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ABSTRACT 

 

FIRST-PRINCIPLES STUDIES OF THE LOW DIMENSIONAL TRANSITION METAL 

OXIDES  

 

Jiao An, Ph. D. 

The University of Texas at Arlington, 2019 

Supervising Professor: Qiming Zhang 

Transition metal oxides have drawn lots of attention from experimental and theoretical 

research due to their unique physical and chemical properties. Among them, the 

semiconducting α-Fe2O3 and TiO2 has been investigated for their potential use in a wide range 

of applications, such as photocatalysis, electrochemistry, and solar cells. 

Hematite α-Fe2O3 is a potential low-cost, earth-abundant, and environment-friendly 

semiconducting material. It was found that the isovalent sulfur-doping could reduce its band 

gap. To study the interaction of a sulfur atom with the surface of α-Fe2O3, a model of α-Fe2O3 

(0001) film is made. From the optimized bulk structure, the clean hematite α-Fe2O3 (0001) 

film is built of 12 atomic layers with two different types of termination. And the most stable 

film is terminated by Fe atoms with an anti-ferromagnetic arrangement. For a sulfur atom 

adsorption on the suface of this film, the results suggest that the sulfur atom prefers to stay at 

the surface. There is a high barrier about 2 eV for the sulfur atom penetrating into the film. 

This excludes the possibility of tuning the band gap of α-Fe2O3 through the sulfurization of 

the oxide surfaces. 
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The geometric and electronic properties of the TiO2 single-walled and double-walled 

nanotubes have been investigated. The stabilities of the nanotubes have been studied. For the 

single-wall nanotube (SWNT), the strain energy is decreased with the increase of the radius of 

the nanotube. The band gap energy is increased with the increase of the radius, approaching to 

the band gap energy of the HexABC sheet (~3.54 eV). Especially, the band gap of the (6,0) 

SWNT is reduced to about 2.86 eV, due to its reconstruction. The isovalent sulfur atom (S) 

doping with nanotubes has also been studied. The band gap values of double-wall nanotubes 

(DWNT) are decreased significantly compared with that of single-wall nanotubes due to the 

offset of the bands of the two constitutive single-wall nanotubes. It shows that the TiO2 

DWNTs with smaller innershell radii form a type II band alignment, the staggered gap. And 

the band gap of the NTs studied could cover the redox potentials of water splitting, by 

comparing the band gap position of the bulk anatase with respect to the redox potentials of 

water splitting. 
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Chapter 1  

Introduction 

With a rapid development of the world economy, the global energy consumption keeps 

increasing. And from the latest international energy outlook 2017 (IEO2017) [1], it shows that 

the world energy consumption will grow by 28% between 2015 and 2040. As shown in Fig. 

1.1, through 2040, world consumption of marketed energy is increased from all fuel sources, 

except for coal demand, which is kept essentially flat. Among these sources, renewable 

energy sources will be the fastest-growing energy source as expected, with consumption 

increasing by an average 2.3% per year between 2015 and 2040. Half of the growth in global 

energy demand comes from the power sector, in response to higher electricity consumption. 

And it is shown in Fig. 1.1 that the solar PV and wind generate only 7% of the electricity in 

2018. Solar energy can also be collected and stored directly, which could be the heat provider 

for people. It is well known that the fossil fuels, which include coal, oil, and natural gas, have 

the advantages of high density, lower cost, and convenience. But they also have some 

disadvantages, such as limited deposits, pollution and causing green house gases effect. For 

the renewable energy, the advantages are exhaustless and environment-friendly, even though 

some of them has high cost and low efficiency. So considering the huge energy demand and 

the current percentage contributed by solar energy harvest, there is still a large room to catch 

up for the transfer of solar energy to electricity. 
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Source from IEA 

Figure 1.1. The word energy consumption (the left side) and electricity generation mix in 2018 (the 

right side) from IEA. 

Photovoltaic (PV) cells and photocatalysis are most popular categories for converting the 

energy of sunlight to other types of energies used in our life. PV cells are also called solar 

cells. It is made by one or multiple semiconductor p-n junction shown in Fig. 1.2. The p-n 

junction is formed by a p-type and n-type semiconductor aligned by the Fermi level. If the 

energy of the photon is smaller than the band gap value of the material, there will be no light 

absorption. If the energy of the photon is equal to or larger than the band gap value of the 

material, there will be light absorbed and one electron will be excited to the conduction band 

from the valence band, leaving a hole in the valence band. The electron-hole pair is then 

separated by the p-n junction. The electrons prefer to stay in n-type region, and the holes 

prefer to stay in p-type site. The process is equivalent to an e.m.f. or battery. The ideal 

semiconductor materials for the p-n junction would cover almost all of solar visible 

frequencies and some infrared spectra. The optimal band gap energy of the semiconductor 

material is calculated as about 1.4 eV by Shockley-Queisser model. One familiar 

semiconductor is silicon, with a band gap of 1.1 eV. The efficiency of the single-crystalline Si 

is reported as 25.6%, while the efficiency of the poly-crystalline Si is about 20.8%. 
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Single-crystalline Si cell has reached the almost complete light trapping and carrier collection, 

but the limit is the carrier recombination. Today the PV market is dominated by the crystalline 

Si solar modules with the market share of 90%.  

 

Figure 1.2. The working principles of solar cells. 

So far, there are also some other materials, CdTe, GeAs, perovskite materials, CIGS, 

nano crystals, and so on. Most of them are still in the research stages [2]. The efficiency of a 

laboratory CdTe solar cell is 22.1%, but the element Cd is not environment-friendly. For the 

thin film of GaAs, incomplete light trapping and absorption in the metal result in some 

current loss. And because of the toxic element As, it should be careful about the recycling of 

commercial GaAs modules. As a represent of III-V compound, InP, has similar band gap 

value with GaAs, but the efficiency is lower than that of GaAs due to its lower voltage and 

lower current. And the material Indium is also high cost one, due to the limited deposit on 

earth. The efficiency of Cu(In,Ga)(SeS)2 (CIGS), as recorded, has steadily increased at 21.7%. 

The indium is a key element to these materials. The record published efficiency for quantum 
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dot (QD) solar cells is 9.9% using PbS QDs with band gap energy of 1.4 eV. But this cell has 

very large voltage loss. And there is current loss due to light reflection and incomplete light 

trapping.  

The semiconducting materials for the massive applications of PV cells should have some 

good key qualities, such as the cost-effective, earth-abounded and environment-friendly. 

Some semiconducting transition metal oxides, such as copper oxides, iron oxides, satisfy 

these requirements. But their band gaps are higher. Therefore, to find semiconductor materials 

with these qualities and to engineer their band gap values to improve the efficiency of these 

materials are two popular researching topics in the solar-cell materials research. 

 

Figure 1.3. The working principles of photocatalysis. Figure is from reference [74]. 

Another extensive-studied branch of converting solar energy is photocatalysis. 

Photocatalytic activity is to generate the hydrogen gas from water splitting reaction by 

absorbing solar energy. Fujishima and Honda first achieved an electrochemical photocatalysis 

of water by TiO2 in 1972 [3]. TiO2 is suitable for photocatalysis due to its common 

availability, relatively low cost, and high chemical stability. To be photocatalytic material, the 

work principle of photocatalysis shown in Fig. 1.3 requires certain characters. The reaction of 

photocatalytic water-splitting is initiated by photon absorption. This means the photo energy 
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will be larger than the band gap energy. And then it will generate numerous electron-hole 

pairs with sufficient potentials. The electron will reduce water to generate the hydrogen gas, 

and the hole will oxidize water to generate oxygen gas. So the minimum band gap for one 

suitable water splitting photocatalyst should be 1.23 eV. But for the most candidates of the 

photocatalytic materials, they work under ultraviolet light, which just occupies only 4% of 

total solar light. To improve the efficiency of the photocatalyst, engineering semiconductors 

for band gap energy to the visible light range is a research direction. The other major 

challenge is the recombination of electrons and holes. For example, surface defect usually 

serves as adsorption site for the recombination of electrons and holes, thus decreasing the 

efficiency of the photocatalytic reaction. And the modification of the efficiency of 

photocatalytic activities of TiO2 has been studied experimentally and theoretically [4]. With 

development of nanoscience and nanotechnology, the nanostructures of TiO2 have drawn a lot 

of attentions from different research groups [5, 6]. Therefore, engineering the band gap of 

semiconductor materials for PV cells and photocatalysis will be one of most meaningful 

theoretical studies, and will give us a better understanding of the electronic properties of 

materials. That is the focus of this dissertation. 

Density functional theory (DFT) is a computational quantum mechanical modeling 

method to investigate the electronic properties of the multi-body systems. And it has already 

been one of the most popular tools for condensed matter physics, computational physics and 

computational chemistry. In this dissertation, a brief review of DFT and its implementation in 

computational package are present in Chapter 2. Chapter 3 presents the studies of the 

electronic properties the pure film of α-Fe2O3 and with the sulfur atom doping. Chapter 4 
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shows the studies of the single walled nanotubes of TiO2 with armchair and zigzag chiralities 

and with the sulfur atom doping. Chapter 5 reports the studies of the double walled nanotubes 

of TiO2 with these two chiralities. A conclusion is given in Chapter 6. 
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Chapter 2   

Methodology 

The systems interested in materials science consist of tremendous number of particles, 

including nuclei and electrons. The right theory to describe them is quantum mechanics. 

However, in the actual application, it is found that there is few system that can be solved 

analytically. Even though the simplest hydrogen atom can be solved, it is impossible to study 

a more complex condensed matter system. So there are some approximate methods are 

needed to apply in quantum mechanics. 

Density functional theory is a method of obtaining an approximate solution to the 

Schrödinger equation of a many-body system. And now it is one of the most useful theories in 

the last two decades to study the properties of the condensed matter systems. In the following 

section, density functional theory will be discussed briefly. 

2.1 The approximate methods in Quantum mechanics 

The basic problem in quantum mechanics is how to describe the state of the system, ie 

solving the wave function and the energy of the system that it may have. However, the 

different systems will be treated with the different Schrödinger equations. And sometimes the 

Hamiltonian of the system is too complicated to solve. At this time, the exact solution cannot 

be given. The approximate solution can only be obtained by using some approximation. 

Therefore, it is very important to use the approximation methods to solve physical problems 

in quantum mechanics. 

2.1.1 Born-Oppenheimer approximation 
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Without considering the external field, the Hamiltonian of a multi-particle system in 

condensed matter physics should include the kinetic energy of the nuclei and electrons and 

the interaction energy between these particles, 

2 2

1 1 1 1 1 1

1 1 1 1ˆ
2 2

N M N M N N M M
A A B

i A

i A i A i j i A B AA iA ij AB

Z Z Z
H

M r r R       

            ,  

     (2-1) 

where the first term is the kinetic energy of the electrons, the second term is the kinetic 

energy of the nuclei, the third term is the electron-nuclei interaction, the forth term is the 

coulomb interaction energy between all the electrons, the last term is the coulomb interaction 

energy between all the nuclei. And to simplify the equations, the atomic unit

0( 1, 1, 1,4 1)ee m     is used here. 

The third term is not only a function of the electronic coordinates, but also is a function of 

nuclear coordinates. And it has the same order of magnitude as other interaction terms, so it 

cannot be simply ignored. Since the mass of a nucleus is about three orders of magnitude 

larger than the electron mass, according to the conservation of momentum, the velocity of the 

nucleus is much smaller than that of the electron. When electrons are moving at high speeds, 

the nuclei can only follow the changes of electrons slowly. Born and Oppenheimer proposed 

that the whole problem can be divided into the two parts: the motion of electrons and the 

motion of the nuclei. It means that the nucleus is in its instantaneous position when 

considering electron motion, but the space distribution of the electrons is not considered when 

considering the motion of the nuclei. This is called Born-Oppenheimer approximation [7], or 

the adiabatic approximation.  
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The Schrödinger equation for multi-particle systems is 

ˆ ( , ) ( , )HH r R E r R  ,     (2-2) 

where r  is the coordinates of all the electrons, and R  is the coordinates of all the nuclei. 

In the case of adiabatic approximation, the solution is separated as 

( , ) ( ) ( , )r R R r R   ,    (2-3) 

where ( )R  is the wave function of all the nuclei in the system, and ( , )r R  is the wave 

function of all the electrons in the system. The wave function of electrons ( , )r R  is the 

solution of the Schrödinger equation corresponding to the Hamiltonian operator of the 

electron part for the system shown below,  

2

0

1 1 1 1

1 1ˆ
2

N N M N N
A

i

i i A i j iiA ij

Z
H

r r    

       ,
   (2-4) 

0
ˆ ( , ) ( , ) ( ) ( , )H r R r R E R r R  .     (2-5) 

The instantaneous position coordinates of the nuclei ( R ) are set as the parameters in the 

electron wave functions. 

2.1.2 Variational principle 

The condition for dealing with the quantum mechanical problems with perturbation theory 

is that the Hamiltonian of the representative system can be divided into two parts, the 

non-perturbation term can be solved or the solution is known, and the part of the perturbation 

term is tiny. If these two conditions cannot be met, perturbation theory cannot be applied. 

Then another approximation method could be considered, the variation principle. 

The basic idea of applying the variation principle to the quantum problem is to select a type 

of testing wave function with respect to the specific problem, to give the average energy E  
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corresponding to the testing wave function, and then to take the minimum value of E  to 

find the best wave function and the corresponding average energy, which are used as the 

exact approximation solution of the eigenfunction and energy eigenvalues of the system. Here, 

the Hartree-Fock method, as an example of variational methods, is introduced briefly. 

By the Born-Oppenheimer approximation, the electronic motion can be successfully 

separated from the nucleus motion in a multi-particle system. When considering the motion of 

electrons, the nuclei can be fixed, and the electrons move in the potential field formed by all 

the nuclei. When the relative position of the nucleus is changed, the state of the electron 

motion will also change. So the repulsive interaction between the nuclei must be added to the 

energy of the electronic system. The repulsive potential between the nuclei ˆ ( )
N N

V R


 is only 

related to the position between the nuclei. For those systems which the positions of the nuclei 

are determined, ˆ ( )
N N

V R


 is a constant, and it can only affect the total energy of the 

electronic system, but not the wave function. So when solving the wave function of electrons, 

we do not need to add the repulsion energy between the nuclei, and finally add the repulsion 

item to calculate the electron energy. Then the Schrödinger equation of the electron part from 

equation (2-5) can be obtained, 

2 '

1 1 1 1 ,

1 1 ˆ
2

N N M N N
A

i i ij

i i A i j i i i jiA ij

Z
H H E

r r
  

    

   
         
    

     ,  (2-6) 

where i or j is the index for electrons.  

There are the coupling terms of different electrons from the above equation. So it is 

difficult to solve the exact solution, and it is no longer possible to solve the Schrödinger 

equation to obtain an approximate solution by the above method. So Hartree proposed that the 
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product of the single electron wave functions φi (ri) as an approximate solution of the 

Schrödinger equation for the multi-electron system,  

1 1 2 2( ) ( ) ( ) ( ) ( )i i n nr r r r r       .   (2-7) 

This approximation is called the Hartree approximation [8]. The wave function 

corresponding to (2-7) is called the Hartree wave function. The constructed many-body 

wavefunction (2-7) could be used as a trial solution to calculate the expectation value of the 

energy, 

ˆ ˆ[ ]E H H    .     (2-8) 

The variational principle states that the energy computed from the guess is an upper bound to 

the true ground-state energy E0. If we minimize Ĥ  with respect to variation of φi
*
, we 

obtain 

1

ˆ ( ) 0
N

i j i

i

H   


 
  

 
 ,    (2-9) 

where φi
*
 satisfies the normalization equation

j i ij   , and i is Lagrangian multiplier. 

The normalization condition acts as a constraint on the variation of Ĥ . As well known, the 

electron is a fermion since its spin quantum number is 1/2. But Hartree does not consider an 

exchange anti-symmetry of the electron wave function. For the system with N electrons with 

the position vectors 1 2, ,..., nr r r  the corresponding approximate wave functions can be 

expressed as the follow, the Slater determinant, 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )1
( )

!

( ) ( ) ( )

N

N

N N N N

q q q

q q q
r

N

q q q

  

  


  

  ,              (2-10) 
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where ( )i iq  represents the normalized wave function of the i-th electron at the coordinate 

iq , including ir  
and spin.  

Using the Slater determinant, the expectation of the energy of the system is equal to the 

average value of the Hamiltonian of the system acting on the above determinant. In the other 

words, by the variation principle, the wave function φ constructed by the best single electron 

wave function φi could give the minimum value of the system energy E. Then do the variation 

on E with respect to the φi and use i  as the Lagrange multiplier to get the one-electron 

wave function to satisfy the following differential equation, 

2
*

2

( ) ( )

( ) ( ) ( )1
( ) ( ) ( ) ( ) ( )

2

j j i

i i j i i

j i j i

r r r
V r r dr r dr r r

r r r r

  
    

 

   
           

   ,  

                                          (2-11) 

where ( )V r is the potential between the nuclei and electrons. 

Equation (2-11) is called as the Hartree-Fock equation.  

The charge distribution is defined as 

2
( ) ( ) ( )i i

i i

r r r       .   (2-12) 

And the exchange charge distribution is defined as 

* *

*
( )

( ) ( ) ( ) ( )
( , )

( ) ( )

j i i jHF

i

j i i i

r r r r
r r

r r

   


 

 
   .  (2-13) 

Plug (2-12) and (2-13) into (2-11), and the Hartree-Fock equation can be written as  

2 ( ) ( , )1
( ) ( ) ( )

2

HF

i
i i i

r r r
V r dr r r

r r

 
  

  
     

 
 .   (2-14) 

The Hartree-Fock equation can only be solved by the iterative method. Firstly, the solution of 

the Hartree-Fock equation is a set of single-electron states {φi}. The potential function is 
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obtained from the set single-electron states, and the equation could be solved to get a better 

solution {φi}. This process is repeated until that {φi} is no longer changed within the 

calculation accuracy considered. This is called as the Hartree-Fock self-consistent field 

approximation method [8, 9]. And the Eq. (2-14) can be further simplified as 

21
( ) ( ) ( )

2
eff i i iV r r r  

 
    
 

,   (2-15) 

where 

( ) ( , )
( ) ( )

HF

eff

r r r
V r V r dr

r r

  
 

 ,  (2-16) 

*

*

( ) ( ) ( , )

( ) ( )

HF
HF HF i i i
i

i i i

i

r r r r

r r

  
 

 


 


 .  (2-17) 

Then Eq. (2-14) is written as a one-electron effective potential equation. Since the total wave 

function of the electrons satisfies the exchange anti-symmetry, the interaction of the electrons 

which have the same spin and the same position is canceled, so that it is impossible to 

simultaneously have the electrons with the same spin at the same position. But at the same 

time, due to the existence of Coulomb repulsion, it cannot allow the electrons with the 

opposite spins to appear at the same position. The energy corresponding to this term is called 

the correlation term, which is the missing part of the Hartree-Fock approximation. 

2.2 Density Functional Theory 

The systems we encounter in solving practical problems are more multi-particle systems, 

such as molecules, solids, or systems with large numbers of particles. The approximation and 

simplification can be done by using the methods described above. However, density 

functional theory for solving the single-electron problems is a more rigorous and precise 
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theory. It not only provides a theoretical basis for transforming the multi-electron problems 

into the easily solved single-electron problems, but also becomes an effective theoretical tool 

for computing the total energy and the electronic structure for the multi-particle systems. 

2.2.1 Hohenberg-Kohn theorem 

Density functional theory originated from the work of H. Thomas and E. Fermi in 1927 [10, 

11]. The main idea is that the physical properties of the ground state of molecules and solids 

can be represented by the density of the particles. The basis of density functional theory is the 

theory of non-uniform electron gas proposed by P. Hohenberg and W. Kohn [12]. This theory 

can be summarized as the following two parts. First, without considering the spin, for the 

identical fermions system, its energy of the ground state is the only functional of the particle 

number density function ρ(r). Second, in the case where the number of the particles does not 

change, the energy functional E[ρ] has a minimum value of the particle number density 

function ρ(r) and this minimum value would be equal to the energy of the ground state. 

They are called Hohenberg-Kohn theorem. The first part shows that all the physical 

properties of the ground state of the multi-particle system are uniquely determined by the 

particle number density function. The second part shows that as long as the ground state of 

the particle density function is obtained, the minimum value of the energy functional can be 

obtained, and this minimum value is equal to the ground state energy of the corresponding 

system. Therefore, the minimization of energy functional with respect to the particle number 

density is a method to determine the ground state of the system. 

According to the above, we can write the energy functional of the multi-electron system 

with respect to the electron number density, which has the corresponding electron kinetic 
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energy and the interaction between the electron, the role of the external field, e.g. nuclei, and 

the interaction between the nuclei in the Hamiltonian, respectively. 

     ext N NE F E E      ,    (2-18) 

where      
1 ( ) ( )

2
XC

r r
F T drdr E

r r

 
  


  

 contains the kinetic energy of the 

electrons and the interaction energy between the electrons.  XCE  represents the 

non-included interaction energy of the all non-interacting particle models, which is called the 

exchange correlation energy. 

2.2.2 Kohn-Sham equation 

To determine electron density and the kinetic energy functional, W. Kohn and L. J. Sham 

[13] proposed that if the kinetic energy functional of the system studied can be replaced by a 

kinetic energy functional of a known non-interacting electronic system, and the density 

functions of the two systems are the same, and this density function can be composed of the 

number of N single electron wave functions,  

2

1

( ) ( )
N

i

i

r r 


 .     (2-19) 

It can be obtained that 

    * 2

1

( )( ) ( )
N

s i i

i

T T dr r r   


   .  (2-20) 

Then the variation of the energy functional to the density function ρ(r) is substituted for the 

variation on the wave function φi(r). And then the variation with restrain of orthonormal 

conditions is obtained as 

21
[ ( )] ( ) ( )

2
KS i i iV r r r   

 
    
 

,   (2-21) 
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where 

 

 

[ ( )] ( ) [ ( )] ( )

( )( )
( )

( )

KS coul XC

XC

V r v r V r V r

E rr
v r dr

r r r

  

 



  


  


.   (2-22) 

Equation (2-21) is a single-electron equation similar to the Hartree-Fock equation (2-11). 

Corresponding to the effective potential of the Hartree-Fock equation, VKS[ρ(r)] includes 

Coulomb repulsive potential, exchange-related potential, and external field potential . We 

refer to the three equations (2-19), (2-21), and (2-22) as the Kohn-Sham equations. 

The center of the Kohn-Sham equation is to replace the kinetic energy of the electronic 

system with interaction by the kinetic energy of the electron system without interaction, and 

to attribute the full complexity of the interacting electronic system to the functional of the 

exchange-correlation potential. So a simple one-electron equation is obtained as the Eq. 

(2-21). Comparing with the Hartree-Fock equation, the Kohn-Sham equation includes not 

only the exchange interaction of electrons, but also the correlation interaction of electrons. 

Therefore, the single-electron Kohn-Sham equation given by density functional theory (DFT) 

is rigorous. 

2.3 Approach to solve a Kohn-Sham equation 

2.3.1 Bloch theorem 

Solid energy band theory is an important theory for studying the motion of electrons in the 

solids. It is also an approximation theory. The starting point is that the electrons in the solid 

do not belong to some single atom, but they move in the whole solid. These electrons are 

called the shared electrons. Bloch theorem [14] could solve the wave function of the so-called 

shared electrons moving in a periodic potential field.  



17 
 

Bloch's theorem: when the potential field ( )V r  is a lattice periodic potential, the solution 

( )n r  of the wave equation,  

2
2( ) ( ) ( ) ( )

2
n n n nH r V r r r

m
   

 
     
 

,    (2-23) 

has the following properties 

( , ) ( , )mik R

n m nk r R e k r 
  ,       (2-24) 

where k is the wave vector, and 
mR  is the lattice translation vector. Due to the periodic 

boundary condition, k is not continuous in the reciprocal space. 

And 31 2
1 2 3

1 2 3

ll l
k b b b

N N N
    (2-25), where 1b , 2b , and 3b  is the reciprocal lattice 

basis of the crystal, and N1, N2, and N3 are the numbers of the primitive cell in the 1a  2a , 

and 3a direction corresponding to the lattice base vectors. ( , )n k r  is called as the Bloch 

function. Here are some ways to calculate the energy bands. 

2.3.2 Tight-binding approximation method 

The focus of the tight-binding approximation method [15] is to use the linear combination 

of the atomic orbitals as a set of basis function for solving the single-electron Schrödinger 

equation. If the electron is near an atom, it would consider that the main potential is the 

nearest atomic potential, and the effect of other atoms on the electron is set as a perturbation. 

The potential field in the crystal can be expressed as a linear superposition of the atomic 

potentials as follows, 

( ) ( )at

l

l

V r V r R 


   ,    (2-26) 

where 
lR  is the lattice translation vector and   is the internal vector of the α-th atom of 

the l-th cell. The crystal Hamiltonian The wave function ( , )n k r  can be expressed as, 
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( , ) ( )n nj j

j

k r A k r   ,    (2-27) 

where the basis ( )j k r  is a Bloch function consisting of the atomic orbit 
at

j . Then 

,

1
( ) ( )lik R at

j j l

l

k r e r R
N




  
     ,   (2-28) 

where ( )at

j lr R     represents the j-th orbit of the α-th atom of the l-st cell, and N is the 

total number of the cells in the crystal. 

Substituting the expression of the potential function (2-26) and the wave function (2-27) into 

the wave equation (2-23), and then multiplying by ( )j k r    for both sides, we can obtain an 

equation about the linear combination coefficient njA , 

' '( ) 0j j n j j nj

j

H k S A    ,   (2-29) 

where 'j j j jH H  , and Sj’j is the overlap matrix, 
' 'j j j jS    .  

Similarly, if the coefficient njA has a non-zero solution, then it must be satisfied, 

' 'det ( ) 0j j n j jH k S  .    (2-30) 

Solving generalized eigenvalue equations gives the function ( )n k and 
njA ’s. 

2.3.3 Plane wave method 

In the calculation methods of the crystal energy band, the plane wave method (PW) [16] 

is a simple method with the definite physical meaning, in which a linear combination of a 

series of plane waves 
ik re 

 with a difference by a reciprocal lattice vector is used to describe 

a Bloch function for the motion of electrons in a crystal. 

Suppose that the potential function ( )V r  have the lattice periodicity and expand it to 

the Fourier series as follows, 

( ) ( ) miG r

m

m

V r V G e


 ,       (2-31) 
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where 
mG represents the reciprocal lattice vector, and ( )mV G  is the Fourier expansion 

coefficient, 

1
( ) ( ) miG r

mV G drV r e
 


 

,       (2-32) 

where Ω is the volume of the primitive cell. Bloch function ( , ) ( , )ik r

n nk r e u k r  , where 

( , )nu k r  is a function with the same period as the lattice, can also be expressed by the 

Fourier expansion, 

( )1 1
( , ) ( ) ( )m miG r i k Gik r r

n m m

m m

k r e a G e a G e
N N

    
 

  , (2-33) 

where N is the number of the primitive cells contained in the crystal. Substitute (2-27) and 

(2-29) into the wave equation, and multiply both sides by 
( )mi k G re
 

to obtain that 

2
2( ) ( ) ( ) ( ) ( ) 0

2
n n n n m m

m

k G k a G V G G a G
m


 
      
 

 .  (2-34) 

Assuming that 
nG has a different reciprocal lattice vector, we will get an equation set 

about the expansion coefficient. If ( )ma G  had a non-zero solution, it must make the 

determinant of the equation set coefficient to zero, i.e., 

2
2det ( ) ( ) ( ) 0

2 n mn n G G n mk G k V G G
m

 
 
      
 

.       (2-35) 

The above equation is an infinite order determinant, and actually the computation takes a 

finite order of the determinant. Here, it should be stated that the nearly-free electron 

approximation method is a special case of the plane wave method. The common movement of 

the electrons in the crystal is very close to the motion of free electrons in the average potential 

field, and the difference between the real potential function and the average potential field is 

treated as perturbation. It will not be described in detail here. The advantage of the plane 
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wave method is that the basis is independent of atomic coordinates. And the fruitful Fast 

Fourier Transformation (FFT) could be used. We can find that the disadvantage of the plane 

wave method is that a large number of plane waves are used to be combined into a Bloch 

function, so the amount of calculation will be quite large. 

2.3.4 Pseudopotential Method 

In the calculation of the energy band, the calculation for the full electron states is 

accurate, but the amount of the calculation is quite large and the convergence is very slow. In 

fact, the valence electrons are the most concerned part, because the state of valence electrons 

changes the most when forming the solid. The change of chemical environment has little 

effect on the inner electron wave function. Core electrons will be under the influence of a 

steep Coulomb potential and have rapidly varying wave functions in the nuclear regions. This 

requires a correspondingly large number of plane waves to adequately describe the wave 

function and the nuclear potential. This expense is reduced by the pseudopotential 

approximation.  

Valence electrons are the electrons which are outside the core region and are responsible 

for the physical properties of a system for most situations. As the core electrons are 

unchanged in most situations, they could be replaced along with the nuclear potential, i.e. ions, 

to create a relatively weak pseudopotential. This pseudopotential acts on a set of pseudo wave 

functions that are identical to the wave functions outside of a specified core radius, where all 

the electrons are taken into account. The first step is to frozen core electrons with nuclei to be 

ions. For example, for one Ti atom, the electrons are (1s)
2
(2s)

2
(2p)

6
(3s)

2
(3p)

6
(4s)

2
(3d)

2
. The 

core electrons (1s)
2
(2s)

2
(2p)

6
(3s)

2
 with the nucleus are the ion. The second step is to smooth 
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the wave functions of valence electron (3p)
6
(4s)

2
(3d)

2
. The pseudo wave functions have no 

nodes in the core region, and therefore it heavily reduces the number of plane waves required 

for the calculation. So the memory required for the calculation is also decreased. Because 

there are fewer Kohn-Sham orbitals required as the core electrons are not explicitly treated. 

An example of a pseudo wave function and pseudopotential compared to the all-electron 

counterparts are shown in Figure 3.  

There are a number of methods popularly used to construct pseudopotentials. The two 

widely used methods are the norm-conserving approach and the ultrasoft approach. And they 

both show a good transferability for different condensed matter systems. 

 

Figure 2.1 Comparision of a wave function in the Coulomb potential of the nucleus (blue) to the one in 

the pseudopotential (red). The real and the pseudo wave function and potentials match above a certain 

cutoff radius rc. Figure is from Wikipedia. 

2.3.5 Approximations for exchange-correlation term 

Though DFT is rigorous, the exchange-correlation functional is unfortunately unknown. 

There are three popular approximations for exchange-correlation term  XCE  , which are 

shown briefly in the next. 
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(a) Local Density Approximation (LDA) [13, 17-18] 

It is derived from homogenous electron gas and it approximates the energy functional of 

the real density by the energy function of a local constant density. Then exchange-correlation 

energy per particle of the system with density 
, 

( ( )) ( ( )) ( )LDA

XC XCE r r r dr     .           (2-36) 

 (b) Generalized Gradient Approximation (GGA) [12,19] 

For GGA, the density changes with a rapid speed. So there is an improvement necessary 

for LDA. So the gradient of electron density is considered with GGA, and the 

exchange-correlation energy per particle of the system is shown as, 

 [ ( ), ( )] ( ), ( ), ( ), ( ) ( )GGA

XC XCE r r r r r r r dr       
     

   .  (2-37) 

 (c) Hybrid Functional(HSE06) [20, 21] 

The functional uses a portion of the exact exchange term from Hartree–Fock theory and 

correlation from DFT, (1 )Hyb HF GGA

XC X XCE E E    .    (2-38) 

2.4 Computational Codes 

The Vienna ab initio simulation package is currently one of the most popular 

commercial softwares in the material calculations. It was developed by the Hafner team at the 

University of Vienna and can be used for the calculations of the electronic structures and 

molecular dynamics simulations. VASP obtains the electronic state and energy of the system 

by solving the K-S equation iteratively. It can solve the Kohn-Sham equation on the basis of 

DFT and perform the calculations of hybrid density functional. VASP also supports the GW 

approach, the quasi-particle approximation [22] calculations, where G represents the Green's 

function of a single particle and W represents the screened Coulomb interaction. The plane 
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wave basis set method and the interaction between electron and ion used in VASP are 

described by the method of the norm-conserving pseudopotentia (NCPP), the ultra-soft 

pseudopotential (USPP) [23] or alternatively the projected augmented wave (PAW) [24]. The 

flow chart of the VASP software package calculation is present below. 
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Chapter 3  

Hematite α-Fe2O3 film and sulfur atom doping 

3.1 Introduction 

Transition metal oxides have drawn a lot of interest in both experimental and theoretical 

research due to their unique physical and chemical properties. As an important member of 

them, hematite α-Fe2O3 has been investigated for its potential use in a wide range of 

applications, such as catalysis, electrochemistry, magnetization, and environmental 

applications [25-28]. The various properties of the bulk and surface hematite have been 

studied extensively. It includes the studies on the crystal structures [29, 30], the electrical 

properties of the bulk [31] and its surface [32], and the magnetic properties [33, 34]. 

Moreover the optical properties of bulk and thin film α-Fe2O3 have been analyzed 

experimentally [35, 36]. 

Recently hematite α-Fe2O3 has drawn extensive interest due to its potential application in 

solar water splitting and solar energy conversion [37]. It is a cost-effective, earth-abundant 

and environment-friendly material with a favorable band gap (~2.1 eV) [38]. These are 

necessary requirements for massive applications in the solar energy conversion at an 

affordable cost. For the improvement of the hematite α-Fe2O3 as the photo-electrode material, 

M-doped α-Fe2O3 film (M = Cr, Mo, Pt, Ti) has been studied experimentally [39-42]. The 

first-principles studies on Co and Ni doped hematite film have also been performed [43]. 

They exhibit the higher photoelectrochemical (PEC) performance than that of the undoped 

samples. As the application of the photovoltaic (PV) material, however, it has been found that 

the potentially low-cost material does not have satisfactory performance in practice, which 
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could be attributed to the relatively poor absorptivity and indirect band gap [35, 44]. To 

modify the electronic structures and transport properties of α-Fe2O3, the hematite doped with 

Al, Ti, and Cu have been investigated by the experimental and theoretical studies [45-47]. But 

no improvement in the performance has been achieved for hematite in solar energy 

conversion. It is well known that a direct band gap ranging from 1.30 eV to 1.60 eV is 

optimal for a solar cell material. The influence of different concentrations of isovalent sulfur 

(S) doping in the bulk hematite on the band structure and optical absorption has recently been 

investigated [48]. It elucidates that the α-Fe2O3-xSx with S concentration of ~5.6% has a direct 

band gap with a desirable value (~1.45 eV).  

Hence, it is worth to further investigate the incorporation of S atom into α-Fe2O3. As an 

initial stage, the adsorption and substitution of S atom at the surface of α-Fe2O3 need to be 

understood. Firstly, a surface model should be obtained. The properties of the clean hematite 

α-Fe2O3 films have already been investigated. The electronic structure of the clean hematite 

α-Fe2O3 (0001) surface has been discussed theoretically in detail by W. Bergermayer et al. 

[49]. Under low and intermediate oxygen pressures the Fe-terminated surface is most stable 

but under high oxygen pressure the O3-terminated surface is more stable. The electronic 

properties of the graphene-hematite interfaces have been studied [50]. The interaction 

mechanism between H2S and the α-Fe2O3 (0001) surface [51] was studied by density 

functional theory (DFT) in order to remove H2S from coal gas. Some recent studies with DFT 

also considered different metal atoms, i.e. Mg, Au and Pb, adsorption on the α-Fe2O3 (0001) 

surface [52, 53]. 
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3.2 Computational details and models 

All the calculations performed in this work are based on spin-polarized DFT as 

implemented in the Vienna ab initio simulation package (VASP) [54, 55]. The 

exchange-correlation energy is treated within the generalized gradient approximation (GGA) 

functional and parameterized by Perdew-Burke-Ernzerhofer (PBE) [56] functional. The 

electron-ion interaction is described by the projector augmented wave (PAW) potentials [24], 

treating Fe 3p, 3d and 4s, O 2s and 2p, and S 3s and 3p states as valence states. A plane wave 

basis with an energy cutoff of 400 eV is used and the convergence for energy is chosen as 10
-5

 

eV. In order to describe the effect of the on-site coulomb repulsion of Fe-3d electrons more 

accurately, the exchange-correlation energy is treated by the GGA + U approach used by 

Dudarev et al. [57] with U=4. Full structural optimization is carried out until the force 

converged below 0.05 eV/Å. The search for the transition states (TSs) along the 

minimum-energy pathway (MEP) between two stable configurations is calculated using the 

climbing-image nudged elastic band (CI-NEB) method [58]. There are eight images used in 

the calculation. 

To demostrate the accuracy of our computation setting, the structure of bulk hematite with 

a hexagonal prime cell consisting of six formula units is calculated first. Integrations over the 

first Brillouin zone (FBZ) are performed with a 5×5×5 Monkhorst-Pack [59]
 
k-point grid. All 

possiple magnetic phases are considered. The global energy minimum state is an 

anti-ferromagnetic (AFM) phase with magnetic moment of 4.15μB on each Fe atom. The 

optimized lattice constants of the bulk α-Fe2O3 (a=5.043 Å, c=13.729 Å) are in excellent 

agreement with experimental values (a=5.035 Å, c=13.747 Å) [29]. It has an indirect band 
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gap with the value of 2.05 eV, in good agreement with the experimental and the previous 

results [29].  

 

 

Figure 3.1. The 2×2×1 hematite (0001) surface. (a) is the film of type A. (b) is the film of type B. The 

Fe atoms are blue large balls and the O atoms are red small ones. 

The hematite (0001) surface is a stable surface at oxygen partial pressure and ambient 

temperature [49]. The present work will focus on this surface. The (0001) surface is modeled 

by a thin film built of 12 atomic layers and a vacuum region of 15.0 Å normal to the film in a 

periodic boundary condition as shown in Fig. 3.1. In order to keep the stoichiometry for 

simplicity, there are two possible films for consideration. The film of type A is that one 

surface is terminated by Fe atoms while another surface is terminated by O atoms, as shown 

in Fig. 3.1(a). The film type B is that both sides of the surface are terminated by Fe atoms, as 

shown in Fig. 3.1(b). The FBZ of the 1×1×1 surface unit cell is sampled by 5×5×1 k-points. 

While for 2×2×1 surface supercell, a 3×3×1 k-points is employed. For the sake of accuracy, a 

(a) (b) 

(0001） 
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double k-point mesh is also tested. The difference of the total energy is less than 0.01 eV. 

Whereas for all the density of states (DOS) calculations shown in this work, the double 

k-point meshes are employed. The electronic structure analyzed through the Bader charge 

analysis [60] has been used in the later discussions. 

The adsorption energy is calculated as            

      adsE = totE (X/film) – [ totE (film) + totE (X)],      (3-1) 

where ( )totE X film is the total energy of the slab covered with the adsorbate X in its ground 

state, ( )totE film is the total energy of the bare substrate, and ( )totE X represents the total 

energy of the free adsorbate. By this definition, the more negative the adsE is, the stronger the 

adsorption is. 

3.3 Results and discussion 

3.3.1 Clean α-Fe2O3 (0001) film 

To investigate the stability of the films with two different types of termination, as shown in 

Fig. 3.1 (a) and (b), the total energies of each slab with various possible anti-ferromagnetic 

(AFM) arrangements and a ferromagnetic (FM) arrangement have been calculated. It is found 

that for both type A and type B films, after structural optimization, the total energy of the slab 

with an AFM phase is always lower than that with an FM one. The results also show that the 

total energy of type B film is 0.83 eV per formula unit lower than that of type A film by 

comparing their most stable configurations. It means that type B film with both sides 

terminated by Fe atoms is energetically the most stable film in the 12-layer film models. 

Cleaving energy per formula unit ( cE ) of the films with respect to the bulk structure of 

hematite is calculated as, 
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Film Bulk
c

E E
E

n m
  ,              (3-2) 

where FilmE  is the ground state total energy of the film and BulkE  is the ground state total 

energy of the bulk hematite structure. n and m are the number of formula units in the super 

cells for each case used in the calculations. cE for type B and type A films are 0.81 and 1.64 

eV per formula unit, respectively, which indicates that type B film is more energetically 

favorable to synthesize than type A film. Therefore, the type B film is adopted in this study. 

Table 3.1. The different possible magnetic arrangements of type B film compared by the relative total 

energies and the magnetization moments. A symbol ↑ or ↓ indicates the orientation of total magnetic 

moments of each Fe atomic layer. 

Configurations 

Magnetic 

arrangement of iron 

layers 

Relative total 

energy per formula 

unit ΔΕtot (eV) 

Total 

magnetization per 

formula unit (𝜇𝐵) 
AFM-1 ↑ ↑↓ ↓ ↓ ↓ ↑ ↑ 0.32 -0.05 

AFM-2 ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ 0.27 0.00 

AFM-3 ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ 0.51 0.00 

AFM-4 ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ 0.00 -0.06 

AFM-5 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ 0.25 0.00 

FM ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 0.61 9.67 

 

The results of the various magnetic arrangements of type B are shown in Table 3.1, 

including FM and all possible AFM configurations. And with the AFM-4 configuration, the 

film has the lowest total energy and almost zero net magnetic moment. At the same time the 

lattice parameter a is also optimized, which is ~3.0% larger than its value of the bulk structure. 

Hence, it is understandable to find that the length of all of the Fe-O bonds is increased by 

2.1%-2.4% except those of the terminated Fe atoms with their neighboring O atoms. The 
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bond length of the terminated Fe’s with the underneath O atoms is decreased by ~6.5%. In the 

following studies, the most stable type B film (AFM-4) with the optimized lattice constant 

will be used. 

The density of states (DOS) of the film is shown in Fig. 3.2, together with that of the bulk 

hematite for comparison. There are some differences between the film and the bulk in Fig. 3.2. 

The DOS of the film between spin-up and spin-down is asymmetric. This is due to the 

asymmetrical atomic magnetic moment arrangement, i.e. AFM-4 in Table 3.1, resulting from 

that both sides are terminated by spin-up Fe atoms. Obviously, there are new spin-down states 

at the energy level at about 1.43 eV above the valance band minimum (VBM). Due to the new 

states, though unoccupied, the energy band gap is dicreased from ~2.05 eV of the bulk to 

~1.43 eV for the film. The new surface states result from the Fe-3d states of the terminated Fe 

atoms. In addition, there is a symmetry broken for spin up and down in the valence bands of 

the film. The DOS from -5.0 eV to 0.0 eV are shifted between the spin-up states and the 

spin-down states. Fig. 3.2 also shows that the VBM is dominated mainly by O-2p states, 

while the lowest conduction band edge is primarily Fe-3d states in character, similar to the 

situation of the bulk. The magnetic moment of the terminated Fe atom on the surface is 

~4.02µB, discreased by 3.6% from the value of the inner Fe atoms. But the film still keeps the 

AFM orientation. 
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Figure 3.2 The density of states (DOS) of the bulk hematite (a) and the (0001) film (b). The positive 

and negative value represent spin up and spin down, respectively. The zero energy is the valence band 

maximum (VBM). 

3.2  S-adsorption on the α-Fe2O3(0001) surface 

According to the previous theoretical study, the isovalent doping of S in the bulk α-Fe2O3 

can modify significantly the band edges near the band gap [48]. It is important to understand 

the feasibility of the incorporation of sulfur into α-Fe2O3. The initial stage of the doping 

process could be the adsorption of S on the α-Fe2O3 surface. For a sulfur adatom adsorption 

on the suface of the film model discussed in the previous section, various sites have been 

examined. They are top (T) sites of the Fe or O atoms, hollow (H) sites and several bridge (B) 

sites, as shown in Fig. 3.3.  
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Figure 3.3 The top view of various sites for S-adsorption. The small balls are O atoms below the top 

layer. All the big balls are Fe atoms. The blue color is the top layer Fe’s. The purple color is the second 

layer Fe’s. The cyan color is the third layer Fe’s. The lowest-energy adsorption site for S is H2. 

There are three Fe atom layers and one O atom layer are shown for S-adsorption in Fig. 3.3. 

The top-most Fe atom layer is named as Fe(I) (blue), and the second Fe atom layer is called as 

Fe(Ⅱ) (purple) and the third Fe atom layer is Fe(Ⅲ) (cyan). The O atom layer is between the 

Fe(I) layer and Fe(Ⅱ) layer. T1 and T2 are the top sites of the Fe(I) and O atom, respectively. 

H1, H2, and H3 are three hollow sites of O atoms which form the equilateral triangle, but the 

bottom atoms under the hollow sites are the Fe(Ⅱ), the Fe (Ⅲ) and an O atom from even 

deeper layer, respetively. B1, B2, and B3 are three bridge sites of O atoms. These bridge sites 

are across two neighboring oxygen atom in the same layer. B4 is a bridge site between the 

bonded O atom and Fe(I) atom. Table 3.2 lists only the stable sites at which S atom does not 

relax away from the initial position after the optimization. In Table 3.2, the relative energy is 

measured from one of the most stable site, which is H2. 
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Table 3.2. The adsorption sites comparison with the relative energy ΔΕtot, the nearest neighbors of the 

adsorbate atom and their distance after the geometry optimization. 

Site ΔΕtot (eV) 

First nearest neighbors 

and the distance (Å) 

Second nearest neighbors 

and the distance (Å) 

T1 1.87 Fe 2.28 O 3.44 

H2 0.00 O 1.56 Fe 3.18 

T2 0.85 O 1.74 Fe 2.26 

B3 1.005 O 1.64 Fe 2.50 

H3 2.38 O 1.57 Fe 2.52 

Fig. 3.4 gives the side view of the S-adsorption on the most stable site on the surface. The 

adsorption energy of the most stable adsorption site calculated is -4.20 eV using Eq. (3-1). As 

listed in the second row of the Table 3.2, for the most stable adsorption site (H2), the nearest 

neighbors of the adsorbate sulfur atom are the three oxygen atoms, forming an equilateral 

triangle, with the S-O distance of 1.56 Å. As a result, the three O atoms move upwards by 

about 0.49 Å. The distance between the adsorbate S atom and the second nearest neighbor, 

which is the Fe (I) atom on the first layer, is much larger, about 3.18 Å. 

 

Figure 3.4. The side view of the most stable site for S-adsorption. The bigger balls are Fe (I) (blue), Fe 

(II) (purple), and Fe (III) (cyan) atoms. The smaller balls are O atoms. The middle size ball is the S 

adatom.  
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Surprisingly, the S adatom prefers to bond with the three O atoms on the surface, in the 

centre of the equilateral triangle formed by the three O atoms. In other words, the S atom 

would like to form a SO3 cluster with the three O atoms on the surface. After the adsorption of 

sulfur atom, due to the bonding of the three O atoms and S adatom, the original bonds 

between the three O atoms and the underneath Fe atom, Fe (Ⅲ), are broken, causing a 

significant downward displacement of the Fe (Ⅲ) by ~1.95 Å. And the magnetic moment of 

the Fe (I) atom which bonds with the O atoms in SO3 is decreased by 13.6%.  

 

Figure 3.5. The density of states (DOS) of the S-adorption on hematite α-Fe2O3 (0001) film: the total 

DOS of the film with the S adsorbed (a); the projected DOS of the Fe and O atoms (b); the projected 

DOS of the S adatom (c). The zero energy is  aligned with the clean film with respect to 1s core level 

of a remote O atom. 

In Fig. 3.5, the total and projected DOS for the different atoms on the most stable site of the 
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film are presented. The top of the valence bands and the bottom of the conduction bands are 

dominated mainly by O-2p states and Fe-3d states, respectively, which is unchanged from that 

of the clean film. Comparing with the DOS of the clean film, the S adsorption induces two 

additional gap states in the band gap discussed in section 3.3.1. They are not directly coming 

from the S atom. The main contribution of the states in the band gap is from the Fe atoms at 

the nearby of the S adatom. According to the analysis of the projected DOS of each atom, 

which is not shown here, the lower spin-down peak is contributed by the three second nearest 

neighbor Fe (I) atoms shown in Fig. 3.4. And the spin-up peak is contributed by the Fe (Ⅲ) 

atom which has a significant downward displacement as shown in Fig. 3.4.  

 

Figure 3.6. The schematic potential energy profiles for the S atom diffusion on the hematite (0001) film. 

The side views of structures of the initial state, transition state and final state are given. 

It is also important to understand the migration of the S adatom on the hematite α-Fe2O3 

(0001) film. It is found that the S atom remains to bond with the three O atoms after it is 
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placed beneath the plane of the oxygen triangle. The total energy of the configuration after 

geometry optimization is 0.37 eV higher than that of the most stable S-adsorption 

configuration. The diffusion of the S adatom is evaluated and the transition state along the 

minimum-energy pathway is searched using the climbing-image nudged elastic band 

(CI-NEB) method. As shown in Fig. 3.6, the most stable S-adsorption configuration and the 

configuration described above are selected as the initial state and the final state. Obviously, 

the diffusion goes through a barrier of energy from the initial state to the final state. The 

pathway and the transition state are also shown in Fig. 3.6 and the energy barrier is about 1.98 

eV. In Fig. 3.6, for the transition state, the sulfur atom is co-plane with the three O atom 

triangle. But due to the larger size of sulfer atom, one oxygen atom is pushed a little further 

than the other two O atoms. 

3.3.3 S-doping in the α-Fe2O3(0001) film 

To study the sulfur atom doping in the film, only the S substitution of O atom is considered. 

For our hematite film model, as shown in Fig. 3.1 (b), there are four oxygen layers, with a 

symmetry. For the study of the sulfur doping in the film, the substitutions of oxygen atom on 

the first oxygen layer and the second oxygen layer are considered. The S atom substitution of 

the first layer O atom is energetically 0.56 eV lower than that of the substitution of the second 

layer O atom. In other words, it is more stable to substitute of the sulfur atom for the surface 

oxygen atom. This indicates that S atom prefers to stay at the surface. The total and projected 

DOS of the S-doping in the first oxygen layer is given in the Fig. 3.7. It shows that the band 

gap is reduced to ~1.26 eV from ~1.43 eV of the clean film, similar to the S-doping in bulk 

Fe2O3 [48]. The maximum of the valence band is dominated by O-2p and S-3p states, while 
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the bottom of the conduction bands is mainly contributed by Fe-3d states, similar to S-doping 

in the bulk. 

 

Figure 3.7. The density of states (DOS) of the S-doing in the first oxygen layer of hematite α-Fe2O3 

(0001) film: the total DOS (a); the projected DOS for the Fe and O atoms (b); the projected DOS for 

the S atom(c). The zero energy is aligned with the clean film with respect to 1s core level of a remote O 

atom. 

The feasibility of the isovalent S substitution in the film of the hematite α-Fe2O3 has been 

investigated by calculating the formation energy according to the formula 

   ( ) ( )f o r m t o t t o t S OE E d o p e d f i l m E c l e a n f i l m     ,          (3-3) 

where ( )totE doped film  and ( )totE clean film  are the total energies of the S-doped and the 

clean hematite slab, respectively. S  and O denote the chemical potentials of sulfur and 

oxygen atom, respectively. The O  can be obtained from the ground-state total energy of the 
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O2 molecule (
2( )

1
2O O  ), while the S  is calculated from the α-S8. The calculated 

formation energies for the first and second layer are 2.29 eV and 2.85 eV per sulfur 

substitution, respectively. So it is relatively hard for S to be doped into the clean Fe2O3 film.  

For the S-adsorption and the isovalent S-doping, the Bader charge analysis has been 

applied. It is found that the Bader partial charge of the S ion is ~3.65e and ~6.67e for 

S-adsorption and S-doping, respectively. It means that the S acts as a cation in the 

S-adsorption position, while it presents anionic behavior in the S-doping condition.  

In summary, the structural and electronic properties of the clean hematite α-Fe2O3 (0001) 

film have been studied by DFT + U method. The film terminated by Fe atoms on both sides 

with the AFM arrangement is the most stable one. Based on this film, the sulfur atom 

adsorption has been studied. For a sulfur atom adsorption on the suface of this model, the S 

adatom prefers to bond with the three O atoms on the second layer of the surface, in the centre 

of the equilateral triangle formed by the three O atoms. The results of the adsorption by S 

atom at the α-Fe2O3 (0001) surface suggest that S atom prefers to stay at the surface, and there 

is a high barrier about 2 eV for the sulfur atom penetrate into the film.  
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Chapter 4  

TiO2 single-walled nanotubes from hexagonal sheet 

4.1 Introduction 

Metal oxides have been investigated significantly both experimentally and theoretically due 

to their rich physical and chemical properties. As an important member of them, titanium 

dioxide (TiO2) has drawn more and more attention of researchers, and has been studied 

broadly in a wide range of applications, such as air and water pollution, photocatalysis, 

hydrogen storage and production, and novel solar cells [61-66]. 

Photocatalysis, in which the inexhaustibly abundant, clean, and safe energy of the sun can 

be harnessed for sustainable, nonhazardous, and economically viable technologies, is a major 

advance in its application. Titanium-oxide materials in different types and forms have shown 

great potential as ideal and powerful photocatalysts for various significant reactions due to 

their chemical stability, nontoxicity, cheap availability, and photocorrosion [67, 68]. It has 

three common polymorphs including rutile, anatase, and brookite [69-71]. The first two 

polymorphs have been studied extensively by experimental and theoretical methods. 

Technologically important anatase and rutile TiO2 have been reported as the wide band gap 

semiconductors with band gap values of 3.2 eV [72] and 3.0 eV [73], respectively. However, 

the large band gap energy and massive recombination of photo-generated charge carriers 

limits its photocatalytic efficiency. In order to utilize a larger fraction of the solar spectrum 

for enhancing the photocatalytic process, tuning the band gap of TiO2 to the visible region is a 

vital task when designing the materials. For this purpose, TiO2 is modified by various 

strategies, such as coupling with other semiconductors, surface sensitization by organic dyes, 
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metal ion or nonmetal ion doping, and co-doping with two or more foreign ions [74-80]. 

Coupling the TiO2 with SnO2 was reported to enhance the charge separation and then the 

photocatalytic activity [81]. For the dye sensitization of TiO2, although it was theoretically 

possible to utilize the longer wavelength light in the aqueous electrolyte solutions, it had the 

practical problems that most organic dyes would be far too unstable under the solution 

condition [82].  

On the other hand, promising two-dimensional (2D) semiconductors have been investigated 

for potential applications in nanoelectronics, optoelectronics, and catalytic and gas-sensing 

devices [83-86]. Titanium oxide 2D nano films are desirable for the catalytic application due 

to their large surface areas and high reactivities. The anodizing approach is able to build the 

titanium oxide 2D nano film with controllable size, good uniformity, and conformability over 

large areas at low cost. It was found that during anodization the color of the titanium oxide 

layer normally changed from purple to blue, and then light green, and finally light red [87], 

indicating a reduction of the band gap. The titanium oxide nanotube arrays were regularly 

obtained under anodizing voltages ranging from 10 to 40 V.  

4.2 Computational details and models 

All the calculations performed in this work are based on the density functional theory (DFT) 

as implemented in the Vienna ab initio simulation package (VASP) [54, 55]. The 

exchange-correlation energy is treated within the generalized gradient approximation (GGA) 

functional and parameterized by Perdew-Burke-Ernzerhofer (PBE) [56] functional. The 

electron-ion interaction is described by the projector augmented wave (PAW) [24] potentials, 

treating Ti 3p3d4s, O 2s2p, and S 3s3p states as valence states in the pseudopotetial 
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calculations. A plane wave basis with an energy cutoff of 400 eV is used and the convergence 

for energy is chosen as 10
-5

 eV. Integrations over the first Brillouin zone are performed using 

the Monkhorst-Pack k-point grids [59] of 1113 for (n,n) nanotubes and 1111 for (n,0) 

nanotubes, respectively. In order to describe the effect of the on-site coulomb repulsion of 

Ti-3d electrons more accurately, the exchange-correlation energy is treated by the GGA + U 

approach used by Dudarev et al. [57] with U=7 eV.  

To check the accuracy of our computation setting, the structural and electronic properties of 

the bulk rutile and anatase have been studied. The full structural optimization is carried out 

until the force converged below 0.01 eV/Å. For rutile TiO2, the optimized lattice parameters 

(a= 4.636, c= 3.040) are just 0.91% and 0.28% larger than the experimental values (a= 4.594, 

c= 2.958) [88], respectively. The rutile TiO2 has a calculated indirect band gap with the value 

of 2.75 eV, a little bit smaller than that of the experimental measurement (~3.00 eV) [89].
 

While for anatase TiO2, the optimized lattice parameters (a= 3.865, c= 9.604) are just 2.1% 

and 0.96% larger than the experimental values (a= 3.785, c= 9.512) [88], respectively. The 

anatase TiO2 has a calculated indirect band gap of 2.97 eV, slightly smaller than the 

experimental measurement (~3.20 eV) [90]. Although the hybrid functional calculation with 

HSE approach [91, 92] can obtain closer values to the experimental measurement, it is highly 

computationally expensive for a large system such as the nanotubes considered here. 

Therefore, further calculations will be carried out with the GGA + U approach.  
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4.3 Results and discussion 

4.3.1 The two-dimensional TiO2 sheets 

Since the construction of a single-wall nanotube model is done by rolling a corresponding 

single molecular layer which is called nanosheet hereafter, the TiO2 2D sheets are studied first. 

Various low-index planes of both rutile and anatase crystals have been considered. A new 2D 

sheet structure with a hexagonal ABC PtO2 geometry, known as hexagonal ABC (HexABC) 

sheet , is also considered [93, 94], though there is no bulk HexABC TiO2 structure in nature. 

The geometries of the sheets have been fully optimized. Their total energies per formula unit 

are listed in Table 4.1. It is found that the energy of the TiO2 HexABC sheet is the lowest one. 

It also means that the TiO2 HexABC sheet is the most stable sheet among all the sheets 

considered in the Table 4.1, and so the TiO2 HexABC sheet will be used to construct the 

nanotubes in the following studies. The TiO2 HexABC sheet structure have been obtained 

experimentally when the ultrathin  titanium oxide films were grown on the substrates of 

Cu(100) and Fe/Cu(100) [95] as well as Ru(0001) [96]. The monolayer films were obtained 

by evaporation of Ti atoms on the oxygen chemisorbed substrates, followed by annealing in 

an O2 environment. The hexagonal geometry of TiO2 has also been observed recently by 

the atomic-resolved STM from the reconstructed of rutile (011) surface [97]. 
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Table 4.1 The relative total energy per formula unit, ΔE, of each TiO2 sheet. R refers to rutile and A 

refers to anatase. 

 

 

 

 

 

 

 

 

 

 

In order to investigate the TiO2 nanotubes formed with the most stable sheet, the TiO2 

Sheet ΔE (eV) 

R(110) 1.037 

R(001) 0.828 

R(100) 0.498 

R(101) 0.661 

A(001) 2.765 

A(010) 0.450 

A(110) 1.548 

A(101) 0.119 

HexABC 0.000 

Figure 4.1. (a) The top and both side views of the TiO2 HexABC sheet, together with the index of formation 

of various TiO2 nanotubes. The bigger blue balls are the Ti atoms and the smaller red balls are the O atoms. 

The unit cell of the TiO2 HexABC sheet highlighted in the gray is defined by the primitive lattice vectors R1 

and R2. (b) The density of states of the TiO2 HexABC sheet, with the projection values of O-2p and Ti-3d 

states. 
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HexABC sheet, the structural and electronic properties of the nanosheet have been studied. In 

Fig. 4.1 (a), it shows the top and side view of the TiO2 HexABC sheet and the index 

corresponding to the formation of the various TiO2 nanotubes. The same scheme as carbon 

nanotubes is used with zigzag nanotubes defined by a rollup vector along the (n,0) direction 

and armchair nanotubes defined by a rollup vector along the (n,n) direction. As shown in Fig. 

4.1 (b), from the density of states (DOS), the TiO2 HexABC sheet has a gap with the value of 

3.54 eV. It also shows that the upper edge of the valence band is dominated mainly by O-2p 

states, while the bottom of the conduction band is primarily Ti-3d states in character.  

4.3.2 The single-wall TiO2 nanotubes from the HexABC sheet 

As an example, the cross-sections of the armchair-like nanotube (8,8) and zigzag-like 

nanotube (8,0) are shown in Fig. 4.2 (a) and (b), respectively. In the following discussion, the 

distance from the axis of the tube to a Ti atom is defined as the radius of the nanotube, 

denoted as r.   

 
Figure 4.2. (a) One-layered TiO2 HexABC nanotube with chirality indices (8,8), cross-section. (b) 

One-layered TiO2 HexABC nanotube with chirality indices (8,0), cross-section. The bigger blue balls are 

the Ti atoms and the smaller red balls are the O atoms. 

 

 

 

Figure 2. (a) One-layered TiO2 HexABC nanotube with chirality indices (8,8), cross-section. (b) One-layered TiO2 

HexABC nanotube with chirality indices (8,0), cross-section. The bigger blue balls are the Ti atoms and the smaller red 
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First, the nanotube strain energies, Estrain, are calculated for both types from n=6 up to n=20. 

It is defined as 

strain nt sheetE E E   ,     (4-1) 

where Ent is the total energy per formula unit of the nanotube, and Esheet is that of the sheet. In 

Figure 4.3 (a), the strain energies of TiO2 HexABC nanotubes with different chirality indices 

 
Figure 4.3. (a) The nanotube strain energies with chirality indices, (n,0) and (n,n) with n=6, 7, 8, 9, 10, 

12, 14, 16, 18, 20. (b) The nanotube strain energies with different radii for both (n,0) and (n,n) indices. 

are plotted. The (n,n) curve starts at a lower energy, 0.42 eV, and is flatter in comparison to 

the (n,0) curve, which starts at 0.68 eV. With the increase of the n value, the strain energy of 

the two types of nanotubes is decreased, and the (n,n) value is always below that of the (n,0) 
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with the same n value. It also shows that both curves converge to approximately the same 

theoretical value of zero with the increase of n. The strain energy curves of these two types of 

TiO2 nanotubes with different radii, r, are also presented in Fig. 4.3 (b). It is appropriate to 

point out that the (n,n) nanotubes have larger radii than those of (n,0) nanotubes with the same 

n value as demonstrate in Fig. 4.2. It also shows that with the increase of r, the strain energy 

is decreased monotonically, except for the special case of nanotube (6,0) which will be 

discussed in detail later. Similar trends for the strain energy of carbon and BN nanotubes were 

reported earlier [98-99]. 

Figure 4.4. (a) The nanotube band gap values varying with indices n for both (n,0) and (n,n) chirality. 

(b) The nanotube band gap values varying with radii. The blue dash line is the band gap value of the 

TiO2 HexABC sheet as a reference. 
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The band gap values of the nanotubes with the different n are shown in Fig. 4.4 (a). With 

the increase of n, the band gap is increasing monotonically, approaching the band gap value of 

the TiO2 HexABC sheet (3.53 eV), which is actually higher than the bulk band gap values of 

both rutile and anatase. The larger the strain is, the smaller the band gap is. A (n,0) nanotube 

always has a lower band gap value than that of (n,n) with the same chirality indices. However, 

the (6,0) tube has a significant lower value of ~2.85 eV. In Fig. 4.4 (b), it shows that the band 

gap values are basically increased with the increase of the radius r. When the value of r 

increases to the largest value, 17.09 Å for the (20,20) nanotube, the band gap value reaches 

the largest value 3.50 eV, just below that of the nanosheet. There is a trend that when the r is 

larger than 7 Å, the curve of the band gap values becomes flatter than that of the smaller size 

nanotubes, consistent with the trend in the strain energies. The (6,0) nanotube has the smallest 

band gap among all the calculated nanotubes in this work. The value is not in the visible and 

red light region which is observed in the experimental work [94]. There could be some 

meta-stable structures formed or some impurity element introduced during the experiment. 

 As the results above shown, the nanotube (6,0) is a special one in the two types of the 

nanotubes studied in this work. This tube has undergone substantial reconstruction. The 

cross-section of nanotube (6,0) unrelaxed and with reconstruction are shown in Fig. 4.5 (a) 

and (c), respectively. Indeed, in nanotube (6,0), the coordination number of one third of the 

oxygen and titanium atoms is two (O2f) and six (Ti6f), respectively. And from the graph, it 

could be easily found that the oxygen atoms (O2f) are located outside of the Ti atom layer of 

the (6,0) nanotube. The coordination number of the other two thirds of the oxygen and 

titanium atoms is three (O3f) and five (Ti5f), respectively. It should be noted that all oxygen 



48 
 

and titanium atoms in the other nanotubes, including the unrelaxed (6,0) nanotube, and even 

the TiO2 HexABC sheet are O3f and Ti6f, which are the same as those of the bulk TiO2, 

anatase or rutile.  

  Obviously, the substantial structural change of the (6,0) nanotube causes a significant 

reduction of the band gap, from ~3.53 eV of the sheet value to ~2.85 eV. In Fig. 4.5 (d), the 

projected density of states (PDOS) of the nanotube (6,0) shows that the top of the valence 

bands are dominated by O-2p states, while the bottom of the conduction bands are mainly 

from Ti-3d states, similar to that of the TiO2 HexABC sheet. From the Fig. 4.5 (b) and (d), it 

could be found that the shift-up of the top of valance bands mainly contributed by the O-2p 

Figure 4.5. The cross-section view (a) and the density of states (DOS) (b) of the unrelaxed (6,0) nanotube. 

The blue balls are the Ti atoms and the red balls are the O atoms. The cross-section view (c) and the DOS 

(d) of the (6,0) nanotube with reconstruction. The bigger green balls are the Ti5f atoms and the bigger blue 

balls are the Ti6f atoms. The smaller orange balls are the O2f atoms and the smaller red balls are the O3f 

atoms. The zero energy is the valence band maximum of the unreconstructed (6,0) nanotube. The red dash 

line represents the O-2p states and the blue dot line represents the Ti-3d states. 
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states causes the decrease of the band gap value. 

4.3.3 The sulfur substitution of oxygen and adsorption with the TiO2 (6,0) nanotube 

As plotted in Fig. 4.4, the band gap value of (6,0) is the smallest one among all the 

nanotubes studied in this work. It is also the only one below 3.0 eV. Therefore, the isovalent 

substitution of oxygen by sulfur (S) and its adsorption on the (6,0) nanotube are investigated 

for the chance of further reduction of the band gap. For these calculations, the supercell size is 

doubled in the z-direction.  

4.3.3.1 The S substitution of oxygen with the (6,0) nanotube 

There are 3 different possible substitution sites for the S substitution of oxygen in the (6,0) 

nanotube. For the inner oxygen layers, there is one type of the S substitution with O3f. For the 

outer oxygen layers, there are two types of oxygen atoms (O2f and O3f), so there are two 

different sites for the S substitution of oxygen.  

Table 4.2. The relative total energy about the sulfur (S) substitution of oxygen with the TiO2 (6,0) 

nanotube. The total energy of the most stable doping site (Out_O2f) is set as zero eV. 

S-substitution 

sites 

Relative total energy ΔΕtot  

(eV) 

First nearest 

neighbors and 

distance (Å) 

Second nearest 

neighbors and 

distance (Å) 

Out_O2f 0.000 Ti 2.31 Ti 2.53 

Out_O3f 0.419 Ti 2.33 Ti 2.58 

In_O3f 0.380 Ti 2.40 Ti 2.54 

  In Table 4.2, the relative energy is measured from the most stable site, Out_O2f, which is 

the replacement of the O2f at the outer oxygen layer. The cross-section and side view of the 

most stable structure for the S substitution in the (6,0) nanotube are shown in Fig. 4.6 (a) and 
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(b), respectively. The first and second nearest neighbors of the dopant S are the Ti atoms, with 

the bond length of 2.31 Å and 2.53 Å, respectively. Fig. 4.6 (c) shows the total density of 

states (TDOS) and PDOS of the most stable S substitution in the (6,0) nanotube. From the 

TDOS, it can also be observed that the band gap value is decreased to 1.84 eV. There are 

some new occupied states above the original valance bands of the clean (6,0) nanotube due to 

the substitution of an O atom by the S atom. Fig. 4.6 (d) inset also shows that the main 

contribution of the new states in the band gap is from the 3p states of the doped S atom with 

some hybridization of O-2p and Ti-3d states.  

 

 The feasibility of the isovalent S substitution in the TiO2 nanotube has been investigated 

by calculating the formation energy according to the formula 

( ) ( )form tot tot S OE E doped nanotube E clean nanotube      , (4-2) 

Figure 4.6. The cross-section view (a) and the side view (b) of the most stable structure of S substitution of 

oxygen in the (6,0) nanotube. The TDOS (c) and PDOS (d) of the S substitution in the (6,0) nanotube. The 

red dash line represents O-2p states and the blue dot line represents Ti-3d states. The green dash dot line 

represents S-3p states. The energy zero is set to the top of the occupied states. The detail of the new state is 

shown in the inset of (d). 
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where Etot (doped nanotube) and Etot (clean nanotube) are the total energies of the S-doped 

and the clean TiO2 nanotube, respectively. µS and µO 
denote the chemical potentials of sulfur 

and oxygen atom, respectively. The µO can be obtained from the ground-state total energy of 

the O2 molecule (𝜇𝑂 =
1

2
𝜇(𝑂2)), while the µS is calculated from the α-S8. The calculated 

formation energy for the most stable S-doped TiO2 nanotube is 2.24 eV per sulfur substitution, 

making it relatively hard for S to substitute an O atom in the TiO2 nanotube.  

4.3.3.2 The S-adsorption with the (6,0) nanotube 

For sulfur adsorption, there are a total of 9 possible highly symmetric adsorption sites both 

at inner and outer oxygen layers considered in the calculations. However, there are only 6 

stable adsorptions left, at which S atom does not relax away from the initial position after the 

optimization, as shown in Fig. 4.7 (a) and (b). The dashed and solid circles are the top (T) 

sites for the inner and the outer of the (6,0) nanotube, In-T1, Out-T1, and Out-T2, respectively. 

The centers of the dashed and solid triangles are the hollow (H) sites for each side of the 

nanotube, In-H1, In-H2, and Out-H1, respectively. In Table 4.3, the relative energy is 

Figure 4.7. The side view of various sites of the sulfur adsorption for the inside (a) and the outside (b) 

of the (6,0) nanotube with the double c lattice. The bigger green balls are the Ti5f atoms and the bigger 

blue balls are the Ti6f atoms. The smaller orange balls are the O2f atoms and the smaller red balls are the 

O3f atoms.  
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measured from the most stable site, In-H2, shown in Fig. 4.7 (a). As listed in the second row 

of the Table 4.3, for the most stable adsorption site (In-H2), the first nearest neighbors of the 

adsorbate sulfur atom are 3 oxygen atoms with an S-O distance of 1.70 Å.  

Table 4.3. The relative total energy about the sulfur (S) adsorption with the TiO2 (6,0) nanotube. The 

total energy of the most stable adsorption site (In_H2) is set as zero eV. 

S-adsorption 

sites 

Relative total energy ΔΕtot  

(eV) 

In_H1 0.380 

In_H2 0.000 

In_T1 0.340 

Out_H1 1.835 

Out_T1 0.536 

Out_T2 1.225 

 

The cross-section and side view of the most stable structure for the S-adsorption in the (6,0) 

Figure 4.8. The cross-section view (a) and the side view (b) of the most stable structure of S adsorption in 

the (6,0) nanotube. The TDOS (c) and PDOS (d) of the S adsorption in the (6,0) nanotube. The red dash 

line represents O-2p states and the blue dot line represents Ti-3d states. The green dash dot line represents 

S-3p states. The energy zero is set to the top of the occupied states. The detail of the new state is shown in 

the inset of (d). 
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nanotube are shown in Fig. 4.8 (a) and (b), respectively. The TDOS and PDOS of the 

S-adsorption with the (6,0) nanotube are shown in Fig. 4.8 (c) and (d). From the TDOS, it can 

be estimated that the band gap value is decreased to 2.22 eV. The new occupied states above 

the original valance bands of the clean (6,0) nanotube are due to the S-adsorption. Fig. 4.8 (d) 

inset shows that the new states are a hybridization of O-2p, S-3p and Ti-3d orbits. 

The absolute band edges of nanotubes cannot be calculated directly with respect to the 

standard H2/H+ and O2/H2O energy level based on the DFT method used. However, the 

valance band maximum(VBM) and the conduction band minimum (CBM) of the nanotube 

could be aligned according to the energy of electrons at the core levels of the bulk anatase, 

such as the 1s state of an oxygen. The VBM for S-adsorption in (6,0) nanotube is 0.97 eV 

higher than that of the bulk anatase. And the corresponding CBM is 0.26 eV higher than that 

of the bulk anatase. Therefore, the band gap of the S-adsorped (6,0) nanotube could cover the 

redox potentials of water splitting, by comparing the band gap position of the bulk anatase 

with respect to the redox potentials of water splitting [100]. 

The adsorption energy is calculated as 

(S/ )-[ ( )+ (S)]ads tot tot totE E nanotube E nanotube E , (4-3) 

where Etot (S/nanotube) is the total energy of the nanotube with the adsorbate sulfur atom on it, 

Etot (nanotube) is the total energy of the clean nanotube, and Etot (S) represents the total energy 

of an isolated sulfur atom. By this definition, the more negative the Eads is, the stronger the 

adsorption becomes. The calculated adsorption energy of the most stable adsorption site is 

-3.44 eV. This is definitely a chemisorption. 
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In conclusion, the TiO2 single-walled have been investigated by the first-principles 

calculation with the DFT + U approach. The nanotubes constructed by rolling along the (n,0) 

and (n,n) directions with sizes from n=6 up to n=20 have been studied. The geometry of each 

nanotube has been fully optimized. The strain energies decrease monotonically with 

increasing n, except for the (6,0) nanotube. The band gaps of the nanotubes increase 

monotonically with n, approaching the value of the nanosheet (3.53 eV). The (6,0) nanotube 

has a structural reconstruction with lowest band gap of ~2.85 eV after relaxation. For sulfur 

doping, with this reconstructed (6,0) nanotube, sulfur atom at the inner surface of the (6,0) 

nanotube is preferred. The adsorption energy is calculated as -3.44 eV. This is definitely a 

chemisorptions. 
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Chapter 5    

TiO2 double-walled nanotubes 

5.1 Introduction 

With the rapid development of Nanoscience and Nanotechnology, multiple nanocomposites, 

nanotube (NT), nanoribbon, nanowire, and nanohorn et al, have drawn lots of attention. 

Nanotube with the increasing interest, as one of the important nanoscale material members, is 

kind of a nanometer-scale cylindrical structure. For all the nanotubes with different materials, 

the most familiar nanotube is the carbon nanotube. As the first observation by Iijima [101] in 

1991, the carbon nanotubes (CNTs) have been the focus of more considerable experimental 

and theoretical research. Numerous investigations about the different kinds of the properties 

and even the possible applications, from the single-walled (SW) CNTs to double-walled (DW) 

CNTs and then to multi-wall (MW) CNTs, have been carried out [102, 103]. For the 

electronic-structure calculations of the double-walled carbon nanotubes [104], the 

semiconducting energy bands become metallic due to the band edge shift. And the band edge 

shift is induced by the curvature of the inner tube. Although the more explored nanotube is the 

carbon nanotube, the nanotubes for other chemical elements or compounds are also attracted 

by the material scientists. As a graphite-like layered structure with non-carbon material, BN 

nanotubes have generated lots of interest and studies [105, 106], since BNNTs were predicted 

by Rubio et al [107, 108] and also synthesized a year later [109]. And other material 

nanotubes for SiC, Si, and XS2 (X= Sn, Ti, Zr) have also been investigated experimentally or 

theoretically [110-113]. 

As known, TiO2, as one member of the wide band gap semiconductors, has been 
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extensively studied for photocatalysis, solar cell, lithium batteries, and sensors, due to its 

robustness, nontoxicity and vast reserves in nature. In recent years, the TiO2 nanotubes have 

been discovered by different research groups. The structural and electronic properties of the 

TiO2 SWNTs have been analysed theoretically [114, 115]. The different synthetic methods of 

the TiO2 nanotubes have also been shown and discussed [116]. It also presents the properties 

of the TiO2 nanotubes with different doping chemical elements. On the other hand, compared 

with the TiO2 SWNTs, the TiO2 DWNTs with a large interfacial area are better for the 

application in photocatalysis [117-119], solar cell [120], and batteries [121]. Moreover, the 

TiO2 DWNTs with nitrogen doped experimentally has been prepared [122] and it shows a 

high water splitting performance, which mainly ascribes to the larger surface areas and 

expended optical absorption to visible light region. And the TiO2 DWNTs with the metal 

decoration, Ag, has also been developed [123] and it also shows an enhanced photocatalytic 

activity. Although some experimental studies of the TiO2 DWNTs have been accomplished, 

there is very little theoretical study about the TiO2 DWNTs and there is also a lack of 

comparison with the SWNT base on the density functional theory. 

Theoretically, the TiO2 DWNTs could be built as the combination of the two coaxial 

SWNTs. So the TiO2 DWNTs could be studied based on our SWNT work in Chapter 4. The 

computational details is same as section 4.2 in Chapter 4. In the present work, the structural 

and electronic properties of DWNTs have been investigated by the first-principles 

calculations. The binding energies of various TiO2 DWNTS have been calculated and 

discussed. And the electronic properties and effective masses are followed for selected TiO2 

DWNTs. These results could make a better understanding of the TiO2 DWNTs.  
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5.2 Results and discussions 

5.2.1 Structural properties of TiO2 DWNTs 

A TiO2 DWNT is constructed by two coaxial SWNTs with different diameters. If the 

SWNT components of the coaxial DWNT have the same chirality types, they would have the 

equal translational periods, and the DWNT will have the same value of the translational 

period with the components. In the present work, for simplicity, the coaxial DWNTs with two 

chiralities, armchair (ac-) (n1,n1)@(n2,n2) and zigzag (zz-) (n1,0)@(n2,0), are considered. For 

example, the cross-sections of the TiO2 ac-DWNT and zz-DWNT are shown in Fig.5.1 (a) and 

(b), respectively. In our previous studies of TiO2 SWNTs [115], the distance from the axis of 

the tube to a Ti atom on the tube is set as the radius of the nanotube. For the discussion of the 

TiO2 DWNTs, the difference between the average radius of the outer tube and the inner tube 

is defined as the interwall distance shown in Fig. 5.1 (a). 

 

Figure 5.1. (a) The cross-section of TiO2 DWNT with the armchair chirality indices (6,6)@(13,13). (b) 

The cross-section of TiO2 DWNT with the zigzag chirality indices (7,0)@(19,0). The bigger blue balls 

are the Ti atoms and the smaller red balls are the O atoms. 

First, the stability and the preferable interwall spacing of the TiO2 DWNTs have been 
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explored. As considered the expense of calculation, for the armchair chirality, the two sets of 

(6,6)@(n,n) and (8,8)@(n,n) DWNTs are chosen for calculation, which the (6,6) and (8,8) are 

supposed as the inner shell, respectively. Similarly, for the zigzag chirality, the special 

reconstructed (6,0)@(n,0) and the normal (7,0)@(n,0) DWNTs are being studied. The relative 

stability of the DWNTs can be calculated by the so-called binding energy Ebind. The binding 

energy Ebind between the two constituent shells of the DWNT has been defined as 

  Ebind= Etot(NTin@NTout) – Etot(NTin) – Etot(NTout),             (5-1) 

where Etot’s are the calculated total energies of the DWNT and its constituent SWNTs after the 

atomic optimization. To investigate the dependence of the DWNT stability on the interwall 

distance, a set of ac- and zz-DWNTs with the various radial outer-shell components have been 

constructed and studied. For the (6,6)@(n,n) and (7,0)@(n,0) DWNTs, the dependence of the 

binding energy Ebind on the interwall distance between the inner and outer SWNT are shown 

in Fig. 5.2. For the TiO2 ac-DWNTs, the minima of Ebind corresponding to the (6,6)@(13,13) 

DWNT is around -0.10 eV with the most favorable distance of 5.8-5.9Å, which is as the same 

as that of the (8,8)@(15,15) DWNT. For the TiO2 zz-DWNTs, the minima of Ebind with the 

(7,0)@(19,0) DWNT is around -0.14 eV with the distance of 5.4 to 5.6 Å, which is also same 

with the reconstructed (6,0)@(18,0) DWNT. It can be seen that the binding energy of the TiO2 

zz-DWNTs is a little bit smaller than that of the ac-DWNTs. It means that the configurations 

of the TiO2 DWNTs with the zz-chirality are energetically a little more favorable than that 

with the ac-chirality, which is in agreement with the previous study [124]. And for the most 

favorable interwall distances of these two chiralities of the DWNTs, the present calculated 

distances (5.4-5.9 Å) are larger than that observed before [124]. 
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Figure 5.2. The binding energies Ebind versus the distance between the shells of the DWNTs with the 

armchair and zigzag chiralities. The black squares represent the TiO2 ac-DWNTs (6,6)@(n,n) with n= 

11, 12, 13, 14, 16, 18. The red circles represent the TiO2 zz-DWNTs (7,0)@(n,0) with n= 16, 17, 18, 19, 

20.  

To investigate the influence of the stacking direction on the stability of DWNTs with the 

two chiralities, the most stable configurations of the above DWNTs, (6,6)@(13,13) and 

(7,0)@(19,0), have been studied. There are two parameters to determine the rotation around z 

axis and the translation along z axis of the inner shell relative to the outer shell, the relative 

angle Δφ and the relative shift length Δc, respectively. The z-axis direction is parallel to the 

translational period direction. The relative binding energy is defined as  

ΔEbind = Ebind(with Δφ or Δc) – Ebind(Δφ=0 and Δc=0),           (5-2) 

where Ebind(with Δφ or Δc) is the binding energy of the DWNT with the corresponding 

configuration change of the inner tube and Ebind(Δφ=0 and Δc=0) is the binding energy of the 

DWNT without any relative structure change. The relative binding energy function dependent 
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on Δφ and Δc has been shown in the Fig. 5.3 (a) and (b), respectively. In the Fig. 5.3 (a), it 

shows that for both the two types of DWNTs, the relative binding energy varies within a tiny 

range from -0.01 eV to 0.01 eV. In Fig. 5.3 (b), the relative binding energy of the TiO2 

ac-DWNT (6,6)@(13,13) has no obvious change with any relative shift. However, the relative 

binding energy of the TiO2 zz-DWNT (7,0)@(19,0) exhibits a noticeable change, when the 

relative shift is about one third of the translational period length, 1/3*c. And the TiO2 

zz-DWNT (7,0)@(19,0) with the 1/3*c shift has the minima value of the binding energy. 

Therefore, the relative shift along the z-axis direction depends on the tube chirality. So in the 

configuration studies, the most stable TiO2 DWNTs are the ac-(6,6)@(13,13) with Δφ=0 and 

Δc=0 and the zz-(7,0)@(19,0) with Δφ=0 and Δc=1/3*c, respectively. 

 

Figure 5.3. The relative binding energies varying with the relative rotation angle (a) and relative shift 

distance (b) between the inner and outer tubes for the (6,6)@(13,13) and (7,0)@(19,0) DWNTs. The 

black stars represent the (6,6)@(13,13) DWNT and the red circles represent the (7,0)@(19,0) DWNT. 

5.2.2 Electronic properties of TiO2 DWNTs 

To study the electronic properties of the DWNTs, the electronic density of states (DOS) of 

the DWNTs have been calculated. The DOS of some DWNTs together with the SWNTs is 

selected in Fig. 5.4. For both two chiralities, the band gap values of the TiO2 DWNTs are 
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much smaller than that of the SWNTs. For the TiO2 (6,6)@(13,13) DWNT, the band gap 

value is reduced to 2.20 eV after the optimization. And for the TiO2 (7,0)@(19,0) DWNT, the 

band gap value is reduced to 1.74 eV. They are both reduced in the visible light region. And 

from Fig. 5.4 (a) and (b), the energy band gap values of the TiO2 zz-DWNTs are smaller than 

that of the ac-DWNTs. From the shape of the valance bands and conduction bands, it could be 

found that the maximum of the valence band (VBM) of the DWNTs is primarily O-2p states, 

while the minimum of the conduction band (CBM) is dominated by Ti-3d states. From the 

studies of the DOS of the DWNTs with the same chirality, the band gap value is increased 

slightly with the increase of the radius of the out shell. However, the band gap value shows 

evident increment with the increasing radius of the inner shell. And it could speculate that 

when the radius of the inner tube becomes large enough, the shift-up valence bands would 

disappear. So it could be found that the appearance of the decreased band gap energy is due to 

the shift-up states at the valence band edge. The similar phenomenon was also found in the 

earlier studies of the carbon DWNTs [104]. The main factor of the shift-up valence bands will 

be discussed in the following part.  
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Figure 5.4. The total density of states (TDOS) of the TiO2 ac-NTs (a) and zz-NTs (b). The black solid 

line represents the (6,6)@(13,13) DWNT. The black dash line represents the (6,6) SWNT. The black 

short dash line represents the (13,13) SWNT. The red solid line represents the (7,0)@(19,0) DWNT. 

The red dash line represents the (7,0) SWNT. The red short dash line represents the (19,0) SWNT. The 

zero energy is the valence band maximum of each TiO2 tube. 

In order to investigate the band gap reduction in the TiO2 DWNTs with the relation of 

inter-wall interaction, one structural model is built, as shown in Fig. 5.5 (a). Since a nanotube 

would infinitely approach to the nanosheet when its radius continuously increased, the outer 

shell with the largest radius is supposed to be the HexABC sheet while the inner shell is still 

kept unchanged as a SWNT. In this model, there are two factors being considered, the 

intershell Ti-Ti distance and the inner shell radius. The DOS is calculated with respect to 

various values of the intershell Ti-Ti distance. The intershell Ti-Ti distance values are chosen 

as 5 Å, 8 Å, and 16 Å respectively, while the inner shell is kept as a (6,6) SWNT. In Fig. 5.5 

(c), it could be easily found that the band gap energy varies within 0.01 eV. Then the band gap 

values of the models are almost independent on the intershell distance. In addition, the DOS 

relative to varieties of the inner tube radii is studied. The inner tubes are (6,6), (8,8) and 

(12,12) SWNT with the same intershell Ti-Ti distance of 8 Å. In Fig. 5.5 (d), the band gap 
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values of the models with the three selected inner shells are different as 2.52 eV, 2.77 eV and 

3.00 eV. It shows that the band gap energy is mainly dependent on the inner wall radius. The 

band gap reduction is caused by the shift-up of valence band maximum (VBM) of the inner 

wall. With the increase of the inner wall radius, the shift-up of VBM would disappear. In 

other words, the band gap of a DWNT would be increased with the increase of the inner wall 

radius. Although the DOS reported in Fig. 5.5 (c) and (d) is just about the armchair chirality, 

the trend is the same for the model of the zigzag chirality. Moreover, deep core levels of Ti 

atoms from both HexABC sheet and the SWNT are compared. Since both Ti atoms have the 

same coordination number, i.e. 6 O’s, any shift of the levels should be caused by the curvature 

of the tubes. The energy difference ΔE of the core Ti-1s state between the quasi outer wall, i.e. 

HexABC sheet, and the inner wall as a function of the curvature, the inverse of the inner shell 

radius 1/R, is shown in Fig. 5.5 (b). The ΔE of the Ti-1s state leads a roughly linear relation 

with the curvature 1/R. The shift-up of the valence bands of the inner wall causes the 

decreasing band gap of the model and hence the DWNTs. The band gap shrinking induced by 

the curvature of the inner tube itself is also found with the carbon DWNT [104], in which the 

carbon DWNTs were studied and the curvature of the inner tube was found to cause the 

metallization in the carbon DWNTs. 
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Figure 5.5. (a) The structural model supposed as the combination of a TiO2 SWNT as the inner tube 

and a TiO2 HexABC nanosheet as the outer tube. (b) The energy difference of the Ti-1s states between 

the inner SWNT and the outer HexABC sheet with respect to the curvature of the inner SWNT. The 

zero energy is the two-layer HexABC sheet. (c) The DOS of the (6,6)@sheet with the different 

intershell distance, d=5 Å, 8 Å, and 16Å. (d) The DOS of the (n,n)@sheet with n= 6, 8, 12. The zero 

energy is the valence band maximum of the TiO2 HexABC sheet. 

To have a better understanding of the band gap reduction of the TiO2 DWNTs, the band 

structures and projected DOS of the selected ac- and zz- NTs are shown in Fig. 5.6. From the 

band structures, the ac-NT has an indirect band gap, while the zz-NT has a direct band gap. 

For the ac-NTs, the VBM is located at around the Z point and the CBM is located at the Γ 

point. For the zz-NTs, the VBM and CBM are both at the Γ point. The DOS of the DWNTs 

has been projected on individual atoms and then regrouped by their constituent SWNTs. It 

clearly shows that the states of the inner tube for both chiralities shift up from their 

corresponding SWNT states, causing the reduction of the band gap. This is similar to the case 
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of the Type II band alignment in the semiconducting heterojunctions. 

 

Figure 5.6. The band structures and the partial DOS of the TiO2 nanotubes. The blue lines represent the 

valence bands and the red llines represent the conduction bands for the band structures. The blue and 

red solid lines represent the electronic states of the inner tube. The blue and red dash lines represent the 

electronic states of the outer tube. The zero energy is the valence band maximum of the TiO2 HexABC 

sheet. 

The average radii, as indicated in Fig. 5.1(a), and the effective masses of the TiO2 SWNTs 

and DWNTs after the structural optimization are included in Table 5.1. The values indicates 

that the radii of the inner components do not change compared to that of the SWNTs. The 

effective mass of the electrons and holes are stated in units of the rest mass of a free electron, 

m0. For the TiO2 ac-DWNTs, the effective mass of the hole, mh*, keeps almost the same with 

that of the ac-SWNT. And for the zz-DWNTs, mh* becomes smaller than that of the zz-SWNT. 
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For the TiO2 ac-DWNTs, the effective mass of the electron, me*, becomes a slightly smaller 

than that of the ac-SWNT, while on the contrary, the me* become a slightly larger than that of 

the zz-DWNTs. Comparing the effective masses of the ac- and zz- DWNTs, both the mh* and 

the me* of the ac-DWNTs are much smaller than those of the zz-DWNTs. 

Table 5.1. The radii, the energy band gap and the effective mass of the TiO2 nanotubes. Rin and Rout 

mean the radius of the inner tube and outer tube, respectively. me* and mh* are the effective mass of the 

electron and the hole, respectively. m0 is the mass of one electron (9.1110
-31 

kg). 

Tubes Rin (Å) Rout (Å) Egap (eV) me* mh* 

(6,6) 5.27 -- 3.29 2.38m0 0.52m0 

(8,8) 6.93 -- 3.40 1.51m0 0.53m0 

(6,6)@(12,12) 5.25 10.28 2.14 1.35m0 0.54m0 

(6,6)@(13,13) 5.27 11.12 2.20 0.96m0 0.52m0 

(6,6)@(15,15) 5.27 12.83 2.22 0.97m0 0.52m0 

(6,6)@(18,18) 5.27 15.38 2.31 0.89m0 0.52m0 

(8,8)@(15,15) 6.84 12.82 2.43 0.89m0 0.52m0 

(8,8)@(18,18) 6.89 15.38 2.45 0.89m0 0.52m0 

(7,0) 3.80 -- 3.21 1.68m0 7.44m0 

(7,0)@(18,0) 3.79 8.97 1.86 2.31m0 6.41m0 

(7,0)@(19,0) 3.80 9.45 1.91 2.20m0 6.67m0 

(7,0)@(20,0) 3.80 9.92 1.93 2.35m0 6.78m0 

For photocatalysic materials, a key point is whether the band edges could cover the 

potential energy of the redox reactions. Since the periodic boundary condition is used for 

modeling a large system, such as a DWNT, there is no real infinity in the system studied. It 
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means that the absolute zero energy point is not well defined. Therefore, the absolute band 

edges of the nanotubes studied in present work cannot be calculated directly with respect to 

the standard H2/H+ and O2/H2O energy level based on the DFT method used. But we can 

indirectly estimate the position of the band edges using the well-known bulk TiO2 band egge 

positions relative to the redox reaction levels. For the bulk and the two-dimensional HexABC 

sheet, the band edge position could be aligned according to the energy of electrons at the core 

levels, such as the 1s state of an Ti atom, since the coordination number of Ti atoms in both 

systems is the same. And for the two-dimensional and one-dimensional structures, the band 

edge position could be aligned according to choosing a relative vacuum point. The band edges 

of the TiO2 HexABC sheet and selected TiO2 nanotubes relative to the redox potentials of 

water splitting are shown in Fig. 5.7. It shows that all the nanotubes could cover the redox 

potentials of water splitting. Although the band gap energies for the TiO2 DWNTs, are 

decreased into the visible light energy range compared with the TiO2 SWNTs, it is the 

consequence of the band misalignment of the constituent SWNTs due to the curvature 

difference.  However, the misalignment of the VBM and CBM may help the separation of 

electrons and holes, reducing the recombination of the pairs. 

To sum up, the TiO2 DWNTs of the armchair and the zigzag chiralities could be built by 

two coaxial single-walled nanotubes with different diameters. The binding energies of the 

TiO2 DWNTs with respect to the interwall distance for the two different chiralities have been 

calculated. The TiO2 ac-DWNTs and the zz-DWNTs with the optimal interwall distance are 

(6,6)@(13,13) with about 5.85 Å and (7,0)@(19,0) with about 5.50 Å, respectively. Then the 

electronic properties of the TiO2 DWNTs have been investigated. The band gap energies of 
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the TiO2 DWNTs are significantly smaller than that of the SWNTs, caused by the band shift 

on constituent SWNTs. And the band shift is mainly dependent on the curvature of a tube. As 

results, the band edge alignment of the TiO2 DWNTs forms a type II band alignment, the 

staggered gap. And the band gap of the NTs could cover the redox potentials of water splitting, 

by comparing the band gap position of the bulk anatase with respect to the redox potentials of 

water splitting.  

 

Figure 5.7. The band edge alignment according to the Ti_1s state energy and the vacuum energy. The 

two blue horizontal lines are the energies.of the redox potentials. 
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Chapter 6    

Conclusions 

In summary, we have applied the first-principles method to study the selected 

semiconducting transition metal oxides. We have studied the stability of the clean hematite 

α-Fe2O3 (0001) film built of 12 atomic layers with two different types of termination by DFT 

+ U method. The film terminated by Fe atoms on both sides with the AFM arrangement is the 

most stable one. For a sulfur adsorption on the suface of this model, various sites have been 

examined. It is found that the S adatom prefers to bond with the three O atoms on the second 

layer of the surface, in the centre of the equilateral triangle formed by the three O atoms. 

Comparing with the DOS of the clean film, there are two gap states in the band gap due to the 

adsorption, in addition to the original surface states. The S adatom acts as a cation here, and 

has no direct contribution to the gap states of the film electronic structure. Meanwhile, the S 

atom substitution of the first layer O atom is energetically 0.56 eV lower than that of the 

substitution of the second layer O atom. From the study of the electronic properties of the 

S-doping in the film, it shows that the band gap is reduced to ~1.26 eV from ~1.43 eV of the 

clean film, similar to the S-doping in bulk Fe2O3. The results of both the adsorption and the 

substitution by S atom at the α-Fe2O3 (0001) surface suggest that S atom prefers to stay at the 

surface and it could be difficult to be doped into the material and modify the band gap of 

α-Fe2O3 as previous expected. This excludes the possibility of tuning the band gap of α-Fe2O3 

through the sulfurization of the oxide surfaces, followed by thermal diffusions. Therefore, the 

doping of S in α-Fe2O3 should be investigated by alternative ways, such as ion 
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implementation followed by thermal annealing. 

The TiO2 single-walled and double-walled nanotubes have been investigated by the 

first-principles calculation with the DFT + U approach. The most stable single layer TiO2 

nanosheet has been identified as TiO2 HexABC structure. The corresponding single-wall 

nanotubes can be constructed by rolling along the (n,0) and (n,n) directions. The nanotubes 

with sizes from n=6 up to n=20 have been studied. The geometry of each nanotube has been 

fully optimized. The strain energies decrease monotonically with increasing n, except for the 

(6,0) nanotube. The band gaps of the nanotubes increase monotonically with n, approaching 

the value of the nanosheet (3.53 eV). They are higher than the band gap values of the bulk 

TiO2 in general. However, the (6,0) nanotube has a substantial structural relaxation. It has the 

lowest band gap of ~2.85 eV, falling between the calculated values of the TiO2, bulk rutile 

and anatase. Therefore, the most stable low-dimensional nanotube structure, constructed by 

rolling the TiO2 HexABC nanosheet, does not cause the reduction of the band gaps as 

expected originally. However, the isovalent impurities, such as sulfur, could be introduced 

into the low-dimensional structures more easily than that of the bulk materials. The (6,0) 

nanotube with the lowest band gap is picked to investigate S substitution of oxygen and S 

adsorption on it. Indeed, the band gap was further reduced to 1.84 eV for S substitution and 

2.22 eV for S adsorption, respectively. Energetically, S adsorption at the inner surface of the 

(6,0) nanotube is preferred. It shows that the promising sulfurization of TiO2 nanotubes with a 

reduced band gap could make it visible light sensitive.  

The TiO2 DWNTs of the armchair and the zigzag chiralities could be built by two coaxial 

single-walled nanotubes with different diameters. The structural properties of the TiO2 
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DWNTs have been studied. The binding energies of the TiO2 DWNTs with respect to the 

interwall distance for the two different chiralities have been calculated. The TiO2 ac-DWNTs 

and the zz-DWNTs with the optimal interwall distance are (6,6)@(13,13) with about 5.85 Å 

and (7,0)@(19,0) with about 5.50 Å, respectively. The binding energy of the (7,0)@(19,0) 

DWNT is 0.04 eV a bit of smaller than that of the (6,6)@(13,13) DWNT. It shows that the 

TiO2 zz-DWNT is energetically more favorable than that of the ac-DWNT. Then the 

electronic properties of the TiO2 DWNTs have been investigated. And the band gap energies 

of the TiO2 DWNTs are significantly smaller than that of the SWNTs. It is found that this is 

purely caused by the band shift on constituent SWNTs. And the band shift is mainly 

dependent on the curvature of a tube. As results, the band edge alignment of the TiO2 DWNTs 

forms a type II band alignment, the staggered gap. It may reduce the recombination of 

electron-hole pairs. And the band gap of the NTs could cover the redox potentials of water 

splitting, by comparing the band gap position of the bulk anatase with respect to the redox 

potentials of water splitting.  
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