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ABSTRACT

SEMI-SUPERVISED DEEP LEARNING WITH APPLICATIONS IN SURGICAL

VIDEO ANALYSIS AND BIOINFORMATICS

SHENG WANG, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Junzhou Huang

In the current era of big data, deep learning has been the state-of-the-art model

for various applications. Image-based applications such as image classification, object

detection, image segmentation, benefit most from deep learning networks. One reason

for the successful applications of deep learning is that there are a large number of

labeled training samples for the model to learn from. People are interested in reducing

the cost of getting labeled training samples, and there are various research going on

with unsupervised, semi-supervised, and self-supervised deep learning. The cost of

health-related data is even higher. Labeling the surgical videos with tools being used

and surgical phase needs surgical related domain knowledge, it is not feasible to use

general cloud labeling. Getting molecule properties even cost more since it usually

needs expensive laboratory experiments. How to utilize the unlabeled data to improve

the model performance attracts increasing research interests. In this thesis, we aim

at proposing semi-supervised deep learning models to introduce unlabeled data into

model training to get better model performance. Specifically, this thesis focuses
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on developing semi-supervised deep models for in surgical tool presence detection

problem, and molecular property prediction problem.

Surgical tool presence detection is one of the key problems in automatic surgical

video content analysis. Solving this problem benefits many applications, such as the

evaluation of surgical instrument usage and automatic surgical report generation.

Given the fact that each video is only sparsely labeled at the frame level, meaning that

only a small portion of video frames will be properly labeled, existing approaches only

model this problem as an image (frame) classification problem without considering

temporal information in surgical videos. In this thesis, we discuss from a supervised

deep neural network to a semi-supervised frame, which utilizes the information from

both labeled and unlabeled frames to solve this problem with different components

to capture the spatial and temporal information of surgical videos.

With the rapid progress of AI in both academia and industry, Deep Learning

has been widely introduced into various areas in drug discovery to accelerate its pace

and cut R&D costs. Among all the problems in drug discovery, molecular prop-

erty prediction has been one of the most important problems. Unlike general Deep

Learning applications, the scale of labeled data is limited in molecular property pre-

diction. To better solve this problem, Deep Learning methods have started focusing

on how to utilize tremendous unlabeled data to improve the prediction performance

on small-scale labeled data. In this thesis, we discuss a semi-supervised model named

SMILES-BERT, which consists of the attention mechanism based Transformer Layer.

A large-scale unlabeled data has been used to pre-train the model through a masked

SMILES recovery task. Then the pre-trained model could easily be generalized into

different molecular property prediction tasks via fine-tuning.
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CHAPTER 1

INTRODUCTION

This thesis focuses on developing semi-supervised deep learning algorithms and

models in surgical video analysis and bioinformatics, including tasks as surgical tool

presence detection and molecule property prediction.

1.1 Motivation

In the current era of big data, deep learning has been the state-of-the-art model

for various applications. Image-based applications such as image classification, object

detection, image segmentation, benefit most from deep learning networks. One reason

for the successful applications of deep learning is that there are a large number of

labeled training samples for the model to learn from. People are interested in reducing

the cost of getting labeled training samples, and there are various research going on

with unsupervised, semi-supervised, and self-supervised deep learning. The cost of

health-related data is even higher. Labeling the surgical videos with tools being used

and surgical phase needs surgical related domain knowledge, it is not feasible to use

general cloud labeling. Getting molecule properties even cost more since it usually

needs expensive laboratory experiments. How to utilize the unlabeled data to improve

the model performance attracts increasing research interests. In this thesis, we aim

at proposing semi-supervised deep learning models to introduce unlabeled data into

model training to get better model performance. Specifically, this thesis focuses

on developing semi-supervised deep models for in surgical tool presence detection

problem, and molecular property prediction problem.
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First of all, this thesis focuses the sparsely-labeled surgical videos to solve

the surgical tool presence detection problem. In the past decades, the operating

room (OR) has experienced a series of significant transformations, evolving into a

highly complex and technologically rich environment [1, 2]. Among all the transfor-

mations, computer-assisted intervention (CAI) systems play an increasingly vital role

in current surgical performance [3]. To build context-aware CAI systems, a lot of re-

searchers have been working on various computer vision-related tasks, such as surgical

tool detection [4, 5] and tracking [6, 7, 8], surgical activity recognition [9], and surgical

phase recognition [10, 4]. Among all the tasks for CAI systems in minimally invasive

surgery (MIS), surgical tool presence detection is one fundamental and significant task

to be solved. Surgical tool presence detection [11, 12] is to automatically detect what

surgical tools are being used at a specific time during surgery. Understanding what

tools are being used is the basis of surgical tool localization [4], tracking [6], as well as

robot-assisted surgery [13]. It would also benefit the surgical phase recognition task

since there is a high correlation between the surgical phase and tool usage [10]. With

the help of surgical tool presence detection, CAI systems could generate a real-time

warning to the surgeons if any abnormal tool usage is realized during a surgery [14].

Besides, surgical tool presence detection could facilitate the surgeon training, review,

and skill assessment [15, 16]. The surgical tool presence detection problem is different

from surgical tool localization [17] or general object detection [18, 12] that it requires

the awareness of the presence of surgical tools instead of their locations. However,

this task still challenging due to three reasons. First, the endoscopic camera in MIS

restricts the field-of-view (FoV), making detecting tools more difficult [1]. Second,

multiple surgical tools could be used at the same time and tools could have partial

presence and occlusion, which makes it even harder to detect; Third, the datasets

could be very imbalanced since the frequencies of different surgical tools being used
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vary a lot [19]. Besides, the sparsely labeled video is structured by continuous frames

in temporal dimension, with only a small portion of the frames having label. It is

challenging to utilize information from both labeled and unlabeled frames, as well as

both spatial and temporal information.

Second, this thesis investigates the problem of molecular property prediction.

The capability of accurate prediction of molecular properties is an important key in

the chemical and pharmaceutical industries. It benefits various academic areas and

industrial applications such as improvement to rational chemical design, reducing

R&D cost, decreasing the failure rate in potential drug screening trials, as well as

speeding the process of new drug discovery [20]. The key problem of introducing

Deep Learning into this area lies on embedding graph-like molecules onto a continu-

ous vector space. Then the representations could be used for various application such

as molecular properties classification, regression, or new generating new molecules.

Molecular fingerprints are the names of molecular representation. Instead of comput-

ing a basic property, Molecular fingerprints provide a description of a specific part of

the molecular structure [21]. However, traditional molecular fingerprints require in-

tensive manual feature engineering and strong domain knowledge. Besides, this kind

of fingerprints is highly task-dependent, not general enough for other property predic-

tion tasks. [22] The current success of deep learning in various areas and applications,

e.g., image classification [23, 24, 25], video understanding [26, 27], medical imag-

ing [12, 28, 29], bioinformatics [30, 31, 32, 33] and other applications [34, 35, 36, 37, 38]

demonstrates that deep learning is a powerful tool in learning feature from data and

giving a task-related prediction. An increasing number of publications have intro-

duced deep learning into molecular fingerprint learning [30, 32, 39, 40]. The success

of the current deep learning methods highly relies on a large-scale labeled training

dataset. For many areas, the labeled sample number of image classification or natural
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language translation could easily reach several million or even more. However, it is

not the same situation with molecular property prediction. The cost of obtaining

such scale of molecular properties with screening experiments is exceptionally high.

It is similar to the case in natural language modeling that they have almost unlim-

ited unlabeled data while a tiny portion has a label. The state-of-the-art framework

to utilize the unlabeled data is the pre-training and fine-tuning framework [41]. It

pre-trains the model in an unsupervised fashion then fine-tune the model on labeled

data. Seq3seq Fingerprint model [32] first starts using this framework to involve

unlabeled data in model training to improve the prediction performance. However,

Seq3seq model uses an encoder-decoder structure, and the decoder is used as a scaf-

fold and does not contribute to the final prediction. The motivations of our paper

are two-folded. First, we would like to build a powerful model utilizing the essential

information in unlimited unsupervised learning. The model used for pre-training will

all take part in used in the fine-tuning stage. Second, we would like our model to

naturally support parallel training to reduce pre-training time.

1.2 Our Techniques

For the surgical tool presence detection problem, we first describe our model for

the M2cai challenge, a deep supervised image classification solution to simplify the

structured data to images. Then we discuss introducing the unlabeled data from sur-

gical videos into training. To utilize the temporal information of the surgical videos

for detection, it is not easy to apply current methods straightforwardly. Since almost

all current surgical tool detection datasets are sparsely labeled at the frame level,

using fixed length frames around the labeled image as a video could either introduce

noise or lack enough temporal information. It might not offer enough temporal in-

formation when the video length is too small, while it might introduce noise when
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the video length is too large. Besides, if we use continuous frames around the la-

beled image as a video, the length of videos in this problem will not be long enough

or the variation of the frame contents will not be large enough to learn long-range

temporal dependency with Recurrent Neural Networks (RNNs) such as Long Short-

Term Memory (LSTM) [42, 32, 43] for general video understanding. We propose

a novel deep neural network model named Surgical Tool Graph Convolutional Net-

works (STGCN) combining the power of both Convolutional Neural Networks (CNNs)

and Graph Convolutional Networks (GCNs) [44]. We model the problem as a video

classification problem by using the sparsely labeled frame and the neighbor frames

around it. STGCN uses DenseNet [23] as our backbone to learn the spatial features

from the input images and extracts the features directly from the videos with inflated

3D DenseNet. Then it applies GCNs along the temporal dimension to learn better

feature with consideration of the relationships among continuous frames. Based on

this, we also propose a general semi-supervised training framework consisting of an

spatial encoder and a temporal encoder which could adapt different deep neural net-

work as instantiations of the framework. From STGCN, we propose a generalized

semi-supervised framework consisting of a spatial encoder and a temporal encoder to

solve this problem. Each of the spatial encoder and temporal could be instantiated

with different state-of-the-art deep models or components.

For the molecular property prediction problem, firstly, we review the semi-

supervised seq3seq fingerprint [32]. The backbone of the seq3seq network is the

seq2seq [43, 45] model. Seq3seq uses a semi-supervised fashion to train from both

unlabeled and labeled molecular SMILES sequences. The training is done with two

tasks: a self-recovery task and a property prediction task. Then we discuss our pro-

posed pre-training and fine-tuning two-stage framework named SMILEBERT based

on the natural language modeling work BERT [46]. The neural network structure is
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a fully convolutional stack of Transformer layers. In the pre-training task, SMILE-

BERT is trained with unsupervised learning mechanism Masked SMILEs Recovery on

large scale unlabeled data. In the Masked SMILEs Recovery task, the input SMILEs

will be randomly masked/corrupted, and the model is being trained to recover the

original SMILEs according to the information lying in the unmasked part of the in-

put. After that, the model only needs a slightly fine-tuning with the labeled dataset

to have excellent prediction performance. The proposed SMILEBERT contains sev-

eral benefits than the existing methods: 1) different from Seq2seq or Seq3seq model,

SMILEs-BERT does not require an encoder-decoder structure which is more efficient

and the model could be more complicated given the same GPU memory; 2) SMILE-

BERT is more natural to parallel training because of the fully convolutional structure;

3) The random masking method will having SMILEBERT more general and able to

avoid overfitting; 4) The attention mechanism is used in the Transformer layer which

could potentially improve the prediction performance.

1.3 Thesis Overview

Finally, we provide the overview of this thesis in brief. In Chapter 2, we present

the series of our deep learning approaches from supervised to semi-supervised deep

models to handle the surgical tool presence detection problem. Then, Chapter 3

focuses on our model for molecular property prediction problem with large scale

unsupervised pre-training. In Chapter 4, a conclusion of the thesis is given.
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CHAPTER 2

Deep Learning and Graph Deep Learning in Surgical Tool Presence Detection

2.1 Introduction

Automatic content analysis of surgical videos recorded by an endoscopic camera

in minimally invasive surgery is significant for many functions in the operating room

of the future [2], such as analysis of the operation steps, review of the techniques em-

ployed, evaluation of instrument usage, and automatic surgical report generation [47].

Among all the tasks of surgical video content analysis, one crucial problem is surgical

tool presence detection, to detect which surgical tools are being used at a certain time

during surgery. The problem is different from surgical tool detection [17] or object de-

tection [18, 12] since it does not require the awareness of the location of surgical tools

or general objects. However, the problem is challenging due to several reasons: First,

multiple surgical tools could be used at the same time. Second, different tools could

have partial presence and occlusion which makes it even harder to detect. Third,

since the frequencies of different surgical tools being used vary a lot, the data could

be very imbalanced among certain surgical tools [4].

Existing approaches and models solve this problem by engaging multi-label im-

age classification: sampling every frame with ground truth as an image dataset, learn-

ing features from each still image and then perform classification [4, 17, 48, 49, 19, 50].

There are two ways of feature extraction. One is to use manually hand-crafted fea-

tures or pre-designed features, e.g., SIFT features. The other is to use deep neural

networks such as convolution neural networks (CNNs) to extract high-level features.

After applying deep neural networks, the classification accuracy generally improves.
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However, one key piece that is still missing from the current methods is the infor-

mation along the temporal dimension, which is the nature of videos. As shown in

Figure 2.1, almost all surgical tool detection datasets are labeled sparsely, i.e. the

tools being used are not labeled for every frame. Only a very tiny portion (usu-

ally only a few percentages) of video frames are manually labeled. The insufficient

label information leads to a huge challenge for the research of machine learning based

surgical tool presence detection. To address this problem intuitively, the temporal

information from neighbor frames could help the presence detection and should pro-

vide better performance than utilizing only the labeled image. For instance, one tool

might be occluded at a certain frame and it can be very difficult to recognize it from

the complex background by one single image. However, when using a continuous

sequence of frames, even slight movement of the surgical tool could be noticed and

help the tool get detected correctly.

To utilize the temporal information of the surgical videos for detection, it is not

easy to apply current methods straightforwardly. Since almost all current surgical

tool detection datasets are sparsely labeled at the frame level, using fixed length

frames around the labeled image as a video could either introduce noise or lack enough

temporal information. It might not offer enough temporal information when the video

length is too small, while it might introduce noise when the video length is too large.

Besides, if we use continuous frames around the labeled image as a video, the length of

videos in this problem will not be long enough or the variation of the frame contents

will not be large enough to learn long-range temporal dependency with Recurrent

Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) [42, 32, 43] for

general video understanding.

In this thesis, we propose three models: 1) A deep ensemble network combining

the power of GoogleNet and VGGNet to detect surgical tool presence on the labeled
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image level. The proposed model won the M2CAI surgical tool presence detecion

challenge in 2016. 2) A novel deep neural network model named Surgical Tool Graph

Convolutional Networks (STGCN) combining the power of both Convolutional Neu-

ral Networks (CNNs) and Graph Convolutional Networks (GCNs) [44]. We model

the problem as a video classification problem by using the sparsely labeled frame and

the neighbor frames around it. STGCN uses DenseNet [23] as our backbone to learn

the spatial features from the input images and extracts the features directly from the

videos with inflated 3D DenseNet. Then it applies GCNs along the temporal dimen-

sion to learn better feature with consideration of the relationships among continuous

frames. 3) A novel semi-supervised learning framework for surgical tool presence de-

tection. The proposed framework consists of two encoders: a spatial encoder and a

temporal encoder. The spatial encoder extracts spatial features from the unlabeled

and labeled frames independently. The temporal encoder uses the temporal attention

mechanism that encodes the spatial and temporal features together for the final de-

tection. Other than solving the surgical tool presence detection problem as an image

classification problem, we model the problem as a video classification problem, and

the proposed framework is trained on the video segments containing both sparsely

labeled frames and their neighbor unlabeled frames.

To fully demonstrate the superiority of our model, we compare our image model

with other participants in M2CAI surgical tool challenge. Then we compare our video

models with state-of-the-art methods at the publication time on two most recently

developed datasets: M2cai-tool and Cholec80 [4].
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Figure 2.1. Sparsely labeled surgical tool detection dataset. In this dataset, the tools
being used in one image is labeled every 25 frames. Existing methods only use the
labeled images for model training. In this paper, we propose to use both the labeled
frame and the unlabeled frames around it as a video for model training..

2.2 Related Work

2.2.1 Surgical Tool Detection

Early methods for surgical tool detection focused on extracting low-level man-

ually designed features including color features, gradient features, shape features,

texture features, and combinations of these features [51, 52, 14, 1, 53, 54, 55, 56].

Color features were popular in surgical tool detection, and the surgical images could

be represented in different color spaces such as RGB, HSV, Cie XYZ spaces [14, 56].

However, color features were not robust to visual ambiguities caused by shadows and

lighting. Gradient features were less used in surgical tool detection as well [14, 53, 54]

since they were good at describing oriented edges and corners but suffer heavily from

noise which is common in medical images. Since the surgical tools are known before

surgeries, the shape features of the surgical tools could be extracted for the detec-

tion [52, 55]. The texture features like SIFT, SURF, Color-SIFT were widespread

since these features were more robust than the gradient features [51, 57, 58, 54].

Combinations of these features were studied in different works [52, 14, 1] to improve

the tool detection performance. Many early methods also relied on a set of assump-

tions, or prior knowledge of MIS [51, 59, 60, 17]. Such prior knowledge includes the
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tool shape constraints, tool location constraints. Though early methods combined

the power of prior knowledge and combinations of different low-level features, the

low-level features were not robust and did not provide strong representations for the

detection problem.

The current success of deep learning in various areas and applications, e.g.,

image and video understanding, medical imaging, and bioinformatics, demonstrates

that deep learning is a powerful tool in learning features from data and good at task-

related prediction [61, 62]. There is an increasing number of deep learning models

being proposed to improve the surgical tool detection performance [48, 49, 50, 10,

63, 4, 19], and the overall performance has been largely improved. EndoNet [4] first

proposed to use CNNs to train a tool detection model on labeled images. Along

with EndoNet, a larget MIS video dataset named Cholec80 has been released for

researchers to contribute better models and solutions. Part of the datasets has been

used for the M2CAI tool presence detection challenge. The winner of M2CAI tool

detection challenge, [19], modeled the surgical tool detection problem as a multi-

label image classification problem and trained a VGGNet and an InceptionNet for

tool detection. The authors ensembled the results of these two deep models as the

final detection. After that, ZIBNet was proposed by [63] to handle the data imbalance

problem in M2cai-tool dataset by data augmentation. Since the surgical tool presence

problem is slightly simpler than surgical tool localization, two methods have been

proposed to further improve the detection performance by labeling extra localization

information of surgical tools to the original dataset [48, 50]. [49] proposed a coarse-

to-fine model named AGNet, cascading of two components: the first component is

an attention model as a global network to detect the areas with high possibilities

to contain the surgical tools and the second component is a local model to detect

the tools from selected areas with high possibilities. Compared to all the models
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focusing on the surgical tool detection problem, AGNet has the best performance on

M2cai-tool dataset.

According to the regulation of surgery procedures, surgeons perform specified

operations with corresponding surgical tools for different surgery phases. Thus, there

is a high correlation between surgical tool usages and surgical phases. EndoNet [4]

and MTRCNet-CL [10] proposed to solve the two problem with multi-task learning.

EndoNet included the surgical phase as an extra feature for the surgical tool detection.

MTRCNet-CL proposed an end-to-end CNN-LSTM model with a correlation loss to

learn from both tasks. Multi-task learning with the two tasks improves each task’s

performance. However, these models require the datasets to have surgical tool labels

as well as the surgical phase labels.

2.2.1.1 Graph Convolutional Networks

Until recent years, very little attention has been devoted to the generalization of

neural network models to more general structure such as graphs or networks [64, 65].

The deep models handling the graph-like structure are named Graph Convolutional

Networks (GCNs).

Our work is motivated by recent work on human recognition [66] using GCN

as one crucial part of their proposed deep neural network model. In this work, the

authors built a graph containing nodes corresponding to different object proposals

aggregated over video frames. Different from this work, we model the feature ex-

tracted from each frame as a node and build the graph as the relationship within the

continuous frames of a video segment to learn better feature with temporal informa-

tion.
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2.2.2 Semi-Supervised Learning

The success of deep learning methods relies on a large scale labeled dataset.

While in some applications such as medical imaging and bioinformatics, the labeled

data is harder and more expensive to get. There have been many researchers working

on semi-supervised learning [67]. Semi-supervised learning aims to use relatively easy-

to-get unlabeled data to improve model performance when the number of labeled

data is limited. There are several successful attempts of semi-supervised learning

on medical imaging and surgical videos [68, 69, 70]. As shown in Figure 2.1, the

sparsely labeled surgical videos contain more unlabeled frames, which could have a

high correlation to the labeled frames. It is reasonable to assume that semi-supervised

learning combining these unlabeled frames would be beneficial to the surgical tool

detection problem.

2.2.3 Video Understanding and Temporal Attention

Meanwhile, many researchers focus on video inference for the better ability of

computer video understanding. A considerable number of cutting edge approaches

have been proposed to improve the video understanding performance, and several

large-scale datasets have been built to promote related research [27, 71, 72, 73]. One

challenging problem in video understanding is how to utilize temporal information

from videos. Either recurrent Neural Networks (RNN) and optical flows related meth-

ods are good at capture the temporal features. In surgical videos, there has also been

some surgical video understanding work on the surgical phase recognition with Long

short-term memory (LSTM) [74, 10, 70]. Different from the surgical tool presence

detection problem, surgical phase recognition demands to model long term temporal

information on a whole surgical video. The frames feeding into LSTMs are very vi-

sually different. However, in semi-supervised surgical tool detection, the continuous
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frames are visually similar. Thus, RNNs based methods might not serve as a good fit

in our problem. We need the temporal attention technique to capture the slightest

difference between the continuous frames.

Until recent years, very little attention has been devoted to the generalization of

neural network models to more general structures such as graphs or networks [64, 65].

The deep models handling the graph-like structure are named Graph Convolutional

Networks (GCNs). Our ST-GCN model is motivated by recent work on human recog-

nition [66] using GCN as one crucial part of their proposed deep neural network model.

In this work, the authors built a graph containing nodes corresponding to different

object proposals aggregated over video frames. Different from this work, ST-GCN

models the spatial feature extracted from each frame as a node and build a simi-

larity graph as the relationship within the continuous frames of a video segment to

learn better feature with temporal information. In the meantime, self-attention based

methods [46, 26] has been widely used in modeling the temporal relationship in natu-

ral language modeling. The temporal encoder in the proposed ST-TAN is motivated

by such models that we introduce the self-attention module from language modeling

into the surgical tool detection problem.

2.3 Methodology One: Image Classification

Our method follows two main steps: training the CNN models – VGGNet and

GoogLeNet, then using model ensembling to combine the results of the models to

get the final results. Before giving the details of the two steps, we will describe the

surgical tool presence detection as a multi-label classification problem.
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Figure 2.2. Pipeline for our tool presence detection method. The left side shows the
training image samples, the middle shows two deep neural networks trained from the
training images, the right is the ensemble learning technique combining the results of
the two models..

2.3.1 Multi-label Classification

Traditional multi-class classification is the problem of classifying instances into

one of the more than two classes, and each instance belongs to only one class. Different

from multi-class classification, multi-label classification allows each instance to belong

to one or more than one classes. Multi-label classification is a generalization to

multi-class classification. In real-world problems, multi-label classification tasks are

ubiquitous. For instance, in text categorization, each document can belong to more

than one predefined topics, such as sport and health.

The surgical tool presence detection problem can also be viewed as a multi-label

classification problem. It is because that each image which we extract as image frames

from the surgery videos may contain one or more than one surgical tools. Thus, each

image can belong to one or more than one classes. In this way, we can use multi-label

classification methods for surgical tool presence detection. The two common meth-

ods for multi-label classification are problem transformation and algorithm adaption.

Problem transformation decomposes the multi-label classification problem into mul-

tiple independent binary classification problems. Algorithm adaptation methods [75]

design or adapt algorithms to solve multi-label classification directly. In the proposed
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method, we use problem transformation method to convert the multi-label classifi-

cation problem into several independent binary classification problems. Each of the

binary classifiers is to detect if one kind of the tools is used in the images.

2.3.2 VGGNet and GoogLeNet

VGGNet [76]. VGGNet is a deep CNN architecture with 16 layers. Different

from other deep CNN architectures, the convolutional layers in VGGNet use very

small (3 × 3) convolution filters. In our training process, we initialize the network

weights with the method mentioned in [77]. Rectified Linear units (ReLU) [78] is

used as the activation function VGGNet. The batch size used in VGGNet is 32.

GoogLeNet [79]. GoogLeNet is a deep convolutional neural network archi-

tecture with 22 layers. GoogLeNet integrates several inception modules inside. The

inception modules can increase the depth and width of the network while keeping

the computational complexity. GoogLeNet has six more layers than VGGNet but

three times fewer parameters compared with VGGNet. GoogLeNet has the ability

for multi-scale processing and has achieved state of the art for classification and de-

tection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).

In our training process, we use Leak ReLU [80] as the activation function. The batch

size used in GoogLeNet is 64.

For both VGGNet and GoogLeNet, we use sigmoid cross-entropy as the loss

function and use batch normalization after convolutional layers.

2.3.3 Model Ensembling

An ensemble [81] consists of a set of independently trained classifiers whose

predictions are combined as the final prediction when classifying new instances. Many
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Index T1 T2 T3 T4 T5 T6 T7
Number 10967 635 14130 411 878 953 1504

Table 2.1. The numbers of training images for each surgical tool.

research studies have shown that good combination of the predictions of multiple

classifiers can produce a better classifier.

We use ensembling in our methods for the three following reasons: First, ac-

cording to the theory of ensemble learning, it is promising to get better classification

performance from the ensemble of individually trained classifiers. Second, the process

of training deep neural networks tends to overfit the training dataset even if some

techniques for avoiding overfitting such as early stopping and Dropout are used in

training process or network architecture. Third, data sets provided by challenges al-

ways have a larger variance. Thus, even if we get good performance on the validation

data set, we cannot assure it will have similar performance on the testing data set.

In the proposed method, we use model averaging to ensemble the predictions

from all trained GoogLeNet and VGGNet together to get the final prediction. Simply

speaking, we have a prediction probability for each image from each of the trained

models and we calculate the average of the probabilities as the final probability for

the image.

2.4 Experiments

To evaluate our method, we have submitted the results of our method to the

M2CAI surgical tool presence detection challenge1 and add some experimental anal-

ysis by using the ground truth of the challenge testing data set.

1M2CAI Surgical Tool Presence Detection Challenge 2016: http://camma.u-

strasbg.fr/m2cai2016/
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2.4.1 Data Description and Augmentation

This dataset from M2CAI surgical tool presence detection contains 15 videos

of laparoscopic cholecystectomy procedures from University Hospital of Strasbourg /

IRCAD (Strasbourg, France). The dataset is split into two parts: the training subset

(containing ten videos) and the testing subset (5 videos) by the challenge organizers.

In the 15 videos, there are seven kinds of surgical tools in total as shown in Figure 2.4:

grasper, hook, clipper, bipolar, irrigator, scissors and specimen bag. We notate the

seven tools from T1 to T7 for short.

Table 2.1 shows the number of training images for each kind of surgical tools

in the training set. From the table we can find that the dataset is imbalanced, which

makes it more difficult for the models to handle.

2.4.2 Data Preprocessing and Augmentation

Data Preprocessing. We extract the images which have ground truth labels

from the ten training videos and resize them into the same size (224 × 224) since

the videos have different dimensions. We use the data from the ten training videos

as training and validation sets. For the five testing videos, we extract the images as

required by the challenge as the testing set. We also resize them into 224× 224.

Data Augmentation. We introduce three kinds of data augmentation meth-

ods: horizontal flipping, vertical flipping, and rotation. In the implementation, we

do not generate the augmented data set before training. Instead, we dynamically

augment each image via each of the three augmentation methods in each epoch of the

training process. For each image in a certain training epoch, it has 0.5 probability

to be horizontal flipped. It also has 0.5 probability for other two augmentations.

The three augmentation methods are taken independently. Thus, we augment our
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training data set in a dynamic way to better train the models. We do not augment

our validation set or testing set.

2.4.3 Experiment Settings

In the training stage, for both VGGNet and GoogLeNet, we use the training

set given by the challenge. We randomly choose 90% data as a training set, and 10%

as the testing set five times. Thus, we train ten models in total with five VGGNet

models and five GoogLeNet models. We train ten models to let different models have

different training data. Then after averaging the ten models, the ensemble will hardly

overfit the training data.

2.4.4 Experimental Results

In this paper, we use the same evaluation protocol used in the challenge. We

use the final prediction ensemble from the ten models on the testing set as the final

submission to M2CAI surgical tool presence detection challenge. The mean accuracy

precision (mAP) values of all the participants are listed in Table 2.2. The proposed

methods have better mAP than the other methods. The method by Sahu et al.

has the second best performance by introducing the temporal information to help

classification. It demonstrates that our model has excellent performance even not

considering the temporal information. Table 2.3 shows the mAPs for each kind of the

surgical tools. Our method is still affected by the imbalance of the data set. Further

effort should be taken into handling data imbalance.
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Methods Mean AP
Proposed 63.8
Sahu et al. 61.5
Twinanda et al. [4] 52.5
Zia et al. 37.8
Luo et al. 27.9
Letouzey et al. 21.1

Table 2.2. The leader board of M2CAI surgical tool detection challenge. The evalu-
ation metric is mean accuracy precision.

Index T1 T2 T3 T4 T5 T6 T7
mean AP 81.4 62.8 88.2 49.8 49.8 35.3 55.2

Table 2.3. The mean AP values for each of the seven tools evaluated. These values
are computed from our final submission

2.5 Methodology Two: Graph Convolution Based Video Classification

2.5.1 Problem Definition

2.5.1.1 Image classification.

Existing methods for surgical tool detection models the problem as an multi-

label image classification problem. Given the image xt at frame t, models are trained

to get the prediction for the input image F (xt) close to its groundtruth yt.

2.5.1.2 Video classification.

In this paper, we propose to use not only the labeled image but also the neigh-

bor images as a video segment for model training and evaluation. Thus, the problem

becomes that given a video segment corresponding to the t frame [xt−l, ..., xt, ..., xt+l],

where l is the number of frames before and after the labeled frame image we take
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into consideration, models are trained to get the prediction for the input video

F (xt−l, ..., xt, ..., xt+l) close to its groundtruth yt.

2.5.2 Model Overview

As shown in Figure 2.3, the proposed STGCN contains several components. To

get the features from the input video, we use an inflated 3D DenseNet-121 [71, 23] to

get the representation of each frame in the video. We take the representation of each

frame as a node and build a similarity graph on these nodes. By applying GCNs on

the constructed graph, the GCNs will adaptively generate the features considering

the relationships among the nodes in the graph, i.e., the temporal relationship in

continuous frames. After that, we use pooling over all the nodes corresponding to

continuous frames. We note the pooling layer as temporal pooling since what it does

is applying the pooling on the temporal dimension. The details of each component

will be discussed in the following sections.

Figure 2.3. The overview of the proposed STGCN..
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2.5.3 Inflated 3D DenseNet

Different from most deep convolutional neural networks, DenseNet [23] connects

all the convolutional layers in pairs when their spatial output sizes are the same. The

output of each feature maps also serves as the input of all following convolutional

layers. The idea is similar to Residual Networks. However, it can reuse all the features

in the network. This sort of network almost exhaustively maximizes the network

capacity to squeeze its spatial feature extraction and prediction power. Also, the

network can alleviate the vanishing-gradient problem, strengthen feature propagation

and substantially reduce the number of the parameters in the network.

In our proposed model, we use DenseNet to learn and extract spatial features

for each frame in the input video. To adapt DenseNet for video input, the original

DenseNet needs to be inflated to 3D ConvNet (I3D) [71, 23]. That is, to support

the input video of length t, a 3D kernel with t × k × k dimensions can be inflated

from a 2D k × k kernel by copying the weight t times and rescaling by 1/t. In our

implementation, we use 11 as the number of frames. The growth rate is 32 as the

default number for DenseNet-121.

2.5.4 Graph Convolutional Networks

We apply GCNs [64] in the proposed framework to better capture the temporal

relationship along the continuous frames.

2.5.4.1 Similarity Graph Building.

For a video input X = [xt−l, ..., xt, ..., xt+l] with length N , where xt is with the

dimension of d, containing the labeled surgical tools while others not. We use the
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output of the fully-connected layer right after the fourth dense block from our inflated

DenseNet-121 model to get the feature representations noted as

[f (xt−l) , ..., f (xt−1) , f (xt) , f (xt+1) , ..., f (xt+l)]

. We regard the representation for each frame as one vertex (node) vk of a graph, and

use the similarity Sij between each pair of nodes (vi, vj) as the corresponding edge of

the graph. Thus, the graph could reflect the temporal relationship of the continuous

frames.

There are quite a few different methods to build the similarity graph. In the

proposed STGCN, we use the cosine similarity to build the graph as

Sij =
f(xi) · f(xj)

‖f(xi)‖ ‖f(xj)‖
, (2.1)

and we can get the similarity graph G after normalizing each row of S as

Gij =
eSij

ΣN
j=1e

Sij
. (2.2)

2.5.4.2 Graph Convolutional Layer.

After building the similarity graph, the graph convolutional layer could be rep-

resented as

Z = GXW, (2.3)

where W is the weight mapping feature of each node to another dimension. The

graph convolutional layer could not only map the feature as a general convolutional

layer, but also take the graph information (temporal relationship among the frames

in the input video) into consideration. In the surgical tool detection problem, graph

convolutional layer could learn features while adaptively reference the relationship

among the frames to generate the correct prediction.
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The graph convolutional layers could be stacked as a deep GCNs or in general

CNNs by

X(l) = GX(l−1)W (l−1), (2.4)

where X(l−1) is the feature map as the input to current graph convolutional layer,

W (l−1) is the weight. X(l) is the output of current layer as well as the input of next

layer.

In our proposed model, we use a residual variation of the graph convolutional

layer as

X(l) = σ
(
GX(l−1)W (l−1)

)
+X(l−1), (2.5)

where σ(·) is the activation function after the graph convolutional layer and we add

X(l−1) to the output of the layer as a residual component.

2.5.5 Temporal pooling

The feature after the last graph convolutional layer contains N features for the

N frames. Then we add a temporal pooling layer to combine all the N features from

N frames in the video. Temporal pooling layer has no difference than general pooling

layer that it aggregates the features along the temporal dimension. It should not be

a crucial factor in the performance of the proposed model since the features for the

pooling layer has utilized the temporal information with GCNs. However, we still

try different pooling strategies in STGCN to seek potential improvement. There are

a lot of methods for pooling such as lp pooling, average pooling, max pooling, and

max-min pooling [82]. In later ablation experiments, we will show the performance

of different pooling methods on Cholec80 dataset.

Given a sequence of N d-dimensional dense features after GCNs as x(i), where

i is from 1 to N , temporal pooling pools the features along the time dimension.
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Assume the N -dimensional feature after temporal pooling as x̃, for max temporal

pooling, x̃k = max(x
(i)
k ) where i from 1 to N , for average temporal pooling,

x̃k = 1
N

∑N
i=1 x

(i)
k and for lp temporal pooling, x̃k = p

√∑N
i=1

(
x
(i)
k

)p
where k is from

i to d for all temporal pooling methods. For max-min pooling, we apply a simple

version of max-min pooling, which could be computed as:

x̃k = max(x
(i)
k ) + αmin(x

(i)
k ), (2.6)

where α is a hyperparameter balancing the weights of max pooling and min pooling.

2.6 Experiments

2.6.1 Implementation Details

2.6.1.1 DenseNet.

We use DenseNet-121 pretrained from ImageNet to continue training on sur-

gical tool detection datasets for a multi-label image classification. Then we inflate

the trained DenseNet to 3D DenseNet. To avoid using temporal information in the

inflated DenseNet, we keep all the dimension of kernels in either dense blocks or other

convolutional/pooling layers as 1. Thus, all the temporal information is used in the

GCNs part of the proposed model. We fix the length of the video segment around

each labeled image to 11 to train the GCNs and following classifier. The DenseNet

is trained with Adam optimizer with learning rate 0.0001 for 200 epochs. The learn-

ing rate will be decayed if the training loss does not decrease after three continuous

training epochs.

2.6.1.2 GCNs.

After extracting the feature presentation for each frame from Inflated DenseNet-

121, we input the features along with the similarity graph into the GCNs. The
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feature we get from the inflated DenseNet-121 has the dimension of 1024. In our

GCNs, we use one graph convolutional layer which maps the input feature from 1024

dimensions to 1024 dimensions. Then the temporal pooling layer is added to pool

the features along the temporal dimension. After that is followed by a layer maps

1024 dimensions feature to the number of surgical tools for classification. In GCNs,

both batch normalization and dropout are added after the graph convolutional layer.

Batch normalization is also added before the graph convolutional layer. We train the

GCNs with Adam optimizer with learning rate 0.0001 for 300 epochs. The dropout

rate is set as 0.75 in our training. The same learning rate decay strategy is used as

the one in training DenseNet. For max-min pooling, we fix the hyperparameter α to

0.75.

2.6.2 Data Description

2.6.2.1 M2cai-tool dataset [4].

This dataset from M2CAI surgical tool presence detection challenge contains

15 videos of laparoscopic cholecystectomy procedures from the University Hospital

of Strasbourg/IRCAD (Strasbourg, France). The dataset is split into two parts:

the training subset (containing 10 videos) and the testing subset (5 videos) by the

challenge organizers. The videos are recorded at 25 fps and labeled at 1 fps (one

labeled frame in every 25 frames). There are 23287 training samples and 12541

testing samples. The evaluation process only considers the labeled frames in testing

dataset.

In this dataset, there are seven kinds of surgical tools in total as shown in

Figure 2.4: grasper, hook, clipper, bipolar, irrigator, scissors, and specimen bag.
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2.6.2.2 Cholec80 dataset.

The Cholec80 dataset is larger than M2cai-tool dataset. It contains 40 videos

(86304 labeled frames) for training and 40 videos (98194 labeled frames) for testing.

The Cholec80 is also from the University Hospital of Strasbourg/IRCAD and has the

same recording rate, labeling rate, and tool set as M2cai-tool dataset.

Figure 2.4. The surgical tools used in M2cai-tool and Cholec80 datasets. Both of the
datasets have the same seven surgical tools..

2.6.2.3 Validation Sets

For both M2cai-tool and Cholec80 datasets, we split 10% samples from training

sets as validation sets. We tune our hyperparameters on the validation sets.

2.6.3 Evaluation Metric

We use the mean average precision (mAP) among the average precision (AP) on

each of the seven surgical tools, which is the same as the challenge evaluation metric.

To ensure a fair comparison with all the methods during and after the challenge,

we exactly follow every detail of data usage and evaluation protocol used in M2CAI

challenge.
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2.6.4 Experimental Results

2.6.4.1 M2cai-tool dataset.

In this experiment, we choose the winner’s and the 3rd place’s methods from

the challenge, as well as three approaches after the challenge as comparison meth-

ods. Among the challenge methods, EndoNet [4] first proposed using CNN as a

baseline model. The winner of the challenge [19] introduced an ensemble model of

VGGNet and Inception Net. However, the highest mAP is a little above 60%. For

the methods after the challenge, both Jin et al. [50] and Choi et al. [48] added loca-

tion information of the tools by adding surgical tools bounding box to the dataset.

These two approaches improved the mAP by 10%. AGNet [49] proposed to use an

attention model to increase the detection performance. AGNet trained two cascaded

deep convolutional neural networks: the first one as a global model to locate the

area which has higher responses by the attention based classification network, and

then the second one as a local model to classify the cropped areas with higher at-

tention. Before our method, AGNet has the best mAP among all the approaches.

We compare all these methods with our results of STGCN results. We include three

variations of the proposed STGCN as side ablation experiments. STGCN (DenseNet)

is the model we train and test on the labeled images without using any temporal in-

formation. STGCN (3D DenseNet + LSTM) contains the inflated 3D DenseNet as

the backbone, and add an LSTM layer after it to extract the temporal information

from continuous frames in the video. The difference between STGCN (3D DenseNet

+ GCNs) and STGCN (3D DenseNet + LSTM) is that STGCN (3D DenseNet +

GCNs) uses GCNs to exploit the temporal information.

As shown in Table 2.9, the STGCN (DenseNet) model has achieved better per-

formance than all existing methods. Compared to AGNet, STGCN (DenseNet) has

28



Methods Mean AP
STGCN (3D DenseNet + GCNs) 90.24
STGCN (3D DenseNet + LSTM) 89.03
STGCN (DenseNet) 88.27
AGNet [49] 86.8
Choi et al. [48] 72.3
Jin et al. [50] 71.8

Sheng et al. [19] 63.8
Twinanda et al. [4] 52.5

Table 2.4. The results on M2cai-tool dataset.

not used any attention strategy to boost the performance to have around 2% better

mAP than AGNet. By adding temporal information, the STGCN (3D DenseNet +

LSTM) and the proposed STGCN (3D DenseNet) both improves our image classifi-

cation model STGCN (DenseNet). With GCNs, it could have 1% better mAP than

LSTM. Our results demonstrate that temporal information is effectively helpful for

surgical tool presence detection, and GCNs is better than LSTM in this problem.

2.6.4.2 Cholec80 dataset.

We compare the proposed STGCN result with the two baseline methods Tool-

Net and EndoNet on this dataset in [4]. We also try the four different temporal

pooling methods: l2 pooling (STGCN(l2)), average pooling (STGCN(avg)), max

pooling (STGCN(max)), and max-min pooling (STGCN) on this dataset. Results

are shown in Table 2.10. On this larger dataset, the proposed STGCN has better

performance than the baseline methods ToolNet and EndoNet modeling the problem

as a multi-label image classification problem. By utilizing the temporal information,

the proposed STGCN has improved the performance around 10% in mAP.
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ToolNet [4] EndoNet [4] STGCN (l2) STGCN (avg) STGCN (max) STGCN
mAP 80.9 81.0 90.05 90.11 90.08 90.13

Table 2.5. The results on Cholec80 dataset.

Among all the results with different temporal pooling strategies, max-min pool-

ing has better performance. However, the improvement is so small that it could be

caused by randomness during model training. The slight difference among the four

pooling methods offers support to our analysis that the graph convolutional layer

has utilized the temporal information so how to aggregate the information along the

temporal dimension is not sensitive, which could be convenient for model designing.

By comparing the results of the proposed STGCN with the existing methods on

both M2cai-tool and Cholec80 datasets, it demonstrates that there is always signifi-

cant improvement by utilizing the extra temporal information by modeling the surgi-

cal tool presence detection as a video classification problem. Besides, with the power

of GCNs, STGCN has better accuracy even compared with existing leading methods

using multiple CNNs [49] or labeling additional localization ground truth [50].

2.7 Methodology Three: A Semi-Supervised Framework for Video Classification

2.7.1 Model Overview

As shown in Figure 2.5, the proposed semi-supervised learning framework con-

sists of two encoders: the spatial encoder and the temporal encoder. The spatial

encoder extracts the spatial features of the video segment, including one central la-

beled frame and its neighbor unlabeled frames. Then the temporal encoder extracts

the temporal information from the continuous frames and generates the final spatial-

temporal representation for surgical tool detection.
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Figure 2.5. The overview of the proposed semi-supervised framework for surgical tool
presence detection. L is short for labeled and and U for unlabeled..

2.7.2 Spatial Encoder

The spatial encoder aims to extract high-level features of each image. Though

any type of deep neural networks could be used as the spatial encoder, CNNs are nat-

urally good fits for images classification problems and have the best performance so

far on different image classification benchmarks [83, 84, 85, 23, 86]. We explore per-

formances of different state-of-the-art models including ResNet [83], DenseNet [23],

MobileNet [86], SENet [85] and PNASNet [84] on surgical tool detection problem.

ResNet proposes to represent the data with residual learning via shortcut connec-

tions. The residual learning could help to alleviate the gradient descent problem in

very deep neural networks and lead to powerful data representations. DenseNet con-

nects each layer to every other layer in a feed-forward fashion to encourage feature

reuse and strengthen feature propagation. SENet proposes a channel-attention mod-

ule to choose which channels to focus on adaptively. PNASNet is a very complex and

deep model by structure searching with machine learning techniques. It has the best
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performance on several large-scale benchmarks. To explore if a smaller model (fewer

parameters and fewer computations) is a good fit for the surgical tool detection prob-

lem, we include MobileNet, a small and compact models having good performance

on mobile devices, in our experiments. We finally use SENet as the backbone of the

spatial encoder. Detailed experiments and explanations are listed in Section 4.2.

2.7.3 Temporal Encoder

After the spatial encoder, the temporal encoder takes the spatial features of

all the frames in the input video segment. It first adaptively extracts the temporal

information and encodes the spatial features with temporal information, then gener-

ates the final spatial-temporal representation for the whole input video segment. For

the temporal encoder, we propose two models: one with graph convolution networks,

which leads to the proposed model ST-GCN and the other with the temporal atten-

tion module and the model ST-TAN. The Graph Convolution and temporal pooling

are the same as the descriptions in the method two.

2.7.3.1 Temporal Attention

Self-attention proves to be successful in natural language modeling [46, 26].

BERT [46] is a general model that is pre-trained in an unsupervised fashion and has

good performance on various language modeling tasks. The basic module of BERT

model is the Transformer layer. The Transformer layer has three components: a pre-

attention shared fully-connected layer, a self-attention module, and a post-attention

shared fully-connected layer. The attention mechanism [26] in the Transformer en-

coder is the scaled dot-product attention. It maps the input data into three parts, a

query matrix, a key matrix, and a value matrix. The query matrix works together

with the key matrix to serve as the input of the Softmax. Then the Softmax function
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creates the attention weights, which will be later applied to the value matrix to gener-

ate the output features with the attention on the whole sequence. The self-attention

layer is formulated as:

Z = Softmax

((
XWQ

) (
XWK

)T
√
d

)
XW V , (2.7)

where X ∈ RN×d is the input spatial feature matrix, WQ, WK , and W V ∈ Rd×d

corresponds to the query, key, and value weight matrix.
√
d is a scaling factor, and

Z is the output of the attention layer.

2.8 Experiments

2.8.1 Implementation Details

2.8.1.1 The Spatial Encoder

To explore different structures as the spatial encoder in our semi-supervised

framework, we have trained different CNNs, including ResNet, DenseNet, MobileNet,

SENet, and PNASNet. Specifically, we use ResNet-101, DenseNet-121, MobileNetV2,

SENet-154, and PNAS-5-Large in model training. Different models required differ-

ent input image shape. For PNASNet-5-Large, we preprocess the image to the size of

331×331. For other models, we use the image with a size of 224×224. All the models

are pretrained on ImageNet krizhevsky2012imagenet dataset and trained (finetuned)

on M2cai-tool and Cholec80 training datasets with Adam optimizer with initial learn-

ing rate 0.0001 for 50 epochs. The learning rate is decayed to its 0.95 if the training

loss does not decrease after three continuous training epochs.

33



2.8.1.2 The Temporal Encoder

The temporal encoder takes the spatial features from the spatial encoder as

input. We extract the features from the second-to-last fully-connected layer of the

spatial encoder as spatial encoder features. The spatial features size of SENet is

2048. In the temporal encoder of the proposed ST-GCN, a single graph convolutional

layer is introduced to encode the temporal information. In ST-TAN, we apply one

Transformer layer to encode the temporal information. The Transformer layer first

maps the spatial features from the dimension of 2048 into the dimension of 1024. Then

the temporal information is learned inside the temporal attention module. We use

a 4-head self-attention module here. After the temporal information is encoded, one

temporal pooling layer is added to pool the features along the temporal dimension.

Following that is a fully-connected layer mapping 1024 dimensions feature to the

number of surgical tools for classification. In GCNs, both batch normalization and

dropout are added after the graph convolutional layer. We train the ST-GCN and

ST-TAN with Adam optimizer with an initial learning rate of 0.0001 for 100 epochs.

The dropout rate is set as 0.75 in our training. The same learning rate decay strategy

is used as the one in training spatial encoders. For max-min pooling, we fix the

hyperparameter α to 0.75.

2.8.2 Data Description

We use the same data as our method two. In the following experiments, we

have all our ablation studies on the M2CAI-tool dataset.
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2.8.3 Ablation Studies

Our ablation studies all use M2cai-tool datasets. The ablation studies include

the importance of image alignment, model performances between different spatial

encoder structures, performances of different graph similarities, performances of dif-

ferent temporal pooling methods, and length of the unlabeled frames to use.

Figure 2.6. Left: the original frames in M2cai-tool dataset with different ratios of
black boarder. Right: the frames after image alignment..

2.8.3.1 Image Alignment

The surgical videos captured by the laparoscope always contains black borders

with zero gradients. It happens in both M2cai-tool and Cholec80 datasets, as shown in

Figure 2.6. If the original datasets are used for model training, the performance of the

model would not as good as the datasets after image alignment. It is because the black

board contains no information but could make the statistical distribution of different
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video images vary a lot, making the model training more difficult. To verify the effect

of the image alignment, we train two MobileNetV2 models on the original M2cai-tool

dataset and the dataset after image alignment. All hyperparameters and training

settings of the two models are the same except for the datasets. The validation mAP

on the original dataset is 80.25, and on the aligned dataset is 83.49. Thus, we apply

image alignment on both datasets for the following experiments.

2.8.3.2 The Spatial Encoder

To compare the performances of different state-of-the-art image classification

models in surgical video detection, we train the ResNet-101, DenseNet-121, Mo-

bileNetV2, SENet-154, and PNASNET-5-Large. As shown in Table 2.6, these spatial

models vary among different sizes of parameters and different computation costs.

PNASNet-5-Large has got the best performance 89.80 mAP, so we use PNASNet as

the spatial encoder for the M2cai-tool dataset. However, we use SENet-154 as the spa-

tial encoder for the Cholec80 dataset. It is because the input image size for PNASNet

is 331, which is very memory consuming. Considering the Cholec80 is much larger

than M2cai80 (65 more videos), it is reasonable to use a smaller model. MobileNet

has the lowest mAP while it is much lesser time and space complexity than other

models. It might be a good fit when the computational resource is limited. ResNet

and DenseNet have similar performances.

2.8.3.3 Graph Similarities

In ST-GCN, we need to build the similarity graph from the spatial features of

the video segment. There are different similarity metrics that we could use to build

the similarity graph. We include the comparison of building the similarity graph with

cosine similarity, l1 similarity, l2 similarity, and Chebyshev similarity. Each model is
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Model Name Params(M) FLOPS(G) Image Spatial Size mAP
ResNet-101 44.55 7.87 224 2048 88.23
DenseNet-121 7.98 2.90 224 1024 88.27
MobileNetV2 3.51 0.33 224 1280 83.49
SENet-154 115.09 41.72 224 2048 89.56
PNASNet-5-Large 86.06 25.20 331 4320 89.80

Table 2.6. The comparison of different models as our spatial encoder.

Similarity Type Cosine l1 l2 Chebyshev
mAP 90.86 90.83 90.82 90.83

Table 2.7. The results of using different similarity metrics to build similarity graph.

trained on video segments of 15 frames for 100 epochs. The results are shown in

Table 2.7. With cosine similarity, the highest mAP 90.86 is achieved. There are

only slight differences between different ways to build the similarity graph, and the

differences might be caused by the randomness in model initialization or training

process. Since the similarity metric is not sensitive to the final performance, we

could use any metric as the component in the proposed ST-GAN. In the following

experiments, we use cosine similarity to compute the graph.

2.8.3.4 Temporal Pooling Methods

After the graph convolutional layer or Transformer layer, we get the temporal

information encoded features for every frame in the input video. To get the final

prediction, we need to combine these features into a single representation for the

input video. We apply temporal pooling here. In this experiment, we analyze how

different pooling methods contribute to the final detection performance. We use

the spatial features from SENet and keep the length of input videos as 15. All other

training settings are the same for l2, max, average, and min-max pooling. As shown in
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Temporal Pooling Type l2 Max Average Min-Max
mAP 90.85 90.83 90.84 90.88

Table 2.8. The ablation study of using different temporal pooling methods on M2cai-
tool dataset.

Table 2.8, there is not much difference between different pooling method. It is similar

to the ablation study for similarity metrics. It might because the temporal feature

could be easily captured and encoded in the graph convolutional layer or Transformer

layer. The pre-processing (building similarity graph) and post-processing (temporal

pooling) are not sensitive. For the rest of the experiments, we use min-max pooling

as our standard temporal pooling method in both ST-GCN and ST-TAN.

2.8.3.5 Length of the frames.

Since we use the labeled frame and its neighbor unlabeled frames as the input

video segment, we would like to see if there is a relationship between the model

performance and how many unlabeled frames we use. We start from SENet spatial

features and train ST-VTN models with different video lengths (one labeled frame

and others unlabeled). For each model, we use the same training settings except for

the video length and train the model for 100 epochs. The model performances with

different video lengths from 1 to 41 are shown in Figure 2.7. When the video length

is 1, it means the model training uses the labeled images only. The performance

is very similar to when we only use the spatial encoder for training, as shown in

Table 2.6. When the video length is larger than 1, it includes unlabeled frames as a

part of training data. As shown in Figure 2.7, when we use more unlabeled frames,

the overall mAP keeps increasing. It is beneficial for introducing unlabeled frames

to add temporal information. However, it is not reasonable to use a very long video
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length because the computation costs could be incredibly high. We use the length of

41 on the M2cai-tool dataset. For the Cholec80 dataset, we use the video length of

19 because the dataset is much larger than M2cai-tool.

89.82
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Figure 2.7. The performances on M2cai-tool dataset with different video lengths..

2.8.4 Experimental Results

2.8.4.1 M2cai-tool dataset

To give a fair comparison with state-of-the-art methods for surgical tool pres-

ence detection on the M2cai-tool dataset, we include the comparison with methods

from the M2CAI tool presence detection challenge twinanda2016endonet,wang2017isbi

and methods after the challenge choi2017surgical,hu2017agnet,jintool,sahu2017addressing.

As shown in Table 2.9, we also include more information about the models that if

the model needs extra labels, uses temporal information, and is a semi-supervised
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model. For the models in the challenge, we choose the winner’s wang2017isbi and

the 3rd place’s twinanda2016endonet methods. EndoNet twinanda2016endonet first

proposed using CNN as a baseline model for the surgical tool detection problem. The

winner of the challenge wang2017isbi introduced an ensemble model of VGGNet and

InceptionNet, along with a few data engineering like data augmentation. However,

the highest mAP was no larger than 0.65. After the challenge, ZIBNet focused on

alleviating the data imbalance problem and slightly improved the performance to

0.65. Since solving the surgical tool localization problem would benefit surgical tool

presence detection, both [48] and [50] introduced extra surgical tool localization infor-

mation (bounding boxes labels) to the original dataset, then solve the problem with

general object detection models. The model from [48] improves the performance by

7.3%. The model from [50] further improved the mAP by 9.5% with a more pow-

erful object detection model. AGNet hu2017agnet does not use extra localization

information. AGNet trained two cascaded deep convolutional neural networks: the

first one as a global model to locate the area which had higher responses by the

attention-based classification network, and then the second one as a local model to

classify the cropped areas with higher attention responses. AGNet has the best mAP

among all existing approaches. In Table 2.9, we include MTRCNet-CL jin2020multi

since it does has competing performance compared to state-of-the-art methods. It

utilized the temporal information and the correlation between surgical tool detection

task and surgical phase recognition task. However, the M2cai-tool dataset does not

contain extra surgical phase labels, and we are not able to train MTRCNet-CL on the

M2cai-tool dataset. We compare all these methods with the proposed semi-supervised

learning framework. We include the three proposed models as side ablation experi-

ments. ST-SPN is the model with PNASNet as the spatial encoder. It is a supervised

model since it contains not a temporal encoder. We train and test on the labeled im-
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Methods Extra Label Temporal Semi-supervised mAP
Twinanda et al. [4] 52.5
Wang et al. [19] 63.8
ZIBNet [63] 65.0
Choi et al. [48]

√
72.3

Jin et al. [50]
√

81.8
AGNet [49] 86.8
MTRCNet-CL [10]

√ √
N/A

ST-SPN 89.8
ST-GCN

√ √
91.33

ST-TAN
√ √

91.38

Table 2.9. The results on M2cai-tool dataset.

ages without using any temporal information. ST-GCN contains SENet as the spatial

encoder and graph convolutional networks as the temporal encoder. ST-TAN shares

the same spatial encoder with ST-GCN, while the temporal encoder is a Transformer

layer focusing on how to use the temporal information with the self-attention module

adaptively.

As shown in Table 2.9, ST-SPN has achieved better performance than all ex-

isting methods, and it has improved 3% mAP compared to the best performance

achieved by AGNet. It even largely outperforms the models with extra tool localiza-

tion labels choi2017surgical,jintool. The improvement comes from two parts. First,

the backbone of the ST-SPN is PNASNet, a powerful model structure found by model

searching with machine learning. Second, we include the image alignment in the data

pre-processing stage and data augmentations in the training stage. After adding the

temporal encoder, the performances of both ST-GCN and ST-TAN are further im-

proved. The ablation study with different video lengths has shown that including

more temporal information would benefit in solving the surgical tool detection prob-

lem. The proposed ST-GCN and ST-TAN not only use temporal information but
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also utilize the temporal information from unlabeled part of surgical videos. The two

models have gained about 2% mAP compared with ST-SPN. Since the performance

of ST-GCN is close to that of ST-TAN, we can conclude that both ST-GCN and

ST-TAN are a good fit to extract useful information for surgical tool detection from

labeled and unlabeled data.

2.8.4.2 Cholec80 dataset

For the Cholec80 dataset, we compare the proposed method with several well-

known and state-of-the-art methods. We include a deformable part model (DPM)

reported in [10]. The DPM model consists of three components to model each

tool and use HOG features to represent the surgical images. ToolNet and En-

doNet twinanda2016endonet have been proposed along with the Cholec80 dataset

as the benchmarks. ToolNet is the first CNNs model solving the surgical tool detec-

tion problem, and EndoNet adds the surgical phase label as one additional feature

to help the detection. We also compare our methods to MTRCNet-CL jin2020multi,

which has the best performance on Cholec80 so far. MTRCNet-CL models the de-

tection problem along with the surgical phase recognition problem as a multi-task

learning problem. We list the result of the proposed ST-TAN here to compare with

these existing methods. For our ST-TAN, we use the video length of 19 in training

and evaluation.

As shown in Table 2.10, DPM could not perform well on all the surgical tools

like scissors and irrigator. The data imbalance and the low-level HOG features are

the main reason for the failure of DPM. As the features are learned with CNNs

in ToolNet and EndoNet, the performance is improved by more than 20%. The

mAPs of ToolNet and EndoNet are very similar. Though EndoNet aims to improve

the surgical tool detection performance with the help of surgical phase information,
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DPM ToolNet EndoNet MTRCNet-CL ST-TAN
Grasper 82.3 84.7 84.8 84.7 88.9
Bipolar 60.6 85.9 86.9 90.1 90.6
Hook 93.4 95.5 95.6 95.6 95.8

Scissors 23.4 60.9 58.6 86.7 89.9
Clipper 68.4 79.8 80.1 89.8 90.7
Irrigator 40.5 73.0 74.4 88.2 88.7

Specimen bag 40.0 86.3 86.8 88.9 90.4

Mean 58.4 80.9 81.0 89.1 90.7

Table 2.10. The results on Cholec80 dataset.

EndoNet is only 0.1% better than ToolNet. It is reasonable since EndoNet only takes

the phase label as one additional feature to the features in ToolNet. After modeling

the tool detection problem and phase recognition problem together and solve them

as a multi-task problem, MTRCNet-CL improves the performance by 8% and has a

better performance on each tool. Our proposed ST-TAN performance 1.6% better

on mAP than MTRCNet-CL even we do not use extra phase recognition labels. Our

ST-TAN also has better single tool detection performance than MTRCNet-CL.

2.9 Conclusion

Surgical tool presence detection is an essential problem for automatic surgical

video analysis. To use the temporal information from the video data, we propose a

novel model named STGCN which applies graph convolutional learning on continu-

ous video frames to better use the temporal information. STGCN can directly take

a video (a sequence of image frames) as input, extract both spatial and temporal

features of the input and get excellent surgical tool detection precision. To the best

of our knowledge, this is the first model which can take video sequences as inputs for

surgical tool presence detection. On both of the two datasets to evaluate our model,

43



STGCN has the best mean average precision. Comparing with the models that only

use spatial features, we demonstrate that with GCNs, the temporal information is

effective to improve surgical tool presence detection performance.
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CHAPTER 3

Molecule Property Prediction with Large Scale Unsupervised Pre-training

3.1 Introduction

The capability of accurate prediction of molecular properties is an essential key

in the chemical and pharmaceutical industries. It benefits various academic areas

and industrial applications such as improvement to rational chemical design, reduc-

ing R&D cost, decreasing the failure rate in potential drug screening trials, as well

as speeding the process of new drug discovery [20]. The key problem of introducing

Deep Learning into this area lies on embedding graph-like molecules onto a continu-

ous vector space. Then the representations, as named molecular fingerprints, could

be used for various applications such as molecular properties classification, regres-

sion, or generating new molecules. Instead of computing a basic property, traditional

molecular fingerprints provide a description of a specific part of the molecular struc-

ture rogers2010extended. However, traditional molecular fingerprints require inten-

sive manual feature engineering and strong domain knowledge. Besides, this kind of

fingerprints is highly task-dependent, not general enough for other property prediction

tasks [22].

The current success of deep learning in various areas and applications, e.g., im-

age classification [23, 25], video understanding [26, 27, 5], medical imaging [28, 29, 12],

and bioinformatics [30, 32], demonstrates that deep learning is a powerful tool in

learning feature from data and good at task-related prediction. An increasing num-

ber of publications have introduced deep learning into molecular fingerprint learn-

ing [30, 32, 39, 40]. The models being introduced rely on two main deep learn-
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ing structures: Recurrent Neural Networks (RNNs) [45] and Graph Convolutional

Networks (GCNs) [44, 65]. For RNNs-based methods, molecules are represented as

strings by Simplified Molecular-Input Line-Entry system (SMILES). In this way, the

current successful models in natural language modeling could be utilized to extract

high-quality features from SMILES and make task-related predictions. GCNs-based

methods consider the atoms in molecules as graph nodes and the chemical bonds

as graph edges. These methods use graph convolutions to extract the feature then

classify/regress the molecular properties. In general, it is not trivial to support RNNs-

based methods for parallel training on multiple GPUs and multiple devices, and it

needs different training tricks like gradient clipping and early stopping to assure the

model convergence; GCNs-based methods usually have high computation complexity.

It limits exploring more complicated methods for molecular properties prediction.

Meanwhile, CNNs-based models [87, 26] for language translation and modeling have

been developed and widely used. These methods could easily support parallel train-

ing. With the help of attention mechanism, the results even outperform a lot of RNN

models.

The success of current deep learning methods highly relies on a large-scale

labeled training samples. For many areas, the labeled sample number of image clas-

sification could easily reach several million or more. However, it is not the same

situation with molecular property prediction. The cost of obtaining such scale of

molecular properties with screening experiments is exceptionally high. It is similar to

the case in natural language modeling that they have almost unlimited unlabeled data

while a tiny portion has labels. The state-of-the-art framework to utilize the unla-

beled data is the pre-training and fine-tuning framework [41]. It pre-trains the model

in an unsupervised fashion then fine-tune the model on labeled data. Seq3seq Finger-

print model [32] first starts using this framework to involve large-scale unlabeled data
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in model training to improve the prediction performance. However, Seq3seq model is

not very efficient since it uses an encoder-decoder structure, and the decoder is used

as a scaffold and does not contribute to the final prediction.

The motivations of this paper are two-folded. First, we would like to build a

powerful semi-supervised model utilizing the essential information in unlimited unla-

beled data to improve the prediction performance with limited labeled data. Second,

we would like our model to be efficient in training stage in two ways: 1) our model

should naturally support parallel training to reduce pre-training time; 2) the model

used for pre-training will all take part in the fine-tuning stage with no scaffolding part

like the decoder of Seq3seq fingerprint [32]. Thus, in this paper, we propose a pre-

training and fine-tuning two-stage framework named SMILES-BERT motivated by

the recent natural language modeling work BERT [46]. The neural network structure

is a fully convolutional net stacked of Transformer layers. In the pre-training task,

SMILES-BERT is trained with unsupervised learning mechanism Masked SMILES

Recovery on large scale unlabeled data. In the Masked SMILES Recovery task, the

input SMILES will be randomly masked or corrupted, and the model is being trained

to recover the original SMILES according to the information lying in the unmasked

part of the input. After that, the model needs a slight fine-tuning with the labeled

dataset to have good prediction performance. The proposed SMILES-BERT con-

tains several benefits than the existing methods: 1) different from Seq2seq or Seq3seq

model, SMILES-BERT does not require an encoder-decoder structure which is more

efficient and the model could be more complicated given the same GPU memory; 2)

SMILES-BERT is more natural to parallel training because of the fully convolutional

structure; 3) The random masking method will having SMILES-BERT more general

and able to avoid overfitting; 4) The attention mechanism is used in the Transformer

layer which could potentially improve the prediction performance.
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Figure 3.1. Mapping molecule to feature vector (Fingerprint) with different methods..

Our contributions of this paper could be summarize as:

• We propose a two-stage (pre-training and fine-tuning) model SMILES-BERT [33]

to utilize both unlabeled data and labeled data to have better molecular prop-

erties prediction performance.

• SMILES-BERT has better performance, outperforming a series of state-of-the

art methods on three datasets.

3.2 Related Work

Almost all the molecular property prediction methods or fingerprints could be

concluded in Figure 3.1. The most important task is to embed the molecule into a con-

tinuous feature space for further task. Since molecules have different representation,

these methods could be divided into three categories based on the input representa-
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tion format being used: the manually feature engineering methods, the graph-based

methods, and the sequence-based methods.

3.2.1 SMILES and canonical SMILES

To represent molecules with atoms and chemical bonds inside, the Simplified

Molecular-Input Line-Entry system (SMILES) [88] is proposed to represent molecules

in a simple way. SMILES is a line notation which represents the chemical structures

in a graph-based definition, where the atoms, bonds and rings are encoded in a graph

and represented in text sequences. One example of SMILES representation is shown

in Figure 3.1: melatonin with structure C13H16N2O2, where corresponding SMILE

representation is included as well as the 3D molecule structure. Simply speaking, the

letters, e.g., C,N , generally represent the atoms, while some symbols like −,=,#

represent the chemical bonds. SMILE system is not perfect given that the vanilla

SMILE system is not a bijective mapping between SMILE sequence and a molecule.

For example, a molecule could have multiple corresponding SMILE representations,

e.g., CCO, OCC and C(O)C. To address this issue and provide a one-to-one mapping

between SMILES and molecules, multiple canonicalization algorithms are invented to

ensure the representation uniqueness of each molecular structure [89]. In this paper,

all the SMILES are canonical.

3.2.2 Manually Designed Fingerprint

Traditionally, there is a class of molecular representation systems called molec-

ular fingerprints. A fingerprint is basically a vector of a corresponding molecule as its

continuous representation. Hence fingerprints can be thereafter fed into a machine

learning system as an initial vector representation. A large number of previous studies

have invented new fingerprint systems which can benefit future predictive tasks.
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Many hash-based methods has been proposed to generate unique molecular

feature representation [90, 22, 91]. One important class is called circular fingerprints.

Circular fingerprints generate each layer’s features by applying a fixed hash function

to the concatenated features of the neighborhood in previous layer. One of the most

famous ones is Extended-Connectivity FingerPrint (ECFP) [21]. However, due to

the non-invertible nature of the hash function, the hash-bashed fingerprint methods

usually do not encode enough task-related information and hence result in not good

enough performance in properties prediction.

Another stream of traditional fingerprint methods are based on the biologi-

cal experiments and the expertise knowledge and experience, e.g., [92, 93]. Biolo-

gists have figured out several important task-related sub-structures (fragments), e.g.,

CC(OH)CC for solubility prediction, and count those sub-structures as local features

to produce molecular fingerprints. This kind of fingerprint methods usually work well

for specific tasks, but could not generalize well for other tasks.

Figure 3.2. The structure of Transformer Layer..
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3.2.3 Deep Fingerprints

The growth of deep learning has provided excellent flexibility and performance

to learn molecular fingerprints from data samples, without explicit guides from experts

[87, 94, 95, 96, 97, 30].

3.2.3.1 Graph-based fingerprint

Among all the graph-based molecular fingerprint, the state-of-the-art work is the

neural fingerprint [39]. The neural fingerprint mimics the whole process of generating

circular fingerprint but the hash function is replaced by a non-linear activated densely

connected layer. The model of neural fingerprint is a deep neural network. To acquire

enough labeled data, biologists need to perform a sufficiently large number of tests

on chemical molecules, which is extremely expensive.

3.2.3.2 RNNs-based fingerprints

Recently, a few unsupervised fingerprint methods, e.g., seq2seq fingerprint [30],

are proposed to alleviate the issue of insufficient labeled data. These models gener-

ally train deep neural networks to provide strong vector representations using a big

pool of unlabeled data. The vector representation model is thereafter used for super-

vised training with any kind of classifiers. Since the deep models are trained with a

sufficiently large data-set, the representation is expected to contain enough informa-

tion to provide good inference performance. However, this type of methods are not

trained with prediction tasks, meaning that the representation only adjusts to the

recovery task of the original raw representation. It might not provide optimal infer-

ence performance for general prediction task. Seq3seq [32] is the first semi-supervised

learning model for molecular property prediction. It has an Encoder-Decoder struc-

ture which could learn the fingerprints based on self-representation. Thus, it could
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utilize unlimited unlabeled data. However, the Encoder-Decoder framework limits its

capability for property prediction. It is because the decoder of Seq3seq functions as a

scaffold in pre-training stage and is barely useful in fine-tuning, but it has to consume

the GPU memory in the pre-training stage. In this way, Seq3seq fingerprint is not

computationally effective.

3.2.4 Transformer and BERT on Natural Language Modeling

Recently, there are several CNNs-based language models having excellent per-

formance on various language modeling tasks [98, 99, 26, 100, 101, 46]. These methods

use fully convolutional network structures instead of any RNNs blocks. With the help

of self-attention mechanism [26], CNNs-based models could even outperform RNNs-

based models. Among these methods, Transformer [26] is one of the most significant

model building block. Furthermore, BERT [46] proposes to pre-train the Transformer

encoders with two tasks: masked language learning, and continuous sentence classifi-

cation. Both Transformer and BERT belongs to pre-train and fine-tuning framework,

which could use the power of unlabeled data to initialize the parameters in the mod-

els, then promise good performance in following general language modeling tasks.

This paper is inspired by Transformer and BERT, we keep the model used in BERT

as our backbone with a few adaptations.

3.2.5 Seq3seq fingerprint

The Seq3seq fingerprint [32] is our previous work. Different from traditional

models [39, 30], the proposed seq3seq fingerprint model works in a semi-supervised

fashion. It means that our training data comes from two sources, the labeled data,

for classification/regression, as well as the unlabeled data. The labeled data contains

the SMILE strings for molecule data and their labels, such as acidity or other molec-
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ular activities. The unlabeled data contains just molecular SMILE strings and the

unlabeled data is almost infinitely available. The proposed seq3seq fingerprint model

takes the mixture of the labeled data and unlabeled data together as training inputs

to the network. The work flow is depicted in Figure ??. The semi-supervised training

is done by two tasks: the self-recovery task and the inference task. The whole pipeline

is illustrated in Figure 3.3.

The Self-recovery Task The self-recovery task is to learn a vector represen-

tation (usually noted as fingerprint in the drug discovery literature) for each input

molecular SMILE string. This task also requires the SMILE string of the molecule

can be recovered from its fingerprint vector. It is an unsupervised learning problem

since no label information is required in training. As shown in Figure 3.3, this task

contains a perceiver network and an interpreter network.

This structure is motivated by the seq2seq model [30, 45]. The original seq2seq

model is used in machine translation [45]. It is to learn a vector representation from a

sentence in a given language, e.g., English, then translate the learned representation

into another language such as French. Seq2seq fingerprint [30] combines the idea from

seq2seq learning and the idea of auto-encoder to learn the vector representation for

molecule.

We generalize the idea of seq2seq [39, 30] in two views. First, the perceiver

network and the interpreter network in the proposed seq3seq fingerprint model can

be any recurrent deep neural networks such as LSTM, GRU neural networks. The

only limitation is that the perceiver network could map the string tokens into a

vector representation and the interpreter could map the vector back into string tokens.

Second, we introduce unlabeled molecule data into our training process to learn better

representations. Instead of using the SMILE strings of only the labeled molecule data,

we take advantage of the almost infinite unlabeled data and use both unlabeled and
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labeled data for the self-recovery task to learn a more accurate vector presentation

than those models which only use labeled data or unlabeled data separately. The

loss function in our proposed model follows the one in [30]. It is the sum of multiple

cross-entropy loss and we denote it as Lunsup.

The Inference Task The inference task in the proposed seq3seq fingerprint

model is to predict the activity of molecules. In the proposed model, the inference

task includes the perceiver network and the inference network. The perceiver network

is shared in both self-recovery and inference tasks. It is trained by both labeled and

unlabeled data in an end-to-end fashion. The inference network maps the seq3seq

fingerprint to a final inference result on a certain prediction task. The structure

of the inference network can be any trainable network which maps the vector into

a inference value. It allows huge flexibility for the choice of the inference network.

For instance, it could be a Convolutional Neural Network (CNN), a Multi-Layer

Perceptron (MLP) or even a single fully-connected layer. Depending on whether the

inference task is classification or regression, the loss for the inference task Lsup could

be either classification loss (usually a cross entropy loss) or regression loss (usually

a `1 smooth/`2 distance loss). Since computing the Lsup needs labels, the inference

task is only trained on labeled data.

3.2.6 End-to-end Semi-supervised Learning

As shown in Figure 3.3, the semi-supervised loss Lsemi combines the unsuper-

vised loss Lunsup and the supervised loss Lsup together as

Lsemi = Lunsup + λLsup. (3.1)

where λ is a hyper-parameter of the proposed model to balance the two tasks. The

proposed model is trained with both supervised data and unsupervised data. When
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the data is unlabeled, the supervised loss Lsup will be zero. Thus, in this case, only the

part of the model in self-recovery task will be trained. While the data is labeled, both

the part of the model in self-recovery and inference will be trained. The end-to-end

training avoids the multi-stage training, i.e., pre-trained model training or separated

classifier training [30]. As a result, the proposed end-to-end model is expected to

provide an optimal inference performance as well as shorter training time for specific

task than that in a multi-stage model from [30].

seq3seq 
fingerprint

Perceiver
Network

SMILE data

COCCOCCO
CCOCCOCCO
OCC(O)CO
O=CC=O
COCCCN
…… 

Unsupervised 
Loss

Inference
Network

Supervised 
Loss

Semi-supervised 
Loss+

Interpreter
Network

Inference Task

Self-recovery Task

Unsupervised Label

COCCOCCO
CCOCCOCCO
OCC(O)CO
O=CC=O
COCCCN
…… 

Supervised Label

1
N/A
0
1
N/A
…… 

Figure 3.3. This figure shows the proposed seq3seq fingerprint model. The proposed
model is trained through two tasks: a self-recovery task and an inference task. The
self-recovery task contains a perceiver network and an interpreter network; the infer-
ence task shares the perceiver with self-recover task and has an inference network.
The semi-supervised loss is the sum of supervised loss and unsupervised loss..
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3.3 Methodology: SMILES-BERT

In this section, the proposed SMILES-BERT is introduced step by step. First,

we give the details of our backbone and its building block, i.e. Transformer Encoder.

Then the Masked SMILEs Recovery task used for pre-training our backbone on large

scale unlabeled data will be introduced. Following that is the fine-tuning process

for molecular property prediction. The proposed model handles the molecules as

sequences. Thus the inputs of SMILES-BERT are the tokenized molecules SMILEs

representations as shown in Figure3.4.

3.3.1 Model Backbone and Transformer Layer

As shown in Figure 3.2, a transformer layer contains three components: a pre-

attention feed forward neural network, a self-attention layer, and a post-attention

feed forward neural network. The pre-attention feed forward is a fully-connected layer

shared by all the input tokens. It maps the output feature from former Transformer

layer or the embedded feature from the input into another nonlinear space. The post-

attention works precisely in the same way, while the input is the output features after

self-attention module.

RNNs-based methods utilize the sequential information naturally since the out-

put from the former time step will be part of the input of the current time step.

However, in Transformer Encoder, only using feed forward network could not bring

temporal information from the sequence. The self-attention layer plays a crucial role

to introduce the temporal relation into consideration for feature learning. For every

time step, it could decide how to use information from other sequences by which is

more related to itself.

The attention mechanism [26] used in Transformer Encoder is named scaled

dot-product attention. It maps the input data into three parts, a query matrix, a key
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matrix, and a value matrix. The query matrix works together with the key matrix to

serve as the input of the softmax. Then softmax creates the attention weights, which

will be applied to the value matrix to generate the output features with the attention

on the whole sequence. The scaled doc-product attention is formulated as:

Z = Softmax

((
XWQ

) (
XWK

)T
√
dk

)
XW V ,

Where X ∈ RN×M is the input feature matrix, WQ, WK , and W V ∈ RM×dk

corresponds to query weight matrix, key weight matrix, and value weight matrix.
√
dk is a scaling factor and Z is the output of the attention layer. It is the single head

self-attention used in BERT. However, in the backbone, a more powerful version of

the self-attention layer is used, the multi-head self-attention. Thus, different heads

could pay attention to various aspects, making attention to the best power.

All the three components, the feed forward neural networks, and the self-

attention layer are following by a normalization layer to increase the generalization

ability of the model. Besides, each of the components has a residual input to better

utilize the original information.

The whole structure of the proposed model is shown in Figure 3.4. SMILEs

BERT contains a stack of Transformer Encoders with the self-attention mechanism.

3.3.2 Pre-training as Masked SMILEs Recovery

The pre-training stage is shown in Figure 3.4. BERT uses a combination of two

tasks to per-train the model, masked language learning and the consecutive sentences

classification. Masked language learning is that given a partially masked sentence,

using other visible works to predict the masked parts. It is label-free so it could

utilize all the unlabeled sentence in natural languages. The consecutive sentences
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Figure 3.4. SMILES-BERT: pre-training stage..
smiles

classification is to classify if two sentences are consecutive, which is also label-free.

However, different from natural language modeling, SMILEs do not have a consecutive

relationship. The masked language learning is still promising in pre-train the model

with unlabeled SMILEs and we name the task Masked SMILEs Recovery.

We follow the way in BERT [46] to mask an input SMILEs. First 15% tokens

in a SMILEs will be randomly selected for masking and the minimum token num-

ber per SMILEs is one. For every selected token in a SMILEs, it has 85% chance

to be changed to ¡MASK¿ token. With 10% and 5% chances, it will be randomly

changed to any other token in the dictionary or keep unchanged correspondingly.

The original SMILEs serve as ground truth for training the model but only the loss

is only computed based on the outputs of masked tokens and the ground truths. By

randomly masking the input SMILEs, the dataset used for pre-training model is en-
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larged. The randomness could increase the generalization ability of model and keep

it from over-fitting.

The tokens are first embedded into the feature space. Besides the token embed-

ding, positional-embedding is also included to add more sequence information used

in self-attention layer to utilize the temporal information of the inputs.

The proposed SMILES-BERT differs from BERT in the following perspectives:

1) SMILES-BERT uses the single Masked SMILEs Recovery on large scale unlabeled

dataset. 2) We do not include the segmentation embedding used in BERT into our

model since we do not involve the continuous sentences training.

3.3.3 Fine-tuning for Molecular Property Prediction

The fine-tuning stage is shown in Figure 3.5. After pre-training on the large

scale unlabeled SMILEs data, the model has a non-trivial initialization. During the

pre-training, we pad every SMILEs with the leading token ¡GO¿. In the fine-tuning

stage, the model output corresponding to the ¡GO¿ token is used for molecular prop-

erty prediction.

A simple trainable classifier/regressor is added to the output of the ¡GO¿ token.

Then the small scale of the labeled dataset is used for fine-tuning the model to predict

specific molecular property.

The proposed SMILES-BERT has several advantages. First, it could use large

scale unlabeled dataset for model pre-training. It not only contains the dataset itself,

by randomly masking the inputs, but the dataset could also be enlarged into theo-

retically infinite. Second, unlike encoder-decoder structures in [30], the whole model

involving in pre-training will be used in fine-tuning. Thus, the model could be more

complicated since it does not need scaffolding parameters (the decoder parameters in

Seq2seq model).
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Figure 3.5. SMILES-BERT: fine-tuning stage..
smiles

3.3.4 Model Structure

In this paper, the proposed SMILES-BERT contains six Transformer Encoder

layers. In each Transformer layer, the pre-attention and the post-attention fully-

connected layers embed input features into a feature space with size 1024. For the

attention block, SMILES-BERT uses a four-head multi-attention mechanism. Note

that the layers and number of attention heads are less than the base BERT [46],

which consists of twelve Transformer Encoder layers with 3072 fully-connected em-

bedding size and twelve attention heads in attention block. It is because SMILEs

are relatively simple than the natural language sequences. Besides, the vocabulary of

SMILEs is much less than the vocabulary of natural language. We have tried the base

structure setting of BERT to molecular properties prediction and it does not provide

a noticeable improvement. Then we keep the SMILES-BERT in the current setting

since it is better for the model to have less computation and memory requirements

in practice.
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3.4 Experiments

In this section, we describe all our experiments related details. First, the im-

plementation details are given. Then we include the detailed settings in both pre-

training and fine-tuning stages. Following that is a brief introduction to the datasets

we include in our experiments. At last, we list the state-of-the-art methods used in

our comparison and demonstrate the power of the proposed SMILES-BERT with a

thorough discussion of the experimental results.

3.4.1 Implementation Details

The proposed SMILES-BERT is implemented with the FairSeq [102], which is

Facebook AI Research Sequence-to-Sequence Toolkit written in Python and PyTorch.

Along with the proposed SMILES-BERT, we also implement a series of fingerprint

models based on modern natural language sequence learning models including RNNs-

based models [32, 103, 104] and CNNs-based models [98, 99, 26, 100, 101] models.

We plan to open source our implementations as well as our pre-trained models in the

near future.

3.4.2 Experimental Settings

3.4.2.1 Pre-training

During the unsupervised pre-training stage, SMILEs are tokenized into tokens

as the feeding inputs to SMILES-BERT. As the Masked SMILEs Recovery stage, the

tokens are randomly selected to be masked with the masking strategy as described

in Section 3.2. Note that the minimal number of masked token is set as one. Thus,

each of the input SMILEs contains at least one masked token. In this way, the pre-
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training dataset is enlarged with randomness. With training on such dataset, the

generalization capability of proposed SMILES-BERT is enhanced.

The pre-trained dataset we use for SMILEs is ZINC [105]. Zinc is a free database

of commercially-available compounds for virtual screening. ZINC contains over 35

million purchasable compounds in ready-to-dock, 3D formats. ZINC is provided by

the Irwin and Shoichet Laboratories in the Department of Pharmaceutical Chemistry

at the University of California, San Francisco (UCSF). In SMILES-BERT, we only use

the SMILEs of the molecules with no additional label to pre-train the SMILES-BERT,

strengthening the model prediction capability than only using the labeled dataset. To

verify the pre-train model, we randomly keep 10000 samples for validation and another

10000 for evaluation. The number in the training set ends up to 18,671,355.

We use Adam optimizer [106] as the pre-training optimizer. To better initialize

the proposed model, a warm-up strategy is introduced for the first 4000 training steps.

During the warm-up, the learning rate increases from 10−9 to 10−4. We notice that

the warm-up stage is crucial in SMILES-BERT pre-training. Without it, the model

tends not to converge even after a long time training. After the warm-up finishes, the

learning rate starts from 10−4 with the inversed-square-root updating strategy. The

Adam betas are (0.9, 0.999) and the weight decay is 0.1. The batch size is set to 256

and the dropout is set to 0.1.

We pre-train SMILES-BERT for 10 epochs on ZINC dataset. We use the exact

recovery rate to evaluate the pre-train model. The exact recovery rate on the ZINC

validation dataset is 82.85%, meaning 82.85% masked SMILEs could be exactly re-

covered by the information from the unmasked part.
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Table 3.1. Parameters and Performances Contrast between Two Structures of
SMILES-BERT

layers att heads ffn dimension dropout accuracy (LogP)

SMILES-BERT 6 4 1024 0.1 0.9154
SMILES-BERT (large) 12 12 3072 0.5 0.9147

3.4.2.2 Fine-tuning

The supervised fine-tuning stage is based on the pre-trained model. As the

pre-training stage, we use Adam optimizer for fine-tuning. The learning rate is not

sensitive. We have tried several learning rates such as 10−5, 10−6, 10−7 and all the

learning rate could get very good prediction results. Besides, we also test several

different learning rate updating strategies such as no-updating, inversed-square-root

updating. It turns out the updating strategy is not important for the training results.

Thus, we simply choose not to update the learning rate in the fine-tuning stage.

In all our experiments, we fine-tune the model with each of the labeled datasets

for 50 epochs and we choose the best model on validation data for the final evaluation.

3.4.3 Datasets Description

To evaluate our methods we use three datasets, LogP dataset, PM2 dataset

and PCBA-686978 dataset in our experiments. The three datasets vary in not

only properties but also the size of datasets. We would like to see if the pre-

trained model could adapt well to fine-tuning with different molecular properties

and different dataset sizes. The intrinsic logic of the experimental settings is from

small-scale dataset (LogP) to large-scale datasets (PM2 and PCBA), from nonpublic

datasets (LogP and PM2) to public dataset (PCBA).
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3.4.3.1 LogP

LogP dataset is obtained from the National Center for Advancing Translational

Sciences (NCATS) at National Institutes of Health (NIH). LogP dataset contains

a total of 10,850 samples. Each sample contains a pair of a SMILEs string and a

water-octanol partition coefficient (LogP) value. The value is continuous and we use

the threshold of 1.88 suggested by an NCATS expert to convert the dataset as a

classification task. Samples with LogP value larger than 1.88 will be classified as the

positive samples, while the opposites are considered the negative ones.

3.4.3.2 PM2

PM2 dataset is also obtained from NCATS at NIH. PM2 has 323,242 data

samples with PM2 labels. Similarly, the continuous PM2 labels are set as positive if

it is larger than 0.024896; otherwise as negative.

3.4.3.3 PCBA-686978

PCBA [107] is a group of public available dataset containing 128 datasets from

PubChem [108]. We select one of the largest datasets, the dataset with ID 686978

among the 128 datasets to evaluate our method. PCBA-93 contains 302,175 samples.

For each of the three datasets, we randomly select 80% for training, 10% as the

validation set and the rest 10% for evaluation.

3.4.4 Experimental Results

3.4.4.1 SMILES-BERT Structure Study

To compare what kind of structure of SMILES-BERT could have better per-

formance on molecular properties prediction tasks, we compare two structures. We
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have not explored more structures for the following two reasons. 1) Any of the two

structures has better prediction performance (accuracy) than state-of-the-art method

but they do not have a noticeable performance difference. 2) SMILES-BERT training

could take a long time. For a single GPU, it could take more than a week to train

the model for 10 epochs. The detailed parameters of the two structures are listed in

Table 3.1 as well as the performance on LogP dataset.

In Table 3.1, the ffn dimension stands for the dimension for the shared fully-

connected layer in each Transformer Layer. As shown in Table 3.1, the SMILES-

BERT(large) is much more complicated than SMILES-BERT in all settings, while

the performance is slightly worse. The performance difference could be caused by

noise or randomness. However, we choose SMILES-BERT as our structure since it

takes much less training cost and could have a very good performance.

Figure 3.6. Prediction Results (Accuracy) on LogP Dataset.
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3.4.4.2 Comparison Methods

To prove the capability of molecular properties prediction performance of the

proposed SMILES-BERT, we choose four state-of-the-art methods [30, 32, 22, 39]
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for comparison. These methods include one state-of-the-art manually designed fin-

gerprint Circular Fingerprint [22], one graph-based neural network Neural Finger-

print [39], one unsupervised RNNs-based deep learning model Seq2seq Fingerprint [30],

and one semi-supervised RNNs-based model [32]. We note the four methods as Cir-

cularFP, NeuralFP, Seq2seqFP, Seq3seqFP in all the following tables and figures.

3.4.4.3 Results of LogP

The prediction results for LogP data are shown in Figure 3.6. In this ex-

periment, we use classification accuracy as the prediction metric to evaluate our

model. As an unsupervised fingerprint, Seq2seq has reasonably lower performance

than other methods. As a graph-based neural network, NeuralFP is slightly bet-

ter than the manually designed CircularFP. Seq3seqFP and the proposed SMILES-

BERT are both semi-supervised methods, which utilize large-scale unlabeled data.

These semi-supervised methods have better performance than others. The proposed

SMILES-BERT improves accuracy by around 2%. Since both of the SMILES-BERT

and Seq3seq are pre-trained on Zinc, it shows SMILES-BERT could better utilize the

unsupervised information with the Masked SMILEs Recovery task.

3.4.4.4 Results of PM2

PM2 is a much larger dataset than LogP. It contains 300 times data than LogP.

It favors the supervised learning method because they could get better performance

from more data samples. As shown in Table 3.2, unsupervised Seq2seqFP could not

generate label-related fingerprint to have good prediction. The results of CircularFP

and NeuralFP are similar. That CircularFP is slightly better than NeuralFP could

be caused by that the graph-based neural network tends hard to train and tune

in practice. Seq3seqFP slightly improves the performance compared to supervised

66



method. The proposed SMILES-BERT achieves the better accuracy and it could get

more than 5% improvement than Seq3seqFP. The results in Table 3.2 show that with

the help of unsupervised pre-training, the proposed SMILES-BERT could have better

representation and prediction capability after fine-tuning on the large dataset.

Table 3.2. Prediction Results (Accuracy on PM2 Dataset)

Method Accuracy
Circular Fingerprint [22] 0.6858

Neural Fingerprint [39] 0.6802
Seq2seq Fingerprint [30] 0.6112
Seq3seq Fingerprint [32] 0.7038

SMILES-BERT 0.7589

3.4.4.5 Results of PCBA-686978

We introduce a public dataset PCBA-686978 to compare the molecular prop-

erty prediction performance on all the state-of-the-art methods. Figure 3.7 shows the

results of five models. The trend is the same as the LogP and PM2 datasets. The pro-

posed SMILES-BERT has 87.84% accuracy, which is 8% higher than the unsupervised

Seq2seqFP.

Figure 3.7. Prediction Results (Accuracy) on PCBA-686978 Dataset.

All the experiments on the three datasets demonstrate the power of the pro-

posed SMILES-BERT. With the help of the large-scale unsupervised pre-training via

the Masked SMILEs Recovery task, SMILES-BERT could easily be fine-tuning to-

wards the labeled dataset. It could have outstanding molecular property prediction

performance, independently from whether the scale of the labeled dataset is small or

large.
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3.5 Conclusions

In the thesis, to better use the numerous unlabeled molecular data and overcome

some problems in current models, we have proposed a novel semi-supervised learn-

ing method SMILES-BERT for molecular properties prediction. The backbone of

SMILES-BERT is BERT, a combination of Transformer Layer and attention mech-

anism. The semi-supervised method utilizes the power of unlabeled data through

a large scale pre-training through a Masked SMILEs Recovery task. The labeled

dataset could be easily fine-tuned on the pre-trained model and could have very good

prediction performance. In our experiments on three datasets, i.e., LogP, PM2 and

PCBA, the proposed SMILES-BERT over the performance of various of state-of-the-

art methods and future potential to deal with most kind of label datasets with a good

generalization capability.

In this work, we utilize the Masked SMILEs Recovery task in the pre-training

stage corresponding to the masked language learning task in BERT [46]. However,

BERT has another task to classify if two concatenated sentences are originally con-

tinuous. This task is to pre-train the classification with the input ¡GO¿ token. In

SMILES-BERT, the classification capability of the model has not been involved in

the pre-training stage. Thus, we could have the setting to include Quantitative Es-

68



timate of Druglikeness (QED) prediction as another task into the pre-training stage

to warm up the classification capability of SMILES-BERT. It could potentially to

increase the classification in the fine-tuning stage. We plan to design and include the

QED prediction pre-training task in our future work.
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CHAPTER 4

Conclusion

In the current era of big data, deep learning has been the state-of-the-art model

for various applications. Image-based applications such as image classification, object

detection, image segmentation, benefit most from deep learning networks. One reason

for the successful applications of deep learning is that there are a large number of

labeled training samples for the model to learn from. The cost of getting enough

labeled data in health-related areas such as surgical video analysis and drug discovery

is surprisingly high. It is significant to introduce unlabeled data during model training

to improve the model performance.

In this thesis, we discuss two structured data, surgical video with sparsely

label, and molecules in a sequential representation (SMILES). For surgical tool de-

tection from surgical videos, we propose a series of approaches from regarding the

problem as image classification to handling the problem with video classification in

a semi-supervised learning way, using both spatial and temporal information, and

both labeled and unlabeled frames. In the experiments, the proposed models not

only demonstrate the superiority over state-of-the-art methods, but also show the

necessity of using unlabeled data with temporal information. For molecule property

prediction, we focus on the sequential representation since the sequential representa-

tion could be used to recover the structure of molecules. By introducing numerous

unlabeled molecules for unsupervised pre-training, SMILES-BERT could learn the

general information from molecules and the model could be easily adapted to specific

molecular property prediction tasks.
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We have demonstrated that in both surgical video analysis and molecule prop-

erty prediction, introducing the unlabeled data could help improve the model perfor-

mance. These proposed techniques could potentially be adapted into other health-

related areas in which the cost of getting labeled data is still high.
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