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We present a catalog of the redshift estimates and probability distributions for 565
individual Short-duration Gamma-Ray Bursts (SGRBs) detected by the Burst And
Transient Source Experiment (BATSE). This result is based on a careful classification
and modeling of the population distribution of BATSE SGRBs in the 5-dimensional
space of redshift as well as the intrinsic prompt gamma-ray emission properties: the
isotropic 64ms peak luminosity, the total isotropic emission, the spectral peak en-
ergy, as well as the intrinsic duration, while taking into account the complex detec-
tion mechanism of BATSE and sample incompleteness. The underlying assumption
in our modeling approach is that SGRBs trace the Cosmic Star Formation Rate con-
volved with plausible binary Neutron-Star merger-delay-time distributions. Our
modeling approach enables us to constrain the redshifts of BATSE SGRBs for the
first time, and to reconstruct the cosmic distribution map of all BATSE SGRBs in the
world.
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Chapter 1

Introduction

1.1 Gamma-ray Bursts

Gamma-ray bursts (GRBs) are extremely energetic flashes of gamma-ray photons and
the brightest cataclysmic electromagnetic events known to occur in the universe.
These electromagnetic events take the shape of a narrow cone made up of gamma-
rays and are estimated to release a total amount of energy in the range of 1050-1051

ergs. GRBs are believed to be extremely energetic since most GRBs appear to occur
billions of lightyears away from Earth, implying that they would have to have a lot
of energy to be detected on Earth from so far away. They are also extremely rare,
occurring on the order of a few per galaxy per million years (Podsiadlowski et al.,
2004).

The discovery of gamma-ray bursts happened serendipitously, on July 2, 1967,
by the U.S. Vela satellites (Klebesadel, Strong, and Olson, 1973). Originally made
to detect covert nuclear testing, the Vela satellites were also capable of detecting
gamma-ray bursts originating from space. On July 2nd, a signal was detected that
did not resemble that produced from a nuclear weapon. The information of the GRB
detection was finally declassified and published in 1973 in the paper Observations of
Gamma-Ray Bursts of Cosmic Origin by Ray Klebesadel, Roy Olson, and Ian Strong of
the University of California and the Los Alamos Scientific Laboratory. These find-
ings were also presented by Klebesadel at the 140th meeting of the American Astro-
nomical Society.

The exact creation method of GRBs and their progenitors remain uncertain, de-
spite the many studies conducted in the past few decades. However some theories
are widely accepted, including the hypothesis that the intense radiation is released
by a supernova or superluminous supernova as a high mass star implodes to form
a black hole or neutron star. Another progenitor of gamma-ray bursts is thought to
be the merger of neutron stars, or a neutron star and a black hole.

GRBs typically comprise of an initial burst of high energy photons followed by an
afterglow. The afterglow of a GRB is a slowly fading emission of lower energy (longer
wavelength) gamma-rays following the initial burst of gamma-rays. This is caused
by the burst ejecta colliding with interstellar gas. Since the afterglow is lower energy,
it is harder to detect than the initial high energy burst. It was first observed in 1997
by the BeppoSAX satellite when it detected GRB 970228. Deep imaging observed a
distant host galaxy, pinpointed by the optical afterglow. Spectral analysis revealed a
redshift of z = 0.835, which indicates that the burst is approximately 6 billion light-
years away from Earth.

The time profiles of GRBs are extremely diverse, with an event lasting anywhere
from milliseconds to minutes (Gerald J Fishman and C. A. Meegan, 1995). Because
the time profiles are so diverse, GRBs are broadly classified into two groups based
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on their duration, with approximately 2 seconds used as a dividing line (Kouve-
liotou et al., 1993). Short Gamma-Ray Bursts (SGRBs) last for less than two seconds,
and Long Gamma-Ray Bursts (LGRBs) last for longer than 2-3 seconds. LGBRs are
also typically followed by an afterglow emission, which lasts much longer than the
bursts themselves. Afterglows are not unique to LGBRs but are more common with
them. A third group, ultra-long gamma-ray bursts, have also been suggested to cat-
egorize GRBs that last for longer 10,000 seconds, but some people think the data is
too inconclusive for this to constitute a category.

1.2 Classification

1.2.1 Short Gamma-Ray Bursts (SGRBs)

SGRBs are categorized as GRBs that last for less than approximately 2-3 seconds.
This subclass of GRBs accounts for approximately 30% of detected GRBs. The pro-
genitors that cause these GRBs are thought to be the merger of two neutron stars or
the merger of a neutron star with a black hole (Nakar, 2007).

No afterglow following the SGRB was detected until 2005 due to the difficultly in
detecting afterglow radiation since it has a longer wavelength than the initial burst.
Before this, the afterglow was only detected for Long Gamma-Ray Bursts. Gamma-
Ray burst GRB 050709 (detected on May 9th 2005) was the first short GRB with an
afterglow to be observed (Tanvir et al., 2013, Edo Berger, Fong, and Chornock, 2013).

This provides more support for theory that SGRBs are caused by neutron star
mergers or a neutron star and black hole merger, as opposed to being caused by
supernovas. More SGRB afterglows have been detected since then and localized to
regions of space where there is little star formation and old binary stars are thought
to be located. This is relevant because these GRBs are not associated with super-
novae (Joshua S Bloom, J. Prochaska, et al., 2006).

The average duration of these events is 0.2 seconds, which suggests a relatively
(in stellar terms) small diameter of 0.2 light seconds, or 60,000 km. The observa-
tion of X-ray flashes lasting minutes to hours after an SGRB is consistent with the
absorption of small particles, like the remnants of a neutron star by a black hole.

The main part of the star is absorbed by the black hole which causes the initial
SGRB, then the remnants of the neutron star are absorbed more slowly over a longer
period of time (relative to the initial absorption). This causes the afterglow, and the
smaller size of the neutron star particles being absorbed is also why the afterglow is
lower energy (longer wavelength) than the initial SGRB.

1.2.2 Long Gamma-Ray Bursts (LGRBs)

LGRBs are categorized as gamma-ray bursts that last longer than approximately 2-3
seconds. These GRBs are generated when massive stars die and become supernovas
before they then collapse into a black hole (Woosley and J. Bloom, 2006). After this
occurs a series of relativistically expanding shells are ejected.

It is believed that shock waves are formed when two expanding shells of rela-
tivistic material coming out of the progenitor of the GRB collide with each, dissipat-
ing some of their kinetic energy. This causes relativistic electrons to accelerate and
cause the GRB prompt gamma-ray emission. When the outward traveling shells en-
counter interstellar medium they undergo another series of shock waves (Katz, 1993,
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FIGURE 1.1: An illustration of six different GRB light curves. The y-
axis is the counts of photons detected in 64 ms intervals, while the
x-axis is the time in seconds. Data is taken from the Current BATSE

Catalog.
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FIGURE 1.2: An illustration of six different GRB light curves. The y-
axis is the counts of photons detected in 64 ms intervals, while the
x-axis is the time in seconds. Data is taken from the Current BATSE

Catalog.



1.3. Energetics and Beaming 5

Tavani, 1996). The afterglow emission is thought to be the result of synchrotron radi-
ation caused by the accelerated electrons traveling through a magnetic field behind
the shock wave.

LGRBs comprise approximately 70% of observed GRB events. Because they are
relatively common and give the brightest afterglows, they have been observed in
much greater detail than SGRBs. Most LGRBs that have been studied are linked
to galaxies with rapid star formation. The observations of long afterglows at high
redshift is also consistent with this (Pontzen et al., 2010). Many LGRBs have also
been linked to core-collapse supernovae and thus the death of massive stars.

1.2.3 Ultra-Long Gamma-Ray Bursts

Ultra-Long Gamma-Ray Bursts last for more than 10,000 seconds, falling at the tail
end of the long GRB distribution. The progenitors of these GRBs are hypothesized to
be the birth of a magnetar, the collapse of a blue supergiant star, or a tidal disruption
event, so a separate class has been proposed for these events. The defining char-
acteristics of these events is the ultra-long durations of their gamma-ray emissions,
and only a few have been identified to date. Of these events, the most studied ones
are GRB 111209A and GRB 101225A. The low detection of these events might be
ascribed to the detector sensitivity not being attuned to ultra-long-duration events,
rather than indicative of the true frequency of Ultra-long gamma-ray bursts. As
shown by Zhang et al., 2014 the existing evidence for a separate ultra-long GRB pop-
ulation with a new type of progenitor is inconclusive, and further multi-wavelength
observations are needed to draw a firmer conclusion.

1.3 Energetics and Beaming

Despite their immense distances from Earth, gamma-ray bursts are very bright. The
bolometric flux of an average LGRB is comparable to that of a bright star within
the Milky Way galaxy, despite being a distance of billions of light-years away. Most
of the energy of a GRB is released in the form of high energy gamma radiation,
although some GRBs also release energy in lower frequency wavelengths, such as
those in the visible light spectrum. For example, GRB 080319B, which originated 7.5
billion light-years from Earth, was accompanied by an optical counterpart with. a
peak visible magnitude of 5.8, which is comparable to a dim, naked-eye star viewed
in the night sky. This implies that the source is extremely energetic, within a factor of
two of the rest-mass energy of the Sun, which is the energy that would be released if
the Sun were to be converted entirely into radiation, assuming that the gamma-ray
explosion was spherical (J. Bloom et al., 2009).

When accounting for this effect in calculating the energy released by a typical
gamma-ray burst, the true energy release is calculated to be about 1044 J (D. A. Frail
et al., 2001).

Several of the nearest GRBs have also been observed to be accompanied by su-
pernovae. Observations of strong asymmetries in the spectra of nearby type Ic su-
pernovae and radio observations taken long after bursts when their jets are no longer
relativistic, offer additional support that the output of GRBs is focused.

The narrow jet shape of gamma-ray bursts means that most GRBs are unable to
be detected on Earth since they will miss the Earth entirely. When a GRB is pointed at
Earth, and therefore able to be detected, the narrow beam of energy causes the burst
to appear much brighter than if it had a spherical energy emission. By observing the
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’jet breaks’ in afterglow light curves, the angular width of the beam can be estimated.
This is done by examining the part of the light curve where the afterglow begins to
fade more rapidly than its initial slow decay, which happens when the jet slows and
becomes less effective at beaming its radiation. The jet angle has been observed to
have significant variation, between 3 and 30 degrees (Firmani et al., 2006).

Short duration GRBs are less luminous than LGRBs and are observed to come
from a less distant (lower redshift) population of space. As a population, short GRBs
are less likely to be collimated than long GRBs, and the degree of beaming in SGRBs
has not been accurately measured (Watson et al., 2006).

1.4 Progenitors

Gamma-ray progenitors are celestial objects that are capable of releasing high en-
ergy radiation. Gamma-ray bursts are extremely diverse, can have a duration rang-
ing from a fraction of a second to many minutes, have highly differing spectra,
and have many differing light curves. Progenitors have been theorized to be su-
pernovae, hypernovae, accretion of matter onto neutron stars, antimatter accretion,
magnetic flares on white dwarfs, rapid extraction of rotational energy from super-
massive black holes, and evaporating black holes, among others.

Although many theories exist, there are at least two different progenitors of
GRBs, corresponding to the two different subclasses. Long GRBs are caused by the
core collapse of massive, low-metallicity stars (supernovae). Short GRBs are caused
by compact binary systems of neutrons stars, or a neutron star and a black hole,
merging. This was confirmed by the GW170817 observation of a kilonova and a
neutron star merger (B. P. Abbott et al., 2017).

1.4.1 Long GRB Progenitors

The Collapsar Model

There is an almost universal agreement within the astrophysics community that
long-duration GRBs are caused by the deaths of massive stars in supernova-like
events, called hypernovae or collapsars. These events occur when very massive
stars reach the end of their life cycle and have fused all the material in their cores
completely to iron, at which point the star is unable to generate enough energy by
fusion and collapses, forming a black hole. If the star was rotating rapidly, it is then
that matter around the star’s core falls towards the center and a high-density accre-
tion disk is formed. The fall of material into the black hole causes a pair of jets to
form along the rotational axis at relativistic velocities, creating a relativistic shock
wave at the front, which increases as the density of the stellar matter the wave is
traveling through decreases (MacFadyen, Woosley, and Heger, 2001). If there is not
a thick, diffuse hydrogen envelope surrounding the star, then the jets can reach the
stellar surface where it then breaks out into space, releasing much of its energy in
the form of gamma-rays.

Under this theory, for long gamma-ray bursts to be formed, three special con-
ditions must be met. First the star must be massive enough to form a black hole.
Second, the star must be rotating rapidly enough to form an accretion torus that is
capable of launching jets of material. Third, the star must have a low enough metal-
licity so that its hydrogen envelope is stripped off and the jets can reach the stellar
surface.
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There are two lines of evidence supporting this theory. First, GRBs have a strong
association with star formation, as they are found in areas of recent star formation,
which massive stars are also typically found in (Joshua S Bloom, Shrinivas R Kulka-
rni, and S George Djorgovski, 2002). Second, a supernova has immediately followed
a GRB in several observed cases. These cases are in lower-redshift systems, as GRBs
that occur in other systems are too far away for current instruments to detect them.

1.4.2 Short GRB Progenitors

Degenerate Binary Systems

Until 2007, only a few short gamma-ray bursts had been localized to a definite
galactic host. These localized events demonstrate significant differences from long
gamma-ray burst events. At least one SGRB was found in the star-forming central
region of a galaxy and several others have been observed in areas where star for-
mation has nearly ceased, such as the outer regions and outer halo of large elliptical
galaxies. All galactic hosts of SGRBs identified so far have been at low redshift (Ja-
son X Prochaska et al., 2006). No supernova has been observed to proceed any short
GRB.

Neutron star and neutron star/black hole mergers

The generally preferred model within the astrophysical community for the progeni-
tors of short gamma-ray bursts is the merger of two compact objects via gravitational
inspiral (Blinnikov et al., 2018). The two compact objects are either two neutron stars
or a neutron star and a black hole (Lattimer and Schramm, 1976).

The system loses energy over time due to gravitational radiation, and the two
objects begin to spiral closer together, until eventually, they merge into one object.
Right before this merger, the tidal forces of gravity will rip the neutron star (or stars)
apart, liberating an immense amount of energy before the merger. This process is
extremely fast, lasting within a few seconds, which accounts for the short duration
of these bursts.

The distribution of short GRB host galaxies offers support for this model, as
SGRBs have been observed to originate from galaxies that are relatively old with
no star formation.

Magnetar giant flares

Another possible model for short gamma-ray burst is magnetar giant flares, also
called megaflares or hyperflares. A magnetar is a type of neutron star that has an
extremely powerful magnetic field, around the order of 1013 − 1015 Gauss [G]. For
reference, Earth’s magnetic field ranges from 0.3− 0.6 [G]. The decay of the magnetic
field over time causes the emission of x-rays and gamma-rays along with other high-
energy electromagnetic radiation.

Since the rotation of the magnetar causes the sources to repeat and the explosions
have soft high-energy spectra, they can be identified as a separate class from normal
gamma-ray bursts.

Tidal disruption events

A tidal disruption event occurs when a star approaches sufficiently close enough to a
black hole that it is pulled apart by the tidal force from the black hole and undergoes
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spaghettification. If a portion of the star’s mass is caught into an accretion disk
around the black hole, this results in a temporary flare of electromagnetic radiation
as the matter in the disk is absorbed by the black hole.

1.5 Emission Mechanisms

Gamma-ray burst emission mechanisms are theories that explain how the energy
from a gamma-ray burst progenitor is converted into radiation, regardless of the
nature of the progenitor. The early-time spectra and the light curves of GRBs do not
resemble the radiation emitted by any familiar process.

As of 2010 there is still no generally accepted model for the mechanism by which
gamma-ray bursts are converted into energy, as this process remains poorly under-
stood. The model must be able to explain how the physical process that generates
gamma-ray emission works and matches the observed characteristics such as the
spectra and light curves, among other things. The model will also need to explain
the high efficiencies that come from some GRBs that convert half or more of the ex-
plosion energy into gamma-rays, as well as explaining why all GRBs do not have
the same efficiency (Woźniak et al., 2009).

Better understood is the nature of the afterglow emission of a GRB. The after-
glow emission has a longer wavelength (typically within the range of x-ray to radio)
than the initial gamma-ray burst. The energy that was released in the explosion but
not converted into gamma radiation instead takes the form of energy or matter mov-
ing outward at relativistic velocities. When this matter collides with interstellar gas
surrounding it this creates a relativistic shock wave that propagates into interstellar
space. This may also create a second shock wave that propagates in the opposite
direction as the first shock wave, into the ejected matter. Strong magnetic fields ac-
celerate the electrons within the shock wave and radiate as synchrotron emission
across most of the electromagnetic spectrum (Perna, Re’em Sari, and D. Frail, 2003).
This model successfully explains the behavior of afterglows hours or days after the
explosion, but has difficulty explaining the behavior of the afterglow immediately
after the initial GRB.

1.5.1 Compactness problem

One problem with modeling gamma-ray bursts is what is referred to as the com-
pactness problem. The size of the emitting region must be very small, as GRBs vary
on short timescales, and if the emitting region was not small, the time delay would
wipe out any short-timescale behavior. However, if the system holding the GRB pro-
genitor is moving towards Earth at relativistic velocities, the burst is compressed in
time due to the relativistic doppler effect, and as a consequence the emitting region
would appear to be much smaller than its true size.

1.5.2 GRBs and internal shocks

Another constraint is imposed by the relative timescales between the total length
of the GRB and the short-timescale variability, with the variability timescale often
being far shorter than the total burst length. When two shells collide, the matter
is flash-heated, amplifying the energy released by converting kinetic energy into the
random motion of particles. The exact physical mechanisms producing the observed
photons is still uncertain, but the most likely theories are inverse Compton scattering
and synchrotron radiation.
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FIGURE 1.3: The emission mechanism of GRBs caused by the collapse
of a massive star into a black hole. This drives a jet of particles that
move out into space at nearly the speed of light. This may be caused
by the jet interacting with gas near the black hole and also from col-
lisions between fast-moving gas shells within the jet. This prompt
emission will typically have a duration of a minute or less. The af-
terglow, caused by the leading edge of the jet interacting with its sur-
roundings and causing an external shock wave which emits radiation
across the spectrum, typically lasts from months to years. These are

the most common type of short gamma-ray bursts produced.

While there has been no theory that can describe the spectrum of all gamma-ray
bursts, the Band function is empirically fairly successful at fitting the spectra of most
gamma-ray bursts, and is defined in Band et al., 1993 as

fB(E) =

A
( E

100keV

)α
exp

(
− E(2+α)

Ep

)
, if E ≤ Ec

A
[
(α−β)Ep

100(2+α)

](α−β)
exp(β− α)

( E
100keV

)β
, if E ≥ Ec

(1.1)

where

Ec = (α− β)
Ep

2 + α
≡ (α− β)E0 (1.2)

where the parameters are the amplitude A in photons/s/keV/cm2, the low-energy
spectral index α, the high-energy spectral index β, and the peak energy Ep in keV.

1.5.3 Afterglows and external shocks

The afterglow emission is not believed to be dominated by internal shocks, unlike
the GRB emission. All of the ejected matter has coalesced into a single shockwave
shell traveling into the interstellar medium surrounding the star. A shock wave
referred to as the ’external shock’ is at the front of this shell of matter. The matter
moving at relativistic speeds will then collide with the interstellar gas surrounding
the star. The interstellar matter is heated to extreme temperatures as it moves across
the shock wave. These particles, now relativistically moving, encounter a strong
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local magnetic field and are accelerated perpendicular to the magnetic field, causing
them to radiate their energy via synchrotron radiation.

1.6 Current and Past GRB detection Missions

1.6.1 Discovery of the First GRB

The discovery of Gamma-Ray Bursts happened by accident, on July 2, 1967, by the
U.S. Vela satellites. These satellites were initially constructed to detect secret nuclear
tests in space by detecting gamma radiation pulses produced by these weapons.
Four satellites made up the Vela system so that it would be possible to localize the
source of any gamma-ray signals detected, and these satellites orbited above the Van
Allen radiation belt at an altitude of about 105000 km. These features also made the
satellites capable of detecting gamma-ray bursts originating from space. The signal
detected on July 2nd did not resemble that produced from a nuclear weapon, and
the light curve it produced had two peaks. Solar flares and supernovas were ruled
out as a possible explanation, as none of these events had occurred at that time.

The fifth Vela satellites (Vela 5), with increased sensitivity and time resolution,
was launched on May 23, 1969. It detected 12 events that did not occur at the same
time as any solar flares or supernovas, some of these detections exhibiting the same
double peak pattern as the initially detected signal. It was initially thought that
the gamma-ray bursts may originate from specific sources within the Milky Way
Galaxy. To determine the origins of GRBs, the Vela 6 satellites, launched on April 8,
1970, were deliberately launched to be on the order of 10000 km apart from the Vela 5
satellites, so that any gamma-ray events would be detected at slightly different times
by different satellites. From this, 16 gamma-ray bursts were detected, randomly
distributed across the sky.

The information of the GRB detection was finally declassified and published in
1973 in the paper Observations of Gamma-Ray Bursts of Cosmic Origin by Ray Klebe-
sadel, Roy Olson, and Ian Strong of the University of California Los Alamos Sci-
entific Laboratory. These findings were also presented by Klebesadel at the 140th
meeting of the American Astronomical Society.

1.6.2 FERMI

The Fermi Gamma-ray Space Telescope (or ‘Fermi’) is a space observatory in low
Earth orbit that is currently performing gamma-ray astronomy observations. It con-
tains two scientific instruments, the Large Area Telescope (LAT) and the Gamma-ray
Burst Monitor (GBM). Fermi was launched on June 11, 2008, and currently resides
in orbit.

The main instrument onboard the satellite is the LAT, which is a pair-conversion
gamma-ray detector with an energy range of 20 MeV to 300 GeV. The GBM is made
up of 14 total scintillation detectors. Twelve of the scintillation detectors use sodium
iodide crystals, giving an energy detection range of 8 KeV to 1 MeV. The remaining
two scintillators use bismuth germanate crystals, giving an energy detection range
of 150 KeV to 30 MeV (Atwood et al., 2009).

Along with studying gamma-ray bursts, the Fermi satellite is also searching
for evaporating primordial micro black holes, probing dark matter, searching for
unidentified sources and diffuse emission of gamma-rays, and studying particle ac-
celeration in supernova remnants, pulsars, and active galactic nuclei.
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1.6.3 SWIFT

The Neil Gehrels Swift Observatory, or ‘Swift’ (Gehrels et al., 2004), is a multi-
wavelength space observatory dedicated to the observation and study of gamma-ray
bursts. The satellite contains three scientific instruments, the Burst Area Telescope
(BAT), the X-ray Telescope (XRT), and the Ultraviolet/Optical Telescope (UVOT).
Swift was launched on November 20, 2004, and currently resides in orbit.

The Swift satellite is comprised of two major telescopes: 1. The Burst Area Tele-
scope (BAT) which is responsible for the detection of gamma-ray signals and 2. The
X-ray Telescope (XRT) which is used to perform spectral analysis of the GRB after-
glows and to take images of them, thus providing a more precise location of the
origin of the GRB. The XRT can also observe the afterglow lightcurves for days to
weeks after the event, performing long term monitoring.

1.6.4 Compton Gamma-ray Observatory

The Compton Gamma-ray Observatory (CGRO), launched in 1991, was operational
for 9 years, retiring in 2000. The explicit goal of the CGRO was to detect GRBs. It
contained four telescopes with the corresponding energy ranges: the Oriented Scin-
tillation Spectrometer Experiment (OSSE) with a range of 0.05 - 10 MeV, the Imag-
ing Compton Telescope (COMPTEL) with a range of 0.75 - 30 MeV, the Energetic
Gamma-ray Experiment Telescope (EGRET) with a range of 20 MeV - 30000 MeV,
and the Burst and Transient Source Experiment (BATSE) with an effective energy
window of 20 - 2000 keV. The BATSE telescope is the instrument that recorded the
data used in this thesis.

1.7 The Goal of This Study

Throughout its operational lifetime, BATSE triggered on 2704 GRBs. As of 2020, the
BASE GRBs constitute the largest catalog of homogeneously detected GRB events in
history. Despite other GRB catalogs, however, the analysis of BATSE GRB lightcurves
and spectra has proven challenging partly because of the relatively low-quality and
resolution of data compared to the data collected by the newer missions, but also
because of missing cosmic distance information of BATSE GRBs.

The BATSE detectors operated at a time when the field of GRBs was at its infancy.
Even the galactic vs. extra-galactic origins of GRBs was well evidenced toward the
end of BATSE’s operational lifetime. The cosmological distances of GRBs are mea-
sured by a quantity known as the redshift, a unit-less quantity which measures the
amount of reddening of the emission or absorption spectra in the afterglows of GRBs
or their host galaxies, thereby giving an indirect estimate of the distance of the GRB
from the Earth. Assuming a cosmological model, this redshift information can be
then converted to a luminosity distance which measures how far the GRB occurred
from the Earth, in units of length, for example, light-years or Mega-Parsecs (MPc).

The knowledge of the redshifts of GRBs is crucial for a better understanding of
their cosmological origins, their intrinsic energetics, and properties, such as dura-
tion, average emission frequency, total energy released, etc. Out of 2704 BATSE-
detected GRBs, only a handful of 7 GRBs have measured redshifts. Thus to increase
the usage of this vast catalog of GRBs it is essential to somehow estimate the un-
known redshifts of GRBs.
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FIGURE 1.4: The Compton Gamma-Ray Observatory, with the posi-
tions of all detectors and instruments labeled as well as the positions

of the x, y and z axes. Image adapted from Fishman et al., 1985.
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Several studies have already attempted to estimate the unknown redshifts of
GRBs based on the apparently-strong phenomenological correlations observed be-
tween some of the spectral and temporal prompt gamma-ray emission properties of
GRBs. The most prominent class of such relations are the apparently-strong correla-
tions of the intrinsic brightness measures of the prompt gamma-ray emission (e.g.,
the total isotropic emission, Eiso, and the peak 1024ms luminosity, Liso) with other
spectral or temporal properties of GRBs, such as hardness as measured by the in-
trinsic spectral peak energy Epz (e.g., Yonetoku, Murakami, et al., 2004; Yonetoku,
Nakamura, et al., 2014), light-curve variability (e.g., Fenimore and Ramirez-Ruiz,
2000; Daniel E Reichart et al., 2001), the spectral lag (e.g., B. E. Schaefer, Deng, and
David L Band, 2001), or based on a combination of such relationships (e.g., Xiao and
B. E. Schaefer, 2009; M. Dainotti et al., 2019).

These methods, however, can lead to incorrect or highly biased estimates of the
unknown redshifts of GRBs if the observed high-energy correlations are constructed
from a small sample of GRBs (typically the brightest events) with measured red-
shifts. Such small samples are often collected from multiple heterogeneous surveys
and may neither represent the entire population of observed GRBs (with or with-
out measured redshift) nor represent the unobserved cosmic population. More im-
portantly, the potential effects of detector threshold and sample-incompleteness on
them are poorly understood. Such biases manifest themselves in redshift estimates
that are inconsistent with estimates from other methods, examples of which have
been already reported by several authors (e.g., Cristiano Guidorzi, 2005; Ashcraft
and B. E. Schaefer, 2007; Rizzuto et al., 2007; Bernardini et al., 2014).

The selection effects in the detection, analysis, and redshift measurements of
GRBs and their potential effects on the observed phenomenological high-energy cor-
relations have already been extensively studied individually, in isolation from other
correlations, (e.g., Vahé Petrosian and T. T. Lee, 1996; Lloyd and Vahé Petrosian,
1999; Vahe’ Petrosian, Lloyd-Ronning, and A. Lee, 1999; Lloyd, Vahé Petrosian, and
Mallozzi, 2000; Hakkila et al., 2003; David L Band and Preece, 2005; Nakar and Pi-
ran, 2004; Nathaniel R Butler, Daniel Kocevski, Joshua S Bloom, and Curtis, 2007;
Ghirlanda et al., 2008; Nava et al., 2008; Amir Shahmoradi and Robert Nemiroff,
2009; Nathaniel R Butler, Daniel Kocevski, and Joshua S Bloom, 2009; Nathaniel R
Butler, Joshua S Bloom, and Poznanski, 2010; Amir Shahmoradi and Nemiroff, 2011;
Shahmoradi and Nemiroff, 2011a; Amir Shahmoradi, 2013b; M. G. Dainotti et al.,
2015; Vahé Petrosian, Kitanidis, and Daniel Kocevski, 2015). However, an ultimate
resolution to the problem of estimating the unknown redshifts of GRBs in catalogs
requires simultaneous multidimensional modeling of the intrinsic population dis-
tribution of GRB attributes, subject to the effects of detector threshold and sample
incompleteness on their joint observed distribution (e.g., Nathaniel R Butler, Joshua
S Bloom, and Poznanski, 2010; Amir Shahmoradi, 2013a; Amir Shahmoradi and Ne-
miroff, 2014; Amir Shahmoradi and Robert J Nemiroff, 2015).

Building upon the previous studies in the Computational Data Science Lab at
the University of Texas at Arlington Amir Shahmoradi (2013b), Amir Shahmoradi
(2013a), and Amir Shahmoradi and Robert J Nemiroff (2015), and motivated by the
existing gap in the knowledge of the redshifts of GRBs in BATSE catalog (e.g., W. S.
Paciesas et al., 1999; Goldstein et al., 2013), which as of 2020, constitutes the largest
catalog of homogenously-detected GRBs, here we present a methodology and mod-
eling approach to constraining the redshifts of 565 BATSE SGRBs. Despite lacking
complete knowledge of the true cosmic rate and redshift distribution of SGRBs, we
argue that it may be possible to constrain the redshifts of individual BATSE SGRBs
(as well GRBs detected by other satellites) to within reasonable uncertainty ranges
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at high confidence levels.
The methodology presented in this work relies on two plausible assumptions

which are strongly supported by the currently existing evidence: 1. SGRBs trace the
cosmic Start Formation Rate (SFR) or a metallicity-corrected SFR (e.g., Nathaniel R
Butler, Joshua S Bloom, and Poznanski, 2010; Pontzen et al., 2010), convolved with
a binary merger delay-time distribution and, 2. the joint distribution of the four
main prompt gamma-ray-emission properties of SGRBs is well described by a mul-
tivariate log-normal distribution (e.g., Amir Shahmoradi, 2013a; Amir Shahmoradi
and Robert J Nemiroff, 2015). The presented work also paves the way toward a
detector-independent minimally-biased phenomenological classification method for
GRBs solely based on the intrinsic prompt gamma-ray data of individual events.

In the following sections, an attempt is presented to further uncover some of
the tremendous amounts of useful, yet unexplored information that is still buried in
this seemingly archaic catalog of GRBs. Towards this, we describe, in the following
chapters, the development of a probabilistic redshift-inference methodology, includ-
ing a discussion of the data collection procedure, a generic description of the prob-
abilistic modeling approach via a toy problem, followed by detailed descriptions
of the proposed methodology for estimating redshifts, the cosmic SFR assumptions
underlying the proposed model for estimating the redshifts, the construction of an
SGRB world model, and a review of the BATSE SGRB detection algorithm and the
approach we use to model the BATSE SGRBs sample incompleteness. Finally, the
predictions of the model are presented, followed by a discussion of the implications
of the results.
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Chapter 2

Data Collection

The Burst and Transient Source Experiment (BATSE) was a satellite that had a primary
objective to study gamma-ray bursts, and functioned from April 1991- June 2000. It
searched for GRBs and long-lived sources of GRBs. It was designed to trigger on
changes of photon counts above a certain background level that was roughly 5.5
times the background photon count. The BATSE satellite was equipped with a four
energy channel discriminator datatype known as DISCSC. Channel 1 had a range of
25-50 keV, channel 2 had a range of 50-100 keV, channel 3 had a range of 100-300 keV,
and channel 4 had a range greater than 300 keV.

2.0.1 Gamma-ray detector instruments on BATSE satellite

There were eight detector modules on the BATSE satellite, each at one of the satellites
corners. Each module consisted of two different NaI(Tl) scintillation detectors; a
Large Area Detector (LAD) and a Spectroscopy Detector (SD). The LAD had a range
of 20 KeV to 2 MeV, while the Spectroscopy Detector extended the upper energy
range to 8 MeV.

Large Area Detectors

The primary detector of the BATSE satellite was the Large Area Detectors (LAD). A
disc-shaped NAI(TI) crystal 1.27 cm thick and 50.8 cm in diameter, un-collimated for
a large field of view, made up the LAD.

An optical window was created by mounting the crystal to a 1.91 cm layer of
fused quartz and was attached to a light collection cone. Three 12.7 cm diameter
photomultiplier tubes were coupled to the cone to collect the scintillation light. The
outer layers of the collection cone were made of lead and tin, to act as a passive
shield from gamma-rays coming from the back of the detector, and was effective up
to 300-400 keV. The interior wall was coated with the highly reflective barium sulfate
(BaSO4).

The charged-particle detector (CPD) was located in front of the LAD. The CPD
was a 0.64 cm thick scintillator that was also used as a shield against charged par-
ticles. The scintillator was in the shape of an octagon with a width of 55.9 cm and
was enclosed between two aluminum layers. Two 5.05 cm photomultiplier tubes
attached to the plastic collected the scintillation light. The CPD and LAD worked
in anti-coincidence mode and rejected events that were registered in both detectors.
The energy threshold was approximately 500 KeV and the coincidence grating time
was 2 µs (Gerald J Fishman, C. A. Meegan, et al., 1994).

The LAD had a higher sensitivity than the Spectroscopy Detectors (SD) due to
its large detection area and offered a high energy resolution with a fine temporal
resolution. To keep the 511 KeV electron annihilation line position in the detector’s
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FIGURE 2.1: The effective detection energy windows of the BATSE
satellite. Image adapted from Fishman et al., 1985.

TABLE 2.1: BATSE Instrument Characteristics

BATSE Instrument Characteristics
Detectors
Number of Detectors Eight Large Area Detectors (LAD)

Eight Spectroscopy Detectors (SD)
Field of View Full Sky
Sensitive Area 2025 cm2 per LAD

127 cm2 per SD
Energy Range 20 KeV - 1.9 MeV for LAD

10 KeV - 100 MeV for SD
Experiment Sensitivities
Burst Sensitivity Eight Large Area Detectors (LAD) 3 × 10−8

ergs/cm2 (1 sec burst)
Time Resolution 2 s minimum
Burst Location Accuracy 4.0 (strong burst)
Occulation Sensitivity (3) 100 mCrab (30-100 keV, one day)
FOB1 Pulsed Source Sensitivity (3) 0.12 pulsed Crab (30-259 keV, typical day)
FOG2 Pulsed Source Sensitivity (3) 0.05 pulsed Crab (30-250 keV, typical day)
1 Folded-On-Board with special hardware
2 Folded-On-Ground
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FIGURE 2.2: A BATSE detector module, containing both the LAD and
the SD. Image adapted from Fishman et al., 1985.
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channel space constant, the LAD used automatic gain control to stabilize the energy
gain by adjusting the high voltage applied to the photomultiplier tubes. Each LAD
had its energy range nearly fixed to 30 - 200 KeV during the mission.

Spectroscopy Detectors

The Spectroscopy Detectors (SDs) were also un-collimated NaI(TI) scintillation detec-
tors, in the shape of a cylinder that was 7.62 cm thick with a 12.7 cm diameter. It
was coupled directly to a photomultiplier tube, which was identical to the photo-
multiplier tubes used for the LADs. The tin and lead housing of the photomultiplier
tube provided a passive shielding similar to the shielding used for the light collec-
tion cones of the LADs. The SD was mounted below the LAD on the BATSE module.
The SD provided a much finer energy resolution then the LAD due to its geometry.
A diagram of the SD is shown in 2.2. The gains of the SDs were commandable from
the ground, unlike the LADs, which allowed broader energy coverage from as low
as 5 KeV to as high as 20 MeV (Gerald J Fishman, C. A. Meegan, et al., 1994).

2.0.2 Statistical Properties of BATSE GRBs

The temporal and spatial occurrences of BATSE GRB events appear to be completely
random, with each event’s occurrence time and location in the sky completely in-
dependent of other events. As illustrated in Figure 2.3, the distribution of GRBs
throughout the universe appears to be isotropic, and is not biased from one partic-
ular source but rather uniformly distributed in the sky. These observations provide
strong evidence for cosmological origins of both classes of short and long duration
GRBs.

Four main attributes are typically used to characterize the prompt gamma-ray
emissions of gamma-ray bursts: the observed duration of the event (T90), the fre-
quency of energy release (bolometric fluence, Sbol), the peak brightness (bolometric
peak flux Pbol), and the total energy received (observed peak energy, Ep). These are
also known as the observed properties of a GRB, as seen from the reference frame of
Earth. These observed properties are well illustrated in Figure 2.4.

The intrinsic properties of a GRB are these same properties measured with re-
spect to the rest frame of a GRB, and are denoted as the rest-frame (intrinsic) du-
ration (T90z), the total isotropic emission (Eiso), the isotropic peak luminosity (Liso),
and the intrinsic spectral peak energy Epz. Note that the use of the variable z in the
subscripts is to indicate that the quantity is computed within the rest-frame of the
event. With redshift (distance) information the intrinsic properties of a GRB are un-
known to us. With the knowledge of redshift, however, they can be calculated using
the following mapping equations:

Liso = 4π × dL(z)2 × Pbol (2.1)

Eiso = 4π × dL(z)2 × Sbol/(z + 1) (2.2)
Epz = Ep × (z + 1) (2.3)
T90z = T90/(z + 1)α (2.4)

As seen in the equations above, there are also two other terms present: the cos-
mological luminosity distance (dL(z)) and the redshift (z). The luminosity distance
is dependent on the redshift and is given by (Amir Shahmoradi, 2013a)
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FIGURE 2.3: An illustration of the sky distribution of 2704 gamma-
ray bursts detected by the BATSE instrument during nine years of
observations. The bursts are isotropically distributed in the sky and
located at cosmological distances far beyond the Milky Way Galaxy.

Image credited to the NASA BATSE Team.
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FIGURE 2.4: An illustration of the typical light-curve of a GRB. The
x-axis represents the time since the GRB trigger was detected in sec-
onds. The y-axis represents the differential energy flux, measured in
KeV per cm2. The z-axis represents the BATSE Energy Channel. For
each GRB in our sample, we define a proxy measure of the spectral
peak energy (Ep) by defining a spectral quantity known as the Hard-
ness Ratio. The Hardness Ratio is computed by dividing the sum of
total energy received in channels 3 and 4 to the sum of the energy re-
ceived in channels 1 and 2 of the BATSE detectors. Amir Shahmoradi
and Robert J Nemiroff, 2010 show that the Hardness Ratio is strongly
and positively correlated with the spectral peak energies of BATSE

GRBs.
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FIGURE 2.5: An illustration of the redshift distribution of GRBs as
observed by the Fermi and Swift satellites. (Credits Berger, Har-

vard/CfA)

DL(z) =
C
H0

(1 + z)
∫ z

0
dz′
[
(1 + z′)3ΩM + ΩΛ

]−1/2
(2.5)

where C represents the speed of light, H0 represents the Hubble constant, and ΩM
& ΩΛ represent the Dark Matter and Dark Energy fractions in the universe, respec-
tively. The cosmological parameters in 2.5 are set to h = 0.70, ΩM = 0.27, and
ΩΛ = 0.73 (Jarosik et al., 2011).

Redshift Distribution

As mentioned before, the redshift distributions of BATSE GRBs are almost com-
pletely unknown. However, some studies (Amir Shahmoradi, 2013b; Amir Shah-
moradi, 2014; Amir Shahmoradi and Robert J Nemiroff, 2015; Amir Shahmoradi
and Robert J Nemiroff, 2015) indicate that the majority of BATSE GRBs originate
from redshifts of 5 or less. Other more recent missions have had much more success
in generating catalogs of GRBs with measured redshifts. For example, the distribu-
tion of the redshifts of SWIFT GRBs is shown in figure 2.5.

The spectral Peak Energies of BATSE GRBs

For many years, the BATSE catalog of GRBs only reported the basic properties of
the prompt emissions of BATSE GRBs, most importantly, peak photon flux, the total
energy received, and the observed T90 duration, defined as the interval within which
90% of the gamma-ray emission is received from the GRB event.
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FIGURE 2.6: The relationship between the hardness ratio and the
peak energy of BATSE GRB samples. All three models shown ex-
hibit a strong correlation (as shown by the solid black line). The hard-
ness ratio is used to calculate the peak energy, and using this attribute
along with the other intrinsic values of GRBs the redshift can be cal-

culated.

The spectral peak energies of BATSE GRBs however, have proven more difficult
to compute, as their computation requires a careful analysis of the time-integrated
spectra of events. In response to the need for knowing the peak energies of BATSE
GRBs, Amir Shahmoradi and Robert J Nemiroff, 2010; Shahmoradi and Nemiroff,
2011b discovered and quantified a tight relationship between an easily measured
quantity from the BATSE catalog and the known spectral peak energies of a lim-
ited sample of bright BATSE GRBs (Figure 2.6). This quantity, named the Hardness
Ratio (HR), is the ratio of the sum of the total energy received (i.e., energy fluence)
in channels 4 and 3 of the BATSE LAD detectors to the sum of the energy fluence
received in channels 2 and 1 of the BATSE LADs (Amir Shahmoradi and Robert J
Nemiroff, 2010). Channels 3 and 4 of the BATSE LAD detectors measured within the
energy range of 300-2000 keV, while channels 1 and 2 measured within the 20-300
KeV energy range.

Using this proxy measure, Amir Shahmoradi and Robert J Nemiroff, 2010 were
able, for the first time, to estimate the observed spectral peak energies of >2130
BATSE GRBs, and reconstruct the distribution of the BATSE spectral peak energies
as illustrated in Figure 2.7.

The knowledge of the peak energies together with duration measurements then
enabled Amir Shahmoradi, 2013b; Amir Shahmoradi, 2013a; Amir Shahmoradi, 2014;
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FIGURE 2.7: Left: The probability distribution function of the ob-
served peak energy (Ep,obs). The black solid line is the distribution
of 2130 BATSE GRBs Ep,obs, and the small inserted graph represents
the residuals of the fit. The two green lines are the mixture decompo-
sition of the BATSE catalog Ep,obs into two Gaussians. The two Gaus-
sians could represent the Ep,obs of BATSE LGRBs (peaking at 140 KeV)
and the Ep,obs of BATSE SGRBs (peaking at 520 KeV). Figures adapted

from Amir Shahmoradi and Robert J Nemiroff, 2010

Amir Shahmoradi and Robert J Nemiroff, 2015 to perform a minimally-biased ho-
mogeneous fuzzy (probabilistic) classification of BATSE GRBs into the two major
classes of short and long GRBs. The resulting two classes are illustrated in Figure 2.8

The distributions of four main observational properties of BATSE GRBs for the
two classes of short and long durations are illustrated in Figure 2.9.
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FIGURE 2.8: The classification of 1966 BATSE GRBs into short and
long gamma-ray bursts. The observed duration (T90), measured peak
flux (Pbol), and fluence (Sbol) are taken from the current BATSE cat-
alogue. The measured spectral peak energies are taken from Amir
Shahmoradi and Robert J Nemiroff, 2010. A fuzzy C-means clustering
algorithm using the T90 and Ep GRB variables was used to separate
the subcategories of GRBs. Figure adapted from Amir Shahmoradi

and Robert J Nemiroff, 2015.
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FIGURE 2.9: Histograms showing how the distributions of the four
main attributes of gamma-ray bursts compare between long and short

bursts.
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Chapter 3

Methodology

3.1 The Need for Bayesian Probability Theory

As stated back in section 2.0.2 we have four equations that relate the intrinsic prop-
erties to the quantities we have observed. The problem, however, is that we have
two unknowns in each equation; the unknowns being the intrinsic properties and
redshift. Algebraically we cannot solve this. However, as we show in this body of
work, we can still use the principles of the Bayesian probability theory to solve this
problem.

In the following sections, I explain some of the foundations of Bayesian proba-
bility theory that are required for the subsequent analysis presented in this work.

3.2 Foundation of Bayesian Probability Theory

A careful look at the history of Probability Theory reveals that there have been three
major definitions for probability. The Classical probability theory that began in the
18th century, defines probability as the degree of belief that an outcome will occur,
and allows for prior knowledge to be used in the inference. Around the beginning
of the 19th century, an alternative definition of probability known as the Frequentist
probability emerges which defines probability as the relative frequency of occur-
rence of an outcome. This new paradigm does not allow for prior knowledge to be
used in the inference.

At the beginning of the 20th century a new movement, in particular, from within
the fields of Physics and Economics, led to the resurgence of the classical definition
of the probability theory, with the foundations and formalism of the theory being
more rigorously than before. This notion of Probability has now become known as
Bayesian Probability Theory.

3.2.1 A simple intuitive proof of the Bayes’ Rule

The entire Bayesian Probability Theory revolves around a fundamental equation
known as the Bayes’ rule. A vigorous proof of Bayes’s theorem is beyond the scope
of this dissertation. Here I only present a simplified proof of the Bayes theorem via
Venn diagrams.

Suppose our entire universe is represented by a circle labeled ‘universe’, as shown
in figure 3.1. Within this circle, we are interested in the probability of us living in the
circle A. That probability is computed via this equation, represented as P(A), and
is defined as the area of A divided by the area of the universe U, represented as
P(A) = A/U. Similarly, if there is another circle B, the probability of us living in B
is given as P(B) = B/U.
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FIGURE 3.1: The proof of the Bayes Rule via Venn diagrams.

Now consider the case where both A and B overlap each other, created a joint
space AB. Then the probability of living in this joint space is the area of the overlap
section divided by the area of the universe, or P(AB) = AB/U.

Continuing further, what if we knew that we were in the circle B, and wanted to
know the probability of being in circle A? This probability is represented as P(A|B),
or ’the probability of A given B. To find this probability you would simply divide
the area of the overlap AB by the area of B. By dividing each term in the fraction
by the area of the universe U it can be shown that this is the same as the probability
P(AB) divided by P(B).

P(A|B) = AB
B

=
AB/U
B/U

=
P(AB)
P(B)

Similarly, if we knew that we were in the area A and wanted to find the probability
that we were also in B, that would be given by

P(B|A) =
AB
A

=
AB/U
A/U

=
P(AB)
P(A)

We can then rewrite this as

P(B|A) =
P(AB)
P(A)

=

(
P(AB)
P(B)

)
P(B)
P(A)

=
P(A|B)P(B)

P(A)

This is Bayes rule, which tells us that ’the probability of B given A is equal to the
probability of A given B times the probability of B divided by the probability of A.’

By convention unobservable parameters are represented by Greek letters in this
work. Observable quantities are represented by English letters and mathematical
sets are represented by script letters. Using this convention, the Bayes rule for a
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FIGURE 3.2: In this figure the methodology used to infer the redshifts
of BATSE GRBs is shown. The red lines represent a distribution of the
unknown intrinsic properties of a GRB, while the blue lines represent
a distribution of the known observed properties of a GRB, and the
black lines represent a distribution of the unknown redshift of the

GRB.

mathematical modeling problem can be written as,

π (θ|D, M) =
π (D|θ, M)π (θ|M)

π (D|M)
(3.1)

where probability is represented by π(·), while our data set is represented by D,
our model is represented by M, and the parameters of the model are represented by
θ. The term π (θ|D, M) represents the posterior distribution of the parameters given
the model and the observational data, π (D|θ, M) is the likelihood function, π (θ|M)
is the prior distribution representing our prior knowledge about the parameters of
the model, and π (D|θ, M) is a normalization constant, known as the evidence.

To understand the logic of the Multilevel Empirical Bayesian modeling, which
underlies this work, consider the following problem outlined in the section below.

3.2.2 An Illustration of the Methodology with a Toy Problem

Consider two distributions, one representing the intrinsic GRB properties and one
representing the redshift terms of the GRBs. By convolving these two distributions
the observed GRB distribution can be calculated.

Without loss of generality, suppose the observed properties of individual BATSE
SGRBs are exactly known, with no measurement error, as illustrated by the indi-
vidual blue-colored vertical lines in the bottom plot of Figure 3.2. The correspond-
ing redshifts of these events, (represented by the black lines in the middle plot of
Figure 3.2) are, however, unknown and we wish to estimate them. Although we
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have no knowledge of the joint population distribution of the intrinsic properties
of SGRBs, illustrated by the red distribution in the top plot of Figure 3.2, there are
strong arguments in favor of these properties being potentially well-described by
a 4-dimensional multivariate log-normal distribution, N (µ, Σ) in the space of Liso,
Eiso, Epz, and T90z (Amir Shahmoradi, 2013a; Amir Shahmoradi and Robert J Ne-
miroff, 2015). Here, µ and Σ represent the mean and the covariance matrix of the
multivariate log-normal distribution, respectively.

We now reach the crucial step in the inference process: Despite the complete
lack of information about the redshifts of BATSE SGRBs, we can use the existing
prior knowledge about the overall cosmic redshift distribution of SGRBs to integrate
over all possible redshifts for each observed SGRB in BATSE catalog to infer a range
of plausible values for the intrinsic properties of the corresponding SGRB. These
individually-computed probability density functions (PDFs) of the intrinsic proper-
ties can be then used to infer the unknown parameters (µ, Σ) of the joint population
distribution of the intrinsic properties of SGRBs (i.e., the multivariate log-normal
distribution).

Once the parameters (µ, Σ) are constrained, we can use the inferred population
distribution of the intrinsic SGRB properties together with the observed properties
to estimate the redshifts of individual BATSE SGRBs, independently of each other.
The estimated redshifts can be again used to further constrain N (µ, Σ) which will
then result in even tighter estimates for the individual redshifts of BATSE SGRBs.
This recursive progress can practically continue until convergence to a set of fixed
individual redshift estimates occurs.

At first glance, this simple semi-Bayesian mathematical approach may sound like
magic and perhaps, too good to be true. Sometimes it is. However, as explained in
the following sections, it can also lead to reasonably-accurate results if some condi-
tions regarding the problem and the observational dataset are satisfied.

3.3 Estimating the Unknown Redshifts of BATSE SGRBs

The lack of knowledge of the cosmic rate of SGRBs proves to be the largest source
of uncertainty when doing population studies. Very few redshifts are known, and
these are typically limited to the brightest events. However, as stated in the previous
section these limitations can be mitigated to some extent by the Bayesian Probabil-
ity Theory. In this section a more formal presentation of the Empirical multilevel
Bayesian methodology is provided. First, a probabilistic approach to estimating the
cosmic rates of SGRBs is presented. Then we use the constrained cosmic rates model
to infer the unknown redshifts of BATSE SGRBs.

3.3.1 Constraining the Cosmic Rates of Occurrence of SGRBs

Let Dg
obs,i, represent the ith SGRB event, with the four main GRB prompt emission

properties,
Dg

obs,i = [Pbol,i, Sbol,i, Ep,i, T90,i] . (3.2)

These are essentially the values reported both in the BATSE catalog and in Amir
Shahmoradi and Robert J Nemiroff (2010).

The entire BATSE dataset of 565 SGRB events attributes can then be represented
as the collection of these events,

Dg
obs =

{
Dg

obs,i : 1 ≤ i ≤ 565
}

(3.3)
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The peak brightness, Pbol, is included in our GRB world model as it, along with
Ep, determines the peak photon flux, Pph, in the 50− 300 [keV] range.

Given the available observed BATSE dataset, Dg
obs, the primary goal in estimat-

ing the redshift values is to constrain the probability density functions of the red-
shifts of individual BATSE SGRBs. To do this, the process of SGRB observation is
modeled as a non-homogeneous Poisson process whose mean rate parameter is the
‘observed’ cosmic SGRB rate,Rcen.

Each SGRB can be described as having the intrinsic properties,

Dg
int,i = [Liso,i, Eiso,i, Epz,i, T90z,i] (3.4)

Dint,i = {D
g
int,i, zi : 1 ≤ i ≤ 565} (3.5)

in the 5-dimensional attributes space, Ω(Dint), of the 1024 [ms] isotropic peak
luminosity (Liso), the total isotropic emission (Eiso), the intrinsic spectral peak energy
(Epz), and the intrinsic duration (T90z), as a function of the parameters, θobs, of the
observed SGRB rate model,Rcen. The probability of these SGRBs occurring with the
given properties is then given by,

π
(

Dint,i|Rcen, θobs
)

∝ Rcen
(

Dint,i, θobs
)

(3.6)

where the term Rcen represents the BATSE-censored rate of SGRB occurrence in
the universe. This can also be rewritten in terms of the intrinsic cosmic SGRB rate,
Rtru, along with the BATSE detection efficiency function, ηeff, as

dNobs

dDint
= Rcen

(
Dint, θobs

)
,

= ηeff
(

Dint, θeff
)
×Rtru

(
Dint, θint

)
, (3.7)

for a given set of input intrinsic SGRB attributes, Dint, with θobs = {θeff, θint} as the
set of the parameters of our models for the BATSE detection efficiency and the intrin-
sic cosmic SGRB rate, respectively. Assuming that there is no systematic evolution
of SGRB characteristics with the redshift, the intrinsic SGRB rate itself can be written
as,

dNint

dDint
= Rtru

(
Dint, θint

)
= Rg

tru
(

Dg
int, θ

g
tru
)
× ζ̇(z, θz)dV/dz

(1 + z)
, (3.8)

with θint = {θg
tru, θz}, where Rg

tru is a statistical model, with θ
g
tru denoting its pa-

rameters, that describes the population distribution of SGRBs in the 4-dimensional
attributes space of Dg

int = [Liso, Eiso, Epz, T90z], and the term ζ̇(z, θz) represents the co-
moving rate density model of SGRBs with the set of parameters θz, while the factor
(1 + z) in the denominator accounts for the cosmological time dilation. The comov-
ing volume element per unit redshift, dV/dz, is given by (e.g., Winberg, 1972; Peebles,
1993),

dV
dz

=
C
H0

4πdL
2(z)

(1 + z)2

[
ΩM(1 + z)3 + ΩΛ

]1/2 , (3.9)
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with dL standing for the luminosity distance as given in (3.9). If the three rate mod-
els, (ζ̇, ηeff,R

g
tru), and their parameters were known a priori, one could readily com-

pute the PDFs of the set of unknown redshifts of all BATSE SGRBs,

Z =
{

zi : 1 ≤ i ≤ 565
}

, (3.10)

as,
π
(
Z|Dg

obs,Rcen, θobs
)

∝ Rcen
(
Z ,Dg

obs, θobs
)

. (3.11)

For a range of possible parameter values, the redshift probabilities can be com-
puted by marginalizing over the entire parameter space, Ω(θobs), of the model,

π
(
Z | Dg

obs,Rcen
)

=
∫

Ω(θobs)
π
(
Z|Dg

obs,Rcen, θobs
)

× π
(
θobs|D

g
obs,Rcen

)
dθobs . (3.12)

The problem, however, is that neither the rate models nor their parameters are
known a priori. Even more problematic is the circular dependency of the posterior
PDFs of Z and θobs on each other,

π
(
θobs | Dg

obs,Rcen
)

=
∫

Ω(Z)
π
(
θobs

∣∣Z ,Dg
obs,Rcen

)
× π

(
Z
∣∣Dg

obs,Rcen
)

dZ . (3.13)

Therefore, we adopt the following methodology, which is reminiscent of the Em-
pirical Bayes (Robbins, 1985) and Expectation-Maximization algorithms (Dempster,
Laird, and Rubin, 1977), to estimate the redshifts of BATSE SGRBs. First, we propose
models for (ζ̇, ηeff,R

g
tru), whose parameters have yet to be constrained by observa-

tional data. Given the three rate models, we can then proceed to constrain the free
parameters of the observed cosmic SGRB rate,Rcen, based on BATSE SGRB data.

The most appropriate fitting approach should take into account the observa-
tional uncertainties and any prior knowledge from independent sources. This can be
achieved via the multilevel Bayesian methodology (e.g., Amir Shahmoradi, 2017) by
constructing the likelihood function and the posterior PDF of the parameters of the
model, while taking into account the uncertainties in observational data (e.g., Eqn.
61 in Amir Shahmoradi, 2017; Amir Shahmoradi and Robert J Nemiroff, 2019),

π
(
θobs|D

g
obs,Rcen

)
= exp

(
−
∫

Ω(Dint)
Rcen

(
D∗int, θobs

)
dD∗int

)
×

565

∏
i=1

ηeff
(

Dg
obs,i, θeff

) ∫ z∗=+∞

z∗=0
Rtru

(
Dg

obs,i, z∗, θint
)
dz∗, (3.14)

where (3.14) holds under the assumptions of independent and identical distribu-
tion (i.e., the i.i.d. property) of BATSE SGRBs, and no measurement uncertainty in
the observational data, except redshift (z) which is completely unknown for BATSE
SGRBs.

Once the posterior PDF of the model parameters is obtained, it can be plugged
into (3.12) to constrain the redshift PDF of individual BATSE SGRBs at the second
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level of modeling.

3.3.2 The SGRB Redshift Prior Knowledge

The main assumption in this work is that SGRBs are due to the coalescence of bi-
nary Neutron stars or the merger of a Neutron star and a black hole. It is widely
believed that the binary mergers require significant cosmological time to occur af-
ter the deaths of the parent stars and the formations of the Neutron stars. In this
scenario, the cosmic rate of SGRBs follows the Star Formation Rate (SFR) convolved
with a distribution of the delay time between the formation of a binary system and its
coalescence due to gravitational radiation.

There is currently no consensus on the statistical moments and shape of the dis-
tribution of the delay time between the deaths of supermassive stars and their subse-
quent coalescence to form SGRBs, solely based on observations of individual events
and their host galaxies. The median delays vary widely in the range of ∼ 0.1− 7
billion years depending on the assumptions involved in estimation methods or in
the dominant binary formation channels considered. Recent results from popula-
tion synthesis simulations however, favor very short delay times of a few hundred
million years with a long negligible tail towards several billion years (e.g., Amir
Shahmoradi and Robert J Nemiroff, 2015).

The computational expenses and limitations imposed on this work strongly limit
the number of possible scenarios that could be considered for the cosmic rate of short
GRBs. Thus, in order to approximate the comoving rate density ζ̇(z) of SGRBs, we
adopt the Star Formation Rate (SFR) model, ζ̇, described in Amir Shahmoradi and
Robert J Nemiroff, 2015 in the form of a piecewise power-law function,

ζ̇(z) ∝


(1 + z)γ0 z < z0

(1 + z)γ1 z0 < z < z1

(1 + z)γ2 z > z1 ,

(3.15)

with parameters,

θz = (z0, z1, γ0, γ1, γ2) = (0.993, 3.8, 3.3, 0.055,−4.46) (3.16)

This SFR model is then convolved with a log-normal model of the delay time
distribution (e.g., Amir Shahmoradi and Robert J Nemiroff, 2015),

LN (τ|µ, σ) ∝
1

τσ
e−

(ln τ−µ)2

2σ2 (3.17)

with parameters [µ, σ] = [log(0.1), 1.12] in units of billion years (Gyrs) adopted
from (e.g., Amir Shahmoradi and Robert J Nemiroff, 2015), such that the comoving
rate density of SGRBs is calculated as,

ζ̇(z) ∝
∫ ∞

z
SFR

(
z′
)
LN

(
t(z)− t(z′)

) dt
dz′

dz′, (3.18)

with the universe’s age t(z) at redshift z given by,

t(z) =
1

H0

∫ ∞

z

dz′

(1 + z′)
√
(1 + z′)3ΩM + ΩΛ

, (3.19)
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3.3.3 The SGRB Properties Rate Model: Rg
tru

As for the choice of the statistical model for the joint distribution of the four main in-
trinsic properties of SGRBs, Dg

int, a multivariate log-normal distribution,Rg
tru ≡ LN ,

is assumed in this work, whose parameters (i.e., the mean vector and the covariance
matrix), θ

g
tru = {µ, Σ}, will have to be constrained by data. The justification for

the choice of a multivariate log-normal as the underlying intrinsic population dis-
tribution of SGRBs is multi-folded. First, the observed joint distribution of BATSE
SGRB properties highly resembles a log-normal shape that is censored close to the
detection threshold of BATSE. Second, unlike power-law distribution which has tra-
ditionally been the default choice of model for the luminosity function of SGRBs, log-
normal models provide natural upper and lower bounds on the total energy budget
and luminosity of SGRBs, eliminating the need for setting artificial sharp bounds on
the distributions to properly normalize them. Third, log-normal along with Gaus-
sian distribution, are among the most naturally-occurring statistical distributions in
nature, whose generalizations to multi-dimensions are also well studied and under-
stood. This is a highly desired property especially for our work, given the overall
mathematical and computational complexity of the model proposed and developed
here.

3.3.4 The BATSE Detection Threshold: ηeff

Compared to Fermi Gamma-Ray Burst Monitor (C. Meegan et al., 2009) and Neil
Gehrels Swift Observatory (Gehrels et al., 2004; Lien et al., 2016), BATSE had a rel-
atively simple triggering algorithm. The BATSE detection efficiency and algorithm
have been already extensively studied by the BATSE team as well as independent
authors (e.g., Amir Shahmoradi and Robert J Nemiroff, 2010; Shahmoradi and Ne-
miroff, 2011a; Amir Shahmoradi, 2013a; Amir Shahmoradi and Robert J Nemiroff,
2015). However, simple implementation and usage of the known BATSE trigger
threshold for modeling the BATSE catalog’s sample incompleteness can lead to sys-
tematic biases in the inferred quantities of interest. BATSE triggered on 2702 GRBs,
out of which only 2145, or approximately 79%, have been consistently analyzed
and reported in the current BATSE catalog, with the remaining 21% either having a
low accumulation of count rates or missing a full spectral/temporal coverage (Amir
Shahmoradi and Robert J Nemiroff, 2015). Thus, the extent of sample incomplete-
ness in the BATSE catalog is likely not fully and accurately represented by the BATSE
triggering algorithm alone.

BATSE LADs generally triggered on a GRB if the number of photons per 64, 256,
or 1024 [ms] arriving at the detectors in 50− 300 [keV] energy window, Pph, reached
a certain threshold in units of the background photon count fluctuations, σ. This
threshold was typically set to 5.5σ during much of BATSE’s operational lifetime.
However, the naturally-occurring fluctuations in the average background photon
counts effectively lead to a monotonically increasing BATSE detection efficiency as a
function of Pph, instead of a sharp cutoff on the observed Pph distribution of SGRBs.

Although the detection efficiency of most gamma-ray detectors depends solely
on the observed peak photon flux in a limited energy window, the quantity of interest
that is most often modeled and studied is the bolometric peak ‘energy’ flux (Pbol). This
variable depends on the observed peak photon flux and the spectral peak energy
(Ep) for the class of LGRBs (e.g., Amir Shahmoradi, 2013a), also on the observed
duration (e.g., T90) of the burst for the class of SGRBs (Amir Shahmoradi and Robert
J Nemiroff, 2015). The effects of GRB duration on the peak flux measurement is very
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FIGURE 3.3: An illustration of the higher detection probability of
short GRBs on 64ms timescale peak flux towards very short dura-
tions compared to the commonly used 1024ms peak flux definition
for LGRBs. The duration-dependence of the ratio of the two peak
flux definitions highlights the inadequacy of the conventional defini-
tion of peak flux based on 1024ms time binning for the detection of

short GRBs.

well illustrated in the left plot of Figure 4.2, where it is shown that for BATSE GRBs
with T90 . 1024ms, the timescale used for the definition of the peak flux does indeed
matter. This is particularly important in modeling the triggering algorithm of BATSE
Large Area Detectors when a short burst could be potentially detected on any of the
three different peak flux timescales used in the triggering algorithm: 64ms, 256ms
& 1024ms. Therefore, the following approach from Amir Shahmoradi and Robert J
Nemiroff (2015) is adopted to construct a minimally-biased model of BATSE trigger
efficiency for the population study of short-hard bursts.

First, since only one definition (i.e., timescale) of the bolometric peak flux can be
incorporated in the SGRB world model, we use the least biased definition of peak
flux for SGRBs – the 64ms timescale definition – in the GRB world model. Although,
this definition is duration-independent for virtually all BATSE GRBs, it becomes an
increasingly biased measure of the peak flux for very long duration GRBs (T90 � 1s)
close to the detection threshold. We then approximate the 3 discrete timescale trigger
efficiency of BATSE LADs with a sigmoidal function that increases monotonically
with increasing duration of the burst, from 64ms to 1024ms. In other words, we con-
vert the 64ms peak flux used in our GRB world model to an effective triggering peak
flux Peff [ergs s−1], for which the detection efficiency of BATSE becomes duration-
independent.
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To expand on this, consider an idealized GRB lightcurve containing only a single
square-shaped pulse with an exact duration of 64ms and a signal strength that is 4
times the required significance for its detection on a 64ms peak flux timescale. In
contrast, if there were only one triggering timescale 1024ms available on BATSE,
the signal strength of this 64ms event would fall right on the detection threshold of
BATSE LADs. Thus, a 64ms burst of peak flux P64 [ph s−1] would be equivalent to an
effective 1024ms peak flux,

Peff [ph s−1] =
1
4

P64 [ph s−1], (3.20)

for the triggering algorithm of BATSE on a 1024ms timescale.
In reality however, GRB lightcurves are far more diverse than a single square

pulse. Thus in order to build a more realistic model of BATSE LAD triggering algo-
rithm, we fit a complementary Error function of the mathematical form,

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt, (3.21)

to the logarithm of the ratio of 64ms to 1024ms peak fluxes (RP64/P1024) as a func-
tion of the observed duration (T90) of BATSE GRBs, as illustrated in the left plot of
Figure 4.2. The resulting best-fit function for RP64/P1024 has the form,

log
(

RP64/P1024

)
' 0.15

+ 0.56× erfc
(

log
(
T90
)
+ 0.48

1.05

)
. (3.22)

The effective triggering peak flux in the SGRB world model is then calculated
using the following relation,

log
(

Peff
)
' log

(
P64
)
− 1

2

(
log
(

RP64/P1024

)
− 0.15

)
. (3.23)

Once Peff is obtained, the approach of Amir Shahmoradi (2013a) is followed to
calculate the detection probability (η) of a given SGRB with an effective triggering
peak flux Peff,

η
(

detection |µthresh, σthresh, Liso, Epz, T90z, z
)

=
1
2
+

1
2
×

erf
(

log
(

Peff(Liso, Epz, T90z, z)− µthresh
)

√
2σthresh

)
, (3.24)

where µthresh & σthresh are the detection threshold parameters that are found by
fitting the SGRB world model to BATSE observational data, and Peff(Liso, Epz, T90z, z)
is the 1024ms effective triggering peak flux in BATSE energy range of detection , 50–
300[keV], calculated from the 64ms peak flux (P64(Liso, Epz, z) [ph s−1]) in BATSE
detection energy range using (3.23). The connection between the rest-frame GRB
parameters, Liso&Epz, z, and the 64ms peak flux P64 is obtained by fitting a smoothly
broken power-law known as the Band model (Band et al., 1993) of the mathematical
form,
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Φ(E) ∝

Eα e
(
− (1+z)(2+α)E

Epz

)
if E ≤

( Epz
1+z

)( α−β
2+α

)
,

Eβ if otherwise.
(3.25)

to SGRBs differential photon spectra, such that,

P64
(

Liso, Epz, z
)
=

Liso

4πDL
2(z)

∫ 300
50 Φ d E∫ 20000/1+z

0.1/1+z
EΦ d E

, (3.26)

where dL(z) is the cosmological luminosity distance. In order to bring the above
calculations into the realm of current computational technologies, we simplify the
integration limits in the denominator of (3.26) to a redshift-independent energy range
[0.1keV, 20MeV] and fix the low– & high– energy photon indices of the Band model
of (3.25) to their corresponding population averages α = −1.1 & β = −2.3. Amir
Shahmoradi (2013a) and Amir Shahmoradi and Robert J Nemiroff (2015) shows that
these simplifications result in uncertainty of < 0.05dex in the estimated peak flux,
which is negligible compared to the existing systematic biases in BATSE data. The
interested reader is referred to Appendix to the uncertainties in the spectral peak en-
ergy estimates of Amir Shahmoradi and Robert J Nemiroff (2010) used in this work.
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Chapter 4

Results

4.1 The Cosmic Rate Model Fitting

Now, with a statistical model at hand for the observed rate of short GRBs, we pro-
ceed by first fitting the proposed censored cosmic SGRB rate model, Rcen to 565
BATSE SGRB data under the redshift distribution scenario prescribed in the previ-
ous section. The posterior PDF of parameters of the cosmic rate model of SGRBs
is explored by a Parallel Delayed-Rejection Adaptive Metropolis-Hastings Markov Chain
Monte Carlo algorithm (the ParaDRAM algorithm) that we have developed for such
sampling tasks as part of a larger Monte Carlo simulation package named Para-
Monte available in C/C++/Fortran/MATLAB/Python programming languages∗ (e.g.,
Amir Shahmoradi, 2013a; Amir Shahmoradi, 2013b; Amir Shahmoradi, 2014; Amir
Shahmoradi and Robert J Nemiroff, 2015; A. Shahmoradi and R. J. Nemiroff, 2017a;
A. Shahmoradi and R. J. Nemiroff, 2017b; Amir Shahmoradi, 2018; Amir Shah-
moradi, 2019; Kumbhare and Amir Shahmoradi, 2020; Amir Shahmoradi, Bagheri,
and Kumbhare, 2020).

However, due to the complex truncation imposed on SGRB data and the world
model by the BATSE detection threshold, maximization of the posterior distribution
of the parameters of the cosmic rate model of SGRBs is not only analytically in-
tractable but also computationally, extremely complex. Calculation of the posterior
distribution as given by (3.14) requires a multivariate integral over the 4-dimensional
space of SGRB variables at any given redshift. In addition, due to lack of redshift (z)
information for BATSE SGRBs, the probability for observation of each SGRB given
the model parameters must be marginalized over all possible redshifts, adding an-
other layer of integration to the 4-dimensional integration. These numerical inte-
grations make sampling from the posterior distribution of the parameters of the
SGRBs cosmic rate model an extremely difficult task. Therefore, the inclusion of the
measurement uncertainties, which would make the computations far more complex,
were not considered in this work.

The joint posterior distribution of the model parameters is then obtained by iter-
ative sampling using a variant of Markov Chain Monte Carlo (MCMC) techniques
known as Adaptive Metropolis-Hastings (e.g., Haario, Saksman, Tamminen, et al.,
2001). To further the efficiency of MCMC sampling, we implement all algorithms
in Fortran (Backus, 1978; Metcalf, Reid, and Cohen, 2011), and approximate the nu-
merical integration in the definition of the luminosity distance of Eqn. 2.5 by the
analytical expressions of Wickramasinghe and Ukwatta (2010). This integration is
encountered on the order of billion times during the MCMC sampling of the poste-
rior distribution.

∗Available at: https://github.com/cdslaborg/paramonte

https://github.com/cdslaborg/paramonte
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The computations are performed on 96 processors in parallel on two Skylake
compute-nodes of the Stampede2 supercomputer at Texas Advanced Computing
Center. Extensive tests we performed to ensure a high level of accuracy of the high-
dimensional numerical integrations involved in the derivation of the posterior dis-
tribution of the parameters of the censored cosmic rate model for SGRBs as given
in (3.14). The resulting best-fit parameters the cosmic SGRB rate model are summa-
rized in 4.1, and the marginal distributions of their parameters are compared with
each other in Figure 4.1.

FIGURE 4.1: The marginal posterior distributions of the 16 parame-
ters of the SGRB world model, for the cosmic SGRB redshift distribu-
tion of Amir Shahmoradi and Robert J Nemiroff, 2015 considered in

this work.

Once the parameters of the censored cosmic rate model (3.7) are constrained,
we use the calibrated model at the second level of the analysis to further constrain
the PDFs of the unknown redshifts of individual BATSE LGRBs according to (3.12).
Similar to the Empirical Bayes methodology, this iterative process can continue until
convergence to a specific set of redshift PDFs occurs. However, given the computa-
tional complexity and the expense of each iteration, the iterative refinement process
is stopped after obtaining the first round of estimates. This is also a common practice
in the Empirical Bayes modeling.

The mean redshifts together with 50% and 90% prediction intervals for the three
rate density scenarios are also reported in Table 5. On average, the redshifts of in-
dividual BATSE SGRBs can be constrained to within a 50% uncertainty range of
0.51. At 90% confidence level, the prediction intervals expand to wider a uncertainty
range of 1.31. Figure 4.2 shows the derived Probability Density Functions (PDFs) of
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TABLE 4.1: Mean best-fit parameters of SGRB World Model, com-
pared to LGRB world model of Amir Shahmoradi (2013a).

Parameter SGRBs World Model LGRBs World Model
Redshift Parameters (Equation 3.15)

z0 0.993 0.993
z1 3.8 3.8
γ0 3.3 3.3
γ1 0.0549 0.0549
γ2 −4.46 −4.46

Log-normal Merger Delay (Equation 3.17)
µdelay 0.1 –
σdelay 1.12 –

Location Parameters
log10(Liso) 51.88± 0.16 51.54± 0.18
log10(Eiso) 50.93± 0.19 51.98± 0.18
log10(Epz) 2.98± 0.05 2.48± 0.05
log10(T90z) −0.74± 0.08 1.12± 0.03

Scale Parameters
log10(σLiso) −0.36± 0.06 −0.25± 0.06
log10(σEiso) −0.10± 0.04 −0.08± 0.03
log10(σEpz) −0.39± 0.02 −0.44± 0.02
log10(σT90z) −0.24± 0.02 −0.37± 0.01

Correlation Coefficients
ρLiso−Eiso 0.91± 0.03 0.94± 0.01
ρLiso−Epz 0.51± 0.10 0.45± 0.07
ρLiso−T90z 0.50± 0.09 0.48± 0.09
ρEiso−Epz 0.60± 0.06 0.58± 0.04
ρEiso−T90z 0.63± 0.05 0.60± 0.05
ρEpz−T90z 0.12± 0.06 0.31± 0.04

BATSE Detection Efficiency (Eqn. 3.24)
µthresh −0.25± 0.03 −0.45± 0.02

log10(σthresh) −0.86± 0.05 −0.90± 0.05
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a subset of 565 BATSE SGRBs. As illustrated, the redshifts of some BATSE events
can be better constrained than other events.

FIGURE 4.2: An illustration of the derived Probability Density Func-
tions (PDFs) of a subset of 565 BATSE SGRBs. Each curve corresponds
to the inferred likelihood of different values of redshift (z) for a single

BATSE SGRB.
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Chapter 5

Discussion and Concluding
Remarks

In this work, a semi-Bayesian methodology was proposed to infer the unknown red-
shifts of 565 BATSE catalog SGRBs. Towards this, first, the two populations of BATSE
LGRBs and SGRBs were segregated using the fuzzy C-means classification method
based on the observed duration and spectral peak energies of 1966 BATSE GRBs
with available spectral and temporal information. Then the process of SGRB detec-
tion was modeled as a non-homogeneous spatiotemporal Poisson process, whose
rate parameter is modeled by a multivariate log-normal distribution as a function
of the four main SGRB intrinsic attributes: the 1024 [ms] isotropic peak luminos-
ity (Liso), the total isotropic emission (Eiso), the intrinsic spectral peak energy (Epz),
and the intrinsic duration (T90z). To calibrate the parameters of the rate model, a
fundamental assumption was made: SGRBs trace the Cosmic Star Formation Rate
(SFR) convolved with a model for the binary Neutron star merger delay distribution.
Then the resulting posterior probability densities of the model parameters were used
to compute the probability density functions of the redshifts of individual BATSE
LGRBs.

The major conclusion of this work is that, although sample incompleteness may
strongly affect an observational dataset, the Bayesian probability theory can enable
us to overcome the limitations of the observational sample by constraining the un-
knowns and biases present in the dataset via our prior knowledge of different as-
pects of the problem at hand.

While being a remote possibility, one of the potential caveats of the presented
redshift estimates catalog is that, if an LGRB has been mistakenly classified as an
SGRB in this catalog of 565 by the fuzzy C-means classification method, then its es-
timated redshift may not be accurate. Also, this work did not take into account the
potential effects of the GRBs’ jet beaming angle. A recent study by Lazzati et al.
(2013) finds that the different orientations of the GRB jet axis with respect to the ob-
server could partially explain the observed GRB brightness-hardness type relations.
Such an effect could potentially lead to more uncertainty in the predicted redshifts.
These are among improvements that could be made in the future to the presented
mathematically-rigorous, purely-probabilistic, bias-aware approach to estimating or
further constraining the unknown redshifts of GRBs in the currently-available and
future GRB catalogs.
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BATSE 565 SGRB Redshift Estimates

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

108 1.62 1.58 1.05 1.35 1.58 1.85 2.30
138 1.50 1.47 0.99 1.26 1.48 1.71 2.12
185 1.08 1.02 0.70 0.91 1.06 1.23 1.54
207 0.77 0.75 0.50 0.64 0.76 0.88 1.09
218 1.89 1.86 1.24 1.59 1.86 2.15 2.64
229 1.39 1.36 0.92 1.17 1.36 1.58 1.95
254 1.22 1.17 0.83 1.03 1.19 1.37 1.70
289 0.84 0.83 0.54 0.70 0.83 0.96 1.18
297 1.04 0.99 0.70 0.89 1.02 1.17 1.43
373 1.34 1.30 0.89 1.12 1.31 1.52 1.89
432 0.56 0.53 0.35 0.46 0.55 0.65 0.82
474 0.46 0.43 0.29 0.37 0.44 0.52 0.67
480 0.56 0.53 0.36 0.46 0.55 0.64 0.82
486 1.21 1.16 0.80 1.02 1.18 1.38 1.71
491 1.18 1.13 0.78 0.99 1.15 1.35 1.68
508 1.49 1.45 0.98 1.24 1.46 1.69 2.10
512 0.69 0.66 0.43 0.57 0.67 0.79 0.99
537 1.65 1.61 1.09 1.39 1.62 1.88 2.33
547 1.02 0.99 0.69 0.87 1.00 1.15 1.41
551 0.77 0.75 0.50 0.65 0.76 0.88 1.09
555 1.22 1.16 0.81 1.02 1.18 1.38 1.72
568 0.80 0.79 0.53 0.68 0.79 0.92 1.13
575 0.97 0.98 0.65 0.83 0.96 1.10 1.35
603 0.84 0.83 0.55 0.71 0.83 0.96 1.18
677 0.48 0.46 0.30 0.40 0.47 0.56 0.71
729 0.87 0.86 0.56 0.73 0.86 0.99 1.22
734 1.32 1.27 0.88 1.11 1.29 1.51 1.87
788 1.11 1.04 0.73 0.93 1.08 1.25 1.57
799 0.93 0.93 0.59 0.78 0.92 1.06 1.33
809 1.01 0.99 0.67 0.86 0.99 1.13 1.40
830 0.68 0.66 0.44 0.57 0.67 0.78 0.98
834 2.48 2.47 1.61 2.09 2.45 2.83 3.46
836 1.37 1.34 0.90 1.15 1.34 1.55 1.92
845 2.05 2.02 1.34 1.72 2.02 2.33 2.88
856 1.18 1.13 0.78 0.99 1.15 1.35 1.68
867 1.65 1.60 1.08 1.38 1.61 1.88 2.34

Continued on Next Page . . .
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

878 1.05 0.99 0.70 0.89 1.03 1.18 1.46
906 1.06 1.00 0.72 0.90 1.04 1.19 1.47
909 2.89 2.89 1.90 2.44 2.85 3.30 3.96
929 1.59 1.56 1.05 1.34 1.56 1.81 2.23
936 0.91 0.91 0.61 0.78 0.90 1.03 1.27
942 2.36 2.34 1.54 1.99 2.33 2.69 3.31
974 2.76 2.76 1.82 2.33 2.73 3.15 3.79

1051 1.17 1.13 0.78 0.99 1.15 1.33 1.65
1073 1.10 1.04 0.74 0.93 1.08 1.24 1.53
1076 0.61 0.59 0.39 0.51 0.60 0.70 0.89
1088 0.47 0.44 0.30 0.39 0.46 0.54 0.69
1096 1.11 1.05 0.73 0.93 1.09 1.27 1.58
1097 0.97 0.98 0.64 0.83 0.96 1.10 1.36
1102 0.94 0.94 0.62 0.79 0.92 1.06 1.30
1112 1.40 1.36 0.93 1.18 1.37 1.58 1.95
1128 1.27 1.23 0.83 1.06 1.24 1.45 1.80
1129 1.79 1.78 1.17 1.51 1.76 2.04 2.52
1154 0.92 0.92 0.61 0.78 0.91 1.04 1.28
1211 1.21 1.17 0.81 1.02 1.19 1.37 1.70
1223 1.72 1.68 1.11 1.43 1.69 1.97 2.47
1289 1.23 1.18 0.83 1.03 1.20 1.39 1.72
1308 0.84 0.83 0.53 0.70 0.83 0.96 1.18
1346 1.63 1.59 1.07 1.36 1.60 1.86 2.30
1359 1.02 0.99 0.68 0.87 1.00 1.14 1.41
1404 1.90 1.88 1.24 1.60 1.87 2.17 2.67
1435 2.19 2.17 1.40 1.83 2.15 2.50 3.08
1443 1.32 1.24 0.87 1.09 1.28 1.50 1.89
1453 0.56 0.54 0.36 0.46 0.55 0.65 0.82
1461 0.93 0.92 0.61 0.78 0.91 1.05 1.30
1481 1.81 1.74 1.15 1.49 1.76 2.08 2.64
1518 1.16 1.11 0.79 0.98 1.13 1.31 1.62
1546 1.05 0.99 0.68 0.88 1.02 1.19 1.51
1553 0.71 0.68 0.46 0.59 0.69 0.81 1.01
1566 0.87 0.86 0.57 0.73 0.86 0.99 1.21
1588 0.91 0.91 0.61 0.78 0.90 1.03 1.27
1634 1.23 1.18 0.83 1.04 1.20 1.39 1.71

Continued on Next Page . . .
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

1635 1.14 1.09 0.76 0.96 1.11 1.29 1.59
1636 1.95 1.88 1.24 1.61 1.91 2.24 2.83
1637 1.80 1.78 1.15 1.51 1.77 2.06 2.56
1659 1.44 1.41 0.96 1.21 1.41 1.63 2.01
1662 1.13 1.08 0.75 0.96 1.10 1.27 1.57
1665 0.56 0.53 0.35 0.46 0.54 0.64 0.81
1679 3.51 3.69 2.38 3.03 3.50 3.94 4.72
1680 1.03 0.99 0.68 0.87 1.01 1.16 1.44
1683 1.36 1.27 0.88 1.11 1.31 1.55 1.99
1694 1.00 0.99 0.68 0.86 0.99 1.13 1.39
1719 1.00 0.99 0.67 0.85 0.98 1.12 1.38
1736 0.93 0.93 0.60 0.78 0.92 1.06 1.32
1741 0.83 0.82 0.54 0.70 0.82 0.95 1.17
1747 1.20 1.15 0.80 1.01 1.17 1.36 1.68
1760 0.94 0.93 0.63 0.80 0.92 1.06 1.30
1851 0.82 0.80 0.54 0.69 0.80 0.93 1.14
1953 1.36 1.32 0.92 1.15 1.34 1.54 1.91
1968 1.41 1.38 0.94 1.19 1.39 1.60 1.97
2003 1.10 1.05 0.74 0.94 1.08 1.25 1.54
2037 1.11 1.03 0.74 0.93 1.08 1.25 1.57
2040 1.65 1.62 1.09 1.39 1.62 1.88 2.31
2041 1.24 1.19 0.84 1.05 1.21 1.41 1.75
2043 1.51 1.48 0.99 1.26 1.48 1.72 2.12
2044 2.20 2.16 1.42 1.83 2.16 2.51 3.12
2049 0.84 0.82 0.55 0.71 0.83 0.95 1.17
2056 2.25 2.21 1.47 1.89 2.21 2.56 3.16
2068 0.55 0.52 0.34 0.45 0.53 0.63 0.81
2099 2.40 2.36 1.57 2.02 2.36 2.74 3.39
2103 1.31 1.27 0.88 1.10 1.28 1.48 1.82
2115 1.02 0.99 0.68 0.87 1.00 1.15 1.42
2117 1.04 0.99 0.69 0.88 1.02 1.17 1.45
2125 0.50 0.47 0.31 0.41 0.48 0.57 0.73
2126 0.91 0.90 0.60 0.77 0.90 1.03 1.26
2132 0.90 0.90 0.57 0.75 0.89 1.03 1.27
2142 1.86 1.82 1.21 1.56 1.82 2.12 2.62
2145 1.40 1.37 0.93 1.18 1.37 1.59 1.96
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

2146 0.99 0.99 0.66 0.84 0.98 1.12 1.37
2155 1.18 1.13 0.80 1.00 1.15 1.33 1.64
2159 1.14 1.07 0.73 0.95 1.11 1.30 1.63
2161 0.88 0.87 0.57 0.74 0.86 1.00 1.23
2163 1.46 1.43 0.97 1.23 1.43 1.66 2.04
2167 0.69 0.67 0.44 0.58 0.68 0.79 0.99
2201 1.11 1.07 0.75 0.95 1.09 1.26 1.54
2205 1.29 1.24 0.85 1.08 1.26 1.47 1.82
2206 1.10 1.05 0.74 0.94 1.08 1.24 1.52
2217 0.88 0.87 0.59 0.75 0.87 1.00 1.23
2220 1.09 1.04 0.73 0.93 1.07 1.23 1.51
2265 1.38 1.35 0.92 1.16 1.36 1.57 1.95
2268 1.49 1.43 0.98 1.24 1.45 1.70 2.13
2273 0.46 0.43 0.29 0.37 0.44 0.52 0.67
2283 1.20 1.14 0.79 1.01 1.17 1.37 1.72
2288 1.40 1.37 0.93 1.18 1.37 1.59 1.96
2312 1.07 1.01 0.72 0.91 1.05 1.21 1.48
2326 0.96 0.96 0.64 0.81 0.94 1.08 1.33
2327 2.78 2.79 1.84 2.36 2.76 3.17 3.81
2330 0.69 0.66 0.45 0.58 0.67 0.79 0.98
2332 0.96 0.97 0.63 0.81 0.95 1.09 1.35
2352 1.83 1.81 1.19 1.54 1.80 2.09 2.57
2353 1.52 1.50 1.01 1.28 1.50 1.73 2.13
2357 1.21 1.16 0.81 1.02 1.19 1.37 1.71
2358 1.40 1.36 0.91 1.16 1.37 1.59 1.98
2360 1.43 1.40 0.95 1.20 1.40 1.63 2.01
2365 1.71 1.68 1.12 1.44 1.68 1.95 2.41
2368 2.89 2.90 1.92 2.46 2.87 3.30 3.95
2372 1.15 1.11 0.77 0.98 1.13 1.31 1.61
2377 0.92 0.92 0.62 0.79 0.91 1.04 1.27
2382 3.11 3.15 2.06 2.65 3.09 3.54 4.21
2384 1.34 1.31 0.89 1.13 1.31 1.52 1.88
2395 1.00 0.99 0.65 0.84 0.98 1.13 1.39
2401 2.72 2.71 1.79 2.30 2.69 3.10 3.76
2424 2.62 2.60 1.72 2.21 2.59 2.99 3.64
2434 2.21 2.14 1.39 1.81 2.15 2.55 3.22
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

2448 1.52 1.49 1.00 1.28 1.49 1.73 2.13
2449 1.06 1.00 0.71 0.90 1.04 1.20 1.47
2454 2.24 2.20 1.45 1.87 2.20 2.55 3.17
2485 1.21 1.16 0.79 1.01 1.18 1.38 1.73
2487 1.01 0.99 0.68 0.86 0.99 1.13 1.39
2502 1.03 0.99 0.69 0.88 1.01 1.15 1.42
2504 0.87 0.86 0.57 0.73 0.85 0.99 1.21
2512 0.96 0.97 0.64 0.82 0.95 1.09 1.34
2513 2.10 2.07 1.38 1.77 2.06 2.39 2.95
2523 1.40 1.37 0.94 1.18 1.37 1.59 1.96
2529 1.76 1.70 1.11 1.45 1.72 2.02 2.55
2536 1.20 1.15 0.80 1.01 1.17 1.36 1.67
2564 1.33 1.29 0.89 1.12 1.31 1.51 1.87
2583 0.60 0.58 0.38 0.50 0.59 0.69 0.87
2585 1.94 1.88 1.23 1.60 1.90 2.23 2.80
2597 1.04 0.99 0.69 0.88 1.02 1.17 1.44
2599 0.81 0.79 0.52 0.67 0.79 0.92 1.14
2614 0.60 0.57 0.39 0.50 0.59 0.69 0.87
2615 0.83 0.82 0.53 0.70 0.82 0.95 1.17
2623 1.49 1.44 0.98 1.24 1.46 1.70 2.12
2632 1.58 1.52 1.03 1.31 1.54 1.81 2.27
2633 1.62 1.59 1.06 1.36 1.59 1.85 2.28
2649 1.03 0.99 0.68 0.88 1.01 1.16 1.44
2679 0.48 0.45 0.30 0.39 0.46 0.55 0.70
2680 2.69 2.65 1.76 2.26 2.64 3.07 3.74
2690 0.87 0.86 0.57 0.74 0.86 0.99 1.21
2693 1.26 1.23 0.84 1.06 1.24 1.44 1.78
2701 1.43 1.40 0.95 1.20 1.41 1.62 2.00
2715 0.54 0.51 0.34 0.45 0.53 0.62 0.79
2728 1.41 1.36 0.94 1.18 1.37 1.60 2.00
2748 1.20 1.15 0.79 1.01 1.17 1.36 1.69
2755 1.00 0.99 0.65 0.84 0.98 1.13 1.40
2757 1.30 1.25 0.86 1.09 1.27 1.48 1.86
2760 3.07 3.10 2.01 2.59 3.04 3.52 4.22
2776 2.02 2.00 1.31 1.70 1.99 2.30 2.83
2788 1.32 1.28 0.89 1.11 1.29 1.50 1.84
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

2795 0.87 0.85 0.57 0.73 0.85 0.98 1.21
2799 1.14 1.05 0.74 0.95 1.10 1.29 1.64
2800 1.45 1.41 0.96 1.22 1.42 1.64 2.02
2801 1.13 1.08 0.74 0.95 1.11 1.28 1.59
2810 2.51 2.47 1.64 2.10 2.47 2.87 3.52
2814 0.83 0.81 0.53 0.70 0.82 0.95 1.16
2821 1.12 1.07 0.74 0.95 1.10 1.27 1.58
2823 1.20 1.15 0.78 1.00 1.17 1.37 1.71
2828 1.44 1.41 0.96 1.21 1.42 1.64 2.02
2834 0.68 0.65 0.44 0.57 0.67 0.78 0.97
2844 1.95 1.92 1.26 1.63 1.92 2.23 2.76
2846 1.07 1.01 0.71 0.90 1.05 1.21 1.50
2849 2.16 2.10 1.38 1.79 2.11 2.48 3.11
2851 2.55 2.53 1.67 2.15 2.52 2.92 3.58
2860 1.30 1.25 0.88 1.09 1.27 1.47 1.82
2861 1.61 1.56 1.06 1.35 1.58 1.83 2.28
2873 1.04 0.99 0.68 0.88 1.03 1.18 1.47
2879 1.08 1.03 0.71 0.92 1.06 1.23 1.52
2892 1.03 0.99 0.67 0.87 1.01 1.16 1.45
2894 1.34 1.24 0.85 1.09 1.29 1.53 1.98
2910 0.95 0.95 0.62 0.80 0.93 1.08 1.33
2918 0.88 0.86 0.58 0.74 0.86 0.99 1.21
2933 0.63 0.61 0.41 0.53 0.62 0.73 0.92
2952 0.89 0.88 0.59 0.75 0.88 1.00 1.23
2964 1.14 1.09 0.75 0.96 1.12 1.30 1.61
2966 1.42 1.39 0.95 1.19 1.39 1.61 1.99
2973 1.21 1.17 0.81 1.03 1.19 1.37 1.70
2975 0.86 0.84 0.56 0.72 0.84 0.98 1.19
2977 1.09 1.03 0.73 0.93 1.07 1.22 1.51
2978 0.67 0.64 0.42 0.55 0.65 0.77 0.96
2987 1.32 1.28 0.89 1.11 1.29 1.50 1.84
2988 0.89 0.88 0.59 0.75 0.88 1.01 1.24
2995 0.83 0.81 0.54 0.70 0.82 0.95 1.16
3016 1.34 1.27 0.83 1.08 1.30 1.54 1.99
3027 0.75 0.72 0.48 0.62 0.73 0.86 1.06
3037 0.81 0.80 0.52 0.68 0.80 0.93 1.15
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

3038 1.19 1.15 0.81 1.01 1.17 1.35 1.66
3039 1.29 1.20 0.83 1.05 1.25 1.48 1.91
3043 1.22 1.15 0.79 1.01 1.18 1.39 1.76
3051 0.78 0.75 0.48 0.64 0.76 0.90 1.13
3066 0.95 0.95 0.63 0.81 0.94 1.07 1.31
3073 0.91 0.91 0.59 0.77 0.90 1.03 1.27
3078 0.88 0.87 0.58 0.75 0.87 1.00 1.23
3087 0.76 0.73 0.48 0.63 0.74 0.88 1.10
3094 1.15 1.10 0.77 0.97 1.12 1.29 1.59
3113 1.05 0.99 0.71 0.89 1.03 1.18 1.45
3114 1.80 1.78 1.17 1.51 1.78 2.06 2.53
3118 1.12 1.07 0.75 0.95 1.09 1.26 1.55
3121 1.43 1.40 0.96 1.21 1.41 1.63 2.00
3137 0.99 0.99 0.66 0.84 0.98 1.12 1.39
3144 3.51 3.69 2.37 3.03 3.49 3.94 4.71
3146 2.62 2.59 1.71 2.20 2.58 3.00 3.68
3152 0.55 0.52 0.35 0.45 0.54 0.63 0.81
3155 2.34 2.27 1.50 1.93 2.28 2.68 3.35
3160 2.05 2.02 1.34 1.73 2.02 2.34 2.88
3164 2.75 2.71 1.79 2.31 2.71 3.15 3.83
3173 0.48 0.46 0.30 0.40 0.47 0.55 0.70
3215 0.56 0.53 0.36 0.46 0.55 0.64 0.81
3218 0.75 0.73 0.48 0.62 0.74 0.86 1.07
3266 0.90 0.89 0.59 0.76 0.89 1.02 1.25
3278 1.81 1.79 1.18 1.52 1.78 2.07 2.55
3280 2.58 2.57 1.69 2.17 2.55 2.94 3.59
3282 0.78 0.76 0.50 0.65 0.77 0.90 1.10
3286 1.07 0.99 0.69 0.89 1.05 1.22 1.55
3293 1.11 1.05 0.74 0.94 1.08 1.25 1.54
3294 1.50 1.46 0.99 1.26 1.47 1.71 2.12
3297 0.85 0.83 0.56 0.72 0.84 0.96 1.18
3308 1.58 1.56 1.04 1.33 1.55 1.80 2.21
3323 1.13 1.09 0.77 0.96 1.11 1.28 1.58
3333 0.89 0.89 0.56 0.74 0.88 1.01 1.25
3335 1.76 1.74 1.15 1.48 1.73 2.01 2.47
3338 0.88 0.88 0.55 0.73 0.87 1.01 1.26
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

3340 1.15 1.10 0.78 0.98 1.13 1.30 1.60
3342 0.93 0.93 0.62 0.79 0.92 1.06 1.30
3349 0.97 0.98 0.64 0.83 0.96 1.10 1.35
3359 1.05 0.99 0.71 0.90 1.03 1.18 1.46
3374 1.22 1.18 0.82 1.03 1.19 1.38 1.70
3379 1.25 1.21 0.84 1.05 1.22 1.41 1.74
3384 0.84 0.83 0.52 0.69 0.83 0.96 1.19
3437 0.96 0.96 0.62 0.80 0.94 1.09 1.37
3441 1.00 0.99 0.66 0.85 0.99 1.13 1.40
3476 1.37 1.32 0.89 1.14 1.34 1.56 1.96
3477 1.72 1.70 1.13 1.45 1.69 1.96 2.41
3487 1.17 1.13 0.79 0.99 1.15 1.33 1.64
3494 1.38 1.34 0.92 1.16 1.35 1.56 1.93
3502 1.06 1.01 0.72 0.91 1.05 1.20 1.47
3510 1.05 0.99 0.70 0.89 1.03 1.19 1.47
3530 1.92 1.87 1.24 1.60 1.88 2.19 2.72
3545 1.44 1.41 0.96 1.21 1.41 1.63 2.02
3606 1.14 1.09 0.77 0.97 1.11 1.28 1.58
3611 2.80 2.77 1.83 2.35 2.76 3.20 3.88
3640 0.97 0.98 0.64 0.82 0.96 1.10 1.36
3642 0.79 0.77 0.52 0.67 0.78 0.90 1.11
3665 0.47 0.44 0.29 0.38 0.46 0.54 0.69
3668 0.78 0.76 0.51 0.65 0.77 0.89 1.10
3722 1.19 1.14 0.80 1.00 1.16 1.34 1.66
3728 1.18 1.14 0.79 1.00 1.16 1.34 1.66
3735 0.88 0.86 0.58 0.74 0.86 0.99 1.22
3737 0.79 0.77 0.51 0.66 0.77 0.90 1.10
3742 1.18 1.13 0.79 0.99 1.15 1.34 1.66
3751 1.08 1.03 0.74 0.93 1.07 1.22 1.50
3770 0.81 0.79 0.53 0.68 0.79 0.92 1.13
3774 1.08 1.01 0.70 0.90 1.05 1.22 1.53
3782 1.12 1.06 0.73 0.94 1.09 1.27 1.59
3791 0.88 0.86 0.58 0.74 0.86 0.99 1.21
3799 0.97 0.98 0.62 0.81 0.95 1.10 1.37
3810 0.83 0.81 0.54 0.70 0.82 0.95 1.16
3866 1.23 1.16 0.82 1.03 1.20 1.40 1.74
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

3867 1.04 0.99 0.71 0.89 1.02 1.17 1.44
3868 1.06 1.01 0.71 0.90 1.05 1.20 1.48
3888 0.95 0.95 0.64 0.81 0.93 1.07 1.31
3889 0.67 0.64 0.42 0.55 0.65 0.77 0.96
3894 1.27 1.23 0.85 1.07 1.24 1.44 1.78
3895 1.82 1.80 1.18 1.53 1.79 2.08 2.55
3902 0.58 0.56 0.37 0.48 0.57 0.67 0.84
3904 0.98 0.99 0.64 0.83 0.97 1.11 1.38
3910 0.90 0.89 0.56 0.75 0.89 1.03 1.30
3919 1.17 1.12 0.77 0.98 1.14 1.33 1.65
3921 0.86 0.85 0.57 0.73 0.85 0.98 1.19
3936 1.28 1.20 0.84 1.05 1.24 1.46 1.86
3939 1.88 1.81 1.20 1.55 1.83 2.16 2.74
3940 1.11 1.05 0.74 0.94 1.08 1.25 1.55
4327 0.52 0.49 0.32 0.42 0.50 0.60 0.76
4660 0.97 0.98 0.66 0.83 0.96 1.10 1.35
4744 0.95 0.96 0.63 0.81 0.94 1.08 1.33
4776 0.83 0.81 0.55 0.70 0.81 0.94 1.15
4807 0.86 0.84 0.55 0.72 0.84 0.98 1.21
4871 0.78 0.76 0.50 0.65 0.77 0.90 1.11
4955 0.80 0.78 0.53 0.68 0.79 0.92 1.12
5079 1.35 1.32 0.90 1.14 1.33 1.53 1.90
5206 0.84 0.83 0.55 0.71 0.83 0.96 1.17
5212 1.01 0.99 0.68 0.86 0.99 1.13 1.39
5277 0.70 0.68 0.46 0.59 0.69 0.80 1.00
5339 0.82 0.80 0.54 0.69 0.81 0.94 1.15
5439 0.66 0.63 0.42 0.55 0.64 0.76 0.96
5448 1.13 1.07 0.75 0.95 1.10 1.27 1.58
5453 1.63 1.61 1.07 1.37 1.60 1.86 2.29
5456 1.43 1.37 0.94 1.19 1.39 1.62 2.03
5458 0.89 0.88 0.53 0.73 0.88 1.03 1.33
5459 1.17 1.12 0.77 0.98 1.15 1.33 1.66
5461 1.44 1.41 0.96 1.21 1.41 1.64 2.02
5467 1.78 1.74 1.16 1.49 1.74 2.02 2.51
5469 1.13 1.07 0.76 0.96 1.10 1.27 1.56
5471 1.12 1.06 0.75 0.95 1.09 1.26 1.57
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

5485 2.63 2.62 1.73 2.22 2.59 3.00 3.65
5488 1.15 1.11 0.77 0.98 1.13 1.31 1.62
5491 1.01 0.99 0.65 0.85 0.99 1.14 1.42
5498 1.32 1.28 0.88 1.11 1.29 1.50 1.86
5499 1.32 1.28 0.89 1.11 1.29 1.50 1.84
5500 0.61 0.59 0.39 0.51 0.60 0.71 0.89
5501 1.21 1.16 0.80 1.02 1.18 1.38 1.72
5527 0.91 0.89 0.60 0.77 0.89 1.02 1.26
5528 1.13 1.08 0.77 0.96 1.11 1.27 1.57
5529 0.95 0.95 0.64 0.81 0.93 1.07 1.31
5533 0.85 0.83 0.56 0.72 0.84 0.96 1.18
5536 0.86 0.85 0.53 0.71 0.84 0.99 1.24
5537 1.40 1.37 0.94 1.18 1.38 1.59 1.96
5546 1.73 1.70 1.13 1.45 1.70 1.97 2.45
5547 1.23 1.18 0.83 1.04 1.20 1.39 1.71
5556 1.60 1.54 1.03 1.32 1.56 1.83 2.31
5560 1.27 1.23 0.85 1.07 1.24 1.44 1.78
5562 0.84 0.82 0.55 0.71 0.83 0.95 1.17
5564 0.59 0.56 0.37 0.49 0.58 0.68 0.86
5576 1.18 1.14 0.79 1.00 1.16 1.34 1.65
5592 1.07 1.02 0.71 0.91 1.05 1.21 1.50
5599 0.92 0.92 0.62 0.78 0.91 1.04 1.27
5607 0.92 0.91 0.62 0.78 0.90 1.04 1.27
5619 0.83 0.82 0.54 0.70 0.82 0.95 1.16
5620 0.88 0.87 0.55 0.73 0.86 1.01 1.26
5633 1.03 0.99 0.67 0.87 1.01 1.17 1.46
5638 1.66 1.64 1.09 1.40 1.64 1.90 2.33
5647 0.60 0.57 0.38 0.49 0.59 0.69 0.89
5650 1.45 1.41 0.96 1.21 1.42 1.64 2.03
5664 2.17 2.15 1.41 1.82 2.14 2.48 3.05
5724 1.20 1.15 0.81 1.02 1.18 1.36 1.67
5730 1.46 1.42 0.96 1.22 1.43 1.66 2.07
5733 1.04 0.99 0.68 0.88 1.01 1.17 1.45
5740 1.25 1.21 0.84 1.05 1.22 1.41 1.75
5770 1.32 1.28 0.89 1.11 1.29 1.49 1.83
5992 0.81 0.79 0.49 0.66 0.79 0.94 1.18
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

6091 1.42 1.34 0.91 1.16 1.37 1.63 2.09
6096 1.13 1.07 0.76 0.96 1.10 1.27 1.57
6105 0.99 0.99 0.66 0.84 0.98 1.12 1.38
6117 1.38 1.35 0.93 1.17 1.36 1.57 1.93
6120 1.00 0.99 0.67 0.85 0.98 1.13 1.38
6123 0.49 0.46 0.31 0.41 0.48 0.56 0.72
6135 2.12 2.09 1.38 1.78 2.08 2.41 2.98
6136 1.20 1.12 0.79 1.00 1.16 1.36 1.71
6145 1.07 1.01 0.72 0.91 1.05 1.20 1.48
6153 1.35 1.32 0.90 1.14 1.33 1.53 1.90
6166 0.91 0.91 0.59 0.76 0.89 1.03 1.27
6178 1.60 1.57 1.05 1.35 1.57 1.82 2.24
6180 1.43 1.40 0.95 1.20 1.41 1.63 2.02
6182 0.99 0.99 0.66 0.84 0.97 1.12 1.39
6204 0.97 0.97 0.63 0.81 0.95 1.10 1.37
6205 0.97 0.98 0.64 0.82 0.96 1.10 1.37
6215 1.01 0.99 0.68 0.86 0.99 1.14 1.41
6216 1.48 1.39 0.95 1.21 1.43 1.70 2.18
6219 0.94 0.93 0.60 0.78 0.92 1.07 1.36
6230 0.78 0.75 0.50 0.65 0.76 0.89 1.10
6237 1.15 1.11 0.77 0.98 1.13 1.31 1.61
6238 1.17 1.12 0.78 0.99 1.15 1.33 1.65
6251 1.09 1.02 0.73 0.92 1.07 1.24 1.54
6263 0.82 0.79 0.52 0.68 0.81 0.95 1.19
6265 0.74 0.72 0.48 0.62 0.73 0.85 1.05
6275 1.18 1.13 0.79 1.00 1.15 1.33 1.65
6281 1.42 1.38 0.92 1.18 1.39 1.62 2.03
6284 1.18 1.14 0.79 1.00 1.16 1.34 1.65
6292 1.18 1.12 0.78 0.99 1.15 1.34 1.68
6299 0.93 0.92 0.60 0.78 0.91 1.05 1.31
6301 1.55 1.51 1.03 1.30 1.51 1.75 2.16
6307 1.30 1.26 0.87 1.09 1.27 1.47 1.81
6314 2.15 2.11 1.40 1.80 2.11 2.46 3.06
6331 1.99 1.94 1.28 1.66 1.95 2.28 2.85
6338 0.99 0.99 0.65 0.84 0.97 1.12 1.39
6341 1.20 1.15 0.81 1.02 1.18 1.36 1.68
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

6342 1.02 0.99 0.65 0.85 0.99 1.16 1.49
6343 1.02 0.99 0.66 0.86 1.00 1.15 1.44
6347 1.20 1.15 0.80 1.01 1.17 1.36 1.68
6354 0.67 0.64 0.42 0.55 0.66 0.78 0.98
6361 0.96 0.96 0.64 0.81 0.95 1.09 1.35
6368 0.69 0.66 0.45 0.58 0.68 0.79 0.98
6372 1.18 1.14 0.79 1.00 1.16 1.34 1.65
6376 1.06 1.00 0.71 0.90 1.04 1.20 1.48
6385 1.09 1.03 0.73 0.93 1.07 1.23 1.51
6386 1.22 1.18 0.83 1.03 1.19 1.37 1.70
6398 1.54 1.50 0.99 1.28 1.51 1.76 2.20
6401 2.01 1.98 1.31 1.69 1.97 2.29 2.82
6411 1.44 1.41 0.94 1.20 1.41 1.65 2.06
6412 1.27 1.23 0.84 1.07 1.24 1.45 1.81
6427 1.08 1.02 0.72 0.92 1.06 1.22 1.51
6436 0.61 0.58 0.39 0.50 0.60 0.71 0.90
6439 1.20 1.16 0.80 1.01 1.18 1.36 1.69
6443 1.36 1.32 0.90 1.14 1.33 1.55 1.93
6445 1.28 1.24 0.86 1.08 1.26 1.45 1.80
6447 1.22 1.18 0.81 1.02 1.19 1.38 1.72
6452 1.36 1.32 0.90 1.13 1.33 1.54 1.91
6462 0.92 0.92 0.61 0.78 0.90 1.04 1.27
6469 1.00 0.99 0.66 0.85 0.99 1.14 1.41
6486 0.63 0.60 0.39 0.51 0.61 0.72 0.92
6488 2.31 2.29 1.51 1.95 2.28 2.63 3.23
6497 2.54 2.53 1.66 2.15 2.51 2.90 3.52
6535 0.83 0.80 0.54 0.70 0.81 0.95 1.17
6540 0.80 0.79 0.50 0.67 0.79 0.92 1.14
6542 0.98 0.99 0.65 0.84 0.96 1.11 1.36
6543 0.81 0.77 0.51 0.67 0.79 0.93 1.18
6547 1.02 0.99 0.68 0.87 1.00 1.15 1.42
6562 1.33 1.29 0.88 1.11 1.30 1.51 1.89
6569 1.32 1.27 0.87 1.10 1.29 1.51 1.88
6571 1.13 1.07 0.74 0.95 1.10 1.28 1.59
6573 1.03 0.99 0.69 0.88 1.01 1.16 1.43
6579 1.36 1.31 0.91 1.14 1.33 1.54 1.91
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

6580 1.32 1.27 0.89 1.11 1.29 1.50 1.86
6586 1.36 1.30 0.88 1.12 1.32 1.55 1.96
6591 1.33 1.29 0.90 1.12 1.30 1.51 1.86
6606 0.80 0.78 0.52 0.67 0.78 0.91 1.11
6634 1.94 1.90 1.25 1.62 1.90 2.23 2.78
6635 0.87 0.83 0.54 0.71 0.84 0.99 1.27
6638 1.40 1.36 0.94 1.18 1.37 1.59 1.97
6641 1.34 1.30 0.90 1.13 1.31 1.52 1.90
6643 0.92 0.91 0.60 0.77 0.90 1.04 1.27
6645 0.81 0.79 0.52 0.68 0.80 0.93 1.15
6659 1.09 1.02 0.73 0.92 1.06 1.23 1.53
6662 2.42 2.39 1.59 2.04 2.39 2.76 3.39
6671 0.67 0.64 0.43 0.56 0.66 0.77 0.96
6679 0.75 0.73 0.49 0.63 0.74 0.86 1.06
6682 1.05 1.00 0.70 0.90 1.03 1.19 1.47
6689 0.98 0.98 0.65 0.83 0.96 1.10 1.36
6693 1.07 1.02 0.72 0.91 1.05 1.21 1.49
6697 1.37 1.33 0.92 1.15 1.34 1.55 1.92
6700 0.71 0.68 0.46 0.59 0.70 0.81 1.01
6710 1.75 1.73 1.14 1.47 1.72 1.99 2.45
6715 0.97 0.97 0.65 0.83 0.95 1.09 1.34
6718 1.24 1.18 0.81 1.03 1.21 1.41 1.78
6753 2.66 2.64 1.74 2.24 2.62 3.04 3.71
6757 2.04 2.00 1.33 1.71 2.00 2.32 2.87
6786 1.28 1.24 0.85 1.08 1.26 1.46 1.81
6787 0.93 0.92 0.61 0.79 0.91 1.05 1.28
6788 0.38 0.36 0.24 0.31 0.37 0.44 0.56
6800 0.67 0.64 0.43 0.55 0.65 0.77 0.96
6824 1.06 0.99 0.71 0.90 1.03 1.19 1.49
6866 1.18 1.13 0.78 0.99 1.15 1.33 1.65
6867 1.63 1.58 1.04 1.35 1.59 1.87 2.35
6870 1.75 1.71 1.12 1.45 1.71 2.00 2.49
6904 0.36 0.33 0.22 0.29 0.35 0.41 0.54
6916 0.71 0.68 0.46 0.59 0.69 0.81 1.01
6931 0.70 0.68 0.46 0.59 0.69 0.80 0.99
7009 0.44 0.42 0.28 0.36 0.43 0.51 0.65
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

7060 0.80 0.78 0.52 0.67 0.79 0.92 1.13
7063 0.40 0.38 0.25 0.33 0.39 0.46 0.60
7078 0.77 0.75 0.49 0.64 0.75 0.88 1.09
7102 1.03 0.99 0.69 0.88 1.01 1.16 1.42
7106 1.16 1.11 0.78 0.98 1.13 1.31 1.61
7133 1.11 1.05 0.75 0.95 1.09 1.25 1.55
7142 0.92 0.91 0.62 0.78 0.90 1.04 1.27
7148 1.52 1.49 1.00 1.27 1.49 1.73 2.13
7159 1.09 1.00 0.69 0.90 1.06 1.25 1.60
7173 1.01 0.99 0.68 0.86 0.99 1.13 1.40
7187 0.75 0.73 0.48 0.63 0.74 0.86 1.08
7227 0.97 0.98 0.64 0.82 0.95 1.09 1.35
7240 0.77 0.74 0.50 0.64 0.75 0.88 1.09
7281 0.76 0.73 0.48 0.63 0.75 0.88 1.11
7283 1.27 1.23 0.86 1.07 1.24 1.43 1.76
7287 0.65 0.61 0.41 0.53 0.63 0.75 0.96
7290 1.05 0.99 0.70 0.89 1.03 1.19 1.48
7292 0.87 0.86 0.57 0.74 0.86 0.99 1.21
7294 0.76 0.73 0.49 0.63 0.74 0.86 1.07
7297 1.54 1.51 1.02 1.30 1.51 1.75 2.16
7305 0.59 0.56 0.38 0.49 0.58 0.68 0.86
7329 1.23 1.17 0.83 1.03 1.20 1.39 1.73
7344 0.91 0.90 0.60 0.77 0.89 1.03 1.26
7353 0.57 0.54 0.36 0.47 0.55 0.65 0.83
7359 1.06 0.99 0.70 0.90 1.04 1.21 1.51
7361 1.30 1.26 0.86 1.09 1.27 1.47 1.83
7366 0.59 0.56 0.37 0.49 0.58 0.68 0.86
7367 1.63 1.56 1.04 1.34 1.58 1.86 2.35
7375 0.74 0.72 0.48 0.62 0.73 0.85 1.05
7378 0.94 0.93 0.63 0.80 0.92 1.05 1.30
7427 0.59 0.56 0.37 0.49 0.58 0.68 0.86
7430 1.58 1.54 1.04 1.32 1.55 1.80 2.23
7440 0.71 0.69 0.46 0.59 0.70 0.81 1.01
7447 0.67 0.65 0.43 0.56 0.66 0.77 0.97
7449 0.92 0.92 0.60 0.78 0.91 1.05 1.30
7453 1.00 0.99 0.66 0.85 0.99 1.14 1.41
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

7455 1.14 1.09 0.76 0.96 1.11 1.29 1.60
7456 0.83 0.80 0.53 0.69 0.81 0.95 1.18
7472 1.19 1.14 0.81 1.01 1.16 1.35 1.66
7495 1.56 1.53 1.02 1.31 1.53 1.78 2.18
7496 1.82 1.80 1.18 1.53 1.79 2.08 2.56
7508 0.79 0.77 0.50 0.66 0.78 0.90 1.11
7514 0.97 0.97 0.63 0.81 0.95 1.11 1.40
7526 1.63 1.59 1.05 1.36 1.59 1.86 2.30
7547 0.81 0.79 0.53 0.68 0.79 0.92 1.13
7554 1.42 1.40 0.94 1.19 1.40 1.62 1.99
7559 1.37 1.32 0.90 1.14 1.34 1.56 1.96
7581 1.65 1.62 1.08 1.38 1.62 1.88 2.33
7584 0.87 0.85 0.56 0.73 0.85 0.99 1.23
7595 1.16 1.11 0.77 0.98 1.13 1.31 1.62
7599 1.12 1.06 0.75 0.95 1.10 1.27 1.58
7601 1.04 0.99 0.70 0.89 1.02 1.18 1.44
7602 0.88 0.86 0.56 0.74 0.86 1.01 1.27
7626 0.73 0.70 0.47 0.61 0.71 0.83 1.03
7663 0.89 0.88 0.58 0.75 0.88 1.01 1.25
7671 0.90 0.88 0.58 0.75 0.89 1.03 1.30
7706 0.75 0.73 0.48 0.63 0.74 0.86 1.06
7710 1.33 1.29 0.89 1.12 1.30 1.51 1.86
7734 1.56 1.53 1.02 1.31 1.53 1.78 2.20
7745 2.34 2.31 1.53 1.97 2.30 2.67 3.29
7753 1.50 1.46 0.99 1.26 1.47 1.71 2.12
7754 0.89 0.89 0.57 0.75 0.88 1.02 1.27
7775 1.09 1.03 0.74 0.93 1.07 1.23 1.52
7784 0.73 0.70 0.46 0.60 0.72 0.84 1.06
7789 0.69 0.66 0.44 0.57 0.67 0.78 0.98
7793 1.07 1.01 0.73 0.92 1.05 1.21 1.50
7800 1.14 1.09 0.76 0.96 1.11 1.29 1.59
7805 2.35 2.31 1.53 1.97 2.31 2.69 3.31
7827 1.39 1.36 0.92 1.16 1.36 1.58 1.96
7830 1.48 1.45 0.98 1.24 1.45 1.69 2.09
7901 0.69 0.66 0.45 0.58 0.68 0.79 0.99
7912 1.22 1.18 0.83 1.03 1.20 1.38 1.71
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Table 0 – Continued

Trigger mean(z) mode(z) Q5%(z) Q25%(z) Q50%(z) Q75%(z) Q95%(z)

7922 0.98 0.99 0.64 0.83 0.96 1.11 1.36
7939 0.90 0.88 0.57 0.74 0.88 1.03 1.31
7943 1.18 1.12 0.80 0.99 1.15 1.33 1.64
7952 1.38 1.34 0.91 1.15 1.35 1.57 1.94
7970 1.30 1.25 0.86 1.09 1.27 1.48 1.85
7979 1.73 1.70 1.12 1.45 1.70 1.97 2.45
7980 1.06 1.00 0.71 0.90 1.04 1.20 1.48
7988 0.76 0.73 0.49 0.64 0.74 0.86 1.06
7995 0.93 0.92 0.62 0.79 0.92 1.05 1.29
7999 1.60 1.58 1.05 1.35 1.57 1.83 2.25
8018 0.61 0.59 0.38 0.50 0.59 0.70 0.89
8027 1.57 1.53 1.03 1.31 1.54 1.79 2.22
8035 1.13 1.07 0.76 0.96 1.10 1.27 1.57
8041 0.92 0.92 0.60 0.77 0.90 1.04 1.28
8047 1.06 1.01 0.72 0.91 1.04 1.19 1.47
8072 1.15 1.10 0.77 0.98 1.12 1.30 1.59
8076 0.76 0.73 0.48 0.63 0.74 0.87 1.07
8077 1.16 1.11 0.77 0.98 1.14 1.32 1.64
8079 1.33 1.30 0.89 1.12 1.31 1.51 1.87
8082 1.22 1.17 0.81 1.03 1.19 1.38 1.72
8085 1.34 1.29 0.90 1.13 1.31 1.52 1.89
8089 0.72 0.69 0.46 0.60 0.70 0.82 1.01
8097 1.88 1.85 1.23 1.58 1.85 2.14 2.64
8104 0.65 0.62 0.42 0.54 0.64 0.74 0.93
8120 1.39 1.35 0.93 1.17 1.36 1.57 1.94

Notes: The column denoted by ‘Trigger’ contains the trigger IDs of BATSE SGRBs.
The columns denoted by mean(z), mode(z) represent the mean and the most likely
values of redshifts respectively. The columns denoted by Q5%(z), Q25%(z), Q50%(z),
Q75%(z), Q95%(z) represent the corresponding percentage quantiles of the redshift
PDF for each SGRB. For example, Q50%(z) represents the median redshift of each
SGRB.
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