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ABSTRACT

MR QP: A Scalable Approach To Query Processing on Arbitrary-Size Graphs Using

The Map/Reduce Framework

Harshit Modi, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Sharma Chakravarthy

The utility and widespread use of Relational Database Management Systems

(RDBMSs) comes not only from its simple, easy-to-understand data model (a rela-

tion or a set) but mainly from the ability to write non-procedural queries and their

optimization by the system. Queries produce exact answers that match the contents

of the database. Query processing of RDBMSs has been researched for more than

4 decades and includes extensions to more complex analysis on data warehouses. In

contrast, search has not been addressed by RDBMSs.

As the use of other other data types (key-value store, column-store, and graphs

to name a few) are becoming popular for modeling to match the data set char-

acteristics, query processing and optimization are becoming important again. The

approaches used in RDBMSs, such as cost-based, I/O focused may not be applicable

in the same way to new models and queries. Hence, new approaches need to be de-

veloped that are suited for the data model used and the expressiveness of the queries

to be supported.
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This thesis addresses query processing of large graphs (or forest) and devel-

ops algorithms for query processing as well as develops heuristics for improving the

response time using graph characteristics. Although search (unlike RDBMS) has re-

ceived a lot of attention for graphs, query processing, in contrast, has received very

little attention. With the advent of large social networks and other large graphs

(e.g., freebase, knowledge and entity graphs), querying to understand the data set

and retrieve relevant/exact information becoming critical.

This thesis builds on the previous work at the Information Technology labora-

tory at UTA (IT Lab) to scale query processing to arbitrary-size graphs (or forests)

and to exploit parallelism as much as possible. Partitioning (a form of divide and

conquer) and Map/Reduce (for parallel processing) are used as basic ingredients for

scalability. Partitioning a graph for query processing and computing all answers poses

a number of challenges: i) partitioning schemes, ii) scheduling or choosing which parti-

tion or partitions to schedule for processing, iii) developing heuristics for reducing the

total response time exploiting query and graph characteristics, and iv) importantly,

correctness of results.

This thesis address all of the above challenges using the map/reduce framework.

The choice of map/reduce framework allows us to make partitions based on available

resources and optimize parallelism based on the number of partitions to schedule at a

time. We use a partitioning strategy that has been shown to be good for substructure

discovery. We develop a number of heuristics that are based on query and graph

characteristics. The query itself is expressed as a graph without having to cast in some

other language. Relational comparison operators, Boolean operators, wild cards, and

union queries are supported. There is no restriction on node and edge labels, and

uniquely labeled multiple edges are supported. Extensive experimental analysis of the

approach (partitioning sizes, algorithm, and heuristics) using large data sets (real-
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world and synthetic) are shown for speedup, scalability, and efficacy of the heuristics

proposed.
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CHAPTER 1

INTRODUCTION

Relational Database Management Systems have been dominating the computer

industry for more than 4 decades mainly for storing and retrieving data and continue

to do so today. They are one of the best tools for storing and organizing the structured

data in tabular form. Moreover, the importance of relational database also comes from

its efficient execution of the given query and optimizations by the system. Retrievals

are usually accomplished using SQL, a non-procedural query language. A query

optimizer is responsible for finding best cost plan to execute the given query. On the

other hand, search capability where the user gives an arbitrary keyword(s) to find the

matches has not been addressed by RDBMSs.

Today, numerous real-world applications generate massive amounts of data

which entails the need to store the data using the chosen model and query/analyze

the data efficiently. Many organizations are turning to novel data stores (key-value

store, column-store, graphs, etc) that do not use relational model exclusively. Mo-

tivations includes: simplicity of design, distributed [1], horizontally scalable [2], etc.

For example, Google’s BigTable [3] uses column-oriented databases; Dynamo [4], a

key-value storage system, is used extensively by Amazon; Neo4J [5] is a high perfor-

mance and scalable graph database. Proliferation of these data types generates the

need for retrieving useful information from these data. Hence, query processing and

its optimizations are crucial for these new models.
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1.1 Querying in Graphs

Our goal is to address the problem of query processing on graphs. Graphs

are useful for structured data where relationships among entities are important. For

instance, the link structure of the World Wide Web, group of friends in social net-

works, collaboration among authors, all have relationships that can be captured and

represented in the form of a graph. Unlike RDBMSs, search has been given lots of

attention in graph querying [6–8]. Searching for a subgraph generates approximate

matches/answers to keep it efficient and due to not searching the entire graph. Also,

search, many a times, is not processed on the graph itself. Indexing and other pre-

processing is done on original graph for speeding up search. Moreover, searching has

limitation for complex queries where one or more nodes are not known. We address

the graph querying in a focused manner to find exact and all matches of query. We

accommodate expressive query which can include range specifications, comparisons,

unknown patterns with wild card specifications, AND queries, OR queries. We pro-

pose heuristics to search only the required portions of the graph.

As the amount of data is increasing, graphs are becoming larger. For example,

Facebook has around 2.3 billion active users [9]. Computer science bibliography

website, DBLP has over 5 million records of conferences/workshop papers and journal

articles [10]. Internet Movie Database (IMDb) contains over 360 million data items

with information of 123 million people and 6.5 million titles [11]. This brings us

significant challenges in querying large graphs. One way to address the problem is to

represent the graph as a relational database and then query it using using relational

language. The drawback of this approach is that many graph queries cannot be easily

expressed by relational languages such as, SQL. Moreover, when the query contains

results from many tables, it will require many join operations which are expensive.

Conversely, in a graph database, query processing does not have to scan the entire
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graph to find the nodes that meet the search criteria. It looks only at nodes that are

directly connected to other nodes. Hence, it is imperative to device techniques for

querying graphs in its native form.

QP-Subdue [12] is an attempt to move towards general purpose querying of

graphs. It has modified a substructure mining algorithm to use a query plan to do

constrained expansion for query evaluation instead of mining. It needs to load entire

graph into main memory, which is unrealistic if the graph size is large. PGQP -

Partitioned Graph Query Processor [13] builds upon QP-Subdue and extends it to

work on graph partitions. It runs in iterations, loading a single partition into memory

at a time and final answers are formed at the end after all partitions are processed

by aggregating all partial answers. It is the easiest way to achieve scalability with

very limited resource. We are interested in processing graph query using arbitrary

number of resources to exploit parallelism. Also instead of assembling final answers

at the end of processing which brings challenges in terms of keeping track of partial

results, we build the answers as we process partitions and obtain complete answers

by the end of processing.

1.2 Problem Statement

The problem addressed by this thesis is to process graph queries on very large

graphs. The important aspects of this problem are handling arbitrary size of graphs,

supporting expressive graph queries, and processing graph queries correctly and effi-

ciently.

We propose a graph querying algorithm that is scalable for any size graph (or

forest) and utilize as many resources as we have or we provide to leverage parallel

processing. We use graph representation itself as the input and process it rather than

using data in specific representation such as RDF [14]. Our query representation
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accommodates queries of varying characteristics such as comparison operators (>,>=

, <,<=,=, ! =), range operators (Between, IN), wild cards (Single character match( ),

Multiple character match(%)), Boolean operators in conjunction with previous ones,

AND and OR queries.

As we are working with large graphs, which cannot be processed in the mem-

ory of a single processor, we partition the graph into smaller size partitions which

fits in the memory. But when querying on partitioned graphs, answers may span

multiple partitions which brings challenges to compute the final answers correctly.

Our approach carries the partial answers to the appropriate partitions and continue

from those partitions. But the efficiency of evaluating a query on partitioned graph

depends on how we schedule partitions to complete the processing. Ideally, we want

to load the minimum number of required partitions to answer a query. Hence, we

propose a set of heuristics for choosing partitions after each iteration to minimize

the total number of partitions loaded. We also formulate a load factor to assess the

efficacy of a heuristic used.

Based on given resources, our approach has the ability to adjust to specified

parallel processing. So we can use as many partitions and processors as needed to

process in parallel. In the ideal case, we want to match the number of partitions

to process with resources available for complete parallelism. But in case of limited

resources, our approach still works by processing more than one partition on a single

machine.

1.3 Why Map/Reduce?

Map/Reduce is a distributed paradigm that has been used to scale computations

horizontally to accommodate very large data sizes. Recently, in graph analysis area,

researchers have brought their interest to Map/Reduce framework to cope with vast
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amount of data. Many companies such as Google, Facebook, Yahoo and Amazon use

Map/Reduce to process large amount of data in the order of terabytes every day. In

particular, Apache Hadoop, which is an open-source implementation of Map/Reduce,

has been used extensively.

We use Map/Reduce programming paradigm to leverage parallel processing. If

we don’t use Map/Reduce, it becomes challenging to implement our algorithm in a

traditional way. Main concerns are i) how do we load and split large graphs across

multiple machines, ii) where do we store graph partitions and adjacency list partitions

for fast access, iii) how to handle inter process communication, iv) how to aggregate

results, and v) book-keeping for correct processing.

Map/Reduce automatically parallelizes and executes the program on a large

cluster of commodity machines. The runtime system takes care of the details of par-

titioning the input data, scheduling the program’s execution across a set of machines,

handling machine failures, and managing required inter-machine communication [?].

Also, one of the key features in hadoop implementation of Map/Reduce is fault tol-

erance [15].

A Map/Reduce framework is composed of three steps:

• map phase: Processes a key/value pair to generate a set of intermediate key/-

value pairs

• shuffle phase: Distribute the data based on key partitions such that all keys

in a partition are sent to the same reducer

• reduce phase: Merges all intermediate values associated with the same inter-

mediate key and invokes a user defined reduce function.

We can utilize Map/Reduce framework to create initial graph partitions based

on resources available. We use partitioning strategy that has been proposed earlier

for substructure discovery in Map/Reduce [16]. We cast our query processing com-
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putation to map/reduce. Maps have been used to process partitions in parallel. We

exploit shuffle and reduce paradigm to aggregate partial results and update partitions.

1.4 Thesis Contributions

The contributions of this thesis are:

• Scalable approach to graph querying that can handle arbitrary size graphs

• Graph querying that can handle comparison operators (>,>=, <,<=,=, ! =),

range operators (Between, IN), wild cards( Multiple character match(%), Single

character match( )), logical operators, AND queries, OR queries

• Range partitioning algorithm that takes a single pass to create adjacency list

partitions and graph partitions of different sizes using the range partitioning

approach

• Efficient approach to query evaluation by identifying useful heuristics and their

relationship with query processing

• Extensive experimental analysis on real world and synthetic data sets using

broad range of queries that validates proposed heuristics

1.5 Thesis Organization

Rest of the thesis is organized as follows -

• Chapter 2 discusses the related work in the area of graph query processing and

Map/Reduce based graph partitioning.

• Chapter 3 gives an overview of graph model, query characteristics and cost

based query plan. It also discusses query processing over partitioned graph.

• Chapter 4 presents our partitioned based graph querying technique and algo-

rithm in detail.
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• Chapter 5 details the implementation of all the components used for graph

querying in the Map/Reduce environment.

• Chapter 6 shows experimental results to validate our approach

• Chapter 7 outlines conclusions and future work.
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CHAPTER 2

RELATED WORK

Graph Querying – used to find useful information from a large graph, uses

expressive queries formulated using wild cards, range expressions, and Boolean/logical

operators. For querying a graph database one needs a query specification that is easy

to understand and has low or no learning curve. As mentioned earlier, graph sizes

can be very large and hence traditional systems that use main memory approach

are not useful. The alternate querying approaches keep the graph on disk to be

staged into memory as needed. Disk-based approaches [17] are good to deal with

graph sizes larger than possible in memory, but introduce difficulties for providing

customized buffer management and introduces I/O latency. As the scale of the data

concerned grows, traditional systems become obsolete, and it is imperative to adopt

a distributed approach to data handling and processing. There are distributed graph

databases available for large scale processing - for example Neo4J [5], Titan [18],

Infinitegraph [19] - but they are aimed at developing the storage side of graph data

and not seek to improve query processing in graph database. Also they are not directly

relevant to the problem being addressed here (partitioned graph query processing and

optimization) in this thesis as we have to write programs for computing results. This

chapter provides brief overview of some of the widely used approaches for graph query

processing.
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2.1 Existing techniques for searching graphs

Searching for a particular subgraph matching the query means we are interested

in finding exact/similar patterns in the graph. Subgraph search is well explored area

and given lots of attention. It employs the mechanism of graph indexing and query

processing techniques [20]. Several mechanisms have been proposed for different graph

query types in a general mode.

2.1.1 Graph-grep

The Graph-grep [6] is a variable path index approach. It enumerates all paths

up to a certain maximum length and records the number of occurrences of each path.

In the query processing, the path indexes is used to find a set of candidate graphs

which contains the paths in the query structure and to check if the counts of such

paths are beyond the threshold specified in the query. In the verification step, each

candidate graph is examined by subgraph isomorphism to obtain the final results.

Because of all the paths are hashed, this approach provides the fast results. However,

the size of the indexed paths could drastically increase in line with the size of graph

database.

2.1.2 G-Index

The G-Index technique [7] makes use of frequent subgraphs as the basic indexing

unit. The main observation of this approach is that graph-based index can signifi-

cantly improve query performance over a path-based one. Any subgraph is considered

as being frequent if its support is greater than a minimum support threshold. Given

a query graph q, if q is a frequent subgraph, the exact set of query answers containing

q can be retrieved directly since q is indexed. Otherwise, a candidate answer set of

query q is retrieved and verified. This approach does not answer infrequent queries
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because it only indexes the frequent substructures, and if graph is large then index

size becomes large as well.

2.1.3 Fg-index and Fg*-index

Cheng et al. [21] have extended the ideas of G-Index by using nested inverted-

index in a new graph index structure named Fg-Index. In this index structure, a

memory-resident inverted-index is built using the set of frequent subgraphs. A disk-

resident inverted-index is built on the closure of the frequent graphs. If the closure

is too large, a local set of closure frequent subgraphs can be computed from the set

of frequent graphs and a further nested inverted-index can be constructed. Another

edge-index can be also built on the set of infrequent distinct edges in the graph

database. Cheng et al. [22] have extended their work further where they introduced

the Fg*-index which consists of three components: the Fg-index, feature-index and

the FAQ-index. The Fg-index allows the set of queries that represent frequent graphs

to be answered without candidate verification. The feature-index is used to reduce

the index probing cost by using the features to filter false results that are matched in

the Fg-index. The FAQ-index is dynamically constructed from the set of frequently

asked non-frequent subgraphs. Hence, verification is not required for processing fre-

quently asked queries and only a small number of candidates need to be verified for

processing non-frequent graph queries that are not frequently asked. However, it re-

quires computationally heavy index construction phase before processing queries. In

our approach, instead of indexing we use an exploration approach. A node is fully

explored and, with the exception of required nodes every other node is discarded.
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2.1.4 G-Ray

Another approach presented by Gallagher, Faloutsos and Eliasi-Rad [8] called

G-Ray finds both exact and inexact matches. This approach first finds a seed node

and then expands the seed node by finding a matching node followed by bridging both

nodes by the best possible path. G-Ray proposes a goodness score which is a measure

of proximity between two nodes. Based on this goodness score, it ranks the results.

In this approach each vertex stores the information of remaining vertices. Therefore,

space requirement is significant and it also does not differentiate between two results

having the same goodness score. This approach finds inexact matches whereas our

interest is to explore graph only for exact matches of query in focused manner.

However, due to the diversity of graph models as well as the complexity of graph

processing, some of the existing graph indexing and query processing techniques are

designed solely for specific application domains. Also subgraph search has limitations

in finding the complex graph queries where one or more nodes are not-known (i.e.

queries containing wild cards) and also do not support queries containing operators

(<,>,=, ! =). It doesn’t support query in its generality.

Most of the graph indexing strategies requires computationally expensive index

construction phase. Also the number of indexing features should be as small as

possible to keep the whole index structure compact so that it is possible to be held

in the main memory for efficient access and retrieval. However, the graph database

can be very large making it inefficient in index construction and index structure can

become large enough not to fit in memory. Thus, finding an efficient search technique

is immensely important.
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Figure 2.1: SPARQL query pattern

2.2 Query languages for graphs

Graph querying has been studied for specific graph data models by formulating

different query languages [23].

2.2.1 SPARQL

SPARQL query language [14] is a W3C recommendation for querying RDF

(Resource Description Framework) graph data. RDF is a directed, labeled graph

data format for representing information in the Web. It describes a graph by a set

of triples, each of which describes a (attribute and value) pair or an interconnection

between two nodes. The SPARQL query language works primarily through a primitive

triple pattern matching techniques with simple constraints on query nodes and edges.

Figure 2.1 shows the use of SPARQL for matching patterns. In this example,

the data in RDF form and the SPARQL query is given. As shown in query, SELECT

clause specify the variables we wish to project as output. The WHERE clause then

captures two triple patterns (delimited by periods) that correspond to the edges of

the graph. The results for this query are shown in figure.
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2.2.2 Cypher

Cypher [24] is Neo4j’s [5] graph query language, that allows for expressive and

efficient data querying in a property graph. Patterns are expressed syntactically

following a “pictorial” intuition to encode nodes and edges with arrows between them.

The query “Find friend(s) of bob” would be written in cypher as:

MATCH (you {name:\Bob"})-[:FRIEND]->(yourFriends)

RETURN you, yourFriends

MATCH clause specifies the pattern. Nodes are written inside “( )” brackets

and edges inside “[ ]” brackets. The RETURN clause can be used to project the

output variables.

However, above mentioned applications requires query to be represented in spe-

cific language model. Hence writing structured queries requires extensive experiences

in query language and data model, as well as a good understanding of the particular

dataset.

2.3 Previous work at IT Lab

Retrieving useful information from graph data by using expressive query has

been studied recently and some efforts has been done to scale the querying to large

graph by using partitioned approach.

2.3.1 QP-Subdue

QP-Subdue [12] is a main memory based approach to graph query evaluation.

It is an attempt to move towards general purpose querying of graphs. It uses cost

based plans that are tailored to the characteristics of the graph database for efficient

execution of the given query. Metadata is collected once pertaining to the graph

database and cost estimation is done to evaluate the cost of execution of each plan.
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Extensive experiments on different types of queries over two graph databases (IMDb

and DBLP) are performed to validate the approach. Subdue a graph mining algorithm

has been modified to process a query plan instead of performing mining. It has

proposed a query representation scheme for various types of queries which can be used

to retrieve meaningful information from a graph databases. It can handle queries with

all comparison operators (<,<=, >,>=,=, ! =), logical operators including AND and

OR as well as wild cards.

Query processor here accepts an input query plan which restricts the selection

of the start node followed by constrained expansion to desired nodes or next nodes

in the plan. The intermediate substructures which match the query plan are stored

for expansion in the next round. Constrained expansion is carried out for each edge

in the plan. The metric used for determining the quality of a plan is the number

of intermediate substructures generated during the evaluation of a query. The more

the number of intermediate substructures, more effort is needed to evaluate a query

which translates to a costly plan. Since, QP-Subdue uses main memory to construct

the graph, it can process queries on small size graph database restricted by available

main memory.

2.3.2 PGQP (Partitioned Graph Query Processor)

PGQP [13] extends query processing to partitioned graph. It can process queries

on any graph size by partitioning the graph database into smaller size which fits into

main memory by using existing partitioning techniques (METIS, KaHIP) and process

queries on these partitions. PGQP modify existing QP-Subdue to make it work on

graph partitions by loading one partition at a time. The answers of a query are

separately accumulated as the partitions are processed by writing to a file initial

start node label and partial results from each partition. It has defined a set of
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metrics to analyze the relationship between the properties of partitions (obtained

by using a partitioning scheme) such as the number of start nodes in each partition

and the number connected components in each partition and their effect on query

processing. Efficient query evaluation is done by choosing the partitions as well as the

order judiciously, hence minimizing the total number of partitions that are needed

for processing a query or a set of queries. Experiments over three different graph

databases (DBLP, IMDb, and Synthetic) were carried out to validate the approach

and provide some insights into the metrics gleaned from partitioning schemes on query

processing.

PGQP has established scalability through independent processing of partitions.

To sequence the loading of partitions, query processor maintains Start Node Infor-

mation (SNI) file. SNI file contains information about partition id, occurrences, start

label and vertex ids of start node of the query plan. Correctness is ensured by updat-

ing SNI file correctly when answers span into new partition. Heuristics that are for-

mulated based on number of start/ continuation nodes in each partition from SNI file

are: i) MAX-SN-heuristic, ii) MIN-SN-heuristic and iii) RANDOM-SN-heuristic. It

also evaluated effect of connected components in each partition and proposed heuris-

tics: i) MAC-CC-heuristic, ii) MIN-CC-heuristic and iii) RANDOM-CC-heuristic.

Experiments performed on synthetic graphs to evaluate proposed heuristic using dif-

ferent queries and partitioning schemes and empirically validated that MAX-SN and

MIN-CC independently are better than other heuristics.

2.4 Graph partitioning using MapReduce

Recent advancements in graph mining [16] have used distributed processing for

large graph data. The traditional main memory based approaches are extended to
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work on graph partitions for parallel processing. MapReduce distributed framework

is used to scale the processing to cluster of commodity machines.

Substructure discovery using MapReduce: Process of substructure dis-

covery in distributed environment starts by dividing the input graph into smaller

partitions and then combining the results across partitions effectively. An iterative

algorithm is used for substructure discovery that: generates all substructures of in-

creasing sizes (starting from substructure of size one that has one edge), eliminates

duplicates if necessary, counts the number of identical (or similar) substructures, ap-

plies a metric (e.g. frequency) to rank the substructures. Adjacency list is used for

expanding substructures by one edge in each iteration. This process is repeated until

a given substructure size is reached or there are no more substructures to generate.

In each iteration, either all substructures or a subset of substructures (using the rank)

is carried forward updating substructure partitions.

As the Mapper process each input records individually, input graph is rep-

resented in the form of sequence of graph edges containing edge label, source and

destination vertices. Initial substructure partitions are disjoint (same edge is not

repeated across multiple partitions). Adjacency list is also partitioned according to

substructure partition. After the first iteration, new edges are added to the exist-

ing substructure partitions. It presented two algorithms based on two substructures

partitioning techniques: i) Arbitrary Partitioning, ii) Range Partitioning.

Arbitrary Partitioning:

Initial substructure partitions are generated based on random grouping of graph

edges. The initial substructure partitions are disjoint but adjacency list partitions are

not. Each Mapper expands substructures in parallel using corresponding substructure

and adjacency list partition. Counting is done in reducer by grouping isomorphic sub-

structures. Newly generated substructures are written to same partition and sent for
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further iterations. As new substructure partitions can include edge that spans multi-

ple partitions, adjacency list is updated to include new vertices with their adjacency

list. The quality of partitioning can be improved by reducing edge cut set.

Range Partitioning:

It employs the mechanism of partitioning the global adjacency list by dividing

vertex ids in equal range for creating adjacency partitions. Unlike the previous ap-

proach, the adjacency partitions are disjoint here. Two chained MapReduce jobs are

used where first one is used for substructure partitioning and expansion and second

job does substructure calculations. Adjacency list partitions are kept fixed across

iterations needing to route substructure to processor holding the corresponding adja-

cency list partition for expansion. Range info used help in quickly determine to which

partition the substructure belongs.

The experimental analysis of both partitioning tells that although Range parti-

tioning involves shuffle cost, it performs better than the Arbitrary partitioning which

includes I/O intensive update cost. Although traditional partitioning scheme such

as METIS reduces the edge crossover(cut-set) between partitions, they make multi-

ple passes over the graph to create initial partitions which are not suitable for large

graphs. Moreover, these partitioning schemes don’t support adjacency list partitions.

Also they focus on creating equal sized connected partitions and hence can create dif-

ferent workloads across the heterogeneous machines hampering speedup. Note that

the initial partitioning cost for above partitioning are less then traditional ones as it

needs a single pass over the graph. Moreover Range partitioning is also suited for a

heterogeneous environment by correlating the ranges to the capacity of each machine

in the cluster.

Taking inspiration from this earlier work on graph mining, we propose graph

querying algorithm that works on MapReduce distributed environment. We employ
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range partitioning for creating initial partitions with different range values for the

purpose of heterogeneous environment by making one pass over the graph. Unlike

the above work, partitioning is also done using a single MapReduce iteration. In

addition to partitioning, adjacency list generation, some graph characteristics are

also generated (e.g., number of connected components in each partition, number of

strart nodes of known queries, etc.) As graph querying means finding only specific

nodes in whole graph according to query, constrained expansion is done according to

query plan in second MapReduce job in iterations.
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CHAPTER 3

PRELIMINARIES

3.1 Graph Model

Graph is a powerful data structure for explicitly capturing relationships between

entities in various application domains. Data is modeled as graph by representing

entities as vertices and relationships as edges. A vertex typically has a vertex label

and a unique vertex identifier(vertex id). An edge is a connection between two vertices

which can be either labeled or unlabeled, directed, or undirected. Here we focus on

the labeled graphs where node and edge labels are not assumed to be unique. Figure

3.1 shows an example of IMDb graph with node and edge labels.

Figure 3.1: Portion of movie information graph
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3.2 Graph Query and Query Plan

A query is a subgraph or a pattern (typically small compared to the graph)

which may have multiple matches in the data graph. A query is input to the graph

query processor and all the matching patterns are returned. In the graph database

model, several types of queries can be specified. We support the following operators

as part of queries.

1. Comparison operators (=, <, >, >=, <=, !=)

2. Union queries (using OR)

3. Boolean operators AND, OR, and NOT along with comparison operators

4. Wild card match (LIKE): Multiple character match (%), Single character match

( )

5. Range queries (BETWEEN, IN operator)

A general graph query processing system should be able to answer queries that

contain the above operators. Figure 3.2 shows our representation of a graph query.

In this representation, all nodes in a query follows the form attr op value where

op is one of the above mentioned operators and attr is either a type or an instance.

Depending on what information we need to find, value can be single match, list

of matches, range specifying lower and upper bound, pattern containing wild card

character or question mark ? (to find all matches).

A query answering system can start from any node in the query and expand

according to the sequence of edges specified in the query graph until all matches are

found. In previous work, cost-based query plan is used which gives the start nodes

of query and an ordering of nodes in which each node is expanded with the desired

label. However, to generate query plan it needs catalog information such as type

nodes and their instances. But in real world, we don’t have those information for all

datasets. Hence, we have a used simple approach to generate a query plan avoiding
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Figure 3.2: A General Graph Query
and its representation

Figure 3.3: A Query plan for the Query
Shown

the question marks (?) as start nodes. General query plan can be represented as

shown in Figure 3.3.

This general query and plan representation can support all above mentioned

operators. Also, there is no need to learn a query language making it easier to

construct queries and understand what results it should produce. A GUI can be

developed for entering a query similar to QEB (or Query-By-Example [25]). We now

discuss how we address each type of operators in our query evaluation approach.

Comparison operator: The graph nodes are compared based on operator present

in query plan (either =, <, >, >=, <= or !=). In the cases where query node has ‘?’,

all the graph nodes are taken into consideration. Moreover, in case of IN operator, the

comparisons are done using the list of values given. For instance, figure 3.4 is graph

representation of query “Find movies by company American Broadcasting Company

(ABC) in 1959 where the genre should not be Drama.”. One of the query plans for

this query is shown in Figure 3.5. Here, the query plan node with question mark (?)
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will find all the movies and node with (! = Drama) condition will find only those

movies which doesn’t belong to “Drama” genre.

Figure 3.4: A Graph Query With comparison
operator Figure 3.5: One of Its Query plans

Wild card match (LIKE): Graph node is compared using wild card pattern present

in query plan.

• Multiple Character Match (%): The % symbol as part of a string constant

will match zero or more characters. For example, ‘John %’ can match all author

names ‘John S. Edwards’, ‘John R. Durrett’, ‘John W. Priest’, etc.

• Single character match ( ): The symbol matches exactly one character.

For example, ‘Kill Bill: Vol. ’ pattern matches with all movie titles ‘Kill Bill:

Vol. 1’ and ‘Kill Bill: Vol. 2’

As an example, “Find all conference papers along with the conference names

that are published in 2005 by the author whose first name starts with ’John’.”. The

graph representation of this query shows the wild card (%) in Figure 3.6. The query

plan is also shown in figure 3.7.
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Figure 3.6: Graph query (wild card)
Figure 3.7: Query plan (wild card)

AND query: When the query graph has multiple edges (or paths) from a node, it

corresponds to an AND operator. All conditions that are in conjunction with AND

translates to different query edges from the same node. When we evaluate this query,

the results should match all the query paths. For example, “Find movies produced

by “Adam Sandler” where the genres should be comedy AND Sci-Fi (a movie can

belong to multiple genres) but the year should not equal to 2000”. As shown in figure

3.8, the query graph has AND operator comparing genre Comedy and Sci-Fi. The

query plan (figure 3.9) will have multiple paths for both different genres.

Figure 3.8: Graph query (AND query) Figure 3.9: Query plan (AND query)
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OR query: As OR operator finds answers which satisfies either one of the given

conditions, the result would be the union of all the OR conditions. So the query gets

translated to individuals plans connected by a UNION operator. For example, Find

all actors who have worked in a movie owned by company Paramount Pictures where

the genre of the movie is either Drama or Action.”. The query graph (figure 3.10)

shows the OR operator between Drama and Action genre. In this case, both the

genre conditions in conjunction with OR operator are denoted in two different query

plans. In this query, results for both the genre would be included in the answer set.

Figure 3.10: Graph query (OR query)

Figure 3.11: Query plan (OR query)
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BETWEEN operator: Given two bounds in query, we find graph nodes whose value

is within the given range. For example, “Find papers which are published between

1990 and 2015 and the paper name includes the term “Transaction Management in

Multidatabase Systems””. The range with BETWEEN operator is shown in graph

query figure 3.12. Here, the query plan (figure 3.13) will find all years that are within

1990 and 2015.

Figure 3.12: Graph query (BETWEEN
operator)

Figure 3.13: Query plan (BETWEEN
operator)

3.3 Adjacency List

The adjacency list of any vertex in the graph gives a set of neighbors for that

vertex. Table 3.1 shows the adjacency list for all the vertices present in the graph in

Figure 3.1. The adjacency list representation allows us to traverse all the neighbor

nodes through edges from a particular node and find the matches. We use the adja-
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cency list representation to expand the substructures to the desired node according

to query plan.

Figure 3.14: Input graph example

Vid Adj List

1 (x,1,A,2,B), (z,1,A,3,A), (i,1,A,4,C)
2 (x,1,A,2,B), (y,2,B,4,C)
3 (z,1,A,3,A), (i,3,A,4,C)
4 (i,1,A,4,C), (y,2,B,4,C), (i,3,A,4,C), (y,5,c,4,c)
5 (y,5,c,4,c)

Table 3.1: Adjacency List

3.4 Querying Partitioned Graph:

In our approach, a given graph G is partitioned into p partitions (G1, G2,..,

Gp) such that each partition fits into available main memory and all the p partitions

can be combined to form the original graph. Partition sizes (number of edges in each

partition) need not be same.

Query processing in the presence of the partitions starts from the partition/s

containing start node of the query plan. So the first step in query evaluation is to

identify all the partitions that contain start label of the query plan. From these

26



eligible partitions, we get all instances of start nodes and continue to desired nodes

according to query plan. For a partitioned graph, answer nodes can either be in same

partition or from different partitions.

Figure 3.15: Graph querying on partitioned graph

Figure 3.15 shows the IMDB graph partitioned into 2 graph partitions. The

query of our interest is “Find persons who have worked in the movie “Beyond all

boundaries” in 2011”. We use a query plan as shown in figure. Here, the start

node of the query is 2011. It is present in the graph partition P2. From the start

node instance, we find exact matches according to query plan. Here, the query plan

nodes are present in 2 different partitions. The two exact results of the query plan

will have nodes from both partition P1 and P2.

3.5 Start nodes in each partition

The nodes which matches with start node label of a query plan becomes ini-

tial start nodes in that partition. Constrained query expansion in that partition is
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done only on those start nodes. If the answers continue from one partition to other

partitions, the continuing nodes becomes start nodes in those partitions. Start node

information allows us to process only partitions that have a plan start node label.

Note that this information is obtained during the partitioning of the graph along

with adjacency list generation. We will discuss how to process new queries later in

the thesis.

3.6 Connected components in each partition

Input to our query processing systems is a graph or a forest. Each graph before

partitioning is a single connected component. When the graph is partitioned,

1. Each partition can be a completely connected graph

2. Each partition can contain multiple connected components. In the worst case,

the number of connected components can be equal to the number of nodes in

that partition.

Figure 3.16: Connected components inside graph partitions
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Figure 3.16 shows two different scenarios of how partions and connected com-

ponents inside partitions affect query processing. In scenario 1, graph partitions

contains multiple connected components in each partition. On the other hand, in

scenario 2, two partitions have one connected component and the other partition

has two connected components. So depending on the partitioning strategy, resulting

graph partitions can be either more or less disconnected. Disconnected partitions are

not suited for query processing as answer nodes within the same partition cannot

be reached without going to another partition and coming back. This increases the

number of times a partition need to be loaded. We use this information as part of

the heuristics to minimize the number of partitions loaded.

If the graph partition is a single connected component, it increases the chances

of query answer to stay inside the partition (scenario 2). But as shown in scenario 1,

if the graph partition is more disconnected, answers may span multiple partitions.

3.7 Meta Information File (MIF)

We collect meta information for each partition that helps us to quickly identify

which partitions to choose, in each round, for processing a query. The collected meta

information will be used for efficient execution of given query by applying heuristics,

which we will discuss in details later in this thesis. Figure 3.17 shows the representa-

tion of meta information file(MIF) for a given query plan.

Information collected as part of meta information in each partition are:

Number of start nodes: The count of all the nodes which matches with

query plan start node label is recorded.

Number of intermediate nodes: If the graph node label matches with query

plan node label other than root, than it is counted as intermediate node. Occurrences

of all intermediate nodes are collected in MIF.
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Figure 3.17: Meta Information File representation

Number of connected components: Connected components are calculated

once before query processing during graph partitioning and we store count of con-

nected components in each partition as part of MIF.

30



CHAPTER 4

DESIGN

A Graph querying system retrieves all or k exact matches of the given query

graph on the larger graph (or graph database). It should support expressive queries

with a diverse operator choices. In this chapter, we discuss our approach on processing

graph queries on large graphs or graph databases. We discuss challenges in our

approach and result verification using a controlled setting. Also, heuristics proposed

for efficient evaluation of queries are discussed. Finally, we present overall algorithm

with detailed explanation for graph query processing.

4.1 Overview of Design

In our design, we use a graph query plan for a given graph query that makes

it clear query start nodes and subsequent nodes to expand for obtaining all answers.

The important aspects of our design are:

Scalability: We address scalability by employing the “Divide and Conquer” strategy

to handle large graphs which can’t fit in memory of a single machine. Single input

graph (G) is divided into p smaller graph partitions (G0, G1, . . . , GP ).

Resource utilization: To leverage parallel processing on graph partitions, we pro-

cess queries using k processors at a time (where k can vary from 1 to p). We can

increase or decrease the value of k based on resources availability. For example, if we

have enough resources, than we can increase k as needed all the way to p.

Efficient query evaluation: Query processing in partitioned graphs require us to

schedule partitions to get good response time. This calls for ranking partitions after
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Figure 4.1: Challenges for Querying Partitioned Graphs

every iteration to choose top-k partitions to process. We propose several heuristics

for efficient query evaluation (by choosing which partitions to schedule) using initial

and runtime meta information.

4.2 Challenges

Processing a query on partitioned graph is very different as compared to process-

ing a query on single graph. The three cases that need to be addressed for answering

queries correctly are shown in Figure 4.1.

1. All answers are within single partition (Figure 4.1 (a))

2. Answer span more than one partition (Figure 4.1 (b))

3. Answer using a partition more than once (Figure 4.1 (c))

In addition to the above, there are additional challenges to make sure answers

are correct in the presence of non-unique node and edge labels. Below, we discuss

different scenarios where we have to take measures for correctness of query evaluation.

Handling overlapping answers: Figure 4.2 shows an example of answer instances

that overlaps. That is, the vertex or edge is part of more than one answer. Here,

our query processing should identify all the instances as separate answers for correct

result verification. Note that node B in partition p2 needs to be expanded twice once

for each answer to get correct answers.
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Figure 4.2: Overlapping answers
Figure 4.3: Issue with multiple path

query plan

Multiple path query plan: Based on query characteristics, query plan can have

more than one path from top to bottom. If the plan contains multiple traversal paths,

then the complete answers should match the query edges present in all paths. Figure

4.3 shows multiple path query plan and issues with processing it. The partial answer

found in partition P1 continues for node < 14, B > in partition P2 and becomes start

node in that partition. Then we load and process all start nodes in partition P2 and

as we expand from root of query plan, the node < 14, B > may get expanded for edge

B− > C from the query plan and the final answer that we get would be incorrect.

So without proper mechanism, we may find incorrect results.

Here we need to not only keep track which node to expand, but how it needs

to be expanded with respect to query plan.

Duplicates in query expansion: Systematic expansion of query from start nodes

may lead to generation of duplicates. Hence, duplicate elimination is needed to re-

duce the cost of query expansion and to find correct answers. Figure 4.4 shows an

example of how duplicates are formed during query expansion. The circled instances

highlighted in same color have the same set of vertex ids and edges between them.

In the presence of duplicates, query processing not only uses resources, but also gen-
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Figure 4.4: Duplicates in query expansion

erates incorrect answers. Therefore we need a technique to identify duplicates and

eliminate them as early as possible.

4.3 Overall approach

As we are considering large graphs in this thesis we assume that the entire infor-

mation needed (graph, adjacency list of the graph) cannot be stored in the memory of

a single machine. Hence partitioning the graph among multiple processors is needed

where each partition can be held in the memory of a single processor. Previous work

on graph query processing (PGQP [13]) has used well known partitioning schemes

METIS [26] and KaHIP [27].

We take inspiration from earlier work on MapReduce-based substructure discov-

ery [16] to divide the graph into ranges using vertex ids. This earlier work conducted

extensive experiments and cost analysis and established improved response time as

compared to other partitioninig schemes including METIS and KaHIP. Moreover, the

partitioning can be done in a single pass of the graph. There is no constraint on the
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number of partitions (as in METIS as a power of 2). Also, the range of partitions

or partition sizes need not be same. This allows us to match partitions to available

resources.

4.3.1 Range based partitioning

First phase of our approach is range partitioning. We use contiguous range of

vertex ids to partition the large graph and create adjacency list for each partition.

In the example given in Figure 4.5 , to partition the graph into two partitions using

given range information, we assign first 3 nodes (vertex ids 1 to 3) to partition 1 and

other 5 nodes (vertex ids 4 to 8) to partition 2. And with this, adjacency list for

those two partitions are created as shown in Table 4.1 and 4.2.

Figure 4.5: Range
Partitioning

Vid Adj List

1 (z,2,B,1,D)
2 (z,2,B,1,D), (x,3,A,2,B)
3 (x,3,A,2,B), (i,3,A,4,C),

(x,3,A.5,B)

Table 4.1: Adjacency Partition 1

Vid Adj List

4 (i,3,A,4,C), (y,5,B,4,C)
5 (x,3,A.5,B), (y,5,B,4,C),

(x,6,A,5,B)
6 (x,6,A,5,B), (p,7,E,6,A),

(q,6,A,8,D)
7 (p,7,E,6,A)
8 (q,6,A,8,D)

Table 4.2: Adjacency Partition 2
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As the partitioning takes one pass on the graph, we utilize this to generate meta

information to establish heuristics to use during query evaluation. The information

collected include, query plan start nodes in each partition and intermediate query

plan nodes in each partition, connected components in each partition. Partitions

generated after range partitioning contains initial substructures in that partition and

separately its adjacency list. As query expansion on these substructures needs cor-

responding adjacency list partition, we need to direct this partition to the processor

holding the appropriate adjacency list. Without an order among vertex ids across the

adjacency partitions, this operation requires the complete information of all vertices

and their adjacency partitions. This information of all vertices will be large and can

not be stored in the memory of a single processor. Range information can help us

direct a partial answer to the correct partition in which the adjacency list of node is

stored. Also, as we use mapping between partition id and vertex ids range as range

information, this gives us fine control over size of the partitions for the heterogeneous

processing environments.

4.3.2 Query Processing

Based on given k value, we choose top-k partitions using heuristics and evaluate

a given query (actually its query plan) in parallel.

Constrained Query Plan Expansion: In our approach, a query plan is used to

determine the order in which nodes should be expanded to obtain the answer instances

that match the given query. Constrained query expansion in a partition starts from

initial instances of the start nodes and then we expand all instances one edge at a

time according to query plan. As we expand, if the query edge goes out of current

partition, we update the corresponding partition with the partial answer instance.
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Figure 4.6: Canonical ordering of instances

We do so until no more edges to visit in the query plan or no more answers to process

in that partition.

Removing duplicates: Duplicates have the same vertex ids and same connectivity

among those vertex ids. To remove duplicates we convert the expanded instance to

its canonical form. We employ a lexicographic ordering on edge label for canonical

form. If there are multiple edges with the same edge label in a substructure, they

are ordered on the source vertex label. If source vertex label is also same, they are

further ordered on the destination vertex label. If edge label, and vertex labels are

also identical, then source and destination vertex ids are used for ordering.

Figure 4.6 shows an example of how lexicographical ordering during expansion

handles duplicate elimination. The start node instances (10, A) and (11, A) are

expanded according to query plan and as we get duplicate instances (10, 12, 11) and

(11, 12, 10), we merge them by canonical ordering.

37



Routing partial answers: When all query results are completely inside a single

partition, complete answers are computed and stored while processing that partition.

When query results span multiple partitions, we compute partial answer in one parti-

tion and carry that instance to appropriate partition which has further query edges.

We keep constructing the answers by routing it to appropriate partition and loading

additional partitions. The complete answers are collected when the answer instance

have all the edges according to query plan. When an answer instance comes back to

a partition that has been already processed, it is special case of above. As we carry

instances and process additional partitions, we ensure correctness by loading those

partitions multiple times.

Addressing overlapping answers: Our system makes sure that our final results

set contains all overlapping answers as separate instances. We compute query on each

initial substructure systematically and if any answer goes out of partition, we carry

them as separate instances and systematically keep finding complete answers. For the

example discussed in Figure 4.2, the initial instances (5, A) and (6, A) will be carried

to partition P3 and when we process partition P3, node (7, B) will be replicated for

both the instances. Hence, all the overlapping answers comes out correctly.

Addressing multiple path query plan: Query plan nodes are numbered

for this purpose. The issue with multiple path query plan is handled by employing

the mechanism of marking the node that continues to different partition with node

id of the query plan node. Figure 4.7 shows the relative marking of node 14 for our

previous example (Figure 4.3). Once this partial answer continue to partition P2 , we

would know which query edge to expand further from the relative NODE id of the

node and find correct results. In our case node < B : 14 > will be further expanded

for query edge B− > D.
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Figure 4.7: Marking node for correctness

4.4 Correctness of querying approach

For the correctness of query evaluation, we need to find all the exact matches of

query graph from the whole graph. As we have partitions of the graph, the results set

should have answers from within a partition or across partitions. In our approach, we

have addressed each case of answers spanning partitions. Also depending on query

characteristic, we have addressed both single path or multiple path query plans.

Overall the correctness of the query processing is operationally ensured by i) Use

of Meta Information file to correctly identify partitions which has start nodes (whether

initial or continuation) ii) Update of Meta Information File to include partitions

which has continuation or to remove partitions which has been processed iii) Carrying

intermediate results to the correct graph partition which will then load respective

adjacency list for further expansion in next iterations. iv) Marking the partial answers

and continuing expansion systematically from the last visited node.

We have also tested the correctness empirically on embedded graphs with known

frequency and evaluation complete or partial queries of embedded graphs. This is

discussed in Section 6.
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Figure 4.8: Optimal vs Non-optimal partitions loading and Load Factor

4.5 Heuristics for scheduling partitions

With out meta information or heuristics, query evaluation becomes an exhaus-

tive search process. Partitions have to be loaded randomly and hope one finds all

answers. This will not eliminate keeping track of query results crossing partitions.

Hence, both meta information (collected in each iteration and at the beginning) as

well as heuristics based on them play a key role in reducing the response time of query

evaluation. This is also borne out experimentally.

Optimal vs Non-optimal Loading of partitions: Based on chosen k value, we

need to identify which k partitions need to be loaded in each iteration. In the ideal

case, we want to load minimum number of required partitions to answer a query. A

required partition is one in which one or more number of the query plan nodes exists.

In processing a query over a partitioned graph, minimizing the total number of

partitions loaded over all the iterations can be used as an efficiency measure. The

optimal case is loading at most the number of required partitions only once.

Load Factor: Apart from number of partitions loaded, the query processing can

take more iterations or less iterations depending upon chosen value of k. The ideal
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number of required iterations are when we load only required partitions. We define

‘Load Factor’ which measures efficiency of query processing by comparing number of

iterations needed for the ideal case. Formula for calculating load factor is as follows:

Load Factor =
Total iterations taken for query processing

Required number of iterations

where

Required number of iterations = dunique partitions that has query answers

k
e

For optimal loading as shown in figure 4.8, load factor is 1. This example also

shows Non optimal sequencing, where some partitions are loaded more than once. As

number of iterations also increases here, load factor for non-optimal loading increases.

For k = 1, load factor is 1.5 whereas for k = 2, load factor is 2. The closer the value

of load factor is to 1 the better the scheduling based on the chosen heuristic.

Scheduling Based on Heuristics: We need heuristics to load top-k partitions in

each iteration to reduce the number of total partition loads as well as the number of

iterations. We propose a suite of heuristics to identify which is better according to

graph or query characteristics. If there are p
′

required number of partitions and for

given k value, H(a) loads p
′
+a partitions and H(b) loads p

′
+b partitions, then we can

say H(a) is better than H(b) if a < b. In other words, less the number of repeated

partitions (or load factor), better the heuristic.
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4.5.1 Existing heuristics:

The previous work on query processing in partitioned graph [13] has proposed

the following heuristics. Remember that the value of k used in the previous work was

1.

Number of Query Plan Start/Continuation Nodes in a Partition

1. MAX SN:

This heuristic is determined by number of start nodes in each partition. While

processing, top-k partitions which has maximum number of start nodes are

chosen. This is a greedy strategy for choosing partitions for processing. The

intuition behind this is that highest number of query answers will be explored

in the beginning and is likely to help reduce the number of partitions loaded if

the answers span into other partitions.

2. MIN SN:

For this heuristic, top-k partitions which has least number of start nodes are

chosen in every iterations. The intuition is we accumulate continuation from

partitions containing less number of start nodes and process them later once.

Total Number of Connected Components

3. MIN CC:

MIN CC chooses top-k partitions which has least number of connected compo-

nents. The intuition is this will likely to make an answer stay inside a partition

more often and thereby reduce the total number of partitions used.

Comparing heuristics: MAX SN, MIN SN & MIN CC

Figure 4.9 shows 5 graph partitions with meta information such as start nodes,

connected components, etc inside each partition. The arrow shows the continuation

of answers from one partition to another in that direction and count of it. When

we apply above 3 heuristics for evaluating partitions in this example, the number of
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Figure 4.9: Graph partitions with start nodes, intermediate nodes and connected
components information

partitions loaded and total number of iterations required for each heuristics are shown

in Table 4.3 for k = 1 and k = 2. Load Factor is also calculated for each case.

From the table, we can say that MAX SN and MIN CC are better than MIN SN

because they load less number of partitions and required less iterations. Load Fac-

tor for both MAX SN and MIN CC is less than MIN SN. This was also borne out

empirically in the previous work with k as 1.

Heuristic k partitions loaded # of iterations Load Factor
MAX SN 1 6 6 1.2
MAX SN 2 6 3 1
MIN SN 1 7 7 1.4
MIN SN 2 7 4 1.33
MIN CC 1 6 6 1.2
MIN CC 2 6 3 1

Table 4.3: Heuristics comparison: MAX SN, MIN SN & MIN CC
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4.5.2 Heuristics using Combinations of Meta Information:

Instead of using the meta information individually, combining them is likely

to yield a better strategy for loading partitions when the k value is greater than 1.

Hence, we have explored several combination heuristics which are discussed below.

We further investigate combining each individual heuristics and validate the use

of them to improve querying performance. The intuition behind this is that combining

heuristics may yield better results than individual. We have formulated following 3

different heuristics:

4. SN CC:

The intuition behind this is to not only use start nodes in each partition but also

use connected components to choose top-k partitions. The partitions containing

more start nodes and less connected components should be given more priority

and loaded first. Formula for calculating SN CC heuristic is as follows:

HSN CC = (e−0.04∗C) ∗ S

where S is number of start nodes in each partition and C is number of connected

components in each partition.

Table 4.4 shows the values of heuristic SN CC for our previous example in figure

4.9. If we analyze these values, the partition containing more start nodes and

less connected components are given more heuristic value. But for partitions

which has more connected components, heuristic values are less.

For the graph partitions in figure 4.9, if we apply SN CC heuristic to choose top-

k partitions in every iteration, then number of partitions loaded and iterations

required are shown in 4.5. As we can see, SN CC performs better than above

3 discussed heuristics because it loads less partitions and takes less iterations.

The load factor is also 1 for both values k = 1 and k = 2.
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partition Start Nodes Connected Components HSN CC

P1 100 1 96.08
P2 20 20 8.99
P3 30 50 4.06
P4 35 110 0.43
P5 15 15 8.23

Table 4.4: SN CC heuristic values

k partitions loaded # of iterations Load Factor
1 5 5 1
2 6 3 1

Table 4.5: SN CC heuristic performance

5. SN CC2k:

This also uses start nodes and connected components in each partition. It

chooses top 2k partitions first from the set of eligible partitions according to

MAX SN heuristic and from that, it chooses top k partitions according to

MIN CC. The intuition is that it utilizes both start nodes and connected com-

ponents in each partition in choosing top k partitions.

k partitions loaded # of iterations Load Factor
1 5 5 1
2 5 3 1

Table 4.6: SN CC2k heuristic performance

Table 4.6 gives this heuristic performance for the example given in Figure 4.9.

It also performs better than individual heuristics as for both k = 1 and k = 2,

it loads only required partitions. Hence, load factor in this case is also 1.

6. SN IN:

The intuition behind this is in addition to start nodes in each partition, take

advantage of query plan intermediate nodes to choose top-k partitions. The

partitions having huge number of intermediate nodes compared to start nodes
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will have potentially more answers (though partial) and will be needed multiple

times during processing. Following is the formula used for this heuristic:

HSN IN = ln(S + 1) ∗ S

S + I
2

where S is Number of start nodes in each partition and I is Number of inter-

mediate nodes in each partition.

In Table 4.7, we compare values for this heuristic for different partitions present

in figure 4.9. From the table, we can see if the partition has huge number of

intermediate nodes, than those partitions given very less heuristic value (for

example partition P4 and P5).

partition Start Nodes Intermediate Nodes HSN IN

P1 100 110 2.97
P2 20 50 1.35
P3 30 200 0.79
P4 35 500 0.44
P5 15 835 0.09

Table 4.7: SN IN heuristic values

As we apply SN IN heuristic to choose partitons in our previous example (figure

4.9), the partitions needed for processing and iterations required are shown in

Table 4.8. We can see that this heuristic also performs better than individual

heuristics (Table 4.3) as it loads less partitions and requires less iterations.

Hence, the load factor for both the cases k = 1 and k = 2 is 1.

k partitions loaded # of iterations Load Factor
1 5 5 1
2 5 3 1

Table 4.8: SN IN heuristic performance
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Our experimental analysis compares all of the above heuristics to establish

pattern with respect to the choice of heuristic.

4.6 Algorithm

Algorithm 1 details our query processing approach on large graphs. As discussed

earlier, input graph is divided into p partitions using range information and adjacency

list for each graph partition is created once. While partitioning, we collect meta

information (MIF) such as start nodes, intermediate nodes and connected components

for each partition to be use for heuristics during query evaluation. As not all partitions

has query answers, MIF is crucial for determining the eligible partitions and eliminate

loading those partitions which does not have query plan nodes.

The algorithm runs in iterations (line 2 to 14) until there are no more partitions

to load. MIF contains eligible partitions information for each iteration. We compute

heuristics using MIF to choose top-k partitions (line 2). Systematic query expansion

is done for all initial start node substructures or partial answer substructures in this

partitions according to query plan (line 4 to line 11). Adjacency list is used to expand

every substructure by one edge at a time which matches query plan. During expansion

itself, we identify which expansion goes out of partition and we route those instances

to continuing partition and update MIF accordingly (line 9). Duplicate elimination

are done after every edge expansion (line 10). Complete answers are constructed as

we process partitions during runtime (line 12). The processing continues with another

set of partitions using updated heuristics (line 13 and 14).
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Algorithm 1 Graph Query Processing Algorithm

INPUT: Input Graph G, Graph Queries

OUTPUT: Exact matches of all queries

1: Use Range based partitioning to generate graph partitions and adjacency list

partitions. Also collect meta information (MIF) for heuristics

2: For given value of k, apply heuristics and choose top k (or less) partitions

3: Terminate if no partitions to process

4: Get partition ids of currently loaded k graph partitions

5: Load adjacency partition ALi for all k partitions

6: Get all initial substructures or partial answer instances for each partition

that contain query plan start node

7: Expand substructure to the desired node according to query plan by adding

one edge at a time using ALi

8: If partition id of expanded node does not match with current partition id

9: Write out partial answer substructure to corresponding graph partition

and update meta information for that partition

10: Else, create canonical instance of answer substructure, remove duplicates

and continue for next query edge

11: Terminate the expansion when all the edges in the query plan are visited

12: Write out complete answer results

13: Update the meta information file for each partition being processed

14: Go to step 2 and continue using updated heuristics
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4.7 Resource Utilization

Our approach processes k partitions in parallel. The value of k can be set

by the user for each query if need be. The number of partitions is fixed and done

once to match resources. For a given or chosen k value, our query processing can

accommodate as many resources as available. If we have enough resources available,

then all k partitions will be loaded and processed by individual processor at a time

in parallel. This is best case for effectiveness of parallelism. But in the case when we

have limited resources, we can not process all k partitions in parallel at a time. We

address it by loading more than one partition on a single processor.

Furthermore, query processing on p graph partitions using k at at a time must

deal with what value of k we should choose to utilize maximum resources and to get

good response time. If we have only single processor available, then the k value is 1.

But if we have more than one processor available, then we can increase k to match

with number of processors. In the case, when number of processors are more than p,

then we can increase k to maximum value of p. But not all p partitions can contain

query answers. So we may not have p partitions to schedule at a time. Hence, blindly

choosing k = p may not be good idea. In this case, to choose the best value of k,

analysing the type of query and graph characteristics may become helpful.

4.8 Handling queries that are not known at partition time

The query processing on partitioned graph starts by identifying the partitions

having start nodes. The initial meta information collected at the time of partitioning

is used for this purpose. But for the new queries that were not known at partitioning,

we would not have those information. Hence, we would require a different approach

for those types of queries. Bellow we discuss two alternatives to handle those queries:
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1. One possible solution is to arbitrary choose k partitions from initial set of p

partitions. If any of the partitions have start nodes then it will update the

MIF, which will then be used to load subsequent partitions. If none of the k

partitions have start nodes, a different set of k partitions can be loaded.

2. Another solution is to create an inverted index on node labels. In other words,

we create a mapping of each unique node label and list of partitions in which

they occurs. As we can construct this index during initial partitioning, there is

no extra computation cost for it. From this index we can create MIF for any

arbitrary query and process the query. This may even work better than first

approach as it quickly identifies the partitions which has start nodes. However,

this can become issue if there are many unique node labels in a graph, increasing

the size of the index. We can address this by loading the index on disk. We

can use B+ tree by using keys as node labels and values as lists of partitions in

which those node labels occurs.

In this chapter we have explained the design of the system and also elaborated

on the detailed algorithm of query processing on graphs. Having provided this dis-

cussion, in the next chapters we elaborate the implementation aspects of our design

in the Map/Reduce framework and present our findings of our experimental results.
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CHAPTER 5

IMPLEMENTATION

This chapter provides detailed description of the implementation of scalable

query processing system based on partitioning and parallel processing. MR QP de-

veloped as part of this thesis uses Map/Reduce framework for a distributed processing

to utilize parallel processing. Figure 5.1 shows overall architecture of Map/Reduce

based query processing system.

Input Graph Representation: Our input graph is represented as a sequence of

unordered edges (or 1-edge substructure). This makes it possible to be distributed

among many machines. Both undirected and directed graphs can be used for our

approach but we have considered only directed graphs in our system as it has relations

explicitly represented using directions. Table 5.1 shows edge input representation of

graph in figure 5.2. Each edge is completely represented by a 5 element tuple 〈edge

label, source vertex id, source vertex label, destination vertex id, destination vertex

label 〉.

Both partitioning and query processing are done using Map/Reduce program.

The driver program which runs Map/Reduce jobs is implemented in java. The config-

uration file is passed to the driver program that specifies necessary parameters. Range

partitioning is done in a single iteration of Map/Reduce, which generates graph parti-

tion files and adjacency list partition files. Also, partitioning generates, if query plans

are available, initial Meta Information File (MIF). MIF contains eligible partitions

for query evaluation. After MIF is generated, our driver program applies specified

heuristic using the contents of MIF and choose top-k partitions. When the chosen
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Figure 5.1: MR QP System Architecture

partitions set becomes empty, then query evaluation has been done and we terminate

the computation. Else we would have k or less partitions to process at a time, using

which a Map/Reduce based query processing does query expansion on those parti-

tions in parallel and outputs the complete answers to Final All Answers (FAA) file

and writes the intermediate answers to the relevant graph partition files for further

expansion. During the processing of partitions, MIF is updated and will be used by

driver program to select next set of partitions to be loaded in next iteration. This is

continued until eligible partitions set in MIF is empty.

5.1 Range Partitioning using Map/Reduce

Figure 5.3 shows the range partitioning in Map/Reduce. Algorithm 2 further

expands each mapper, partitioner and reducer class in details.

Split and shuffle edges: Based on number of mappers available, Map/Reduce

paradigm divides the input graph edge list into input splits and given as the input to
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Figure 5.2: Example Input Graph

Edges

(z,2,B,1,D)
(x,3,A,2,B)
(i,3,A,4,C)
(x,3,A,5,B)
(y,5,B,4,C)
(x,6,A,5,B)
(p,7,E,6,A)
(q,8,D,6,A)

Table 5.1: Graph Edge
List Representation

the mapper. The map function then processes a single edge at a time and for both

the vertex ids in the edge, it outputs vertex id as key and edge instance as the value

(line 1 to 5).

Shuffle phase sorts the mapper output based on vertex ids and groups all the

records that have same vertex id. As we want to divide output records based on

range information, we use the custom partitioner that partition keys with custom

hash function based on range information (line 6 to 9). This will route all the output

records with vertex id in the same range to the same reducer.

Creating graph partition and adjacency list partition: Once the reducer

gets desired set of keys, we create graph partition files that contains initial substruc-

tures and adjacency list partitions that contains adjacency list of all the vertices in

the same partition. First, inside setup of reducer, we create new graph partition file

and local MIF (line 14). After that, the reduce function gets key as vertex id and

value list as all adjacent edges from that vertex (line 16). For each vertex, we cre-

ate initial substructure and output it to corresponding graph partition file (line 25).

Also, for each vertex, single adjacency list is created. And finally, reducer emit key as
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Figure 5.3: Range Partitioning using Map/Reduce

vertex id and value as adjacency list (line 27 and 28). The emitted keys that belongs

to same partition is written to single file creating adjacency list partition.

Collecting meta information and creating MIF: As we create initial sub-

structures inside reducer, we compare them to query plan start node or intermediate

nodes and if there is match, we update the occurrences of those instances in current

partition in MIF (line 18 to 24). Also, as the reducer gets all the edges within single

partition, we collect all the edges (line 26) and in reducer cleanup function, using ev-

ery edge in a partition, we find connected components using find and union algorithm

and count of connected components in that partition is written to MIF (line 31 to

38). As each reducer process separately, local MIF for each reducer will be created

and then driver program collect them to create global MIF.
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Algorithm 2 Range Partitioning

INPUT: Graph edge list, Range info, Query Plan

OUTPUT: Graph partitions, Adjacency list partitions, MIF

Class Mapper

1: function MAP(key = line no, value = (one) edge instance)

2: get the source vertex id(sV id) and destination vertex id(dV id) from edge

3: emit(newKey = sV id, newValue = edge instance)

4: emit(newKey = dV id, newValue = edge instance)

5: end function

Class Partitioner

6: function getPartition(key = vertex id, value = one edge instance)

7: reducerId = get partition id of vertex from Range Info

8: return reducerId

9: end function

Class Reducer

10: function setup

11: pId = get id of current reducer

12: partitionRange = get range of partition pId from Range Info

13: edgeList = set to hold unique edges in current partition

14: create new files for graph partition(pId) and MIF

15: end function

16: function REDUCE(key = vertex id, valueList = list of adjacent edges)

17: get vertex id(vId) from key and vertex label(vLabel) from valueList

18: if vLabel is Query Plan start node then
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19: update MIF with 〈 partition id = pId, label = vLabel, count = 1,

20: is start node = True 〉

21: else if vLabel is Query Plan intermediate node then

22: update MIF with 〈 partition id = pId, label = vLabel, count = 1,

23: is start node = False 〉

24: end if

25: create initial substructure 〈vId, vLabel〉 and write out to graph partition(pId)

26: append every edge from valueList to edgeList

27: create adjacency list (AL) for vertex (vId)

28: emit(newKey = vId, newValue = AL)

29: end function

30: function cleanup

31: S = make sets for all vertices in current partition(pId)

32: for each edge < sV id, dV id > do in edgeList

33: if sVid and dVid not in same set then

34: union both sets of sVid and dVid

35: end if

36: end for

37: count of connected components(CC) = total unique sets in S

38: update MIF with 〈 partition id = pId, connected components = CC 〉

39: end function

5.2 Query Processing using Map/Reduce

Figure 5.4 shows the single iteration of Map/Reduce based query processing.

The complete algorithm for mapper and reducer class is presented in Algorithm 3. Top
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Figure 5.4: Query Processing using Map/Reduce

k or less graph partition files chosen from eligible partitions after applying heuristics

are taken as input in each query processing iteration.

Query expansion inside mapper: Input to the mapper is the graph partition that

contains initial substructures or partial answer instances. In setup function, mapper

loads respective adjacency list partition and query plan (line 3 and 4). We then create

a set to hold unique completed answers from current partition (line 5).

The map function takes the key as line number and value as initial substructure

or partial answer instance (line 7). Then we start query expansion for those instances

which has query plan start node (line 8) and do systematic expansion for every query

edge present in query plan and store the intermediate substructures in a set (line 9

to 28). In the case of partial answer instance, we will continue expansion only if the

last visited node marked with relative id of current query node (line 15). Once we

get node to be expanded, we load adjacency list of that node and according to query

plan, find all edges that match with current query edge and expand the substructure

with that edge (line 17 and 18). If the newly expanded node belongs to different

partition, then we mark that node relative to last visited query node in query plan
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and the mapper emits new partition id as key and marked partial answer instance as

the value (line 24 and 25). Else, if the expanded node is in same partition, we create

canonical instance of the answer and store them in a answers set to remove duplicates

(line 20 to 22). We then continue for next query edge from query plan. When there

is no more edge to expand from the query plan, our answers set contains all complete

answers. We collect them to global answers set for that mapper (line 30). In the

cleanup function, the complete answers are written to the Final All Answers (FAA)

file (line 34).

Aggregating partial answers and updating graph partitions in reducer: Af-

ter mappers have been processed, Shuffle phase then groups the output of mappers

on the partition id and sends them to the corresponding reducer. The reducer pro-

cesses key-value lists generated for each partition. The reduce function gets key as

partition id and value list containing partial answers in that partition (line 36). For

each partial answer substructure present in the list, it updates the MIF to include

continuing nodes in appropriate partitions (line 39). According to partition id, it then

loads corresponding graph partition file from HDFS and write out partial answers in

that file (line 41).
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Algorithm 3 Map/Reduce based Query Processing

INPUT: Top k graph partitions and adjacency list partitions, Query Plan

OUTPUT: Updated graph partitions, Final answers file(FAA), Updated MIF Class

Mapper

1: function setup

2: currentPartitionId = partition Id from currently loaded graph partition

3: adjMap = load corresponding adjacency partition

4: load Query Plan file

5: finalAnswers = Set to hold completed answers

6: end function

7: function MAP(key = line no, value = initial or partial answer instance)

8: if value contains Query Plan start node then

9: answerSet = Set to hold unique substructures after each query edge

10: expansion

11: add initial value substructure to answerSet

12: while all the nodes and edges in the plan get visited do

13: for each ans substructure in answerSet do

14: get last visited node (v) from ans

15: if node (v) has been marked and doen’t match with Query node

16: then continue for next query edge

17: aL = get adjacency list of v from adjMap

18: expand the current node to the desired node by adding edge e

19: from aL based on the plan

20: if pId of expanded node matches currentPartitionId then

21: create canonical instance newAns

22: remove ans from answerSet and add newAns to answerSet
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23: else

24: mark expanded node in ans substructure with relative id of last

visited query node

25: emit(newKey = pId of expanded node, newValue =

26: expanded ans substructure)

27: end if

28: end for

29: end while

30: finalAnswers ∪ answerSet

31: end if

32: end function

33: function cleanup

34: write out finalAnswers to FAA file in HDFS

35: end function

Class Reducer

36: function reduce(key = partition Id, valueList = intermediate results)

37: for each value in valueList do

38: get the last expanded vertex (v) from the value

39: update MIF file with 〈 partition id = key, label = null, count = 1,

40: is start node = True 〉

41: write out value to graph partition (pId) in HDFS

42: end for

43: end function
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5.3 Configuration Parameters

The MR QP system accepts parameters for different tasks from a configuration

file. We have provided options for various parameters such as selection of graph, choice

of partitions and range information to control the size of partitions, choice of k, choice

of heuristic, choice of query plan and so on. In the case where certain parameters are

absent in the configuration specification, the system uses default values for the same.

Listed below are the set of configuration file options for various parameters.

1. Input Graph File: It specifies the path in HDFS where the input graph is loaded.

2. Input Query Plan: The query plan which user wants to evaluate on the above

graph database.

3. Number of partitions: It indicates the number of partitions the above input

graph will be divided.

4. Range Information: It specifies the vertex ids range for each partition. This

is provided in form of mapping between partition id and vertex start and end

range (inclusive).

5. k (Parameter for parallelism): Maximum number of partitions that can be

processed in parallel in each iteration.

6. Heuristic: The heuristic to choose top k partitions. This can be either MIN SN,

MAX SN, MIN CC, SN CC, SN CC2k, SN IN or RANDOM

7. Analysis output directory: As we run multiple jobs with different configurations

and want to keep the track of all the details of the job, this parameter specifies

the path to store the analysis file for each job.

8. Number of Reducers: This parameter states how many reducers are to be used

for the Map/Reduce job
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5.4 Implementing Analysis

Implementing Job Counters:

To measure the performance of our Map/Reduce jobs, we have used the built

in counters and implemented few custom counters (user defined) in our Mapper and

Reducer program. Counters in Hadoop Map/Reduce are a useful channel for gather-

ing statistics about the Map/Reduce job: for quality control and to analyse the cost

and space. Below is the list of all Job counters used.

• Map Setup time: Implementing a counter for setup time helps to analyse the

setup cost for a Mapper/Reducer. In our Map/Reduce job for query processing,

main cost of setup is incurred in Mapper as we are loading adjacency list for

each graph partition inside mapper in each iteration. As all mappers run in

parallel, we take maximum of all map setup times to get overall setup time for

that job.

• Map time: The mapper calls map method for every key/value pairs. The map

time for any mapper is time taken to process all key/value pairs. The overall

map time is calculated by taking maximum of all individual mappers map time.

• Shuffle time: In the shuffle phase in our Map/Reduce query processing job, all

the partial answers are grouped and split among reducers according to partition

id. Every reducer obtains all partial answers with same partition id. We have

implemented a counter here to examine the total time taken by the shuffle phase

to transmit the data from the Mapper to Reducer.

• Reduce time: As reduce method in our algorithm carries partial answers to

appropriate partition, this counter details the time taken in reducer for routing

and updating graph partitions. The reduce time here is significantly less in

comparison to map time because our reducer only deals with continuing answers.
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• Cleanup time: The cleanup function is called in our mapper program to write

completed answers to the FAA file in hdfs. The cleanup time is calculated for

each mapper and the maximum of all mappers is stored in this counter to find

overall cleanup time.

Controlling the number of Mappers: In Map/Reduce model, response time is

optimized by controlling mappers and reducers. The Map/Reduce system divides the

entire data into splits and are handled on different machines in a cluster. The default

input split size is 128 MB which can be altered. So, for instance let us say we have a

cluster of 5 Machines which can be used in parallel and you have a input data of 220

MB. If you go by the default input split size provided by Map/Reduce it would divide

your data into 2 partitions which will be processed in parallel on 2 Machines. But if

you want to utilize all of your resources (5 Machines) to decrease your response time,

then we can change the input split size to 45 MB, and it would create 5 partitions

(5 Map tasks) which can be processed in parallel and it will decrease the response

time. We used this approach in our implementation to control the Map tasks and

eventually the mappers.

On Comet we specify the number of processors used as nodes and each node

has 2 processors, so if we want 10 Mappers/Reducers we specify 5 nodes. But the

map tasks should be same 10 in this case. If less than 10, then all the processors will

not be utilized. So we can alter the size of split size as discussed above to match the

number of processors.

In the next chapter, we discuss the experimental analysis of various queries eval-

uated on partitioned graph databases using different number of partitions, k values,

and heuristics to evaluate query processing.
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CHAPTER 6

EXPERIMENTS

This chapter presents the results of extensive experimental analysis performed

on various synthetic and real-world graphs and queries that exercise expressiveness

discussed earlier.

6.1 Experimental Setup

Experimental Environment: All the experiments are performed using Java with

Hadoop on Comet cluster at SDSC (San Diego Supercomputer Center). The Comet

Cluster has 1944 nodes and each node has 24 cores (built on two 12-core Intel Xeon

E5 2.5 GHz processors) with 128 GB memory, and 320GB SSD for local scratch space.

Dataset Description:

Dataset # of partitions V E
DBLP 120 3.3M 13.5M
IMDB 60 0.7M 3.5M

Synthetic 10 400K 1.2M
DBLP small 3 12K 30K
IMDB small 3 11K 33K

Table 6.1: Dataset description

As shown in Table 6.1, to perform the experiments, we have used three different

datasets- DBLP, IMDB and synthetic graphs to show effectiveness and scalability in

our approach. The DBLP data set contains the information about authors, papers,

conferences and years as vertex labels and edges showing relationship among these

vertex labels. Similarly, the IMDB data set contains information about movies, year,
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genre, person, gender, movie company as vertex labels and edges represents relation-

ship among these vertex labels. And the synthetic graph contains 2000 unique vertex

labels and 4000 unique edge labels.

The sizes of the DBLP graph and IMDB graph are very large. The DBLP graph

consists of 3.3M vertices and 13.5M edges and it is the largest graph size among all

datasets. Our IMDB graph consists of 0.7M vertices and 3.5M edges. To test the

correctness of our approach, we need to make sure that our partitioned graph gives

the same results as running the query on whole graph. To validate that, we have used

already existing system, QP-Subdue, which is a non-partitioned, main-memory query

processor for graph databases. However QP-Subdue cannot handle larger graph sizes.

Hence we have also used smaller sizes for both DBLP and IMDB graphs to verify the

correctness. As shown in table 6.1, DBLP small has 12K vertices and 30K edges

whereas IMDB small has 11K vertices and 33K edges.

As our DBLP graph has 3.3M vertices, to create smaller size partitions, we

chose to divide it into 120 equal size partitions so that each partition has 27K vertices.

Similarly, we divided our IMDB graph into 60 partitions using equal range so that

each partition has 12K vertices. In the case of synthetic data, as it doesn’t have real

world information, the size of the graph (adjacency list, etc.) is not very large and

hence we can have bigger size partitions of it. So we will divide our synthetic graph

using equal range into 10 partitions so that each partition has 40K vertices. For the

correctness, we will divide the smaller graphs (IMDB small and DBLP small) into 3

partitions and verify the results.

For the above mentioned graph databases, we took queries having different

characteristics (Figure 6.1). We have used queries with comparison operator, Wild

cards (%), Range queries (BETWEEN), AND query, OR query and combination of

logical and comparison operators (>, NOT). For these queries, we have used simple

65



query plans, that avoids using question marks (?) as start nodes. Our query plan

representations were discussed in previous chapter (3).

6.2 Empirical Correctness

To establish the correctness of the system, we have first experimented with

embedded synthetic graph that contains 100 instances of an embedded substructure

(Figure 6.2 (a)) containing 9 vertices and 8 edges. We have formulated three different

queries and their query plans from this embedded substructure. Query-1 (Figure 6.2

(b)) represents single path query plan containing 5 vertices and 4 edges. Query-2

(Figure 6.2 (c)) represents the query plan for the embedded substructure itself. We

will use this query plan for verifying results for multiple path query plan. And finally

Query-3 is query plan for non-embedded substructure. The purpose of this query is

to check the correctness for the non-embedded instances. As we run above described

queries on the synthetic graph having 10 partitions, we found all 100 instances of

Query-1 and Query-2. For Query-3 also we found 1 instance of non-embedded sub-

structure.

We further show the correctness for 2 real world datasets, DBLP and IMDB.

To verify the correctness for DBLP, we have used the smaller DBLP graph available

(DBLP small) and tested it for given query DBLP Q1 (Figure 6.1 (a)). Here, for

this smaller dataset, our query has three results. We have verified here two cases

of answers spanning partitions. For each case, we have divided the whole graph

into 3 partitions using different range information for controlling the size of the graph

partitions. Initially, we chose to divide the graph into equal size partitions using equi-

range information. In this case, the answers were completely inside first partition.

To verify the answers that continues to different partitions, we changed the range

information to decrease the size for first partition so that our answers have nodes
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Figure 6.1: Queries used for experiments
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Figure 6.2: Synthetic dataset: Query plans and Embedded substructure

from 2 different partitions. We verified the results that we got for both cases by

matching it with the answers obtained by running QP-Subdue. We chose to do

verification of third case with different type of query on IMDB graph as it requires

the special case of answers spanning partitions.

The correctness for IMDB graph is also shown using IMDB small dataset. Here,

we were specifically interested for verifying correctness for third case of answers span-

ning partitions. We have used IMDB Q3 (Figure 6.1 (b)) for this purpose as it has

lots of answers. Hence many answers spanning the partitions and some uses same

partition more than once. We used equal range information to create the partitions.

The start node of our chosen query plan is “American Broadcasting Company”, which

was present in the partition 1. In our results, some answers continued to partition 2

or partition 3 and came back to partition 1. We verified all the results by comparing

them with answers obtained by QP-Subdue.
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6.3 Querying a partitioned DBLP graph

As shown earlier, the DBLP graph has millions of vertices and edges and it is

used to verify speedup and the scalability of our approach.

DBLP Queries Description:

For this dataset, we have used three different kind of queries.

Query-1: “Find papers along with their authors, conferences and the publication year,

which are published between 1990 and 1995 and the paper name includes the term

“Transaction Management in Multidatabase Systems”.”. This shows an example of

range query with BETWEEN operator. The number of results that we get for this

query is 18.

Query-2: “Find papers along with their authors and the publication year, which are

published after 1995 in the conference VLDB or SIGMOD and the paper name in-

cludes the term “Transaction Management in Multidatabase Systems”.”. This query

is of type comparison operator (>). The number of results for this query is 45.

Query-3: “Find all conference papers along with the conference names that are pub-

lished in 2005 or 2008 or 2009 by the author whose first name starts with ‘John’.”.

The query is of type wild card(%). As the wild card present in the query matches

with more number of nodes in the graph, this query has lots of answers. The number

of results for this query is 7685.

Speedup:

We have done these experiments by increasing the value of k (number of parti-

tions processed in parallel) to match as many resources available to see the effect on

response time as we increase k. Hence, we have chosen number of mappers equal to

k for this set of experiments. We will go till k = 120 as our DBLP graph will have

120 partitions. As our aim is to see the effect of k on query processing for the given

query, we have kept the number of reducers to 2 and chosen RANDOM heuristic for
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Figure 6.3: Speedup: DBLP (BETWEEN query)

all these set of experiments. Later, we will show different set of experiments with

different number of reducers and using other heuristics.

For given BETWEEN query for DBLP graph, Figure 6.3 shows how is the effect

on response time as we increase k. As we are increasing k to 2, 4, 8, 16, 32, 64 and

120, we keep seeing the decrease in response time. For increase in k from 2 to 4, we

see decrease / speedup of 52.14% and from 4 to 8, speedup is 51.63%. But as we

further increase k, although the response time decreases, we don’t get same amount

of speedup. For example, for increase in k from 64 to 120, we only see speedup of

7.41%.

The reason for decrease in response time as we increase k is we will schedule

more partitions to process in parallel using more resources and hence will require

less execution time. But for larger k values, we will not have that many partitions to

schedule depending on the query type. For example, when required partitions are less

than p and in this case increasing k to p will not give good improvement in response

time.
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Figure 6.4: Speedup: DBLP (Comparison (> query)

For Comparison operator (>) query (Figure 6.4), for increase in k, the response

time decreases. For k = 2, 4, 8, as we double the value of k, we see almost 50%

speedup. But for larger k values, there is not much speedup.

For wild card query (Figure 6.5), we see same effect of decrease in response

time with increase in k. The speedup for smaller k values are more than speedup for

larger k values. For example, speedup after increase from 2 to 4 is 49.8% whereas the

speedup for increase from 64 to 120 is 34.77%.

Comparison of above three queries for speedup tells that for smaller k values,

as we increase k, we can get good amount of speedup. But for larger k values, the

speedup can be more or less depending on the queries. For example, BETWEEN and

Comparison (>) queries don’t have much speedup for k = 32, 64, 120. On the other

hand, Wild Card (%) query continue to get speedup for k = 32, 64, 120. The reason

for this is wild card query matches with more instances in the graph and will require

more partitions to load. Hence increasing the k will help in achieving better speedup.

By analysing the number of results for each query, we can further prove this.
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Figure 6.5: Speedup: DBLP (Wild Card (%) query)

From the above analysis, we can infer that provided we have more processors

available, then we can increase k to get good response time. But blindly increasing the

k may not help in achieving more speedup. For choosing best value for k, investigating

query type can become helpful. For example, for the query which has many answers,

we can increase k to p given that we have that many resources available.

Effect of changing k values for given mappers:

In this set of experiments, we are interested to see the change in response time

as we increase k value for given number of mappers. We have used Wild Card (%)

query for doing this analysis.

As shown in figure 6.6, for mappers = 2, as we increase k from 2 to 4 and 8,

then the response time slightly increases. In case of mappers = 4, the increase in

response time is more as we increase k. We see same pattern for higher values of

mappers. The reason for not decrease in response time although we increase k is

that we are scheduling more partitions at a time then resources available. And hence

single processor will have more than one partition to process. Therefore, response time
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Figure 6.6: Effect of changing k for given mappers

doesn’t improve with increase in k. Also scheduling more than required partitions

will load some partitions multiple time. For example, if we load all p partitions at a

time, this will still require to process additional partitions where answers continues.

This case can be seen in above figure for k = 120 where we only have 32 mappers

and comparing that with k = 32, we can see the much increase in response time.

Heuristics:

Instead of scheduling partitions for execution randomly, it would be better if

we can reduce the total number of partitions loaded using heuristics. We have done

these experiments to see the effect of each heuristic (discussed in Chapter 4) on query

processing for all queries of DBLP graph. For initial analysis, we chose k = 1 and

compared the response time for each heuristic. To see the effect of k, we increased

k to 2, 4, 8 and 16 given that we have that many mappers available. Number of

reducers for this set of experiments are fixed to 2.
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Figure 6.7: Comparison of all Heuristics for DBLP (BETWEEN query)

In case of BETWEEN query (Figure 6.7), for k = 1, SN CC is better than

others as it gives less response time. SN CC2k and SN IN are second and third best

heuristics respectively. On the other hand, RANDOM takes worst time among all.

MIN SN takes worst time after RANDOM. For other k values, we see almost the

same pattern. RANDOM takes worst time in all k values. MIN SN is second worst

heuristic in each case. While SN CC is consistently better than others for all k values.

SN IN and SN CC2k are the next top 2 heuristics.

For Comparison (>) operator (Figure 6.8), SN CC2k is consistently better than

other heuristics for all k values. SN CC and SN IN comes under top 3 heuristics that

gives us good response time. Here also RANDOM has worst performance for any k

value. Moreover MIN SN is next worst heuristic.
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Figure 6.8: Heuristics comparison: DBLP ( Comparison > query)

Figure 6.9: Heuristics comparison: DBLP (Wild Card (%) query)
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Figure 6.10: Comparing best and worst heuristics: DBLP

For wild card (%) query (Figure 6.9), the worst two heuristics are RANDOM

and MIN SN. The heuristic that gives better performance than almost all others is

SN CC2k. The next top two heuristics for this query are SN CC and SN IN.

Comparing Heuristics:

To get the better understanding of the heuristics, we will compare top 3 and

bottom 2 heuristics (5 in all) for all of the queries (figure 6.10) for k = 1. As analysed

above, our combined heuristics (SN CC, SN CC2k and SN IN) are coming in top 3.

Further analysing these three heuristics, we can say that for BETWEEN and Com-

parison (>), we have lots of overlaps. While in case of Wild Card (%), SN CC and

SN CC2k are better than SN IN.

Load Factor Analysis:

76



Figure 6.11: Load Factor analysis: DBLP

We can further extend our above heuristics comparison by taking load factor

for each heuristic into consideration.

Figure 6.11 shows the load factor values for each heuristic for our given three

queries. For k = 1, in case of BETWEEN query, SN CC has lowest load factor value

i.e. it requires less number of iterations and hence, less partitions are loaded for this

heuristic. SN CC2k is second best heuristic and SN IN is third best heuristic in terms

of Load Factor. Here, the load factor for RANDOM heuristic is more than any other.

Hence more number of partitions are loaded for this heuristic and so it is not efficient.

The second worst is MIN SN. For all other queries, the top 3 heuristics that has lowest

load factor values are SN CC, SN IN and SN CC2k. The presented analysis for load

factor for all queries also matches with our previous heuristics comparison. We also
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Figure 6.12: Changing the number of reducers (BETWEEN query)

see the similar pattern in load factor values for other values of k. In every scenario,

the top 3 heuristics are SN CC, SN IN and SN CC2k.

Changing the number of reducers: Here, we have experimented with different

number of reducers to see the effect on query processing. We have increased reducers

from 2 to 4, 8 and 16.

As shown in figure 6.12, for our given query BETWEEN, for k = 4 as we

increase the number of reducers from 2 to 4, the response time decreases, but there

is not much gap between them. As we further increases the reducers we see slightly

decrease in response time. We see same pattern for all k values. This is because

we only use reducers for aggregating the partial answers. Our most of the execution
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Figure 6.13: Changing the number of reducers (Comparison (>) query)

time happens inside the mapper where we load adjacency list and do query expansion.

Hence increasing reducers doesn’t have much effect on overall time.

For Comparison operator (>), for any k value, as we increase number of reducers

from 2 to 4, the response time decreases. As we further increase the number of

reducers, we see very less drop in response time.

For Wild Card query, as we increase the reducers, there is very slight decrease

in response time and not much gap between them.

From the above set of experiments, we can infer that changing the number of

reducers will not have much effect on the query processing.
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Figure 6.14: Changing the number of reducers (Wild Card (%) query)

6.4 Querying a partitioned IMDB graph

We have used IMDB dataset to show our analysis on different type of graphs.

We have used bellow three queries for this dataset:

Query-1: “Find movies produced by “Adam Sandler” where the genres should

be comedy and Sci-Fi but the year should not equal to 2000”. This query features

the AND operator. The total number of results are 24.

Query-2: “Find all actors (both Male and Female) who have worked in a movie

owned by company “Paramount Pictures” where the genre of the movie is either

Drama or Action.” This query is a union query (OR operator). Because of the OR

operator, this query has many results. The query has 6824 results.

Query-3: “Find movies along with their actors and producer information by

company American Broadcasting Company (ABC) after year 1970 where the genre
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Figure 6.15: Speedup: IMDB (AND and OR queries)

Figure 6.16: Speedup: IMDB (COMB query)

should not be comedy or horror.” The query has combination of comparison > and

NOT operator. The results for this query are 7252.

Speedup:

We conduct this set of experiments to verify previously presented analysis of

speedup on IMDB graph using different query types. Here, we will increase k and

go until k = 60 because we have 60 partitions. The reducers are also kept to 2 and

chosen heuristics is also RANDOM for performing these experiments.

For AND query (Figure 6.15), the response time is decreasing as we increase k.

The speedup that we get when we increase k from 2 to 4 is 49.15%. But when we

increase k from 32 to 60, we only get speedup of 5.97%. Best value of k for this query

is 16 as we don’t see much speedup after that.
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For OR query (Figure 6.15), the response time is decreasing with increase in k.

For smaller k values, we are getting more speedup.

For COMB query also (Figure 6.16, we see decrease in response time with

increase in k. Here also speedup is more for smaller k values.

Comparing all above three experiments, we can say that for all queries, we see

decrease in response time as we increase k. But the decrease is not same in all cases.

For smaller k values, we see speedup of almost 50% for all queries. But for larger

k values, we see good amount of speedup only for queries OR and COMB. Further

analysing the number of results that we get for this queries, we see that AND query

has less number of results than other two. Hence, for the queries which will have

many results from the graph, we will continue to see speedup as we increase k.

From both DBLP and IMDB experiments, we can say that, in general, for any

query types we can increase k to as many processors as available to get good response

time. But arbitrarily increasing k may not be good idea because we do not achieve

that much of drop in response time for some queries. For the queries that have lots

of answers, we can increase k = p for good speedup.

Heuristics:

We have analysed the performance of different heuristics on IMDB data as well

for our given IMDB queries. We first analysed it for k = 1 and then increased value

of k to 2, 4, 8 and 16.

Figure 6.17 shows the results for given AND query. For k = 1, as we compare

the heuristics, we see that SN IN is giving best response time. The other top two

heuristics in this case are SN CC2k and SN CC. The RANDOM gives worst perfor-

mance here and MIN SN is second worst. As k is increased, we see same pattern

among these heuristics. SN IN is consistently better than all others. SN CC and
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Figure 6.17: Heuristics comparison: IMDB (AND query)

SN CC2k are among top 3. The RANDOM takes more execution time than any other

heuristics. The second worst is MIN SN.

For OR query, SN IN is coming best for all k values. Then other two heuristics

which are coming in next top 2 positions are SN CC and SN CC2k. RANDOM is

consistently worse than others and MIN SN is second worst for all k.

In case of COMB query, SN CC is consistently better than others. The next

best heuristics are SN CC2k and SN IN. The worst two heuristics are RANDOM and

MIN SN.

Comparing best and worst heuristics:

Figure 6.20 shows comparison of top 3 heuristics and bottom 2 heuristics in

terms of performance for all three queries. For all the cases, we see our combined

heuristics are in top 3. For AND query, lots of overlaps between top 3 heuristics.

For OR query, SN IN is better than SN CC and SN CC2k which almost have same

response time. FOR COMB query, SN CC is best. And SN CC2k and SN IN comes

in second best and third best heuristic. From this comparison we can say that for
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Figure 6.18: Heuristics comparison: IMDB (OR query)

our IMDB data, SN CC gives better results for any query.

Load Factor Analysis:

We further compare all heuristics in terms of load factor to verify our analysis.

As shown in Figure 6.21, in case of k = 1, for AND query, SN IN is better

because it has lowest load factor value. The other two heuristics that give better

load factor values are SN CC and SN CC2k. The worst load factor value is in case

of RANDOM heuristic. For other queries also top 3 heuristics are SN CC, SN CC2k

and SN IN. Similar pattern is seen in case of different k values. Moreover, this load

factor comparison match with our previous presented analysis for the performance of

heuristics.

We can infer from the presented heuristics analysis for both the datasets that

for any kind of query, our combined heuristics are better than individual ones. Hence

we can always choose those over individual ones to improve querying performance on

partitioned graph. Also, as we further analyse these three heuristics on different query
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Figure 6.19: Heuristics comparison: IMDB (COMB query)

Figure 6.20: Comparing best and worst heuristics: IMDB
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Figure 6.21: Load Factor analysis: IMDB

types, for BETWEEN and Comparison (>), all three are identical. But for Wild card

(%), the two heuristics SN CC and SN CC2k has better response time than SN IN.

In the case of AND and OR queries, all three are almost identical. While for COMB

query, SN CC and SN CC2k are very close and they perform better than SN IN. So

we can say, in genreal, SN CC and SN CC2k are good for any query.

In summary, we have presented exhaustive experiments on radically different

kind of datasets to present the results of our findings. We have used extensive com-

putation environment to show the validity in our approach for huge volume of data.

The queries that we validated covers broad range of characteristics that is compa-

rable to relational databases. We have validated our approach for different scale of

computation and verified proposed heuristics for various scenarios.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis presents MR QP, a scalable graph querying system using Map/Re-

duce distributed framework. The system employs range based partitioning to scale to

any size graph by dividing the graph into varying size partitions and process queries

on those partitions in distributed environment. The important aspects of this ap-

proach is we process queries on graph representation itself rather than using data in

any other form such as RDF, support expressiveness of the query, correctly verifying

the results over graph partitions, accommodate as many resources as available to

exploit parallelism and also heuristics for efficient query evaluation.

To leverage parallel processing, we process k partitions at a time in parallel.

Here, we can adjust k to utilize as many partitions and processors as needed to process

in parallel. We do systematic constrained expansion for all start nodes in a partition

according to query plan and collect the completed answers at the time of processing

and if any answer continue to different partition, then we carry partial answers to

those partitions to process in next iterations. To identify which k partitions to process

in each iteration, we have used meta information such as start nodes, intermediate

nodes and connected components in each partition. We have extended earlier pro-

posed heuristics to use this additional meta information to schedule the partitions to

minimize the response time. To verify the correctness and efficacy in our approach,

we have done exhaustive experiments on two radically different type of graphs having

millions of entities. Using every characteristic of query, we have performed our exper-

iments on computations of very large scale and verified our findings. Moreover, we
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verified the proposed heuristics on every kind of query that signifies the importance

of it in query processing.

Future work includes using other partitioning schemes such as arbitrary parti-

tioning to see the effect of it in query processing. Also we can extend our approach

for other distributed framework such as Spark to verify the findings.
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