

A DYNAMIC MULTI-THREADED QUEUING

MECHANISM FOR REDUCING THE INTER-

PROCESS COMMUNICATION LATENCY ON

MULTI-CORE CHIPS

by

ROHITSHANKAR VIJAY SHANKAR MISHRA

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Master of Science at

The University of Texas at Arlington

August, 2019

Arlington, Texas

Supervising Committee:

Dr. Ishfaq Ahmad, Supervising Professor

Dr. Ming Li

Dr. Shirin Nilizadeh

ii

ABSTRACT

Reducing latency in Inter-Process Communication (IPC) is one of the key challenges in multi- threaded

applications in multi-core environments. High latencies can have serious impact on the performance of

an application when many threads queue up for memory access. Often lower latencies are achieved by

using lock-free algorithms that keep threads spinning but incur high CPU usage as a result. Blocking

synchronization primitives such as mutual exclusion locks or semaphores achieve resource efficiency but

yield lower performance. In this paper, we take a different approach of combining a lock-free algorithm

with resource efficiency of blocking synchronization primitives. We propose a queueing scheme named

eLCRQ that uses the lightweight Linux Futex system call to construct a block-when- necessary layer on

top of the popular lock-free LCRQ. Owing to the block-when-necessary feature, eLCRQ produces close

to lock-free performance when under contention. Under no contention, we use the Futex System call for

conditional blocking instead of spinning in a retry loop, which releases the CPU to perform other tasks.

When compared with existing IPC mechanisms, eLCRQ yields 2.3 times reduction in CPU usage while

lowering the average message latency 1.7 times. When comparing the proposed scheme with industry

standard non-blocking lock-free DPDK RTE_RING, the results show a 3.4 times reduction in CPU

Usage while maintaining comparable message latency. We also propose a fixed-spinning based variation

of the proposed scheme, called eLCRQ-spin, which allows us to make tradeoffs between CPU usage

efficiency and message latency.

iii

CONTENTS

I. Introduction .. 1
II. Overview of concurrent programming .. 2

A. Obstruction free: .. 2
B. Lock free: .. 2
C. Wait free: ... 2

III. Overview of IPC Techniques in Linux .. 2
A. PIPES: ... 2
B. Sockets: ... 2

1) Stream Socket ... 3
2) Datagram Socket .. 3
3) Sequential Socket ... 3

C. Message Queues: ... 3
D. Semaphores: .. 3
E. Mutex: ... 3
F. Condition Variables... 3
G. Barriers .. 3
H. Futex .. 3
I. RTE_RING: .. 3

IV. Related Work .. 4
A. MSQueue... 4
B. LCRQ .. 4
C. Futex based primitives .. 4

V. The Proposed Mechanism ... 4
A. LCRQenq .. 5
B. LCRQdeq .. 5

VI. Experimentation and Evaluation ... 5
A. Evaluated Algorithms .. 5
B. Implementation ... 6
C. Platform ... 6
D. Methodology ... 6
E. Results ... 6

1) Latency: .. 6
2) CPU Usage .. 7

VII. Conclusion... 7

1

A Dynamic Multi-Threaded Queuing Mechnism for

Reducing the Inter-Process Communication Latency

on Multi-Core Chips
Rohitshankar Mishra

Department of Computer Science

University of Texas, Arlington

Arlington, Texas

rohitshankarvij.mishra@mavs.uta.edu

Dr. Ishfaq Ahmad

Department of Computer Science

University of Texas, Arlington

Arlington, Texas

ishfaq.ahmad@uta.edu

Abstract—Reducing latency in Inter-Process

Communication (IPC) is one of the key challenges in multi-

threaded applications in multi-core environments. High

latencies can have serious impact on the performance of an

application when many threads queue up for memory access.

Often lower latencies are achieved by using lock-free

algorithms that keep threads spinning but incur high CPU

usage as a result. Blocking synchronization primitives such as

mutual exclusion locks or semaphores achieve resource

efficiency but yield lower performance. In this paper, we take a

different approach of combining a lock-free algorithm with

resource efficiency of blocking synchronization primitives. We

propose a queueing scheme named eLCRQ that uses the

lightweight Linux Futex system call to construct a block-when-

necessary layer on top of the popular lock-free LCRQ. Owing

to the block-when-necessary feature, eLCRQ produces close to

lock-free performance when under contention. Under no

contention, we use the Futex System call for conditional

blocking instead of spinning in a retry loop, which releases the

CPU to perform other tasks. When compared with existing

IPC mechanisms, eLCRQ yields 2.3 times reduction in CPU

usage while lowering the average message latency 1.7 times.

When comparing the proposed scheme with industry standard

non-blocking lock-free DPDK RTE_RING, the results show a

3.4 times reduction in CPU Usage while maintaining

comparable message latency. We also propose a fixed-spinning

based variation of the proposed scheme, called eLCRQ-spin,

which allows us to make tradeoffs between CPU usage

efficiency and message latency.

Keywords— multi-producer multi-consumer, Futex, multi-

threading, IPC

I. INTRODUCTION

Reducing latency in Inter-Process/Inter-Thread
Communication is one of the key challenges in parallel and
distributed computing. This is because as the number of
threads in an application goes on increasing, usually so does
the communication overhead. Hence, reducing the
communication latency can have a big impact on multi-
threaded application performance in multi-core
environments. The mechanisms used for such
communication in a Linux based OS can generally be
divided into two categories – Message Passing and Shared
Memory[21]. Message Passing refers to direct core-to-core
communication between threads using mechanisms like
Pipes, Sockets, Message Queues, Signals, etc. Shared
Memory is communication via reading/writing to a shared
memory segment. Some examples include POSIX Memory
Mapped files and System V shared segments. All changes

made to this segment will be visible to everyone else
connected to the segment.

However, this advantage of immediate communication
from shared memory comes with a major loophole. There is
no coordination present by default, between processes
writing to the shared segment. There is nothing stopping two
or more separate processes/threads to write in the same
memory segment at the same memory location
simultaneously. This can result in unpredictable outcomes
for tasks or even memory corruption in some cases.

One way to fix this is to treat the shared memory access
like a critical section and guard it, using a mutual exclusion
lock like Mutex/Semaphore. This way only one
process/thread can access the segment at a time which will
avoid memory corruption. However, as the number of
threads and cores increases, this approach proves to be a
bottleneck to performance. It mostly negates the performance
benefit obtained by using shared memory and is usually
considered very slow compared to Message Passing
techniques like Pipes and Sockets. Despite being slow, locks
can block threads when they cannot proceed which is very
useful when CPU resources are limited.

Like the previously mentioned many types of locks, there
exist many other synchronization primitives that are not
implemented as part of the popular multi-threading libraries
in Linux. Eventcounts is one such primitive. It consists of a
Producer and Consumer Threads. When a Producer
produces, it sends out a signal each time. Consumer threads
listen for these signals and block if no signal has occurred
before consuming. There is no one standard implementation
for Eventcounts and it can be constructed using a variety of
other synchronization primitives like mutex, semaphores, etc.
One such primitive is the Futex Linux System call which is
a contraction of Fast User level Locking. It is used to
construct other heavier weight primitives Mutex and
condition variables in the POSIX library. This System call
can selectively put threads to sleep and wake them up as
needed.

We consider a scenario, where inter-process/inter-thread
communication is performed via messages being enqueued
by enqueuer threads and dequeued by dequeuer threads on an
underlying queuing mechanism. Decades of research has
been conducted on developing Multi-producer Multi-
consumer (MPMC) queues that have fast and predictable
performance guarantees. These data-structures can harness
the power of multi-core systems and can deliver close-to-
minimum possible message latency. Lock-free MPMC

2

queues are implemented using compare-and-swap (CAS) that
is used to synchronize between multiple threads. The result
of a CAS instruction is a Boolean value indicating whether
the thread which executed it was successful or not. The CAS
instruction guarantees that at least one of the participating
threads will succeed while all others will fail. The failed
threads can simply retry for a chance to succeed and make
progress. Here making progress is akin to gaining access to a
resource or simply completing an operation.

However, under heavy contention, most CAS operation
will fail, causing a dramatic drop in performance. This is
dubbed as the CAS retry problem. For this reason, the
performance of CAS based queues does not scale beyond a
modest number of threads. Another atomic instruction
known as Fetch-and-Add (FAA) is becoming popular for
designing concurrent data structures. Unlike the CAS
instruction, the FAA instruction is guaranteed to always
succeed.

A common theme in lock-free algorithms is to retry till
successful. Under certain conditions, lock-free algorithms
can get stuck in retry loops which are far less efficient with
CPU resources than locks that just puts a blocked thread to
sleep. If a lot of threads are stuck in this retry loop, most of
the CPU power is being wasted in order to make little
progress.

We can choose to guard the resources under a
mutex/condition-variable. But that defeats the purpose of
using lock-free data-structures because of the negative
performance impact of mutexes. But in order to use CPU
resources more efficiently, threads stuck in retry loops must
be put to sleep.

Our Contribution We present eLCRQ, a lock-free block-
when-necessary multi-producer multi-consumer (MPMC)
FIFO queue which combines lock-free performance with
blocking resource efficiency. It is designed for low load
scenarios in mind where the queue can randomly and
frequently become empty during runtime. It features
improved efficiency while under low load with a 2.3X
decrease in CPU Usage and 1.7X decrease in latency
compared to existing Message Passing mechanisms Pipes
and Sockets on multi-core Linux based systems. It also
provides a 3.4X decrease in CPU Usage while maintaining
comparable latency when compared to other (MPMC) lock-
free queues in low load scenarios.

II. OVERVIEW OF CONCURRENT PROGRAMMING

Concurrent data-structures have been a hot topic of
research for decades. They offer fast predictable performance
guarantees and are critical for harnessing the power of
modern multi-core processors due to their affinity to multi-
threaded programming. Based on the progress guarantees a
concurrent data-structure provides, it can broadly be divided
into three groups –

A. Obstruction free:

Using simple locking primitives like mutex/semaphores
for concurrency will classify a data-structure into this
category. A participating thread is guaranteed to complete an
arbitrary operation, otherwise known as a critical section, in
a finite number of steps when it executes in isolation. Only
one thread can execute its critical section at a time while all
other threads remain in blocked state. Hence, obstruction free

concurrency is considered the slowest form of concurrency.
This form is also susceptible to many known concurrency
problems like deadlocks, live-locks, race conditions, etc.
However, in most practical scenarios, obstruction free
concurrency is chosen because it is much simpler to reason
about, is very resource efficient, and can be finely tuned to
match the performance of lock free and wait free approaches.

B. Lock free:

Using atomic instructions like CAS and FAA, lock free
techniques allows multiple threads to work together in a non-
blocking way. As the name implies, locks are not used in
their implementation. Some participating thread is
guaranteed to complete an arbitrary operation, otherwise
known as critical section, in a finite number of steps. Even if
progress is made by some thread, it is possible for a random
thread to be starved of CPU time. The progress is made in a
non-blocking way. Hence, other threads are free to retry or
perform some other task. Unlike obstruction free algorithms,
lock free algorithms are resource hogs and may bottleneck
the performance of a program if not used correctly.

C. Wait free:

Wait free algorithms, like their lock free counterparts, are
similarly based on atomic instructions like CAS and FAA
and are also non-blocking in nature. But they offer a stricter
progress guarantee than lock free algorithms. While lock free
guarantees that some random thread will complete its critical
section in a finite number of steps, wait free guarantees that
all threads will complete their critical sections in a finite
number of steps at the same time. This restriction rules out
the possibility of starvation for all threads. However,
practical wait free algorithms are very hard to design and are
usually considered inefficient compared to their lock free
equivalents.

III. OVERVIEW OF IPC TECHNIQUES IN LINUX

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
A4 paper size. If you are using US letter-sized paper, please
close this file and download the Microsoft Word, Letter file.

A. PIPES:

Pipes is the simplest form of IPC. It is implemented on
every flavor of Linux and implements basic one-way
communication. Anything can be written to the pipe, and
read from the other end in the order it came in. By default,
pipes are blocking in nature and the read end will always
block until data arrives to be read. This means that the reader
will not waste CPU cycles if the pipe is empty. Pipes are
usually the simplest and the fastest way to implement IPC in
Linux environments. There also exists another variant of pipe
called a FIFO or named pipe. The difference is that a FIFO
has a name attached to it and can be opened by unrelated
processes by referencing its name.

B. Sockets:

Sockets provide two-way communication over a wide
variety of domains. While sockets are generally used to
communicate over the Internet domain, we will be discussing
them in the context of the Unix domain. The difference
between the two is that Unix domain sockets communicate

3

entirely within the operating system kernel. The different
types of sockets are –

1) Stream Socket: These provide sequenced, reliable,

and unduplicated flow of data. This type of socket can read

an arbitrary number of bytes, while still preserving the byte

sequence. A stream operates much like a telephone

conversation.

2) Datagram Socket: A datagram is unit of data sent as a

packet. A datagram socket chunks the information to be sent

in the form of datagrams. The destination socket may

receive messages in a different order from the sequence in

which the messages were sent. Each packet of data is

individually addressed and routed. Datagram sockets

operate much like passing letters back and forth in the mail.

3) Sequential Socket: This type of socket is a

combination of the Steam socket and Datagram socket. It

sends messages in datagram packets like the Datagram

socket while at the same time ensuring sequential

consistency of those packets like the Stream socket.

C. Message Queues:

Both the System V and POSIX libraries offer this form of
IPC mechanism. It allows processes to exchange data in form
of variable length messages. The messages can also have
different message priorities or tokens associated with them.
Messages are stored in the queue in order of their priorities.
This allows a receiver to narrow its scope and only receive
messages of a specific priority. It can also be used to identify
the sender in case of multiple senders. However, there is a
limit on the number of message queues and the size of each
message which is defined by the operating system.

D. Semaphores:

Semaphores are one of the most popular signaling
mechanisms and like message queues, they are implemented
by both System V and POSIX libraries. Unlike the previous
types of IPC, semaphores cannot send or receive messages.
Instead, they are used to control accesses to critical sections.
Here, critical sections can be anything including but not
limited to file, shared memory, or network operation. The
semaphore itself is represented by a non-zero integer value.
This integer value can then either be incremented or
decremented. If the value of a semaphore is already zero, the
decrement operation will block until the value is incremented
by some other process/thread.

E. Mutex:

Like Semaphore, a Mutex (short for mutual exclusion) is
another synchronization primitive that is used to coordinate
access to critical sections. But unlike semaphores, it is a
locking mechanism instead of a signaling mechanism. A
simple mutex object has two states – locked/unlocked. A
thread must lock a mutex object to proceed into its critical
section. Any other thread which tries to lock an already
locked mutex will be blocked and added to a waiting list.
Once the original thread unlocks the mutex, it will be locked
again by the previously blocked thread which can then
proceed into its own critical section. This is how mutual
exclusion is enforced by a mutex.

F. Condition Variables

Condition variables are signaling mechanisms which are
always used in conjunction with Mutexes. While a Mutex
can synchronize thread accesses to data, condition variables
allow threads to synchronize based on the actual value of
data. They are used in scenarios when a thread needs some
condition to be true before entering its critical section.
Without this primitive, a thread would acquire a mutex lock
and continuously poll a data value to check if a condition is
true. This can be very resource intensive and inefficient
especially since there might be other threads waiting on the
Mutex lock. With the use of condition variables, the thread
can release the Mutex lock for other threads to use while it is
waiting for a signal that the condition is true. Once it
receives a signal, it can the reacquire the Mutex lock and
proceed unobstructed into its critical section.

G. Barriers

In multi-threaded programming, many times a scenario
arises where all threads must complete their assigned task
before any of them can move onto the next task. The Barrier
synchronization primitive has been designed exactly for such
scenarios. In the POSIX library, the number of threads that
need synchronization is specified during initialization of the
barrier. At runtime, when a thread reaches a barrier
synchronization point in code, it gets blocked till the required
number of threads reach the same point. Hence, lagging
threads get a chance to catch up to other threads. This
effectively ensures that all the threads will begin the next
task at the same time.

H. Futex

Futex is short for Fast User-level locking. As the name
suggests, it is a fast, lightweight kernel-assisted locking
primitive. They are the building blocks upon which POSIX
Mutexes, condition variables, Semaphores, rwlocks, barriers,
eventcounts, etc. are built. The futex state is stored in a user-
space 32 bit variable. This state is manipulated using atomic
operations and in the uncontended case without the overhead
of a kernel system call. If the lock is contended, the kernel is
involved to block and wake up threads. A thread can request
to be put in a blocked state by passing an expected value to
the Futex system call as a parameter. If the current value of
the 32-bit Futex state matches the expected value parameter,
the requesting thread is put in blocked state. This operation is
analogous to an atomic compare-and-block operation.
Similarly, to wake up threads waiting on a Futex, another
Futex System call can be made with the number of threads to
be woken up sent as a parameter. Usually, this number is set
to 1 or INT_MAX (to wake up all waiting threads).

I. RTE_RING:

The Data Plane Development Kit (DPDK) is a collection
of high-performance libraries to accelerate packet processing
workloads running on a wide variety of CPU architectures.
The Ring library is one such library in DPDK. It consists of a
Ring Manager which is a fixed-size non-blocking queue,
implemented as a table of pointers. It features FIFO access,
lock-free implementation, Multi- or single-consumer
enqueue/dequeue, and bulk enqueue/dequeue. The lock-free
implementation is purely CAS based. The main features of
DPDK libraries is that instead of requesting memory
allocation from the OS, it uses Linux hugepages. Because of

4

Figure 1: CRQ overflow

this, it can transfer large amounts of data with comparatively
low overhead.

IV. RELATED WORK

We refer the reader to the detailed survey conducted in
Michal Scott’s paper[5] and Steven Smith’s[20] paper for
additional work that predates theirs.

A. MSQueue

Michael and Scott presented one of the first CAS based
non-blocking queues (MSQueue)[5]. More information on
related atomic instructions is provided later in this paper.
This queue used a simple linked list as its base and
maintained head and tail pointers at the enqueue and dequeue
heads respectively. These head and tail pointer are always
modified using the atomic CAS instruction. At the time, this
algorithm was the fastest and most practical non-blocking
queue. Many attempts have been made [11,12,13] to improve
upon this implementation, but all of them suffer from one
major flaw. At higher levels of concurrency, the CAS atomic
instruction will succeed only for one thread at a time. Most
of the threads will be stuck in a CAS retry loop which leads
to a fall of in performance beyond a modest number of
threads. Hence, the original MSQueue and most of the
queues which were based on this idea suffer from scalability
problems.

B. LCRQ

Unlike MSQueue which uses linked list as its base data
structure, LCRQ uses Concurrent Ring Queues (CRQs) as
their base. CRQs are cyclic arrays that use a single fixed-size
buffer as if it was connected end-to-end. The most useful
property of CRQs is that the beginning and end of the buffer
is relative, and elements need not be shuffled around when
one is removed from the array. This makes CRQs well-suited
for FIFO data structures. However, the maximum size of any
such CRQ cannot be changed during runtime. This
restriction reduces the flexibility on the number of elements

which can be stored in any one CRQ.

LCRQ (List of CRQs) is a non-blocking Multi-producer
Multi-consumer FIFO queue which uses the FAA atomic
instruction in conjunction with the CAS instruction to
achieve high scalability. It consists of a linked list of CRQs
as its base. This overcomes the problem of a fixed size CRQ
and makes LCRQ effectively unbounded. In addition, it uses
the FAA atomic instruction to spread enqueuers and
dequeuers around while minimizes contention. This helps
LCRQ to avoid the CAS based scalability problems faced by
prior queue implementations like MSQueue. Initially, LCRQ
only consists on one CRQ. When this fills up, a new CRQ is
allocated and attached to the next pointer of the initial CRQ.
All enqueuers are moved to the new CRQ while dequeuers
work on emptying the old CRQ. When the old CRQ become
empty, it is deallocated from the memory and dequeuers
move onto the next CRQ. At the time of writing this paper,
LCRQ is currently the fastest lock-free queue in literature. Its
benchmarks outperform previous implementations by up to
2.5X on multi-core processors. For this reason, it is chosen as
the base of the FIFO queue described in this paper.

However, we focus on improving the resource efficiency
of this queue while making suitable tradeoffs in scalability
and performance.

C. Futex based primitives

Fast User space muTEX, Futex for short, is a locking
primitive that is a base for many other synchronization
primitives including but not limited to Mutexes, condition
variables, Semaphores, and barriers, in the Linux POSIX
library. The Futex is implemented as a System call in the
Linux operating system but has no explicit glibc wrappers. In
[14], the Futex system call is used to implement several
atomic primitives with encouraging results.

The Eventcount mechanism was first described by
Vyukov D. as a proposal for use in Intel’s Thread Building
Blocks (TBB) library. The original implementation made use
of Mutexes/Semaphores to support multiple Operating
Systems. However, this mechanism can also be implemented
using the previously mentioned, Linux system call Futex for
further improving its efficiency[22]. A detailed description
of the working of Eventcount is included later in this paper.

V. THE PROPOSED MECHANISM

We now present the eLCRQ algorithm with LCRQ as a
black box. eLCRQ is a combination of a Futex based
Eventcounts mechanism based on top of a LCRQ.

Eventcount can best be described as a condition variable
for lock-free algorithms. The problem with traditional
mutex/condition variables and semaphores is that invoking
them will usually result in a call to the kernel. The kernel
will then decide to block/unblock the thread based on the
current state. This incurs significant overhead in terms of
latency. Eventcount is a synchronization primitive that
facilitates user space handling of such scenarios. The
blocking/unblocking logic of Eventcounts is isolated in a
separate layer from the lock-free algorithm and is executed in
two phases. The first phase determines if blocking is
necessary (slow path) or not (fast path). It does so by
checking an arbitrary condition which is supplied by the
user. If the supplied condition is already true, no blocking is
necessary, and the lock-free algorithm can execute as usual.

5

1 dequeue() {

2 x := LCRQdeq() // spin for eLCRQ-spin

3 if(x is null) { // handle fast path

4 while(True) { // guard spurious wakes

5 key = prepareWait() // slow path

6 x := LCRQdeq()

7 if(x is null) {

8 wait(key) // block

9 } else {

10 cancelWait() // cancel block

11 break

12 }

13 }

14 }

15 return x

16}

Figure 3: Eventcount dequeue

1. enqueue(x: Object) {

2. LCRQenq(x)

3. notify() // wake blocked consumers

4.}

Figure 2: Eventcount enqueue

However, if the condition is false, the thread must make
necessary preparations to block until the condition becomes
true.

In context of a Producer-Consumer queue, the condition
which can be supplied to the Eventcount can be to check
whether the queue buffer is empty. If the first check returns
False, i.e., the queue is not empty, the consumer can proceed
along the fast path, bypassing the Eventcount mechanism
altogether. If the first check returns True, i.e., the queue is
empty, the consumer must prepare to block along the slow
path. Once a producer thread enqueues an element in the
queue, it notifies a blocked consumer thread which unblocks
and proceeds to dequeue the element. Figures 2 and 3
describe the entire scenario in pseudocode. A second version
called eLCRQ-spin includes a fixed amount of spin at Line 2
in Figure 3. This allows for tradeoffs between CPU usage
and acceptable latency. LCRQenq and LCRQdeq are stand-
ins for the default non-blocking enqueue and dequeue
operations already present in LCRQ. A brief description has
been provided later in this paper. For implementation details
and benchmarks against competing queues, please see [1].

A. LCRQenq

Following our earlier terminology of Producer-Consumer
queue, a Producer thread performs the LCRQenq operation
on a CRQ as shown in Figure 1. Initially, a producer thread
performs an atomic FAA operation of the tail of the current
CRQ. This returns the index of the CRQ on which enqueue
operation is to be performed and atomically increases the tail

to the next index for use by other threads. A 64-bit CAS
operation is then performed on this index to enqueue an
element on the current index. If the CAS operation succeeds,
then the enqueue operation completes successfully. If it fails,
then the producer thread retries. The enqueue operation can
fail repeatedly in two possible scenarios. Either the current
CRQ is full, or the current producer is being starved by other
threads. In both scenarios, the current CRQ is marked as
closed by the producer and a new CRQ is created. All
producers then move onto the new CRQ and the current
CRQ is closed off to any new enqueue operations. Once all
consumer threads finish dequeuing from the current CRQ, it
is deallocated from the memory and all operations are now
performed on the new CRQ.

B. LCRQdeq

The non-blocking dequeue operation consists of a
consumer thread returning a value from an index in a CRQ
and replacing that index with an EMPTY value. The
consumer thread performs an atomic FAA operation to get
the head index of the current CRQ. Since, this operation is
atomic, other consumer threads are advanced to further
indexes. Then, an atomic read is performed to retrieve the
current index value of the node. If node index > head index,
then the dequeue operation has been overtaken between the
FAA and the atomic read. In this case, the CRQ might be
empty which just returns an EMPTY value from the dequeue
operation. However, if the queue is not empty, the entire
operation is repeated by again performing an FAA on the
head. If the value of the node index is consistent with the
value of the head index after the atomic read, a CAS
operation is performed to replace the current node value with
an EMPTY and return the current value. If this operation
fails or the current node value is EMPTY, the consumer
thread moves onto the next index to retry another dequeue
operation. Between each retry, a check is made to see if the
queue is empty. If it is, the dequeue simply returns an
EMPTY value instead of retrying.

VI. EXPERIMENTATION AND EVALUATION

A. Evaluated Algorithms

We compare eLCRQ and eLCRQ-spin to the best
performing IPC techniques on a Linux system, namely Pipes,
and Stream sockets. We also test performance against
industry standard Intel DPDK’s RTE_RING, the classic non-
blocking MSQueue, and base LCRQ.

From [20], we know that Linux Pipes and Sockets are
one of the fastest and simplest forms of Inter-Process
Communication. They also adapt well to multi-producer
multi-consumer scenario. Pipes are implemented by utilizing
the pipefs virtual file system which is maintained in the
memory and the pipe system call. The maximum size of a
message that can be sent through a pipe is 64 KB. Similarly,
the socket is uses the sockfs and the socket system call to
create and maintain a socket. In case of a stream socket, a
message is treated as a continuous stream of bytes.

RTE_RING manages memory on its own instead of
relying on the operating system and kernel. It does this by
accessing Linux Hugepages, which is a portion of RAM,
typically with sizes ranging from 4 KB to 2 GB. By making
use of Hugepages, the kernel has fewer pages in memory to
deal with which mean less overall overhead in

6

Figure 4: Simulation

Figure 6: CPU usage benchmark (lower is better)

accessing/maintaining them. This library also makes use of a
fixed-size CAS based ring array as the base data-structure
which further increases performance.

B. Implementation

We implement simulations related to Pipes, Sockets,
MSQueue, LCRQ, eLCRQ, and eLCRQ-spin in C++, except
RTE_RING which is a C only library. The algorithms for
MSQueue and LCRQ where referenced from [24] which use

Hazard Pointers[10] for garbage collection. Synchronization
barriers are placed at the start for every IPC mechanism to
exclude the time taken for initialization. This also ensures all
producer and consumer threads start at the same time, thus
eliminating any inconsistencies in timing latency between
sending/receiving.

C. Platform

We use the CentOS 7 Linux distro running on an Intel
Core i9-7920X 12-core processor for running our
benchmarks. Each core has a base clock of 2.90 GHz with
Turbo Boost up to 4.3 GHz which multiplexes into two
hardware threads. This brings the total system core count to
24 cores. As is usual for Intel processors, each core has
private L1 and L2 caches with shared L3 cache. Memory
frequency is clocked at 3 GHz.

D. Methodology

The evaluation consists of a ping-pong IPC test scenario.
It is made up of two separate processes each with its own set
of producer and consumer threads. Producer threads from
Process 1 communicate with Consumer threads in Process 2
and vice versa. The underlying communication mechanism
between the two processes is changed between Pipes,
sockets, MSQueue, LCRQ, RTE_RING, eLCRQ, and
eCLRQ-spin. Figure 4 is a pictorial representation of the
simulation. Two different benchmarks are performed for

each mechanism. A latency benchmark which records the
time delay between messages being sent and received
between producer-consumer pairs, and a CPU usage
benchmark which tracks the average CPU usage during the
simulation. To provide a result that is relatively free from
noise due to background tasks, we run every benchmark 5
times with 1 million iterations each. This helps the system to
reach a steady state during each benchmark. The simulation
is repeated for varying number of threads ranging from 2 to
24. This is done to study the scalability of every mechanism.
In addition to this, each thread is manually pinned to distinct
cores to eliminate variances due to random nature of the
kernel task scheduler.

E. Results

Figures 5 and 6 show the results of benchmarks with
different IPC mechanisms. Examining the results from the
two benchmarks, provides significant insight at the
efficiency of existing IPC mechanisms in the Linux kernel.
We omit the results of the Datagram socket and Sequential
socket because we found them to perform very close to the
Stream socket. We will discuss results in two parts,
considering the Latency and CPU Usage respectively.

1) Latency:
Here we measure the time difference in sending and

receiving a 64-bit integer between producers and consumers.

From Figure 5, we see that eLCRQ improves upon
existing message passing Linux IPC mechanisms Pipes and
Sockets by 1.7X at 24 threads. This is to be expected because
Shared memory communication is the fastest form of IPC
communication. Because the eCLRQ Eventcount mechanism
rarely goes into slow path during this benchmark, the use of
atomic instructions for synchronization increases the
likelihood of higher throughput

Purely CAS instruction based MSQueue suffers quite a
bit at higher concurrency levels due to the CAS retry
problem. This leads to the worst scaling queue for IPC by a
significant margin. eLCRQ outperforms MSQueue by 1.9X
at 24 threads.

RTE_RING performs much better than MSQueue even
though it uses the CAS instruction for manipulating its
queue. This is because it avoids the memory management
overhead of the Linux kernel by using Linux Hugepages and
managing memory on its own. It manages to beat the eLCRQ
by a margin of 1.3X but loses to eLCRQ-spin by 5.61X.

As expected, the original LCRQ beats all other queues
because of its efficient use of the FAA atomic instruction to

7

Figure 5: Scaling test (lower is better)

spread multi-threaded load in addition to the CAS
instruction. It is the fastest non-blocking queue in literature at
the time of writing of this paper. However, eLCRQ-spin very
closely matches the performance of the original LCRQ.

2) CPU Usage
CPU Usage is an important metric when considering the

use of any algorithm in a practical important. It provides
important hints into its implementation and scalability. To
test this metric in a realistic scenario where each IPC
mechanism is subjected to random delay in messages, a
small delay of 1 – 20 us in introduced after each producer-
enqueue/consumer-dequeue. Only the CPU Usage of
Consumer threads is measured in this simulation.

From Figure 6, blocking Pipes and Sockets have good
CPU Usage characteristics when compared to other non-

blocking mechanisms. eLCRQ however improves upon them
by 2.3 X at 24 threads.

As expected by non-blocking mechanisms, RTE_RING,
and MSQueue both take close to 100 % CPU resources.
eLCRQ takes up upto 3.4 X while eLCRQ-spin takes 1.1 X
less CPU resource at 24 threads, during the simulation.

Overall, eLCRQ takes up less CPU resources than other
competing IPC mechanisms in this simulation. This is made
possible due to efficient waiting on dequeue requests by the
Futex-based Eventcount layer.

VII. CONCLUSION

We have presented eLCRQ, a concurrent non-blocking
block-when-necessary queue based on LCRQ and Futex
based event-counts that outperforms standard Linux IPC
mechanisms in terms of per message latency by 1.7X in its
base form and by more than 9.2X with fixed spinning. It also
beats standard Linux IPC and industry standard RTE_RING
in terms of CPU usage on randomly delayed loads by 3.4X.

REFERENCES

[1] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for

x86 processors. In Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming
(PPoPP '13). ACM, New York, NY, USA, 103-112.

[2] Chaoran Yang and John Mellor-Crummey. 2016. A wait-free queue
as fast as fetch-and-add. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP '16). ACM, New York, NY, USA, Article 16, 13 pages.

[3] X. Meng, X. Zeng, X. Chen and X. Ye, "A cache-friendly concurrent
lock-free queue for efficient inter-core communication," 2017 IEEE
9th International Conference on Communication Software and
Networks (ICCSN), Guangzhou, 2017, pp. 538-542.

[4] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and
practical non-blocking and blocking concurrent queue algorithms.
In Proceedings of the fifteenth annual ACM symposium on Principles
of distributed computing (PODC '96). ACM, New York, NY, USA

[5] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez
Petrank. 2018. A persistent lock-free queue for non-volatile memory.
In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP '18). ACM, New York,
NY, USA, 28-40.

[6] Gal Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez
Petrank. 2018. BQ: A Lock-Free Queue with Batching. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures (SPAA '18). ACM, New York, NY, USA, 99-109.

[7] Deli Zhang and Damian Dechev. 2016. A Lock-Free Priority Queue
Design Based on Multi-Dimensional Linked Lists. IEEE Trans.
Parallel Distrib. Syst. 27, 3 (March 2016), 613-626.

[8] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. 2012. An efficient unbounded
lock-free queue for multi-core systems. In Proceedings of the 18th
international conference on Parallel Processing (Euro-Par'12),
Christos Kaklamanis, Theodore Papatheodorou, and Paul G. Spirakis
(Eds.). Springer-Verlag, Berlin, Heidelberg, 662-673.

[9] Maged M. Michael. 2004. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE Trans. Parallel Distrib.
Syst. 15, 6 (June 2004), 491-504.

[10] M. Hoffman,O. Shalev,and N.Shavit. The baskets queue. InOPODIS
2007.

[11] E. Ladan-Mozes and N. Shavit. An optimistic approach to lock-free
FIFO queues. In DISC 2004.

[12] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination
to implement scalable and lock-free FIFO queues. In SPAA 2005.

[13] Jens Gustedt. 2016. Futex based locks for C11's generic atomics. In
Proceedings of the 31st Annual ACM Symposium on Applied
Computing (SAC '16). ACM, New York, NY, USA, 2004-2006.

[14] Hadi Asgharimoghaddam and Nam Sung Kim. 2016. SpinWise: A
Practical Energy-Efficient Synchronization Technique for CMPs.
SIGARCH Comput. Archit. News 44, 1 (July 2016), 1-8.

[15] Davidlohr Bueso. 2016. Futex Scaling for Multi-core Systems. In
Applicative 2016 (Applicative 2016). ACM, New York, NY, USA

[16] Jeff Bonwick. 1994. The slab allocator: an object-caching kernel
memory allocator. In Proceedings of the USENIX Summer 1994
Technical Conference on USENIX Summer 1994 Technical
Conference - Volume 1 (USTC'94), Vol. 1. USENIX Association,
Berkeley, CA, USA, 6-6.

[17] Franke, Hubertus & Russell, Rusty & Kirkwood, Matthew. (2002).
Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux.

[18] Drepper, Ulrich. (2004). Futexes Are Tricky.

[19] Steven Smith, Anil Madhavapeddy, Christopher Smowton, Malte
Schwarzkopf, Richard Mortier, Steven H and Robert M. Watson,
“Draft: Have you checked your IPC performance lately?,”

[20] Silberschatz, A., Galvin, P. and Gagne, G. (2014). Operating system
concepts. Hoboken, N.J: Wiley.

[21] Hall, B. (2019). Beej's Guide to Unix IPC. [online] Beej.us. Available
at: https://beej.us/guide/bgipc/ [Accessed 22 Jul. 2019].

[22] GitHub. (2019). facebook/folly. [online] Available at:
https://github.com/facebook/folly/tree/master/folly [Accessed 22 Jul.
2019].

[23] Vyukov, D. (2019). Eventcounts - 1024cores. [online] 1024cores.net.
Available at: http://www.1024cores.net/home/lock-free-
algorithms/eventcounts [Accessed 22 Jul. 2019].

[24] Ramalhete, P. and Correia, A. (2019). pramalhe/ConcurrencyFreaks.
[online] GitHub. Available at:
https://github.com/pramalhe/ConcurrencyFreaks/tree/master/CPP/que
ues [Accessed 22 Jul. 2019].

[25] Vyukov, D. (2019). Eventcounts - 1024cores. [online] 1024cores.net.
Available at: http://www.1024cores.net/home/lock-free-
algorithms/eventcounts [Accessed 22 Jul. 2019].

