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ABSTRACT 

Reducing  latency  in  Inter-Process  Communication  (IPC)  is  one  of  the  key  challenges  in  multi-  threaded  

applications  in  multi-core  environments.  High  latencies  can  have  serious  impact  on  the  performance  of  

an  application  when  many  threads  queue  up  for  memory  access.  Often  lower  latencies  are  achieved  by  

using  lock-free  algorithms  that  keep  threads  spinning  but  incur  high  CPU  usage  as  a  result.  Blocking  

synchronization  primitives  such  as  mutual  exclusion  locks  or  semaphores  achieve  resource  efficiency  but  

yield  lower  performance.  In  this  paper,  we  take  a  different  approach  of  combining  a  lock-free  algorithm  

with  resource  efficiency  of  blocking  synchronization  primitives.  We  propose  a  queueing  scheme  named  

eLCRQ  that  uses  the  lightweight  Linux  Futex  system  call  to  construct  a  block-when-  necessary  layer  on  

top  of  the  popular  lock-free  LCRQ.  Owing  to  the  block-when-necessary  feature,  eLCRQ  produces  close  

to  lock-free  performance  when  under  contention.  Under  no  contention,  we  use  the  Futex  System  call  for  

conditional  blocking  instead  of  spinning  in  a  retry  loop,  which  releases  the  CPU  to  perform  other  tasks.  

When  compared  with  existing  IPC  mechanisms,  eLCRQ  yields  2.3  times  reduction  in  CPU  usage  while  

lowering  the  average  message  latency  1.7  times.  When  comparing  the  proposed  scheme  with  industry  

standard  non-blocking  lock-free  DPDK  RTE_RING,  the  results  show  a  3.4  times  reduction  in  CPU  

Usage  while  maintaining  comparable  message  latency.  We  also  propose  a  fixed-spinning  based  variation  

of  the  proposed  scheme,  called  eLCRQ-spin,  which  allows  us  to  make  tradeoffs  between  CPU  usage  

efficiency  and  message  latency. 
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Abstract—Reducing latency in Inter-Process 

Communication (IPC) is one of the key challenges in multi-

threaded applications in multi-core environments. High 

latencies can have serious impact on the performance of an 

application when many threads queue up for memory access. 

Often lower latencies are achieved by using lock-free 

algorithms that keep threads spinning but incur high CPU 

usage as a result. Blocking synchronization primitives such as 

mutual exclusion locks or semaphores achieve resource 

efficiency but yield lower performance. In this paper, we take a 

different approach of combining a lock-free algorithm with 

resource efficiency of blocking synchronization primitives. We 

propose a queueing scheme named eLCRQ that uses the 

lightweight Linux Futex system call to construct a block-when-

necessary layer on top of the popular lock-free LCRQ. Owing 

to the block-when-necessary feature, eLCRQ produces close to 

lock-free performance when under contention. Under no 

contention, we use the Futex System call for conditional 

blocking instead of spinning in a retry loop, which releases the 

CPU to perform other tasks. When compared with existing 

IPC mechanisms, eLCRQ yields 2.3 times reduction in CPU 

usage while lowering the average message latency 1.7 times. 

When comparing the proposed scheme with industry standard 

non-blocking lock-free DPDK RTE_RING, the results show a 

3.4 times reduction in CPU Usage while maintaining 

comparable message latency. We also propose a fixed-spinning 

based variation of the proposed scheme, called eLCRQ-spin, 

which allows us to make tradeoffs between CPU usage 

efficiency and message latency.  

Keywords— multi-producer multi-consumer, Futex, multi-

threading, IPC 

I. INTRODUCTION 

Reducing latency in Inter-Process/Inter-Thread 
Communication is one of the key challenges in parallel and 
distributed computing. This is because as the number of 
threads in an application goes on increasing, usually so does 
the communication overhead. Hence, reducing the 
communication latency can have a big impact on multi-
threaded application performance in multi-core 
environments. The mechanisms used for such 
communication in a Linux based OS can generally be 
divided into two categories – Message Passing and Shared 
Memory[21]. Message Passing refers to direct core-to-core 
communication between threads using mechanisms like 
Pipes, Sockets, Message Queues, Signals, etc. Shared 
Memory is communication via reading/writing to a shared 
memory segment. Some examples include POSIX Memory 
Mapped files and System V shared segments. All changes 

made to this segment will be visible to everyone else 
connected to the segment. 

However, this advantage of immediate communication 
from shared memory comes with a major loophole. There is 
no coordination present by default, between processes 
writing to the shared segment. There is nothing stopping two 
or more separate processes/threads to write in the same 
memory segment at the same memory location 
simultaneously. This can result in unpredictable outcomes 
for tasks or even memory corruption in some cases. 

One way to fix this is to treat the shared memory access 
like a critical section and guard it, using a mutual exclusion 
lock like Mutex/Semaphore. This way only one 
process/thread can access the segment at a time which will 
avoid memory corruption. However, as the number of 
threads and cores increases, this approach proves to be a 
bottleneck to performance. It mostly negates the performance 
benefit obtained by using shared memory and is usually 
considered very slow compared to Message Passing 
techniques like Pipes and Sockets. Despite being slow, locks 
can block threads when they cannot proceed which is very 
useful when CPU resources are limited. 

Like the previously mentioned many types of locks, there 
exist many other synchronization primitives that are not 
implemented as part of the popular multi-threading libraries 
in Linux. Eventcounts is one such primitive. It consists of a 
Producer and Consumer Threads. When a Producer 
produces, it sends out a signal each time. Consumer threads 
listen for these signals and block if no signal has occurred 
before consuming. There is no one standard implementation 
for Eventcounts and it can be constructed using a variety of 
other synchronization primitives like mutex, semaphores, etc. 
One such primitive is the Futex Linux System call which is  
a contraction of Fast User level Locking.  It is used to 
construct other heavier weight primitives Mutex and 
condition variables in the POSIX library. This System call 
can selectively put threads to sleep and wake them up as 
needed. 

We consider a scenario, where inter-process/inter-thread 
communication is performed via messages being enqueued 
by enqueuer threads and dequeued by dequeuer threads on an 
underlying queuing mechanism. Decades of research has 
been conducted on developing Multi-producer Multi-
consumer (MPMC) queues that have fast and predictable 
performance guarantees. These data-structures can harness 
the power of multi-core systems and can deliver close-to-
minimum possible message latency. Lock-free MPMC 



2 

 

 

queues are implemented using compare-and-swap (CAS) that 
is used to synchronize between multiple threads. The result 
of a CAS instruction is a Boolean value indicating whether 
the thread which executed it was successful or not. The CAS 
instruction guarantees that at least one of the participating 
threads will succeed while all others will fail. The failed 
threads can simply retry for a chance to succeed and make 
progress. Here making progress is akin to gaining access to a 
resource or simply completing an operation. 

However, under heavy contention, most CAS operation 
will fail, causing a dramatic drop in performance.  This is 
dubbed as the CAS retry problem. For this reason, the 
performance of CAS based queues does not scale beyond a 
modest number of threads. Another atomic instruction 
known as Fetch-and-Add (FAA) is becoming popular for 
designing concurrent data structures. Unlike the CAS 
instruction, the FAA instruction is guaranteed to always 
succeed. 

A common theme in lock-free algorithms is to retry till 
successful. Under certain conditions, lock-free algorithms 
can get stuck in retry loops which are far less efficient with 
CPU resources than locks that just puts a blocked thread to 
sleep. If a lot of threads are stuck in this retry loop, most of 
the CPU power is being wasted in order to make little 
progress.  

We can choose to guard the resources under a 
mutex/condition-variable. But that defeats the purpose of 
using lock-free data-structures because of the negative 
performance impact of mutexes. But in order to use CPU 
resources more efficiently, threads stuck in retry loops must 
be put to sleep. 

Our Contribution We present eLCRQ, a lock-free block-
when-necessary multi-producer multi-consumer (MPMC) 
FIFO queue which combines lock-free performance with 
blocking resource efficiency. It is designed for low load 
scenarios in mind where the queue can randomly and 
frequently become empty during runtime. It features 
improved efficiency while under low load with a 2.3X 
decrease in CPU Usage and 1.7X decrease in latency 
compared to existing Message Passing mechanisms Pipes 
and Sockets on multi-core Linux based systems. It also 
provides a 3.4X decrease in CPU Usage while maintaining 
comparable latency when compared to other (MPMC) lock-
free queues in low load scenarios.  

II. OVERVIEW OF CONCURRENT PROGRAMMING 

Concurrent data-structures have been a hot topic of 
research for decades. They offer fast predictable performance 
guarantees and are critical for harnessing the power of 
modern multi-core processors due to their affinity to multi-
threaded programming. Based on the progress guarantees a 
concurrent data-structure provides, it can broadly be divided 
into three groups –  

A. Obstruction free:  

Using simple locking primitives like mutex/semaphores 
for concurrency will classify a data-structure into this 
category. A participating thread is guaranteed to complete an 
arbitrary operation, otherwise known as a critical section, in 
a finite number of steps when it executes in isolation. Only 
one thread can execute its critical section at a time while all 
other threads remain in blocked state. Hence, obstruction free 

concurrency is considered the slowest form of concurrency. 
This form is also susceptible to many known concurrency 
problems like deadlocks, live-locks, race conditions, etc. 
However, in most practical scenarios, obstruction free 
concurrency is chosen because it is much simpler to reason 
about, is very resource efficient, and can be finely tuned to 
match the performance of lock free and wait free approaches. 

B. Lock free:  

Using atomic instructions like CAS and FAA, lock free 
techniques allows multiple threads to work together in a non-
blocking way. As the name implies, locks are not used in 
their implementation. Some participating thread is 
guaranteed to complete an arbitrary operation, otherwise 
known as critical section, in a finite number of steps. Even if 
progress is made by some thread, it is possible for a random 
thread to be starved of CPU time. The progress is made in a 
non-blocking way.  Hence, other threads are free to retry or 
perform some other task. Unlike obstruction free algorithms, 
lock free algorithms are resource hogs and may bottleneck 
the performance of a program if not used correctly.  

C. Wait free:  

Wait free algorithms, like their lock free counterparts, are 
similarly based on atomic instructions like CAS and FAA 
and are also non-blocking in nature. But they offer a stricter 
progress guarantee than lock free algorithms. While lock free 
guarantees that some random thread will complete its critical 
section in a finite number of steps, wait free guarantees that 
all threads will complete their critical sections in a finite 
number of steps at the same time. This restriction rules out 
the possibility of starvation for all threads. However, 
practical wait free algorithms are very hard to design and are 
usually considered inefficient compared to their lock free 
equivalents.  

III. OVERVIEW OF IPC TECHNIQUES IN LINUX 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on the 
A4 paper size. If you are using US letter-sized paper, please 
close this file and download the Microsoft Word, Letter file. 

A. PIPES: 

Pipes is the simplest form of IPC. It is implemented on 
every flavor of Linux and implements basic one-way 
communication. Anything can be written to the pipe, and 
read from the other end in the order it came in. By default, 
pipes are blocking in nature and the read end will always 
block until data arrives to be read. This means that the reader 
will not waste CPU cycles if the pipe is empty. Pipes are 
usually the simplest and the fastest way to implement IPC in 
Linux environments. There also exists another variant of pipe 
called a FIFO or named pipe. The difference is that a FIFO 
has a name attached to it and can be opened by unrelated 
processes by referencing its name. 

B. Sockets: 

Sockets provide two-way communication over a wide 
variety of domains. While sockets are generally used to 
communicate over the Internet domain, we will be discussing 
them in the context of the Unix domain. The difference 
between the two is that Unix domain sockets communicate 
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entirely within the operating system kernel. The different 
types of sockets are – 

1) Stream Socket: These provide sequenced, reliable, 

and unduplicated flow of data. This type of socket can read 

an arbitrary number of bytes, while still preserving the byte 

sequence. A stream operates much like a telephone 

conversation. 

2) Datagram Socket: A datagram is unit of data sent as a 

packet. A datagram socket chunks the information to be sent 

in the form of datagrams. The destination socket may 

receive messages in a different order from the sequence in 

which the messages were sent. Each packet of data is 

individually addressed and routed. Datagram sockets 

operate much like passing letters back and forth in the mail. 

3) Sequential Socket: This type of socket is a 

combination of the Steam socket and Datagram socket. It 

sends messages in datagram packets like the Datagram 

socket while at the same time ensuring sequential 

consistency of those packets like the Stream socket. 

C. Message Queues: 

Both the System V and POSIX libraries offer this form of 
IPC mechanism. It allows processes to exchange data in form 
of variable length messages. The messages can also have 
different message priorities or tokens associated with them. 
Messages are stored in the queue in order of their priorities. 
This allows a receiver to narrow its scope and only receive 
messages of a specific priority. It can also be used to identify 
the sender in case of multiple senders. However, there is a 
limit on the number of message queues and the size of each 
message which is defined by the operating system. 

D. Semaphores: 

Semaphores are one of the most popular signaling 
mechanisms and like message queues, they are implemented 
by both System V and POSIX libraries. Unlike the previous 
types of IPC, semaphores cannot send or receive messages. 
Instead, they are used to control accesses to critical sections. 
Here, critical sections can be anything including but not 
limited to file, shared memory, or network operation. The 
semaphore itself is represented by a non-zero integer value. 
This integer value can then either be incremented or 
decremented. If the value of a semaphore is already zero, the 
decrement operation will block until the value is incremented 
by some other process/thread. 

E. Mutex: 

Like Semaphore, a Mutex (short for mutual exclusion) is 
another synchronization primitive that is used to coordinate 
access to critical sections. But unlike semaphores, it is a 
locking mechanism instead of a signaling mechanism. A 
simple mutex object has two states – locked/unlocked. A 
thread must lock a mutex object to proceed into its critical 
section. Any other thread which tries to lock an already 
locked mutex will be blocked and added to a waiting list. 
Once the original thread unlocks the mutex, it will be locked 
again by the previously blocked thread which can then 
proceed into its own critical section. This is how mutual 
exclusion is enforced by a mutex.  

F. Condition Variables 

Condition variables are signaling mechanisms which are 
always used in conjunction with Mutexes. While a Mutex 
can synchronize thread accesses to data, condition variables 
allow threads to synchronize based on the actual value of 
data. They are used in scenarios when a thread needs some 
condition to be true before entering its critical section. 
Without this primitive, a thread would acquire a mutex lock 
and continuously poll a data value to check if a condition is 
true. This can be very resource intensive and inefficient 
especially since there might be other threads waiting on the 
Mutex lock. With the use of condition variables, the thread 
can release the Mutex lock for other threads to use while it is 
waiting for a signal that the condition is true. Once it 
receives a signal, it can the  reacquire the Mutex lock and 
proceed unobstructed into its critical section. 

G. Barriers 

In multi-threaded programming, many times a scenario 
arises where all threads must complete their assigned task 
before any of them can move onto the next task. The Barrier 
synchronization primitive has been designed exactly for such 
scenarios. In the POSIX library, the number of threads that 
need synchronization is specified during initialization of the 
barrier. At runtime, when a thread reaches a barrier 
synchronization point in code, it gets blocked till the required 
number of threads reach the same point. Hence, lagging 
threads get a chance to catch up to other threads. This 
effectively ensures that all the threads will begin the next 
task at the same time. 

H. Futex 

Futex is short for Fast User-level locking. As the name 
suggests, it is a fast, lightweight kernel-assisted locking 
primitive. They are the building blocks upon which POSIX 
Mutexes, condition variables, Semaphores, rwlocks, barriers, 
eventcounts, etc. are built. The futex state is stored in a user-
space 32 bit variable. This state is manipulated using atomic 
operations and in the uncontended case without the overhead 
of a kernel system call. If the lock is contended, the kernel is 
involved to block and wake up threads. A thread can request 
to be put in a blocked state by passing an expected value to 
the Futex system call as a parameter. If the current value of 
the 32-bit Futex state matches the expected value parameter, 
the requesting thread is put in blocked state. This operation is 
analogous to an atomic compare-and-block operation. 
Similarly, to wake up threads waiting on a Futex, another 
Futex System call can be made with the number of threads to 
be woken up sent as a parameter. Usually, this number is set 
to 1 or INT_MAX (to wake up all waiting threads).  

I. RTE_RING: 

The Data Plane Development Kit (DPDK) is a collection 
of high-performance libraries to accelerate packet processing 
workloads running on a wide variety of CPU architectures. 
The Ring library is one such library in DPDK. It consists of a 
Ring Manager which is a fixed-size non-blocking queue, 
implemented as a table of pointers. It features FIFO access, 
lock-free implementation, Multi- or single-consumer 
enqueue/dequeue, and bulk enqueue/dequeue. The lock-free 
implementation is purely CAS based. The main features of 
DPDK libraries is that instead of requesting memory 
allocation from the OS, it uses Linux hugepages. Because of 
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Figure 1: CRQ overflow 
 

this, it can transfer large amounts of data with comparatively 
low overhead. 

IV. RELATED WORK 

We refer the reader to the detailed survey conducted in 
Michal Scott’s paper[5] and Steven Smith’s[20] paper for 
additional work that predates theirs. 

A. MSQueue 

Michael and Scott presented one of the first CAS based 
non-blocking queues (MSQueue)[5]. More information on 
related atomic instructions is provided later in this paper. 
This queue used a simple linked list as its base and 
maintained head and tail pointers at the enqueue and dequeue 
heads respectively. These head and tail pointer are always 
modified using the atomic CAS instruction. At the time, this 
algorithm was the fastest and most practical non-blocking 
queue. Many attempts have been made [11,12,13] to improve 
upon this implementation, but all of them suffer from one 
major flaw. At higher levels of concurrency, the CAS atomic 
instruction will succeed only for one thread at a time. Most 
of the threads will be stuck in a CAS retry loop which leads 
to a fall of in performance beyond a modest number of 
threads. Hence, the original MSQueue and most of the 
queues which were based on this idea suffer from scalability 
problems. 

B. LCRQ 

Unlike MSQueue which uses linked list as its base data 
structure, LCRQ uses Concurrent Ring Queues (CRQs) as 
their base. CRQs are cyclic arrays that use a single fixed-size 
buffer as if it was connected end-to-end. The most useful 
property of CRQs is that the beginning and end of the buffer 
is relative, and elements need not be shuffled around when 
one is removed from the array. This makes CRQs well-suited 
for FIFO data structures. However, the maximum size of any 
such CRQ cannot be changed during runtime. This 
restriction reduces the flexibility on the number of elements 

which can be stored in any one CRQ. 

LCRQ (List of CRQs) is a non-blocking Multi-producer 
Multi-consumer FIFO queue which uses the FAA atomic 
instruction in conjunction with the CAS instruction to 
achieve high scalability. It consists of a linked list of CRQs 
as its base. This overcomes the problem of a fixed size CRQ 
and makes LCRQ effectively unbounded. In addition, it uses 
the FAA atomic instruction to spread enqueuers and 
dequeuers around while minimizes contention. This helps 
LCRQ to avoid the CAS based scalability problems faced by 
prior queue implementations like MSQueue. Initially, LCRQ 
only consists on one CRQ. When this fills up, a new CRQ is 
allocated and attached to the next pointer of the initial CRQ. 
All enqueuers are moved to the new CRQ while dequeuers 
work on emptying the old CRQ. When the old CRQ become 
empty, it is deallocated from the memory and dequeuers 
move onto the next CRQ.  At the time of writing this paper, 
LCRQ is currently the fastest lock-free queue in literature. Its 
benchmarks outperform previous implementations by up to 
2.5X on multi-core processors. For this reason, it is chosen as 
the base of the FIFO queue described in this paper. 

However, we focus on improving the resource efficiency 
of this queue while making suitable tradeoffs in scalability 
and performance.  

C. Futex based primitives 

Fast User space muTEX, Futex for short, is a locking 
primitive that is a base for many other synchronization 
primitives including but not limited to Mutexes, condition 
variables, Semaphores, and barriers, in the Linux POSIX 
library. The Futex is implemented as a System call in the 
Linux operating system but has no explicit glibc wrappers. In 
[14], the Futex system call is used to implement several 
atomic primitives with encouraging results.  

The Eventcount mechanism was first described by 
Vyukov D. as a proposal for use in Intel’s Thread Building 
Blocks (TBB) library. The original implementation made use 
of Mutexes/Semaphores to support multiple Operating 
Systems. However, this mechanism can also be implemented 
using the previously mentioned, Linux system call Futex for 
further improving its efficiency[22].  A detailed description 
of the working of Eventcount is included later in this paper. 

V. THE PROPOSED MECHANISM 

We now present the eLCRQ algorithm with LCRQ as a 
black box. eLCRQ is a combination of a Futex based 
Eventcounts mechanism based on top of a LCRQ.  

Eventcount can best be described as a condition variable 
for lock-free algorithms. The problem with traditional 
mutex/condition variables and semaphores is that invoking 
them will usually result in a call to the kernel. The kernel 
will then decide to block/unblock the thread based on the 
current state. This incurs significant overhead in terms of 
latency. Eventcount is a synchronization primitive that 
facilitates user space handling of such scenarios. The 
blocking/unblocking logic of Eventcounts is isolated in a 
separate layer from the lock-free algorithm and is executed in 
two phases. The first phase determines if blocking is 
necessary (slow path) or not (fast path). It does so by 
checking an arbitrary condition which is supplied by the 
user. If the supplied condition is already true, no blocking is 
necessary, and the lock-free algorithm can execute as usual. 
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1 dequeue() { 

2  x := LCRQdeq() // spin for eLCRQ-spin 

3  if(x is null) { // handle fast path 

4   while(True) { // guard spurious wakes 

5    key = prepareWait() // slow path 

6   x := LCRQdeq() 

7    if(x is null) { 

8     wait(key) // block 

9    } else { 

10    cancelWait()  // cancel block 

11    break 

12   } 

13  } 

14 } 

15 return x 

16} 

Figure 3: Eventcount dequeue 
 

1. enqueue(x: Object) { 

2.   LCRQenq(x) 

3.   notify() // wake blocked consumers 

4.} 

Figure 2: Eventcount enqueue 
 

However, if the condition is false, the thread must make 
necessary preparations to block until the condition becomes 
true. 

In context of a Producer-Consumer queue, the condition 
which can be supplied to the Eventcount can be to check 
whether the queue buffer is empty. If the first check returns 
False, i.e., the queue is not empty, the consumer can proceed 
along the fast path, bypassing the Eventcount mechanism 
altogether. If the first check returns True, i.e., the queue is 
empty, the consumer must prepare to block along the slow 
path. Once a producer thread enqueues an element in the 
queue, it notifies a blocked consumer thread which unblocks 
and proceeds to dequeue the element. Figures 2 and 3 
describe the entire scenario in pseudocode. A second version 
called eLCRQ-spin includes a fixed amount of spin at Line 2 
in Figure 3. This allows for tradeoffs between CPU usage 
and acceptable latency. LCRQenq and LCRQdeq are stand-
ins for the default non-blocking enqueue and dequeue 
operations already present in LCRQ. A brief description has 
been provided later in this paper. For implementation details 
and benchmarks against competing queues, please see [1].  

A. LCRQenq 

Following our earlier terminology of Producer-Consumer 
queue, a Producer thread performs the LCRQenq operation 
on a CRQ as shown in Figure 1. Initially, a producer thread 
performs an atomic FAA operation of the tail of the current 
CRQ. This returns the index of the CRQ on which enqueue 
operation is to be performed and atomically increases the tail 

to the next index for use by other threads. A 64-bit CAS 
operation is then performed on this index to enqueue an 
element on the current index. If the CAS operation succeeds, 
then the enqueue operation completes successfully. If it fails, 
then the producer thread retries. The enqueue operation can 
fail repeatedly in two possible scenarios. Either the current 
CRQ is full, or the current producer is being starved by other 
threads. In both scenarios, the current CRQ is marked as 
closed by the producer and a new CRQ is created. All 
producers then move onto the new CRQ and the current 
CRQ is closed off to any new enqueue operations. Once all 
consumer threads finish dequeuing from the current CRQ, it 
is deallocated from the memory and all operations are now 
performed on the new CRQ.  

B. LCRQdeq 

The non-blocking dequeue operation consists of a 
consumer thread returning a value from an index in a CRQ 
and replacing that index with an EMPTY value. The 
consumer thread performs an atomic FAA operation to get 
the head index of the current CRQ. Since, this operation is 
atomic, other consumer threads are advanced to further 
indexes. Then, an atomic read is performed to retrieve the 
current index value of the node. If node index > head index, 
then the dequeue operation has been overtaken between the 
FAA and the atomic read. In this case, the CRQ might be 
empty which just returns an EMPTY value from the dequeue 
operation. However, if the queue is not empty, the entire 
operation is repeated by again performing an FAA on the 
head. If the value of the node index is consistent with the 
value of the head index after the atomic read, a CAS 
operation is performed to replace the current node value with 
an EMPTY and return the current value. If this operation 
fails or the current node value is EMPTY, the consumer 
thread moves onto the next index to retry another dequeue 
operation. Between each retry, a check is made to see if the 
queue is empty. If it is, the dequeue simply returns an 
EMPTY value instead of retrying. 

VI. EXPERIMENTATION AND EVALUATION 

A. Evaluated Algorithms 

We compare eLCRQ and eLCRQ-spin to the best 
performing IPC techniques on a Linux system, namely Pipes, 
and Stream sockets. We also test performance against 
industry standard Intel DPDK’s RTE_RING, the classic non-
blocking MSQueue, and base LCRQ.  

From [20], we know that Linux Pipes and Sockets are 
one of the fastest and simplest forms of Inter-Process 
Communication. They also adapt well to multi-producer 
multi-consumer scenario. Pipes are implemented by utilizing 
the pipefs virtual file system which is maintained in the 
memory and the pipe system call. The maximum size of a 
message that can be sent through a pipe is 64 KB. Similarly, 
the socket is uses the sockfs and the socket system call to 
create and maintain a socket. In case of a stream socket, a 
message is treated as a continuous stream of bytes. 

RTE_RING  manages memory on its own instead of 
relying on the operating system and kernel. It does this by 
accessing Linux Hugepages, which is a portion of RAM, 
typically with sizes ranging from 4 KB to 2 GB. By making 
use of Hugepages, the kernel has fewer pages in memory to 
deal with which mean less overall overhead in 
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Figure 4: Simulation 
 

 

Figure 6: CPU usage benchmark (lower is better) 
 

accessing/maintaining them. This library also makes use of a 
fixed-size CAS based ring array as the base data-structure 
which further increases performance.  

B. Implementation 

We implement simulations related to Pipes, Sockets, 
MSQueue, LCRQ, eLCRQ, and eLCRQ-spin in C++, except 
RTE_RING which is a C only library. The algorithms for 
MSQueue and LCRQ where referenced from [24] which use 

Hazard Pointers[10] for garbage collection. Synchronization 
barriers are placed at the start for every IPC mechanism to 
exclude the time taken for initialization. This also ensures all 
producer and consumer threads start at the same time, thus 
eliminating any inconsistencies in timing latency between 
sending/receiving. 

C. Platform 

We use the CentOS 7 Linux distro running on an Intel 
Core i9-7920X 12-core processor for running our 
benchmarks. Each core has a base clock of 2.90 GHz with 
Turbo Boost up to 4.3 GHz which multiplexes into two 
hardware threads. This brings the total system core count to 
24 cores. As is usual for Intel processors, each core has 
private L1 and L2 caches with shared L3 cache. Memory 
frequency is clocked at 3 GHz. 

D. Methodology 

The evaluation consists of a ping-pong IPC test scenario. 
It is made up of two separate processes each with its own set 
of producer and consumer threads. Producer threads from 
Process 1 communicate with Consumer threads in Process 2 
and vice versa. The underlying communication mechanism 
between the two processes is changed between Pipes, 
sockets, MSQueue, LCRQ, RTE_RING, eLCRQ, and 
eCLRQ-spin. Figure 4 is a pictorial representation of the 
simulation. Two different benchmarks are performed for 

each mechanism. A latency benchmark which records the 
time delay between messages being sent and received 
between producer-consumer pairs, and a CPU usage 
benchmark which tracks the average CPU usage during the 
simulation. To provide a result that is relatively free from 
noise due to background tasks, we run every benchmark 5 
times with 1 million iterations each. This helps the system to 
reach a steady state during each benchmark. The simulation 
is repeated for varying number of threads ranging from 2 to 
24. This is done to study the scalability of every mechanism. 
In addition to this, each thread is manually pinned to distinct 
cores to eliminate variances due to random nature of the 
kernel task scheduler.  

E. Results 

Figures 5 and 6 show the results of benchmarks with 
different IPC mechanisms. Examining the results from the 
two benchmarks, provides significant insight at the 
efficiency of existing IPC mechanisms in the Linux kernel. 
We omit the results of the Datagram socket and Sequential 
socket because we found them to perform very close to the 
Stream socket. We will discuss results in two parts, 
considering the Latency and CPU Usage respectively. 

1) Latency:  
Here we measure the time difference in sending and 

receiving a 64-bit integer between producers and consumers.  

From Figure 5, we see that eLCRQ improves upon 
existing message passing Linux IPC mechanisms Pipes and 
Sockets by 1.7X at 24 threads. This is to be expected because 
Shared memory communication is the fastest form of IPC 
communication. Because the eCLRQ Eventcount mechanism 
rarely goes into slow path during this benchmark, the use of 
atomic instructions for synchronization increases the 
likelihood of higher throughput 

Purely CAS instruction based MSQueue suffers quite a 
bit at higher concurrency levels due to the CAS retry 
problem. This leads to the worst scaling queue for IPC by a 
significant margin. eLCRQ outperforms MSQueue by 1.9X 
at 24 threads. 

RTE_RING performs much better than MSQueue even 
though it uses the CAS instruction for manipulating its 
queue. This is because it avoids the memory management 
overhead of the Linux kernel by using Linux Hugepages and 
managing memory on its own. It manages to beat the eLCRQ 
by a margin of 1.3X but loses to eLCRQ-spin by 5.61X. 

As expected, the original LCRQ beats all other queues 
because of its efficient use of the FAA atomic instruction to 
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Figure 5: Scaling test (lower is better) 
 

spread multi-threaded load in addition to the CAS 
instruction. It is the fastest non-blocking queue in literature at 
the time of writing of this paper. However, eLCRQ-spin very 
closely matches the performance of the original LCRQ. 

2) CPU Usage 
CPU Usage is an important metric when considering the 

use of any algorithm in a practical important. It provides 
important hints into its implementation and scalability. To 
test this metric in a realistic scenario where each IPC 
mechanism is subjected to random delay in messages, a 
small delay of 1 – 20 us in introduced after each  producer-
enqueue/consumer-dequeue. Only the CPU Usage of 
Consumer threads is measured in this simulation. 

From Figure 6, blocking Pipes and Sockets have good 
CPU Usage characteristics when compared to other non-

blocking mechanisms. eLCRQ however improves upon them 
by 2.3 X at 24 threads.  

As expected by non-blocking mechanisms, RTE_RING, 
and MSQueue both take close to 100 % CPU resources. 
eLCRQ takes up upto 3.4 X while eLCRQ-spin takes 1.1 X 
less CPU resource at 24 threads, during the simulation.  

Overall, eLCRQ takes up less CPU resources than other 
competing IPC mechanisms in this simulation. This is made 
possible due to efficient waiting on dequeue requests by the 
Futex-based Eventcount layer. 

VII. CONCLUSION 

We have presented eLCRQ, a concurrent non-blocking 
block-when-necessary queue based on LCRQ and Futex 
based event-counts that outperforms standard Linux IPC 
mechanisms in terms of per message latency by 1.7X in its 
base form and by more than 9.2X with fixed spinning. It also 
beats standard Linux IPC and industry standard RTE_RING 
in terms of CPU usage on randomly delayed loads by 3.4X. 
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