensed by UHF and VHF 
radars [38].  The approach uses a combination of physical optics and geometric optics to 
achieve superior fidelity in calculating the backscatter. 

1.1.4 Deep Learning for ISAR and Radar Imaging 
Deep learning techniques are being investigated for ISAR imaging due to the increased 
popularity of deep learning and two-dimensional convolution neural networks for machine 
vision.  Both raw and processed ISAR measurement data can be considered two-dimensional 
complex-valued images, therefore the application of convolutional networks to the field of ISAR 
imaging is a natural progression.  Wei and Chen [39] explore the use of deep learning for solving 
electromagnetic inverse problems.  Although this is not a direct connection to ISAR imaging, it 
does represent a new line of applicable research and is novel in that deep learning is used to 
solve the complex inverse problem, not just recognition of features within processed images. 
 
Most of the current research into deep learning techniques for radar imaging involves deep 
learning of pre-processed SAR or ISAR images.  In other words, established ISAR imaging 
techniques are used to produce ISAR images, and deep learning is used for image interpretation 
including target recognition and classification in the image domain.  
  
In 2009, Vicen Bueno et al study the use of conventional neural networks (CNNs) for sea clutter 
reduction and target enhancement in marine radar systems [40].  Experiments show that the 
use of non-linear neural networks shows promising results in clutter reduction. 
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In 2018, Carlos Bentes et al develop a convolutional neural network for maritime target 
detection and classification in TerraSAR-X high-resolution images.  Presented results indicate 
that CNNs are efficient models to perform maritime target classification in SAR images, and the 
combination of different input resolutions in the CNN model improves its ability to derive 
features, increasing the overall classification score [41]. 
 
Albert Huizing et al improve the interpretation of CNN target classification by demonstrating, 
through the visualization of a saliency map, that a CNN can achieve a high classification score by 
using the similarity of the clutter in the SAR images in the training and test set.  The saliency 
map is computed from the trained CNN with the Gradient-weighted Class Activation Mapping 
(Grad-CAM) technique.  This paper also shows that by first segmenting the SAR image in target, 
shadow and clutter regions, and then only providing the target region of the SAR image to the 
CNN, the problem of clutter-influenced target classification can be mitigated at the expense of 
a small reduction in classification accuracy [42]. 
 
Feng Xu et al apply deep learning to automatic target recognition (ATR) in SAR images and 
demonstrate performance with measured data [43]. 
 
In 2018, Tiep H. Vu et al propose a Simultaneous Decomposition and Classification Network 
(SDCN) to alleviate noise inferences and enhance classification accuracy in classification of 
buried and obscured targets in ultra-wideband (UWB) ground-penetration SAR images.  Current 
methods do not accurately represent nonlinear interactions and large training sets.  The 
proposed method employs two jointly trained sub networks that perform denoising and 
classification.  It is demonstrated that the joint method of denoising and classification is an 
improvement over other deep learning techniques [44]. 
 
Shi-Hao Yu et al propose a convolutional autoencoder that is applied to improve the 
performance on the half space radar high resolution range profile (HRRP) target recognition.  
This method is an improvement over conventional autoencoders and deep-belief networks.  
Performance with conventional methods results in a small improvement in accuracy [45]. 
 
Changyu Hu et al propose an ISAR imaging method that uses convolutional neural networks.  
This method involves using the Fourier transform of two-dimensional measurements as the 
input layer and the method is compared to range-doppler processing and compressive sensing 
imaging methods.  The simulation results show good performance compared to other methods 
when using 25% of the measurements [46] [47]. 
 
Bin Xue et al, propose a new deep-learning-based ISAR object detection method called Deep 
ISAR Object Detection (DIOD).  This paper states that one major problem is the lack of available 
annotated training data.  This is mitigated with a weakly semi-supervised training method.  The 
proposed method is testing using two real-world ISAR data sets and the proposed method 
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outperforms existing state-of-the-art methods with higher accuracy and a shorter execution 
time [48]. 
 
In 2019, Sirui Tian et al discusses object classification in SAR imaging.  This paper states that 
insufficient labeled training data is a major problem when applying deep learning to SAR object 
classification and proposes a multiscale deep learning network that learns features at multiple 
scales and combines them together to generate feature vectors for object classification.  In 
addition, background clutter is suppressed by using an improved Lee Sigma (ILS) filter when 
computing the network cost function.  MSTAR data sets demonstrate that the model can 
adaptively learn features from raw SAR data [49]. 
 
Wilmanski et al investigate the use of deep learning for classification of organic clutter 
contamination in outdoor RCS measurements [50].  Deep learning networks are used to identify 
and remove unwanted organic clutter sources.  The paper states that such techniques require 
enormous training datasets.  Data augmentation is used due to the low number of physical 
measurements to be used for training, but the lack of representative training data is a limitation 
to network performance. 
 
Meiyan Pan et al propose a novel approach for marine target detection using deep 
convolutional networks to extract sea clutter and target features [51].  The established object 
detection network known as Faster Region-based Convolutional Neural Network (Faster R-CNN) 
is used to detect targets in sea clutter with promising results. 
 
Guanqing Li et al propose a new method for the detection of small boats in the presence of sea 
clutter using a time-frequency analysis and DenseNet [52].  Detection of small boats in sea 
clutter is challenging due to the overlap of target and clutter in the time and frequency 
domains.  Measured data is used to validate the method and classification accuracy is improved 
over other classification networks. 
 
In 2020, Huilin Mu et al apply deep learning to the ground moving target imaging (GMTIm) with 
SAR data in the presence of strong background clutter.  Different from conventional imaging 
methods, the proposed method is directly trained to learn an implicit imaging model of multiple 
moving targets.  Using simulations and experiments, it is shown that the proposed method 
achieves significant improvement over existing state-of-the-art GMTIm methods in terms of 
imaging quality and efficiency [53]. 
 
One common underlying theme that is stated in most of the listed articles is that available 
representative training data is required to train deep learning networks to solve complex 
problems.  In many cases, training data is simulated due to lack of real-world data.  In other 
cases, training sets are extended by rotating and translating available data.  Application of deep 
learning techniques to complex radar imaging problems requires access to a significant amount 
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of training data.  However, in some cases, only a limited number of measurements are 
available.  This dissertation will present a novel method for generating unlimited representative 
samples of ISAR clutter imagery of moving vegetation.  With an unlimited number of training 
samples, deep learning networks can be used for classification, target detection, and other 
complex radar imaging tasks. 

1.2 PROPOSED CLUTTER MODEL, ANALYSIS, AND SIMULATION 

1.2.1 ISAR Clutter Model 
A second-order multiscale model for ISAR clutter equivalent current projection is proposed.  
The proposed second-order model includes multiscale horizontal and vertical correlations 
across the ISAR clutter image.  These correlations, estimated at each scale, provide an 
indication of the correlation between directionally oriented pixels.  The clutter equivalent 
current projection is proportional to the tangential components of the local scattered field on 
the imaging plane.  Therefore, each image pixel contains contributions of scattered energy from 
the entire clutter volume.  It is hypothesized that the multiscale statistical characteristics of 
these image pixels are related to scattering phenomenon in the vegetation volume.  Scattering 
from leaves and smaller areas within the clutter volume will be associated with directional ISAR 
image pixel correlations at a finer scale.  However, scattering from larger branches will be 
associated with directional ISAR image pixel correlations from lower resolutions.  This 
multiscale directional correlation allows for additional discrimination of clutter structure and 
increased fidelity of simulation. 

1.2.2 Multiscale Analysis of ISAR Clutter 
A multiscale analysis method for ISAR clutter is proposed where multiscale model parameters 
are estimated.  The intended application is the analysis and simulation of vegetation clutter, 
where physical properties result in multiscale statistical characteristics of the equivalent current 
projection.  The motion of small leaves may result in correlated equivalent currents at a finer 
resolution, whereas larger structures such as trunks and branches may result in equivalent 
current correlations at lower resolutions.  The proposed method is computationally efficient 
and uses wavelet coefficient statistics to estimate the directional correlations and covariances 
of clutter ISAR image pixels, without requiring the calculation of the entire sample covariance 
matrix. 
 
The proposed multiscale analysis method models the clutter equivalent current projection as 
multiple image samples over time, where pixels are modeled as multivariate random variables.  
Figure 1 illustrates how ISAR imaging Is used to estimate a target equivalent surface current 
density, and the stochastic characteristics of the image samples are analyzed using the 
proposed multiscale analysis method. 
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Figure 1:  Multiscale Analysis of ISAR Clutter 

 

1.2.3 Simulation of ISAR Clutter 
Two methods are proposed for using multiscale characteristics to estimate the multiscale 
clutter model and simulate additional samples of data.  The simulation methods are based on 
the hypothesis that the ISAR clutter equivalent current image can be modeled as the 
application of a two-dimensional directional correlating filter to uncorrelated random data.  
This expands on the work by Fung and Tjuatja and in [54], where scattering from a rough 
surface is modeled by parameterization of the surface roughness in a similar manner.   
 
Two types of correlating filters are proposed and evaluated in this dissertation.  Both are 
considered an attractive alternative to a full-covariance representation of the equivalent 
current because the proposed methods utilize multiscale characteristics estimated from the 
proposed analysis method, and therefore calculation of the full sample covariance matrix is not 
required.  The dimensional reduction of the covariance matrix is considered a special case of 
this application and is based on the hypothesis that correlation between image pixels occurs 
over a finite range at some scale due to the physical structures in vegetation, and generally 
decreases over pixel distance.  An example is that we may not expect the equivalent current 
projection related to individual leaf motion in one area of a tree to be correlated with individual 
leaf motion on the other side of the tree.  However, equivalent currents from those areas may 
be correlated at some lower resolution scale due to all leaves moving together on a moving 
branch. 
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1.3 DISSERTATION ORGANIZATION AND APPROACH 
 
A brief description of the major dissertation chapters is provided below. 
 
1. Introduction 
The dissertation topic is introduced, the problem and approach are presented, and the 
proposed contributions in the dissertation are summarized.  The latest research in topics 
related to this dissertation are described and referenced. 
 
2. Background Material 

Electromagnetic Scattering and Equivalent Sources 
Background material related to volume scattering of electromagnetic fields is reviewed, 
including far zone approximations.  The concepts of equivalent volume and surface 
sources are presented.  This background material explains how scattered fields from a 
three-dimensional volume can be represented by an equivalent surface current density. 

 
ISAR Imaging of the 2D Projected Equivalent Current 
An introduction to ISAR imaging theory and processing is provided.  The Fourier-like 
relationship between the measured ISAR data in the k-space domain and surface 
equivalent current is explained. 
 
Measurement Setup and Calibration of Physical Measurements 
Measurement setup and calibration for physical measurements is described.  Physical 
measurements used throughout the dissertation are described. 

 
 Multiscale Analysis 
 A brief introduction to multiscale analysis of complex stochastic systems is provided. 
 
 Image Similarity Measures 

Image similarity measures are discussed.  The measures are used to quantify image 
differences in the validation of model and simulation methods. 

 
3. Multiscale Modeling and Analysis of ISAR Clutter 
The multiscale clutter model is described and validated.  Model parameters are estimated by a 
proposed multiscale analysis method. 
 
4. Numerical Simulation of ISAR Clutter 
Two methods for simulating additional samples are presented and validated using simulated 
data. 
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5. Applications for Multiscale Analysis and Simulation of ISAR Clutter 
Multiscale analysis is performed on global ocean currents and measured ISAR data.  The 
hypothesized relationship between clutter scattering phenomenon and multiscale model 
parameters is discussed.  These hypotheses are tested using physical measurements of three 
plants, which are chosen for their range of scattering properties.  Clutter simulations methods 
are evaluated by using generated training data to improve deep network prediction accuracy in 
two deep learning ISAR applications. 
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2 BACKGROUND MATERIAL 

2.1 ELECTROMAGNETIC SCATTERING AND EQUIVALENT SOURCES 

2.1.1 Electromagnetic Scattering 
Equivalent currents are induced in a target upon illumination by a plane wave, resulting in a 
scattered electromagnetic field.  The scattered electric field is found by three-dimensional (3D) 
convolution of the equivalent current density with the free-space Green’s function, as shown in 
equation (1), where 𝒓 is the vector to the observation point, 𝒓ᇱ is a vector to a point in the target 
volume, and the 3D free-space Green’s function is given in equation (2).  Figure 2 demonstrates 
the geometry of the problem [2]. 
 

𝑬(𝒓) = ම 𝑱(𝒓ᇱ)𝐺଴(𝒓 − 𝒓ᇱ)𝑑𝒓ᇱ (1) 

𝐺଴(𝒓 − 𝒓ᇱ) =
𝑒ି௝௞ห𝒓ି𝒓ᇲห

4𝜋|𝒓 − 𝒓ᇱ|
 (2) 

 
 
 

 
Figure 2:  Observation and Target Geometry 

 
The integral in equation (1) can be difficult to evaluate because of the |𝒓 − 𝒓ᇱ| terms in the 
Green’s function.  If the observation point is very far compared to the size of the target volume 
(𝑟 ≫ 𝑟ᇱ), we can derive an approximation that simplifies equation (1). 
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2.1.2 Scattered Field in the Far Zone 
Under the far-field condition of 𝑟 ≫ 𝑟ᇱ, we can approximate the |𝒓 − 𝒓ᇱ| distance as that given 
in equation (3).  The geometry of this approximation is shown in Figure 3. 
 

|𝒓 − 𝒓ᇱ| ≈ 𝑟 − 𝒓ො ∙ 𝒓ᇱ = 𝑟 ቆ1 − 𝒓ො ∙
𝒓ᇱ

𝑟
ቇ (3) 

 
 

 
Figure 3:  Far-Field Approximation Geometry 

Using the approximation in equation (3), the 3D Green’s function can be written as in equations 

(4) and (5), where 𝑂 ቀ
ଵ

௥మ
ቁ contains 1 𝑟ଶ⁄  terms. 

 

𝐺෠଴(𝒓, 𝒓ᇱ) =
𝑒ି௝௞௥

4𝜋𝑟

𝑒௝௞𝒓ො∙𝒓ᇲ

1 − 𝒓ො ∙
𝒓ᇱ

𝑟

 (4) 

𝐺෠଴(𝒓, 𝒓ᇱ) ≈
𝑒ି௝௞௥

4𝜋𝑟
𝑒௝௞𝒓ො∙𝒓ᇲ

+ 𝑂 ൬
1

𝑟ଶ
൰ (5) 

 
Under the far field assumption and large 𝑟, the 1 𝑟ଶ⁄  terms will be very small compared to the 
1 𝑟⁄  terms and can be dropped.  Therefore, we arrive at the far-field free-space Green’s function, 
equation (6), where 𝒌𝒓 = 𝑘𝒓ො  is the wave vector.  The far-field Green’s function contains an 
amplitude term based only on the observation distance, and a phase term in the exponential that 
is based only on the component of 𝒓ᇱ in the observation direction of 𝒓ො. 
 

𝐺෠଴(𝒓, 𝒓ᇱ) ≈
𝑒ି௝௞௥

4𝜋𝑟
𝑒௝𝒌𝒓∙𝒓ᇲ

 (6) 
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Applying the far-field Green’s function to equation (1), results in equation (7).  It is important to 
note that now the integral occurs only over 𝒓ᇱ target volume locations and is independent of the 
observation distance.  Removing the amplitude term, we can simplify equation (7) to equation 
(8), where we now specify the measured backscattered field 𝑬ഥ(𝒌𝒓) over observation parameters 
in 𝒌𝒓.  Inspection of equation (8) shows that it takes a similar form as the Fourier transform. 
 

𝑬(𝒓) =
𝑒ି௝௞௥

4𝜋𝑟
ම 𝑱(𝒓ᇱ)𝑒௝𝒌𝒓∙𝒓ᇲ

𝑑𝒓ᇱ (7) 

𝑬ഥ(𝒌𝒓) = ම 𝑱(𝒓ᇱ)𝑒௝𝒌𝒓∙𝒓ᇲ
𝑑𝒓ᇱ (8) 

 
Equation (8) involves three-dimensional integration of a continuous equivalent current function, 
𝑱(𝒓ᇱ).  One method for calculating 𝑬ഥ(𝒌𝒓) is through discretization.  If we assume 𝑱(𝒓ᇱ) contains 
a discrete number of volume cells, and observations are made over a range of discrete locations 
and frequencies, then equation (8) becomes a linear system, with 𝒓ᇱ and 𝒌𝒓 given in cartesian 
coordinates, where 𝑟௫ , 𝑟௬ , 𝑟௭ are the coordinates to a 3D target volume cell.  Figure 4 and Figure 
5 show the geometry of 𝒓ᇱ and 𝒌𝒓 [1]. 
 

𝒓ᇱ = 𝑟௫𝑥ො + 𝑟௬𝑦ො + 𝑟௭𝑧̂ (9) 

𝒌𝒓 = 𝑘௫𝑥ො + 𝑘௬𝑦ො + 𝑘௭𝑧̂ (10) 

 

 
Figure 4:  Target Geometry 

 
Figure 5:  Mapping from observation parameters to k-space 

components 
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In Figure 5, 𝒌𝒓 is the k-space wave vector, whose coordinates represent the wave number 𝑘 in 
the direction of the observation vector, 𝒓ො.  The k-space components are specified in cartesian 
coordinates in equation (10), with components given in equations (11) through (14) that depend 
on observation parameters.  Since we have discretized the problem, the observation parameters 
of 𝑓, 𝜑, and 𝜃 will be discrete values representing a discrete number of observations. 
 

𝑘௫ = 𝛽 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 (11) 

𝑘௬ = 𝛽 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 (12) 

𝑘௭ = 𝛽 𝑐𝑜𝑠 𝜃 (13) 

𝛽 =
2𝜋𝑓

𝑐
 (14) 

 
Three-dimensional ISAR imaging involves estimating 𝑱(𝒓ᇱ) at discrete locations using discrete 
observations.  This linear system can be solved by many different methods including the inverse 
Fourier transform, compressive sensing, and subspace techniques, depending on the 
assumptions made about the target. 

2.1.3 Equivalent Sources 
The field radiated from a known current density is unique.  However, given an observed field, the 
current density is not unique, and we are free to form an equivalent current density that 
produces the same observed field.  Using Huygens’s Surface Equivalence Principle, we can write 
the observed far electric field as a function of the surface current density over a defined surface.  
This surface current density is proportional to the tangential components of the radiated fields 
on the chosen surface [2]. 
 

𝑬(𝒓) =
𝑒ି௝௞௥

4𝜋𝑟
ම 𝑱(𝒓ᇱ)𝑒௝𝒌𝒓∙𝒓ᇲ

𝑑𝒓ᇱ =
𝑒ି௝௞௥

4𝜋𝑟
ඵ 𝑱𝒔(𝒓ᇱ)𝑒௝𝒌𝒓∙𝒓ᇲ

𝑑𝑆ᇱ (15) 
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2.2 ISAR IMAGING 
Inverse Synthetic Aperture Radar (ISAR) is an active remote sensing technique used to form an 
image of the concentrated target scattering in two or three spatial dimensions.  Like Synthetic 
Aperture Radar (SAR), the technique takes advantage of relative motion between the 
measurement platform and target to synthesize a larger aperture than is possible with any 
instantaneous measurements.  The main difference between ISAR and SAR is that SAR generally 
involves a moving measurement platform and a stationary target.  ISAR, on the other hand, 
generally involves a stationary measurement system and an uncooperative moving target with 
rotational and translational motion.  In this case, rotational and translational motion must be 
estimated, and this has been a significant area of research.  ISAR has the benefit of having a 
convenient measurement geometry in a lab setting.  This involves a stationary measurement 
system including antennas, and controlled aspect angle, such as a rotating platform.  Therefore, 
a controlled lab environment can present a very controlled measurement environment where 
imaging techniques can be explored with the elimination of complicating measurement issues.   
 
The required relative motion between measurement platform and target is needed to produce 
a change in phase for concentrations of scattering centers at each aspect angle.  This phase 
change is then focused into target spatial locations through ISAR processing and back-
projection.  In addition to rotational motion, this phase discrimination can be accomplished 
through variations in measurement frequency.  Coherent stepped-frequency measurements 
over a defined bandwidth are used to measure target phase response over frequency.  The 
down-range resolution of the ISAR image is related to the bandwidth of measurement 
frequencies.  In addition to variations in frequency, the known rotation of a target can provide a 
predictable result from concentrated scattering areas on the target. 
 
For additional reading on ISAR imaging background, see [1]. 

2.2.1 Two-Dimensional ISAR Imaging 
Three-dimensional ISAR imaging requires discrete measurements over frequency, azimuth, and 
elevation angles (𝑓, 𝜑, and 𝜃), which can be cumbersome and computationally expensive.  Two-
dimensional (2D) ISAR imaging in spatial planes parallel to the cartesian axes involves measuring 
observations over only two of the three observation parameters.  This imaging plane can be 
interpreted as the planar projection of the equivalent volume current density.  It is important to 
note that we are not imaging a slice of the equivalent volume current, but we are imaging the 
tangential components of the radiated field intersecting the chosen plane.  This imaging plane is 
the equivalent surface current density described in equation (15), and accounts for all scattering 
mechanisms in the target volume.  Therefore, with 2D ISAR imaging, we can image the two-
dimensional equivalent currents in the chosen plane, which correspond to the tangential 
components of the scattered field from the target volume at that plane. 
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We can form a 2D image of the equivalent current density projected onto a two-dimensional 
plane.  The chosen plane impacts our choice of observation parameters.  For instance, if we chose 
the 𝑥𝑦 imaging plane at 𝑧 = 0, we are only concerned with the 𝑘௫  and 𝑘௬  components of 𝒌𝒓.  
Therefore, we are free to choose the observation parameter 𝜃  as a constant and measure 
observations over 𝑓 and 𝜑.  As stated previously, we can arrange this linear system into matrix 
equations, where observations over 𝑓 and 𝜑, and discrete values of 𝑱𝒔 are vectorized.  If we have 
𝑁 total observations and we are solving for the equivalent current 𝑀 discrete locations on the 
imaging plane, then the problem can be written as a linear system as in equation (16), where 𝒆 
is a vector of 𝑁  observations over observation parameters 𝒌௥భ

 to 𝒌௥ே
, 𝒛  is a vector of 2D 

coordinates on the imaging plane, and 𝑮 is the 𝑁 x 𝑀 matrix of complex exponentials, related to 
the phase component of the far-field Green’s function, and contains the mapping from discrete 
surface current density to the observed electric field. 
 

𝒆 = 𝑮𝐳 (16) 
 
The components of 𝒆, 𝑮, and 𝒛, take the form shown in equations (17) through (19). 
 

𝒆 = ቎

𝑬൫𝒌௥భ
൯

⋮
𝑬൫𝒌௥ே

൯
቏ (17) 

𝑮 = ቎
𝑒௝𝒌ೝభ ∙𝒓భ

ᇲ
⋯ 𝑒௝𝒌ೝభ ∙𝒓ಾ

ᇲ

⋮ ⋱ ⋮

𝑒௝𝒌ೝಿ
∙𝒓భ

ᇲ
⋯ 𝑒௝𝒌ೝಿ

∙𝒓ಾ
ᇲ

቏ (18) 

𝒛 = ൥
𝑱(𝒓ଵ

ᇱ )
⋮

𝑱(𝒓ெ
ᇱ )

൩ (19) 

 
Equation (16) can be solved by inversion techniques, including the inverse DFT, to find an 
equivalent current distribution that produces the electric field measured at the observation 
points.  Once 𝒛 is found, the elements of 𝒛 can be mapped back to the 2D imaging plane, resulting 
in a 2D image of the target equivalent current projection. 

2.2.2 Complex ISAR Image and Clutter Equivalent Current 
ISAR imaging in a two-dimensional plane near the target volume can be considered a projection 
of the target equivalent current.  The scattering background material shows that a volume of 
dielectric discontinuities will scatter an incident plane wave, resulting in a total scattered field 
as shown in Figure 6.  
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Figure 6:  Total Scattered Field from a Volume of Dielectric Discontinuities 

The total scattered field from a specific target volume is unique, however a target volume is not 
unique given a measured total scattered field and we are free to define the target equivalent 
current volume that would produce the measured field.  The equivalent current density 𝑱(𝒓ᇱ) is 
a volume current density that will radiate a field equivalent to the total scattered field (Figure 
7). 

 

 
Figure 7:  Equivalent Volume Currents 

Using Huygens’s Surface Equivalence Principle, a two-dimensional plane of equivalent current 
sources can be chosen that will result in an equivalent total scattered field.  These surface 
equivalent currents 𝑱𝒔(𝒓ᇱ) are proportional to the tangential components of the total scattered 
field at the surface boundary.  Applying the far-field Green’s function, we arrive at equation (8), 
where the far scattered field is the 2D convolution of the surface current density and the far 
field Green’s function as shown in Figure 8. 
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Figure 8:  Surface Equivalent Current Density 

 
If the surface current density is discretized, then we can form a linear system that relates the 
measured scattered field in k-space to the equivalent surface current densities (Figure 9). 

2.2.3 Relationship to Fourier Transform 
Examination of equation (16) shows the Fourier-like nature of the relationship between 
equivalent current and the measured field.  Matrix 𝑮 can be interpreted as a 2D discrete 
Fourier transform in k-space.  Therefore, if the measured data is reformatted into the k-space 
domain using a rectangular grid of 𝑘௫ and 𝑘௬ components, the equivalent current can be 
estimated using the inverse discrete Fourier transform of the measured k-space data.  Figure 9 
summarizes the Fourier relationship between the measured in the k-space domain and the 
estimated equivalent current. 

 

 
Figure 9:  Linear System Relating Far Scattered Field to Surface Current Density 
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2.3 ISAR MEASUREMENT SETUP AND CALIBRATION 

2.3.1 ISAR Measurement Setup 
The backscattered field from a target is measured using the setup shown in Figure 10.  A 
network analyzer is used to measure the S21 network parameter over a frequency range.  This 
is a stepped frequency measurement, where the network analyzer sends a stimulus signal at a 
specific frequency and compares the return signal to the stimulus signal to calculate the 
complex S21 parameter.  This S21 calculation for the desired frequency is implemented as an 
average S21 parameter over the stepped frequency dwell time.  The S21 measurement is 
calibrated at the indicated calibration point, resulting in a unity magnitude and zero phase 
response over frequency when port 1 and port 2 are connected at the calibration reference 
plane.  Therefore, S21 measurement data recorded by the network analyzer provides the 
round-trip magnitude and phase of the network analyzer stimulus relative to the calibration 
plane.  Target rotation over a range of azimuth angles is accomplished with a turntable. 
 
 

 
Figure 10:  ISAR Measurement Setup 

ISAR measurement calibration is performed using a conductive sphere placed in the center of 
target rotation and measured over the desired frequency range.  The theoretical Mie scattering 
from the sphere is used to calibrate the measured S21 data over frequency.  This results in a 
gain and phase correction factor over frequency that is applied to all measurement data and 
defines the zero-phase center of the measurement at the center of target rotation. 
 
To reduce the impact of reflections from non-target items such as the turntable, background 
subtraction is performed on all measurements.  This is accomplished by making measurements 
of the setup without a target and over the desired frequency and azimuth ranges.  This provides 



21 
 

the backscattered field from the measurement setup which can be subtracted from the 
measurements with a target present.  This will reduce the magnitude of reflections from non-
target elements in the measurement setup, but reflections related to interactions between the 
target and setup will still be present.  

2.3.2 Sphere Calibration 
The calibration procedure starts with S21 measurements of the target area with a conducting 
sphere (in this case a 1” steel sphere).  Figure 11 below shows plots for the Fourier transform of 
the measured S21 over frequency.  After applying the Fourier transform, the horizontal axis 
becomes time or propagation distance, which is related to phase, and is measured on the y-axis 
as in Figure 10.  The blue plot represents the measurement of the background with the sphere 
present.  The sphere is located at the blue peak around point 266.  In the case of Figure 11, the 
antennas are on the right side of the plot, around the large peak at point 350.  The red plot is 
the background measurement of the setup, which consists of everything but the sphere in this 
case.   
 

 
Figure 11:  Sphere and Background Measurements 𝑦 − 𝑎𝑥𝑖𝑠 

1” Calibration Sphere 

Antenna 
Orientation 
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The total backscattered signal can be considered a linear combination of target and background 
if the interactions are neglected.  Therefore, we can subtract the background measurement and 
reduce the interference in the measurement.  Figure 12 below shows the comparison of the 
original target data (red) and the target after background subtraction (blue).  Figure 13 shows 
the Fourier transform of the sphere data after background subtraction.  Although most of the 
interference between the sphere and the antenna has been reduced significantly, there is still 
some interference beyond (to the left of) the sphere peak.  This can be reduced by time-gating 
the sphere measurement, which essentially windows the data in the time (or distance) domain. 
 

 
Figure 12:  Comparison of FFT of Sphere Data Before and After Background Subtraction 
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Figure 13:  FFT of Sphere Data after Background Subtraction 

With the isolated sphere measurement at the center of the turntable, we can now calculate the 
correction factor over frequency as in equation (26), where 𝑎(𝑓) is the complex correction 
factor, 𝑠(𝑓) is the measured sphere data, and 𝑀𝑖𝑒(𝑓) is the theoretical Mie scattering from a 
1” conducting sphere. 
 

𝑎(𝑓) =
𝑀𝑖𝑒(𝑓)

𝑠(𝑓)
 (20) 

 
The purpose of the correction factor is to account for signal losses and phase offsets in the 
measurement setup and to set the zero-phase center of the measurement at the location of the 
sphere.  This correction factor can then be applied to all subsequent measurements using 
equation (21), where 𝑑(𝑓) is uncalibrated measurement data over frequency, 𝑎(𝑓) is the 
calculated correction factor from equation (26), and 𝑑௖(𝑓) is the resulting calibrated data.  The 
correction factor is calculated at one azimuth for the sphere but is applied at every target 
aspect angle. 
 

𝑑௖(𝑓) = 𝑎(𝑓) ∙ 𝑑(𝑓) (21) 
 

2.3.3 Calibration Verification 
To verify the calibration process, additional S21 measurements are taken of the 1” sphere, 
background is subtracted, and the calibration factor is applied.  The Fourier transform of the 
resulting calibrated data is shown below in Figure 14, where the calibrated sphere 
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measurement agrees well with the theoretical Mie scattering response of a 1” sphere located at 
the zero-phase reference plane. 
 

 
Figure 14:  Comparison of Theoretical Sphere Response to Calibrated Sphere Response 

 

2.3.4 ISAR Measurement Test Articles 
Physical measurements used in the course of this research consists of ISAR imaging of different 
species of plants in the presence of wind.  The plants were chosen to have a variety of physical 
characteristics that result in a range of scattering modes.  In this dissertation, plants are 
referred to as Plant A, Plant B, etc. and wind is described as “no wind”, “light wind”, or 
“medium wind”.  Wind speeds are not quantified but are consistent across measurement 
scenarios. 
  

` 
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Plant A Plant B Plant C 

   
Plant D 

  

Plant E 

 
Figure 15:  Plant Species A - E 

 
Each measurement scenario consists of 2D ISAR image samples of a plant in the presence of 
wind.  The ISAR data for each plant and wind speed is structured into 100 image samples where 
each image pixel represents a complex-valued resolution cell on this projected 𝑥𝑦 image plane.  
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The data for each measurement scenario is structured as a 3D matrix of size 64x64x100, where 
each of the 100 image samples is a 64x64 complex-valued image. 

2.4 MULTISCALE ANALYSIS OF COMPLEX STOCHASTIC SYSTEMS 
Interactions within and between complex stochastic systems can be highly complex.  Due to 
this complexity, process models are often used to estimate the magnitude and directionality of 
interactions.  However, these models are based on simplifications of our understanding of 
these complex systems and are imperfect.  The increased availability of data allows the 
determination of complex multiscale relationships if appropriate statistical methods are applied 
[55]. 
 
A significant amount of research has been performed in the field of multiscale analysis of 
geophysical systems.  Multiscale interactions have recently received extensive attention in the 
literature and have been proposed as a mechanism for the triggering of extreme events [56] 
[57] [58] and patterns formation [59] [60].  Examples of this increasing interest for multiscale 
and cross-scale interactions can be found in ecology [61] [62] [63] [64] [58] [59] [65] [66] and 
climate dynamics [67] [68] [69] and also in fields other than geosciences such as network and 
econometrics. 
 
Considerably less attention has been devoted to the analysis of couplings and feedbacks taking 
place at different temporal scales and across them [70] [69], to the  development of ad hoc 
statistics able to capture the evolution in time of such couplings [71] [72] and to the 
investigation of the spectral features of systems displaying strong connectivity across 
interannual, seasonal and subseasonal [73]. 
 
Casagrande et al use multiscale analysis to uncover couplings and interactions between 
complex geophysical systems including the relationship between air temperature and soil 
moisture.  Here a ‘local coupling’ metric is introduced to describe the relationship between the 
data over multiple scales.  This local coupling metric, the wavelet cross-correlation, is explored 
for identifying and assessing linear and intermittent interactions across different temporal 
scales in geophysical systems. What is particularly appealing in this measure is its ability to 
decompose linear correlations in scale and time, preserving simultaneously the total correlation 
of the system [74]. 
 
Although Casagrande et al use this multiscale approach to find coupling between different 
related sets of data, the general multiscale wavelet decomposition approach is valid for 
determining local couplings in single processes as well [55]. 

2.4.1 Multiscale Wavelet Analysis 
There are several multiscale analysis methods, but wavelets are well established and commonly 
used.  Multiscale analysis using wavelets has been shown to be an effective tool for the analysis 
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of complex geophysical processes and other examples of correlated spatial data [55].  Souare 
uses this approach in the analysis of SAR imagery in [75], and A. Lucrecio explores ISAR imaging 
using wavelet transforms in [76].   
 
The approach of this dissertation is to decompose each ISAR image sample into directional 
wavelet components and characterize the second-order characteristics of these components at 
each scale.  Due to the diversity of foliage structure, a multiscale approach will allow an 
additional discriminator between physical structures and characteristics of the clutter.  Leaves 
might show spatial correlation at high-resolution scales, but little correlation at lower 
resolutions.  Branches and larger structures may show spatial correlation at lower resolutions.   

2.5 IMAGE SIMILARITY MEASURES 

2.5.1 Similarity Measures Introduction and History 
Similarity measures are used to quantitatively describe differences between two images.  The 
definition of an image can be very broad here and can relate to two-dimensional channel RGB 
photos as well as 2D complex ISAR images.  The following section will define an image as an 
arrangement of values in two or more dimensions, and more specifically, a 2D spatial 
arrangement and one or more channel depths.  In addition, we are also concerned about the 
stochastic properties of time-varying images.  Our goal is to create additional ISAR clutter 
samples for the purpose the convolutional neural network training.  We need a quantitative 
measure to gauge the effectiveness of different techniques in building our clutter model.  This 
section will describe techniques used in comparing the similarity of static images and images 
representing stochastic processes. 
 
Multitemporal SAR imaging is a related application to ISAR image samples.  In 2007, Inglada and 
Mercier compare several methods for measuring the similarity of multitemporal SAR images 
[77].  Differences in SAR images can be used to detect geographical changes and the focus of 
their work is comparing SAR images from only two instances in time.  Although SAR images 
contain positive pixel intensity values, Inglada and Mercier describe similarity measures that 
can also apply to images containing complex values.  These techniques are related to the 
distribution of pixels in a small area of the image, but the general concept of KL divergence can 
be used to statistical differences in time as well. 
 
Inglada and Mercier briefly describe previous methods to detect changes in SAR images.  In 
radar images, the basic standard detector is the ratio of local means [78].  Although this type of 
detection is robust to speckle noise, which is often found in SAR images, it is limited to first-
order statistics and is not very discriminatory.  A classical model for SAR intensity introduced by 
Ulaby et al. assumes the image texture is a zero mean multiplicative process.  This means that 
changes occurring that preserve the mean value will not be detected by techniques involving 
only mean values [79].  Bujor et al. described a method involving the use of higher-order 
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statistics for change detection in SAR images [80].  This work concluded that mean ratios were 
useful for step changes and higher-order log-cumulants were used for more subtle progressive 
changes in consecutive multitemporal images.  Inglada and Mercier concluded that comparing 
local probability density functions (PDFs) in the neighborhood of homologous pixels is useful for 
change detection.  However, this requires that the pdfs be known, which precludes the direct 
use of histogram methods.  Inglada and Mercier propose several approaches for change 
estimation using only a small number of samples for local statistics estimation, up to fourth 
order [77]. 

2.5.2 Image Similarity Measures 
Information theory shows that the Kullback-Leibler (KL) divergence is a good measure for the 
comparison of probability density functions (PDFs).  Inglada and Mercier propose a method 
where the PDFs are estimated and then compared using variations of the KL divergence. 

2.5.2.1 Kullback-Leibler Divergence 
Given PDFs of two random variables described by distributions 𝑓௑ and 𝑓௒, the KL divergence is 
defined below in equation (22).  The statistical description of this measure can be thought of as 
the information in 𝑥 that is used for the discrimination between 𝑥 and 𝑦.  It can also be 
understood as the entropy of 𝑃௑ relative to 𝑃௒. 

𝐾(𝑌|𝑋) = න 𝑙𝑜𝑔
𝑓௑(𝑥)

𝑓௒(𝑥)
𝑓௑(𝑥)𝑑𝑥 (22) 

 
The KL divergence will vanish as the two distributions become equal.  Equation (22) is not a 
symmetric measure, but a symmetric version can be formed using equation (23) below. 

𝐷(𝑋|𝑌) = 𝐷(𝑌|𝑋) = 𝐾(𝑌|𝑋) + 𝐾(𝑋|𝑌) (23) 

2.5.2.2 Correlation Matrix Similarity Measure 
In some multitemporal image applications, we have a need for characterizing the temporal 
behavior of the images over time.  In many wide-sense stationary applications, where second-
order statistics stay constant over time, this can include the covariance between pixels.  The 
covariance matrix provides information related to the variance and amount of correlation 
between multivariate random variables. 
 
In 2005, Herdin et al describe the correlation matrix distance between two correlation matrices, 
𝑹ଵ and 𝑹ଶ as in equation (24), where ‖ ‖௙ is the Frobenius norm and 𝑡𝑟{ } is the trace 
function, or sum of the diagonal elements of a matrix [81]. 
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𝑑௖௢௥௥(𝑹ଵ, 𝑹ଶ) = 1 −
𝑡𝑟{𝑹ଵ𝑹ଶ}

‖𝑹ଵ‖௙ ‖𝑹ଶ‖௙
 (24) 

2.5.2.3 Multiscale Correlation Similarity Measure 
In order to incorporate a multiscale similarity measure, we define a new measure based on the 
multiscale correlation estimates over a set of images.  For any scale and/or direction, this 
similarity measure is the mean-squared error (MSE) of the difference estimated correlations at 
that scale and/or direction.  This MSE is calculated as shown below in equation (25), where 𝑋ଵ 
and 𝑋ଶ are directional correlation maps (𝐻, 𝑉, 𝐷) from image sets 1 and 2, 𝐿 is the 
decomposition level, and 𝑁 is the total number of elements in each of 𝑋ଵ and 𝑋ଶ. 

𝑑௑భ௑మ

௅ = ඨ
1

𝑁
෍[𝑋ଵ

௅ − 𝑋ଶ
௅]ଶ (25) 

 

  



30 
 

3 MULTISCALE MODELING AND ANALYSIS OF ISAR CLUTTER 

The goal of this research is to develop a multiscale model for ISAR clutter, estimate model 
parameters from measured data, and use the parametric model to generate additional 
representative samples of ISAR clutter.  In the typical ISAR scenario, the modeled clutter will be 
homogeneous, but we do not want to preclude clutter that may be non-homogeneous.  The 
ISAR measurements used this research are of individual plants and are not homogeneous. 

3.1 MULTISCALE CLUTTER MODEL ORDER 
The proposed multiscale model contains multiscale statistics up to second-order.  The projected 
equivalent current image benefits from the central limit theorem, where each image pixel 
consists of contributions from the entire clutter volume, and although the pixel statistics are 
not assumed to be Gaussian, it is hypothesized that a second-order model is appropriate. 
 
The proposed second-order model consists of ISAR clutter pixel mean and variance, as well as 
multiscale horizontal and vertical correlations across the ISAR clutter image.  These 
correlations, estimated at each scale, provide an indication of the correlation between spatially 
oriented pixels.  The clutter equivalent current projection is proportional to the tangential 
components of the local scattered field on the imaging plane.  Therefore, each image pixel 
contains scattered energy from every area of the clutter volume.  It is hypothesized that the 
multiscale statistical characteristics of these image pixels are related to scattering phenomenon 
in the vegetation volume.  Scattering from leaves and smaller areas within the clutter volume 
will be associated with ISAR image pixel correlations at a finer scale.  However, scattering from 
larger branches will be associated with ISAR image pixel correlations from lower resolutions and 
in certain directions.  This multiscale directional correlation allows for additional discrimination 
of clutter structure and increased fidelity of replication. 
 
Scattering from clutter can be complex and approximations such as the point-scattering model 
are not effective at modeling higher-order scattering modes and interactions.  However, if we 
approach the projection of this complicated equivalent current volume as a complete 
representation of all scattering from the clutter, then we can use the proposed multiscale 
model to simulate additional representative samples that include all scattering modes.  The 
intent here is not to spatially image the clutter exactly, but to estimate the multiscale 
characteristics of the 2D equivalent current projection in order to analyze and simulate 
additional data that is representative of the clutter. 

3.2 MODEL ORDER VALIDATION 
In order to validate the use of a second-order model, image similarity characteristics will be 
calculated using both second- and fourth-order models.  In both cases, the ISAR image pixels 
from measured ISAR data are used to calculate the first four moments over all samples at each 
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image pixel.  For the second-order model, only the mean and variance are used to generate 
additional samples.  For the fourth-order model, all four moments are used in generating 
additional samples.  In both cases, the generated samples are compared to the original data 
using the KL Divergence of the data distributions.  This essentially provides a qualitative metric 
on how closely the distributions generated using the second- and fourth-order models compare 
to the original data.  In order to account for a variety of scattering modes and homogeneity, 
analysis of plants A, B, and C in both no wind and light wind will be used.  The KL divergence is 
specified in dB of KL divergence error 𝜖, or 10 ∙ logଵ଴ 𝜖.   
 
The tables below show results for full resolution of this data, using the entire 16 GHz frequency 
bandwidth and 51 degrees of aspect angle rotation, which represents the highest spatial 
resolution and the least amount of spatial averaging.  Half-resolution was also tested and 
resulted in approximately 1 dB error improvement in the worst-case KL divergence, and very 
little change to the mean KL divergence.  The results of the model-order analysis are shown 
below in Table 1 and Table 2. 
 

Table 1:  Model Order Analysis Results – Mean Image KL Divergence 

Plant under Test Wind 
Mean Image KL Divergence 

2nd-Order Model 4th-Order Model 

Plant A No Wind -21.53 -21.90 

Plant A Light Wind -21.75 -22.12 

Plant B No Wind -21.51 -21.86 

Plant B Light Wind -21.52 -21.90 

Plant C No Wind -21.49 -21.84 

Plant C Light Wind -21.62 -21.98 
 

Table 2:  Model Order Analysis Results – Worst Case Image KL Divergence 

Plant under Test Wind 
Worst Case Image KL Divergence 

2nd-Order Model 4th-Order Model 

Plant A No Wind -13.32 -13.71 

Plant A Light Wind -12.31 -12.97 

Plant B No Wind -12.36 -13.36 

Plant B Light Wind -12.97 -12.76 

Plant C No Wind -13.22 -14.09 

Plant C Light Wind -12.22 -12.91 
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The results in Table 1 and Table 2 show that there is only a few tenths of a dB difference in the 
KL divergence of the second- and fourth-order models.  These results indicate that a second-
order model is appropriate for these ISAR measurements. 

3.3 ESTIMATION OF MULTISCALE MODEL PARAMETERS 

3.3.1 Multiscale Notation 
Wavelet coefficients will follow the notation shown below in equation (26), where 𝐴 is the 
approximation coefficient of decomposition level 𝐿 at location 𝑚.  This notation is used for 
wavelet detail coefficients 𝐻, 𝑉, and 𝐷 as well.  In most cases, 𝑚 will indicate row and column 
coordinates, such as 𝑥, 𝑦.  However, for simplicity of some derivations, 𝑚 may indicate a single 
index in a vectorized group of coefficients. 
 

𝐴௠
௅  (26) 

 
Properties of the multiscale wavelet coefficients will indicate the corresponding component as 
a subscript, such as in equation (27), where this parameter describes the variance of the 
horizonal wavelet detail coefficient at position 𝑚 and decomposition level 𝐿. 
 

𝜎
ு೘

ಽ
ଶ  (27) 

 
Image samples are two-dimensional images over 𝑁 samples.  Image components are referred 
to as pixels and the statistics of pixels and multiscale components will be calculated over N 
samples.  For instance, the mean and variance of pixel values are given in equations (28) and 
(29), where 𝜇ூ(𝑥, 𝑦) and 𝜎ூ

ଶ(𝑥, 𝑦) are the sample mean and variance of pixel 𝑥, 𝑦 calculated 
over 𝑁 samples of image 𝐼(𝑥, 𝑦, 𝑛). 
 

𝜇ூ(𝑥, 𝑦) = ෍
𝐼(𝑥, 𝑦, 𝑛)

𝑁

ே

௡ୀଵ

 (28) 

𝜎ூ
ଶ(𝑥, 𝑦) = ෍

൫𝐼(𝑥, 𝑦, 𝑛) − 𝜇ூ(𝑥, 𝑦)൯
ଶ

𝑁

ே

௡ୀଵ

 (29) 

 
3.3.1 Multiscale Correlation and Covariance Estimation 

Directional image correlation and covariance can be estimated from the variances of the 
wavelet decomposition coefficients.  Each wavelet coefficient can be considered a linear 
combination of a group of pixels from the previous decomposition level multiplied by the 
wavelet filter coefficients.  We model pixels in each decomposition level as multivariate random 
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variables; therefore, each wavelet coefficient can be considered a weighted sum of multivariate 
random variables and the total variance of the wavelet coefficient is the sum of the covariance 
matrix of contributing elements.  By solving a linear system of equations involving unknown 
directional correlations and known wavelet coefficient variances, the directional correlation 
and covariance for each scale can be estimated. 
 
A complete characterization of the second-order clutter projection characteristics requires 
estimation of the full sample covariance matrix, which gives the covariance between any two 
image pixels.  The dimensions of the covariance matrix increase exponentially with increases in 
image dimension and can result in a very large matrix.  In this analysis we choose to limit the 
correlation to a finite pixel distance at each scale, where correlation is assumed to be some 
decreasing function over pixel distance in horizontal and vertical directions.  This multi-scale 
directional correlation estimate allows the characterization of correlation from small image 
areas at finer scales, as well as broader areas of correlation at coarser scales.  Modeling 
directional correlation in the horizontal and vertical image directions provides an additional 
discriminator between scattering phenomenon in the clutter. The proposed analysis method 
describes estimated horizontal and vertical correlation mapping at image location 𝑥, 𝑦 and 
decomposition level 𝐿 in equations (30) and (31). 
 

𝜌ு
௅ (𝑥, 𝑦) = 𝜌ுೣ,೤

௅  (30) 

𝜌௏
௅(𝑥, 𝑦) = 𝜌௏ೣ ,೤

௅  (31) 

 
Equations (30) and (31) describe the estimated directional correlation in the area of the image 
centered at coordinate 𝑥, 𝑦.  The analysis operates under the assumption that the directional 
correlation in the image can be modeled as the application of a parameterized two-dimensional 
(2D) correlating filter to random independent seed data, 𝐼௦(𝑥, 𝑦, 𝑛).  Each pixel of random seed 
data at location 𝑥, 𝑦 is modeled as an independent normally distributed random variable over 𝑁 
samples.  The correlating filter has directional parameters of 𝛼ு and 𝛼௏ over scale, which 
correspond to the horizontal and vertical correlation shape.  For an exponential correlating 
function, 𝛼ு and 𝛼௏ describe the directional decay of the filter.  Equation (32) is an example of 
a 2D exponential correlating function with direction parameters 𝛼ு and 𝛼௏, where 𝑑ு, 𝑑௏  are 
integers representing pixel offsets from filter center. 
 

𝑓(𝑑ு, 𝑑௏) = ቈ𝑒
ିቚ

ௗಹ
ఈಹ

ቚ
቉ ቈ𝑒

ିฬ
ௗೇ
ఈೇ

ฬ
቉ = 𝑒

ିቀቚ
ௗಹ
ఈಹ

ቚାฬ
ௗೇ
ఈೇ

ฬቁ
 (32) 
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Calculation of correlated data 𝐼௙ by applying of a correlating filter to the seed data 𝐼௦ is shown 
in equation (33).  Each pixel of 𝐼௙ is calculated as a weighted sum of seed pixels from 𝐼௦, where 
the weights are determined by the correlating filter coefficients in 𝑓௫௬, which is defined at each 
𝑥𝑦 image location. 
 

𝐼௙(𝑥, 𝑦, 𝑛) = ෍ ෍ 𝐼௦൫𝑥 + 𝑑௫ , 𝑦 + 𝑑௬ , 𝑛൯

ௗ

ௗ೤ୀିௗ

ௗ

ௗೣୀିௗ

∙ 𝑓௫௬൫𝑑௫ , 𝑑௬൯ (33) 

 
Multiscale analysis of the image allows for estimating image correlation over a range of scales.  
Calculation of the entire covariance matrix will provide an estimate of the correlation between 
any two pixels, but under the assumption that correlation occurs over a finite pixel distance, we 
can reduce the complexity of the analysis.  Two-dimensional wavelet decomposition is used as 
the basis for the multiscale analysis.  The directional nature of wavelet decomposition provides 
a direct application to the directional correlation estimation in the clutter data.  Consider a 4x4 
image area, with image pixels labeled according to Figure 16. 

 

4x4 Area of Image Pixels

 
Figure 16:  Image pixels area notation 

Horizontal Wavelet Components

 
Figure 17:  Wavelet components 

 
Each of these pixels can be modeled as a multivariate random variable with mean, variance, 
and unknown correlation to the other pixels.  Here we use the Debauchies 2-tap wavelet filters 
to decompose this image area into four components.  There are many wavelets suitable for 
many multiscale analysis applications.  Here, our intent is to simply form a weighted sum of 
pixels from the previous layer.  This could be done manually without wavelet filters or 
algorithms, but wavelet tools are readily available and provide a convenient basis for analysis.   

3.3.1.1 Choice of Wavelet Filter 
The Debauchies 2-tap filter is chosen for this application simply because the size of filter (2x2 in 
this case) allows us to estimate the correlations at a finer resolution for each decomposition 
level.  The formulations in this section can be adapted to accommodate a larger wavelet filter, 
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but this results in estimated correlations over a larger image area, which is equivalent to results 
at higher levels of decomposition.  A smaller wavelet filter simplifies the correlation estimation 
process and allows for finer resolution in the directional correlation estimations.  The use of 
other wavelet filters with specific characteristics is identified as an area of further research. 
 
The 2D wavelet filters are tensor products of one-dimensional approximation and detail 
(lowpass and highpass) filters.  𝑊஺ contains lowpass elements in both directions, 𝑊ு contains 
highpass elements in the horizontal direction and lowpass elements in the vertical direction.  
Conversely, 𝑊௏ contains highpass elements in the vertical direction and lowpass elements in 
the horizontal direction.  The diagonal filter, 𝑊஽ contains highpass elements in both directions. 
 

𝑊ு = ቂ
1 −1
1 −1

ቃ 𝑊௏ = ቂ
   1    1
−1 −1

ቃ 𝑊஽ = ቂ
   1 −1
−1    1

ቃ 𝑊஺ = ቂ
1 1
1 1

ቃ 

 
 
Filters are applied to 2x2 non-overlapping blocks of image pixels.  Using the notation in Figure 
16 and Figure 17, the wavelet coefficients can be described as in equation (34), where 𝑊ு೙

 is 
indexed according to equation (35). 
 

𝐻௠
ଵ = ෍ 𝐼௠,௡𝑊ு೙

ସ

௡ୀଵ

 (34) 

𝑊ு೙
= ൤

𝑊ுభ
𝑊ுమ

𝑊ுయ
𝑊ுర

൨ = ቂ
1 −1
1 −1

ቃ (35) 

 
Similarly, the other directional and approximation components are found using equations (36) 
through (38). 
 

𝑉௠
ଵ = ෍ 𝐼௠,௡𝑊௏೙

ସ

௡ୀଵ

 (36) 

𝐷௠
ଵ = ෍ 𝐼௠,௡𝑊஽೙

ସ

௡ୀଵ

 (37) 

𝐴௠
ଵ = ෍ 𝐼௠,௡𝑊஺೙

ସ

௡ୀଵ

 (38) 
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Each wavelet coefficient can be considered a weighted sum of image pixels or coefficients from 
the previous layer, where the weights are the elements of the 2D wavelet filters.  The variance 
of a sum of dependent random variables is equal to the sum of all covariance matrix elements.  
For the  𝐻ଵ

ଵ coefficient, the covariance matrix of all contributing elements is given in equation 
(39). 
 

𝐶ுభ
భ =

⎣
⎢
⎢
⎢
⎡

𝑊ுభ
𝑊ுభ

𝜎ூభభ
ଶ 𝜌ଵଶ𝑊ுభ

𝑊ுమ
𝜎ூభభ

𝜎ூభమ

𝜌ଶଵ𝑊ுమ
𝑊ுభ

𝜎ூభమ
𝜎ூభభ

𝑊ுమ
𝑊ுమ

𝜎ூభమ
ଶ

𝜌ଵଷ𝑊ுభ
𝑊ுయ

𝜎ூభభ
𝜎ூభయ

𝜌ଵସ𝑊ுభ
𝑊ுర

𝜎ூభభ
𝜎ூభర

𝜌ଶଷ𝑊ுమ
𝑊ுయ

𝜎ூభమ
𝜎ூభయ

𝜌ଶସ𝑊ுమ
𝑊ுర

𝜎ூభమ
𝜎ூభర

𝜌ଷଵ𝑊ுయ
𝑊ுభ

𝜎ூభయ
𝜎ூభభ

𝜌ଷଶ𝑊ுయ
𝑊ுమ

𝜎ூభయ
𝜎ூభమ

𝜌ସଵ𝑊ுర
𝑊ுభ

𝜎ூభర
𝜎ூభభ

𝜌ସଶ𝑊ுర
𝑊ுమ

𝜎ூభర
𝜎ூభమ

𝑊ுయ
𝑊ுయ

𝜎ூభయ
ଶ 𝜌ଷସ𝑊ுయ

𝑊ுర
𝜎ூభయ

𝜎ூభర

𝜌ସଷ𝑊ுర
𝑊ுయ

𝜎ூభర
𝜎ூభయ

𝑊ுర
𝑊ுర

𝜎ூభర
ଶ

⎦
⎥
⎥
⎥
⎤

 (39) 

 
To simplify equation (39), we can map each of the 12 correlations to a general directional 
correlation as shown in Figure 18 and defined in equations (40) through (42). The covariance 
matrix can now be written as equation (43). 
 

𝜌ுభమ
, 𝜌ுమభ

, 𝜌ுయర
, 𝜌ுరయ

= 𝜌ுభ
భ  (40) 

𝜌ுభయ
, 𝜌ுయభ

, 𝜌ுమర
, 𝜌ுరమ

= 𝜌௏భ
భ  (41) 

𝜌ுభర
, 𝜌ுరభ

, 𝜌ுమయ
, 𝜌ுయమ

= 𝜌஽భ
భ (42) 

 

 
Figure 18:  Correlation Mapping 
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𝐶ுభ
భ =

⎣
⎢
⎢
⎢
⎡

𝜎𝐼11

2 𝜌ுభ
భ𝜎𝐼11

𝜎𝐼12

𝜌ுభ
భ𝜎𝐼12

𝜎𝐼11
𝜎𝐼12

2

−𝜌௏భ
భ𝜎𝐼11

𝜎𝐼13
−𝜌஽భ

భ𝜎𝐼11
𝜎𝐼14

−𝜌஽భ
భ𝜎𝐼12

𝜎𝐼13
−𝜌௏భ

భ𝜎𝐼12
𝜎𝐼14

−𝜌௏భ
భ𝜎𝐼13

𝜎𝐼11
−𝜌஽భ

భ𝜎𝐼13
𝜎𝐼12

−𝜌஽భ
భ𝜎𝐼14

𝜎𝐼11
−𝜌௏భ

భ𝜎𝐼14
𝜎𝐼12

𝜎𝐼13

2 𝜌ுభ
భ𝜎𝐼13

𝜎𝐼14

𝜌ுభ
భ𝜎𝐼14

𝜎𝐼13
𝜎𝐼14

2
⎦
⎥
⎥
⎥
⎤

 (43) 

 
The variances from equation (43) can be estimated from sample variance of the image pixels.  
The directional correlations are unknowns and we can write the variance of the 𝐻ଵ

ଵ coefficient 
as equation (44), where 𝑣஺భ

భ through 𝑣஽భ
భ are given in equations (45) through (48). 

 

𝜎ுభ
భ

ଶ = ෍ 𝐶ுభ
భ = 𝑣஺భ

భ + 𝑣ுభ
భ𝜌ுభ

భ − 𝑣௏భ
భ𝜌௏భ

భ − 𝑣஽భ
భ𝜌஽భ

భ (44) 

𝑣஺భ
భ = 𝜎ଵଵ

ଶ + 𝜎ଵଶ
ଶ + 𝜎ଵଷ

ଶ + 𝜎ଵସ
ଶ  (45) 

𝑣ுభ
భ = 2𝜎ଵଵ𝜎ଵଶ + 2𝜎ଵଷ𝜎ଵସ (46) 

𝑣௏భ
భ = 2𝜎ଵଵ𝜎ଵଷ + 2𝜎ଵଶ𝜎ଵସ (47) 

𝑣஽భ
భ = 2𝜎ଵଵ𝜎ଵସ + 2𝜎ଵଶ𝜎ଵଷ (48) 

 
Similarly, we can write an equation for the variances of the other three wavelet coefficients. 
 

𝜎௏భ
భ

ଶ = ෍ 𝐶௏భ
భ = 𝑣஺భ

భ − 𝑣ுభ
భ𝜌ுభ

భ + 𝑣௏భ
భ𝜌௏భ

భ − 𝑣஽భ
భ𝜌஽భ

భ (49) 

𝜎஽భ
భ

ଶ = ෍ 𝐶஽భ
భ = 𝑣஺భ

భ − 𝑣ுభ
భ𝜌ுభ

భ − 𝑣௏భ
భ𝜌௏భ

భ + 𝑣஽భ
భ𝜌஽భ

భ (50) 

𝜎஺భ
భ

ଶ = ෍ 𝐶஺భ
భ = 𝑣஺భ

భ + 𝑣ுభ
భ𝜌ுభ

భ + 𝑣௏భ
భ𝜌௏భ

భ + 𝑣஽భ
భ𝜌஽భ

భ (51) 

 
The wavelet coefficient variances are a function of known image pixel variances and unknown 
directional correlations.  We can write equations (44) and (49) through (51) as a linear system in 
matrix form. 
 

𝒗 = 𝑪𝝆 (52) 
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𝒗 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜎

𝐻1
1

ଶ

𝜎
𝑉1

1
ଶ

𝜎
𝐷1

1
ଶ

𝜎
𝐴1

1
ଶ
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𝑪 = ൦

𝑣஺భ
భ 𝑣ுభ

భ

𝑣஺భ
భ −𝑣ுభ

భ

−𝑣௏భ
భ −𝑣஽భ

భ

𝑣௏భ
భ −𝑣஽భ

భ

𝑣஺భ
భ −𝑣ுభ

భ

𝑣஺భ
భ 𝑣ுభ

భ

−𝑣௏భ
భ 𝑣஽భ

భ

𝑣௏భ
భ 𝑣஽భ

భ

൪ (54) 

𝝆 =

⎣
⎢
⎢
⎡

1
𝜌ுభ

భ

𝜌௏భ
భ

𝜌஽భ
భ⎦
⎥
⎥
⎤
 (55) 

 
Equation (52) can now be used to solve for the directional correlations. 
 

𝝆 = 𝑪ିଵ𝒗 (56) 
 
This process can be repeated for every wavelet coefficient to find the estimated directional 
correlation at every 𝑥, 𝑦 decomposed image location at each scale.  Equation (56) applies for 
every level and can be written more generally as equation (57), with elements defined in 
equations (58) through (60). 
 

𝝆௫,௬
௅ = 𝑪௫,௬

௅ ିଵ
𝒗௫,௬
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𝝆௫,௬
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In equation (59), the elements of 𝑣𝐴𝑥,𝑦

𝐿 , 𝑣𝐻𝑥,𝑦
𝐿 , 𝑣𝑉𝑥,𝑦

𝐿 , and 𝑣𝐷𝑥,𝑦
𝐿  depend on the variances from the 

previous level, where 𝑚ଵ through 𝑚ସ are elements from the previous level 𝐿 − 1 that 
contribute to the coefficient at 𝑥, 𝑦 of the current level 𝐿.  In wavelet decomposition, the 
approximation coefficients from level 𝐿 are used as the input to the level 𝐿 + 1 decomposition.  
Therefore, 𝑣𝐴𝑥,𝑦

𝐿 , 𝑣𝐻𝑥,𝑦
𝐿 , 𝑣𝑉𝑥,𝑦

𝐿 , and 𝑣𝐷𝑥,𝑦
𝐿  can be written as functions of the previous level’s  𝐴௫,௬

௅ିଵ 
sample variances. 
 

𝑣𝐴𝑥,𝑦
𝐿 = 𝜎

𝐴೘భ
𝐿−1

ଶ + 𝜎
𝐴೘మ

𝐿−1
ଶ + 𝜎

𝐴೘య
𝐿−1

ଶ + 𝜎
𝐴೘ర

𝐿−1
ଶ  (61) 

𝑣𝐻𝑥,𝑦
𝐿 = 2𝜎𝐴೘భ

𝐿−1 𝜎𝐴೘మ
𝐿−1 + 2𝜎𝐴೘య

𝐿−1 𝜎𝐴೘ర
𝐿−1  (62) 

𝑣𝑉𝑥,𝑦
𝐿 = 2𝜎𝐴೘భ

𝐿−1 𝜎𝐴೘య
𝐿−1 + 2𝜎𝐴೘మ

𝐿−1 𝜎𝐴೘ర
𝐿−1  (63) 

𝑣𝐷𝑥,𝑦
𝐿 = 2𝜎𝐴೘భ

𝐿−1 𝜎𝐴೘ర
𝐿−1 + 2𝜎𝐴೘మ

𝐿−1 𝜎𝐴೘య
𝐿−1  (64) 

 

3.3.2 Multiscale Covariance vs Correlation 
Image correlation is useful in uniform images where scattering intensity is consistent across the 
image and pixels represent scattering from the clutter.  However, if the image is non-uniform 
and contains areas of very weak scattering, then the covariance is a better visualization of 
scattering phenomenon.  Nonuniform ISAR images may contains areas where system noise is 
dominant and the correlation between these pixels is not relevant to the analysis.  For this 
reason, multiscale covariance is shown in analysis of measured data.  The estimated multiscale 
covariance is easily calculated from the estimated multiscale correlation and sample image 
variance. 
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3.4 VALIDATION OF MULTISCALE MODEL PARAMETER ESTIMATION METHOD 
The proposed multiscale analysis is performed on known correlated data to validate the 
proposed multiscale correlation estimation method.  The data is created by application of a 
two-dimensional exponential correlating filter, with the resulting horizontal and vertical 
correlations shown below in Figure 19. 
 

 
Figure 19:  Directional Correlation used to Create Correlated Data 

The proposed multiscale analysis methods described in this chapter are then used to estimate 
the multiscale correlations for the known data.  Three scales are analyzed and the results are 
shown in Figure 20, where H, V, and D refer to the horizontal, vertical, and diagonal directions 
respectively, and numbers 1, 2 and 3 refer to the decomposition level.  The initial data is 
composed of 1000 samples of 64x64 images. 
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Figure 20:  Estimated Directional Correlations for Simulated Data 

  
Visual inspection of the estimated directional multiscale correlations show that they are in good 
agreement with the original directional correlation in Figure 19.  Due to the use of an 
exponential filter for correlation, we would expect correlation to decrease as decomposition 
level increases from 1 to 3.  For a more quantitative comparison, we can create correlated data 
with a constant correlation over the entire image.  In this case, we choose a 2D exponential 
function as shown in equation (65), where we choose 𝛼ு, 𝛼௏ = 1, and 𝑑ு and 𝑑௏ are the 
horizontal and vertical pixel offsets. 
 

𝑓(𝑑ு, 𝑑௏) = ቈ𝑒
ିቚ

ௗಹ
ఈಹ

ቚ
቉ ቈ𝑒

ିฬ
ௗೇ
ఈೇ

ฬ
቉ = 𝑒

ିቀቚ
ௗಹ
ఈಹ

ቚାฬ
ௗೇ
ఈೇ

ฬቁ
 (65) 

 
Applying this correlating filter to random seed data results in correlated data.  We can calculate 
the correlation of this data based on the exponential filter coefficients.  The correlation 
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calculation is shown in equation (66), where 𝐷 is the total length of the exponential filter and 
results in the offset correlations shown below in Table 3.   
 

𝜌(𝑑) =
1

𝜎௙
ଶ ෍ 𝑓(𝑛 + 𝑑)𝑓(𝑛)

஽ିௗାଵ

௡ୀௗାଵ

 (66) 

𝜎௙
ଶ = ෍ 𝑓ଶ(𝑛)

஽

௡ୀଵ

 (67) 

𝑓(𝑑) = 𝑒ି|ௗ| (68) 

 

Table 3:  Correlation for Pixel Offsets Using Exponential Correlating filter 

Pixel Offset f(d) Correlation 
0 1 1 
1 0.3679 0.6481 
2 0.1353 0.3415 
3 0.0498 0.1635 
4 0.0183 0.0741 
5 0.0067 0.0324 
6 0.0025 0.0138 
7 0.0009 0.0057 
8 0.0003 0.0023 

 
The multiscale analysis of data that has been correlated with the 2D exponential filter in 
equation (65) is shown in Figure 21. 
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Figure 21:  Multiscale Analysis of Data Correlation with Exponential Filter and Alpha of 1.0 

 
The multiscale analysis estimates the directional correlation between groups of pixels at each 
scale.  Referring to Figure 22, we see that the fist level of decomposition (left) equals the 
correlation of single-pixel offsets in the horizontal, vertical, and diagonal directions.  However, 
in the second level of decomposition, we are estimating the correlation between the groups of 
pixels.  For instance, the estimated level 2 horizontal correlation is the total correlation 
between the group of grey pixels and the group of red pixels.  The total correlation in the case 
is a combination of correlations due to 1, 2, or 3 horizontal pixel offsets, and 0 or 1 vertical pixel 
offsets.  
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Figure 22:  Multiscale Directional Correlation 

From Figure 21, we see that the multiscale analysis provides average estimated directional 
correlations over scale that are summarized in Table 4. 
 

Table 4:  Estimated Directional Correlations for Exponential Correlating function and Alpha of 1.0 

Correlation H V D 
Level 1 0.647 0.648 0.420 
Level 2 0.454 0.454 0.205 
Level 3 0.232 0.232 0.054 

 
 
Table 4 shows that the level decomposition provides estimated directional correlations that are 
consistent with the single pixel offset correlations shown in Table 3.  The two-dimensional 
exponential filter is created from the multiplication of two one-dimensional exponential 
functions as in equation (65).  Therefore, one would expect the single-pixel diagonal 
component to be the product of the single-pixel offsets in the horizontal and vertical directions.  
In Table 4, we see that the level 1 diagonal component is approximately equal to product of the 
horizontal and vertical components.  In fact, for all decomposition levels in Table 4, the diagonal 
component is approximately the product of the horizontal and vertical components.   
 
For the level 2 and level 3 decomposition levels, the estimated correlations are actually a 
mixture of different horizontal and vertical offset correlation values between pairs of pixels, 
and the total directional correlations represent the correlation between block groups of pixels 
as demonstrated in Figure 22. 
 
The proposed method for estimation of multiscale directional correlations from samples of 
correlated data has been validated and agrees with the calculation of expected values.  
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4 NUMERICAL SIMULATION OF ISAR CLUTTER 

4.1 SIMULATION OF ISAR CLUTTER USING MULTISCALE MODEL PARAMETERS 
Two methods for simulating additional ISAR image samples based on the multiscale statistics 
are proposed.  Both methods involve the concept of applying a 2D directional correlating filter 
to random seed data and scaling for image mean and variance.  The first method uses a 
correlating filter with exponentially decaying magnitude, and with horizontal and vertical shape 
parameters that describe the directional rate of decay of the filter.  These shape parameters 
are calculated from estimated directional correlations.  The second method involves the 
derivation of a more arbitrary correlating function that, when applied to random seed data, will 
result in the desired multiscale correlations that have been estimated form the original data 
over multiple scales.  This correlating function has parameters for each direction at each scale 
which define the shape of the correlating filter.  Both methods define filter parameters across 
all image pixels, based on the estimated directional correlations from the multiscale analysis.  
Both methods will be compared to a more computationally complex third method that involves 
generating multivariate samples from the entire sample covariance matrix, which is the upper 
limit to correlation fidelity. 

4.2 SIMULATION METHOD 1 – EXPONENTIAL CORRELATING FILTER 
Upon estimation of the multiscale directional correlation we can form a correlating filter that, 
when applied to random seed data, will result in the desired correlation between image pixels 
at one or more scales.  If we assume an exponential correlating filter shape, then only 
correlations estimated from the first level of multiscale decomposition are needed to form the 
exponential filter.  This is because we only need the single pixel offset correlation to fully 
characterize the exponential decay.  The goal is to form a directional exponential correlating 
filter that, when applied to random seed data, will result in the desired directional correlation. 
The random seed data is labeled 𝐼௦(𝑟, 𝑐) where 𝑟 and 𝑐 are the row and column indexes of the 
image, and each element of 𝐼௦(𝑟, 𝑐) is considered a normal random variable with zero mean 
and unit variance over the desired number of output image samples.  We then define the 
correlating filter, in this case a 2D directional exponential filter, as shown in equation (69), 
where shape parameters 𝛼ு and 𝛼௏ are found through analysis of the original data. 
 

𝑓(𝑑ு, 𝑑௏) = ቈ𝑒
ିቚ
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቉ = 𝑒

ିቀቚ
ௗಹ
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ቚାฬ
ௗೇ
ఈೇ

ฬቁ
 (69) 

 
4.2.1 Estimation of Exponential Correlating filter Shape Parameters 

The estimated directional correlations calculated in the previous section are useful for 
multiscale analysis of the clutter.  However, under the assumption that correlation can be 
modeled as the application of correlating filters to random data, the correlating filter shape 
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parameters 𝛼ுೣ೤
 and 𝛼௏ೣ ೤

 are needed for generating representative image samples from 
random seed data.  The correlating filter shape parameters can be estimated from the 
directional correlations found in the previous multiscale analysis section. 
 
Consider the one-dimensional case of two correlated image pixels, 𝐼௙భ

 and 𝐼௙మ
 that are each 

formed as a weighted sum of independent normally distributed seed variables 𝐼௦భ
 through 𝐼௦ఴ

, 
as shown in Figure 23. 
 

 
Figure 23:  Image pixels modeled as weighted sums of independent seed variables 

 
The red and blue correlating functions, fଵ and fଶ, need not be the same but will be considered 
the same here as f.  The filter is expressed as equations (70) through (72), where the index 𝑑 is 
an integer that represents pixel distance from filter center over some finite distance ±𝑑௡. 
 

𝑓(𝑑) (70) 

𝑑 ∈ 𝐼 (71) 

−𝑑௡ ≤ 𝑑 ≤ 𝑑௡ (72) 

 
The covariance between pixels 𝐼௙భ

 and 𝐼௙మ
 is given in equation (73), and this leads to the 

correlation between 𝐼௙భ
 and 𝐼௙మ

 in equations (75) and (76).  Since the seed pixels have been 
created with zero mean and unit variance, the value of 𝜎ூೞ೙

ଶ  will be unity. 

Correlated 
Image Pixels 

Uncorrelated 
Seed Pixels 
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𝑐𝑜𝑣൫𝐼௙భ
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௡ୀଵ
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଼

௡ୀଶ

൱ (73) 

𝑐𝑜𝑣൫𝐼௙భ
, 𝐼௙మ

൯ = ෍ 𝜎ூೞ೙

ଶ 𝑓(𝑛)𝑓(𝑛 − 1)

଻

௡ୀଶ

= ෍ 𝑓(𝑛)𝑓(𝑛 − 1)

଻

௡ୀଶ
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𝜌ூ೑೘భ,೘మ
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𝑐𝑜𝑣൫𝐼௙భ
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൯

𝜎ூ೑భ
𝜎ூ೑మ

=
1

𝜎ூ೑భ
𝜎ூ೑మ

෍ 𝑓(𝑛)𝑓(𝑛 − 1)

଻

௡ୀଶ

 (75) 

𝜎ூ೑భ
𝜎ூ೑మ

= ෍ 𝑓ଶ(𝑛)

଼

௡ୀଵ

 (76) 

 
Equations (75) and (76) can be written in more general form for an arbitrary distance between 
pixels given a defined correlating function with total length of D and pixel separation 𝑑, shown 
in equations (77) and (78). 

𝜌ூ೑భ,మ
(𝑑) =

1

𝜎ூ೑భ
𝜎ூ೑మ

෍ 𝑓(𝑛)𝑓(𝑛 − 1)

஽ିௗ

௡ୀௗାଵ

 (77) 

𝜎ூ೑భ
𝜎ூ೑మ

= ෍ 𝑓ଶ(𝑛)

଼

௡ୀଵ

 (78) 

 
Equations (77) and (78) are for the one-dimensional case, but it can be shown that with 
correlating filters formed from the tensor product of one-dimensional filters, equations (77) 
and (78) are still applicable.  Therefore, from equation (77) and (78), the horizontal or vertical 
correlation at pixel separation distance 𝑑 is equal to the sum of the two-dimensional correlating 
filter multiplied by a 𝑑-pixel shifted version of itself and divided by the sum of the product of 
the unshifted filter coefficients, where the shift occurs in the horizontal or vertical direction.  
The two-dimensional calculation for a 𝐷x𝐷 filter is shown in equations (79) through (81), where 
r and c are the row and column coordinates for the two-dimensional filter coefficients, 
respectively. 
 

𝜌ூ೑భ,మ
(𝑑ு) =

1

𝜎ூ೑భ
𝜎ூ೑మ

෍ ෍ 𝑓(𝑟, 𝑐 + 𝑑ு)𝑓(𝑟, 𝑐)

஽ିௗಹ

௖ୀௗಹାଵ

஽

௥ୀଵ

 (79) 
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𝜌ூ೑భ,మ
(𝑑௏) =

1

𝜎ூ೑భ
𝜎ூ೑మ

෍ ෍ 𝑓(𝑟 + 𝑑௏ , 𝑐)𝑓(𝑟, 𝑐)

஽ିௗೇ

௥ୀௗೇାଵ

஽
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𝜎ூ೑భ
𝜎ூ೑మ

= ෍ ෍ 𝑓ଶ(𝑟, 𝑐)

஽

௖ୀଵ

஽
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 (81) 

 
This is a simple calculation when the filter is known but the inverse problem of finding filter 
shape parameters from the correlation is not straight forward.  Curve fitting techniques can be 
used to estimate the function that maps correlation to filter shape parameters, and the inverse 
of that function can be used to find filter shape parameters that provide a desired correlation. 
 
For example, with a one-dimensional exponential correlating function such as equation (82), we 
can find the relationship between correlation and α.  This is done by evaluating equation (82) 
over a range of exponential decay parameters, in this case 𝛼.    

 

Figure 24 shows the correlation calculation for the single-pixel offset (𝑑 = 1) of an exponential 
function with decay parameter 𝛼. 

 
Figure 24:  Mapping of Exponential Decay Parameter to Correlation 

𝑓(𝛼, 𝑑) = 𝑒
ିቚ

ௗ
ఈ

ቚ (82) 
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Once this is calculated for a chosen correlating function form, the inverse can be used to find 
the correlating filter decay parameter from the desired correlation.  The correlating filter can 
then be applied to random seed data, resulting in the desired correlation between pixels. 

4.2.2 Validation of Method 1 Shape Parameter Estimation 
We can validate this process by correlating data with a two dimensional exponential filter with 
arbitrary shape parameters across the image, performing multiscale analysis to find the 
estimated directional correlations from the first decomposition level, then using the inverse 
curve fitting method above to estimate the shape parameters from the directional correlations.  
These should match the original shape parameters that were used to correlate the data. 
 
The true directional image decay parameters are shown below, along with the estimated 
correlation.  This estimated correlation is then used to estimate the decay parameters.  
Estimated decay parameters can then be compared to the known decay parameters used in 
generating the data to evaluate the estimation accuracy. 
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Figure 25:  Actual Shape Parameters used to Correlate Data 

 
Figure 26:  Estimated Directional Correlation from Level 1 Multiscale Analysis 

 
Figure 27:  Estimated Horizontal and Vertical Shape Parameters 

Examination of Figure 25 through Figure 27 shows that the final estimated exponential decay 
parameters are in good visual agreement with the actual exponential decay parameters that 
were used to generate the simulated data. 

4.2.3 Application of Two-Dimensional Exponential Correlating filter 
Once the parametric correlating filter coefficients have been determined,  the correlating filter 
is then applied to each of N images of the seed data in 𝐼௦ according to equation (83), resulting in 
𝐼௖(𝑟, 𝑐, 𝑛), which contains N images of size 𝑟 x 𝑐 with the desired correlation. 
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𝐼௖(𝑟, 𝑐, 𝑛) = ෍ ෍ 𝐼௦(𝑟 + 𝑑௥ , 𝑐 + 𝑑௖ , 𝑛)

ௗ

ௗ೎ୀିௗ

ௗ

ௗೝୀିௗ

∙ 𝑓௥௖(𝑑௥ , 𝑑௖) (83) 

 
The data in 𝐼௖ can then be scaled for desired mean and variance (𝜇௙ and 𝜎௙

ଶ) to obtain the final 
scaled output data, where 𝜎௖

ଶ(𝑟, 𝑐) is the sample variance of 𝐼௖ over N images samples at pixel 
(𝑟, 𝑐). 

4.2.4 Negative Correlation 
As presented, formulations for the exponential correlating filter will result only in positive 
correlation.  However, negative correlation can certainly be present in correlated data so it 
must be accounted for.  Since we are dealing with multiscale correlation, the ability to have 
positive or negative correlation at any one decomposition level is desirable.  One method for 
achieving negative exponential correlation is shown in Figure 28.  The signs of filter coefficients 
are chosen so that the correlation due to the product of the modified filter with its 1- 2- and 4-
pixel shift results in approximately the negative correlation of the same pixel offsets with the 
original filter.  This allows for the shifted product of the most significant filter coefficients to 
result in negative correlation at the 2௡ିଵ pixel offset from decomposition level 𝑛.  Negative 
correlation in the curve of Figure 24 was created in this manner.  The symmetry of this curve 
demonstrates that negative correlations can be effectively represented this way. 
 

 
Figure 28:  Negative Correlation 
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4.3 SIMULATION METHOD 2 – NON-EXPONENTIAL CORRELATING FILTER 
Not all correlated data can be accurately estimated by an exponential correlating filter.  Use of 
an exponential filter means that correlations will always decay over distance.  With scattering 
from vegetation, however, correlation in the image will depend on the physical structure and 
correlation can be much different at different scales.  For instance, large branches may result in 
a high amount of correlation at low resolution scales, but correlation at higher resolutions 
might be smaller or even negative due to the motion of leaves.  It is beneficial to have some 
additional flexibility in defining the correlating filter shape so that we can account for a wider 
range of multiscale correlations.  Here we propose Method 2, where we define a correlating 
filter whose unidirectional shape is defined by three parameters.  This filter is built according to 
Figure 29.  The design of this filter is intended to provide some control over correlation over 
three levels of wavelet decomposition.  The estimated correlations form the first 
decomposition level will be mostly impacted by the blue portions below, since the first 
decomposition level find correlations between adjacent pixels.  The estimated correlations form 
the second decomposition level will be mostly impacted by the red portions below, since the 
second decomposition level find correlations between adjacent pairs of pixels, and so on.  In 
the final step, we make the filter symmetric around the center value of 1 for the zero offset. 
 
 

 
Figure 29:  Formation of Correlating function from Three Shape Parameters 

 
Examining equation (66), we know that the correlation of two pixels is calculated as the sum of 
the product of the overlapping sections of the correlating filter coefficients that were used to 
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correlate the data.  Equations (84) and (85) show the single-pixel offset correlation due to filter 
𝑓, where 𝑓௡ is the nth coefficient of filter 𝑓. 
 

𝜌ଵ,ଶ =
1

𝜎ூ೑భ
𝜎ூ೑మ

෍ 𝑓௡𝑓௡ାௗ

஽ିௗ

௡ୀௗାଵ

 (84) 

𝜎ூ೑భ
𝜎ூ೑మ

= ෍ 𝑓௡
ଶ

஽

௡ୀଵ

 (85) 

 
 
This is useful for finding the correlation between two pixels, but we are also interested 
modeling the correlation between groups of pixels, such as the multiscale correlations.  
Consider  Figure 30, where we are calculating correlation image pixels 𝐼௙೘

 from independent 
random seed variables 𝐼௦೘

, using the four 7-element correlating functions.  Here, we see 𝐼௙భ
 is a 

function of seed variables 𝐼௦భ
 through 𝐼௦ళ

, with filter coefficients 𝑓௡, with 𝑛 an integer from 1 to 
7.  For simplicity, we will assume the correlating filters all have the same coefficients. 
 

 
Figure 30:  Pixel Group Correlation Example 

 
Since the random seed variables are independent, the correlation between elements of 𝐼௙೘

 will 
depend on the common elements of 𝐼௦೘

.  For instance, 𝐼௙భ
 and 𝐼௙య

 will be correlated due to both 
being composed of common seed elements 𝐼௦య

 through 𝐼௦ళ
.  For any two pixels in 𝐼௙೘

 we know 
the correlation is calculated as in equation (66).  However, if we are decomposing the elements 
of 𝐼௙೘

 and want to find the correlation between two groups of pixels, such as in Figure 31, we 
treat the groups as a sum.  This is shown in equation (86) and (87). 
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𝐼௙భమ
= 𝐼௙భ

+ 𝐼௙మ
= ෍ 𝑓௡

଻

௡ୀଵ

𝐼௦೙
+ ෍ 𝑓௡ିଵ

଼

௡ୀଶ

𝐼௦೙
 (86) 

𝐼௙యర
= 𝐼௙య

+ 𝐼௙ర
= ෍ 𝑓௡ିଶ

ଽ

௡ୀଷ

𝐼௦೙
+ ෍ 𝑓௡ିଷ

ଵ଴

௡ୀସ

𝐼௦೙
 (87) 

 
Grouping by overlapping elements of 𝐼௦೙

, we can write these as equations (88) and (90) with 
variances given in equations (89) and (91). 

𝐼௙భమ
= 𝑓ଵ𝐼௦భ

+ 𝑓଻𝐼௦ఴ
+ ෍ 𝐼௦೙

଻

௡ୀଶ

(𝑓௡𝑓௡ିଵ) (88) 

𝜎ூ೑భమ

ଶ = ෍ 𝑓௡𝑓௡ାௗ

஽ିௗ

௡ୀௗାଵ

 (89) 

𝐼௙యర
= 𝑓ଵ𝐼௦య

+ 𝑓଻𝐼௦భబ
+ ෍ 𝐼௦೙

ଽ

௡ୀସ

(𝑓௡ିଶ𝑓௡ିଷ) (90) 

𝜎ூ೑యర

ଶ = ෍ 𝑓௡𝑓௡ାௗ

஽ିௗ

௡ୀௗାଵ

 (91) 

𝜎ூ೑భమ
𝜎ூ೑యర

= ෍ 𝑓௡𝑓௡ାௗ

஽ିௗ

௡ୀௗାଵ

 (92) 

 
Gathering common 𝐼௦೙

 terms with 𝜎ூೞ೙

ଶ = 1, the correlation between these groups of pixels is 

shown in equation (94).  Non-overlapping elements of 𝐼௦೙
 will not contribute to correlation. 

 

𝜌ଵଶ,ଷସ =
1

𝜎୍౜భమ
𝜎୍౜యర

෍ I୤భమ
∙ I୤యర

 (93) 

𝜌ଵଶ,ଷସ =
1

𝜎୍౜భమ
𝜎୍౜యర

൝𝑓ଵ(𝑓ଶ + 𝑓ଷ) + ൥෍(𝑓௡ + 𝑓௡ାଵ)

ସ

௡ୀଵ

(𝑓௡ାଶ + 𝑓௡ାଷ)൩ + (𝑓ହ + 𝑓଺)𝑓଻ൡ (94) 
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Figure 31:  Correlation Example Between Groups of Pixels 

 In the same manner, we can show the correlation between two adjacent groups of four pixels. 

𝜌ଵଶଷସ,ହ଺଻଼ =
1

𝜎ூ೑భమయర
𝜎ூ೑ఱలళఴ

[𝑓ଵ(𝑓ଶ + 𝑓ଷ + 𝑓ସ + 𝑓ହ) + (𝑓ଵ + 𝑓ଶ)(𝑓ଷ + 𝑓ସ + 𝑓ହ + 𝑓଺)

+ (𝑓ଵ + 𝑓ଶ + 𝑓ଷ)(𝑓ସ + 𝑓ହ + 𝑓଺ + 𝑓଻) + (𝑓ଵ + 𝑓ଶ + 𝑓ଷ + 𝑓ସ)(𝑓ହ + 𝑓଺ + 𝑓଻)
+ (𝑓ଶ + 𝑓ଷ + 𝑓ସ + 𝑓ହ)(𝑓଺ + 𝑓଻) + (𝑓ଷ + 𝑓ସ + 𝑓ହ + 𝑓଺)𝑓଻] 

(95) 

𝜎ூ೑భమయర
𝜎ூ೑ఱలళఴ

= 𝑓1൫𝑓2 + 𝑓3൯ + ቎ ෍ ൫𝑓𝑛 + 𝑓𝑛+1൯

4

𝑛=1

൫𝑓𝑛+2 + 𝑓𝑛+3൯቏ + ൫𝑓5 + 𝑓6൯𝑓7 (96) 

 
In our multiscale analysis using wavelet decomposition, we are essentially looking at correlation 
between adjacent pixels in the level 1 decomposition, correlation between two groups of four 
pixels in the level 2 decomposition, and so on.  Although equations (94) and (95) are for the 
one-dimensional case, the same theory can be applied, albeit with more complicated 
equations. 
 
Using our arbitrary correlating function from Figure 29 along with equation (94), we can 
calculate the expected correlations due to correlating parameters 𝑟ଵ, 𝑟ଶ, 𝑟ଷ for a desired 
direction.  However, this is a nonlinear equation and finding 𝑟ଵ, 𝑟ଶ, 𝑟ଷ from the desired 
correlations 𝜌ଵ,ଶ, 𝜌ଵଶ,ଷସ, and  𝜌ଵଶଷସ,ହ଺଻଼ can be achieved using nonlinear solvers.  In our 
application, the filter shape parameters can be found from the estimated directional multiscale 
correlations.  It should be noted here that not all desired correlation combinations can be 
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mapped to a set of 𝑟ଵ, 𝑟ଶ, 𝑟ଷ parameters.  Care must be taken to bound the parameters so that 
the solver does not diverge.  The nonlinear solution here is one example and solver options 
were not evaluated in the scope of this dissertation. 

4.3.1 Estimation of Correlating Filter Shape Parameters 
The nonlinear inverse problem can be solved by many methods.  For simplicity, we use a 
gradient descent algorithm to adjust the shape parameters until the calculated correlation 
converges to the desired correlations.  An example result is shown below in Figure 32, where 
we perform the gradient descent over 100 iterations.  In this case, we are trying to find 
correlating filter shape parameters that will converge to a level 1 correlation of 0.3, a level 2 
correlation of -0.25, and a level 3 correlation of 0.2.  Initial shape parameter values are 
arbitrarily chosen to be one-half of the desired correlation values. 
 

  
Figure 32:  Gradient Descent Solution of Filter Parameters 

 
Figure 32 shows convergence of the correlations to the desired values of 𝜌ଵ = 0.3, 𝜌ଶ = −0.2, 
and 𝜌ଷ = 0.1.  This multiscale correlation was achieved using the correlating filter shape 
parameters of 𝑟ଵ = 0.248, 𝑟ଶ = −0.233, and 𝑟ଷ = 0.212.  The resulting correlating filter is 
shown below in Figure 33. 
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Figure 33:  Calculated Correlating filter for Desired Correlation 

 

4.3.2 Validation of Method 2 Shape Parameter Estimation 
This proposed simulation method can be validated by forming correlating data using a non-
exponential correlating filter with arbitrary shape parameters, performing multiscale analysis to 
find the estimated multiscale directional correlations, then using the method above to estimate 
the shape parameters from the directional correlations. 
 
The arbitrary original r1, r2, and r3 horizontal and vertical correlating filter shape parameters 
used to create the correlated data are shown below in Figure 34. 
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Figure 34:  Actual Shape Parameters used to Correlate Data 
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Figure 35:  Estimated Directional Correlation from Multiscale Analysis 
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Figure 36:  Estimated Horizontal and Vertical Shape Parameters 

Examination of Figure 34 through Figure 36 shows that estimated shape parameters are in good 
agreement at level 1 decomposition, but diverge somewhat from the actual parameters as the 
decomposition level increases.  However, the goal is not to estimate the exact correlating filter 
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shape parameters themselves, but to recreate the correlation in the original data.  If we use the 
estimated correlating filter shape parameters in Figure 36 to generate additional data and 
perform multiscale analysis on that data, we can get a good comparison of the method’s ability 
to generate additional representative samples.  This comparison is shown below for each 
correlation direction. 
 

 
Figure 37:  Horizontal Correlations from Original 

Data 

 
Figure 38:  Horizontal Correlations from 

Simulated Data 
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Figure 39:  Vertical Correlations from Original 

Data 

 
Figure 40:  Vertical Correlations from Simulated 

Data 
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Figure 41:  Diagonal Correlations from Original 

Data 

 
Figure 42:  Diagonal Correlations from 

Generated Data 

  
Examination of Figure 37 through Figure 42 shows that although the estimated shape 
parameters in Figure 36 differ from the original shape parameters, the data generated from the 
estimated shape parameters results in a multiscale correlation estimate that is visually very 
close to the estimated correlations of the original data.  This indicates that the correlating filter 
coefficients are not unique to the desired correlations and we only need to find one correlating 
filter solution that provides the desired multiscale correlations. 
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Although this visual agreement is a good indication of the accuracy of the method, we need a 
more qualitative analysis to gauge the effectiveness of each method in generating data.  This is 
addressed with image similarity measures. 

4.4 EXPERIMENTAL VALIDATION OF ISAR CLUTTER SIMULATION METHODS 
The similarity measures described above will be used to evaluate the two data simulation 
methods.  The KL divergence method will compare distributions.  In our application of sets of 
multiple images, this measure can be used to compare the distribution over samples at each 
pixel, as well as the distribution of image pixels in a local area of each image.  Distributions will 
be estimated by the histogram of the pixels, using the same binning values for each 
comparison. 

4.4.1 Simulation of General Correlated Data 
Correlated data is generated using both proposed methods and compared to the original data 
and other methods.  Both data simulation methods are used to generate additional samples 
and similarity measures are used to evaluate the data simulation methods.  Multivariate data 
simulation using the entire sample covariance matrix is used as a baseline for comparison and 
this is referred to as full covariance baseline data in the following metrics.  Table 5 Summarizes 
the data used for comparison. 
 

Table 5:  Description of Dataset Names in Similarity Metrics 

Dataset Name Data Description 

Original Data The original data to be simulated 

Baseline Full 
Covariance 
Data 

New Data simulated using the full covariance 
matrix and multivariate generation methods 

Method 1 Data New Data simulated using method 1 above 

Method 2 Data New Data simulated using method 2 above 

 
Summaries of the similarity measures for simulated and measured data are provided below, 
and plots of the pixel-based similarities and associated histograms can be found in Appendix B 
and Appendix C for simulated and measured data, respectively.  
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4.4.1.1 Summary of Similarity Measures for General Correlated Data 
Simulated data using both methods was created using both an exponential correlating filter and 
a non-exponential correlating filter.  Multiscale analysis is performed on both simulated data 
sets to estimate the directional multiscale correlation of each data set.  Multiscale correlation 
similarity measures are calculated to quantitatively show the simulation accuracy of each 
method.  In the similarity measures below, lower numbers indicate more similar correlation 
data.  Correlation similarity measures are calculated for level 1 only, and for all three 
decomposition levels. 
 

Table 6:  Multiscale Correlation Similarity Results Summary for Simulated Data 

 Additional Samples 
Using Full Covariance 

Additional Samples 
Using Method 1 

Additional Samples 
Using Method 2 

Average Level 
1 Correlation 

Similarity 

Average Level 
1-3 

Correlation 
Similarity 

Average Level 
1 Correlation 

Similarity 

Average Level 
1-3 

Correlation 
Similarity 

Average Level 
1 Correlation 

Similarity 

Average Level 
1-3 Correlation 

Similarity 

Data Generated 
with Exponential 
Correlating 
function 

0.0154 0.0157 0.0172 0.0201 0.0172 0.0170 

Data Generated 
with Non-
Exponential 
Correlating 
function 

0.0106 0.0137 0.0111 0.1151 0.0152 0.0167 

 
 

 
Table 7:  Covariance Matrix Similarity Summary for Simulated Data 

 Additional Samples Using 
Method 1 

Additional Samples Using 
Method 2 

Original Data with Exponential 
Correlating function 0.7531 0.7534 
Original Data with Non-
Exponential Correlating function 0.5058 0.3747 

 
  

Method 2 Has Better Ability to Produce Desired Level 2 and 3 Correlations 

Method 2 Covariance Matrix is more Similar to Original Covariance Matrix 
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Table 8:  Mean KL Divergence of Full Covariance Data by Pixel and 8x8 Image Area 

Full Covariance 
Data 

Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 

Data Set Real Imaginary Real Imaginary 
Data Generated with 
Exponential Correlating 
function 

0.0017 0.0017 3.53E-06 3.35E-06 

Data Generated with 
Non-Exponential 
Correlating function 

0.0016 0.0016 3.80E-06 3.81E-06 

 
 

Table 9:  Mean KL Divergence of Method 1 by Pixel and 8x8 Image Area 

Method 1 Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 
Data Set Real Imaginary Real Imaginary 
Data Generated with 
Exponential Correlating 
function 

0.0013 0.0013 2.89E-05 2.75E-05 

Data Generated with 
Non-Exponential 
Correlating function 

0.0013 0.0013 2.96E-05 2.80E-05 

 

 
Table 10:  Mean KL Divergence of Method 2 by Pixel and 8x8 Image Area 

Method 2 Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 
Data Set Real Imaginary Real Imaginary 
Data Generated with 
Exponential Correlating 
function 

0.0013 0.0013 2.89E-05 2.67E-05 

Data Generated with 
Non-Exponential 
Correlating function 

0.0013 0.0013 3.02E-05 2.92E-05 

 
 
  

Both Methods Have an Order of Magnitude Less Similarity to Original 
Distribution as Compared to Data Simulated with Full Covariance Matrix 
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4.4.2 Simulation of Physical ISAR Measurements 
The data under analysis is two-dimensional ISAR measurements of Plants D and E in the 
presence of two speeds of forced air from one direction to simulate wind.  Refer to the 
background material for more information on physical measurements.  Wind speed was not 
measured but is characterized as light wind and medium wind.  The light wind resulted in small 
deflection of the leaves, whereas the medium wind resulted in significant deflection of 
branches and leaves.  Photos of the two plants are shown below in Figure 43 and Figure 44.  
These plants were chosen for their difference in structure for comparison.  Plant D has many 
smaller leaves on many smaller branches.  Plant E has fewer large leaves on a few larger stalks. 
 

 
Figure 43:  Plant Species D 

 
Figure 44:  Plant Species E 

 
Each measurement scenario consists of 2D samples of a plant in the presence of wind.  The 
ISAR data for each plant and wind speed is structured into 100 samples of the clutter equivalent 
current.  Each image pixel represents a complex-valued resolution cell on this projected 𝑥𝑦 
image plane.  The data for each measurement scenario is structured as a 3D matrix of size 
64x64x100, where each of the 100 image samples is a 64x64 complex-valued 2D image. 

4.4.2.1 Summary of Similarity Measures for Physical ISAR Measurements 
Simulation methods 1 and 2 were used to simulate additional samples of data and these are 
compared to the samples of original data.  In the similarity measures below, lower numbers 
indicate more similar data. 
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Table 11:  Multiscale Correlation Similarity Results Summary for Simulated Data 

 Additional Samples 
Using Full Covariance 

Additional Samples 
Using Method 1 

Additional Samples 
Using Method 2 

Average Level 
1 Correlation 
Similarity to 
Original Data 

Average Level 
1-3 Correlation 

Similarity to 
Original Data 

Average Level 
1 Correlation 
Similarity to 

Original Data 

Average Level 
1-3 Correlation 

Similarity to 
Original Data 

Average Level 
1 Correlation 
Similarity to 

Original Data 

Average Level 
1-3 Correlation 

Similarity to 
Original Data 

Plant D, 
Light Wind 0.0465 0.0456 0.0591 0.2000 0.0599 0.0668 

Plant D, 
Medium 
Wind 

0.0476 0.0479 0.0590 0.2051 0.0590 0.0733 

Plant E, 
Light Wind 0.0453 0.0473 0.0638 0.2137 0.0657 0.0769 

Plant E, 
Medium 
Wind 

0.0467 0.0472 0.0598 0.1907 0.0592 0.0635 

 
 
 

Table 12:  Correlation Matrix Similarity for Measured Data 

Similarity of Generated Data Sample Covariance Matrix to Original Data Sample Covariance 
Matrix 

 Method 1 Method 2 
Plant D, Light Wind 0.9745 0.9711 
Plant D, Medium Wind 0.9744 0.9719 
Plant E, Light Wind 0.9761 0.9705 
Plant E, Medium Wind 0.9738 0.9704 

 
  

Method 1 Has Inferior Ability to Produce Desired Level 2 and 3 Correlations 

Method 2 Covariance Matrix is Slightly Closer to Original than Method 1 
Covariance Matrix 
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Table 13:  Mean KL Divergence of Full Covariance Data by Pixel and 8x8 Image Area 

Full Covariance 
Data 

Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 

Data Set Real Imaginary Real Imaginary 
Plant D, Light Wind 0.0144 0.0147 3.03E-04 2.86E-04 
Plant D, Medium 
Wind 0.0151 0.0149 2.94E-04 2.89E-04 

Plant E, Light Wind 0.0151 0.0151 2.83E-04 2.97E-04 
Plant E, Medium 
Wind 0.0155 0.0158 2.81E-04 2.89E-04 

 

Table 14:  Mean KL Divergence of Method 1 Data by Pixel and 8x8 Image Area 

Method 1 Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 
Data Set Real Imaginary Real Imaginary 
Plant D, Light Wind 0.0145 0.0142 3.03E-04 2.84E-04 
Plant D, Medium 
Wind 

0.0146 0.0145 2.92E-04 2.96E-04 

Plant E, Light Wind 0.0146 0.0146 2.96E-04 3.08E-04 
Plant E, Medium 
Wind 

0.0142 0.0143 2.86E-04 2.83E-04 

 

Table 15:  Mean KL Divergence of Method 2 Data by Pixel and 8x8 Image Area 

Method 2 Mean KL Divergence by Pixel 
Mean KL Divergence By 8x8 

Image Area 
Data Set Real Imaginary Real Imaginary 
Plant D, Light Wind 1.45E-02 1.44E-02 2.75E-04 2.87E-04 
Plant D, Medium 
Wind 

0.0147 0.0143 2.91E-04 2.87E-04 

Plant E, Light Wind 0.0146 0.0145 2.96E-04 3.15E-04 
Plant E, Medium 
Wind 

0.0144 0.0142 2.84E-04 2.72E-04 

 
 
 
  

For Measured Data, All Methods Performed Similarly 
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4.4.3 Similarity Measure Analysis and Conclusions 
From the similarity measure analysis, it can be concluded that Method 2 is much better for 
simulating desired correlations in decomposition levels beyond level 1.  This is expected since 
Method 1 data was simulated using correlating filter shape parameters derived from level 1 
estimated correlations.  Since method 1 uses an exponential correlating filter, it will not be able 
to accurately produce level 2 and 3 correlations that are not exponential in nature. 
 
For simulated data, both proposed methods provided an order of magnitude lower distribution 
similarity over data simulated using the full covariance matrix.  However, for measured data, all 
three methods provided similar measures of distribution similarity. 
 
For simulating data that has an exponential correlation shape, Method 1 is appropriate.  
However, for more complex data, Method 2 is needed to achieve a variable range of correlation 
values at higher decomposition levels.  Analysis of the measured plant data indicates that, 
although the data does decay over distance, it was not exactly exponential.  These results show 
that for the ISAR measurements of moving plants, Method 2 is a better option over the simple 
exponential correlating filter.  Similarity measures give a good quantitative comparison, but it 
can be beneficial to compare methods in a real application.  Example applications for analysis 
and simulation are provided in the next section. 
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5 APPLICATIONS FOR MULTISCALE ANALYSIS AND SIMULATION 

5.1 MULTISCALE ANALYSIS OF SCATTERING PHENOMENON IN VEGETATION CLUTTER 

5.1.1 Multiscale Analysis Hypotheses 
A significant hypothesis of this dissertation is that multiscale correlation and covariance are 
related to physical structure and scattering phenomenon in the clutter.  Consider the case of a 
single point scatterer with a small amount of motion.  Given that the point source is infinitely 
small, it will only occupy one imaging cell at one time. With a small amount of motion, it will 
likely remain in that single imaging cell, causing a small variance in the amplitude and/or phase.  
However, as motion increases, the point scatterer will split time between two adjacent pixels.  
Since it will be in only one or the other of the adjacent pixels, the amplitudes of the two pixels 
will have a negative correlation.  One will have increased amplitude when the point source is in 
that pixel and the other will have decreased amplitude.  As the scatterer moves into the other 
imaging cell, the opposite is true.  As scatterer motion increases further, involving additional 
cells, there will be negative correlation amongst a group of imaging cells.  Now consider an 
extended scatterer that occupies a group of imaging cells.  As the extended scatterer motion 
increases, groups of pixels will change together, based on the physical structure of the clutter, 
and other adjacent pixels will have the opposite relationship as motion increases.  Therefore, 
we hypothesize that as motion increases, the amount of correlation at each scale will generally 
decrease but may be correlated at some scale depending on the physical characteristics of the 
clutter.  Additionally, as we increase the decomposition level and reduce the correlation 
resolution, we are effectively estimating the correlation between larger and larger groups of 
raw image pixels.  Therefore, we can hypothesize that for a given clutter structure, estimated 
correlation will become more negative with higher levels of decomposition. 
 
Summary of Hypotheses for Vegetation Clutter 

1. Image pixel variance will increase with motion and leaf size 
2. Correlation will generally decrease with pixel distance 
3. Correlation will generally decrease as decomposition level increases 
4. Correlation will decrease with increased clutter motion 
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5.1.1.1 Relating Multiscale Statistics and Scattering Processes 
Using the proposed multiscale analysis method, we can estimate the directional covariances at 
chosen decomposition levels for the six measurement scenarios.  We choose three levels of 
decomposition for this analysis, which will result in estimated directional covariance 
(horizontal, vertical, and diagonal) for each decomposition level.  With a starting image size of 
64x64 pixels, the first level of decomposition will provide 32x32 directional covariance 
estimates.  Level 2 decomposition will provide 16x16 directional covariance estimates, and so 
on.  Full multiscale correlation and covariance data for the six measurement scenarios is shown 
in Appendix A.  Multiscale covariance analysis will be presented in two different ways.  First, all 
directional components and scales will be shown for each plant.  Additionally, all six 
measurements scenarios will be shown together for each multiscale component.  
 

5.1.1.2 A Note on Correlation vs Covariance 
Much of the multiscale analysis formulations are focused on estimating multiscale correlations.  
However, this can be deceptive when viewing the full correlation maps over the entire ISAR 
image area.  Figure 45 below shows the level 1 estimated horizontal correlation (left) and 
covariance (right) for a plant.  The correlation map shows a very large area of correlation on the 
far left, but the plant does not exist in this spatial area and may be deceptive due to the very 
low backscatter return from that spatial area.  The covariance map (right) appears to be more 
value-added in determining scattering characteristics from the plant volume.  For this reason, 
the estimated covariance data will be shown instead of the correlation. 
 

  
Figure 45:  Correlation vs Covariance 

5.1.1.3 Measurement Subjects for Hypothesis Testing 
In order to test these hypotheses, multiscale analysis was carried out on three different plants 
in the presence of forced air.  Photos of the plants are shown below in Figure 46 and were 
chosen based on have a wide variety of physical characteristics.  Plant A has very large 
extended scatterers, large spacing between leaves, and significant leaf motion.  Plant B has 

Plant Area 
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medium-sized scatterers, smaller spacing, and smaller leaf motion.  Plant C has small, dense 
scatterers with a small amount of leaf motion. 
 

Plant A Plant B Plant C 

   
 

Figure 46:  Plants used for ISAR Measurements 

 
2D ISAR Measurements were recorded according to the measurement and calibration method 
previously described and the proposed multiscale analysis was performed to provide estimated 
covariance over three decomposition levels for each plant, in cases with no wind and with light 
wind.  This results in six measurement scenarios (three plants, two wind speeds).  The ISAR 
image samples for each plant and wind speed are structured into 100 samples of the 2D clutter 
equivalent current.  Each image pixel represents a complex-valued resolution cell on this 
projected 𝑥𝑦 image plane.  The data for each measurement scenario is structured as a 3D 
matrix of size 64x64x100, where each of the 100 image samples is a 64x64 complex-valued 2D 
image. 

5.1.2 Testing Hypothesis 1 – Variance Increases with Motion and Leaf Size 
The mean ISAR image, mean k-space image, and pixel variance are calculated for each of the six 
measurement scenarios and are shown in Figure 47 through Figure 49.  The main point here is 
that the clutter is not uniform.  The sample mean and variance vary across the image due to the 
physical structure of the plants.  The average pixel variance for each scenario is summarized 
below in Table 16. 
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Table 16:  Summary of ISAR Image Variance over Six Measurement Scenarios 

Mean Sample 
Variance 

Plant A Plant B Plant C 

No Wind 0.0044 0.0043 0.0042 
Light Wind 1.6979 1.1305 0.3215 

 
 
Table 16 indicates that hypothesis 1 is correct and variance increases with leaf size and motion.  
Inspection of the sample mean ISAR image shows that Plant A has very localized scattering due 
to the two large cane stems, as well some lighter scattering from the large leaves.  Plant B 
shows more distributed scattering but with some non-uniform structure present.  Plant C shows 
distributed scattering and an increased amount of energy outside the physical bounds of the 
plant, indicating a significant amount of higher-order scattering present. 
 
As expected, the variance decreases from Plant A to B to C as the size of the leaves decreases.  
Larger leaves serve as a moment arm and allow for a larger amount of displacement, which 
translates to increased image pixel variance.  Variance was similar in all plants with no wind 
present, which indicates the variance may be related to system measurement noise but may 
also result from small amounts of motion due to ambient air. 
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Figure 47:  Sample Mean for Six Measurement Scenarios 
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Figure 48:  Sample Mean K-Space Image 
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Figure 49:  Sample Variance 

 
 
  



78 
 

5.1.3 Testing Hypothesis 2 – Correlation Decreases with Pixel Separation 
We introduce the mean 2D correlating function, which indicates the mean relative spatial 
correlation over all image pixels.  This is formed by simply rearranging the contents of the 
sample covariance matrix to retain the spatial relationships for neighboring pixels and provides 
insight into the directional and spatial nature of correlation in image samples.  The magnitude 
of the mean 2D correlating function for the three plants with no wind is shown in Figure 50 and 
with light wind Figure 51.  Horizontal and vertical plots through the origin are shown to help 
visualize the shape of the directional correlation.  
 

  

  

  
Figure 50:  Mean Correlating function Magnitude of Three Plants with No Wind 
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Figure 51:  Mean Correlating function Magnitude of Three Plants with Light Wind 

 
Inspection of Figure 50 and Figure 51 shows that hypothesis 2 is correct for these measurement 
scenarios and the correlation generally decreases with pixel distance.  Our approach for clutter 
simulation is to find a parameterized correlating filter that can be applied to random data that 
will result in the desired directional correlation.  The plots in Figure 50 and Figure 51 indicate 
that the exponential function is worth exploration for simulating the correlation in plant ISAR 
measurements.  However, this conclusion is based on raw image pixel correlations.  A 
multiscale analysis is important in analyzing the stochastic properties of complex systems over 
different scales.   
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5.1.4 Testing Hypothesis 3 - Correlation Decreases as Decomposition Level Increases 
The mean correlation over scale is plotted in Figure 52 for the cases of no wind, and in Figure 53 
for the cases of light wind.  The plots verify that in all cases, the correlation does decrease as 
the decomposition increases from Level 1 to Level 3. 
 

 
Figure 52:  Mean Correlation by Decomposition Level for No Wind 

 

 
Figure 53:  Mean Correlation by Decomposition Level for Light Wind 
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5.1.5 Testing Hypothesis 4 - Correlation Decreases with Increased Clutter Motion 
Mean Correlation is plotted below by decomposition level for no wind and light wind in Figure 
54 through Figure 56.  Examination of the plots shows that for level 1 decomposition, the 
hypothesis appears generally true for this data set, especially for the horizontal component.  
However, this falls apart in levels 2 and 3.  Further investigation reveals that Plant C, which 
shows increased correlation with increased motion, is a dense plant and in the presence of 
motion, the entire plant moves together.  This demonstrates one benefit of the multiscale 
analysis.  At the level 1 decomposition, the scattering phenomenon is dominated by the very 
small leaves.  At level 2, correlation is determined by groups of leaves moving together.  
Therefore, we can conclude that the correlation will depend on the structure of the plant and 
generalizations about correlation as related to wind speed may not represent reality. 
 

 
Figure 54: Level 1 Mean Correlation 
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Figure 55:  Level 2 Mean Correlation 

 

 
Figure 56:  Level 3 Mean Correlation 
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5.2 MULTISCALE ANALYSIS OF GLOBAL OCEAN CURRENT DATA 
For additional demonstration of the multiscale analysis technique, the proposed method will be 
applied to the analysis of global ocean current data [82].  Although this data is created from a 
variety of sensors and is not related to ISAR imaging, the analysis of this data shows that the 
proposed multiscale analysis method has value in other fields with complex stochastic data.   
 
Some amount of correlation is expected in global ocean current data due to the continuous 
nature of currents at some scale.  However, the proposed multiscale analysis can show varying 
directional correlations at different scales, indicating broader relationships in currents between 
ocean areas.  Properties of the data used in this analysis are shown below in Table 17. 
 

Table 17:  Ocean Current Data Properties 

DOI 10.5067/OSCAR-03D01 
 

Short Name OSCAR_L4_OC_third-deg 
Description OSCAR (Ocean Surface Current Analysis Real-time) contains 

near-surface ocean current estimates, derived using quasi-
linear and steady flow momentum equations. The horizontal 
velocity is directly estimated from sea surface height, surface 
vector wind and sea surface temperature. These data were 
collected from the various satellites and in situ instruments. 
The model formulation combines geostrophic, Ekman and 
Stommel shear dynamics, and a complementary term from 
the surface buoyancy gradient. Data are on a 1/3-degree grid 
with a 5-day resolution. OSCAR is generated by Earth Space 
Research (ESR) 

Coverage Global 
Latitude Range -66 to 66 deg 
Longitude Range -180 to 180 deg 
Date Range 2019 
Temporal Resolution 5 Day 
Spatial Resolution 0.33 deg 
Data Format Zonal and Meridional Flow Velocities 
Data Size 72 Samples of 480 x 1200-pixel Images for Zonal and 

Meridional Data 
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The mean magnitude of ocean current velocity from the 72 samples in 2019 is shown below in 
Figure 57. 

 
Figure 57:  Mean Ocean Current Velocity Magnitude 

In order to be compatible with our analysis method, the data is formatted into complex data, 
with the zonal flow velocity as the real component and the meridional flow velocity as the 
complex component.  The formatted data results in 72 samples of complex 480 x 1200 data.  
Multiscale analysis is performed over four levels of decomposition to estimate the multiscale 
correlations.  The results of the analysis are shown below in Figure 58 through Figure 60, where 
dark blue areas of the image are land and not analyzed. 
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Figure 58:  Horizontal Component of Ocean Current Multiscale Analysis for Decomposition Levels 1 - 4 
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Figure 59:  Vertical Component of Ocean Current Multiscale Analysis for Decomposition Levels 1 - 4 
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Figure 60: Diagonal Component of Ocean Current Multiscale Analysis for Decomposition Levels 1-4 
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As expected, multiscale analysis of the ocean currents shows that current velocities are globally 
very correlated at the level 1 decomposition and highest resolution.  However, as the 
decomposition level increases, we see continued correlation concentrated at the equator and 
decreasing correlation in other areas.  As the decomposition level increases further, the 
directional correlations show concentrated areas of correlation in other areas.  This example 
shows that the proposed multiscale analysis has value in other fields where directional spatial 
correlation is of interest. 
  



89 
 

5.3 DEEP LEARNING CONVOLUTIONAL NETWORK APPLICATIONS FOR ISAR CLUTTER 

5.3.1 Introduction 
Deep learning is an expanding area of research for solving complex problems.  The combination 
of non-linear activation functions with convolutional layers allows for deep learning networks 
to learn very complicated non-linear processes.  However, training these networks to learn the 
appropriate convolutional kernels and weights usually requires many training samples.  In some 
cases, physical measurements, and therefore training samples, may be limited [83] [84]. 
 
One contribution of this dissertation is methods for generating additional representative 
samples of ISAR clutter data for the purpose of training deep learning networks for 
classification and other tasks related to clutter mitigation.  The deep learning applications are 
not necessarily intended to be a novel aspect of this dissertation, although some do have merit, 
are relatively unexplored applications, and warrant further research.   In order to prove the 
value of this contribution, this chapter will present example deep learning applications and 
show how the additional generated samples can improve training accuracy and prediction 
performance.  In almost all current deep learning research related to ISAR, the availability of 
representative training samples is significant factor in training. 

5.3.2 Deep Learning Application 1 – Clutter Classification 
Clutter from vegetation and other moving structures can have stochastic properties related to 
the physical characteristics of the clutter.  Furthermore, clutter removal methods may require 
identification or classification of the clutter.  This example application involves the classification 
of clutter.  Deep learning convolutional networks are extremely powerful tools in classification 
problems and if properly trained, can learn very subtle discriminators.  The convolutional 
nature of these deep learning networks results in the ability to find consistent spatially oriented 
patterns in the input data, especially mean data.  For this reason, a very simple and small 
network can be used to learn to classify data due to the mean of training samples. 
 
Vegetation and other types of clutter can often be uniform, depending on many factors.  
Uniform clutter is more likely to have zero mean backscatter due to the application of the 
Central Limit Theorem.  Therefore, it is important when dealing with deep learning for clutter 
classification to assume the worst case of a zero-mean image.  The same argument can be 
made for image variance, which can also be a realistic attribute of uniform clutter and the case 
of unit variance should be considered.  For clutter modeled as second order, this leaves 
correlation as a final discriminator in convolutional networks.  Correlation between pixels can 
be learned by a network’s convolution filters or kernels, but learning the correlation requires 
more training than learning to discriminate due to data means. 
 
In consideration of the above points, our classification examples will assume data with zero 
mean and/or unit variance, and correlation that is specific to each clutter class.  This presents a 
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more difficult problem than classes with different and specific means.  Having a more difficult 
problem underscores the importance of additional, representative training samples and allows 
us to evaluate the effectiveness of the data generation methods in the context of convolutional 
networks. 

5.3.2.1 Classification Network Architecture 
For demonstration of this application, a simple convolutional network will be used.  As stated 
above, the intent here is not to design a novel network, but to demonstrate how additional 
representative sample, generated form a limited number of measurements, can improve 
performance in deep learning applications. 
 
We choose a network with an input layer, three convolution layers separate by batch 
normalization; ReLu activation; and pooling, with a fully connected layer and softmax layer at 
the end for classification.  A diagram of the network architecture is shown below in Figure 61. 
 

 
Figure 61:  Classification CNN Architecture 

This network layer details are shown below in Table 18. 



91 
 

Table 18:  Convolutional Network Layer Details 

 

 
5.3.2.2 Input Data Format 
The image input layer accommodates two layers, which correspond to the real and imaginary 
components of the input images.  Some work has been done on creating convolutional 
networks that can accommodate complex data, but as of the writing of this dissertation, the 
most prevalent tools require real input data.  This is driven by the fact that most convolutional 
networks are applied to problems involving visible color or greyscale images.  However, using 
real and imaginary components of the ISAR image as inputs works well.  This arrangement 
allows for phase information to be learned in the kernels of the first convolutional layer. 

5.3.2.3 Training Data Formation 
For this application, we choose a simple classification problem using modified measurement 
data from two plants in the presence of light and medium wind.  The data under analysis is two-
dimensional ISAR measurements of two species of plants in the presence of two speeds of 
forced air from one direction to simulate wind.  Wind speed was not measured but is 
characterized as light wind and medium wind.  The light wind resulted in small deflection of the 
leaves, whereas the medium wind resulted in significant deflection of branches and leaves.  
Photos of the two plants are shown below in Figure 62 and Figure 63.  These plants were 
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chosen for their difference in structure for comparison.  Plant A has many smaller leaves on 
many smaller branches.  Plant B has fewer large leaves on a few larger stalks. 
 

 
Figure 62:  Plant Species A 

 
Figure 63:  Plant Species B 

 
Each measurement scenario consists of 2D samples of a plant in the presence of wind.  The 
ISAR data for each plant and wind speed is structured into 100 samples of the clutter equivalent 
current.  Each image pixel represents a complex-valued resolution cell on this projected 𝑥𝑦 
image plane.  The data for each measurement scenario is structured as a 3D matrix of size 
64x64x100, where each of the 100 image samples is a 64x64 complex-valued 2D image. 
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5.3.3 Sample Mean 
The sample mean over 100 samples for the four measurement scenarios is shown below in 
Figure 64. 
 

  

  
Figure 64:  Sample Mean for ISAR Measurements 

 
These images are projections of the volume equivalent current onto the 𝑥𝑦 plane, or from a 
“top” view of the plant.  The sample means are indicative of the plant type, with Plant A 
showing more distributed concentrated areas of lower intensity equivalent currents consistent 
with many leaves and branches, and Plant B showing more concentrated areas of stronger 
equivalent currents consistent with fewer larger leaves and branches.  The sample means for 
each plant species are similar for the two wind speeds, but there are some differences due to 
constant deflection from directional forced air. 



94 
 

5.3.4 Sample Variance 
The sample variance over 100 samples for the four measurement scenarios is shown below in 
Figure 65. 
 

  

  
Figure 65:  Sample Variance for ISAR Measurements 

 
Multiscale analysis of measured data demonstrates that estimated correlations are more plant 
specific.  A network should easily be able to classify by plant even in the presence of multiple 
wind speeds, but a more challenging problem is to classify by both plant and wind speed.  In 
this case, the network will need to learn subtle features of the correlation.  This is a difficult 
task and will help form a distinction between data generation methods.  The goal is to classify 
input images as one of four classes, Plant A with light wind, Plant A with medium wind, Plant B 
with light wind, or Plant B with medium wind.  Starting with 100 samples of measured data 
from each class, we apply the data generation techniques from Chapter 4 to generate many 
more representative samples.  We then arrange these additional samples into training data by 
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normalizing for zero mean and unit variance and dividing the data into training and validation 
sets.   

5.3.4.1 Training Strategy 
Due to the use of a second order model with limited correlation lags, the original measured 
data will be different from the simulated data in very specific ways.  In training the network on 
the new generated data, the intent is for the network to learn features in the simulated data 
that exist in the original measured data.  If the simulated data is very close, with the same 
features, then training on only the new simulated data is appropriate.  However, as the 
difference between the original and simulated data increases, training on only the simulated 
data will cause it to learn features that may not exist in the original data.  Therefore, we can 
add the original data into the training and validation data to help ensure that the network is not 
too specific and only learning features of the new simulated data.  In these examples, 10% of 
the training data will be from original measured data, and 90% will be from the new simulated 
data. 
 
When training networks on limited amounts of data, the specific training is highly dependent 
on random seeding of weights.  On limited data sets, this can result in a large degree of 
variation in the prediction accuracy of the network.  In this case, we will train the network 
multiple times and record the average prediction accuracy. 

5.3.4.2 Training and Prediction Accuracy 
The figures of merit in these examples will be training and prediction accuracy.  Training 
accuracy demonstrates that there are enough samples to learn discriminators in the data.  The 
use of separate validation data ensures that the network is not over trained and memorizing 
the data rather than learning features.   
 
Prediction accuracy will be calculated by performing a final classification prediction on the 
original measured data by the trained network.  This method allows prediction accuracy to be a 
good measure of the quality of our generated samples as related to improving the performance 
of the network.  Both data generation methods and data generated from the complete 
covariance matrix method will be evaluated.  This allows us to verify that the similarity 
measures are a good indicator of deep learning network performance when using training data 
from that method. 
 
In this application, we will train networks with increasing numbers of generated samples and 
show training and prediction accuracy as a function of training samples.  This will demonstrate 
that the novel contributions presented in this dissertation are valid for improving network 
prediction accuracy in these example applications. 
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5.3.5 Results for Zero-Mean Measured Clutter Classification 
 

Table 19:  Zero-Mean Classification Example Properties 

Number of Classes 4 

Input Data 
100 ISAR image samples from each of Plant 
A, B in light and medium wind 

Input Data Processing Normalized for zero-mean 

Data Generation Methods 
Full Covariance,  
Method 1 Exponential Correlating function, 
Method 2 General Correlating function 

Training Data Size Range 100 to 1000 Samples 
Validation Data Size Range 100 to 1000 Samples 

Training Data Composition 
90% New Generated Data 
10% Original Measured Data 

 

5.3.6 Network Prediction Accuracies on Zero-Mean Clutter Measured Data 
 

Table 20:  Network Prediction Accuracy for Zero-Mean Classification 

 

Network 
Trained with 
100 Training 

Samples 

Network 
Trained with 
250 Training 

Samples 

Network 
Trained with 
500 Training 

Samples 

Network 
Trained with 
1000 Training 

Samples 
Data Generation Method 
1 – Exponential Correlating 
function 

69.8% 92.1% 93.8% 95.3% 

Data Generation Method 
2 – General Correlating 
function 

76.4% 92.6% 94.3% 96.8% 

Data Generation Method 
3 – Full Covariance 
Multivariate 

88.6% 97.9% 99.3% 98.8% 

Original Measured Data 
(100 samples) 83.3%    
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Figure 66:  Network Prediction Accuracy for Zero-Mean Data 

  

Accuracy with 
100 Samples of 
Original Data 

Method 2 Performs Slightly Better than Method 1 and Both Are an 
Improvement Over Training with the Original Data 
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5.3.7 Results for Zero-Mean, Unit Variance Measured Clutter Classification 
 

Table 21:  Zero-Mean, Unit Variance Classification Example Properties 

Number of Classes 4 

Input Data 
100 ISAR image samples from each of Plant 
A, B in light and medium wind 

Input Data Processing 
Normalized for zero-mean, unit variance at 
each pixel 

Data Generation Methods 
Full Covariance,  
Method 1 Exponential Correlating function, 
Method 2 General Correlating function 

Training Data Size Range 100 to 1000 Samples 
Validation Data Size Range 100 to 1000 Samples 

Training Data Composition 
90% New Generated Data 
10% Original Measured Data 

 

5.3.7.1 Network Prediction Accuracies on Zero-Mean, Unit-Variance Measured Data 
 

Table 22:  Network Prediction Accuracy for Zero Mean, Unit Variance Classification 

 

Network 
Trained with 
100 Training 

Samples 

Network 
Trained with 
250 Training 

Samples 

Network 
Trained with 
500 Training 

Samples 

Network 
Trained with 
1000 Training 

Samples 
Data Generation Method 
1 – Exponential Correlating 
function 

28.8% 63.1% 85.5% 90.5% 

Data Generation Method 
2 – General Correlating 
function 

42.0% 74.3% 89.5% 93.5% 

Data Generation Method 
3 – Full Covariance 
Multivariate 

78.3% 96.5% 97.5% 97.5% 

Original Measured Data 
(100 samples) 68.6%    
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Figure 67:  Network Prediction Accuracy for Zero-Mean, Unit-Variance Data 

 
 

 
5.3.7.2 Results Analysis 
These results indicate that in this classification example, network prediction accuracy is 
improved when the network is trained on additional samples using each of all three generation 
methods.  Using the full covariance method results in the largest increase in accuracy, and this 
is expected since it should be the closest representation of the original data. 
 
Network prediction accuracy for the zero-mean data was higher that prediction accuracy for 
the zero-mean, unit-variance data.  This is expected due to the additional features provided by 
the non-normalized variance.  Additionally, for the non-normalized variance case, data 
generation methods 1 and 2 have similar network prediction accuracy values.  This indicates 
that the network is utilizing some variance features instead of correlation features, and the 
variance for both data generation methods is similar.  For the zero-mean, unit variance case, 
the network prediction accuracy differs more for the three data generation methods.  In this 
case, the main discriminator should be correlation, and the results are expected, where 
prediction accuracy increases with data generation methods with more accurate representation 
of correlation. 

Prediction 
Accuracy with 
Original Data 

Method 2 Performs Better than Method 1 and Both Are an Improvement Over 
Training with the Original Data when using 500 or More Training Samples 
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5.3.8 Deep Learning Application 2 –Target Location 
In this application, we are using the convolutional network to learn the location of a target on a 
grid of possible spatial locations in the 2D image place.  This application will demonstrate the 
effectiveness of each data generation method, along with some control data sets.    This 
application will initially use a constant complex-valued target, followed a stochastic zero-mean 
target that changes every sample.  The case of locating a zero-mean uncorrelated stochastic 
target in zero-mean correlated stochastic clutter is a very difficult problem for standard imaging 
techniques.  Using a stochastic target forces the network to learn variance and correlation 
features in the clutter, thereby allowing us to evaluate the quality of the data replication. 

5.3.8.1 Target Location Network Architecture 
The network architecture for this application will be similar to the previous application but with 
minor adjustments.  The network architecture is shown below in Table 23.  In this application, 
the number of learnable kernels in the first convolution layer is increased to 64.  This allows the 
network to learn more input image-layer features, which improves performance of the network 
in this application. 
 

Table 23:  Convolutional Network Layer Details 
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We choose a 5x5 target location grid for this application, resulting in 25 total classes.  Each class 
represents a potential target location, as shown in Figure 68. 

 
Figure 68:  Target Location Grid 

5.3.8.2 Training Data Formation 
For this application we use simulated clutter data so data correlation can be controlled.  This 
clutter data is created using data generation method two, where we apply a correlating 
function to random seed data.  The estimated multiscale correlation of the simulated data is 
shown in Figure 69. 
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Figure 69:  Estimated Multiscale Correlations of Simulated Clutter Data for Target Location Application 

 
Figure 70:  Variance of Simulated Clutter over 100 samples (left) and 1000 samples (right) 
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The target is defined as a near uncorrelated 8x8 group of pixels centered at one of the potential 
target locations.  For each data generation method, the simulated target is added to the 
generated clutter at the potential target locations to create the training data, and the target 
power is varied relative to the clutter power over a range of SNR values.  The training data sets 
are summarized below. 

1. Original Data 
1000 total samples of simulated data are generated.  100 of these samples are used for 
the data simulation methods below and the full set of 1000 samples is used for 
evaluating network prediction accuracy.  In addition, network training is performed on 
100 samples of the original simulated data to demonstrate that training accuracy suffers 
from lack of samples. 
 

2. Method 1 Data 
Original data is simulated using Method 1, where a directional exponential filter is 
applied to random seed data.  5000 total samples are generated from analysis of 100 
samples of the original data.  This is divided into 2500 training samples and 2500 
validation samples. 
 

3. Method 2 Data 
Original data is simulated using Method 2, where a directional non-exponential 
correlating filter is applied to random seed data.  5000 total samples are generated from 
analysis of 100 samples of the original data.  This is divided into 2500 training samples 
and 2500 validation samples. 
 

4. Full Covariance Data 
Original data is simulated using the entire sample covariance matrix.  5000 total samples 
are generated from analysis of 100 samples of the original data.  This is divided into 
2500 training samples and 2500 validation samples. 
 

5. Uncorrelated Variance Data 
This data is created from the sample variance of the original data, and all pixels are 
uncorrelated.  This is a control data set that allows us to evaluate whether the network 
is learning variance features or correlation features in the data.  5000 total samples are 
generated from the variance of 100 samples of the original data.  This is divided into 
2500 training samples and 2500 validation samples. 
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5.3.8.3 Constant Target 
The arbitrary constant target consists of an 8 x 8 grid of constant complex values.  For this 
simulation, the real and imaginary components of the target are shown below in Figure 71. 

 
Figure 71:  Fixed Target for Location Application 

The target amplitude is adjusted to achieve a desired signal-to-clutter ratio. 

5.3.8.4 Stochastic Target 
The stochastic target is modeled as an 8 x 8 image, where pixels are uncorrelated second-order 
random variables with defined variance across the 8 x 8 image.  The target image changes for 
every training sample.  The target image variance is chosen to result in a desired signal to 
clutter power ratio.  An example training image of the clutter with added target is shown below 
in Figure 72, where the target is location in position 1 of 25 and has a relative power that is -1.7 
dB relative to clutter power (left), a target power that is equal to the clutter power (middle), 
and a target power that is 1.75 dB relative to the clutter power (right).  
 

   
Figure 72:  Example Training Image (Real Component) with Target Power from -1.7 dB (left) to +1.75dB relative to Clutter Power 

5.3.8.5 Training Strategy 
The goal for this example is to show how network prediction accuracy is dependent on the 
quality of the correlation estimate in the generated data.  Pure variance data will provide less 
features to learn than the data generation method 1.  The data generation method 2 has a 
higher-order estimate of the directional correlations and will provide more features than 
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method 1.  In this way we can use network prediction accuracy to quantify the quality of each 
data generation method within the context of the deep learning application. 

5.3.9 Results for Constant Target Location Application 

 
Figure 73:  Constant Target Location Prediction Accuracy 

 
 
  

Method 1 and 2 Able to Locate Target in Much Higher Target-to-Clutter Ratio 
than When Using Original Data.  Variance Control Data Shows Variance 

Features are Being Used for Target Location, but Correlation Features are 
More Effective. 
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5.3.9.1 Constant Target Location Results Analysis 
Figure 73 shows that target location prediction accuracy is significantly increased by training 
the network on additional generated samples.  A ~3 dB target sensitivity improvement is 
achieved using the proposed data generation methods over the use of 500 samples of the 
original data.  The proposed correlation estimation methods perform better than the variance 
data, indicating that the network is improving performance by learning correlation features in 
the data. 

5.3.9.2 Results for Stochastic Target Location Application 
 

 
Figure 74:  Stochastic Target Location Prediction Accuracy 

 
 

 
 
 

5.3.9.3 Stochastic Target Location Results Analysis 
Figure 74 shows the network prediction accuracy for a network trained with the five data sets 
described above.  The original 100 samples of data resulted in the lowest network prediction 
accuracy, which is expected given the smaller training size.  The uncorrelated variance data was 

Locating a Stochastic Target is a More Difficult Application.  Method 1 and 2 
Able to Locate Target in Much Higher Target-to-Clutter Ratio than When Using 
Original Data.  Variance Control Data Shows Variance Features are Being Used 

for Target Location, but Correlation Features are More Effective. 
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the next-best performer and predictable performed worse than the training sets with 
correlated data, as image power (or variance) provides the only discriminating features.  The 
correlated data sets performed best and have similar performance, with network prediction 
accuracy slightly increasing as the correlation estimate fidelity increases from method 1 to 
method 2 to full covariance data. 
 
This application demonstrates that the data generation methods proposed in this dissertation 
result in a consistently higher target location prediction accuracy over the 100 samples of 
original data and an uncorrelated second-order model of the data.  In addition, both methods 
perform similarly to the idea case of the full covariance data set. 
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6 CONCLUSIONS 

This dissertation has proposed a second-order multiscale model, a multiscale analysis method, 
and simulation methods for ISAR clutter images.  Significant conclusions are listed below, and 
additional details can be found in the body of the dissertation.   

6.1 MULTISCALE ISAR CLUTTER MODEL 
The ISAR clutter model order is validated using statistical distributions of physical ISAR 
measurements and demonstrates that a second-order model is appropriate for the ISAR image 
of the projected equivalent current.  A fourth-order model results in a KL divergence error 
improvement of less than 1 dB.  This is a small improvement but comes at a cost of increased 
computational and model complexity. 

6.2 MULTISCALE ISAR CLUTTER ANALYSIS 
The multiscale analysis method allows for accurate estimation of multiscale ISAR clutter model 
parameters without requiring the calculation of the full sample covariance matrix, although it 
operates under the assumption that at each scale, correlation decreases with pixel separation.  
This assumption is deemed appropriate for the physical ISAR measurements of plants used in 
this research but may not apply to more general correlated data.  An example comparison of 
actual directional correlation to estimated directional correlation is shown below. 
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Figure 75:  Actual Horizontal Correlation over 

Scale 

 
Figure 76:  Estimated Horizontal Correlation 

over Scale 

  
 
Figure 75 and Figure 76 show how estimated multiscale model parameters match the known 
data under analysis.  In addition, the multiscale analysis has shown to have some merit in the 
analysis of additional data types, especially spatially correlated geophysical processes.  Figure 
77 below shows an example of the application of the proposed multiscale analysis to global 
ocean current velocities.  This level 3 multiscale correlation in the zonal flow direction shows 
areas of correlated ocean currents that aren’t obvious at the original image scale. 
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Figure 77:  Level 3 Horizontal Correlation of Ocean Current Velocity 

 

6.3 SIMULATION OF ISAR CLUTTER 
Two data simulation methods are proposed, where directional correlating filters are applied to 
random seed data to generate simulated representative samples of ISAR clutter images.  These 
contributions provide the first methods for multiscale modeling, analyzing, and simulation of 
the projected equivalent current in moving vegetation.  Deep learning is the main intended 
application for these generated samples as deep convolutional networks require many 
representative training samples to learn the appropriate convolutional kernels and weights.  
Deep learning is a powerful tool for solving complex problems including the location and 
classification of targets embedded in strong clutter.  Having the ability to generate additional 
representative samples that improve network performance is a significant contribution in the 
upcoming field of deep learning.  One example of deep learning prediction accuracy 
improvement is shown below in Figure 78. 
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Figure 78:  Deep Learning Prediction Accuracy Improvement 

 
Figure 78 shows that the two proposed simulation methods (yellow and grey) perform close to 
the idea case (light blue) of using the full covariance matrix for generating additional data.  In 
addition, they perform much better than the test case of uncorrelated data (orange) and 100 
the original available data that was modeled and analyzed (dark blue).  We can conclude that 
for convolution networks trained to recognize correlation features, the proposed modeling, 
analysis, and simulation methods are able to provide additional training samples that improve 
prediction accuracy. 
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6.4 RELATIONSHIP OF MULTISCALE ANALYSIS TO SCATTERING AND CLUTTER STRUCTURE 
Estimated model parameters have been shown to provide an indication of scattering 
phenomenon in ISAR clutter.  Four hypotheses relating the multiscale model parameters to 
scattering phenomenon have been proposed and tested.  These hypotheses are listed below 
with their associated conclusions. 
 

Table 24:  Multiscale Analysis Hypothesis Testing Results 

Hypothesis Conclusion 

Image pixel variance will increase with motion and leaf size Verified with Measured Data 

Correlation will generally decrease with pixel distance Verified with Measured Data 

Correlation will generally decrease as decomposition level 
increases 

Verified with Measured Data 

Correlation will decrease with increased clutter motion 
Not Verified 

Depends on clutter structure 
 
Table 24 shows that scattering phenomenon and clutter structure are related to the proposed 
multiscale analysis.  Therefore, the proposed analysis method can provide discriminating clutter 
features that can be used for clutter identification and characterization.  In addition, this 
provides more features for deep learning applications to learn and use for clutter mitigation in 
ISAR imaging. 
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APPENDIX A:  MULTISCALE ANALYSIS OF MEASURED ISAR CLUTTER 

In the following figures, the labels A0, A1, B0, B1, C0, C1 represent the following measurement 
scenarios: 
 

A0 – Plant A, No Wind 
A1 – Plant A, Light Wind 
B0 – Plant B, No Wind 
B1 – Plant B, Light Wind 
C0 – Plant C, No Wind 
C1 – Plant C, Light Wind 

 
Histograms show the distribution of covariance over each covariance map.  
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MULTISCALE COMPONENTS BY PLANT 

 
Figure 79:  Multiscale Covariance for Plant A, No Wind 

 
Figure 80:  Multiscale Covariance for Plant A, Light Wind 
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Figure 81:  Multiscale Covariance for Plant B, No Wind 

 
Figure 82: Multiscale Covariance for Plant B, Light Wind 
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Figure 83:  Multiscale Covariance for Plant C, No Wind 

 
Figure 84:  Multiscale Covariance for Plant C, Light Wind 
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MULTISCALE ANALYSIS BY COMPONENT AND LEVEL WITH HISTOGRAMS 

  
Figure 85:  Level 1 Horizontal Component for Six 

Measurement Scenarios 
Figure 86:  Level 1 Horizontal Component Histograms 

  
Figure 87:  Level 1 Vertical Component for Six Measurement 

Scenarios 
Figure 88:  Level 1 Vertical Component Histograms 
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Figure 89:  Level 1 Diagonal Component for Six 

Measurement Scenarios 
Figure 90 Level 1 Diagonal Component Histograms 

  
Figure 91:  Level 2 Horizontal Component for Six 

Measurement Scenarios 
Figure 92:  Level 2 Horizontal Component Histograms 

  



129 
 

  
Figure 93:  Level 2 Vertical Component for Six Measurement 

Scenarios 
Figure 94:  Level 2 Vertical Component Histograms 

  
Figure 95:  Level 2 Diagonal Component for Six 

Measurement Scenarios 
Figure 96:  Level 2 Diagonal Component Histograms 
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Figure 97:  Level 3 Horizontal Component for Six 
Measurement Scenarios 

Figure 98:  Level 3 Horizontal Component Histograms 

  
Figure 99:  Level 3 Vertical Component for Six Measurement 

Scenarios 
Figure 100:  Level 3 Vertical Component Histograms 
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Figure 101:  Level 3 Diagonal Component for Six 

Measurement Scenarios 
Figure 102:  Level 3 Diagonal Component Histograms 
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APPENDIX B:  SIMILARITY PLOTS AND HISTOGRAMS FOR GENERATED 

SAMPLES OF SIMULATED DATA 

SAMPLES OF SIMULATED DATA GENERATED WITH EXPONENTIAL CORRELATING FUNCTION 
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 103:  Estimated Multiscale Correlations of Original Data (1000 Samples) 
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Figure 104: Estimated Multiscale Correlations of Baseline Full Covariance Data (1000 Samples) 
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Figure 105: Estimated Multiscale Correlations of Method 1 Data (1000 Samples) 
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Figure 106: Estimated Multiscale Correlations of Method 2 Data (1000 Samples) 
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KL Divergence by Pixel and Image Area 
 

 
Figure 107: KL Divergence per Pixel for Full Covariance Baseline Data and Simulated Data (1000 Samples) 

 
Figure 108: KL Divergence over 8x8 Image Area for Full Covariance Baseline Data and Simulated Data (1000 Samples) 
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Figure 109: KL Divergence per Pixel for Data Generation Method 1 and Simulated Data (1000 Samples) 

 
Figure 110: KL Divergence over 8x8 Image Area for Data Generation Method 1 and Simulated Data (1000 Samples) 
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Figure 111: KL Divergence per Pixel for Data Generation Method 2 and Simulated Data (1000 Samples) 

 
Figure 112: KL Divergence over 8x8 Image Area for Data Generation Method 2 and Simulated Data (1000 Samples) 
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SIMILARITY METRICS BETWEEN SAMPLES OF SIMULATED DATA WITH EXPONENTIAL CORRELATING 

FUNCTION AND GENERATED SAMPLES 
 

Correlation Matrix Similarity to Original Data 
 

Table 25:  Correlation Matrix Similarity for Baseline Full Covariance Data and Original Data (1000 Samples) 

Baseline Full 
Covariance Data 

Method 1 Data Method 2 Data 

0.2437 0.7531 0.7534 
 

 
Multiscale Directional Correlation Similarity to Original Data 

 

Table 26:  MSE of Estimated Multiscale Directional Correlations (1000 Samples from Simulated Data) 

MSE between 
Original Data and 

Generation 
Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 1.49% 1.57% 1.57% 
RV1 1.51% 1.48% 1.48% 
RD1 1.61% 2.10% 2.10% 
RH2 1.38% 2.25% 1.48% 
RV2 1.52% 2.13% 1.41% 
RD2 1.45% 2.37% 2.27% 
RH3 1.85% 1.89% 1.45% 
RV3 1.81% 2.05% 1.33% 
RD3 1.51% 2.21% 2.22% 
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SAMPLES OF SIMULATED DATA GENERATED WITH NON-EXPONENTIAL CORRELATING FUNCTION  
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 113:  Estimated Multiscale Correlations of Original Data (100 Samples) 
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Figure 114: Estimated Multiscale Correlations of Full Covariance Baseline Data (100 Samples) 
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Figure 115: Estimated Multiscale Correlations of Method 1 Data (100 Samples) 
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Figure 116: Estimated Multiscale Correlations of Method 2 Data (100 Samples) 
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KL Divergence by Pixel and Image Area 
 

 
Figure 117: KL Divergence per Pixel between Full Covariance Baseline Data and Original Data 

 
Figure 118: KL Divergence over 8x8 Image Area between Full Covariance Baseline Data and Original Data 
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Figure 119: KL Divergence per Pixel between Method 1 Data and Original Data 

 

 
Figure 120: KL Divergence over 8x8 Image Area between Method 1 Data and Original Data 
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Figure 121: KL Divergence per Pixel between Method 2 Data and Original Data 

 
Figure 122: KL Divergence over 8x8 Image Area between Method 2 Data and Original Data 
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SIMILARITY METRICS BETWEEN SAMPLES OF SIMULATED DATA WITH NON-EXPONENTIAL 

CORRELATING FUNCTION AND GENERATED SAMPLES 
 
Qualitative metrics from the similarity measures are summarized here to compare the 
proposed methods to the ideal baseline method that uses the full covariance matrix. 
 

Correlation Matrix Similarity to Original Data 
 

Table 27:  Correlation Matrix Similarity for Baseline Full Covariance Data and Original Data (100 Samples) 

Baseline Full 
Covariance Data 

Method 1 
Data 

Method 2 
Data 

0.1457 0.5058 0.3747 
 

 
Multiscale Directional Correlation Similarity to Original Data 

 

Table 28: MSE of Estimated Multiscale Directional Correlations (100 Samples from Simulated Data) 

MSE between Original 
Data and Generation 

Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 0.91% 0.92% 1.43% 
RV1 0.94% 0.95% 1.26% 
RD1 1.34% 1.45% 1.88% 
RH2 1.41% 8.69% 1.37% 
RV2 1.29% 8.79% 1.28% 
RD2 1.65% 8.43% 1.92% 
RH3 1.69% 32.51% 2.21% 
RV3 1.51% 32.67% 1.57% 
RD3 1.59% 9.15% 2.12% 
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APPENDIX C:  SIMILARITY PLOTS FOR GENERATED SAMPLES OF MEASURED 

DATA 

SIMULATION OF MEASURED DATA – PLANT D, LIGHT WIND 
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 123:  Estimated Multiscale Correlations of Measured Data - Plant D, Light Wind 
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Figure 124: Estimated Multiscale Correlations of Baseline Full Covariance Data - Plant D, Light Wind 
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Figure 125: Estimated Multiscale Correlations of Method 1 Data - Plant D, Light Wind 
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Figure 126: Estimated Multiscale Correlations of Method 2 Data - Plant D, Light Wind 
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KL Divergence by Pixel and Image Area 
 

 
Figure 127: KL Divergence per Pixel for Data Baseline Full Covariance Data - Plant D, Light Wind 

 
Figure 128: KL Divergence over 8x8 Image Area for Baseline Full Covariance Data - Plant D, Light Wind 
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Figure 129: KL Divergence per Pixel for Method 1 Data - Plant D, Light Wind 

 
Figure 130: KL Divergence over 8x8 Image Area for Method 1 Data - Plant D, Light Wind 
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Figure 131: KL Divergence per Pixel for Method 2 Data - Plant D, Light Wind 

 
Figure 132: KL Divergence over 8x8 Image Area for Method 2 Data - Plant D, Light Wind 
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SIMILARITY METRICS FOR SIMULATION OF MEASURED DATA – PLANT D, LIGHT WIND 
 

Correlation Matrix Similarity to Original Data 
 

Table 29:  Correlation Matrix Similarity for Baseline Full Covariance Data and Measured Data – Plant D, Light Wind 

Baseline Full 
Covariance Data 

Method 1 Data Method 2 Data 

0.2673 0.9745 0.9711 
 

 
Multiscale Directional Correlation Similarity to Original Data 

 

Table 30:  MSE of Estimated Multiscale Directional Correlations from Measured Data – Plant D, Light Wind 

MSE between Original 
Data and Generation 

Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 4.17% 4.88% 4.91% 
RV1 5.44% 4.95% 5.16% 
RD1 4.34% 7.91% 7.91% 
RH2 4.10% 26.72% 5.76% 
RV2 5.33% 17.27% 5.16% 
RD2 4.30% 10.71% 10.25% 
RH3 2.88% 64.37% 5.28% 
RV3 5.16% 27.35% 6.57% 
RD3 5.29% 15.58% 9.16% 
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SIMULATION OF MEASURED DATA – PLANT D, MEDIUM WIND 
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 133:  Estimated Multiscale Correlations of Measured Data - Plant D, Medium Wind 
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Figure 134: Estimated Multiscale Correlations of Baseline Full Covariance Data - Plant D, Medium Wind 
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Figure 135: Estimated Multiscale Correlations of Method 1 Data - Plant D, Medium Wind 
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Figure 136: Estimated Multiscale Correlations of Method 2 Data - Plant D, Medium Wind 
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KL Divergence by Pixel and Image Area 
 

 
Figure 137: KL Divergence per Pixel for Full Covariance Baseline Data - Plant D, Medium Wind 

 

 
Figure 138: KL Divergence over 8x8 Image Area for Full Covariance Baseline Data - Plant D, Medium Wind 
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Figure 139: KL Divergence per Pixel for Data Generation Method 1 - Plant D, Medium Wind 

 
Figure 140: KL Divergence over 8x8 Image Area for Data Generation Method 1 - Plant D, Medium Wind 
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Figure 141: KL Divergence per Pixel for Data Generation Method 2 - Plant D, Medium Wind 

 
Figure 142: KL Divergence over 8x8 Image Area for Data Generation Method 2 - Plant D, Medium Wind 
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SIMILARITY METRICS FOR SIMULATED MEASURED DATA – PLANT D, MEDIUM WIND 
 

Correlation Matrix Similarity to Original Data 
 

Table 31:  Correlation Matrix Similarity for Baseline Full Covariance Data and Measured Data – Plant D, Medium Wind 

Baseline Full 
Covariance Data 

Method 1 Data Method 2 Data 

0.2652 0.9744 .9719 
 

 
Multiscale Directional Correlation Similarity to Original Data 

 

Table 32:  MSE of Estimated Multiscale Directional Correlations from Measured Data – Plant D, Medium Wind 

MSE Between Original 
Data and Generation 

Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 4.35% 4.88% 4.86% 
RV1 5.34% 4.86% 4.85% 
RD1 4.58% 7.97% 7.98% 
RH2 3.99% 29.19% 5.74% 
RV2 5.31% 14.76% 5.35% 
RD2 4.33% 11.57% 10.23% 
RH3 3.73% 64.53% 8.63% 
RV3 5.60% 29.12% 5.96% 
RD3 5.89% 17.68% 10.3% 
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SIMULATED MEASURED DATA – PLANT E, LIGHT WIND 
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 143:  Estimated Multiscale Correlations of Measured Data - Plant E, Light Wind 
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Figure 144: Estimated Multiscale Correlations of Baseline Full Covariance Data - Plant E, Light Wind 
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Figure 145: Estimated Multiscale Correlations of Method 1 Data - Plant E, Light Wind 
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Figure 146: Estimated Multiscale Correlations of Method 2 Data - Plant E, Light Wind 

 
  



168 
 

KL Divergence by Pixel and Image Area 
 

 
Figure 147: KL Divergence per Pixel for Baseline Full Covariance Data - Plant E, Light Wind 

 
Figure 148: KL Divergence over 8x8 Image Area for Baseline Full Covariance Data - Plant E, Light Wind 
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Figure 149: KL Divergence per Pixel for Method 1 Data - Plant E, Light Wind 

 
Figure 150: KL Divergence over 8x8 Image Area for Method 1 Data - Plant E, Light Wind 
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Figure 151: KL Divergence per Pixel for Method 2 Data - Plant E, Light Wind 

 
Figure 152: KL Divergence over 8x8 Image Area for Method 2 Data - Plant E, Light Wind 

 
  



171 
 

SIMILARITY METRICS FOR SIMULATED MEASURED DATA – PLANT E, LIGHT WIND 
 

Correlation Matrix Similarity to Original Data 
 

Table 33:  Correlation Matrix Similarity for Baseline Full Covariance Data and Measured Data – Plant E, Light Wind 

Baseline Full 
Covariance Data 

Method 1 Data Method 2 Data 

0.25 0.9761 0.9705 
 

 
Multiscale Directional Correlation Similarity to Original Data 

 

Table 34:  MSE of Estimated Multiscale Directional Correlations from Measured Data – Plant E, Light Wind 

MSE Between 
Original Data and 

Generation 
Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 4.62% 5.15% 5.04% 
RV1 4.86% 4.93% 5.49% 
RD1 4.12% 9.07% 9.17% 
RH2 4.13% 25.03% 6.16% 
RV2 5.69% 26.16% 5.05% 
RD2 4.10% 13.25% 11.28% 
RH3 3.57% 58.96% 9.58% 
RV3 5.86% 32.54% 6.27% 
RD3 5.60% 17.23% 11.14% 
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SIMULATION OF MEASURED DATA – PLANT E, MEDIUM WIND 
 

Estimated Multiscale Directional Correlation Maps 
 

 
Figure 153:  Estimated Multiscale Correlations of Measured Data - Plant E, Medium Wind 
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Figure 154: Estimated Multiscale Correlations of Baseline Full Covariance Data - Plant E, Medium Wind 
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Figure 155: Estimated Multiscale Correlations of Method 1 Data - Plant E, Medium Wind 
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Figure 156: Estimated Multiscale Correlations of Method 2 Data - Plant E, Medium Wind 
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KL Divergence by Pixel and Image Area 
 

 
Figure 157: KL Divergence per Pixel for Baseline Full Covariance Data - Plant E, Medium Wind 

 
Figure 158: KL Divergence over 8x8 Image Area for Baseline Full Covariance Data - Plant E, Medium Wind 
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Figure 159: KL Divergence per Pixel for Method 1 Data - Plant E, Medium Wind 

 
Figure 160: KL Divergence over 8x8 Image Area for Method 1 Data - Plant E, Medium Wind 
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Figure 161: KL Divergence per Pixel for Method 2 Data - Plant E, Medium Wind 

 
Figure 162: KL Divergence over 8x8 Image Area for Method 2 Data - Plant E, Medium Wind 
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SIMILARITY METRICS FOR SIMULATED MEASURED DATA – PLANT E, MEDIUM WIND 
 

Correlation Matrix Similarity 
 

Table 35:  Correlation Matrix Similarity for Baseline Full Covariance Data and Measured Data – Plant E, Medium Wind 

Baseline Full 
Covariance Data 

Method 1 Data Method 2 Data 

0.2651 0.9738 0.9704 
 

 
Multiscale Directional Correlation Similarity 

 

Table 36:  MSE of Estimated Multiscale Directional Correlations from Measured Data – Plant E, Medium Wind 

MSE Between 
Original Data and 

Generation 
Methods 

Baseline Full 
Covariance 

Data 

Method 1 
Data 

Method 2 
Data 

RH1 4.40% 4.93% 4.82% 
RV1 5.25% 4.93% 4.95% 
RD1 4.37% 8.07% 7.98% 
RH2 4.31% 24.65% 5.18% 
RV2 5.51% 21.11% 5.06% 
RD2 4.52% 10.91% 9.70% 
RH3 3.77% 56.89% 4.67% 
RV3 4.97% 26.01% 4.69% 
RD3 5.34% 14.10% 10.06% 

 


