

Extractive Summarization and Simplification of

Scholarly Literature

By

Nilav Bharatkumar Vaghasiya

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

Supervisor: Dr. Elizabeth Diaz

May 2020

ii

Copyright © by Nilav Bharatkumar Vaghasiya 2020

All Rights Reserved

iii

Acknowledgement

It is my privilege and duty to acknowledge the kind of help and guidance received from

several people in the completion of my master’s Thesis at The University of Texas at

Arlington. It would not have been possible to complete this project without their valuable

help, cooperation and guidance.

I would like to extend my sincere gratitude to my mentor and supervisor Dr. Elizabeth

Diaz, Senior Lecturer, Department of Computer Science and Engineering, The University

of Texas at Arlington, for her continuous guidance, help, support, motivation and

constructive suggestions throughout the period of my thesis. This thesis would not have

been possible without her constant encouragement and support.

I would like to thank the thesis committee members, Dr. Hao Che, Professor, Department

of Computer Science and Engineering, The University of Texas at Arlington and Dr. David

Levine, Distinguished Senior Lecturer, Department of Computer Science and Engineering,

The University of Texas at Arlington for their invaluable cooperation, guidance and

support.

And last but not the least, I would like to thank my parents and friends, without whose

constant help, motivation and support, this thesis would not have been possible.

iv

Abstract

EXTRACTIVE SUMMARIZATION

AND SIMPLIFICATION OF SCHOLARLY LITERATURE

Nilav Bharatkumar Vaghasiya, MS

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Elizabeth Diaz

Research papers and journals have always played a crucial role in the field of

research and development. However, these research papers usually have a complex

usage of language which limits the range of target readers. The language and the

terms used in these literary works can make the concept or the topic tough to

understand for a naive reader. The goal of this project is to simplify a complex piece

of literature into something meaningful without sounding verbose.

The idea is based upon Nobel Prize-winning physicist Richard Feynman’s learning

technique known as the Feynman Technique that emphasizes the usage of words

that are simple to understand. Such simplification can help a researcher gain more

information from more literature in less amount of time. The proposed system can

also be used to simplify other text documents apart from research papers and

journals. This novel model based on simplicity can be considered a new learning

model.

v

Table of Contents

Acknowledgements …………………………………………...………………... iii

Abstract………………………………………………………...………………... iv

List of Illustrations……………………………………………….……………... vii

List of Tables……………………………………………………….………….. viii

Chapter 1 Introduction…………………………………………………………….1

Chapter 2 Motivation……………………………………………………………...3

Chapter 3 Previous Works………………………………………………………...6

Chapter 4 System Design and Architecture……………………………………… 8

Chapter 5 Implementation………………………………………………………. 13

 5.1 Data Aggregation………………………………………………….. 14

 5.2 Information Extraction…………………………………………….. 14

 5.3 Processing…………………………………………………………. 18

 5.4 Summarization and Evaluation……………………………………. 19

 5.5 Simplification……………………………………………………… 29

Chapter 6 Observation and Analysis…………………………………..………... 34

 6.1 F-score Analysis…………………………………………………… 35

vi

 6.2 Heatmap Analysis………………………………………………... 36

 6.3 Runtime Analysis………………………………………………… 39

 6.4 Survey Analysis…………………………………………………. 40

Chapter 7 Future Work………………...………………………………………. 42

Chapter 8 Conclusion…………………………………………………………… 44

References………………………………………………………………………. 45

vii

List of Illustrations

Fig 1.1 Summarizing ‘n’ documents into a single document……………………………. 2

Fig.4.1 System Architecture……………………………………………………………... 8

Fig 4.2 Workflow and detailed architecture of the system……………………………... 10

Fig 5.1 HTML user interface for data aggregation……………………………………... 14

Fig.5.2 CERMINE Architecture………………………………………………………... 15

Fig.5.3 XML output after processing …………………………………………………... 17

Fig.5.4 Document Dictionary after XML processing…………………………………... 18

Fig.5.5 Abstract subjected to weighted frequency-based approach ……………………. 20

Fig.5.6 Rank calculation for LSA from gensim module ……………………………….. 22

Fig.5.7 Code snippet to calculate the ROUGE-L metrics ……………………………… 28

Fig.5.8 Summarization and evaluation ………………………………………………… 29

Fig.5.9 Context Analysis ………………………………………………………………. 30

Fig.5.10 Output.txt for each document for context breakdown ………………………... 32

Fig.5.11 Datamuse API call ……………………………………………………………. 33

Fig.6.1 Output for one PDF ……………………………………………………………. 34

Fig.6.2 ROUGE-L Metrics …………………………………………………………….. 35

viii

Fig.6.3 Gensim summary with high F-score …………………………………………... 37

Fig.6.4 NLTK summary with high F-score ……………………………………………. 37

Fig.6.5 Sumy summary with high F-score …………………………………………….. 38

Fig.6.6 Spacy summary with high F-score …………………………………………….. 38

Fig.6.7 Runtime for 20 papers (in seconds) ……………………………………………. 40

ix

List of Table

 Table. 6.1 Average value of 76 responses……………………………………... 41

1

Chapter 1

Introduction

Simplification of text involves summarization using different approaches like

abstractive summarization and extractive summarization. For this system we are

considering extractive summarization. Extractive Summarization means identifying

critical sections of the literature followed by generating word-by-word subset of

sentences from the original text. This is different from abstractive summarization, where

it reproduces important information after interpreting and examining the test using

different language processing techniques to give a shorter text that translates the most

important information interpreted from the original one.

The system first summarizes the text and simplifies it to a level at which a naive user

can gain insights from the summary. Simplification of complex literature makes it easier

to interpret and understand the context. The process thereby reduces reading time. It

makes the selection process easier for research papers and helps in indexing. Also,

machine generated summaries are unbiased unlike human generated summaries.

We are proposing a novel model that has an input, ‘n’ files of type PDF with a uniform

structure, aiming to summarize then simplify it into one document. The system first

identifies the structure of the papers and thereby identifies text from the critical sections.

Once the text is extracted, it is then subjected to tokenization, weighing of tokens based

on their relevance and then constructing the summary. This summary is further

subjected to a simplification system where complex words are further broken down into

2

simpler terms. This process is performed for ‘n’ number of papers and the summaries

are then presented as a single consolidated document.

Fig 1.1 Summarizing ‘n’ documents into a single document

The proposed system is implemented as a web application and uses four different

techniques to summarize the text and two different techniques to simplify a given text.

The paper discusses previous works, system design, architecture, implementation,

observations and analysis and future work for the mentioned system.

3

 Chapter 2

Motivation

“If you can’t explain it simply, you don’t understand it well enough.” is a very famous

quote by Richard Feynman [1]. He was an American Theoretical Physicist, well known

for his learning technique. He could simplify almost any complex topic into something

simple without any loss in the brevity of the topic. The learning technique involved four

crucial steps:

• Write down the complex concept on a piece of paper: One should write down

the complex topic on the piece of paper that is to be learned. Writing it down is

important as it helps increase the retention.

• Try to elaborate the concept using simple language: Try to do this by simplifying

the concept to the very basics. Try not to use complex subject-specific words for

better understanding.

• Identify complex subtopics: Find the tough subtopics that you don’t know. If

need be, review some literature for the subtopic and read about it until its

thoroughly understood.

• Replace complex words with simple terms: If you have understood the topic and

have no doubts regarding any subtopic, you should be able to replace any

complex and subject specific terms with simpler words.

On noticing above steps, we can conclude that simplification is the key to learning a

new concept. As simple as the steps seems, it comprises of two core principles. The first

principle of his technique revolved around simplicity of a subject, which means no use

4

of complex jargon. The second principle revolved around brevity or briefness. These

two principles can be used to simplify any kind of complex subject text.

There is no single user-friendly system or proof of this concept which would summarize

multiple research documents at once with a simple jargon and thereby help a user to

learn more about these subjects in a lesser span of time.

Many summarization systems, both abstractive and extractive have existed for a long

time. The automatic creation of literature abstracts was published by H.P Luhn in 1958

[2]. Similarly, summarization using TextRank by Federico Barrios, Federico Lopez,

Luis Argerich and Rosa Wachenchauzer [3] was also implemented as gensim

summarization. These are few examples out of many summarization models and

systems. These systems demonstrated their performance and were compared to the

previous systems. Only a few systems like SummIt: A Tool for Extractive

Summarization, Discovery, and Analysis by IBM [4] served an actual purpose of

summarizing.

The task of studying a subject through research papers involves surveying a huge

amount of literature. Researching about a subject requires extensive literature survey.

This includes looking up for different research articles, documents and their related

literature as well. A single research article or a document has at least 5 citations from

different research articles and it takes about 30 minutes to go through just the research

article without browsing its reference literature. This reading time gets multiplied into

the number of reference papers cited in the article. The reading time can be decreased if

the cited papers and the base paper can be surveyed together in a simple and concise

5

manner to get a fair idea about the subject. This idea led to the motivation to develop a

user-friendly summarization and simplification system for text articles. The motivation

was to create a tool for researchers to be able to understand a subject using the system.

The key idea is to use Feynman technique and learn a topic with conjunction to using

the system to effectively read through the literature required to understand the concept.

The system has a wide variety of applications apart from summarizing scholarly articles.

The system can be used to summarize and simplify web articles and provide a gist to the

user without them having to go through the article. The system can automatically reduce

the dimensionality of research literature and thereby making the process of presenting

and explaining a concept much easier.

6

Chapter 3

Previous Works

Most of the previous work on text summarization has been based on known corpus. The

supervised approach for extractive summarization of scientific literature by ED Collins [5]

explored a new dataset for summarization by exploiting an existing resource - Science

Direct, where many journals required the authors to submit highlight statements along with

their articles. This is different from the abstract of the article. These highlights could further

be used as ‘gold’ statements for the summarization system. The author even introduces

HighlightROUGE for this specific dataset having highlights as ‘gold’ statements. Other

metrics like AbstractROUGE, a metric presented in the mentioned work is simply the

ROUGE-L score of the sentence and the abstract. The system discussed in the above-

mentioned work has a combination of 4 possible inputs: Sentence encoded with an RNN,

a vector representation of the abstract of the said paper, one of the 8 features and sentence

representation by average of every non-stop word vector in sentence. Multiple ways to

implement the system are demonstrated. It showcases how their metric AbstractROUGE

increases summarization performance. Even though the system does a great job at

summarizing scientific articles, the requirement for domain-based knowledge is still

present. There is no user-friendly system for using the system.[5]

Projects like ScisummNet [6] have also facilitated research in ‘citation-aware’ scientific

paper summarization. It is useful for sequence2sequence summarization. Another work by

Wen Xiao and Giuseppe Carenini [7] shows distributed representation of both the global

(the whole document) and the local context (e.g., the section/topic) when deciding if a

7

sentence should be included in the summary. Their inspiration for work was natural topic-

oriented structure of human-written long documents.

When we observe all the previous summarizing systems, it is evident that a natural

language processing pipeline helps obtain the structure of the input text, followed by

evaluation of the corpus based on some rank or significance factor, after which the extract

is given as output. There are various summarizing systems available for use but most of

them either require a dataset or have not been developed keeping naïve users in mind. There

is a need for a system which does not require domain knowledge and can work for multiple

documents, irrespective of their background domain.

8

Chapter 4

System design and architecture

The proposed system is a web application, which runs on a flask server. It takes document

files as input and stores it in a temporary volatile directory. At the server side, most of the

functionalities are handled by Python, which also executes commands to execute

intermediate Jar files by using Java Runtime Environment. The web application is hosted

on a local server with debug mode on.

Fig. 4.1 System Architecture

9

The above figure shows the system architecture and the key elements of the system. The

input for the web application is supposed to be files having a portable document file format

i.e. PDF. This is the final output is a consolidated document having relevant information

about the summarized and simplified paper along with the summary and the method used

for the summary generation.

We choose flask as the framework to maximize the capabilities of python and help

aggregate all the singular functionalities. The system was developed using python 3.6.0

and Java 14 was used to compile two packages which are then used with a command line

interface. Initially the system was conceived as a group of scripts and the input was in the

form of raw text. This architecture was not user friendly and needed a lot of manual work

for handling the input and the output for different modules. This led to develop the

application as a web interface. However, each of the underlying modules are almost

independent and can be used as individual modules.

The detailed architecture for the above system comprises of six modules. Each module

takes in an input and gives an output and performs forward propagation. Since the output

of these modules are input for other modules, we implement serialization to avoid any

exceptions while execution.

10

Fig 4.2 Workflow and detailed architecture of the system

11

The modules shown in the above figure as discussed below for detailed understanding:

1) Once the data is stored it is processed by cfd.py module. It has three functions:

convert2xml(), check_files(), clear_dir(). The convert2xml() function searches

for all the PDF documents in the directory and converts them to xml by using the

CERMINE [8] library . The function executes terminal commands for the jar file

and thereby initiating the conversion using the java library. The check_files()

function traverses the data directory and appends the path of the generated XML

files into a list and returns. The clear_dir() function is used to clear the generated

xml files after they are processed. This helps to decrease the number of files in the

directory and therefore decreasing traverse time for check_files() . The output is

an XMLfile .

2) The XML file is now passed on to the xml_parser.py which has parsing()

function. This function takes a list of paths as an input. It opens up the XML files

and uses xml.etree.ElementTree to traverse them and extract information. The

output for this function is a dictionary of dictionaries containing the textual

information about the document. Since it takes a list as an input, it can handle

multiple XML files at once.

3) This module is responsible for extractive summarization and evaluation and hence

it is divided into two sub-modules. The module marked by 3.1 in the figure is

responsible for all different extractive summarization techniques. There is no

explicit module in the system which aggregates all the four summarization

functions into one. There are four functions implementing four different ways to

12

summarize text. These functions are discussed in detail in upcoming chapters. The

module defined in 3.2 is used for evaluating the summary metric scores and

selecting the best generated summary.

4) Once the summary is selected for a document it is then passed on to the

simplification methods. If the summary is to be subjected to context analysis,

simpler.simplify(summary) is called. If the summary is to be subjected to lexical

simplification using synonyms, lexical.lex_simplify(summary) is called. Else if the

summary is to be subjected to ‘medical science’ subject based dictionary

simplification, medical.medical_simplify(summary) is called. The option to

choose one of these functions is given in the form of radio buttons while taking

input documents from the user.

5) The simplified summary along with the document information stored in the form

of a dictionary is now ready to be displayed. The dictionary items are initialized

in class best_csummary(). This creates an instance of the class which is then

appended to a list. Once all the documents from the dictionary are appended as

objects of class best_csummary(), the list is then subjected to besttable() and

there by converted to an HTML table element using flask_table package.

Different format of the table requires different classes.

6) Once the table element is passed as a parameter inside the render_template()¸the

result.html template renders the table element generated and thereby prints the

table in the form of html. The table element can be formatted as per the need.

13

Chapter 5

Implementation

The implementation for the system is divided into following parts:

• Data Aggregation

• Information Extraction

• Processing

• Summarization and Evaluation

o Weighted term frequency method using Spacy [9]

o Latent Semantic Analysis [13] based summarization using Sumy [10]

o Textrank [14] based summarization using Gensim [11]

o TF-IDF [15] based summarization using NLTK [12]

• Simplification

o Context Breakdown

o Term Re-writing

14

5.1 Data Aggregation: For the ease of use of the proposed system, the user interface is

developed in HTML. The frontend facilitates the user to upload the batch of documents in

the PDF format. The uploaded documents are stored in a temporary directory on the local

host for the time period of the session. The data, once summarized, is deleted from the host

system therefore no privacy issues are to be tackled. The input is taken as form values with

two main parameters: ‘n’ number of structured documents and an option to simplify the

summary with the selection of corresponding radio button.

Fig 5.1 HTML user interface for data aggregation

The input files need to be a literature of scholarly nature - it should at least have a title, an

abstract and literature to be summarized. The system handles most of the renowned

research publication’s document format but may fail if the structure of the document is

unconventional.

5.2 Information Extraction: Once the document files have been aggregated and stored in

the local host directory, we subject these files to a java archive compiled from the source

15

code of a library called CERMINE. CERMINE is an abbreviation for Content Extractor

and Miner. It is an open source java library developed by Interdisciplinary Centre for

Mathematical and Computational Modelling (ICM). CERMINE is used to extract the title

of the input document, information about the journal, keywords, abstract, names of the

author and all possible text information present in the document.

Fig 5.2 CERMINE Architecture

Extraction of the basic document skeleton from the pdf produces a chronological and

hierarchical structure representing the document. This structure includes pages, lines,

zones, words, and characters. The order for reading the document is determined with zones

labelled with the following general categories: METADATA, REFERENCES, BODY and

OTHER.

16

Basic structure extraction is implemented by doing character extraction, page

segmentation, reading order resolving and zone classification.

The Metadata zone classification is done using SVM where the classification labels are

abstract, bib_info, type, title, affiliation, author, keywords, correspondence, dates, and

editor. This classification is done using simple rules. The library used is LibSVM for the

classification by CERMINE [8].

The CERMINE package for this system is compiled specifically to cater to the problem of

extracting information from scholarly literature leaving behind unnecessary classes.

For the system, CERMINE is useful to give us the abstract, author-information and raw

text. Apart from extraction of text, it also extracts images from the documents and stores

them for later review.

17

Fig 5.3 XML output after processing

The above figure represents the tree structure of the XML file generated after extracting

text from the PDF file using CERMINE. This XML file has ‘object’ as the root node having

the ‘article’ as the child node. Further ‘article’ node is subdivided into ‘front’, ‘body’ and

‘back’. The ‘front’ element contains the journal information, article meta data including

title of the article, name of the authors and their affiliations. The ‘body’ node has figures

from the document, and textual information stored in the form of sub nodes. The ‘back’

node has reference information and is also stored in the form of sub nodes. The images

from the document are stored in a local directory with directory name equivalent to the title

of the document.

18

If CERMINE is not able to extract certain information from the document, it would assign

a null value to the respective node.

5.3 Processing: After the XML files are generated, the file paths for the same are identified

are stored in a list and then passed on to a module name xml_parser.py to extract the textual

and article information from the document. Iterating over the XML tree using the element

tree package in python allows to traverse and extract required information.

Fig 5.4 Document Dictionary after XML processing

19

A dictionary is defined for every XML file path encountered in the input list. This

dictionary then stores information like title, abstract, raw text, author-information. This

dictionary is added as value to another dictionary which has the title of the document as

the key. This is the main dictionary storing the information from all the input documents

and hence serving as the final input for the summarizers. Here few error checks have been

implemented for null values stored during Information Extraction phase. If any information

like article-information like title and names of the author are not extracted, then the system

assigns an ‘information could not be extracted’ string to that field. This helps to handle

runtime exceptions and resume the processing without stopping completely.

5.4 Summarization and Evaluation: The data, stored in the form of document dictionary,

is now ready to be passed to the summarizers. Four methods to demonstrate extractive

summarization have been implemented. These methods implement specific algorithms or

a technique to get an extractive summary. The method implementing spacy package is

based on weighted term frequency matrix, Sumy implements Latent Semantic Analysis,

GENSIM method involves text rank and NLTK implements TFIDF.

• Weighted term frequency method using spacy: Spacy is an open source natural

language processing library by Explosion [9]. It is used for part of speech tagging,

named entity recognition and other lexical operations involving text In this

implementation , Tokenization of speech is followed by appending nonstop-word

tokens having POS (Parts of Speech) as either PROPN, ADJ, NOUN, VERB. This

extractive method helps to sustain the named entities thereby increasing the

20

significance of the summary. The concept of weighted frequency is used for

extracting sentences. This method is implemented to demonstrate how the

frequency of the terms can affect the summarization quality. The input text is

tokenized and cleaned before it can be used for summarization. We first create a

dictionary for word frequencies by adding terms which are not present in the spacy

default stop words list and which are not punctuation marks as well. Once this

dictionary is generated from the document, we then use it to calculate weighted

term frequency by updating the frequency score of the terms i.e. by dividing the

scores with the maximum score. The scores are now scaled between 1 and 0, where

1 represents the term that occurs the most. After calculating the weighted score for

each term and updating the values in the dictionary, we use it to replace the words

in the sentences with their weighted score which gives an additive score of the

weighted term frequency for the sentence. A final dictionary contains sentences as

the key and the additive weighted term scores are values. We then select the top

sentences with the most occurrences.

Fig 5.5 Abstract subjected to weighted frequency-based approach.

21

The above figure shows the output dictionary having sentences with words less

than 30 and their additive scores as the dictionary values.

This method has two input parameters: Document raw text and expected number of

sentences in the summary. The expected number of sentences cannot be more than

the input length of the raw text.

• Latent Semantic Analysis based summarization using Sumy: Sumy is a python

package by Miso-Belica [10] for unsupervised extractive text summarization. The

package provides four summarizing methods namely Lex Rank, TextRank, LSA

and Luhn heuristics.

 Here we are using the LSA summarizer i.e. Latent Semantic Analysis [13]. It is a

method for extracting and representing the significant meaning and usage of the

words by statistical calculation applied to a large corpus of text. LSA uses a term-

document matrix, which has the frequency of the terms in the documents. It is a

highly sparse matrix with rows as terms and columns as corresponding documents.

We start by declaring a matrix, which has the significance of a term in a sentence,

also known as term-sentence matrix. Each column represents the weighted value of

the frequency-term vector of the respective sentence for the document under

consideration. Suppose there are t terms and s sentences in the document, we can

say that we will have a t × s matrix for a document. This matrix would be sparse in

nature. Given this matrix M of t × s, without loss of generality t ≧ s, the SVD of M

is defined as M=P ∑ QT, where P =[pij] is t × s column-orthonormal matrix whose

columns are called left singular vectors. ∑ is an s × s diagonal matrix which is

22

diagonal in nature. The diagonal elements are non-negative singular values

arranged in reverse order, and Q=[qij] is an s × s matrix having orthonormal matrix,

the columns are called singular right vectors. The matrix P extracts sentence-to-

sentence similarity whereas the matrix Q extracts term-to-term similarity The SVD

derives the latent semantic structure from the document represented by matrix M.

Sumy implementation for singular vector decomposition is done using

numpy.linalg.singular_vector_decomposition() which takes a matrix M and gives

P, ∑ and Qt as a result. Further rank is calculated for each column value i.e. s.

Fig 5.6 Rank calculation for LSA from genism module

The number of sentences in the output are arranged based on the calculated ranks.

• Textrank based summarization using Gensim: Genism [11] summarizer is based

upon a ‘modified’ version of TextRank algorithm [14]. TextRank algorithm is a

23

graph-based algorithm. TextRank is useful for keyword extraction and sentence

extraction as well since the algorithm works in a similar way for both.

To apply TextRank, we create a graph related to the text, where the graph vertices

are representative for the units to be ranked. For the task of sentence extraction, the

goal is to rank entire sentences, and thus a vertex is added to the graph for each

sentence within the text. We are defining a relation, which determines a connection

between two sentences if there is a “similarity” relation between them, where

“similarity” is measured as a function of their content overlap. Such a relation

between two sentences may be seen as a process of “recommendation”: a sentence

that addresses certain concepts in an exceedingly long text gives the reader a

“recommendation” to visit other sentences within the text that address the identical

concepts, and thus a link can be established amongst any two such sentences that

have common content and context. The similarity measure for the original

algorithm is different from the genism implementation [16]. Selection of the

sentences to considered for the graph is done keeping in mind the overlapping of

the sentences. Normalization factor is given to a group of sentences to avoid

selection of long sentences. To calculate normalization factor, we count the length

of the overlapping substring and then divide this length with length of that factor.

Consider the example of these two sentences:

This is apple - overlapping substring with length as 13

I think this is apple, but I am not sure. 0.325 is the normalization factor.

24

I think this is apple but cannot be sure about it. 0.26 is the normalization factor.

Here the sentence with high normalization score would be considered. After the

selection on the sentences the similarity score is calculated using BM25 [17].

R and S are the sentences for which the similarity is calculated, si is the i th term in

the sentence R, 𝑓 (si ,R) is the frequency of the term si in the sentence R. The

parameters k1 and b are parameters having the value 1.5 and 0.75, respectively. The

average length of the sentences in the text is denoted by avgDL. IDF(si) represents

inverse document frequency for term si.

The definition for the above functions shows that if a term is in more than 50% of

the document, it will start taking up negative values. To avoid this, we correct the

IDF

25

Here N is the number of words in the document. And ε is a constant which takes

the value 0.25 for the implementation in genism. The similarities calculated are

now used to create a fully interconnected graph. This weighted graph is now

subjected to a ranking algorithm like that of PageRank and finally the output is

sorted to maintain the order of the original input.

TextRank is ideal for projects involving entire sentences, since it allows for a

ranking over text units that is recursively computed based on information drawn

from the entire text.

• TF-IDF based summarization using NLTK: Natural Language Toolkit [14] based

summarizer uses TF-IDF [15] for extracting sentences. TF-IDF or Term

Frequency-Inverse Document Frequency, is an algorithm which is divided into two

parts – calculating the term frequency and then multiply it by the inverse document

frequency. Term frequency is finding out how common a word is in a document by

taking the ratio of the number of times a word appears in a document and the total

number of words in a document. Inverse document frequency is the exact opposite

of term frequency. It finds out how rare a word is within a document. A term-

frequency dictionary is created in which the terms are the ones which do not belong

in stop words, which is followed by tokenization. Once the term-frequency

dictionary is generated, it is stored as a dictionary with the sentences as key and

dictionary of words and their occurrences. For tokenizing the sentences, sent

tokenize() is used and once that is done we then create a frequency matrix like we

did for generating weighted term frequency matrix. The difference here would be

26

that each sentence is a key and the corresponding value would be a dictionary of

term frequency term frequency. The TF(t) is the number of times a term t appears

in the text divided by total number of terms in a text. Next thing would be to

calculate a matrix which represents number of sentences that contain a specific term

‘t’. This is done to in order to calculate IDF(t) which is logarithmic function of total

number of sentences in the text divided by the number of sentences containing term

‘t’ in it. The product of both the matrix gives the sentence scores and these sentences

which have score higher than the threshold will the be selected for summary. For

this implementation, average value of the sentence score has been considered as the

limiting function.

The above four systems are just to demonstrate different approaches and their

summary results. The output for the above systems may vary for different texts

because of their nature of operation. The reason for showcasing four different

approaches is to demonstrate that the extraction process varies when we use

different approaches. These intermediary outputs will now be fed to an evaluation

model where we will compare the summaries generated with the abstract to finalize

the best one.

Evaluation: Once the summarizations are generated with the above four methods,

the selection of one good summary is to be done. Evaluating the summarization

methods is important as the quality of the extract depends upon the correlation with

the subject. The most common summarization metrics used for extractive

summarization are content based evaluations as described in “Evaluation Measures

27

of Text Summarization” [18]. The system implements the n-gram matching

evaluation technique. This includes the ROUGE family of measures, which are

based on the similarity of n-grams [19], first introduced in 2003. The evaluation

metric used here is ROUGE metrics. ROUGE is an abbreviation for Recall-

Oriented Understudy for Gisting Evaluation. It consists of metrics to implicitly

decide the quality of a summary by comparing it to other (ideal) summaries

generated by humans. Since the summarization process is unsupervised and does

not have a reference summary generated by human, we consider abstract as a true

summary of the whole document. This idea is loosely based upon AbstractRouge

[5], a metric discussed by Ed Collins, Isabelle Augenstein and Sebastian Riedel in

their research paper. The idea here is to select a summary which has a high

ROUGE-L score with the abstract. Once the ROUGE-L score is calculated, the

summary with maximum F-score is selected, which makes it a relevant extract from

the document.

ROUGE-L score relies on matching longest common subsequence. The output with

the highest F-score for the rouge score is then used for further processing. The

reference summary is usually a summary generated by humans but since our system

is unsupervised, we make use of the abstract.

28

 Fig 5.7 Code snippet to calculate the ROUGE-L metrics

 ROUGE-L determines the longest matched sequence of words using the longest

common subsequence (LCS). The good part about using LCS is that it does not

require consecutive matches, but in-sequence matches that reflect sentence level

word order. Since it automatically includes longest in-sequence common n-grams,

you do not need a predefined n-gram length. F-score considers recall and precision

both. F-score is the harmonic mean of precision and recall values. F-score ranges

from 0 to 1, with 1 being the best F-score thereby having best recall and precision

values. Hence, F-score for ROUGE-L metrics is best for comparing the extract with

the abstract of the document.

The figure below illustrates how the output from our information extraction block,

which is in the form of raw text, is summarized and passed on for evaluation. This

process is done for each document

29

Fig 5.8 Summarization and Evaluation

5.5 Simplification: Once the extract is finalized after the evaluation, we further subject it

to sentence simplification to make it easier to read. The summary after simplification

should be simple and should not have complex grammatical sentences. The simplification

part is for better readability and therefore we have two options for the process.

30

• Context breakdown: Context analysis for text is important as it helps to break down

a sentence into a simpler group of sentences. In natural language processing, parts

of speech help to understand the context from a structured text.

Fig 5.9 Context Analysis

Context analysis consists of resolving co-references from a sentence.

Understanding sentence structure and their components like appositive phrases,

containing subordinations, coordination is useful for transforming into a simpler

structure. Identification of rhetorical relationships between the sentences and

extracting binary relationships like subject and predicate from each sentence helps

understand the granularity of a sentence. The above attributes of a sentence help to

establish a context relationship and thereby helps in generating simple sentences.

31

The above figure illustrates how a sentence can be broken down to find the context.

To breakdown the evaluated summary we make use of an open source sentence

simplification java program which was originally implemented in the graphene

pipeline by Lambda3 [20]. Once the context breakdown is done for each sentence,

we print the core sentence followed by the context of the sentence. Similarly, the

whole text gets broken down into much simpler sentences. The number of sentences

in the output are increased due to breakdown of the original sentences.

StanfordCoreNLP [21] is used by the sentence simplification library for context

breakdown of the input sentences. The library is used within the compiled JAR file.

At first, tokenization is done using in-built PTB Tokenizer – default tokenizer for

the library. After tokenization, we use the ‘ssplit()’ function to get the sentences

after splitting. These sentences are then fed to the LexParser class, which uses the

pre-trained englishPCFG.ser.gz model to derive the structure of the sentence,

following which, POS tagger from class Maxent is used to get the parts of speech

tags for each word in the sentences. Finally, AbstractSequenceClassifier loads

english.all.3class.distsim.crf.ser.gz model to classify core sentences.

32

Fig 5.10 output.txt for each document for context breakdown

The output comprises of three subparts – original sentence, core sentence and

context. If the sentence is not able to identify any core or context, it would just

return the original sentence. Ideally the system displays the core sentence along

with the context sentence, however we can customize the output as needed.

• Article-Rewriting: Another approach to simplify a text would be to simplify the

complexity of the text by replacing the complex words with simpler words. This

technique is also known as lexical simplification. For this approach, complex words

are replaced with synonyms from an online dictionary. We make use of the

Datamuse API [22] for finding synonyms for several parts of speech from a

sentence. Datamuse API is a word query engine for developers. Its main usage is

to find words that match a given set of rules and criteria.

There are many criteria options available for the API usage, but we are concerned

with 'ml=' and 'topic=' endpoints of this API. We use this API to fetch synonyms

33

from the dictionary available online from the Datamuse database, which is based

on Google Books Ngrams. The ‘topic=’ parameter acts just as a hint in the HTTP

request call. The results of this method can be vague as the lexical simplification

done over a dictionary which is not domain specific can change the overall meaning

and loss in the information. Also, this approach requires high bandwidth and is not

scalable as it has high latency for response time.

Fig 5.11 Datamuse API call

This method can be improved by implementing a topic-based dictionary for the

document. One way to deal with this situation is by implementing article

classification and creating a dictionary for possible topics. To showcase this lexical-

simplification, medical science subject was selected for implementation and a

publicly available dictionary from a repository known as SimpleScience [23] was

used as dictionary to substitute complex words identified as a part of subject jargon.

The lexical simplification implemented using this dictionary is very specific to

‘medical sciences’ subject.

34

Chapter 6

Observations and Analysis

The final output of the system is a consolidated document having summaries presented in

a tabular format. The output is an HTML table with column names as title of the document,

names of the authors, abstract of the document, final output summary and the type of

summarization method selected after evaluation.

Fig 6.1 Output for one pdf

During the evaluation phase, we go through a few metrics for the generated summary. We

have considered 20 articles for generating summaries. For every research article, we

calculate the ROUGE-L score, precision, recall and F-score. This is done for each type of

summary generated using different methods i.e., GENSIM, NLTK, SUMY and SPACY.

The best summary is selected by using the maximum F-score for all the four methods.

35

6.1. F-score analysis:

In Statistics, for binary classification, F-score is a metric used to test a test’s accuracy. It

includes – precision and recall of the test to calculate the score where precision is the

number of accurate positive results divided by the number of all known negative results

returned by the model while recall is the number of accurate positive results divided by the

number of samples having relevance (samples that have been identified as positive). The

F-score is the sub-contrary mean of precision and recall.

We use a module – PyRouge [24], a Python wrapper for the ROUGE summarization

evaluation package. The F-score is calculated using the following formula:

The F(beta) score "measures the effectiveness of retrieval with respect to a user who

attaches beta times as much importance to recall as precision" [25].

Fig 6.2 ROUGE-L metrics

36

In the above figure, we observe that 0.4289 is the maximum value from the array of F score for one

of the papers and thereby we select the corresponding summary.

6.2 Heatmap Analysis:

Every document gives a three by four matrix when subjected to ROUGE_L metrics. The

three rows in the matrix represent precision, recall and f-score respectively while the four

columns represent the summarization methods, which are - Text Rank using GENSIM,

TFIDF using NLTK, LSA using SUMY and Weighted frequency-based ranking using

SPACY.

To observe the metric values for the documents, we select four matrices with different

types of summarization method selected based on the maximum f-score. The observations

made from these heat maps helps in analyzing the summarization methods in more detail.

37

Fig 6.3 GENSIM summary with high F-score

Fig 6.4 NLTK summary with high F-score

38

Fig 6.5 SUMY summary with high F-score

Fig 6.6 SPACY summary with high F score

39

The documents chosen for each kind of summarization methods were random. This was

done to observe any kind of anomaly in the metric measurement. The heatmaps were

generated using the ‘Seaborn’ package in a Jupyter Notebook. As we can observe in the

above figures, recall value for summaries generated by Latent Semantic Analysis using

Sumy are higher in most cases. The summaries generated by Text Rank using GENSIM

tend to have high F-scores in most cases. This was observed for most of the documents in

the dataset. Summaries generated by the weighted frequency method using Spacy have a

high precision value and that is mainly because of the significance of weight matrix for the

document.

6.3 Runtime Analysis:

The evaluation is done based on the assumption that abstract is an ideal summary of the

article. Analysis is done on a sample of 20 research papers. The selection of these

documents is random and are from different publications like IEEE, aRXiv, Jetir and

others. The total size of this dataset of documents is 39.5 Megabytes. The smallest size

being 93 Kilobytes and largest one being 17.8 Megabytes.

40

Fig 6.7 Runtime for 20 papers (in seconds)

The above figure shows the runtime to generate final output in the form of an HTML table.

The execution was done on a system running Windows 10 operating system with 16

Gigabytes of physical memory and i5-8300H clocked at 2.30 Gigahertz. It is observed that

synonym based lexical simplification takes a huge amount of time since it fetches

synonyms for each parts of speech tagged words. Also, the technique is not efficient as it

requires an HTTP API call for every word and hence increases the runtime significantly.

Therefore, the technique is good as just a proof of concept.

6.4. Survey Analysis:

Apart from this, an anonymous public survey was conducted with the help of Google

forms. A link was shared on social media platforms to get insights regarding the

summarization of the article. A web document with extractive summaries for the twenty

documents were distributed amongst family members, friends, and peers in acquaintance

4
7
4

2
7
7

2
8
4

3
8
0
0

C O N T E X T

A N A LY S I S

S U M M A R IZ A T IO N

O N LY

T O P IC B A S E D

S IM P L I F I C A T I O N

(M E D IC A L)

S Y N O N Y M

B A S E D

41

along with a Google form link. These responses were recorded in an excel sheet and were

reviewed for evaluation. The form collected three attributes - readability, relevance of the

summary and understanding of the subject on the scale of 1 to 10, with 10 being the highest.

A total of 76 responses were collected using this medium and following are the results:

Readability (%) Relevance (%) Understanding (%)

72.10 68.86 68.84

Table 6.1 Average value of 76 responses

The above results show that readability factor for the document is high but relevance and

understanding attribute is comparatively lower. The relevance and understanding attributes

have almost same value as the participant might have misunderstood the attributes.

42

Chapter 7

Future Work

The system meets the requirement of a user-friendly tool to span scholarly literature in an

easy way. The convenience of summarizing and simplifying scholarly literature makes it a

useful tool for researchers and students. It has a very high potential to achieve much more

functionalities and can be proven more useful. Following are some future goals for the

system:

• Recommending literature based on sematic relationship: The system can be further

improved by having suggestions and recommendations for similar literature for

better understanding of the topic.

• Usage of BERT [26], a pre-trained transformer model for natural language

processing, can be used to improve the performance of the extractive

summarization. This approach can help increase the ROUGE score for the extracted

summary.

• Adding Cross Entropy Summarization [27] technique for better yield of

information from the documents. This approach has proven to be a good

implementation for unsupervised, query focused multi-document summarization

method. It does not require any kind of domain knowledge.

• Implementing the LEXenstein [28] library for text simplification and better context

breakdown of sentences. This will help over come the issue of lexical simplification

without the need of corpus. LEXenstein pipeline involves identification of complex

43

words, substitution generation, ranking of the substitution and then simplifying the

text.

• Using seq2seq framework [29] to attain a better production level result. The

implementation of seq2seq framework for abstractive summarization along with

extractive summarization can be used to fine tune the performance of the situation.

• Implement containerization to help the system scale. This will help in scaling and

distributing the application once it is deployed on a production cover.

• Adding session management to allow parallel access to the application. The

implementation is currently in development phase; therefore, it implements

serialization.

• Improving the capability to read all kinds of literature, irrespective of the structure

of the document.

• Making a REST application programming interface (API). This will improve and

broaden the use cases for the system.

• Mobile application development, using the powerful capabilities of the current

generation hardware, will improve the reach of the system along with increasing

convenience for the users.

44

Chapter 8

Conclusion

After performing several experiments and analysis on the output generated by the

system, we can conclude that the proposed system for extractive summarization and

simplification of scholarly literature is a good way to obtain extractive

summarization. While performing analysis on a dataset of twenty papers, it is

observed that eleven out of twenty papers were summarized using the text rank

algorithm implemented by gensim. This supports the fact that gensim is the most

evident method to generate summary as per the observations.

 The system performs great when it comes to simplifying the summary using

context breakdown, but it needs a better approach for lexical simplification. The

extractive summarization and simplification using context break is the ideal way to

use this system. The consolidated table generated for the documents gives a fair

insight to a user with an average rating of 7.2, 6.8 and 6.8 for readability, relevance

and understanding, respectively. To use this system in the best way possible, one

should input similar documents having a specific structure. This way one can read

similar documents in an easier way.

45

References

[1] Richard Feynman, Wikipedia Article;

https://en.wikipedia.org/wiki/Richard_Feynman

[2] H. P. Luhn, "The Automatic Creation of Literature Abstracts," in IBM Journal

of Research and Development, vol. 2, no. 2, pp. 159-165, Apr. 1958.

[3] Barrios, F., López, F., Argerich, L., Wachenchauzer, R., "Variations of the

Similarity Function of TextRank for Automated Summarization" in Anales de las

44JAIIO. Jornadas Argentinas de Informática, Argentine Symposium on Artificial

Intelligence, 2015.

[4] Guy Feigenblat, Odellia Boni, Haggai Roitman, and David Konopnicki. 2017.

“SummIt: A Tool for Extractive Summarization, Discovery and Analysis.”. In

Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management (CIKM ’17). Association for Computing Machinery, New York,

NY, USA, 2459–2462. DOI: https://doi.org/10.1145/3132847.3133183

[5] Ed Collins, Isabelle Augenstein, Sebastian Riede., l A Supervised Approach to

Extractive Summarization of Scientific Papers, 2017, arXIv. DOI:

https://arxiv.org/abs/1706.03946v1

[6] Michihiro Yasunaga ,Jungo Kasai, Rui Zhang ,Alexander R. Fabbri ,Irene Li

and Dan Friedman, Dragomir R. Radev. “ScisummNet: A Large Annotated

Corpus and Content Impact Models for Scientific Paper Summarization with

Citation Networks”, 2019, arXIv. DOI: https://arxiv.org/abs/1909.01716

https://en.wikipedia.org/wiki/Richard_Feynman
https://arxiv.org/pdf/1602.03606.pdf
https://arxiv.org/pdf/1602.03606.pdf
https://doi.org/10.1145/3132847.3133183
https://arxiv.org/abs/1706.03946v1
https://www.google.com/url?q=https://arxiv.org/abs/1909.01716&sa=D&source=hangouts&ust=1587590003080000&usg=AFQjCNHPtQU7oYSNqau1D0nT3er6E38XpA

46

[7] Wen Xiao ,Giuseppe Carenini “Extractive Summarization of Long Documents

by Combining Global and Local Context” ,2019, DOI:

https://arxiv.org/abs/1909.08089

[8] Dominika Tkaczyk, Pawel Szostek, Mateusz Fedoryszak, Piotr Jan Dendek

and Lukasz Bolikowski. “CERMINE: automatic extraction of structured metadata

from scientific literature”. In International Journal on Document Analysis and

Recognition, 2015, vol. 18, no. 4, pp. 317-335, doi: 10.1007/s10032-015-0249-8.

[9] Honnibal, Matthew and Montani, Ines. “spaCy 2: Natural language

understanding with Bloom embeddings, convolutional neural networks and

incremental parsing”; https://github.com/explosion/spaCy

[10] BELICA, Michal., “SUMY”; http://hdl.handle.net/11012/53529;

https://miso-belica.github.io/sumy/

[11] Radim \v Reh\r u\v rek, and Petr Sojka 2010. Software Framework for Topic

Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks (pp. 45–50). ELRA.;

https://pypi.org/project/gensim/

[12] Bird, Steven, Edward Loper and Ewan Klein (2009), *Natural Language

Processing with Python*. O'Reilly Media Inc; https://www.nltk.org/

[13] Josef Steinberger, Karel Ježek “Using Latent Semantic Analysis in Text

Summarization and Summary Evaluation”;

http://www.kiv.zcu.cz/~jstein/publikace/isim2004.pdf

https://www.google.com/url?q=https://arxiv.org/abs/1909.08089&sa=D&source=hangouts&ust=1587590159344000&usg=AFQjCNEDuVR-uYguU0Lk-dsTIHUnHx2N_g
https://github.com/explosion/spaCy
http://hdl.handle.net/11012/53529
https://miso-belica.github.io/sumy/
https://pypi.org/project/gensim/
https://www.nltk.org/
http://www.kiv.zcu.cz/~jstein/publikace/isim2004.pdf

47

[14] Mihalcea, P. 2004. “TextRank: Bringing Order into Text.” In Proceedings of

the 2004 Conference on Empirical Methods in Natural Language Processing (pp.

404–411). Association for Computational Linguistics.

https://www.aclweb.org/anthology/W04-3252

[15] Bruno Stecanella “What is TF-IDF?”, 2019;

https://monkeylearn.com/blog/what-is-tf-idf/

[16] Federico Barrios and Federico L\'opez and Luis Argerich and Rosa

Wachenchauzer 2016. Variations of the Similarity Function of TextRank for

Automated Summarization. CoRR, abs/1602.03606;

http://arxiv.org/abs/1602.03606

[17] Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.:

Okapi at TREC-3. In: Proceedings of The Third Text REtrieval Conference,

TREC 1994, Gaithersburg, Maryland, USA, November 2-4, 1994. pp. 109–126

(1994); http://trec.nist.gov/pubs/trec3/papers/city.ps.gz

[18] Steinberger, Josef, and Karel Ježek. "Evaluation measures for text

summarization." Computing and Informatics 28.2 (2012): 251-275.

[19] Lin, C.Y. 2004. ROUGE: A Package for Automatic Evaluation of

Summaries. In Text Summarization Branches Out (pp. 74–81). Association for

Computational Linguistics.; https://www.aclweb.org/anthology/W04-1013

https://www.aclweb.org/anthology/W04-3252
https://monkeylearn.com/blog/what-is-tf-idf/
http://arxiv.org/abs/1602.03606
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://www.aclweb.org/anthology/W04-1013

48

[20] Andre Freitas, Bernhard Bermeitinger, Christina Niklaus, Matthias Cetto,

Siegfried Handschuh. “SentenceSimplifcation by Lambda3”;

https://github.com/Lambda-3/SentenceSimplification

[21] Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven

J. Bethard, and David McClosky. 2014. “The Stanford CoreNLP Natural

Language Processing Toolkit”, In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics: System Demonstrations, pp. 55-60.

[pdf] [bib]

[22] Datamuse.com. 2020. Datamuse API. [online] Available at:

https://www.datamuse.com/api/

[23] Kim, Yea-Seul, et al. "Simplescience: Lexical simplification of scientific

terminology." Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing. 2016;

https://github.com/yeaseulkim/SimpleScience

[24] Benjamin Heinzerling, Anders Johannsen ‘PyRouge’;

https://pypi.org/project/pyrouge/

[25] [Chinchor, 1992] Nancy Chinchor, “MUC-4 Evaluation Metrics, in Proc. of

the Fourth Message Understanding Conference”, pp. 22–29, 1992.

https://dl.acm.org/citation.cfm?id=1072067

[26] Yang Liu. (2019). “Fine-tune BERT for Extractive Summarization”;

https://arxiv.org/pdf/1903.10318

https://github.com/Lambda-3/SentenceSimplification
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.bib
https://www.datamuse.com/api/
https://github.com/yeaseulkim/SimpleScience
mailto:benjamin.heinzerling@h-its.org
https://pypi.org/project/pyrouge/
https://dl.acm.org/citation.cfm?id=1072067
https://arxiv.org/pdf/1903.10318

49

[27] Guy Feigenblat, Haggai Roitman, Odellia Boni, and David Konopnicki.

“Unsupervised Query-Focused Multi-Document Summarization using the Cross-

Entropy Method”. In Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR ’17).

Association for Computing Machinery, New York, NY, USA, 961–964. DOI:

https://doi.org/10.1145/3077136.3080690

[28] Paetzold, Gustavo & Specia, Lucia. (2015). “LEXenstein: A Framework for

Lexical Simplification.” 85-90. 10.3115/v1/P15-4015.

[29] Britz, D., Goldie, A., Luong, T., and Le, Q. 2017. “Massive Exploration of

Neural Machine Translation Architectures.” ArXiv e-prints

https://doi.org/10.1145/3077136.3080690

