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Abstract 

RAINFALL SIMULATION FOR INVESTIGATNG HYDROLOGIC RESPONSES TO 

STORM CHARACTERISTICS AND FACILITATING FREQUENCY ANALYSIS 

Shang Gao 

The University of Texas at Arlington, 2019 

Hydrologic and Hydraulic practices depend on the characterization of extreme 

precipitation that is rare in nature. Despite the advancement in sensing technology, the 

observation record of extreme rainfall with good spatio-temporal resolution has not reached a 

sufficient length. Furthermore, rainfall observation may never be sufficient in a non-stationary 

climate. Towards solutions to these issues, rainfall simulation was explored in this study (1) to 

investigate hydrologic responses to storm characteristics and (2) to facilitate rainfall frequency 

analysis. To that end, this study initially employed storm transposition plus hydrologic 

simulation for generating possible rainfall-runoff scenarios which further reveal relationships 

between storm characteristics and hydrologic responses from an urban watershed, Brays Bayou 

in Houston. Consequently, this study generated meaningful findings highlighting the role of 

Brays Bayou’s flat terrain in affecting flood peaks. Meanwhile, limitations in storm transposition 

were exposed and led to the development of a Dynamic Moving Storm (DMS) generator in the 

second part of this study. The DMS generator consists of three fundamental components, storm 

movement, spatial and temporal variabilities of rainfall intensity. By parameterizing each 

component, a vast variety of rainfall scenarios could be generated, simulated, and then analyzed 

again using Brays Bayou as the testbed. Hydrologic responses were revealed as results of not 

only individual parameters but also parameter interaction. The findings confirmed and 
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augmented those based on the storm transposition approach. In accord with previous studies, 

storms moving downstream at the same velocity as streamflow were found to cause the 

resonance effect on flood peaks. Brays Bayou’s flat terrain was the key in explaining the patterns 

in various flood peaks and storm parameters. As the last part of this study, a stochastic storm 

generator was developed featuring optimal estimation for spatio-temporal modeling of rain fields 

and a non-parametric approach for generating model parameters. A case study in Dallas-Fort 

Worth Metroplex was conducted to generate possible realizations of 100 most rainy days at high 

spatio-temporal resolution. As the first step towards applying a long-term stochastic rainfall 

simulation, this approach was proved to offer many attractive traits, as statistical properties of 

observed rainfall were well preserved in simulations requiring only a small number of 

parameters. Collectively, this study offers innovative pathways for better utilizing rainfall 

information in flood modeling and rainfall frequency analysis with reduced uncertainties from 

the limited records of extreme storm events that make them feasible alternatives to traditional 

approaches.   

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

Copyright © by Shang Gao 2019 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgements 

First and foremost, I would like to acknowledge Dr. Nick Z. Fang as my advisor who has 

always been supportive for my research ideas even when prospects of success seemed uncertain. 

More than just an advisor, Nick accepted me into the Fang Research Group as his first Ph.D. 

student and showed me what it takes to be a trailblazer. In the past five years, I have witnessed 

the growth of Fang Research Group alongside with each group member as my lifelong 

colleagues. Nick has exposed me to a vast variety of tasks, meetings, and conferences, which 

totally defied my stereotype about Ph.D. work. Together with Nick, I learnt that this pathway to a 

Ph.D. is like a stream finding its way to the ocean. The path can twist and turn; sometimes seen 

by people but sometimes hidden underground. Nonetheless, the gravitational pull from the true 

knowledge always leads you to the destination.   

I want to sincerely thank my committee members, Professor Dong-jun Seo, Habib Ahmari, 

and Philip Bedient. Their constructive suggestions throughout my Ph.D. cleared my confusions 

and guided onto the right track. Most importantly, I learnt one thing from them – knowledge and 

experience always triumph over smart thoughts. I also want to thank every group member in the 

Fang Research Group, who I have been so fortunate to collaborate with. My Ph.D. wouldn’t have 

been complete without their passion and intelligence. 

To my family, thank you for encouraging me in this pursuit of Ph.D. I am especially grateful 

to my parents, who supported me emotionally and financially to follow my dreams studying in 

the U.S. Even from halfway across the world, I always knew that you believed in me and wanted 

the best for me. Thank you for the freedom to indulge in my interests throughout my childhood. 

Thank you for teaching me the values in receiving the best education to one’s life. This last word 



vi 
 

of acknowledgement I have saved is for my wife, Jiaqi Zhang. This journey would have been 

impossible without your support. I see this Ph.D. as a testimony to how great a team we make. In 

the end, our marriage grew deeper and has made this Ph.D. the best years of my life.  

                        July 01, 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

 

  

 

To my parents  

For my care-free childhood full of colorful memories 

To my cousin Bing Liu 

For the brotherly love we shared as two only children 

I cherish them forever… 

To my wife and sweetest friend, Jiaqi 

For life’s perfect arrangement putting you in this journey 

These are the best days of my life… 

 

Thank you. 

 

 

 

 



viii 
 

Table of Contents 
Abstract ..................................................................................................................................... ii 

Acknowledgement .....................................................................................................................v 

Chapter 1: Introduction ..............................................................................................................1 

Chapter 2: Using Storm Transposition to Investigate the Relationships between Hydrologic 

Responses and Spatial Moments of Catchment Rainfall  ..........................................................6 

Chapter 3: Investigating Hydrologic Responses to Spatio‐ temporal Characteristics of 

Storms Using a Dynamic Moving Storm (DMS) Generator  ..................................................42 

Chapter 4: Stochastic Storm Simulation Using Optimal Estimation and Non-Parametric 

Generation of Ensemble Parameters  .......................................................................................88 

Chapter 5: Conclusion and Future Research ..........................................................................126 

 

 



1 
 

Chapter 1: Introduction 

1.1  DESCRIPTION OF PROBLEM 

Rainfall plays an essential part in the hydrologic cycle and is the driving phenomenon of 

runoff mechanisms. Many hydrologic/hydraulic (H/H) applications are dependent on accurate 

information of rainfall at high spatio-temporal resolution with a long record-length (Cunnane, 

1988; Faurès et al., 1995). However, rain gage networks as a major data source for decades of 

H/H practices inherently lack the necessary density to capture spatial variability (Michaud and 

Sorooshian, 1994). It was not until the applications of weather radar systems that a detailed 

understanding of rainfall with high spatial resolution was acquired via radar rainfall, also known 

as quantitative precipitation estimate (QPE). Along with the advent of QPE, spatio-temporal 

structure of storms has drawn considerable interest from the research community but still 

requires deeper understanding, especially on the corresponding hydrologic effects.  

Another challenge in applying radar rainfall in hydrologic/hydraulic designs comes from its 

relative short record-length. As the centerpiece of the wide range of H/H applications, rainfall 

frequency analysis (RFA) reveals the relationship between rainfall magnitude and likelihood. 

Any RFA becomes more valid with longer record of rainfall observation, since the return period 

of infrequent severe storms are better captured. In the absence of a long data record, 

extrapolation is inevitable which adds uncertainty to RFA. 

1.2  RESEARCH GOALS & QUESTIONS 

The overarching goals of this Ph.D. work are 1) to improve our understanding of the roles of 

storm characteristics in flood generation and 2) to better incorporate spatio-temporal 
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variabilities of rainfall into design storms. The availability of hydro-meteorological data and the 

frequency of flood hazards of two urban areas in Texas and, more specifically, the Dallas-Fort 

Worth metroplex and Houston led to the selection of these two regions as test beds for this 

research. The results of this research are timely, as flood hazards induced by heavy rainfall (e.g., 

2015 Memorial Day storm, 2016 Tax Day storm, and 2017 Hurricane Harvey) hit these areas in 

recent years with increased intensity and frequency.  

In view of the realistic concern for heavy cost of lives and properties, this study seeks to 

simulate rainfall through the use of advanced stochastic techniques as well as hydrologic 

modeling in order to answer the following research questions: 

1. How do characteristics of storms (e.g. storm locations, storm movements, and spatio-

temporal variabilities of rainfall intensity) affect flood peaks as individual factor or via 

interaction with other storm characteristics?  

2. How can synthetic design storms better incorporate spatio-temporal variability of rainfall 

intensity and storm movements so that the corresponding hydrologic responses can be better 

captured? 

3. How can storms be stochastically simulated at desired spatio-temporal resolution as a way to 

extend the limited length of QPE record?    

In answering these questions, the research will be conducted to achieve the following objectives: 

1. Investigate hydrologic responses to storm characteristics based on rainfall-runoff scenarios 

created through deterministic storm transposition. 

2. Develop a deterministic storm generator to comprehensively study the hydrologic responses 

to storm characteristics.  
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3. Develop a stochastic storm generator that is capable of reproducing key statistics of observed 

rainfall in order to facilitate rainfall frequency analysis. 

1.3  DISSERTATION STRUCTURE 

This dissertation consists of five chapters. Chapter 1 provides a brief background of the 

research, identifies the study areas, presents the research questions and objectives, and outlines 

the structure of this dissertation.  Subsequent chapters contain manuscripts focusing on the 

following topics: investigating hydrologic responses to catchment rainfall from transposed QPE 

(Chapter 2); developing a synthetic storm generator and analyzing hydrologic responses to storm 

characteristics (Chapter 3); and developing a stochastic storm generator (Chapter 4). Chapter 5 

presents a conclusions of the whole dissertation.  

Chapter 2 is exploratory in nature and seeks to link characteristics of storms to hydrologic 

responses via catchment rainfall. This study featured transposing radar data of historical storms 

in order to generate a large number of rainfall-runoff scenarios. The patterns exhibited in the 

hydrologic responses from the rainfall-runoff scenarios were interpreted in relation to spatial 

organization of catchment rainfall. The results highlighted the role of spatial concentration of 

catchment rainfall in affecting the correlation between mean areal precipitation (MAP) and peak 

discharge. Chapter 2 revealed limitations of the approach and led to the development of a 

deterministic storm generator in Chapter 3 as a better tool to investigate hydrologic responses. 

The hydrologic models validated in Chapter 2 were also used in Chapter 3. The hydrologic 

metrics successfully used in Chapter 3 for analyzing the results were also applied in Chapter 3.  

Chapter 3 involves developing a deterministic storm generator – Dynamic Moving Storm 

(DMS) generator. Hydrologic responses to individual parameters in DMS generator as well as 
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their interactions were extensively investigated using global sensitivity analysis and pairwise 

sensitivity analysis. The results demonstrated the necessity in considering all three components 

in the DMS framework, i.e. 1) spatial variability of rainfall intensity, 2) temporal variability of 

rainfall intensity, and 3) storm movement, since interactions among parameters significantly 

affect hydrologic responses. The DMS generator served as a stepping stone for the stochastic 

storm generator in Chapter 5. 

The stochastic storm generator in Chapter 5 was mainly based on the theory of optimal 

estimation. Compared to other existing methods, optimal estimation is attractive because the key 

rainfall statistics are prescribed as model parameters and are inherently preserved throughout the 

modeling framework. Innovative methods were also developed in Chapter 5 to ensemble model 

parameters by borrowing rainfall information from adjacent homogenous areas. All the 

manuscripts in this dissertation have been published or are intended for publication. Their full 

references are as follows: 

Gao, S., and Fang, Z. (2018). “Using Storm Transposition to Investigate the Relationships 

between Hydrologic Responses and  Spatial Moments of Catchment Rainfall”. ASCE Journal 

of Natural Hazards Review, ASCE 2018 19(4):04018015 DOI:10.1061/(ASCE)NH.1527-

6996.0000304 

Gao, S., & Fang, Z. N. Investigating Hydrologic Responses to Spatio‐temporal Characteristics 

of Storms Using a Dynamic Moving Storm (DMS) Generator. Hydrological Processes. 

Gao, S., and Fang, Z. (2019). “Stochastic Storm Simulation Using Optimal Estimation and Non-

Parametric Generation of Ensemble Parameters”. (In Preparation). 
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ABSTRACT 

The dependence between spatiotemporally varied rainfall and watershed hydrology has 

long been recognized and studied using either synthetic or real storms/watersheds. To examine 

the relationship, the authors apply the storm transposition technique to reposition three historical 

storm events over the Brays Bayou watershed in Houston, Texas. Transposing various storms not 

only enables the researchers to pinpoint the worst-case hydrologic impact but also generate a 

large variety of rainfall-runoff scenarios that exhibit distinct patterns in peak discharge and 

runoff volume. Furthermore, the authors utilize spatial statistics (termed spatial moments) to 

characterize catchment rainfall and interpret the identified patterns in hydrologic responses. 

Multivariate linear regression is particularly employed in this study to quantitatively represent 

the relationship between peak discharge (dependent variable) and spatial moment of catchment 

rainfall (independent variables). During the study, storm dimension is found to be a primary 

variable to both spatial organizations of catchment rainfall and spatial patterns in peak discharge 

rate; small-sized storms tend to generate spatially-concentrated catchment rainfall with large 

displacements between the centroids of catchment rainfall and drainage network; flow distance 

from the storm core to the catchment outlet is inversely correlated to peak flow. The insights 

gained from this study will benefit future research in hydrologic analyses and prediction of 

rainfall-induced hazards, especially determining critical factors in the hydrologic responses 

during natural disasters like Hurricane Harvey (2017).    

KEY TERMS 

Storm Transposition; Spatial Moments of Catchment Rainfall; Multivariate Linear Regression; 

Multi-Radar Multi-Sensor Rainfall 
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INTRODUCTION 

Intense storms with high spatiotemporal variability are often the main causes for serious 

flooding occurring in urbanized areas. Many previous studies have been conducted focusing on 

different aspects of the rainfall characteristics like spatiotemporal variability and storm 

movement. Ball (1994) demonstrates the significance of varied temporal distribution of rainfall 

to peak discharge and hydrograph shape. Morin et al. (2006) found that spatial variability within 

thunderstorm rain cells have great influence on both rainfall volume and peak discharge of a 

semi-arid catchment.  Many researchers also investigated storm movement, i.e. starting location, 

direction and velocity, as an important factor to the resulted hydrologic response using 

experimental (Yen and Chow, 1969), numerical (Surkan 1974, Stephenson 1984, Richardson and 

Julien 1989, Ogden et al., 1995, Lee and Huang 2007) and analytical methods (Singh 1998, de 

Lima and Singh 2002, Viglione et al., 2010a). The authors are thereby motivated to better 

understand the severity of flooding in terms of peak discharge and runoff volume with respect to 

storm centering locations in relative to a watershed, which involves repositioning or transposing 

spatial rainfall data of historical storms and then conducting hydrologic simulation with accuracy. 

Storm transposition is a method to move an observed storm from its original location to 

other places where the storm could have possibly occurred. In previous research, the term “storm 

transposition” is often found associated with the word “stochastic” or “probabilistic” (Wang, 

1987; Foufoula-Georgiou, 1989; Franchini et al., 1996). Stochastic storm transposition, or SST, 

has been primarily used to extend rainfall records for rainfall and flood frequency studies (e.g. 

Wright et al., 2013; Wright et al., 2014; England et al., 2014). The spatial limits for SST are 

prescribed by a “meteorologically homogenous region” (Wang, 1987) where a storm occurs 

following a uniform Poisson process (Foufoula-Georgiou, 1989). On the other hand, storm 
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transposition, when applied without the stochastic framework, can be referred to as deterministic 

storm transposition (DST). In the field of hydrologic design, such a deterministic approach is 

often used to validate spatial and temporal features of frequency storms. For instance, Benson 

(2014) utilized radar rainfall data for storm transposition and compared the hydrologic impacts 

of design storms and the transposed historical storms. Extreme storms were transposed 

deterministically to compensate the lack of database for possible maximum precipitation (PMP) 

in many previous studies (Rakhecha and Kennedy, 1985; Hansen, 1987; Noriah and Rakhecha, 

2001).  In this study, the deterministic storm transposition is mainly utilized to create an 

ensemble of scenarios which not only include the worst case in terms of hydrologic response but 

also yield meaningful patterns between rainfall and runoff for a highly urbanized watershed.  

Catchment or watershed, as the receiving body of rainfall, plays a crucial role in rainfall-

runoff process. Therefore, this study focuses on rainfall received by the catchment, or the 

“catchment rainfall”. Previous researchers have developed measures not only for the 

characteristics of rainfall itself but also for rainfall features in relative to geometric properties of 

the catchment. For instance, Syed et al., (2003) utilized the Euclidean distance between 

watershed outlet and the storm core which was defined as the centroid of rainfall with intensity 

over 25 mm/hr (1 in/hr). Moreover, various measures of catchment rainfall were developed 

based on the distance to the watershed outlet along flow path, or flow distance. Smith et al., 

(2002, 2005) employed a series of scaled metrics called normalized flow distance and 

normalized dispersion to examine rainfall variability. Zoccatelli et al., (2011) derived a set of 

spatial statistics of catchment rainfall by rearranging the analytical solutions developed by 

Woods and Sivapalan (1999) and Viglione et al., (2010a, b). In the authors’ opinion, flow 

distance is a significant parameter among watershed characteristics and should be incorporated 
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into catchment rainfall measurement because the river/channel network plays an important part 

in attenuating and translating the runoff through routing.  

Fully investigating the rainfall characteristics requires data with high spatial and temporal 

resolution. However, for decades, hydrologic models utilized rain gage networks as a major data 

source (Michaud and Sorooshian, 1994), which inherently lacks the necessary density to capture 

spatial variability. It was not until the applications of weather radar systems that a detailed 

understanding of rainfall with high spatial resolution was acquired. Numerous recent studies took 

advantage of this radar rainfall technology and generated meaningful outcomes about spatial and 

temporal structures of rainfall (e.g. Feral et al., 2003; von Hardenberg 2003; Wealands et al., 

2005; Paschalis et al., 2013; Peleg and Morin, 2014). In this study, Multi-Radar Multi-Sensor 

(MRMS) rainfall data are utilized. The MRMS quantitative precipitation system currently 

integrates about 180 operational radars and creates a seamless 3D radar mosaic across the 

conterminous United States (CONUS) and southern Canada at very high spatial (1 km) and 

temporal (2 min) resolution (Cocks et al., 2016). The radar-base data are integrated with 

atmospheric environmental data, satellite data, and lightning and rain gauge observations to 

generate a suite of severe weather and QPE products (Cocks et al., 2016). The authors utilize the 

MRMS gage-corrected quantitative precipitation estimate (QPE) product (ID: 

GaugeCorrQPE01H) with resolution of 1 km and 1 hour. This product is generated by first 

mosaicking reflectivity scans from multiple radars into the so-called seamless hybrid scan 

reflectivity (SHSR), then applying correction algorithm to mitigate estimation errors, and 

conducting bias-adjustment with rain gage data (Zhang et al., 2016). Evaluation works have been 

performed in recent years regarding various MRMS products in different regions and different 

seasons (Chen et al., 2016; Cocks et al., 2016; Martinaitis et al., 2016). In particular, Willie et al., 
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(2016) compared different rainfall products for the coastal rainfall events and concluded that 

MRMS gage-corrected QPE product gives the best overall performance. From the hydrologic 

perspective, the authors validate the performance of MRMS gage-corrected QPE using three 

historical storm events that occurred over Houston in 2015 and 2016. 

Houston, Texas has undergone a rapid urban expansion and is prone to intense tropical 

storms with a history of major flood events. One of the flood-prone urban watersheds, Brays 

Bayou (Figure 1) with 334 km2 (129 mi2) of area, is selected for this study. The watershed is 

95% developed with a population of more than 722,000 people, making it one of the most 

urbanized watersheds in Harris County, Texas (HCFCD, 2017). Brays Bayou is prone to 

flooding due to its flat slopes, impermeable land surface and clay soils, and the explosive rainfall 

that characterizes the region (Bedient et al., 2003). Throughout the decades, the Brays Bayou 

watershed has a history of flood mitigation projects. In the late 1960s, a major concrete 

channelization project was completed to accommodate storms at the 100-year level. This project 

included 40.9 km (25.4 mi.) of channel improvements along Brays Bayou that involved widening 

and deepening of the channel. In addition, 22 km (13.7 mi.) of the channel was lined with 

concrete from 9.5 km (5.9 mi.) upstream of Brays Bayou outlet to US-59. The project sought to 

provide enough capacity within the channel banks to handle 100-year flows based on full 

development of the watershed back then. However, by the year of 1983, it was found that a 10-

year storm would bring the channel to its full capacity due to the rapid development throughout 

the watershed. Triggered by a September 1983 storm which flooded 1,000 homes, a regional 

flood control plan was developed and adopted in 1988 for the Brays Bayou watershed, including 

channel improvements, regional detention basins, and a diversion project. By the year of 1993 

the watershed had reached over 90% development, leading to bankfull conditions at Main St. in 
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response to only a 5 to 10-year storm (Bedient and Huber, 2002). After the devastation of 

Tropical Storm Allison in 2001, major efforts from the City of Houston, the Federal Emergency 

Management Agency (FEMA), the Harris County Flood Control District (HCFCD), and the 

Texas Medical Center (TMC) were collectively invested to resolve the flooding issues (Fang et 

al., 2011; Bass et al., 2016). Given the flooding issue of Brays Bayou, this study is conducted in 

the hope of enhancing the decision making process for emerging intense storms.    

 

Figure 1: Study area   ̶   the Brays Bayou watershed, Houston, Texas. 

In this analysis, three historical storms occurring in Brays Bayou during 2015 and 2016 

were selected: the 2015 Memorial Day storm (May 25th
 of 2015), the 2015 October storm 

(October 30th
 of 2015) and the 2016 Tax Day storm (April 17th of 2016). Table 1 summarizes the 

starting and ending times for the three historical storms. Figures 2A, 2B and 2C respectively 

show the cumulated rainfall for the three storms based on the MRMS data (1 km × 1 km, 1 hour). 
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It is found that, for the 2015 Memorial Day storm, the maximum cumulated rainfall (indicated by 

the highest contour) occurred near the midstream of Brays Bayou; while for the 2015 October 

storm and the 2016 Tax Day storm, the highest rainfall amount is found further away from the 

watershed. Figure 3A shows the intensity–duration information of the three historical storms 

derived from the MRMS data pixel (1 km × 1 km) with the maximum intensity, as well as the 

values of frequency storms (Intensity-Duration-Frequency curves). One can see that the 2015 

October storm exceeds a 100-year storm, while the 2015 Memorial Day storm and the 2016 Tax 

Day storm are both close to a 50-year storm. On the other hand, Figure 3B shows the peak 

discharges values measured by 5 junctions (Junctions 1 to 5 in Figure 1) with USGS gages 

(Junction 1/USGS8074760@Belle Park Dr., Junction 2/USGS8074800@Keegans, Junction 

3/USGS8074810@S. Gessner Rd., Junction 4/USGS8075000@Main St., and Junction 

5/USGS8075110@MLK Blvd.) along Brays Bayou during the three historical storms, compared 

with the values from frequency storms. None of the three storms is found to generate greater 

peak discharges than a 50-year storm in Brays Bayou, and the 2015 October storm yielded even 

lower peak flow rates than a 10-year storm. In comparison of the observations in Figures 3A and 

3B, if the most intense portion of these three historical storms had been transposed to within the 

Brays Bayou, much greater peak discharge should have occurred in Brays Bayou,.  

Table 1: Starting and Ending Times for the Three Selected Historical Storms 
Storm Start Time (CDT) End Time (CDT) Duration (hours) 

2015 Memorial Day Storm 5/25/2015 19:00 5/27/2015 7:00 36 
2015 October Storm 10/30/2015 19:00 10/31/2015 19:00 24 
2016 Tax Day Storm 4/17/2016 13:00 4/19/2016 6:00 41 
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Figure 2: Cumulative rainfall based on the MRMS data of the three historical storms on (A) 

May 25th of 2015, (B) October 30th of 2015, and (C) April 17th of 2016, respectively.  

In this regard, the authors are motivated to investigate the critical storm location and the 

consequent hydrologic impacts by transposing the MRMS rainfall data over Brays Bayou, as 

well as the patterns between rainfall and runoff in the considerable scenarios generated by storm 

transposition. By linking spatial statistics of catchment rainfall to the computed runoffs from 

hydrologic models, a better understanding of the dependency of hydrologic responses on spatial 

characteristics of rainfall can then be achieved via the following objectives:  

1. To validate the hydrologic simulation in Brays Bayou using MRMS radar rainfall data 

along with USGS stream gage data from three historical storms; 
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2. To investigate the hydrologic responses from various storm centering locations of the 

three historical storms in Brays Bayou and pinpoint the worst-case scenarios; 

3. To characterize catchment rainfall generated by storm transposition based on spatial 

statistics taking into account flow distance; 

4. To interpret the patterns in hydrologic responses based on the spatial statistics from 

Objective 3.   

 

Figure 3: Comparison of the three historical storms with design events in terms of (A) intensity-

duration information of rainfall and (B) peak discharge measured at 5 junctions. 
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METHODOLOGY 

The overarching methodology of this study consists of the following four parts, i.e. 1) 

calibration and validation of hydrologic model, 2) storm transposition, 3) spatial moments of 

catchment rainfall and flow distance, and 4) multivariate linear regression. Specifically, a 

developed hydrologic model is first calibrated and validated using MRMS radar rainfall data and 

USGS gages for three historical storms over Brays Bayou (2015 Memorial Day storm, 2015 

October storm and 2016 Tax Day storm). An algorithm is then developed in this study to 

automatically transpose the three historical storms from their original locations to various spots 

within the watershed boundary and simulate hydrologic responses from the various storm 

centering locations. In addition, spatial statistics of both rainfall and drainage network (termed 

“spatial moments” of catchment rainfall and flow distance) are applied to interpret their 

relationships with flood response via multivariate linear regression. Details of these four 

components are introduced in the following sections.  

Calibration and Validation of Hydrologic Model 

To best represent the watershed condition during 2015 to 2016, a hydrologic (HEC-HMS) 

model is calibrated using the MRMS rainfall data of three historical storms and five junctions 

with USGS stream gages Back in 2001, the devastating impact from Tropical Storm Allison 

(TSA) triggered the Tropical Storm Allison Recovery Project (TSARP), which led to the 

development of updated hydrologic (HEC-HMS) and hydraulic (HEC-RAS) models. The HMS 

model used in this study originated from the TSARP products and was modified by Bass et al., 

(2016) to best represent the watershed condition during the 2015 Memorial Day storm. Bass et 

al., (2016) reported the satisfactory match between the simulated and the observed hydrographs 
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at Junctions 2 to 5; and suggested the overestimated detention effect upstream of Junction 1 at 

Belle Park Drive. Therefore, the calibration effort in this study is first invested to improve the 

simulation performance at Junction 1. Additionally, the antecedent watershed condition is 

modified to fully saturated, meaning that infiltration process is nullified in the HEC-HMS 

simulations. Figure 4 shows the comparison of simulated and observed hydrographs at Junction 

1 to 5 (columns 1 to 5) for the three historical storms (three rows), and the overall close match 

indicates that the Brays Bayou HEC-HMS model is well calibrated and suitable to be used in 

further analyses. 

 

Figure 4: Comparison of simulated and observed hydrographs at Junction 1 to 5 for (A) the 2015 

Memorial Day storm, (B) the 2015 October storm, and (C) the 2016 Tax Day storm. 
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Storm Transposition 

As mentioned earlier, storm transposition is conducted using MRMS rainfall data. Figure 

5A shows the storm transposition end points, which are the centroids of MRMS grids (1 km × 1 

km) within the watershed boundary; whereas the transposition start points are the locations of 

maximum total rainfall for the three historical storms as shown in Figure 5B.  Consequently, 

there are a total of 309 transposition scenarios corresponding to the 309 transposition end points 

for each storm event.  In all transposition scenarios, the intense portion of the storm is 

repositioned into the watershed to identify the possible “worst-case” hydrologic impacts. 

 

Figure 5: Storm transposition scheme with the transposition end points (A) and start points (B).  
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In order to make subsequent hydrologic simulations, hyetographs are generated through 

the schematic flow as shown in Figure 6. First, time series of MRMS radar data (original for the 

whole U.S.) are clipped to a smaller domain in order to expedite following processing steps. 

Second, the “Shift” tool is used to move the rainfall raster data along a defined vector 

( yx ∆∆ , ).The shifted raster rainfall data with resolution of (1 km × 1 km) is then resampled to a 

finer resolution (250 m × 250 m), which increases the accuracy of basin-averaged rainfall 

calculated by the following “Zonal Statistics” tool. Based on the shapefile of the subbasins in 

Brays Bayou, the areal average rainfall values over each subbasin can be calculated via Zonal 

Statistics tool. The end products from ArcGIS processing are hyetographs for all subbasins. 

Additionally, a data conversion tool called DSS-UTL is applied (1) to import hyetographs into a 

HEC-HMS model and (2) to export hydrographs from desired junctions. The processes above are 

integrated and automated using Python scripting language for this study. 
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Figure 6: Schematic flow chart for generating hyetographs and conducting hydrologic 

simulations. 

Spatial Moments of Catchment Rainfall and Flow Distance 

The authors focus on the spatial statistics of cumulated catchment rainfall with respect to 

flow distance which are similar to the mathematical formulas characterizing instantaneous 

rainfall intensity in previous research (Zoccatelli et al., 2011). The n-th spatial moment of 

cumulated catchment rainfall Pn is expressed in Equation 1: 

∫
−=

A

n
tn dAyxdyxrAP ),(),(1                                                                                    (1) 

where ),( yxr t  is the cumulated rainfall at location (x, y). The zero-th order of Pn is equivalent of 

the cumulated mean areal precipitation (MAP); d(x, y) is the distance between position (x, y) and 

the catchment outlet measured along the flow path. Figure 5A shows the flow distance value 

from each pixel (1 km × 1 km) in the watershed boundary to the watershed outlet, which is 

generated using the “Flow Distance” tool in ArcGIS.  The n-th moment of flow distance gn is 

based on Equation 2: 

∫
−=

A

n
n dAyxdAg ),(1                    (2) 

where ),( yxr t  is the mean value of cumulated rainfall at location (x, y). In order to represent the 

spatial location of rainfall in relative to the drainage network, dimensionless spatial moments of 

catchment rainfall ( n∆ ) is obtained by taking the ratio between the spatial moments of 

cumulated rainfall and moments of the flow distance. The first- and second-order dimensionless 

moments, 1∆  and 2∆ , are computed based on Equations 3 and 4:  
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1∆ describes the location of centroid of catchment rainfall with respect to the location of centroid 

of drainage network (i.e. the average value of flow distance). Values of 1∆  being one reflect a 

rainfall distribution concentrated at the watershed centroid, with values less than one indicating 

that rainfall is concentrated near the watershed outlet, and values greater than one indicating that 

rainfall is concentrated near the watershed headwaters (Zoccatelli et al., 2011). 2∆ depicts the 

dispersion of the location of catchment rainfall with respect to the variance of flow distances. 

Values of 2∆  being one reflect a uniform rainfall distribution, with values less than one 

indicating that rainfall is concentrated around a single core, and values greater than one 

indicating that rainfall is dispersed with multiple cores (Zoccatelli et al., 2011). 

Multivariate Linear Regression 

Based on the results from the storm transposition analysis, multivariate linear regression 

is further performed to interpret the importance of the spatial characteristics of rainfall 

(independent variables) in influencing hydrologic responses (dependent variables). To decipher 

the relatively importance of each regressor, the authors utilize the standardized beta coefficients 

which are associated with one standard deviation of change in the independent and dependent 

variables. For instance, a bivariate linear regression using standardized beta coefficients can be 

expressed using Equation 5: 

2211 ˆˆˆ xxy ββ +=                                                                                                                             (5) 
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where ŷ  is the standardized dependent variable;  1x̂  and 2x̂ are the standardized independent 

variables with 1β  and 2β being their corresponding standardized beta coefficients. And 1β  and 

2β can be calculated using the simple correlation coefficients between dependent and 

independent variables as shown by Equations 6 and 7:  

2
12

2121
1 1 r

rrr yy

−

−
=β                                                                                                                              (6) 
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rrr yy

−

−
=β                                                                                                                              (7) 

where ry1, ry2 and r12 are respectively the simple correlation coefficients of ŷ  and 1x̂ , ŷ  and 2x̂ , 

and 1x̂  and 2x̂ . 

RESULTS AND ANALYSES 

Storm Transposition  

In the storm transposition analysis, hydrologic responses are first examined for two 

Junctions (Junction 3 and Junction 6) with the three historical storms, forming a total of six 

simulation scenarios. Each scenario includes 309 times of deterministic storm transposition 

which serve as data points for subsequent multivariate regression analyses. The two junctions (3 

and 6) are particularly selected to demonstrate how catchment size causes variation in hydrologic 

responses at the midstream and downstream, respectively. Figures 7, 8, and 9 show the resulted 

peak flow (upper two panels) and runoff volume (lower two panels) at the Junction 3 (S. Gessner 

Rd.) and Junction 6 (watershed outlet) for the 2015 Memorial Day storm, the 2015 October 

storm, and the 2016 Tax Day storm, respectively. The dimensionless values shown in these 

figures are the ratios between the values from the transposed storms and that from the original 
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storm. The contours with the highest values in these maps indicate the magnitudes of the worst-

case flood response with the associated storm centering locations. Table 2 summarizes the 

original peak discharge and runoff volume values along with the ranges of dimensionless values 

in the six simulation scenarios. It is found that the transposed 2015 October storm can generate 

the worst flood impact with the maximum peak flow and runoff volume being 366% and 393% 

of the original values, respectively. It should be noted that for the 2015 Memorial Day event, 

transposed storms do not show increased flood impact as much as in the cases of the other two 

storms, which means the original centering location of the 2015 Memorial Day storm is already 

close to the worst-case scenario. 

 

Figure 7: Peak flow and runoff volume values at the Junction 3 (S. Gessner Rd.) and Junction 6 

(watershed outlet) for the 2015 Memorial Day storm. 
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Figure 8: Peak flow and runoff volume values at the Junction 3 (S. Gessner Rd.) and Junction 6 

(watershed outlet) for the 2015 October storm. 

Table 2: Original Peak Discharge and Runoff Volume Values and the Ranges of Dimensionless 
Values for 6 Simulation Scenarios 

2015 Memorial Day Storm Scenario S1 Scenario S2 

 
Qpeak 

@ Junc 3 
Vrunoff 

@ Junc 3 
Qpeak 

@ Junc 6 
Vrunoff 

@ Junc 6 

Original Value 477 m3/s 571 m3 1,047 m3/s 1,299 m3 

Min Dimensionless Values 57% 46% 91% 65% 

Max Dimensionless Values 101% 103% 111% 100% 

2015 October Storm Scenario S3 Scenario S4 

 
Qpeak 

@ Junc 3 
Vrunoff 

@ Junc 3 
Qpeak 

@ Junc 6 
Vrunoff 

@ Junc 6 

Original Value 184 m3/s 268 m3 1,072 m3/s 1,099 m3 

Min Dimensionless Values 207% 177% 82% 95% 

Max Dimensionless Values 366% 393% 133% 208% 

2016 Tax Day Storm Scenario S5 Scenario S6 

 
Qpeak 

@ Junc 3 
Vrunoff 

@ Junc 3 
Qpeak 

@ Junc 6 
Vrunoff 

@ Junc 6 

Original Value 488 m3/s 699 m3 1,026 m3/s 1,327 m3 
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Min Dimensionless Values 99% 122% 118% 150% 

Max Dimensionless Values 132% 164% 133% 192% 

 In addition to the ranges of the dimensionless values, the general spatial patterns in the 

hydrologic responses are found different for the three storms as shown in Figures 7, 8, and 9. 

For the two storms in 2015, the simulated peak discharges at both junctions (3 and 6) appear to 

increase as the storm is centered closer to the receiving junctions, while the opposite pattern can 

be observed in the case of the 2016 Tax Day storm where higher peak flow values are generated 

by storms centered at headwaters. A clearer insight can be obtained by comparing and 

correlating the patterns of peak flow and runoff volume (upper and lower panels in Figures 7, 8 

and 9). For the 2016 Tax Day storm, very similar patterns in the upper and lower panels can be 

found with the correlation coefficients ρ  being 0.96 and 0.95 respectively; while for Scenario 

S2 and S4 (2015 Memorial Day storm @ Junction 6 and the 2015 October storm @ Junction 6), 

there is less similarity ( ρ  = -0.11 for S2 and 0.8 for S4) between the two panels. The authors 

found that while the positive correlation exists between peak flow and runoff volume as shown 

in the case of the 2016 Tax Day storm, it can be affected by the storm centering location in 

relative to the channel network. As a matter of fact, a storm centered near the receiving junction 

can result in higher peak flow rate but lower runoff volume than that of the same storm if 

centered at headwaters. For this very reason, for the two storms in 2015, the peak discharge at 

both junctions (3 and 6) exhibits different behaviors than the runoff volume with the highest 

values generated from storm cores if centered closer to the receiving junctions. It should be also 

noted that the Brays Bayou watershed is fully saturated in the HEC-HMS model, meaning that 

runoff volume is equivalent of the cumulated mean areal precipitation (MAP). Therefore, based 



26 
 

on the storm transposition results, it is found that the correlation between cumulative MAP and 

peak flow is affected by the storm centering location in relative to the channel network.  

 

Figure 9: Peak flow and runoff volume values at the Junction 3 (S. Gessner Rd.) and Junction 6 

(watershed outlet) for the 2016 Tax Day storm. 

Spatial Characteristics of Rainfall 

In order to better explain how the three storms yield different hydrologic responses in 

Brays Bayou, their spatial characteristics are further investigated. Figures 10A and 10B show 

the areal reduction factors (ARF) of the 12-hour maximum rainfall of the three investigated 

storms for area ranging from 0 to 10,000 km2 and from 0 to 500 km2, and the vertical line marks 

the dimension of Brays Bayou, i.e. 334 km2. The ARF of the 2016 Tax Day storm is found to 

have a milder decaying slope than those of the two storms in 2015 within both 500 km2 and 

10,000 km2 scales. In other words, the 2016 Tax Day storm is generally larger in dimension than 

those two storms in 2015. Also the 2015 Memorial Day storm and the 2015 October storm have 

a similar dimension within the scale of Brays Bayou (the vertical line).  
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Figure 10: Areal reduction factors (ARFs) of the 12-hour maximum rainfall of the three 

investigated storms for area ranging (A) from 0 to 10,000 km2 and (B) from 0 to 500 

km2 
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Moreover, insight is obtained by examining the spatial moments of catchment rainfall. 

Figure 11 shows are a panel of histograms for the first- (1st row) and second-order (2nd row) 

dimensionless spatial moments of catchment rainfall, 1∆  and 2∆ , for the 2015 Memorial Day 

storm (1st column), the 2015 October storm (2nd  column) and the 2016 Tax Day storm (3rd 

column). As introduced earlier in this paper, 1∆ measures the location of the storm core in 

relative to the drainage network, and 2∆ measures the dispersion of catchment rainfall. It can be 

found that the two storms in 2015 exhibit a greater spread in 1∆ (Figures 11A and 11B) than the 

2016 Tax Day storm yielding concentrated 1∆ values (Figure 11C). This is due to the difference 

in their dimensions: rainfall from large-sized storms has little spatial variation within the 

watershed scale, thus centroids of the catchment rainfall in all (309) storm transposition 

scenarios differ very little from each other. For the same reason, catchment rainfall from a small-

sized storm is spatially more concentrated than that from a large-sized storm. As shown in 

Figures 11D and 11E, the majority of 2∆  values from the two storms in 2015 are smaller than 

one (concentrated), which is opposite to Figure 11F where considerable scenarios generate 2∆  

values near or greater than one (dispersed). In summary, the 2015 Memorial Day and the 2015 

October storms are smaller in dimension, but can cause more spatially concentrated catchment 

rainfall than that of the 2016 Tax Day storm.  
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Figure 11: Histograms for the first- and second-order dimensionless spatial moments of 

catchment rainfall, 1∆ and 2∆ , for the 2015 Memorial Day storm (A and D), the 2015 

October storm (B and E) and the 2016 Tax Day storm (C and F).  

Multivariate Linear Regression Analysis 

From a quantitative perspective, the authors further utilize multivariate linear regression 

to interpret the importance of spatial variability of catchment rainfall in affecting the peak 

discharge rate at the catchment outlet. Peak discharge rates received at the junctions of interest (3 

and 6) are employed as dependent variables, while the cumulated MAP (P0) and the first-order 

dimensionless spatial moment of catchment rainfall 1∆  are independent variables. The 

independent and dependent variables are standardized and the multivariate linear regression 

simply follows Equation 8 as below: 

1201
ˆˆˆ ∆+= ββ PQpeak                                    (8)              
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where  peakQ̂  is the standardized peak flow rate; 1β  and 2β  are the standardized beta 

coefficients associated with standardized  P0 and 1∆ respectively. Six sets of bivariate linear 

regression analyses are conducted with respect to the six storm transposition scenarios. The 

sample size of each analysis is 309.  

Figure 12 shows a panel of 3-D plots of the data (scattered dots) and the resulted 

bivariate linear models (meshed plain) for the two junctions (columns in the panel) and the three 

storms (rows in the panel). The mathematical equation of the model is presented in each panel 

along with the corresponding coefficient of determination (R2). As indicated by the R2 values, all 

the bivariate linear regression analyses result in good fitness. In comparison, Table 3 shows the 

R2 values from simple linear regression using only P0 as the independent variable along with 

those from the bivariate linear regression. The bivariate linear model is found to improve R2 for 

the scenarios S1, S2, S3, and S4, especially for S2 (the 2015 Memorial Day storm at Junction 6) 

seeing that R2 increase from 0.01 to 0.92. However, in the case of the 2016 Tax Day storm (S5 

and S6), the improvement in R2 value is not explicit because the simple linear regression already 

generates very good fitness. Such findings indicate a strong correlation between cumulated MAP 

and peak discharge rate for the 2016 Tax Day storm. In addition, for the two smaller-sized 

storms in 2015, location of the storm core, represented by 1∆ , is a critical variable to interpret 

the patterns in peak discharge.   
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Figure 12: 3-D plots of the data (scattered dots) and the resulted bivariate linear models (meshed 

plain) at the Junction 3 and Junction 6 for the 2015 Memorial Day storm (A and B), the 

2015 October storm (C and D) and the 2016 Tax Day storm (E and F).  

Table 3:R2 Values for Simple Linear Regression and Bivariate Linear Regression Analyses 

 
2015 Memorial Day Storm 

@ Junction 3 (S1) 
2015 Memorial Day Storm 

@ Junction 6 (S2) 

R2 using only P̂  0.88 0.01 
R2 using both P̂  and 1∆̂  0.99 0.92 
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2015 October 31 Storm  

@ Junction 3 (S3) 
2015 October 31 Storm  

@ Junction 6 (S4) 

R2 using only P̂  0.66 0.65 
R2 using both P̂  and 1∆̂  0.84 0.97 

 
2016 Tax Day Storm  

@ Junction 3 (S5) 
2016 Tax Day Storm  

@ Junction 6 (S6) 
R2 using only P̂  0.92 0.90 

R2 using both P̂  and 1∆̂  0.93 0.91 

 

The standardized Beta coefficients for the six simulation scenarios are summarized in 

Table 4. 1β  is found positive for all the scenarios, as greater MAP usually generates greater 

peak flow rates. All 2β values are however negative because greater 1∆ values means longer 

translation distance from the storm core to the receiving junction, causing more attenuation on 

the peak flow rate. As 1β and 2β respectively measure the importance of 1∆  and 2∆ , 21 / ββ  

simply indicates the relative importance between the two regressors. In comparison of the results 

from the three storms in Table 4, 21 / ββ  is found smaller for the two storms in 2015 than for 

the 2016 Tax Day storm at both Junctions (3 and 6), which means that 1∆ is more influential to 

the peak flow rate for these two storms of smaller dimension. Comparing the 21 / ββ  results at 

the two junctions (3 and 6), for all three storms, the authors find that values at Junction 6 are 

smaller than those at Junction 3 indicating greater importance of 1∆ for a larger-sized catchment. 

Therefore, 1∆ becomes more influential to peak flow rate as the storm dimension decreases or as 

the catchment dimension increases. Both findings are consistent because increasing the storm 

dimension essentially has the same effect as decreasing the catchment dimension. The similar 

findings are confirmed by Syed et al., (2003) that the position of storm core relative to the 
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catchment outlet becomes more important to rainfall-runoff process as the catchment dimension 

increases.  

Table 4: Standard Beta Coefficients for Bivariate Linear Regression Analysis 

 
2015 Memorial Day Storm 

@ Junction 3 
2015 Memorial Day Storm 

@ Junction 6 

1β  0.95 0.87 
2β  -0.38 -1.4 

21 / ββ  2.50 0.62 

 
2015 October 31 Storm  

@ Junction 3 
2015 October 31 Storm  

@ Junction 6 

1β  0.93 0.21 
2β  -0.39 -0.83 

21 / ββ  2.36 0.25 

 
2016 Tax Day Storm  

@ Junction 3 
2016 Tax Day Storm  

@ Junction 6 

1β  0.9 1 
2β  -0.11 -0.15 

21 / ββ  8.38 6.87 

 

CONCLUSIONS AND FUTURE WORK 

The authors investigate the potential hydrologic impact from possible storm centering 

locations via deterministic storm transposition. Spatial moments of catchment rainfall are 

employed to characterize the spatial organization of catchment rainfall in relative to drainage 

network. Furthermore, multivariate linear regression is applied to interpret the patterns exhibited 

in the hydrologic responses from the considerable storm transposition scenarios. The numerical 

techniques utilized in this study can be replicated for other areas given available data and 

models.  The insights gained from this study would benefit the decision making and emergency 

management processes during severe storm events. Several major findings from this study are 

summarized as below: 
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1. Storm dimension is a significant variable to the spatial organization of catchment rainfall: 

small-sized storms tend to generate spatially concentrated catchment rainfall with a large 

displacement between the centroids of catchment rainfall and drainage network; and 

large-sized storms exhibit opposite patterns. 

2. Peak discharge is positively correlated to cumulated mean areal precipitation (MAP); the 

importance of cumulated MAP to peak discharge becomes greater as storm dimension 

increases or as catchment dimension decreases. 

3. Peak discharge is inversely correlated to the flow distance from a storm core to the 

catchment outlet; such relationship becomes stronger as storm dimension decreases or as 

catchment dimension increases. 

The findings by this study are based upon the hypothesis of negligible loss, thus are most 

meaningful to urban areas. However, the authors think that similar approach can still be applied 

to less developed areas in future studies, by linking peak discharge with only the intense portion 

of precipitation (e.g. with  intensity greater than 25 mm/hr) instead of total rainfall.  It is worth 

emphasizing that multivariate linear regression is used for interpretation rather than prediction. 

Extra caution should be taken when applying regression techniques in flood prediction, since this 

study shows how various storms would exhibit different linear relationships with hydrologic 

responses. While a lumped hydrologic model is utilized in this study, the authors are motivated 

to validate the findings herein using a distributed hydrologic model in a future study, which will 

enable us to gain a deeper insight of the relationship between hydrologic responses and flow 

distance/flow direction. In addition to spatial variability of rainfall, temporal features of rainfall 

and runoff will be potential focuses for future studies using spatial moments of catchment 

rainfall.  
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ABSTRACT  

A synthetic storm generator – Dynamic Moving Storm (DMS) – is developed in this study to 

represent spatio-temporal variabilities of rainfall and storm movement in synthetic storms. Using 

an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS 

parameters and their interactions. In order to reveal the complex nature of rainfall-runoff 

processes, previously simplified assumptions are relaxed in this study regarding 1) temporal 

variability of rainfall intensity and 2) time-invariant flow velocity in channel routing. The results 

of this study demonstrate the significant contribution of storm moving velocity to the variation of 

peak discharge based on a global sensitivity analysis (GSA). Furthermore, a pairwise sensitivity 

analysis (PSA) is conducted to elucidate not only the patterns in individual contributions from 

parameters to hydrologic responses but also their interactions with storm moving velocity. The 

intricacies of peak discharges resulting from sensitivity analyses are then dissected into 

independent hydrologic metrics, i.e. runoff volume and standard deviation of runoff timings, for 

deeper insights. It is confirmed that peak discharge is increased when storms travel downstream 

along the main channel at the speed that corresponds to a temporal superposition of runoff. 

Spatial concentration of catchment rainfall is found to be a critical linkage through which 

characteristics of moving storms affect peak discharges. In addition, altering peak timing of 

rainfall intensity in conjunction with storm movement results in varied storm core locations in 

the channel network, which further changes the flow attenuation effects from channel routing. 

For future directions, the DMS generator will be embedded in a stochastic modeling framework 

and applied in rainfall/flow frequency analysis. 

KEYWORDS:  
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Storm Movement, Spatial Variability, Temporal Variability, Hydrologic Response, Spatial 

Concentration of Catchment Rainfall, Global Sensitivity Analysis, Synthetic Design Storm, and 

Urban Watershed. 

1. INTRODUCTION  

With rapid urbanization and climate change, water-related hazards increasingly place human 

lives and the economy at risk. To make informed decisions in proactive response to water-related 

hazards and risks, it is imperative to fully understand the sensitive nature of hydrologic responses 

from the spatio-temporal characteristics of storms. This subject has motivated tremendous 

research effort undertaken by hydrologists and meteorologists (e.g. Smith et al., 2005b; Borga et 

al., 2007; Segond et al., 2007; Rozalis et al., 2010; Tarolli et al., 2013; Furl et al., 2015; Zhou et 

al., 2018).  Therefore, in hydrologic modeling, identifying key elements in rainfall input, such as 

storm movement and spatio-temporal variability, is paramount to runoff calculation. Storm 

movement is a critical component in the rainfall process, as most storms exhibit preferential 

moving velocities and directions unique to different seasons (Marshall, 1980). In the past 

decades, researchers invested varieties of efforts on exploring the hydrologic responses from 

storm movement using physical, numerical and analytical approaches (e.g. Yen and Chow, 1969; 

Surkan, 1974; Ogden, et al., 1995; de Lima and Singh, 2002; Lee and Huang, 2007; Fang et al., 

2019).  

In the early age of storm movement studies, the typical approach was to conduct 

experimental techniques with physical models. Pioneers in this regard include Yen and Chow 

(1969) who established the Water Experimental System (WES) to investigate the effect of storm 

movement on surface runoff. WES is essentially a collection of simplified V-shaped catchments 

and water distribution facilities with a rain simulator over synthetic watersheds. They introduced 
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a new concept of “equivalent storm” defining that a storm moving upstream generates a smaller 

peak discharge than that from an equivalent storm moving downstream at the same velocity. This 

physical approach provided visualization and insights for early researchers and was further used 

as a tool of verification for later-developed numerical approaches. However, the approach of 

using physical models in this research was expensive and time-consuming, thus limiting its 

accessibility to the majority of researchers (Liang, 2010). 

Mathematical rainfall-runoff models were extensively utilized in the past several decades to 

examine the magnitude and timing of peak discharge in response to storm movement. For 

example, Surkan (1974) performed a study on storm movement using a simplified distributed 

model to conduct a sensitivity analysis to understand how peak flow rates change with respect to 

storm moving direction and velocity. Stephenson (1984) was the first to apply kinematic-wave 

approximation to explore the relationship between storm movements and overland flows, and 

found that for a storm moving upstream, the peak flow was less than that for a stationary storm. 

Richardson and Julien (1989) used the CASC numerical model to verify the laboratory results 

previously reported by Yen and Chow in 1968. Ogden et al. (1995) utilized the CASC finite 

element runoff model for one- and two-dimensional numerical runoff simulations; and their 

studies showed that the equilibrium discharge can only be attained with storm lengths greater 

than the watershed length. In regard to channelized catchments, Niemczynowicz utilized the 

Storm Water Management Model (SWMM) to investigate hydrologic responses from multiple 

parameters of storm movement using initially a conceptual watershed (1984a) and later a real 

urbanized area in Sweden (1984b); and the researcher reported that the maximum discharge 

occurs when a storm moves downstream at a speed equal to the average channel-flow velocity in 

an urban storm-sewer system. Lee and Huang (2007) utilized kinematic-wave approximation and 
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finite-difference technique to simulate the effect of moving storms on the attainment of 

equilibrium discharge for two conceptual watersheds, an overland plane and a V-shaped 

catchment. It reported that for storms moving downstream across the watershed, an equilibrium 

discharge can be obtained even if the storm length is shorter than the watershed length. 

Furthermore, several researchers derived analytical solutions for runoffs as functions of 

storm movements. They employed necessary simplified assumptions, yet provided deep 

understandings on the underlying mechanism of hydrologic transformation. For instance, Singh 

(1998) utilized kinematic wave equations to perform a methodical study to evaluate discharge 

from a one-dimensionally moving storm over a simplified 1-D watershed. Singh’s results 

indicated how maximum peak flow occurs when the moving velocity of the storm is identical 

with that of the stream flow. Afterwards, de Lima and Singh (2002) further exercised finite-

difference methods and derived analytical solutions to generate discharges resulting from a 

moving storm of spatially-distributed coverage over the catchment. Viglione et al. (2010) 

produced an analytical framework that explicitly quantified the significance of spatio-temporal 

variability of rain intensity as well as storm movement to the resulted peak discharges.  Seo et al. 

(2012) established a conceptual model based on peak timing of rainfall intensity in hydrologic 

response to investigate the effects of storm movement on peak discharges and analytically 

interpret the causes for varied peak responses from a moving storm. Volpi et al., (2013) 

developed an analytical framework for analyzing hydrologic response from a catchment under 

moving rainstorms by assuming time-invariant of distribution of travel time within the basin.  

For decades, studies in spatial pattern of storms utilized rain gauge networks as a major data 

source which inherently lacks the density necessary to capture the spatial variability (Michaud 

and Sorooshian, 1994). It was not until weather radar systems were widely applied in hydrology 
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in 1990s that a detailed understanding of rainfall events with high spatial resolution was acquired. 

Numerous studies took advantage of this radar rainfall technology and generated meaningful 

outcomes about spatial and temporal structures (e.g., Feral et al., 2003; von Hardenberg 2003; 

Wealands et al., 2005; Peleg and Morin, 2014). 

Previously developed rainfall generators have incorporated storm movement and spatial 

variability of rain intensity (e.g., Cowpertwait et al., 2002; Peleg and Morin, 2012) with the 

simplified assumption of temporally constant rainfall. Despite its obvious deviation from the 

nature of rainfall, this simplification was made because temporal change of rain intensity was 

considered a lesser factor to hydrologic response compared with movement, size, or duration of 

the storm. However in the authors’ opinion, this simplified assumption prevents investigating 

particular scenarios where the interaction between temporal change of rain intensity and other 

storm parameters (e.g., storm movement and size) can be impactful although it holds well 

considering on average how catchments react to storms. Therefore, the DMS generator here aims 

to provide generality in designing synthetic storms by allowing users to specify temporal change 

rate and the peak timing of rain intensity. In addition, most analytical frameworks used to study 

hydrologic responses to storm parameters assume time-invariant flow velocity across the 

drainage network and thus neglect flow attenuation from channel routing (e.g. Gupta et al., 1996; 

Mandapaka et al., 2009; Seo et al., 2012., Volpi et al., 2013). Moreover, numerical modeling 

approaches in some aforementioned studies (e.g. Stephenson, 1984; Singh, 1998; de Lima and 

Singh, 2002; Lee and Huang, 2007) adopt kinematic wave approximation which is incapable of 

modeling flow attenuation. The inadequate representation of flow attenuation effect in previous 

studies of moving storms compromises the validity of their findings in watersheds with flat 

terrain and mild slopes. Therefore, the authors think that it is imperative to re-evaluate the 
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hydrologic responses from the flat watersheds under moving storms using the most realistic 

hydrologic model available.      

Given that Houston, Texas has undergone a rapid urban expansion and is prone to intense 

tropical storms with a history of major flood events like Tropical Storm Allison (2001) and 

Tropical Storm Harvey (2017), the Brays Bayou watershed (Figure 1) with 334 km2 of area is 

selected for this study. The watershed is one of the most highly-developed areas in Houston and 

is characterized by very flat terrain, tight clay soils, and stream channel slopes of 0.2 to 0.4 m/km 

(Bedient et al., 2003). Brays Bayou is a flood-prone watershed due to over a 90% development 

percentage. In the late 1960s, a major concrete channelization project was completed to 

accommodate storms at the 100-year level. However, by the year of 1983, a 10-year storm would 

bring the channel to its full capacity due to the rapid development throughout the watershed. By 

the year of 1993 the watershed had reached over 90% development, leading to bankfull 

conditions at Main Street in response to only a 5 to 10-year storm (Bedient et al., 2018). After 

the devastation of Tropical Storm Allison in 2001, major efforts from the City of Houston, 

Federal Emergency Management Agency (FEMA), Harris County Flood Control District 

(HCFCD), and the Texas Medical Center (TMC) were invested to resolve the flooding issues 

(Fang et al., 2011; Bass et al., 2016). Given the considerable hydrologic experiences and 

practices in Brays Bayou, this well-studied watershed serves as an ideal study area for 

hydrologic analysis. By performing thorough sensitivity analyses between individual and joint 

factors from moving storms and the computed runoffs from hydrologic models, a better 

understanding of the dependency of hydrologic responses on spatiotemporal characteristics of 

rainfall can be achieved. This study is performed to achieve the following objectives:  
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1) To conceptualize a rainfall event using three fundamental components, i.e. spatial 

variability of rainfall intensity, temporal variability of rainfall intensity and storm 

movement. 

2) To conduct global sensitivity analysis (GSA) on rainfall parameters and evaluate their 

individual contribution to the variation of corresponding hydrologic responses in a real 

catchment. 

3) To explore the pattern in the hydrologic responses from the sensitive rainfall parameters 

(determined by GSA in Step 2) as well as their potential interdependences using pairwise 

sensitivity analysis (PSA). 

 

Figure 1 The Brays Bayou watershed in Houston, Texas. 
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2. METHODOLOGY 

2.1 Concept of Dynamic Moving Storm 

The fundamental framework of the Dynamic Moving Storm (DMS) generator consists of 

three basic modules, i.e. spatial variability of rain intensity, temporal variability of rain intensity, 

and storm movement, as shown in Figure 2. First, spatial variability refers to the spatial 

distribution of instantaneous rainfall intensity within the storm. In this study, storms are 

represented by idealized rain cells as isotropic elements with maximum rainfall intensity at the 

storm centroid. Second, temporal variability represents the changing pattern of rainfall intensity 

with respect to time. Finally, storm movement in this study refers to the temporal change of 

storm position on a 2-dimensional horizontal plain. For simplicity, storm movement is essentially 

represented by the movement of storm centroid disregarding circulation or minor dynamics 

within the storm. 

 

Figure 2: Modeling structure of the Dynamic Moving Storm (DMS) generator. 

2.2 Simulation Scheme 
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Figure 3 illustrates the simulation scheme using the DMS generator over Brays Bayou. A 

synthetic storm is designed as a circular-shaped isotropic rain cell moving and evolving over 

time. For all tested scenarios, a single storm is initially positioned with its perimeter tangent to 

the watershed boundary. The storm moving direction (𝜃𝜃) is defined as the counter-clockwise 

angle from the west-east direction. The storm with a constant diameter (Ls) moves in a straight 

line across the watershed’s centroid with a constant velocity (v). The storm ceases once its 

coverage completely exits the watershed. Secondly, a temporal pattern controls the dynamic 

change of the rainfall intensity over time via a simplified linear relationship (Equation 1): 

𝑅𝑅0 = max�𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚�1 − 𝛾𝛾�𝑡𝑡 − 𝑇𝑇 ∙ 𝑡𝑡𝑝𝑝��, 0� ,      0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                                                                 (1) 

where R0 is the rainfall intensity at the storm center; t is elapsed time and T is the length of time 

between the initial occurrence of precipitation in the watershed and the final occurrence; Rmax is 

the maximum rainfall intensity and is kept constant as 76mm/hr (3 in/hr) which corresponds to 

the hourly rainfall of a 10-year storm in Houston (National Weather Service, 2017); 𝛾𝛾 is the 

changing rate of rainfall intensity with the unit of [time]-1, with 𝛾𝛾 = 0 meaning a temporally 

uniform pattern of rainfall intensity; tp is the dimensionless timing (between 0 and 1) when the 

Rmax occurs, in percentage of T. For instance, tp = 0.5 means the rainfall intensity peaks when the 

storm travels halfway over the watershed. The operator max[] returns the maximum of the 

variables. For simplicity, the same 𝛾𝛾 value is assumed for both the intensification and decay of 

rainfall intensity. In addition, T and 𝛾𝛾 jointly determine the duration of catchment rainfall (D): D 

is constrained by T when the storm moves fast and T is small; whereas a rapid change rate of 

rainfall intensity (a large 𝛾𝛾 ) dictates D. With R0 generated for each time step, the spatial 
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distribution of rain intensity within the circular storm can be modeled using an areal decay 

relationship (Equation 2): 

𝑹𝑹 = 𝑹𝑹𝟎𝟎𝒆𝒆−𝟐𝟐𝟐𝟐𝟐𝟐/𝑳𝑳𝒔𝒔 ,       𝟎𝟎 ≤ 𝒓𝒓 ≤ 𝑳𝑳𝒔𝒔/𝟐𝟐                                                                                       (2) 

where R is the rainfall intensity within the rain cell; α is a shape-controlling coefficient; and r is 

the distance to storm centroid ranging from 0 to the storm radius. A greater 𝛼𝛼 value indicates a 

steeper areal decay rate of rainfall intensity, while the value of 𝛼𝛼 being zero means a spatially 

uniform distribution. Equation 2 generates the peak intensity at the cell centroid and decreasing 

values toward the perimeter, as illustrated by a 3-D idealized storm in Figure 3. Similar spatial 

structure for storm cells was studied by many previous researchers (e.g. von Hardenberg et al, 

2003; Feral et al, 2003; Morin et al, 2006; Curtis, 2007).  
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Figure 3: Simulation scheme with the DMS Generator over the Brays Bayou watershed. 

The time series of gridded incremental rainfall from the DMS generator needs to be 

converted to sub-basin hyetographs via calculating the corresponding mean areal precipitation 

(MAP) values at each time step. A hydrologic (Hydrologic Engineering Center Hydrologic 

Modeling System, HEC-HMS) model is used to receive the preprocessed hyetographs and 

simulate hydrologic responses from Brays Bayou. The Brays Bayou HEC-HMS model uses 

Clark Unit Hydrograph to rout overland flow in each of the 76 sub-basins. Therefore, the 

overland routing in HEC-HMS model assumes time-invariant travel time distributions and time-

invariant flow velocities. Regarding channel routing, the Modified Puls method is used to route 

flows through reaches along Brays Bayou (HEC, 2006). For each reach, the Modified Puls 
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routing method requires a storage-outflow curve to represent the geometry and 

storage/attenuation effects for that section of the channel (Fang et al., 2011). As opposed to 

overland routing, channel routing in the Brays Bayou HEC-HMS model accounts for time-

variant flow velocities and the individual flow attenuation effect from each section of the 

channel.  

The Brays Bayou HEC-HMS model was originally developed as part of the products from 

the Tropical Storm Allison Recovery Project (TSARP). Calibration was later conducted to 

improve the hydrologic simulation of this model in recent studies (Bass et al., 2016; Gao and 

Fang, 2018) and the simulation performance driven by radar rainfall was considered accurate 

compared to the observed hydrographs from stream gauges. The HEC-HMS model used in this 

study represents the watershed condition in 2016. In addition, the Brays Bayou HEC-HMS 

model is adjusted to 100% impervious to avoid influences on direct runoff volume caused by the 

spatial heterogeneity in the infiltration process. It should be noted that infiltration is considered 

as a minor factor in the hydrological process of the current Brays Bayou watershed due to the 

fact that the watershed is above 90% developed. 

2.3 Metrics for Hydrologic Response 

This study focuses on investigating peak discharges (Qp) generated by various combinations 

of DMS parameters. In order to dissect the intricacies in Qp, two metrics of hydrographs are 

utilized: (1) runoff volume Vrunoff, i.e. the integral of the hydrograph over time, (2) the standard 

deviation of timings of runoff, 𝛿𝛿𝑇𝑇  (i.e. the temporal dispersion of a hydrograph). These two 

metrics are independent from each other and can reveal individual aspect of hydrologic 

responses. In addition, the authors utilize the spatial statistics of catchment rainfall with respect 

to channel length to estimate the spatial location of rainfall in relative to the channel network. 
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Catchment rainfall is simply the rainfall received by a catchment, while channel length means 

the distance from the outlet of a sub-basin to the outlet of the watershed along the path of 

channels. Various measures of catchment rainfall were developed based on channel length in 

many previous studies. For instance, Smith et al., (2002, 2005a) utilized a series of scaled 

metrics called normalized flow distance and normalized dispersion to examine rainfall variability. 

The mathematical formula (Equation 3) is similar to those characterizing flow paths in previous 

research (Zoccatelli et al., 2011):  

Δ =
∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

|𝐴𝐴|−1 ∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ∙∑ 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1
                (3) 

where Δ is the dimensionless spatial moments of catchment rainfall with respect to channel 

length; 𝑟𝑟𝑖𝑖𝑖𝑖 is the rainfall at sub-basin i and time step j; ai is the area of sub-basin i and A is the 

total area of all the sub-basins; n is the total number of subbasins and m is the total number of 

time steps; di is the channel length from sub-basin i to the watershed outlet. Figure 4 shows the 

channel length values of the 76 sub-basins in Brays Bayou. 𝛥𝛥 describes the location of centroid 

of catchment rainfall with respect to the centroid of channel network (i.e. the average value of 

channel length). Values of 𝛥𝛥 being one (1) reflect a rainfall distribution concentrated at the 

watershed centroid, with values less than one (< 1) indicating that rainfall is concentrated near 

the watershed outlet, and values greater than one  (> 1) indicating that rainfall is concentrated 

near the watershed headwaters (Zoccatelli et al., 2011). 
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Figure 4: Channel length values of the sub-basins in Brays Bayou 

2.4 Sobol’ Sensitivity Analysis 

In this study, global sensitivity analysis (GSA) is conducted to investigate the effects of DMS 

parameters on the peak discharge at the watershed outlet generated by a single moving storm 

over Brays Bayou. Sobol’s method (Sobol’, 1993) is a GSA approach based on variance 

decomposition, in which any model can be represented in Equation 4: 

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) = 𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑝𝑝)                                                                                                      (4) 

where Y is the model output; f(X) is the model and X = X1, …, Xn is the parameter set. In Sobol’s 

method, the total variance of the model output (Vt) is decomposed into component variances 

from individual parameters and their interactions as shown in Equation 5: 

𝑉𝑉𝑡𝑡 = ∑ 𝑉𝑉𝑖𝑖𝑖𝑖 + ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗𝑖𝑖<𝑗𝑗 + ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘𝑖𝑖<𝑗𝑗<𝑘𝑘 + ⋯+ 𝑉𝑉1,2,…,𝑛𝑛                        (5) 

where Vi is the variance due to the ith parameter Xi, and Vi,j is the variance due to the interaction 

between parameters Xi and Xj. Sobol’s sensitivity indices of different orders, i.e. the sensitivity of 

single parameter or parameter interaction, is defined as their percentage contribution to the total 
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variance. In this study, the first-order index Si is used to quantify the main effect from a single 

parameter as shown in Equation 6:                

𝑺𝑺𝒊𝒊 = 𝑽𝑽𝒊𝒊
𝑽𝑽𝒕𝒕

                                                                                                                       (6) 

The second order index Sij measures the effect of the interaction two parameters as shown in 

Equation 7: 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖,𝑗𝑗
𝑉𝑉𝑡𝑡

                   (7) 

The total-order index STi measures the main effect of the parameter and its interaction with all the 

other parameters as shown in Equation 8: 

𝑆𝑆𝑇𝑇𝑇𝑇 = 1 − 𝑉𝑉~𝑖𝑖
𝑉𝑉𝑡𝑡

                   (8) 

where V~i is the variance due to all the parameters except for Xi.   

The GSA includes six parameters, i.e. storm moving velocity (v), storm moving direction (𝜃𝜃), 

storm diameter (Ls), spatial shape factor of rainfall intensity (𝛼𝛼 in Equation 2), temporal change 

rate of rainfall intensity (𝛾𝛾 in Equation 1), and peak timing of rainfall intensity (tp in Equation 

1). For sampling approach, the authors employ the quasi-Monte Carlo, which is characterized by 

an enhanced convergence rate compared to the crude Monte Carlo (Sobol’, 2001). Without 

knowledge of the true parameter distributions, the quasi-Monte Carlo uses deterministic 

uniformly distributed points to effectively prevent sampling from clustering and hence improve 

convergence rate (Homma and Saltelli, 1995). A large sampling size of 20,000 is used for 

implementing Sobol’s method. 
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Since the quasi-Monte Carlo requires only ranges and no default values of the parameters, an 

investigation was conducted to determine reasonable ranges as summarized in Table 1. The 

authors mainly focus on non-tropical storms in the investigation because the spatial structure of 

rainfall (Equation 2) used in the DMS generator is based on non-tropical storm cells. The 

historical storms are selected based on daily rainfall recorded by the Community Collaborative 

Rain, Hail and Snow Network (CoCoRaHS). After a threshold of 200-mm daily rainfall 

(equivalent to a 10-year storm for the study area) being applied in a filtering process, 20 non-

tropical storms are identified with the corresponding rain gauges that received the most rainfall 

during the storms as shown in Figure 5. Storm movement is extracted from a Next Generation 

Radar (NEXRAD) level-III product (code: NST/58) providing locations of identified storm cells 

every 5 minutes. The NST/58 products are obtained from National Climate Data Center (NCDC) 

for the past twenty non-tropical storms that occurred in/near Harris County. Storm velocities and 

directions are calculated using 86,972 storm cells detected by the NEXRAD radar in Houston 

(ID: KHGX) during the 20 storms, as shown in Figure 6. It is found that the storm velocities 

range from 0 to 120 km/hr and that storm directions cover all possible angles (0˚ to 360°). For 

spatial parameters of storms, Olivera et al (2008) reported the largest storm area in Texas 

extracted from NEXRAD radar data was 800 km2 which corresponds to the upper limit of storm 

diameter (30 km) in this study. Also based on a previous study on storm structure by Curtis 

(2007), lower limit of storm diameter is estimated to be 5 km according to storm cells extracted 

from 15-minute radar rainfall data. The upper limit of spatial shape factor α (α = 3) is determined 

also based on the study by Curtis (2007) where relationships between rain intensity and 

normalized storm area were estimated. The lower limit of α (= 0) is determined to incorporate 

simplest possible case of spatially uniform rain intensity. In terms of temporal parameters of 
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storms, the upper limit of 𝛾𝛾 (= 24) corresponds to a storm duration of 5 minutes, representing the 

cases found in the NST/58 products where storm cells occur in only one time step. The lower 

limit of 𝛾𝛾 (=0) represents the simplest possible temporal pattern: a storm of steady intensity 

moving across the watershed. The range of peak timing of rainfall intensity (tp) is set to cover all 

possible cases i.e. from 0 to 1. This is because variation of tp can be viewed as a result of 

possible locations of storm sequences relative to the watershed which can be assumed to 

uniformly cover Brays Bayou. 

 

Figure 5: Maximum daily rainfall of 20 historical storms in/near Harris County, Texas. 



60 
 

 

Figure 6: Velocities and Directions of Storm Movement Extracted from 20 storms captured by 

NEXRAD radar KHGX. 

Table 1: Parameter ranges for Global Sensitivity Analysis (GSA) 

Parameters Minimum Maximum 
Moving Velocity v (km/h) 0 120 

Moving Direction 𝜽𝜽 (°) 0 360 
Size/Diameter Ls (km) 5 30 

Spatial Shape Factor 𝜶𝜶 0 3 

Temporal Change Rate 𝜸𝜸 (h-1) 0 24 
Peak Timing of Rainfall 

Intensity tp 
0 1 

 

3. RESULTS AND DISCUSSION 

3.1 Results from Global Sensitivity Analysis (GSA) 
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The first- and total-order sensitivity indices of the six parameters are shown in Figure 7A. In 

Figure 7A, the first order indices are represented by the blue bars measuring individual 

parameter contributions to the variance of peak discharge at the watershed outlet. The total-order 

indices are signified by the total height of bars, which measure the individual and interactive 

parameter contributions. It should be noted that yellow bars measure the interactive contribution 

of one parameter with all the other parameters. It can be found that storm moving velocity (v) is 

the most sensitive parameter with both the first- and total- order indices being the highest among 

all the parameters. It should also be noted that parameter interactions are higher than the first 

order indices for all the parameters  

Among the six parameters, v, Ls, 𝛼𝛼, and 𝛾𝛾 generate distinctly higher total-order indices than  

𝜃𝜃 and tp. This can be generally explained by the variation of excess rainfall as an indicator for 

peak discharge. According to Equations 1 and 2, variation of Ls, 𝛼𝛼 , and 𝛾𝛾  affects the total 

amount of rainfall carried by the storm. In comparison, varying 𝜃𝜃 and tp values only changes the 

catchment rainfall as a proportion of the total amount carried by the storms, and thus are not as 

influential as Ls, 𝛼𝛼, and 𝛾𝛾. Regarding the moving velocity (v), it changes the duration of storm 

traveling across the watershed (T), and further the catchment rainfall. In addition, v affects peak 

discharge due to more complex mechanisms, as discussed later in the section of pairwise 

sensitivity analysis (PSA). 

Figure 7B shows the second-order sensitivity indices measuring the contributions of the 

interactions between any two of the six parameters to the variance of peak discharge at the 

watershed outlet (Qp).  It is found that interactions between v and the other five parameters 

generate highest second-order sensitivity indices and hence are most influential to Qp. Therefore, 
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the interactions between v and the other five parameters are investigated individually via 

pairwise sensitivity analysis (PSA) as detailed in the following sections.  

 

Figure 7: Sensitivity indices of the DMS parameters on peak discharge at the watershed outlet, 

A) first- and total- order sensitivity indices and B) second-order sensitivity indices. 

3.2 Results from Pairwise Sensitivity Analysis (PSA) 

Pairwise sensitivity analysis (PSA) focuses on investigating the pattern of hydrologic 

responses from individual parameter as well as their potential interdependence. The PSA is 

conducted by varying two paired parameters within their own ranges while keeping all the other 

parameters constant to their default values (Table 2). It should be noted that the parameter 

ranges in PSA are in general smaller subsets of those in GSA, which aims to focus on the 

scenarios that generate meaningful variation in hydrologic responses and require illustrations. 

The settings of the default values are for the same purpose. The default value of Ls is specially 

changed from 10 km to 30 km for the PSA between v and 𝛼𝛼, in order to generate comparable 

variations to those from the PSA between v and Ls. Figure 8 shows a panel of contour plots of 
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the peak flow rates (Qp, 1st column – Figures 8A, 8C, 8E, 8G, and 8I) and runoff volume values 

(Vrunoff, 2nd column - Figures 8B, 8D, 8F, 8H, and 8J) from varied storm moving velocity (v) and 

the other five parameters (five rows), i.e. storm moving direction (𝜃𝜃), storm diameter (Ls), spatial 

shape factor (𝛼𝛼), temporal change rate (𝛾𝛾), and peak timing of rainfall intensity (tp); in each panel, 

the Y-axis represents v, and X-axis represents one of the other five parameters; for each X value, 

the red asterisk marks the Y value (v) that generates the highest peak flow or runoff volume.   
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Figure 8: Peak flow rates (Qp) and runoff volume (Vrunoff) at watershed outlet from various storm 

moving velocities (v) paired with various storm moving directions (8A and 8B), storm 

diameters Ls (8C and 8D), spatial shape factors 𝛼𝛼 (8E and 8F), temporal change rate 𝛾𝛾 

(8G and 8H), and peak timing tp (8I and 8J) with the red asterisks marking the v that 

generates the highest Qp or Vrunoff. 

It is interesting to note the similarities and differences between the PSA results of Qp and 

Vrunoff. From any two panels from the same row in Figure 8, similarities in general can be traced 

between the patterns in Qp and Vrunoff values. Based on all the values in Figure 7, the correlation 

coefficient between Qp and Vrunoff is 0.91. 
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Table 2: Parameter ranges for Pairwise Sensitivity Analysis (PSA)  

 

Parameters Minimum Maximum Default Value 
Moving Velocity v (km/h) 0.5 20 5 

Moving Direction 𝜽𝜽 (°) 0 360 5 
Size/Diameter Ls (km) 5 30 10 (30 *) 

Spatial Shape Factor 𝜶𝜶 0 3 0 

Temporal Change Rate 𝜸𝜸 (h-1) 0.083 4 0.33 
Peak Timing of Rainfall 

Intensity tp 
0.1 0.9 0.5 

* : Storm diameter is set to 30 for the PSA of storm moving velocity (v) and spatial shape factor (𝛼𝛼) 

The varying patterns of Vrunoff in Figure 8 are discussed in detail as follows. With varying 

storm moving velocity values, the traveling duration (T) of the moving storm changes. The 

shortened T due to increasing v further causes Vrunoff to reduce as shown in all the panels of 

Figure 8. Regarding storm moving directions, they cause Vrunoff to vary due to the overlay 

between the areal extents of the storm path and the Brays Bayou watershed. Because of the 

elongated shape of Brays Bayou, Vrunoff values become larger when the storm moves eastward 

(𝜃𝜃 = 0°) or westward (𝜃𝜃 = 180°) and smaller when storms moves towards the north (𝜃𝜃 =

90°) or the south (𝜃𝜃 = −90°), as shown in Figure 8B. Besides 𝜃𝜃, the storm diameter Ls is 

another parameter affecting Vrunoff via varied coverages of the storm over the watershed — a 

larger Ls value means a greater storm coverage thus a larger runoff volume (Figure 8D). Unlike 

Ls, the spatial shape factor 𝛼𝛼 does not affect the storm coverage but the amount of rainfall carried 

by the storm: a smaller 𝛼𝛼 indicates a milder areal decay rate of rainfall intensity and thus a 

greater volume of rainfall, as shown in Figure 8F. Similar to the storm moving velocity v, the 

temporal change rate 𝛾𝛾 dictates the duration of catchment rainfall (D) : rapid rates of change, or 

greater 𝛾𝛾 values, generate shorter D and thus smaller Vrunoff, as shown in Figure 8H. It should be 



66 
 

noted that X-axes of Figures 8G and 8H are plotted in log-scale because Qp and Vrunoff values 

from various temporal change rates (𝛾𝛾) are positively skewed. Finally, tp along with storm 

movement determines spatially where the most intense portion of rainfall (the storm core) occurs 

relative to the watershed outlet: small tp values combined with the default westward storm 

movement (𝜃𝜃  = 5°) cause the storm core to be centered at headwaters while rainfall is 

concentrated near the watershed outlet with large tp values. Such effects from tp and the oval 

shape of Brays Bayou jointly determine that catchment rainfall or Vrunoff is maximized when the 

storm core occurs at midstream or tp is close to 0.5, as shown in Figure 8J.   

Despite their similarities, Qp and Vrunoff show evident discrepancies in the patterns along the 

Y-axis from varying storm moving velocities. As indicated by the red asterisks in all the panels 

of Figure 8, the storm velocity of the highest Qp (1st column of the panels) is generally greater 

than that of the highest Vrunoff (2nd column of the panels) except for the scenarios where storms 

travel along other directions than along the streamflow (𝜃𝜃  near 0) in Figures 8A and 8B. 

According to previous studies, the peak discharge is attributed not only to rainfall volume 

received by catchments, but also spatial concentration of catchment rainfall (Nicotina et al., 2008; 

Volpi et al., 2013). A higher spatial concentration of catchment rainfall essentially enhances the 

temporal superposition of runoff contributing to the watershed outlet, which can be effectively 

indicated by a smaller standard deviation of runoff timings, 𝛿𝛿𝑇𝑇 . This study benefits from 

employing 𝛿𝛿𝑇𝑇 as a hydrologic metric since it indicates peak flow magnification independently 

from Vrunoff. In the following sections, the authors investigate the intricacy of 𝛿𝛿𝑇𝑇 to gain deeper 

insights on the hydrologic responses with respect to each of the storm parameters including 

storm moving direction (𝜃𝜃), storm diameter (Ls), spatial shape factor (𝛼𝛼), temporal change rate 

(𝛾𝛾), and peak timing of rainfall intensity (tp).  
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3.2.1 Storm Movement – Storm Moving Direction 

Figure 9A shows the range, interquartile range, and median value of  𝛿𝛿𝑇𝑇 from storm moving 

directions (𝜃𝜃) between -60° and 60° for various storm moving velocities (v). The selection of 𝜃𝜃 

values aims to focus on the storms directions with positive downstream components. It is found 

that as v increases, 𝛿𝛿𝑇𝑇 first decreases, gets minimized at v ≈ 5 km/hr, and then increases. The 

authors attribute the change of 𝛿𝛿𝑇𝑇  with increasing v to two counteracting mechanisms as 

discussed below. First, the temporal dispersion of hydrographs (𝛿𝛿𝑇𝑇) reach minimum when storms 

travel downstream along the main channel at a certain speed. This phenomenon is the so-called 

“resonance condition” in literature (Surkan, 1974; Seo et al., 2012; Volpi et al., 2013). In essence, 

the “resonance condition” is caused by an exact superposition of the excess rainfall in time (Seo 

et al., 2012). Under resonance conditions, not only is the temporal dispersion of hydrographs 

reduced as shown in Figure 9A, but also the flood peak is magnified as indicated by the red 

asterisks in Figure 8A. The resonance condition dictates the initial decrease of 𝛿𝛿𝑇𝑇  with 

increasing v. Second, increasing v reduces the spatial concentration of catchment rainfall and 

further increases the dispersion in arrival times of runoff (larger 𝛿𝛿𝑇𝑇) at the watershed outlet. Such 

effect becomes evident when v exceeds the resonance value, as indicated by the increase of 𝛿𝛿𝑇𝑇 in 

Figure 9A.  

In order to illustrate the directional behavior of hydrologic responses, the maximal 

directional bias introduced by Niemczynwicz (1984b) is utilized as shown by Equation 9. 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝑀𝑀𝑈𝑈𝑈𝑈
𝑀𝑀𝑈𝑈𝑈𝑈

                                (9) 

where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximal directional bias of a hydrologic metric (𝛿𝛿𝑇𝑇 herein); MDOWN and MUP 

are the hydrologic metrics for storms moving downstream and upstream respectively. Figure 9B 
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shows two boxplots of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of Qp and 𝛿𝛿𝑇𝑇 respectively, for storm moving directions from -60° to 

60°.  First, it can be found that all 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of Qp values are positive while all 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  of 𝛿𝛿𝑇𝑇  are 

negative, meaning that peak flow is higher and the temporal dispersion of hydrographs is lower 

when storms moving downstream than upstream. This explains the differences of Qp and Vrunoff 

values regarding storm moving directions (along X-axis) in Figures 8A and 8B — the 

downstream-moving storms generate higher Qp but similar Vrunoff than the upstream-moving 

storms. Second, the varying patterns of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of Qp and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  of 𝛿𝛿𝑇𝑇  in Figure 9B are almost 

symmetrical, which means 𝛿𝛿𝑇𝑇 is very indicative of Qp in this case. In addition, the peak 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of 

Qp and the lowest 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of 𝛿𝛿𝑇𝑇   coincide when storm moves downstream approximately along the 

stream flow direction of Brays Bayou (𝜃𝜃 = -15°), which confirms the finding by Niemczynwicz 

(1984b) the peak 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of Qp is reached when a storm moves in the same direction as the channel 

flow.  

 

Figure 9: Standard deviation of runoff timings (𝛿𝛿𝑇𝑇) illustrated by (A) the range, interquartile 

range, and median values from storm moving directions (𝜃𝜃) between -60° and 60° for various 
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storm moving velocities (v) and (B) boxplots of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 of Qp and 𝛿𝛿𝑇𝑇 from various storm moving 

velocities (v) for storm moving directions (𝜃𝜃) between -60° and 60°. 

3.2.2 Spatial Variability – Storm Diameter Ls and Spatial Shape Factor 𝛼𝛼 

Figures 10A and 10B show the contour plots of 𝛿𝛿𝑇𝑇 from various storm moving velocities (v) 

versus storm diameters (Ls) and spatial shape factors (𝛼𝛼), respectively; for each X value (Ls or 𝛼𝛼), 

the red circles marks the v value generating the lowest 𝛿𝛿𝑇𝑇. First, it can be found that the patterns 

of 𝛿𝛿𝑇𝑇 in Figures 10A and 10B are almost symmetrical along the X direction. This indicates that 

the increasing Ls and decreasing 𝛼𝛼 in their own varying ranges have similar effects on 𝛿𝛿𝑇𝑇. It can 

be found that either a smaller storm diameter or a steeper areal decay rate of rainfall intensity can 

reduce 𝛿𝛿𝑇𝑇 value. This is due to the increased spatial concentration of catchment rainfall further 

decreasing the temporal dispersion of runoff arriving at the watershed outlet. Second, Ls and 𝛼𝛼 

interact with storm moving velocity v in reaching the aforementioned resonance condition. As 

indicated by the red circles, the v values associated with resonance conditions increase with 

greater Ls or lower 𝛼𝛼 values because a faster storm moving velocity is required to offset the 

effect from the reduced spatial concentration of catchment rainfall and reach the exact 

superposition of flow at the watershed outlet. Additionally, the v values generating the lowest 𝛿𝛿𝑇𝑇 

(the red circles in Figures 10A and 10B) do not necessarily coincide with those generating the 

highest Qp (the red asterisks in Figures 8C and 8E), especially for higher Ls or lower 𝛼𝛼 values. 

This is due to the increased Vrunoff (from the higher Ls or lower 𝛼𝛼 values) overwhelming the 

decreased spatial concentration of catchment rainfall in terms of affecting the peak flow.  
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Figure 10: Standard deviations of runoff timings (𝛿𝛿𝑇𝑇) from various storm moving velocities (v) 

versus various (A) storm diameters (Ls) and (B) spatial shape factors (𝛼𝛼) with red circles marking 

the v generating the lowest 𝛿𝛿𝑇𝑇 

3.2.3 Temporal Variability –Temporal Change Rate 𝛾𝛾  

Figure 11A shows the range, interquartile range, and median value of  𝛿𝛿𝑇𝑇  from various 

temporal change rates (γ) for various storm moving velocities (v). It is shown that 𝛿𝛿𝑇𝑇  first 

decreases rapidly, reaches the minimum at v ≈ 5 km/hr, and then slowly increases with greater v 

values, which corresponds to the variation of peak flow as shown in Figure 8G. This is also due 

to the resonance condition mentioned before. It should also be noted that the interquartile range 

is very close to the top of the range because 𝛿𝛿𝑇𝑇 values from various temporal change rates (𝛾𝛾)  

are positively skewed, analogous to Qp and Vrunoff values in Figures 8G and 8H.  

Similar to Figure 11A, Figure 11B shows the same statistics (range, interquartile range, and 

median) of 𝛿𝛿𝑇𝑇 but from various v values for 𝛾𝛾 values plotted in log scale. First, with greater 𝛾𝛾, 𝛿𝛿𝑇𝑇 

is found to decrease because a rapid temporal change of rainfall intensity along with the storm 

movement increases the spatial concentration of catchment rainfall and further reduces the 
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temporal dispersion of hydrographs. It is interesting to note that change of 𝛾𝛾  causes two 

counteracting effects on peak discharge. On one hand, increasing 𝛾𝛾 values lead to smaller 𝛿𝛿𝑇𝑇 as 

shown in Figure 11B, indicating a more spiky shape of the hydrograph. On the other hand, 

increasing 𝛾𝛾 values shorten the rainfall duration in the watershed and further reduce Vrunoff as 

shown in Figure 8H. The second effect appears to be stronger than the first based on the pattern 

of Qp shown in Figure 8G. 

 

Figure 11: Standard deviations of runoff timings (𝛿𝛿𝑇𝑇) illustrated by the range, interquartile range, 

and median values (A) from various temporal change rates (𝛾𝛾) for various storm moving 

velocities (v) and (B) from various storm moving velocities (v) for various temporal change rates 

(𝛾𝛾). 

3.2.4 Temporal Variability –Peak Timing of Rainfall Intensity tp 

Figure 12A and 12B show the range, interquartile range, and median value of  𝛿𝛿𝑇𝑇  from 

various peak timings of rainfall intensity (tp) for various storm moving velocities (v) and from 

various v for various tp values, respectively. The varying trend of 𝛿𝛿𝑇𝑇 with increasing v in Figure 

12A reaffirms the resonance conditions found in the previous PSA sets. It can also be found in 
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Figure 12B that 𝛿𝛿𝑇𝑇 deceases rapidly with increasing tp from 0.1 to 0.3, then slowly decreases till 

tp = 0.7, and then slightly increases till tp = 0.9. The authors attribute the varying pattern of 𝛿𝛿𝑇𝑇 

with tp to two main factors as discussed below. First, varying tp values along with the storm 

movement change the location of storm core relative to the channel network. Figure 12 shows 

the dimensionless channel lengths from the storm core to the watershed outlet (𝛥𝛥 in Equation 3) 

calculated for various combinations of tp and v. When v is small, increasing tp values cause the 

storm core to shift from the headwaters (higher 𝛥𝛥) to near the watershed outlet (lower 𝛥𝛥). 

Consequently, the center mass of rainfall excess goes through shorter main channel lengths and 

thus receives less attenuation as tp increases. Such effect dictates the initial decrease of 𝛿𝛿𝑇𝑇 with 

increasing tp as shown in Figure 12B. It can also be found in Figure 13 that tp creates less 

variation in 𝛥𝛥 with greater v (green zone) due to the increasingly uniform spatial distribution of 

catchment rainfall. Gao and Fang (2018) also utilized  𝛥𝛥 as an indicator to demonstrate that the 

peak discharge is inversely correlated to 𝛥𝛥 in Brays Bayou and such relationship is stronger with 

greater spatial concertation of catchment rainfall. Second, besides the channel attenuation effect, 

the change of tp shifts the balance between the overland and channel routing. As tp increases and 

channel routing lessens (indicated by 𝛥𝛥), overland routing constitutes a growing portion in the 

overall rainfall-runoff process. As a result, the hydrograph at the watershed outlet resembles 

characteristics of the unit hydrographs used in the overland routing approach, which features 

slower flow velocity and larger 𝛿𝛿𝑇𝑇. As shown in Figure 12B, the second factor becomes more 

pronounced in the variation of 𝛿𝛿𝑇𝑇 when tp exceeds approximately 0.3.     
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Figure 12: Standard deviations of runoff timings (𝛿𝛿𝑇𝑇) illustrated by the range, interquartile 

range, and median values (A) from various peak timings of rainfall intensity (tp) for various 

storm moving velocities (v) and (B) from various storm moving velocities (v) for various peak 

timings of rainfall intensity (tp). 
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Figure 13: Dimensionless channel lengths from various storm moving velocities (v) versus 

various peak timings of rainfall intensity (tp). 

3.3 Discussion  

The results from GSA suggest that parameter interactions contribute more to the variation of 

peak discharge than individual parameters. In particular, contributions of 𝛾𝛾 and tp coming almost 

entirely from parameter interactions suggest that the seemingly minor factors could lead to great 

hydrologic effects through interacting with other factors. Therefore, it is important for synthetic 

storms to sufficiently reflect and not oversimplify the temporal variability of rainfall for 

hydrologic simulations.  

Results from PSA indicate that peak discharge is largely driven by runoff-volume or rainfall 

amount in the highly impervious Brays Bayou watershed. Many historical storm events 

occurring in the Houston region have exhibited this feature. For instance, the tremendous rainfall 

amount of Hurricane Harvey in 2017 caused record-breaking peak discharges in 9 out the 19 

gauged rivers in Harris County (Blake and Zelinsky, 2018). Gao and Fang (2018) also reported a 

high correlation between Qp and Vrunoff in Brays Bayou based on numerous rainfall-runoff 

scenarios created by storm transposition. The volume-driven peak discharges are also due to the 

flat terrain of Brays Bayou which inherently has attenuation effects on the flood peaks. This 

finding is opposite to the case in a steep mountainous region where peak rainfall intensity is 

likely the prevailing factor. Reflecting the attenuation effects of various reach sections suggests 

space- and time- variant flow velocities in channel routing. Therefore, the simplified assumption 

of time-invariant flow velocities (made in previous studies) is not suitable for flat areas like 

Brays Bayou. Furthermore, it is worth noting the differences between the resonance conditions in 

this study and those in previous studies (Surkan, 1974; Seo et al., 2012; Volpi et al., 2013). The 
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temporal superposition reached under the assumption of time-invariant flow velocities is 

expected to be higher than the more realistic one reached in this study. In other words, resonance 

effect occurring in Brays Bayou would be overestimated if time-variant flow velocities were 

neglected.  

Due to the 100% imperviousness assumed in this study, the storm core location does not 

affect any spatial distribution of infiltration processes to further result in varied hydrologic 

responses. Although this assumption is adequate for urban watersheds like Brays Bayou, it might 

be proved invalid elsewhere. For example, Syed et al. (2003) investigated the pronounced 

channel loss in arid watersheds focusing on its dependency on the relative location of storm core 

in the channel network. Therefore as a factor in runoff generation process, spatio-temporal 

variability of rainfall is more complex to natural watersheds than urban watersheds. If the 

findings from this study were to be extended to natural watersheds, the hydrologic responses 

would have to be associated with excess rainfall, which requires accurate estimation of losses 

due to soil moisture deficit created by evapotranspiration before each storm event. 

4. CONCLUSIONS AND FUTURE WORK 

This paper demonstrates a synthetic storm generator (DMS) that encompasses spatial and 

temporal variabilities of rain intensity as well as storm movement. Output from the DMS 

generator can be further connected to lumped or distributed hydrologic models to perform 

rainfall-runoff analysis. The hydrologic responses to the storm parameters are investigated by 

conducting global and pairwise sensitivity analyses on the DMS parameters. In particular, the 

DMS generator includes parameters controlling the temporal variability of rainfall intensity 

which were rarely available in previous storm generators. Moreover, the authors account for flow 

attenuation when analyzing the hydrologic responses to storm parameters, which was often 
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neglected in previous studies. Consequently, the insights gained from the analyses can better 

reveal the complex nature of rainfall-runoff process.  

To decipher various hydrologic responses to storm parameters, runoff volume (Vrunoff) and 

standard deviation of runoff timings (𝛿𝛿𝑇𝑇) are utilized as independent metrics of hydrographs to 

reveal different aspects of the rainfall-runoff mechanism and dissect the intricacy in peak 

discharges. Dimensionless channel length ( 𝛥𝛥 ) is employed to characterize the spatial 

organization of catchment rainfall in the channel network. In addition, the DMS framework 

enables us to incorporate spatio-temporal variables into synthetic storms and reveal the 

corresponding hydrologic responses. The well-calibrated hydrologic model for Brays Bayou is 

used to accurately reveal the hydrologic responses to moving storms without compromising the 

flow attenuation effects from channel routing. The sensitivity analyses are conducted to 

investigate the effects on peak discharge from both the individual parameters and their 

interdependences. Understanding how storm characteristics synergize or counteract with each 

other to affect flood peaks is valuable for identifying the weakness in flood protection against 

certain type of storms. Such insights also help emergency responders for better preparedness 

against flood hazards. The findings obtained in this study about the hydrologic responses from 

Brays Bayou are summarized as follows:  

1) According to the global sensitivity analysis, storm moving velocity significantly affects 

peak discharge not only individually but also through interacting with other storm 

characteristics.  

2) Peak discharges are magnified when storms travel downstream along the main channel at 

the speed that corresponds to a temporal superposition of runoff (indicated by 𝛿𝛿𝑇𝑇) 

arriving at the watershed outlet.  
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3) Spatial and temporal variabilities of rainfall affect peak discharges via changing the 

spatial concentration of catchment rainfall and further the temporal dispersion of 

hydrographs at the watershed outlet (indicated by 𝛿𝛿𝑇𝑇). Specifically, a smaller storm 

diameter, a steeper areal decay rate of rainfall intensity, and a rapider temporal change 

rate of rainfall intensity all increase the spatial concentration of catchment rainfall and 

reduce the temporal dispersion of hydrographs. 

4) The peak timing of rainfall intensity (tp) along with storm movement alters spatially 

where the most intense portion of rainfall (the storm core) occurs in the channel network, 

which further changes the flow attenuation effects from channel routing. A storm core at 

headwaters leads to the most attenuation from channels, while rainfall centered near the 

watershed outlet generates runoff with nearly no attenuation from channels.  

For future directions of this study, rainfall frequency analysis can be conducted if the DMS 

generator is embedded in a stochastic framework (see e.g., Wright et al 2013; Zhou et al., 2019). 

Additional stochastic processes are required to simulate how storm cells cluster in space and how 

individual storm cell starts and ends in time, which can be similar to other developed storm 

generators based on stochastic point process (see e.g., Cowpertwait et al., 2002; Burton et al., 

2008; Leonard et al., 2008; Cowpertwait, 2010; Beuchat et al., 2011). A prerequisite for the 

stochastic DMS generator is to estimate the probability distribution of storm parameters. 

Ongoing effort is invested in retrieving parameters from radar rainfall data (see e.g., Peleg and 

Morin, 2012; Peleg and Morin, 2014). Once the stochastic DMS generator successfully 

reproduces key statistics from the historical rainfall, it will be further used in flood frequency 

analysis for ungauged watersheds by connecting to a hydrologic model for a long-term 

simulation (see e.g., Wright et al., 2014). The authors will determine appropriate hydrological 
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models for ungauged watersheds by taking into account the following factors: 1) the model, 

whether being distributed or lumped, should adequately reflect the effects of spatially distributed 

rainfall fields; 2) without stream gauges for calibration, uncertainty of model parameters should 

be reduced via regionalization (see e.g., Samaniego et al., 2010); and 3) the model should be able 

to capture the temporal variation of model states (e.g., antecedent soil moisture) via continuous 

simulations.  
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ABSTRACT 

The historical record of rainfall observation rarely provides sufficient record length and 

resolution and therefore causes uncertainty in rainfall frequency analysis (RFA). The work 

described here serves as the first step in applying a long-term stochastic rainfall simulation in 

RFA. The framework of stochastic simulation adopts optimal estimation for spatio-temporal 

modeling of rain fields. A non-parametric approach featuring K-Nearest Neighbor Resampling 

(KNNR) plus the Genetic Algorithm (GA) mixing process is utilized for generating parameters 

in the long-term simulation. A case study is conducted in Dallas-Fort-Worth metroplex as the 

simulation domain. Ensemble parameters are generated using the KNNR+GA method from 

adjacent homogeneous areas and 10 years of radar rainfall observation. One hundred most rainy 

days in the 10 years are simulated at the resolutions of 4 × 4 km2 and 1 hour for 50 ensemble 

members. The simulated rainfall is thoroughly evaluated against the observed radar rainfall with 

respects to statistical moments, spatio-temporal structure, and frequency distribution of rainfall at 

both near-point scale and domain scale. The results indicate that ensemble simulations 

successfully reproduce key statistical properties of the observed rainfall. In addition, the 

approach is also effective and flexible in capturing heavy rainfall values, which is important for 

RFA.  

KEY TERMS 

Stochastic Rainfall Simulation, Optimal Estimation, K-Nearest Neighbor Resampling, 

Genetic Algorithm, Spatio-temporal Modeling of Rain Field,  Non-parametric Approach, 

Rainfall Frequency Analysis 
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1. INTRODUCTION 

The role of rainfall is essential for hydrology as it is the driving phenomenon of runoff 

mechanisms. Rainfall observation is the foundation of many hydrologic applications including 

flood risk management, design of urban drainage systems and dams (Cunnane, 1988). As the 

centerpiece of the wide range of applications, rainfall frequency analysis (RFA) reveals the 

relationship between rainfall magnitude and likelihood. Any RFA becomes more valid with 

longer record of rainfall observation, since the return period of infrequent severe storms are 

better captured. In the absence of a long data record, extrapolation is inevitable which adds 

uncertainty to RFA. Besides record length, another limitation in traditional RFA is caused by the 

spatially-sparse rain-gauge measurements. Due to the lack of spatial resolution, rain-gauge 

measurements can easily miss the most intense portion of storm, underestimating rainfall of large 

return period (e.g. 100 years or 500 years). In addition, a number of simplifying assumptions 

were made about the structure of extreme rainfall when high-resolution measurement of rainfall 

was not practical, including spatially and oftentimes temporally uniform ‘design storms’ (e.g. 

Koutsoyiannis, 1994), and area reduction factors (ARFs, e.g. Svensson and Jones, 2010). Some 

of these assumptions neglect the variety and complexity of hydro-meteorological processes 

(Wright et al., 2013b). Although the advent of weather radar estimation tremendously increases 

the spatiotemporal resolution of rainfall observation, its length of record hasn’t exceeded 30 

years in the U.S. (NCEI, 2018). Therefore, lack of resolution and record length in rainfall 

observation has hindered reliable RFA. 

Several stochastic modeling techniques have been developed to overcome the data 

limitations described above. Stochastic rainfall models are statistical models that can be used as 

random number generators whose output resembles the rainfall data to which they have been fit 
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(Woolhiser, 1992). The existing stochastic spatiotemporal modeling approaches can be divided 

into two major classes. The first approach is based on the theory of stochastic point processes. In 

this approach, the basic precipitation units called “rain cells” are two-dimensional pulses of 

positive intensity and duration. The occurrence of rain cells are simulated as independent Poisson 

processes overlapping in space and time. This approach has become one of the most widely used 

for rainfall simulation (e.g., Cowpertwait et al., 2002; Burton et al., 2008; Leonard et al., 2008; 

Cowpertwait, 2010; Beuchat et al., 2011), wherein the rain cells are conceptualized as discs of 

randomly assigned durations, intensities, and radius and move in constant velocity. The 

stochastic point processes models allow for analytical derivation of statistical properties across 

spatiotemporal scales, thus reproduce mean rainfall statistics reasonably well. However, these 

models often fail to capture complex spatial structure and kinematic properties of the rain cells. 

Moreover, representation of more realistic rainfall patterns requires a large number of 

parameters, which further leads to a difficult calibration.  

The second approach is based on the discovery that rainfall exhibits a scale-invariant 

behavior in both space (Mandelbrot, 1983) and time (Marsan et al., 1996; Venugopal et al., 

1999). Multiplicative random cascade models were used to simulate the fractal nature of rainfall 

and were found to successfully reproduce the scale-invariant structure (Lovejoy and Schertzer, 

1985; Schertzer and Lovejoy, 1987). This approach is attractive because the characteristics of 

rainfall across spatiotemporal scales are explicitly described via parsimonious parameterization. 

For this reason, random cascade models are extensively used for stochastic rainfall simulation 

(e.g. Over and Gupta, 1996; Menabde et al., 1997; Deidda, 2000). The State-of-the-art model 

based on this approach is the Short-Term Ensemble Prediction System (STEPS) which simulates 

the Lagrangian temporal evolution of the random cascades (Seed et al., 1999; Seed et al., 2013; 



92 
 

Raut et al., 2018). STEPS functions as rainfall nowcasting tool and is used by the Australian 

Bureau of Meteorology and UK Met Office. However, the spatiotemporal cascades inevitably 

become complicated if the scaling behaviors in space and time differ from each other distinctly 

(Seed, 2004). In addition, complexity will increase if the anisotropy in space and time needs to 

be addressed (Marsan et al., 1996; Niemi et al., 2016).  

A common issue with the two widely implemented theories introduced above is that 

simulated rainfall heavily relies on calibration and post-processing to maintain key statistics (e.g. 

mean, variance, and spatiotemporal correlation). This would inevitably complicate the 

procedures when a long-term simulation is conducted with more stochastic processes involved. 

Alternatively, rainfall simulation using kriging estimators, or optimal estimation, is attractive in 

the sense that the key rainfall statistics are prescribed as model parameters and are inherently 

preserved throughout the modeling framework (Creutin and Obled, 1982; Tabios and Salas, 

1985). As a result, the simulation using optimal estimation is statistically stable. In a kriging 

system, the estimate is essentially a linear combination of observations assigned with weights 

that are calculated to minimize error variance. It should be noted that the ‘observations’ herein 

are equivalent of the already-simulated pixels in the case of stochastic simulation. The kriging 

system takes advantage of the fact that optimal weights can be derived to minimize error 

variance without actually knowing the true value of the estimate.  

Although the family of kriging estimation was extensively used in geo-statistics (e.g. 

Journel and Huijbregts, 1978; Solow, 1986; Oliver and Webster, 1990; Stein, 2012), the 

application in rainfall estimation was challenged by 1) the fractional nature of rainfall coverage 

and 2) the conditional bias. The kriging estimate would be the best statistical estimate only if the 

rainfall probability distribution were normal (Schweppe, 1973). Under fractional coverage 
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conditions, the probability distribution of rainfall is generally skewed and causes the kriging 

estimate to be less optimal. Therefore, procedures for optimal rainfall estimation must account 

for not only within-storm variability but also variability due to fractional coverage (i.e. rainfall 

intermittency). The advancement in optimal rainfall estimation was first enabled by Barancourt 

et al. (1992) who incorporated rainfall intermittency into the modeling framework. Further 

development was later made in a series of works (Seo, 1998a and b) in which conditional 

expectations and variance of rainfall occurrence and rainfall amount were analytically derived. 

The base of such estimation procedures, termed Double Optimal Estimation (DOE), was that the 

simple kriging estimator can be rewritten as the product of the expectation of rainfall given that it 

actually rained and the probability of actual raining. As a result, both the inner variability and 

intermittency of rainfall are explicitly considered. Because this approach is very general, DOE 

has been applied widely in real-time rainfall estimation using rain gauges only (Seo, 1998a), 

using rain gauges and radar combined (Seo, 1998b), as well as probabilistic quantitative 

precipitation forecast (Seo et al., 2000).  

In the simple-kriging or ordinary-kriging system, because the error variance is minimized 

considering all involved observations (i.e. in the unconditional sense), kriging-estimates are 

subject to conditional biases. For instance, when used in rainfall estimation, kriging tends to 

underestimate heavy rainfall, because light to moderate rainfall observations are given more 

weights due to their more frequent occurrences than the heavy rainfall. However, in many 

applications, such as frequency analysis and risk management, what matters the most is the 

ability to accurately estimate large rainfall amount. As an effort to offset the excessive weighting 

to light/moderate rainfall, conditional bias-penalized kriging (CBPK, Seo, 2013) was developed 

as an extension to simple kriging or ordinary kriging. Due to its compatibility with the kriging 
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system, CBPK has been plugged into existing frameworks, and was found to significantly 

improve the accuracy of estimating heavy rainfall (Seo et al., 2014; Kim et al., 2016). In this 

study, it is considered very valuable to sufficiently reflect the extreme rainfall amounts in the 

stochastic simulation for facilitating frequency analysis. In addition, as suggested in Seo et al., 

(2014), the DOE may provide a natural framework for applying CBPK. Therefore, CB-penalized 

formulation of DOE is conducted and applied in stochastic rainfall simulation. 

The goal of this work is to investigate the capability of stochastic storm simulation to 

realistically reproduce the key statistical properties observed from the radar rainfall. Specifically, 

simulation results are evaluated with respect to statistical moments, spatio-temporal structure, 

and frequency distribution of rainfall at both near-point scale and domain scale. This study 

serves the first step for applying the approach in rainfall frequency analysis. The paper is 

organized as follows: Section 2 describes the study area and data used. Section 3 introduces the 

methodology. Section 4 includes the results and discussion. Section 5 provides conclusion and 

future directions.      

2. STUDY AREA AND DATA 

The simulation domain is a 75 × 75 km2 area in the Dallas-Fort-Worth metroplex as 

shown in Figure 1A.  In addition, eight areas with the same size as the simulation domain are 

selected for generating ensemble parameters (detailed in Section 3.4). In this study, the total nine 

areas as shown in Figure 1B are considered homogeneous because of their similar precipitation 

patterns for various durations and frequencies in NOAA Atlas 14 (National Weather Service, 

2017). The climate of the areas is humidsubtropical with hot summers and relatively mild 

winters (Kim et al., 2016). The radar data used are Multisensor Precipitation Estimates (MPE) 

obtained from the West Gulf River Forecast Center, since correction using rain gauges and 
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quality control are applied in MPE. All analyses in this work are performed on the Hydrologic 

Precipitation Analysis Project (HRAP) grid (Greene and Hudlow, 1982), which is approximately 

4 km a side for the homogeneity areas. The MPE data are on a 16 × 16 HRAP grid (Figure 1A) 

over each homogeneity area. In addition, nine HRAP cells (Figure 1A) are selected in the 

simulation domain for evaluating simulation results at near-point scale. 

 

Figure 1: Study area – A) Dallas Fort Worth metroplex and B) nine homogeneity areas.   

3. METHODOLOGY 

3.1.Optimal Estimation 

In optimal estimation, the estimate is essentially a linear combination of observations. 

When optimal estimation is applied to simulate rain field, a pixel to be simulated is regarded as 

the estimate whereas those that have already been simulated are considered the observations. The 

simulation process goes through all the pixels in a random order to complete the whole rain field. 

For this study, Double Optimal Estimation (DOE, Seo, 1998a and b) is used for spatio-temporal 

simulating of rain fields. In a nutshell, DOE performs separate estimation of probability of 
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precipitation (POP) and conditional precipitation amount given that rainfall occurs, and then 

combines them for the final estimate. Specifically, simple kriging will be used to estimate three 

statistics of rainfall, i.e. POP, conditional mean and variance of rainfall amount given that 

rainfall occurs. The DOE can be viewed as a two-stage process, where POP is estimated first to 

determine the occurrence of rainfall and then the mean and variance of rainfall are estimated 

conditioned on rainfall occurrence. Since the POP is essentially the expected of value of rainfall 

indicator with “1” meaning rainfall and “0” meaning no rain, indicator kriging (e.g. Solow, 1986) 

is applied to estimate POP. The conditional mean and variance of rainfall are then estimated 

using simple kriging. 

In addition, CB-penalized formulation is added into the second stage of DOE to evaluate 

its effect on the high rainfall values. This requires deriving a set of mathematical identities, 

which is documented with detail in the Appendix for the reader’s reference. Note that by default 

the simulation in this study is conducted without CB-penalized formulation, which means 𝛽𝛽 in 

Equation A12 equals to 0. A comparison with scenarios with CB-penalized formulation is made 

and detailed in Section 4.4.   

3.2. Spatio-temporal Simulation of Rain Field 

Spatio-temporal simulation is achieved by assuming that the rainfall amount in a pixel 

needs to be estimated using not only surrounding pixels at the current time step (t) but also those 

in the immediately preceding time step (t-1). In the context of kriging, this assumption requires a 

simple-cokriging estimator based on observations in both time steps. A challenge in the 

spatiotemporal simulation is that storm movement causes the spatial correlation function of 

rainfall between t and t-1 to exhibit origin-asymmetry. Furthermore this leads to issues with 

generating the unique and optimal estimation. As a solution, the rainfall field at t-1 is transposed 
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along an advection vector and overlaid onto the rainfall field at t. Consequently, directional 

features (the origin-asymmetry) in the spatial correlation function between two time steps are 

effectively reduced. 

The scheme for spatio-temporal simulation of rain field is illustrated in Figure 2. 

Initially, the rainfall field at t-1, termed RFt-1, is transposed along an advection vector. A random 

pixel in the rain field at current time step (RFt) is then selected for simulation, and its POP will 

be estimated both n nearby cells from RFt and m nearby cells from the transposed rainfall field at 

t-1 (termed RF*
t-1) using Equation A1 and A2 in the Appendix. Next, a random number from the 

uniform distribution between 0 and 1 will be drawn and compared to the POP. If the random 

number is smaller than POP, then zero rainfall will be assigned to the pixel; otherwise the 

conditional mean 𝐸𝐸�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑍𝑍𝑘𝑘,0 > 0� and conditional variance 𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑍𝑍𝑘𝑘,0 > 0� of 

positive rainfall is estimated also based on the nearby n pixels in RFt and m nearby pixels in RF*
t-

1 via Equations A6, A7 and A8 in the Appendix. Zk0 is the rainfall to be estimated while zk, and 

zk-1 represent rainfall at nearby n pixels in RFt and m pixels in RF*
t-1, respectively. Next, the 

rainfall value of the target pixel is randomly drawn from a probability distribution (e.g. log 

normal or Weibul) with the mean and variance being 𝐸𝐸�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑧𝑧𝑘𝑘,0 > 0� (Equation A7) and 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑧𝑧𝑘𝑘,0 > 0� (Equation A8), respectively. The simulation continues with the next 

random pixel till all pixels in RFt are visited. 

With spatio-temporal simulation conducted using this scheme, there are underlying 

assumptions made as follows. First, both rainfall occurrence and rainfall amount are secondary 

homogeneous in the simulation domain, which means the mean and variance of rainfall indicator 

(0 and 1) and positive rainfall are identical everywhere in the simulation domain. Second, cross-

correlograms between RFt and RF*
t-1 (𝜌𝜌𝐼𝐼𝐼𝐼  and 𝜌𝜌𝑟𝑟𝑟𝑟) are assumed to be identical to the spatial 
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correlograms (𝜌𝜌𝐼𝐼𝐼𝐼 =  𝜌𝜌𝐼𝐼𝐼𝐼 and  𝜌𝜌𝑟𝑟𝑟𝑟 =  𝜌𝜌𝑟𝑟𝑟𝑟) to ensure unique optimal solutions (see, e.g. Journel 

and Huijbregts, 1978). Third, the storm movement between t and t-1 can be characterized as a 

uniform advection vector over the whole simulation domain. It should also be noted that rainfall 

at t is not strongly correlated to rainfall at t-1 when rainfall quickly enters/exists the simulation 

domain or drastically intensifies/diminishes. Under such conditions, the simple-cokriging 

estimator is not able to generate a unique optimal solution based on both RFt and RF*
t-1. Instead, 

a simple-kriging estimator is used considering only nearby pixels in RFt. Fourth, because DOE 

only estimates the conditional mean and variance of rainfall instead of its full probability 

distribution, the simulation requires assuming a probability density function (pdf) for the positive 

rainfall amount to allow conditional simulation. A log-normal distribution is used for simulation 

by default and further compared to Weibul distribution (see Section 4.4) regarding the ability to 

capture high rainfall values. 

It is worth noting that DOE cannot perfectly preserve probability of precipitation (POP), 

conditional mean (𝐸𝐸�𝑍𝑍𝑘𝑘0� 𝑧𝑧𝑘𝑘,0 > 0� ) and conditional variance (𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘,0 > 0� ) of positive 

rainfall with limited samples (herein 16 × 16 = 256 HRAP bins). According to Seo et al., 2000, a 

few hundred simulation traces may be needed to eliminate this uncertainty from sampling. For 

operational purposes, Seo et al, 2000 utilized post-processing to force the empirical cumulative 

distribution function (cdf) to match the cdf prescribed by POP, 𝐸𝐸�𝑍𝑍𝑘𝑘0� 𝑧𝑧𝑘𝑘,0 > 0� , and 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘,0 > 0� . However, this post-processing strategy enviably distorts the spatio-temporal 

correlation structure of rainfall while preserving its univariate statistics (POP, 𝐸𝐸�𝑍𝑍𝑘𝑘0� 𝑧𝑧𝑘𝑘,0 > 0�  and 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘,0 > 0�). In this study, an alternative strategy is employed: the one simulation that produces 

the best match of cdf with the prescribed is selected from a number of simulation traces without post-
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processing. Due to many experiments, 30 simulation traces can generate a satisfactory candidate and thus 

are utilized in this study. 

Parameter Estimation 

The simulation requires specification of five parameters at each time step: mI, the 

expected fraction of rain coverage; mr, mean of positive rainfall; 𝜎𝜎𝑟𝑟 , standard deviation of 

positive rainfall; vE, eastward velocity of advection; vN, northward velocity of advection. To best 

reach possible realizations in ensemble simulations, these five parameters are estimated based on 

MPE data not only in the simulation domain but also the other eight homogeneity areas. Using 

10 years of MPE data, mI, mr, and 𝜎𝜎𝑟𝑟, can be directly estimated for each of the nine areas via 

Equations 1, 2 and 3, respectively.  

𝑚𝑚𝐼𝐼 =  𝑛𝑛𝑝𝑝𝑝𝑝/𝑛𝑛𝑟𝑟                                                                         (1) 

𝑚𝑚𝑟𝑟 = ( 1
𝑛𝑛𝑝𝑝𝑝𝑝

)∑𝑧𝑧𝑝𝑝𝑝𝑝                 (2) 

𝜎𝜎𝑟𝑟 = �∑ 𝑧𝑧𝑝𝑝𝑝𝑝2

𝑛𝑛𝑝𝑝𝑝𝑝−1
− (∑𝑧𝑧𝑝𝑝𝑝𝑝)2

𝑛𝑛𝑝𝑝𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝−1)
                      (3) 

where npr is the number of radar pixels with positive rainfall; nr is the total number of radar 

pixels; zpr is positive rainfall in a radar pixel. 

 The eastward and northward velocities of advection (vE and  vN) are determined as 

follows: 1) the rainfall field at t-1 is shifted based on different potential velocities (from 3 m/s to 

36 m/s with increments of 3 m/s) and directions (from 0° to 180° with increments of 3°); 2) 

correlation coefficients between the shifted rainfall field at t-1 and that at t  are calculated; 3) the 

combination of velocity and direction that generates the highest correlation coefficient will be 
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converted to integer numbers of pixels in the eastward and northward directions as vE and  

vN.,respectively  

In addition, the simulation algorithms used in this study require modeling spatial 

correlograms of intermittency (𝜌𝜌𝐼𝐼𝐼𝐼 in Equation A13) and inner variability (𝜌𝜌𝑟𝑟𝑟𝑟 in Equation A9) 

of precipitation (Seo, 1998a, b). For simplicity, the spatial correlograms are assumed to be time-

invariant. Kim et al (2016) estimated climatological 𝜌𝜌𝐼𝐼𝐼𝐼 and 𝜌𝜌𝑟𝑟𝑟𝑟 for North Central Texas region 

and for all months using isotropic exponential model based on radar data from 2002 and 2008, 

which is therefore adopted in this study. In addition,  

3.3. Ensemble Parameter Generation 

In ensemble simulations, numerous time series of parameters (mI, mr, 𝜎𝜎𝑟𝑟, vE, and vN) need 

to be generated. Key statistics from the observed rainfall, e.g., mean, variance, temporal 

autocorrelation, etc. need to be preserved in the ensemble traces. Moreover, the generated 

ensemble traces should exhibit diverse new patterns.  In this study, the parameters estimated for 

all homogeneity areas in 10 years are reshuffled and organized into new patterns via a non-

parametric approach (Lee and Ouarda, 2011; Lee et al., 2012; Lee and Jeong, 2014; Lee and 

Park, 2017). This approach was originally developed to temporally downscale time series, 

featuring k-nearest neighbor resampling (KNNR) and the Genetic Algorithm (GA) mixing 

process. With some modifications, this approach (termed KNNR+GA) is applied in this study for 

stochastically generating ensemble parameters.  

In the KNNR+GA approach, a metric called ‘distance’ needs to be defined to quantify the 

difference between two time series of parameters. First for the time series of mI, mr and 𝜎𝜎𝑟𝑟, the 

distance needs to represent the differences in the three parameters collectively because they are 

correlated to each other. For instance if mI is zero (or positive), mr and.𝜎𝜎𝑟𝑟  must be zero (or 
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positive).Therefore, a composite distance for these three parameters is quantified to represent the 

difference in probability distribution of rainfall values, as mI, mr and 𝜎𝜎𝑟𝑟 can all be derived from 

the probability distribution function. Also the distance for mI, mr and 𝜎𝜎𝑟𝑟 does not consider the 

spatial distribution of rainfall, because mI, mr and 𝜎𝜎𝑟𝑟 are assumed to be identical everywhere in 

the simulation domain (second-order homogeneity). Therefore, the distance for mI, mr and 𝜎𝜎𝑟𝑟 is 

calculated in this study as follows: 1) rainfall values in the simulation domain (16 ×16 HRAP 

bins) are sorted in ascending order within each hour of the 24-hour duration and reshaped into an 

array with the length of 16×16×24; 2) root mean square error (RMSE) of any two compared 

arrays is calculated as the distance.  As for vE, and vN, they don’t have much dependence on 

rainfall and thus their ensemble traces are generated independently. The distance for vE, or vN is 

simply defined as the RMSE of the two compared 24-hr time series of vE, or vN. 

With the distances clearly defined, the procedures for generating ensemble traces for a 

24-hr time series of parameters (target time series) using the KNNR+GA approach are as 

follows:   

1) Estimate the distances between the target time series and all the other observed time 

series from the 9 homogeneity areas including the simulation domain. Each observed 

time series is obtained by sliding a 24-hour moving window forward by one hour, which 

means the obtained time series do not necessarily start from a fixed time of the day. 

2) Rank the estimated distances in Step 1 in ascending order and select h time series that 

have the smallest distances and do not overlap with each other, from which then select 

the first k time series  with k ≈ √ℎ (Lee and Ouarda, 2011). 
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3) Randomly select one of the k stored time series, termed Rp, with the weighting probability 

wm given by Equation 4   

𝑤𝑤𝑚𝑚 = 1/𝑚𝑚
∑ 1/𝑗𝑗𝑘𝑘
𝑗𝑗=1

,    𝑚𝑚 = 1, … ,𝑘𝑘                           (4) 

4) Apply GA on the Rp in Step 3 via the following three steps: 

4a) Reproduction: Select another time series termed Rp* using Steps 1 to 3. 

4b) Crossover: Replace each time step in Rp with the corresponding time step in Rp
* at the 

probability Pc and under the conditions shown in Equation 5 

𝑅𝑅𝑝𝑝,𝑖𝑖 = 𝑅𝑅𝑝𝑝,𝑖𝑖
∗    𝑖𝑖𝑖𝑖 �

𝜀𝜀 < 𝑃𝑃𝑐𝑐
�𝑅𝑅𝑝𝑝,𝑖𝑖−1 − 𝑅𝑅𝑝𝑝,𝑖𝑖

∗ ��𝑅𝑅𝑝𝑝,𝑖𝑖
∗ − 𝑅𝑅𝑝𝑝,𝑖𝑖+1� > �𝑅𝑅𝑝𝑝,𝑖𝑖−1 − 𝑅𝑅𝑝𝑝,𝑖𝑖��𝑅𝑅𝑝𝑝,𝑖𝑖 − 𝑅𝑅𝑝𝑝,𝑖𝑖+1�

, 𝑖𝑖 = 1, … . , 24         (5) 

where 𝑅𝑅𝑝𝑝,𝑖𝑖−1, 𝑅𝑅𝑝𝑝,𝑖𝑖, and 𝑅𝑅𝑝𝑝,𝑖𝑖+1 are i-1th, ith, and i+1th elements in and Rp, respectively; 𝑅𝑅𝑝𝑝,𝑖𝑖
∗  

is ith elements in Rp
*; 𝜀𝜀 is a uniformly distributed random number between 0 and 1. The 

second condition is to preserve gradual variation in the time series. 

4c) Mutation: Replace each time step in Rp with each corresponding time step in a time 

series randomly selected from the h stored time series, Rh, at the probability Pm as shown 

in Equation 6.  

𝑅𝑅𝑝𝑝,𝑖𝑖 = 𝑅𝑅ℎ,𝑖𝑖   𝑖𝑖𝑖𝑖 𝜀𝜀 < 𝑃𝑃𝑚𝑚, 𝑖𝑖 = 1, … . , 24                                     (6) 

where 𝑅𝑅ℎ,𝑖𝑖 is ith elements in and Rh. 

4. RESULTS AND DISCUSSION  

In this study, 100 most rainy days are selected based on the daily areal average rainfall in 

the simulation domain and then simulated for 50 ensembles. The simulated results are validated 
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against the radar observations with respect to various aspects as discussed in the following 

sections. 

4.1. Ensemble Parameters 

The KNNR+GA method is used to generate 50 ensemble time series of mI, mr, 𝜎𝜎𝑟𝑟, vE, and 

vN for the 100 rainy days. As an example, Figure 2 shows the comparisons between the 

ensemble and observed parameters for four rainy days. It is found that the ensemble parameters 

well encompass the observed values, and the ensemble median values in general match the 

observed. Two tuning parameters, i.e. the crossover probability (Pc in Equation 5) and the 

mutation probability (Pm in Equation 6), are adjusted so that 1) the ensemble parameters can 

preserve key statistical properties of the observed parameters; and 2) the ensemble parameters 

can exhibit new and diverse patterns. As Pc and Pm decrease, the ensemble parameters contain 

less diverse new patterns but may be subject to smaller biases. Pc = 0.3 and Pm = 0.1 are initially 

tested and eventually tuned to Pc = 0.1 and Pm = 0.01. Under these two parameter settings, 

Figure 3 shows key statistics, including mean, standard deviation, skewness, and maximum of 

the ensemble and observed parameters, respectively.  It can be found that the final parameter 

setting (Pc = 0.1 and Pm = 0.01) causes the ensemble values to better match the observed, as 

indicated by ensemble median. In addition, although the final Pc and Pm are smaller than the 

initial, new patterns in the ensemble values are not significantly reduced as indicated by the 

interquartile range. Another important statistic is the temporal autocorrelation, as new patterns of 

ensemble parameters should be temporally correlated at the similar level as the observed 

parameters. Figures 4 shows the temporal autocorrelations of the ensemble and observed 

parameters at one- to five-hour lags under the initial and final settings of tuning parameters, 

respectively. Note the final Pc and Pm values in general improve the match between the temporal 
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autocorrelations of ensemble and observed parameters. With Pc = 0.1 and Pm = 0.01, the 

temporal autocorrelations are preserved in the ensemble simulations for all the parameters at all 

lags. 

 

Figure 2: Comparison of ensemble and observed parameters (mI, mr, 𝜎𝜎𝑟𝑟, vE, and vN) for four 

rainy days (four rows). 
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Figure 3: Key statistics (four columns) i.e. mean, standard deviation, skewness, and maximum 

of the ensemble and observed parameters (five rows). 
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Figure 4: Temporal autocorrelations of the ensemble and observed parameters under the initial 

(upper row) and final (lower row) settings of tuning parameters  

4.2. Spatial Structure of Rainfall   

4.2.1. Daily Total 

The observed daily rainfall for the most rainy day in the 100 selected days is shown in the 

top-left panel in Figure 5A. The remaining 15 panels are the first 15 of the 50 ensemble 

simulations of the same event. In essence, each ensemble simulation is a realization of the same 

storm with similar but different evolutions of mI, mr, 𝜎𝜎𝑟𝑟, vE, and vN. This is the main reason the 

accumulation patterns of the ensemble simulations appear different from each other. 

Furthermore, maxima (minima) of the daily rainfall in the ensemble simulations occur at 

different locations in the simulation domain because of the assumption of secondary 

homogeneity. Figure 5B shows the empirical cumulative distribution functions (cdfs) of the 

ensemble (same 15 members as in Figure 5A) and observed daily rainfall. Similarities can be 
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found between the ensemble and observed CDFs of daily rainfall with some ensemble 

simulations underestimating small to midrange values.   

 

Figure 5: Comparison of A) daily total rainfall and B) the corresponding empirical cumulative 

distribution functions (cdfs) on from 15 ensemble simulations and the radar observation. 

4.2.2. Hourly Rainfall 

The spatial structure of hourly rainfall is examined using spatial autocorrelations 

calculated as the Moran’s I. In order to increase sample size for a better estimation of Moran’s I, 

the samples of hourly rainfall are collected according to the months. Figure 6 shows the 

comparisons of spatial autocorrelations of the observation and ensemble simulations calculated 

for six months, along with the corresponding climatological values. The remaining months are 

excluded because majority of the 100 rainy days occurred in the selected six months. Since all 

ensemble members are simulated using the climatological correlograms estimated by Kim et al., 

(2016), the spatial autocorrelations of the ensemble members align better with the climatological 

values than the observed. Overestimation is generally found for larger lag distances, which can 
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be due to the reduced sample size at larger lag distances. This issue could potentially be solved if 

more storm events were simulated.  

 

Figure 6: Spatial autocorrelations of hourly rainfall from the radar observation, ensemble 

simulations, and climatological values for six months. 

4.3. Temporal Structure of Rainfall 

As learnt from the spatial structure of the simulated daily rainfall, the ensemble members 

exhibit a variety of patterns due to 1) the secondary homogeneity assumption and 2) the various 

patterns of the ensemble parameters. These variations mean that there are considerable 

differences at individual points in the simulation domain. In the following sections, the simulated 

rainfall time series at nine selected locations (Figure 1A) are discussed. 
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4.3.1. Autocorrelation Structure 

Although the autocorrelation structure of rainfall at the scale of simulation domain is 

preserved by the ensemble parameters (mI and mr), temporal autocorrelations of rainfall at 

smaller scale (e.g. 1 HRAP bin) are more important and thus examined here. Correlograms of 

rainfall time series at the nine selected locations from observations and ensemble simulations are 

shown in Figure 7. In general, the ensemble simulations reproduce temporal correlation structure 

at this resolution reasonably well, with the observed autocorrelations lying within the envelope 

of the ensemble. Furthermore, the ensemble autocorrelations are generally similar from station to 

station, while differences can be found in the observed autocorrelations at the nine stations.  

Specifically, the ensemble mean of autocorrelations is very well simulated within the lag of 5 

hours at Stations 4, 6, 7 and 9. However at the other stations, the simulations show either over- 

(Stations 1) or underestimation (Stations 2, 3, 5 and 8). This is probably due to the secondary 

homogeneity which is assumed in the ensemble simulations but is not completely true for the 

observed rainfall during the 100 rainy days.    

4.3.2. Frequency Distribution 

Frequency distribution of hourly rainfall at the nine locations in the simulation domain 

are shown in Figure 8. The ensemble simulations are in good agreement with the observed 

frequency distribution at all nine locations. The ensemble variability well encompasses the 

observed frequency distribution, and its range increases with greater hourly rainfall. Note that 

simulations generally work well generating large hourly rainfall values, expect for slightly 

overestimating their frequencies at Station 4 and 5 as indicated by the longer tails.  
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Figure 7: Temporal autocorrelations of hourly rainfall at nine selected stations from the radar 

observation and ensemble simulations. 

4.1. High Rainfall Values 

Although the simulation in this study inherently preserves probability of precipitation 

(POP), conditional mean (𝐸𝐸�𝑍𝑍𝑘𝑘0� 𝑧𝑧𝑘𝑘,0 > 0� ) and conditional variance (𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘,0 > 0� ) of 

positive rainfall, what matters most in rainfall frequency analysis is the ability to estimate 

infrequent large rainfall amount as accurately as possible. In order to investigate the ability to 

capture high rainfall values, two approaches, i.e. changing pdf and changing DOE formulation, 

are tested. Specifically, log-normal distribution and Weibul distribution are tested with the latter 
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having a ‘fatter tail’ than the former; while DOE frameworks with and without CBP formulation 

are also tested. 

 

Figure 8: Frequency distributions of hourly rainfall at nine selected stations from the radar 

observation and ensemble simulations. 

Figure 9 shows frequency distributions of the hourly rainfall values at all pixels in the 

simulation domain and during all 100 rainy days in the 50 ensemble simulations under three 

combinations: 1) log-normal distribution and DOE, 2) Weibul distribution and DOE, and 3) log-

normal distribution and CBP-DOE. It is found that change from log-normal to Weibul 

distribution does not generate any noticeable change in the frequency distribution of large hourly 

rainfall. In contrast, the CBP formulation causes the tail of frequency distribution to shift towards 
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higher hourly rainfall values. Moreover, tail behavior of the CBP-DOE simulation can further be 

adjusted by assigning more/less weight to the CB term via the parameter 𝛽𝛽 (Equation A12).  

 

Figure 9: Frequency distributions of all hourly rainfall from ensemble simulations under three 

combinations of frequency distributions and formulations of optimal estimation. 

4.2. Discussion 

This study is performed to demonstrate how realistically intense storms can be simulated 

without calibration or post-processing. However, prior to application in rainfall frequency 

analysis, simulation performance can potentially be improved by tackling the following issues. 

First, the ensemble generation of parameters is still subject to biases even after tuning Pc and Pm 

as indicated by the ensemble mean (Figure 3). One possible cause could be that the selected 100 

days are too rainy to replicate using rainfall from other times in the 10 years and other eight 
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homogeneity zones. In other words, the results could potentially be improved if the targets were 

not the most rainy days but days better representing the average storm climatology. Second, post-

processing as commonly used in previous studies (e.g. Seo et al., 2000 and Raut et al., 2018) 

could improve the results effectively. For this study, post-processing methods like quantile-

quantile mapping could have been used to improve statistics of the ensemble parameters. A 

location-specific bias correction could also have been made to deal with any exceptions from the 

assumption of secondary homogeneity. Third, uncertainty exists when statistics are calculated 

based on limited samples. Essentially, the simulation is conducted at the resolutions of 4×4 km2 

and 1 hour. Given the size of simulation domain (16 HRAP × 16 HRAP bins) and the length of 

simulation duration (100 rainy days), estimation of spatial and temporal correlations lacks 

sample size especially at large lags. Improvements could be expected should the simulation be 

conducted for a longer period or at finer spatio-temporal resolution. The assumption of 

secondary homogeneity probably holds better with a longer simulation period. Moreover, the 

other two assumptions i.e.  𝜌𝜌𝐼𝐼𝐼𝐼 =  𝜌𝜌𝐼𝐼𝐼𝐼,  𝜌𝜌𝑟𝑟𝑟𝑟 =  𝜌𝜌𝑟𝑟𝑟𝑟 and uniform advection, would become more 

valid at finer temporal resolution. It is also worth noting that enlarging simulation domain as 

another solution to increase sample size might cause the assumption of secondary homogeneity 

to be invalid and thus requires extra caution.         

5. CONCLUSIONS AND FUTURE WORK 

In this study, the authors demonstrate an approach to stochastically generate numerous 

realizations of storm events based on radar rainfall data. To achieve spatio-temporal simulation 

of rainfall fields, the approach employs double optimal estimation (DOE) due to the following 

benefits: 1) the simulation is parsimonious requiring only five time-variant parameters i.e., mI, 

mr, 𝜎𝜎𝑟𝑟, vE, and vN; 2) the simulation is statistically stable as  mI, mr, 𝜎𝜎𝑟𝑟 are inherently preserved 
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and thus no calibration is needed for maintaining these three statistics. In addition, the 

conditional biases commonly seen in kriging estimates can be effectively mitigated by the CBP-

formulation, which also enable us to better capture high rainfall values. In order to realize 

diverse new patterns of the 5 parameters in ensemble simulations, the non-parametric 

KNNR+GA approach is used to borrow information from other locations and times. In essence, 

this approach trades space with time by assuming identical/similar climatology in the 

homogeneity areas. Fifty ensemble members of 100 simulated rainy days are evaluated against 

the observed from the radar with major findings summarized as below.  

1) The KNNR+GA approach successfully generates ensemble parameters of new patterns 

while reproducing the key statistical properties of the observed parameters. 

2) Realistic spatial patterns and temporal evolutions of rainfall fields are replicated by the 

spatio-temporal simulation using the DOE framework.  

3) Diverse spatial structures of daily rainfall are due to the variability in ensemble 

parameters as well as the assumption of secondary homogeneity. Spatial structure of 

hourly rainfall aligns well with the prescribed climatological values.        

4) Also at near-point scale, frequency distribution and temporal autocorrelations are 

reproduced at 9 selected stations.  

5) As ways to capture high rainfall values, CBP formulation of DOE is more effective and 

flexible than altering probability density functions of hourly rainfall. 

In terms of future directions, the authors will conduct continuous simulation from which 

rainfall frequency analysis will then be carried out. Comparison will then be made between the 

intensity-duration-frequency results from the simulated rainfall and those in the current NOAA 
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Atlas 14. Note that the continuous simulation will be based on not only radar rainfall data but 

also rain gauge data for generating ensemble parameters. Estimation of correlograms will be 

based on storm type and stage of maturity, instead of the climatological values used in this work. 

In addition, the authors see further applications of the stochastic storm generator in many areas: 

1) enabling flood frequency analysis via hydrologic simulations at non-gauged locations or 

where streamflow records lack length or resolution, 2) downscaling outputs from global 

circulation model to investigate future changes due to climatic variability; 3) merging 

extrapolation-based forecasts and numerical weather prediction to improve accuracy and lead 

time of rainfall forecasts.     
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APPENDIX 

Equations Used in Spatiotemporal Simulation 

 The conditional POP at the target cell (𝐸𝐸[𝐼𝐼𝑘𝑘0|𝑖𝑖𝑘𝑘−1, 𝑖𝑖𝑘𝑘]) will be based on both n nearby cells from 

time t and m nearby cells from time t-1: 

 �𝜆𝜆𝑘𝑘,1, … , 𝜆𝜆𝑘𝑘,𝑛𝑛,𝜆𝜆𝑘𝑘−1,1, … , 𝜆𝜆𝑘𝑘−1,𝑚𝑚� = �𝑃𝑃𝑘𝑘,0𝑃𝑃𝑘𝑘−1,0� �
𝑃𝑃𝑘𝑘,𝑘𝑘 𝑃𝑃𝑘𝑘,𝑘𝑘−1
𝑃𝑃𝑘𝑘−1,𝑘𝑘 𝑃𝑃𝑘𝑘−1,𝑘𝑘−1

�
−1

                   (A1) 

𝐸𝐸[𝐼𝐼𝑘𝑘0|𝑖𝑖𝑘𝑘−1, 𝑖𝑖𝑘𝑘] = 𝐸𝐸�𝐼𝐼𝑘𝑘,0�+ ∑ 𝜆𝜆𝑘𝑘,𝑖𝑖�𝑖𝑖𝑘𝑘,𝑖𝑖 − 𝐸𝐸�𝐼𝐼𝑘𝑘,𝑖𝑖��𝑛𝑛
𝑖𝑖=1 + ∑ 𝜆𝜆𝑘𝑘−1,𝑗𝑗�𝑖𝑖𝑘𝑘−1,𝑗𝑗 − 𝐸𝐸�𝐼𝐼𝑘𝑘−1,��𝑚𝑚

𝑗𝑗=1                        (A2) 

where subscripts k and  k-1 denote time t and t-1, respectively; ik,i is the rainfall indicator at 

nearby pixel i (i = 1,2, …, n) in RFt;  ik-1,j is the rainfall indicator at nearby pixel j (j = 1,2, …, m) 

in RF*
t-1; 𝜆𝜆𝑘𝑘,𝑖𝑖  and 𝜆𝜆𝑘𝑘−1,𝑗𝑗 are optimal weights associated with n and m nearby pixels in RFt and, 
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respectively; 𝑃𝑃𝑘𝑘,0 are 1 by n vector whose ith entry is given by 𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘,0, 𝐼𝐼𝑘𝑘,𝑖𝑖);  𝑃𝑃𝑘𝑘−1,0 are 1 by m 

vectors whose ith entry is given by 𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘,0, 𝐼𝐼𝑘𝑘−1,𝑗𝑗); 𝑃𝑃𝑘𝑘,𝑘𝑘, 𝑃𝑃𝑘𝑘,𝑘𝑘−1(= 𝑃𝑃𝑘𝑘−1,𝑘𝑘
𝑇𝑇 ) and  𝑃𝑃𝑘𝑘−1,𝑘𝑘−1are n by 

n, n by m, and m by m matrices whose ijth entries are  given by 𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘,𝑖𝑖, 𝐼𝐼𝑘𝑘,𝑗𝑗), 𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑘𝑘,𝑖𝑖, 𝐼𝐼𝑘𝑘−1,𝑗𝑗�, 

and 𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑘𝑘−1,𝑖𝑖, 𝐼𝐼𝑘𝑘−1,𝑗𝑗�, respectively. Assuming the precipitation occurrence at time t and time t-1 

is jointly wide-sense second-order homogeneous in the simulation domain, the indicator 

covariance terms can be calculated via Equations A3, A4, and A5. 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘,𝑖𝑖, 𝐼𝐼𝑘𝑘,𝑗𝑗) =  𝜌𝜌𝐼𝐼𝐼𝐼(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝐼𝐼𝐼𝐼2             (A3) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘−1,𝑖𝑖, 𝐼𝐼𝑘𝑘−1,𝑗𝑗) =  𝜌𝜌𝐼𝐼𝐼𝐼−1(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝐼𝐼𝐼𝐼−12            (A4) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝑘𝑘,𝑖𝑖, 𝐼𝐼𝑘𝑘−1,𝑗𝑗) =  𝜌𝜌𝐼𝐼𝐼𝐼(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝐼𝐼𝐼𝐼𝜎𝜎𝐼𝐼𝐼𝐼−1           (A5) 

where 𝜌𝜌𝐼𝐼𝐼𝐼−1() and 𝜌𝜌𝐼𝐼𝐼𝐼() is the spatial correlation function of rainfall indicator at time t-1 and 

between t and t-1, respectively; 𝜎𝜎𝐼𝐼𝐼𝐼−1 is the standard deviation of rainfall indicator at time t-1. 

The conditional mean (𝐸𝐸�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘,  𝑧𝑧𝑘𝑘,0 > 0�) and conditional variance 

(𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘,  𝑧𝑧𝑘𝑘,0 > 0�) of positive rainfall will be estimated via Equations A6, A7 and 

A8: 

�𝛤𝛤𝑘𝑘,1, … ,𝛤𝛤𝑘𝑘,𝑛𝑛,𝛤𝛤𝑘𝑘−1,1, … ,𝛤𝛤𝑘𝑘−1,𝑚𝑚� = (1 + 𝛽𝛽)�𝑄𝑄𝑘𝑘,0𝑄𝑄𝑘𝑘−1,0�(�
𝑄𝑄𝑘𝑘,𝑘𝑘 𝑄𝑄𝑘𝑘,𝑘𝑘−1
𝑄𝑄𝑘𝑘−1,𝑘𝑘 𝑄𝑄𝑘𝑘−1,𝑘𝑘−1

�+

𝛽𝛽 �
𝑀𝑀𝑘𝑘,𝑘𝑘 𝑀𝑀𝑘𝑘,𝑘𝑘−1
𝑀𝑀𝑘𝑘−1,𝑘𝑘 𝑀𝑀𝑘𝑘−1,𝑘𝑘−1

�)−1                   (A6) 

𝐸𝐸�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑧𝑧𝑘𝑘,0 > 0� = 𝐸𝐸�𝑍𝑍𝑘𝑘,0|𝑧𝑧𝑘𝑘,0 > 0�+ ∑ 𝛤𝛤𝑘𝑘,𝑖𝑖�𝑧𝑧𝑘𝑘,𝑖𝑖 − 𝐸𝐸�𝑍𝑍𝑘𝑘,𝑖𝑖|𝑧𝑧𝑘𝑘,0 > 0��𝑛𝑛
𝑖𝑖=1 +

∑ 𝛤𝛤𝑘𝑘−1,𝑗𝑗�𝑧𝑧𝑘𝑘−1,𝑗𝑗 − 𝐸𝐸�𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘,0 > 0��𝑚𝑚
𝑗𝑗=1     (A7) 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0�𝑧𝑧𝑘𝑘−1, 𝑧𝑧𝑘𝑘 ,  𝑧𝑧𝑘𝑘,0 > 0� = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑘𝑘0� 𝑧𝑧𝑘𝑘,0 > 0� − �𝛤𝛤𝑘𝑘,1, … ,𝛤𝛤𝑘𝑘,𝑛𝑛,𝛤𝛤𝑘𝑘−1,1, … ,𝛤𝛤𝑘𝑘−1,𝑚𝑚��𝑄𝑄𝑘𝑘,0𝑄𝑄𝑘𝑘−1,0�
𝑇𝑇 (A8) 
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where Zk0 is the rainfall to be estimated; zk,i is the rainfall at nearby pixel i (i = 1,2, …, n); zk-1,j is 

the rainfall at nearby pixel j (j = 1,2, …, m) at time t-1; Γ𝑘𝑘,𝑖𝑖 and Γ𝑘𝑘−1,𝑗𝑗 are optimal weights 

obtained by minimizing error variance, 𝐸𝐸[�𝑍𝑍𝑘𝑘,0 − 𝑍𝑍𝑘𝑘,0
∗ �

2
|𝑧𝑧𝑘𝑘,0 > 0] and conditional bias (CB), 

𝐸𝐸[�𝑍𝑍𝑘𝑘,0 − 𝐸𝐸�𝑍𝑍𝑘𝑘,0
∗ �𝑍𝑍𝑘𝑘,0��

2
|𝑧𝑧𝑘𝑘,0 > 0]; 𝑄𝑄𝑘𝑘,0 are 1 by n vector whose ith entry is given by 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘,𝑖𝑖|𝑧𝑧𝑘𝑘,0 > 0); 𝑄𝑄𝑘𝑘−1,0 are 1 by m vectors whose ith entry is given by 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘−1,0,𝑍𝑍𝑘𝑘,𝑗𝑗|𝑧𝑧𝑘𝑘,0 > 0); 𝑄𝑄𝑘𝑘,𝑘𝑘, 𝑄𝑄𝑘𝑘,𝑘𝑘−1(= 𝑄𝑄𝑘𝑘−1,𝑘𝑘
𝑇𝑇 ) and  𝑄𝑄𝑘𝑘−1,𝑘𝑘−1are n by n,  n by m, and m by m 

matrices whose ijth entries are  given by 𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘,𝑗𝑗|𝑧𝑧𝑘𝑘,0 > 0), 𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘,0 > 0), and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘−1,𝑖𝑖,𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘,0 > 0), respectively. 𝑀𝑀𝑘𝑘,𝑘𝑘, 𝑀𝑀𝑘𝑘,𝑘𝑘−1(= 𝑀𝑀𝑘𝑘−1,𝑘𝑘
𝑇𝑇 ) and  𝑀𝑀𝑘𝑘−1,𝑘𝑘−1 are n by n,  n 

by m, and m by m matrices whose ijth entries are given 

by 𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘,𝑖𝑖�𝑧𝑧𝑘𝑘,0 > 0�𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘,𝑗𝑗�𝑧𝑧𝑘𝑘,0 > 0�/𝜎𝜎𝑟𝑟𝑟𝑟2 , 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘,𝑖𝑖�𝑧𝑧𝑘𝑘,0 > 0�𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘−1,𝑗𝑗�𝑧𝑧𝑘𝑘,0 > 0�/(𝜎𝜎𝑟𝑟𝑟𝑟𝜎𝜎𝑟𝑟𝑟𝑟−1), and 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘−1,𝑖𝑖�𝑧𝑧𝑘𝑘,0 > 0�𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘−1,𝑗𝑗�𝑧𝑧𝑘𝑘,0 > 0�/𝜎𝜎𝑟𝑟𝑟𝑟−12 , respectively. 𝜎𝜎𝑟𝑟𝑟𝑟 and 𝜎𝜎𝑟𝑟𝑟𝑟−1 are the 

standard deviation of positive rainfall at t and t-1, respectively. 𝛽𝛽 is a scalar weight given to the 

CB. When 𝛽𝛽 = 0, all equations in the Appendix become the original ones in DOE (Seo 1998a 

and b).  A discussion on  𝛽𝛽 is given later.  

The derivation of 𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,0,𝑍𝑍𝑘𝑘,𝑖𝑖|𝑧𝑧𝑘𝑘,0 > 0), 𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘,𝑗𝑗�𝑧𝑧𝑘𝑘,0 > 0�, and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘,0 >

0), and 𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑘𝑘−1,𝑖𝑖 ,𝑍𝑍𝑘𝑘−1,𝑗𝑗�𝑧𝑧𝑘𝑘,0 > 0� is detailed in Seo (1998a, b), which involves using the 

covariance of positive rainfall calculated via Equations A9, A10,  and A11 under the assumption 

of secondary homogeneity: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘,𝑗𝑗|𝑧𝑧𝑘𝑘,𝑖𝑖 > 0, 𝑧𝑧𝑘𝑘,𝑗𝑗 > 0) =  𝜌𝜌𝑟𝑟𝑟𝑟(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝑟𝑟𝑟𝑟2                      (A9) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘−1,𝑖𝑖,𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘−1,𝑖𝑖 > 0, 𝑧𝑧𝑘𝑘−1,𝑗𝑗 > 0) =  𝜌𝜌𝑟𝑟𝑟𝑟−1(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝑟𝑟𝑟𝑟−12       (A10) 
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𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑘𝑘,𝑖𝑖,𝑍𝑍𝑘𝑘−1,𝑗𝑗|𝑧𝑧𝑘𝑘,𝑖𝑖 > 0, 𝑧𝑧𝑘𝑘−1,𝑗𝑗 > 0) =  𝜌𝜌𝑟𝑟𝑟𝑟(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗)𝜎𝜎𝑟𝑟𝑟𝑟𝜎𝜎𝑟𝑟𝑟𝑟−1                  (A11) 

where 𝜌𝜌𝑟𝑟𝑟𝑟() is the spatial correlation function of positive and �𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗�is the vector pointing 

from location uj to ui 𝜌𝜌𝑟𝑟𝑟𝑟−1() and 𝜌𝜌𝑟𝑟𝑟𝑟() is the spatial correlation function of positive rainfall at 

time t-1 and between t and t-1, respectively. 

Specification of 𝜷𝜷 

The weight given to CB term 𝛽𝛽 is specified as follows. First, the simple kriging solution without 

the CB term (i.e. 𝛽𝛽 = 0) is calculated as a reference. It is assumed that when the simple kriging 

solution is closer to 𝐸𝐸�𝑍𝑍𝑘𝑘,0|𝑧𝑧𝑘𝑘,0 > 0�, it becomes more skillful hence should be given more 

weight (Seo 2013; Seo et al., 2014; Kim et al., 2016). Thus 𝛽𝛽  varies with deviation of the 

conditional mean from the unconditional mean as shown in Equation A12: 

𝛽𝛽 = 𝐶𝐶𝑍𝑍𝑆𝑆𝑆𝑆2             (A12) 

where ZSK is standardized solution from simple kriging based on 𝐸𝐸�𝑍𝑍𝑘𝑘,0|𝑧𝑧𝑘𝑘,0 > 0� and 𝜎𝜎𝑟𝑟𝑟𝑟; and C 

is an empirical coefficient. As a result, in the midranges of the transformed normal distribution, 

ZSK is close to zero (i.e., 𝛽𝛽 is very small) and hence the final estimate is closer to simple kriging 

solution, whereas in the tails ZSK is large (i.e., 𝛽𝛽 is large) and hence the final estimate is closer to 

the CBP estimate. 
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Chapter 5: Conclusions and Future Research 

The following sections summarize conclusions from previous chapters and outlines 

forthcoming research that is to be pursued in the near future. 

8.1  CONCLUSIONS 

In the U.S., historical record of rainfall observation hasn’t exceeded 150 years and yet 

has driven many hydrologic/hydraulic (H/H) practices. With advancement in sensing technology, 

rainfall observation has been reaching higher levels of spatial granularity and scale. However, 

uncertainty still exists in rainfall observation so far, because H/H studies rely on heavy rainfall 

values that are rare in nature. What’s more, one might argue the rainfall observation would never 

be sufficient if non-stationarity was assumed. In this regard, simulated rainfall might provide the 

needed solution to these issues if key statistical properties in the observed rainfall are well 

preserved in the simulations. This doctoral work explores rainfall simulation in the following two 

applications: 1) generating possible rainfall-runoff scenarios for investigating hydrologic 

response to storm characteristics, and 2) stochastically generating storm events for rainfall 

frequency analysis.  

To this end, Chapter 2 presented an approach to transpose historical storms from their 

original locations to other possible areas, which in turn creates numerous rainfall-runoff 

scenarios. Hydrologic responses to storm characteristics were then analyzed using a flood-prone 

urban watershed in Houston, Brays Bayou. The study highlighted the role of Brays Bayou’s flat 

terrain in affecting flood peaks based on two findings as follows: (1) flood peaks in Brays Bayou 

are highly correlated to/driven by total rainfall volume; (2) channel routing effect is pronounced 

in Brays Bayou in reducing the flood peaks. Also, several lessons were learned from this 
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exploratory work. First, deterministic storm transposition was limited by transposition distance 

and the number of severe storms. Second, storm location is the only factor allowed by this 

approach for investigation; other impactful storm characteristics, for instance storm movement 

and spatiotemporal variabilities of rainfall intensity cannot be modified and thus studied. These 

limitations motivated the development of a deterministic storm generator as introduced in 

Chapter 3.    

The Dynamic Moving Storm (DMS) generator as detailed in Chapter 3 conceptualizes a 

storm event as a single-core storm cell moving and evolving over time. There are three basic 

components in DMS generator’s framework, i.e. storm movement, spatial and temporal 

variabilities of rainfall intensity. By parameterizing each component, hydrologic responses can 

be associated either to individual storm parameters or to parameter interaction. A large variety of 

synthetic storm events allowed a global sensitivity analysis (GSA) on storm parameters, which 

was unavailable in Chapter 2. The GSA revealed the significant impact of storm velocity on 

flood peaks and the higher influence from parameter interaction on flood peaks than from 

individual parameters. A pairwise sensitivity analysis (PSA) was further conducted to examine 

the interactive patterns between storm velocity and the other parameters. Using DMS generator, I 

confirmed and augmented the finding in Chapter 2 that flood peaks in Brays Bayou are driven by 

total rainfall volume not peak rainfall intensity. Also this work confirmed the resonance effect of 

storm movement on flood peaks as discovered in previous studies.  

Finally, the flat terrain’s influence on the flood peaks was highlighted throughout the 

chapter. In essence, the DMS generator in Chapter 3 revealed a bigger picture than the storm 

transposition in Chapter 2 on hydrologic responses to storm characteristics, and deepened the 

understanding on the urban hydrometeorology of Brays Bayou. In order to eventually facilitate 
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rainfall frequency analysis (RFA), the future development of DMS generator as outlined at end 

of Chapter 3 requires addition of processes embedded in a stochastic framework. These 

additional processes in turn entail more parameters and a more difficult calibration, which has 

been seen in the previous studies as a common issue for storm-cell-based generators. After many 

trials and considerations, I switched to seek for a more parsimonious and statistically more stable 

method for stochastic storm generator as introduced in Chapter 4. 

Chapter 4 introduced a stochastic storm generator which adopts optimal estimation for 

spatio-temporal modeling of rain fields and a non-parametric approach for generating model 

parameters. A case study in north central Texas was conducted as the first step towards applying 

a long-term stochastic rainfall simulation in RFA. This approach was proved to offer many 

promises as follows. First, the simulation is parsimonious requiring only five parameters. 

Second, the simulation is statistically stable as the first and second statistical moments of rainfall 

are inherently preserved. Third, the non-parametric approach for generating model parameters 

saves the effort to select and parameterize stochastic processes by borrowing information from 

other locations and times. In the case study, 50 ensembles of 100 rainy days were successfully 

simulated with the spatio-temporal patterns of observed rainfall well represented. In particular, 

the simulation framework shows the capability and flexibility in capturing heavy rainfall values 

or high-order extreme statistics, which is quite valuable for RFA.   

8.2  FUTURE RESEARCH 

This doctoral research includes three approaches to synthesize storm events as introduced 

in Chapters 2, 3, and 4, respectively. For the purpose of investigating hydrologic responses to 

storm characteristics, the DMS generator in Chapter 3 is a very direct approach as storm 

characteristics are represented by DMS parameters. However due to many simplified 
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assumptions, the synthetic storms from the DMS generator are less realistic than those from the 

stochastic storm generator in Chapter 4. Therefore, the stochastic storm generator can and will 

also be used for investigating hydrologic responses in the future research, from which the results 

are expected to be more meaningful the study area.     

Chapters 2 and 3 produced some empirical relationships whose hydrologic/hydraulic 

implications were thoroughly discussed. Deeper insights could be expected should the 

hydrologic model be replaced by an analytical framework incorporating all important processes, 

e.g. overland routing and flow attenuation in channel routing. Future effort will be invested in 

utilizing a proper analytical framework (e.g. Menabde et al., 2001) for better explaining the 

empirical relationships.  

The stochastic storm generator has many further applications as outlined at the end of 

Chapter 4. Among these many possibilities, the most attainable one would be a comparative 

analysis on the intensity-duration-frequency (IDF) relationships derived from the following two 

rainfall simulations: Simulation A based on only historical observed rainfall and Simulation B 

based on both historical observed rainfall and downscaled outputs from global circulation models 

(GCMs). Note that the two simulations will have the same duration (say till 2100) despite that 

Simulation B has longer base period than Simulation A. The comparison is expected to pinpoint 

the effects of climate change on rainfall at desired spatiotemporal scale and furthermore the 

implication of stationarity as long assumed in traditional RFA. 
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