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Abstract

Systems affected by malware in the past 10 years has risen from 29

million to 780 million, which tells us it is a rapidly growing threat.

Viruses, ransomware, worms, backdoors, botnets, etc. all come un-

der malware. Ransomware alone is predicted to cost $11.5 billion

in 2019. As the downtime, data loss, and financial damages are ris-

ing, researchers continue to look for new ways to mitigate this threat.

However, the common approaches have shown to yield high false posi-

tive rates or delayed detection rates resulting in data loss. My research

explores a dynamic approach for early-stage ransomware detection by

modeling its behavior using hardware performance counters with low

overhead. The analysis begins on a bare-metal machine running ran-

somware which is profiled for hardware calls using Intel R© VTuneTM

Amplifier before it compromises the system. By using this approach,

I am able to generate models using hardware performance counters

extracted by VTuneTM on known ransomware samples collected from

VirusTotal and Hybrid Analysis, and I use that data to train the de-

tection system using machine learning techniques. I have shown that

hardware performance counters can provide effective metrics for use

in detecting and mitigating the ever-growing ransomware threat faced

by the world while ensuring no data is lost.
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Chapter 1

Introduction

Ransomware is a special type of malicious software (malware) which infects a sys-

tem and limits a users access to the system and its files and extorts the user to pay

a ransom with the promise of recovering their files. Ransomware accomplishes

this by encrypting the users files and locking the users desktop preventing all but

the required functionality to make payment to the attacker. Cyber criminals gave

birth to ransomware within this past decade, and ransomware has quickly become

one of the most critical threats to cyber security. New and recycled ransomware

programs are infecting computers across the globe every single day, and they are

generating enormous profits for the cyber criminals. Despite the fact that a ma-

jority of ransomware victims refuse to pay the ransom, these cyber criminals are

raking in billions of dollars annually. As a result, cyber criminals are exploring

new ways to extort money from the users and acclimating to the defenses be-

ing developed to combat ransomware. In 2017, the ransomware landscape shifted

dramatically with the emergence of two new self-propagating threats – WannaCry

and Petya [1]. WannaCry attacked known Windows SMB network vulnerabili-

ties using exploits like EternalBlue (courtesy of a leak by the National Security

Agency), which allowed an intruder to exploit a remote code execution vulnera-
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bility on a targeted system [1]. WannaCry made global headlines after infecting

more than 230,000 systems in over 150 countries and causing an estimated $5

billion in damages [1], and those numbers are just what was reported to authori-

ties. Health care companies, in particular, were the most negatively impacted by

WannaCry as their patients’ lives were immediately put in jeopardy by the loss of

several systems. Soon after WannaCry came Bad Rabbit which notably targeted

Ukraines Ministry of Infrastructure and Kievs public transportation system.

In contrast to typical malware, ransomware behaves much differently. For

example, traditional malware generally maintains a goal of achieving a level of

persistence, creating a backdoor for a cyber criminal to utilize, or it tries gather

information such as credentials for financial websites, keystrokes or a users web-

cam stream and send it to a remote command and control server without arousing

suspicion. Ransomware, in contrast, does not create backdoors, nor does it collect

private information. Rather, ransomware creates a denial of service of a system

to its own user by encrypting its files and/or locking the desktop making all ac-

cess unavailable. Comparatively, ransomware also makes itself known to the user

unlike traditional malware.

Given the rapid growth of ransomware attacks [1], it is critical to develop a

technique to protect users from ransomware exposure and exploitation. To ac-

complish this, however, we require a low-level understanding of how ransomware

interacts with a users system before we can build proper defenses in order to

protect the users from this growing threat. Many existing ransomware detection

tools focus mainly on their own levels of sophistication and their incremental im-

provements over ransomware attacks, but they lack a more practical and dynamic

approach in ransomware detection by only focusing on keeping their signature def-

initions up-to-date and only performing the most basic of analysis. In this paper,

I take a deeper dive and dynamically analyze the key functional properties of
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ransomware and its effects on a system.

Today, behavior-based malware detection can be achieved because of the

breakthroughs in dynamic analysis. Code-based static analysis analyzes the sus-

picious files by examining its static properties that consists of header details,

hashes, packer signature, date of creation, etc. A static approach for malware

detection is usually performed on binary files without executing it and disassem-

bling it using an interactive disassembler. In contrast, dynamic analysis is carried

out by keenly observing the behavior of the malware while executing it on the

system. It provides new insights by tracking the changes in the system as well as

any unusual behavior. In dynamic analysis, certain changes in the system should

raise a flag alerting the administrator of the files that have been modified and/or

added and deleted, new processes that are running, registry modifications indi-

cating what changes took place in the system, any new services or applications

that has been installed, and any modification of certain system settings. While

both static and dynamic analysis strive to accomplish the same goal, the dynamic

approach is often performed in virtual sandbox environment to prevent the mal-

ware from actually infecting a real users files. By using a sandbox environment,

a virtual machine can easily be rolled back to a previous state once the malware

has completed and been analyzed. Unfortunately, typical behavior-based mal-

ware detection generally fails to detect ransomware because it is either looking

for the placement of backdoors or the gathering of private information. It also

fails because ransomware engages in activity that appears similar to benign ap-

plications that use encryption or compression. Moreover, many behavior-based

systems look for very specific behaviors are constantly plagued by misclassifica-

tion of ransomware as seen in several anti-virus products [2; 3].

In this paper, I present a behavior-based dynamic analysis model to detect

ransomware attacks and more effectively define its behavior. In this model, I
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build a system that contains a realistic, artificial user environment in which ran-

somware samples are executed and their interactions with the system environ-

ment monitored and recorded at the CPU level. The recorded interactions of

the ransomware with the file system allows the model to identify cryptographic

ransomware behavior. For a ransomware attack to achieve success, ransomware

simply requires access to the users files, and then it locks the system leaving it

inaccessible. In my approach, many ransomware samples are analyzed allowing

for detection of ransomware by observing the CPU behavior during the execution

of a ransomware executable.

This approach utilizes the Hardware Performance Counters (HPCs) of a CPU

to analyze and create dynamic signatures for detecting ransomware. As malware

authors get more clever, they find more ways to evade software-based detection

and analysis methods through actions like obfuscation, packing, etc. The one

thing they cannot evade is the hardware requirement. I use a non-virtualized,

bare-metal DeepFreeze sandbox which creates a safe environment for executing

untrusted and potentially malicious executables that prevents them from spread-

ing and does not sacrifice a users files or private information. DeepFreeze pre-

serves a system’s state allowing us to recover that state by simply restarting the

system. In the meantime, I am free to install ransomware and wreak havoc on

the system without fear of data loss or any threats persisting beyond a restart. In

order to obtain data on ransomware behavior, I utilized a software suite by Intel

called VTuneTM Amplifier 2018 that records the low-level HPCs of the CPU, and

those records are extracted prior to a restart. After analyzing the hardware per-

formance counter metrics on over 7,000 ransomware samples, I managed to create

a set of hardware metrics that indicate the presence of running ransomware on a

system.

In my research, I analyzed over 7,000 of the latest ransomware samples from
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over 15 families that encrypt a user’s file system, and this approach allowed

me to determine a set of hardware performance metrics that can indicate the

presence of running malware on a system. Using these metrics, I was able to

effectively detect 99.28% of ransomware samples from all ransomware families

with a false positive rate of 0.36% and a system accuracy rate of 99.59%. The

detection and accuracy rates of this model suggest that it performs better than

the current behavior-based analysis systems in regard to identifying and detecting

ransomware samples expediently [3]. This model can easily be deployed and used

on any malware analysis system such as an anti-virus software suite.
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Chapter 2

Background

Ransomware is predicted to have a global damage cost of over $8 billion as of 2018

which is almost 25 times the 2015 global damage cost of $325 million [4]. That’s

a pretty good indicator that ransomware is here to stay and that we haven’t

seen the last of it. Recent attacks such as WannaCry, Petya, and BadRabbit

have caused damage on a global scale and have touched nearly every country

in the world. These recent attacks were able to easily infect systems across the

globe in large part due to the public release of classified government hacking tools

and exploits from the National Security Agency Equation Group and the Central

Intelligence Agency Vault 7 that were put to malicious use by hacking groups

such as The Lazarus Group [5].

In its simplest form, ransomware is a type of malware that extorts money

from an unsuspecting user by preventing the user’s access to their files and appli-

cations. That said, there are dozens of different ransomware families and many

have different methods of extortion. Some simply lock a user’s desktop with a

splash screen preventing the user from accessing their files until payment is made

at which point a recovery code may (or may not) be delivered. Most families,

however, encrypt the user’s files and will only provide the decryption key after
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payment is made. Early versions of encrypting ransomware used symmetric key

encryption where the same key is used for both encryption and decryption. How-

ever, it didn’t take the anti-malware community long to reverse engineer and

counter symmetric key encrypting ransomware [6], so malware authors began

using asymmetric key encryption in conjunction with symmetric key encryption

where a randomly generated symmetric key (also called a session key) is used to

encrypt the user’s files and a public key is used to encrypt the symmetric key. In

asymmetric key encryption, the knowledge of the public encryption key doesn’t

allow users to decrypt the symmetric key or anything else, therefore, the attacker

will release the private key only after receipt of payment which can be used to

decrypt the symmetric key used for decrypting the user’s files.

While the specifics of cryptography and algorithms vary between ransomware

families, most of them use Microsoft’s CryptoAPI which is included in every

Windows installation. CryptoWall and CryptoLocker both maliciously use the

CryptoAPI and are among the most successful ransomware families. By using

Microsoft’s CryptoAPI, it allows the malware authors to minimize the size of their

payload. In contrast, other families of ransomware have been known to package

entire third-party encryption programs inside their executables. For example,

Mamba packages DiskCryptor inside their executable and targets the entire disk

instead of just the files [7]. While this creates a much bulkier executable, it does

potentially allow Mamba to slip past anything closely monitoring Microsoft’s

CryptoAPI for malicious behavior. Mamba also provides an additional challenge

to the anti-malware community considering the wrong signature for Mamba may

result in false positives and shut down legitimate installations of DiskCryptor on

non-infected systems.

As with all other malware, ransomware authors continuously find new tech-

niques to evade detection, use new programming languages, create new naming

7



conventions, and use social engineering tricks to pressure victims into sending

large sums of money to the attacker. One of the latest techniques involves pack-

aging ransomware in RarSFX executable files [8]. Ransomware also uses number

of different strategies to increase its potentially harmful behavior and attack user.

For example, it can corrupt the users file in multiple ways either by using standard

encryption, overwriting the file table, corrupting file headers, and even hijacking

the boot sector. Alternatively, it can inject a single or multiple malicious pro-

cesses, or it may attempt process replacement of a legitimate process. It may steal

a users private information and send it to a third party for extortion. It may also

establish a remote shell connection with command-and-control servers which are

used by attackers to establish and manage secure transmission with the targeted

systems from across the Internet. Our approach focuses on detecting the exis-

tence of any and all families of crypto ransomware based on the expectation that

full data recovery should be relatively simple and achievable for all other types of

non-encrypting ransomware even in the absence of a data backup/recovery policy.

Ransomware behaves very differently than other traditional forms of malware.

Namely, it makes itself known to the user. On the other hand, ransomware

also tends to behave in a very specific manner. To break it down, ransomware

generally begins by connecting to a command and control server through the

Internet. It then either generates an encryption key which it sends to the server

or receives an encryption key from the server. Ransomware then begins a scan of

directories. Some scans will scan all disks including network drives while others

may just focus on a user’s personal files. After scanning, the encryption key is

used to begin encrypting the user’s personal files and potentially all other files

on the user’s system. Everything up to this point is generally done without

the knowledge of the user and remains that way until the encryption phase is

complete. At this point, the ransomware makes itself known and locks the user’s
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2.1 Hardware Performance Counters

desktop with a ransom note demanding some form of cryptocurrency. While the

crypto libraries or specific files targeted may differ, ransomware still performs the

same basic functionalities.

While this may be attractive to behavior-based malware analysts, this be-

havior differs from benign encryption programs to such a small degree that typ-

ical behavior-based analysis produces an unsatisfactory number of false posi-

tives. Furthermore, some approaches [3; 6; 9; 10] still accept a degree of file

loss before detecting and terminating a malicious ransomware process due to the

high-level nature of the metrics used for analyzing behavior. My research differs

from other approaches in that it uses low-level HPCs which can detect the sub-

tle differences between ransomware and benign encryption software that is lost

on other behavior-based analysis techniques. My research also strives to detect

ransomware with zero data loss.

2.1 Hardware Performance Counters

Over the past decade, HPCs have started making their way into the sights of

malware researchers across the globe and have received a lot of mixed feedback.

HPCs are special micro-architectural registers that are built into most proces-

sors to store metrics of hardware and software events such as cache hits and

misses, branch prediction accuracy, instruction count for each instruction, snap-

shots of the call stack, system call count, and dozens of other metrics [11]. They

were originally designed for hardware debugging and verification purposes, but

their utilization has since grown to serve many other purposes. CPU scheduling,

performance tuning, integrity checking, and workload pattern identification are

among these utility purposes [12; 13; 14; 15].

In effort to expand the utility of HPCs, a the performance monitoring unit
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2.1 Hardware Performance Counters

(PMU) has been added to most processors by their manufacturers to allow appli-

cations to access performance monitoring counters at reduced overhead [16; 17].

PMUs typically operate under an interrupt-based working mode in which the

system is interrupted when specified events cross a predefined threshold or at

predefined time intervals [11]. This means event-based sampling and time-based

sampling are achievable.

HPCs can also be used to model program behavior. This has been a pivotal

step allowing software testers, reverse engineers, and even malware analysts to

produce unique signatures or fingerprints for individual software applications [18].
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Chapter 3

Related Works

In [12] , Malone et al. propose using HPCs to detect malicious program modi-

fications at load time and runtime by acting as dynamic integrity checkers. The

main benefit of this is that it incurs almost no hardware cost since theyre built

into most processors. The authors claim that HPCs are very efficient at detecting

program modifications.

The biggest limitation to this research is that they tested their approach

on programs running solo instead of in a dynamic environment where multiple

programs are running simultaneously. Also, this only serves to protect benign

programs and does nothing to detect standalone malware. Given that ransomware

is generally standalone [19], this approach would require significant modification

before it could expand its capabilities.

In [20] , Tang et al. continue previous works on HPCs and use them to

detect anomaly-based malware by looking at micro architectural execution pat-

terns. The authors approach goes beyond that of recent works in behavior-based

malware detection to detect a much wider range of malware to include zero-day

by using machine learning to establish a baseline of benign program executions

and use them to detect deviations, and the detector can be used in complement
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to existing signature-based detections.

Because the approach of using HPCs for malware detection is a relatively new

idea, it is still far from production-ready. It is prone to a high false-positive rate,

and it also requires baselines for every individual program on a computer to detect

anomalies in the benign programs themselves in the event they are exploited or

are under attack. This doesnt do much for standalone malware detection.

The feasibility of building a malware detector in hardware using data from

existing HPCs is examined by Demme et al. in [18] . In this paper, the authors

find that they can detect multiple variations of malware within families with

ease given a small control set. They also propose modifications in hardware

which allow the malware detector to run smoothly beneath the system software

which is a great improvement over and fewer bugs than existing software-based

antivirus solutions. When used in combination with software-based antivirus, the

authors claim that their approach advances the state of the art in online malware

detection.

This paper provides a lot of solid insight and can serve as a foundation on

which many future works can be built. As with anyone who develops malware-

fighting solutions, the authors voice concern over the potential for malware au-

thors to once again adapt their programs to combat even hardware-based ap-

proaches such as the one discussed in their paper, but on the other hand it is

good to see the hardware community finally join the fight against malware be-

cause it forces malware authors to step into a new arena in which they lose the

advantage they have had over the anti-malware developers in the software arena

since Brain was first discovered.

In [21] , Kharraz et al. view the evolution of ransomware in the wild from

2006-2014 and determine that the sophisticated destructive capabilities of most

ransomware families lacks growth despite the improvements of encryption, dele-
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tion and communications techniques in general. They insist that stopping ad-

vanced ransomware attacks is not as complex as commonly believed and that

defenses involving file system monitoring can be practical and effective because

ransomware generates file system requests much differently than benign programs.

While the file system monitoring approach is indeed practical, it alone is not

enough due to overwhelming percentage of ransomware samples analyzed by the

authors that produced some amount of data loss before being detected. Other

than that, their analysis of the destructiveness of ransomware is thorough and

was very useful in developing my own approach to combating ransomware.

Kharraz et al. take this work even further in [3] by focusing on the dif-

ference between ransomware and all other existing families of malware. In the

malware arena, ransomware stands alone in comparison with all the rest which is

why nearly all generic malware detection systems are losing the fight against ran-

somware. The authors create a dynamic analysis system called UNVEIL which

is designed to specifically detect ransomware and is to be used in combination

with other malware detection systems. UNVEIL essentially generates a honeypot

environment and detects ransomware as soon as it interacts with the users data.

UNVEIL also monitors the desktop to detect any ransomware-like behavior such

as a lock screen preventing the user from accessing their files. The authors boast

that UNVEIL greatly improves upon the state of the art by demonstrating its

capability to identify known evasive ransomware currently immune to detection

by existing anti-virus systems.

This paper really does improve upon the state of the art given a zero false-

positive rate from over 13,000 samples and detects superficial and sophisticated as

well as zero-day ransomware attacks. One limitation of the paper is the potential

for ransomware to detect the artificially generated environment to avoid it. While

it certainly raises the bar of difficulty for the ransomware author to circumvent,
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it is not infeasible. The other limitation is that most ransomware samples still

incur some amount of data loss before detection.

In [10] , Kharraz et al. introduce Redemption, a defense that allows addi-

tional resilience to ransomware using a slight modification of the host’s operating

system. This modification maintains a transparent buffer for all storage I/O

while monitoring I/O request patterns of each process for behavioral metrics of

ransomware called the Malice Score Calculation (MSC). In the event ransomware

is detected, the authors claim that Redemption can kill the process and restore

the data resulting in no data loss while only sacrificing modest overhead which

averages out at 2.6% CPU utilization.

Kharraz et al. build on their two previous works and continue to push the en-

velope in the fight against ransomware. They boast a true positive rate of 100%

and a false positive rate of 0.5% which is achievable based on a specific MSC

calculation. They worked with a very large dataset of over 9,000 ransomware

samples and even tested Redemption against benign applications that most com-

monly produce false positives among other ransomware detection approaches. In

contrast, Redemption’s monitor and the MSC function are not immune to attack.

They can easily be bypassed and tricked with minimal effort, or an attacker can

simply overwhelm the user with alert messages to the point the user turns off

protection. This also doesn’t take into account that Redemption is a kernel-level

process which, if exploited, can result in far greater damage to the system.

In [9] , Alam et al. approach ransomware prevention using HPCs. Their

two-step approach used the Linux tool, perf, to establish a system baseline of

a Windows virtual machine sandbox before setting the ransomware loose. Once

the ransomware was executed in the sandbox, they determined the deviation from

the baseline to create their metrics for detection.

While Alam et al. use the same high-level approach as us – using HPCs as a
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method to detect and prevent ransomware – my methods differ greatly. For one,

Alam et al. use the perf tool in Linux to collect baseline deviation metrics on a

Windows virtual machine while I used Intel R© VTuneTM and Faronics DeepFreeze

on a non-virtualized Windows system which is able to take far more detailed

metrics of only the ransomware process and its subprocesses. Their approach

also comes with some data loss, and they propose a backup/recovery method for

ensuring data persistence. My approach, on the other hand, detects ransomware

without the loss of a single file. Lastly, the only information I know about the

sample set used in [9] was that they used WannaCry. They didn’t specify the

number of samples analyzed nor any other families of ransomware analyzed, so

their conclusion is not supported by a significant representation of the ransomware

population.

In [22] , Zhou et al. attempt to put the question to rest regarding whether

HPCs can detect malware. They compare their own experiments to eight other

related works while avoiding the drawbacks mentioned in the those related works

to quantitatively analyze how those drawbacks led the authors of those other

works to the conclusion that HPCs can be used as reliable detection metrics.

Their main claim is that, to better simulate a real-world scenario, they test

their models with measured hardware performance counter values from programs

that have not been observed during training. This ensures that malware samples

from the same family of malware are available during training but not the exact

same malware that a user may encounter. Otherwise, machine learning is not

needed because the hash can be used. They claim that, in this real-world train-

ing approach, HPCs cannot distinguish between benign and malicious software.

However, their results do not support this claim. In their Random Forest model,

for example, the Area Under Curve percentage was reduced from 91.8% to 89.9%

when switching to the real-world training approach. This is not a large enough
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reduction to claim HPCs cannot distinguish between benign and malicious soft-

ware. The two main differences in their machine learning approach from mine

is the aforementioned real-world training approach and their use of Principal

Component Analysis dimensionality reduction on their samples.

Lastly, they claim that all but one of their tested machine learning algorithms

— Decision Tree, Naive Bayes, Neural Network, AdaBoost, Random Forest, and

K-Nearest Neighbor — when used against ransomware resulted in a precision of

0% (AdaBoost showed 50.85%). This is very misleading because they embed a

single ransomware sample into an otherwise benign program, Notepad++, and

that embedded function encrypts one file every 5 seconds. In other words, the

infected Notepad++ will behave like a benign Notepad++ a vast majority of the

time while occasionally performing some ransomware functionality. This single

sample easily skews the results to favor the authors’ claim.

In [6] , Kolodenker et al. propose a new system, PayBreak, to effectively com-

bat ransomware and prevent any data loss. It does this by essentially creating

a key escrow inaccessible to ransomware that holds every key used in encryp-

tion in a secure manner thus allowing the decryption of any files encrypted by

ransomware. PayBreak demonstrates the ability to restore all files lost to twelve

different ransomware families, and it does so with negligible performance over-

head.

While complete data recovery or complete prevention of data loss is the ideal

result of combating ransomware, PayBreak only manages to effectively work with

only 60% of all ransomware families leaving eight common families of ransomware

that can decimate a users system to go uninhibited. PayBreak also lacks a basic

robustness allowing it to be evaded simply by ransomware authors rolling back

to older versions of crypto libraries or through basic obfuscation and evasion

techniques as stated by the authors themselves. Their approach was essentially
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just a proof-of-concept, and it is uncertain whether the authors will pursue any

future work on PayBreak or not.
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Chapter 4

Proposal and Hypothesis

In this section, I outline ten requirements which have to be met in order to make

a significant contribution to the ongoing fight against ransomware, propose an

experimental ransomware detection model, and form a hypothesis on the ability

of my model to deliver all ten requirements.

4.1 Requirements

In order to make a significant contribution to the fight against ransomware, I

derived a list of requirements which needed to be met to set my work apart

from all others. I also believe that these requirements should be the standard

for anyone looking to enter and/or continue the fight against ransomware. These

requirements are:

1. A ransomware detection model must not rely on signature-based ransomware

detection only.

2. A ransomware detection model must demonstrate the ability to detect zero-

day ransomware.
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4.1 Requirements

3. A ransomware detection model must demonstrate the ability to detect ran-

somware from all ransomware families.

4. A ransomware detection model must achieve a true positive detection rate

of 99.9% or greater.

5. A ransomware detection model must achieve a false positive detection rate

of less than 0.5%.

6. A ransomware detection model must achieve an accuracy rate of 99.5% or

greater.

7. A ransomware detection model must ensure absolutely no data loss or

guarantee 100% data recovery.

8. A ransomware detection model must employ defensive techniques to prevent

malicious tampering or detection evasion.

9. A ransomware detection process must be transparent to the user, but it can

present detections and alerts to the user upon request.

10. A ransomware detection process must be able to terminate any discovered

ransomware processes.

After carefully analyzing a number of related works, it was quickly made clear

that there is no one solution to fit all requirements. Most of those works achieved

five of those requirements or fewer. Only the latest works of Kharraz et al. [10]

demonstrated the ability to meet seven out of ten requirements. There was no

mention of a detection accuracy (#6), and the absence of defensive techniques to

protect their model (#8) and lack of user transparency (#9) were the only things

preventing them from meeting all ten requirements.
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4.2 Proposed Ransomware Detection Model

4.2 Proposed Ransomware Detection Model

The most important feature in my model is ensuring absolutely no data loss.

The guarantee of full system integrity will set this model apart from all other

existing ransomware detection models. Accomplishing this requires that I monitor

and analyze the CPU hardware performance counters and classify a ransomware

sample before the first file becomes lost to the user — either by encryption of an

original file or deletion of an unencrypted original file. Once full system integrity

is achieved, my model will focus on delivering the most accurate results achievable

by using a collection of supervised machine learning classification techniques to

ultimately detect ransomware in its earliest stages upon being executed.

In order to set a ransomware detection threshold, machine learning will be

used to analyze thousands of existing ransomware samples and find unique metric

ranges for hardware performance counters that are indicative of ransomware.

These metric ranges will include branch prediction hit/miss percentages, functions

in the call stack, frequency of calls, cache hit/miss percentages, common values

and memory addresses found in registers, and other memory values. Once those

metrics have been determined, they could potentially be integrated into anti-

virus software with negligible impact on system performance to greatly enhance

ransomware detection capabilities. These metrics can be tuned over time as

ransomware evolves and pushed with regular updates. For the scope of this

paper, I will prove that accurate detection of ransomware while achieving zero

data loss is feasible.

4.3 Hypothesis

Due to the uncertain nature of machine learning algorithms, I considered require-

ments #4, #5, and #6 to be the most difficult three to achieve simultaneously
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4.3 Hypothesis

within a single machine learning model. As such, I believed my model could

achieve two of those three requirements with relative ease. Overall, I hypothe-

sized that this model would achieve a minimum of eight out of ten requirements

upon the successful development and implementation of my model.
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Chapter 5

Approach

In this section, I outline and analyze the pros and cons of several approaches and

environments for performing dynamic malware analysis and machine learning

techniques before finally selecting the optimal approach for our experiments.

5.1 Selecting A Malware Analysis Environment

To analyze ransomware samples, I required a sandbox in which I could perform

static and dynamic analysis. There are some added benefits to creating a virtu-

alized sandbox using dynamic analysis tools such as Cuckoo Sandbox [23] and

VMRay Analyzer. For one, they provide the ability to take multiple snapshots

and screenshots, map the process and subprocesses, perform detailed logging,

simulate the Internet, and analyze all incoming and outgoing network traffic. In

addition, these features can be automated and customized which is great for dy-

namic analysis of the malicious binaries. The downside to using a virtualized

sandbox is that using hardware performance counter tools can be limited or ren-

dered ineffective. Also, special care and configurations are commonly required to

get past anti-virtual machine techniques commonly written into malware samples
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5.2 Selecting A Hardware Performance Counter Tool

to evade dynamic analysis [24]. These techniques range from:

1. Checking for files, directories, or registry keys that indicate the existence of

virtualization software such as C:\Program Files\VMware Tools.

2. Checking for known MAC address prefixes assigned to virtual network in-

terfaces.

3. Checking for processes indicating a virtual machine such as Vmtoolsd.exe

and vboxservice.exe.

The other option was to use a standalone, potentially air-gapped, bare-metal

system which – if designed incorrectly – could be hazardous to other systems on

the network. In addition, air-gapping a system for malware analysis may cause

the malware process to terminate before performing signature functionality if it

cannot communicate with a command and control server via the Internet. The

positives to using a standalone, bare-metal system is that it is immune to anti-

virtual machine techniques. It also works much more effectively with HPCs to

produce accurate results.

5.2 Selecting A Hardware Performance Counter

Tool

One of the tools I considered for collecting HPCs is Performance Monitor (or

PerfMon) by Microsoft Windows SysInternals. PerfMon runs on all versions of

Windows since XP and has the ability to map processes, collect CPU and memory

utilization statistics, and log changes to a hard drive. Furthermore, it is easy to

learn and intuitive to operate. On the downside, the metrics it collects are high-

level and not detailed enough to create signatures for binaries.
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5.3 Selecting Machine Learning Classifiers and Environment

I briefly considered using perf in conjunction with the Cuckoo Sandbox, but

there were too many factors that would compromise my results. For one, perf is

a Linux-based tool, and all of the ransomware samples I analyzed could only be

run on Windows, so it couldn’t be run within the virtual machine itself. Even if

I used perf on the host machine to target the ransomware subprocess spawned

inside the Cuckoo virtual machine, it didn’t have the ability to follow additional

subprocesses spawned by the initial subprocess. If I attempted to capture HPCs

for the entire system before starting the dynamic analysis and then calculating

the difference after starting the dynamic analysis, the numbers would still be

skewed due to the operations performed by the Cuckoo Sandbox outside of the

ransomware binary itself.

The final tool considered was Intel R© VTuneTM Amplifier 2018. With this

tool comes a very large learning curve, and the inability to collect accurate data

if installed inside a virtual machine. On the other hand, VTuneTM can record

27 low-level metrics for CPU performance alone as opposed to simple utilization

statistics recorded by the other aforementioned tools. These metrics include cache

hit and miss percentages, branch prediction hit and miss percentages, snapshots

of the call stack, the number of times each system call is made, and several

others. In addition, VTuneTM can be configured for collecting full-system metrics

as well as metrics for a unique process which can follow and record metrics for

any subprocesses spawned by the parent process.

5.3 Selecting Machine Learning Classifiers and

Environment

Detection and the binary classification of ransomware and other benign binaries

required supervised learning algorithms. Of those, considered using k-Nearest

24



5.4 Final Selections

Neighbor (kNN), Support Vector Machine (SVM), Random Forest, Decision Tree,

and Naive Bayes. I decided to pick three for comparative reasons.

The classifiers with the highest accuracy are kNN, SVM, and Random Forest,

and as such they were immediately top contenders. This is because they all avoid

linear regression and make few or no expectations and assumptions about the data

distribution. On the other hand, Decision Tree and Naive Bayes provide more

simplified results, and – given the binary nature of classification (ransomware or

not ransomware) – they are much easier to implement, require less complexity

in the model, and are computationally cheap allowing for quicker classifications

meaning faster detections.

5.4 Final Selections

Because my research focuses on ransomware detection based on HPCs than the

actual analysis of the ransomware binaries themselves, it was absolutely critical

that I obtained the most low-level, accurate metrics possible for each ransomware

sample. For this reason alone, I selected VTuneTM as my HPC collection tool. In

order to optimize the data collection from VTuneTM, I were required to sacrifice

the more desired dynamic analysis environments – Cuckoo Sandbox and VMRay

– and go with the standalone, bare-metal system.

I picked three machine learning classifiers for comparative purposes: kNN,

SVM, and Random Forest. Among all other classifiers, SVM is often hailed as

the most accurate easily making it worth running my results data through. It

also handles feature mapping of very large data sets with relative ease. Random

Forest was chosen for the same reasons but didn’t require feature mapping making

it a good contrast to SVM. Lastly, I picked kNN because it is commonly used

for predictive classification and because of its close adherence to the real world
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5.4 Final Selections

in that it doesn’t follow linear regression models because real world data rarely

follows theoretical assumption guidelines. Despite its lack of a learning phase,

kNN still yields relatively high accuracy. The learning machine also had ample

CPU power and memory to sustain the computationally expensive resource costs.

Decision Tree learning was strongly considered but ultimately discarded due

to its tendency to “overfit” the results based on expectations and because the

order in which the input is fed into the system can have a dramatic impact on

the tree structure. Those characteristics has a negative impact on the accuracy of

the results, and accuracy is critical to success as mentioned in the aforementioned

Requirements section. Naive Bayes was also discarded due to its nature to make

assumptions regarding the shape of the data distribution.
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Chapter 6

Experiment Architecture

To begin my experiment, I created a repository of 7,234 known ransomware sam-

ples obtained from VirusTotal and Hybrid Analysis. This repository includes sam-

ples from all known crypto ransomware families that affect Windows-based com-

puters such as Bad Rabbit, Cerber, CryptoLocker, CryptoWall, Crysis, Mamba,

NotPetya, Petya, WannaCry, and others. Each individual sample was run through

a VirusTotal analysis to ensure that it was indeed ransomware and for classifica-

tion of its specific ransomware family.

To analyze each sample, I created a Windows 7 Professional 64-bit image

and cloned it across several laptops. The image was built to look like a real

user’s system and not a basic, freshly installed Windows system. I installed the

latest versions of 7-Zip, Adobe Flash, Adobe Reader, Java, iTunes, Spotify, Drop-

box, Google Drive, Google Chrome, Mozilla Firefox, Discord, BitTorrent, Skype,

Microsoft Office 2013, and even the latest Windows Updates and Windows De-

fender signatures. Although, Windows Defender was deactivated for the analysis.

I also added 15 gigabytes of random personal files into the user’s home directory

structure which included music, photos, documents, downloaded executables, and

other random files.
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To maximize efficiency in collecting HPCs for 7,234 ransomware samples, I

installed Intel R© VTuneTM Amplifier 2018. In addition, I installed Faronics Deep-

Freeze to create a recoverable state on each system which could be recovered by

performing a restart of the machine. This recoverable state could withstand com-

plete file system encryption and desktop locking. This image was cloned onto four

Dell Latitude E5720 laptops with Intel Core i3 2.0 GHZ CPUs, 16 GB SDRAM,

and 240 GB solid state drives.

Each sample was run through Olly Debugger (OllyDbg) v1.1 to look for func-

tions that would hinder my analysis such as wait timers and logic bombs. In

the event that these things were discovered, I loaded the sample into IDA Pro

v7.0 and overwrote those functions with NOP (0x90) instructions or rewrote the

addresses of some of the jump calls to bypass any functions that hindered a quick

execution. I then ran the ransomware sample through OllyDbg again to verify

that the critical funcationality had not been compomised. This was necessary for

529 samples.

To collect HPCs on the ransomware samples, I booted the laptop and inserted

a USB flash drive containing the sample for analysis. I opened up VTuneTM and

configured it to run in HPC mode for a maximum of 180 seconds to ensure that

all of the initial steps performed by ransomware were captured and measured

up to and including the encryption of the first file. Once those metrics were

recorded, they were stored in the Google Drive sync folder because of the nature

of ransomware to encrypt the user’s files. Google Drive has a version control

feature built-in which allowed us to recover the previous version of the uploaded

analysis data in the event that the ransomware encrypted the VTuneTM analysis

data and synchronized it to the cloud before the laptop was restarted. This

was not a common issue considering I made sure that the Google Drive client

showed that the data was synced and up-to-date before immediately restarting
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the laptop. The VTuneTM analysis data was then extracted from a different

computer, converted to comma-separated value (CSV) format, and labeled.

I also collected 973 samples of known benign software programs which have

commonly shown to trigger false positive alerts in other research. These pro-

grams include 7-Zip, WinRAR, AxCrypt, VeraCrypt, TrueCrypt, DiskCryptor,

and GNU Privacy Guard. They were all run in several different modes to incor-

porate combinations of different encryption methods (AES, Blowfish, DES, etc.),

different compression rates, and other built-in features native to the programs.

The CSV results for each sample — malicious and benign — were labeled

only by the SHA-1 hash of the original ransomware binary and fed into another

system running a 6-core i7 Extreme CPU overclocked to 3.9 GHz, 64 GB of

memory, and 1 TB solid state drive. This system was used to conduct machine

learning, and it was configured to use the following machine learning classifiers: k-

Nearest Neighbor (kNN), Random Forests, and Support Vector Machine (SVM).

The CSV results were shuffled and merged into three training sets:

1. The first training set was heavily populated with benign samples and sparsely

populated with malicious samples.

2. The second training set contained a more closely balanced number of benign

and malicious samples, but it still had a malicious-to-benign ratio of 1:2.

3. The third set was heavily populated with malicious samples and sparsely

populated with benign samples.

The testing sets for each training set all contained a sparsely populated num-

ber of malicious samples as the number of malicious samples a typical classifica-

tion engine encounters on a “real world” system would also be sparse. However,

the testing sets did differ from the training sets in size and are shown in Table 6.1.
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The number of malicious and benign samples in the training and testing sets are

shown in Table 6.2 and Table 6.3 respectively.

Set # in Training Set # in Testing Set
1 32,450 2,000
2 450 34,000
3 17,225 17,225

Table 6.1: Number of training and testing samples per set

Set # of Malicious # of Benign
1 1,450 31,000
2 150 300
3 15,000 2,225

Table 6.2: Number of malicious and benign samples in training set

Set # Malicious # Benign
1 100 1,900
2 1,000 33,000
3 2,225 15,000

Table 6.3: Number of malicious and benign samples in testing set

30



Chapter 7

Results and Analysis

For detection purposes, I used a simple binary classification of true for malicious

files and false for benign files. I merged and shuffled the samples and used a

training set of 32,450 and a testing set of 2,000 (100 of which were malicious).

The results of this first approach for k-Nearest Neighbor, Random Forests, and

Support Vector Machine are shown in Table 7.1.

Classifier TP FP TN FN Accuracy
kNN 91% 0.11% 99.89% 9% 99.45%
SVM 91% 0.05% 99.95% 9% 99.5%

RF 96% 0.26% 99.74% 4% 99.55%

Table 7.1: Set 1 Results

My second approach used a training set of 450 samples (150 malicious and

300 benign). I then used a testing set of approximately 34,000 (1,000 malicious

and the rest benign). The results are shown in Table 7.2.

Classifier TP FP TN FN Accuracy
kNN 96.9% 3.78% 96.22% 3.1% 96.24%
SVM 91.4% 0.04% 99.96% 8.6% 99.71%

RF 99.3% 1.53% 98.47% 0.7% 98.5%

Table 7.2: Set 2 Results
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My third approach used a training set of 17,225 samples (15,000 malicious and

2,225 benign). I then used a testing set of identical size but with the malicious

and benign numbers swapped. The results are shown in Table 7.3.

Classifier TP FP TN FN Accuracy
kNN 99.91% 1.62% 98.38% 0.09% 99.35%
SVM 99.28% 0.36% 99.64% 1.08% 99.59%

RF 99.96% 0.73% 99.27% 0.04% 99.36%

Table 7.3: Set 3 Results

In the first set, the training set was heavily populated with benign samples

and sparsely populated with malicious, and the testing set matched this ratio.

The accuracy was over 99% with low false positive rate for all classifiers, but

the false negative rate was 9% for both k-Nearest Neighbor and Support Vector

Machine and 4% for Random Forest. With such high false negative rates, the

model was falsely classifying malicious samples as benign.

In the second set, the training set was more balanced with a similar number

of malicious and benign samples while the testing set was heavily populated with

benign samples. For k-Nearest Neighbor, the false negative rate was reduced

from 9% to 3.1%, the accuracy was reduced from 99.45% to 96.24%, and the

false positive rate increased to 3.78%. There was negligible change between the

first and second sets for Support Vector Machine. For Random Forest, the false

negative rate decreased from 4% to 0.7%, the accuracy decreased from 99.55% to

98.5%, and the false positive rate increased to 1.53%.

In the third set, the training set was heavily populated with malicious samples

and sparsely populated with benign. The testing set was made up of about

13% malicious samples. Both k-Nearest Neighbor and Random Forest achieved

my goal for a true positive rate of 99.91% and 99.96% respectively, but they

both fell slightly short of the goal for false positive rate and accuracy. On the
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other hand, Support Vector Machine missed the true positive goal by 0.62% but

exceeded the goals for both false positive and accuracy with rates of 0.36% and

99.59% respectively. It also showed the most improvement from the first two sets.

Table 7.4 shows the comparison of the third set to the goals listed in my proposal.

Classifier TP Rate TP Goal Diff
kNN 99.91% 99.9% +0.01%
SVM 99.28% 99.9% -0.62%

RF 99.96% 99.9% +0.06%
FP Rate FP Goal Diff

kNN 1.62% 0.5% -1.12%
SVM 0.36% 0.5% +0.14%

RF 0.73% 0.5% -0.23%
Acc Rate Acc Goal Diff

kNN 99.35% 99.5% -0.15%
SVM 99.59% 99.5% +0.09%

RF 99.36% 99.5% -0.14%

Table 7.4: Set 3 Results vs. Goals

33



Chapter 8

Discussion and Future Work

The detection model that I have proposed in this paper is a proof-of-concept. My

intent was to prove that ransomware can be detected before any data was lost

to the user which was a plaguing problem for other models seen to date. While

it still requires tuning and improvement, it has shown to be effective and that it

can feasibly be built upon or integrated into other existing malware analysis or

anti-virus solutions, and I will discuss these two approaches in this section.

8.1 This Model As A Foundation

This model could serve as a foundation upon to build a full anti-virus suite

capable of using HPC behavior analytics to discover all other forms of malware

known to exist, and it could be adapted to quickly incorporate future evolutions

in the malware arena, but this approach doesn’t come without a significant set

of challenges. One of these challenges is the copious amounts of manual analysis

required to retrieve data for the vast number malware samples to build a sufficient

training set for other families of malware. This is a human-centric approach

in a world quickly speeding towards automation. While some factors could be
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8.2 This Model As An Integrated Solution

automated, it would require the design and implementation of a new system

just to automate these analyses assuming no modifications to the binaries were

required.

Another challenge posed by this approach is the infancy of the model. It

would need to garner significant acceptance as a viable solution by a cyber security

corporation and/or research academics throughout the cyber security community.

To do that, more work is required to improve the existing model and address

certain limitations before it would be ready for such acceptance as discussed in

the Limitations and Assumptions section below.

Despite these challenges, this model could potentially serve as a foundation

for a new evolution of behavior-based anti-virus and security software, and I aim

to improve this model so it can.

8.2 This Model As An Integrated Solution

In contrast to using my model as a foundation, this model could more easily be

integrated as a software module into existing anti-virus software suites. Many

anti-virus or endpoint security suites come with several “bolt-on” modules to

address several aspects of security such as anti-virus detection and removal, disk

and file encryption, local firewall, disaster recovery (backup and restore), and

Internet proxy. This ransomware detection model could quickly be polished and

bolted on to the framework as its own module. The development teams on the

back-end would need to stay up-to-date with the latest ransomware samples as

they already do for anti-virus signature detection, and they would just need to

tune the HPC detection metrics in addition to their weekly or monthly updates.

This approach could also gain much faster acceptance as a viable solution

if cyber security companies and research academics integrated it into existing
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8.3 Limitations and Assumptions

solutions with trusted foundations. Still, this would also require an amount of

human-centric work but not to the extent of the foundational approach of this

model.

8.3 Limitations and Assumptions

The main critical assumption posed by my research is that the modification of

529 different samples had little-to-no affect on my results. While it made up less

than 10% of the overall number of samples, it is plausible that the modification

of these files could have had a more positive impact on my results by making all

samples more alike as opposed to having a more varying degree of differentiation

between samples. While this may be concerning to some, my model intentionally

focused on the required functions of ransomware: the call to a command and

control server, the encryption key generation, the file system scan, the loading of

crypto libraries, and the beginning of encryption.

However, it is also possible to automate the detection of certain functions in

binaries such as time-based or event-based triggers, and analysis tools can be

configured or written to begin its analysis after those triggers have been set off

if a more automated model was to be conceived. It is also possible to look for

the existence of the typical ransomware functionality spanned across a binary

file before execution and immediately flag a file for review by the user before

execution. It may even be possible to use these triggers as metrics to enhance

detection capabilities. Due to these possibilities, I believe that similar results

can be achieved without modification of the ransomware binaries, but achieving

similar results would require significant improvements over the dynamic analysis

portion of my model that were not implemented in this paper.
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Chapter 9

Conclusion

I have proposed a set of ten requirements necessary to ensure accurate and accept-

able levels of ransomware detection and built a model around those requirements.

While the model I built does not achieve ten out of ten requirements, it does meet

six out of ten as it currently stands with no assumptions.

1. It doesn’t rely on signatures, but rather it relies on a range of CPU behavior

patterns for detection.

2. It detected ransomware not incorporated into the training set indicating

that other zero-day ransomware will be detected.

3. Every family of ransomware was included in every training and testing data

set, and all families were detected.

4. A true positive detection rate of 99.9% was not achieved for Support Vector

Machine, but the mark was missed by a very small margin of 0.62%.

5. A false positive detection rate of 0.5% or less was achieved for Support

Vector Machine by 0.14%.

6. An model accuracy rate of 99.5% was exceeded by 0.09%.
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7. Given that the HPCs were taken up to the point before the first file was

encrypted or deleted, this detection model ensures no data loss.

8. This model does not yet employ defensive techniques as it has not been

built into an actual deployment package yet.

9. This model does not employ user transparency, but the incorporation of

this model into an existing anti-virus software suite would address this

requirement.

10. As with user transparency, the termination of a malicious ransomware pro-

cess would be achieved by introducing this model into an existing anti-virus

software suite, but it currently does not meet this requirement.

Assuming the integration into existing anti-virus software suites as discussed

for future work, my model will meet eight — potentially nine — out of ten

requirements with the assumptions discussed for future work as it stands. Given

that other machine learning research indicates the real possibility of malicious

attacks on the data sets for continuous learning models to intentionally throw

off the classifier’s results, the potential to meet this requirement is a toss-up for

future work. It is plausible that more tuning of the training and testing data sets

could raise the true positive rate without sacrificing the false positive of accuracy

attributes meeting a potential ten out of ten requirements, but — as it stands — I

have proven that ransomware can accurately and effectively be detected resulting

in no data loss to the user with the user of hardware performance counters.
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