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ABSTRACT
Prediction of Remaining Lifetime Distribution from

Functional Trajectories Under Censoring Data

Izzet Sozucok Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Shan Sun Mitchell

The goal in functional data studies on failure time or on death time of the objects is to find a
relationship between age-at-death (failure time) and current values of a functional predictors. In
this study, a novel technique is applied to predict the failure time of devices (such as bearings in a
mechanical system) and to try to predict the “age-at-death” distributions under censoring data. We
concern ourselves with circumstances where all co-variate trajectories are observed until a current
time t. The predictors observed up to current time can be shown by time-varying principal
component scores which is continuously updated as time progresses. We establish the estimation
of modified survival function for longitudinal trajectories by inspiring Kaplan-Meire method in
order to predict mean residual life distribution. Projecting behavior of co-variate trajectories on
single index we reduce their dimension to get predictions for each individual object. Furthermore,
the uniform convergence rate is proved for mean and co-variance function for censored functional
data based on some specified conditions. The proposed method is validated as the leave-one- out

method and the approach is illustrated using the simulation study as well
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Abstract

The goal in functional data studies on failure time or on death time of the objects
is to find a relationship between age-at-death ( failure time) and current values of a
functional predictors.In this study, a novel technique is applied to predict the failure
time of devices (such as bearings in a mechanical system) and to try to predict
the “age-at-death” distributions under censoring data. We concern ourselves with
circumstances where all co-variate trajectories are observed until a current time t.
The predictors observed up to current time can be shown by time-varying principal
component scores which is continuously updated as time progresses. We establish
the estimation of modified survival function for longitudinal trajectories by inspiring
Kaplan-Meire method in order to predict mean residual life distribution.Projecting
the behavior of co-variate trajectories on single index we reduce their dimension to
get predictions for each individual object. Furthermore, the uniform convergence
rate is proved for mean and co-variance function for censored functional data based
on some specified condiotions. The proposed method is validated as the leave-one-

out method and the approach is illustrated using the simulation study as well.



1. INTRODUCTION

In functional data analysis, measurements obtained usually depend on time-co-variate
and a time-to-event for each subject. The relationship between these co-variate and
remaining life is of interest in bio-demography in engineering systems and competing
risk studies. The data obtained in those fields can be uncensored (complete), censored

and sparse/fragmented (incomplete) signals. While the studies in biology and in bio-

demography characterize the relationship between longitudinal co-variate and time-to-
event, the studies in engineering systems deal with gradual and irreversible accumulation
of damages that occurs during a system’s life cycle. A classical framework to identify the
association between functional predictors and time-to-event is the proportional hazards
regression model [1].Using this model with current information of functional predictors,
the hazard rate is estimated. However, our model in this paper depends on the entire
event history as obtained by the co-variate trajectory, and not just on current information
levels. On the other hand in engineering systems when the co-variate trajectories are as-
sumed as degradation signal under observed condition-based signal, the evolution of some
manifestation can be monitored using sensor technology. Some example of degradation
signals include vibration signals in order to monitor excessive wear in rotating machinery,
acoustic emission to monitor crack propagation, temperature changes and oil debris for
monitoring engine lubrication etc. The main goal of these signals analysis is to estimate
remaining lifetime distribution to keep safe of the systems.

There is a significant number of research on mean residual function and remaining life dis-
tribution; for example biologically reasonable study was demonstrated in [2],where a para-
metric model summarizing egg-laying trajectories of female med-flies (Mediterranean fruit
fly, Ceralititis capitata) was shown to define remaining egg-laying potential. Therefore, a
connection between the entire egg-laying trajectory up to current time and remaining life

time was obtained by using parametric model. In some degradation studies, the models
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used to characterize the evolution of sensor-based degradation signals are the parametric
models.Some common approaches are to model with random coefficients [3, 4, 5]and][6, 7].
The most of these researches rely on a sample of uncensored data (completed data).Here
we mean that a completed data is continuously observed data which captures the tra-
jectories from initial time to failed time as seem in Figurel(a).In contrast to the re-
searches with uncensored data, in practice we have many different kinds of data to be
analyzed such as sparse/fragmented data,censored data. For example, random censorship,
in brief, means that X is not always completely observable but is restricted to the form
X = min(1n,Ys, ..., Y), where Y1, Y5, ...., Y, are independent non-negative random vari-
ables as depicted in Figurel(d) . The model arises from many practical situations such as
medical follow-up studies competing risk [8, 9],[10, 11, 12]. Another example for different
data in applications consisting of relatively static structures such as bridge’s degradation
usually takes places very slowly (several tens years). Since the system is relatively static
it suffices to observe the degradation process at intermittent discrete time points. The
result is a sparsely observed degradation signal.On the contrary, the application such
as turbine, generator and degradation machine cannot be reasonable assessed by sparse
measurements.In naval maritime applications, powered generating units of aircraft are
removed tested for a short period of time, and put pack into operation, That result is
collection of fragmented degradation signals as depicted in Figurel(b)[13].

In this study, we develop a functional model that applies to incomplete data as well as com-
plete degradation signal by using methods and tools from functional data analysis. Our
main goal here is to predict the remaining lifetime distributions of non-parametric predic-
tors. and especially mean remaining lifetime by extracting information from the available
co-variate trajectories. We assume that the trajectories follow as non-parametric set-
ting. Other model approaches assume that trajectories follow a Brownian motion process
[14, 15] or a Gaussian Process with known co-variance structure[12, 7] The co-variance

function is decomposed ussing the Karhunen-Loeve decomposition[16] and estimated by
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Figure 1: The Examples of Different Data

using the functional Principle Component Analysis(FPCA) method indroduced by Yao,
Muller and Wang (2005).W.J Hall and Jon A. Wellner estimated mean Residual life on
whole half line and as well as variance of the limiting process|17]
In non-parametric model, one condition for accurate estimation of the mean and co-
variance functions is that age-at-death process is densely observed throughout its sup-
port.However,in many applications where the trajectories are incompletely sampled,not
all trajectories are observed up to the point of failure. Consequently, the trajectories
are commonly under-sampled close to the upper bound of its support. To overcome this
issue, Zhou,Serban and Geraeel[13] introduced a nonuniform sampling procedure for col-
lecting incomplete data such as sparse data and fragmented data. For censoring data,
we introduce a proposition which helps us to deal with none dense domain of incomplete
trajectories by converting the unobserved data from non-parametric model.

We aim two main subjects in this study; first,the method we introduce is applicable
from incomplete data to complete data. This will allow the estimation of quantiles and
prediction intervals for remaining lifetimes, which are highly desirable for survival anal-

ysis. We evaluate the performance of our methodology using a growth data set taken
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Figure 2: The Examples of An Independent Subject

from the engineering system.After assessment of the accuracy of the estimation of the
remaining lifetime for incomplete and complete data,it seems that there is no a significant
difference between both types of data. Second, the predictor trajectories for each subject
are only observed until failure time and follow either uniform or nonuniform sampling
procedures.At each given time only a random number of subjects is still alive for who the
co-variate trajectories can be observed as depicted in Figure2.

The article is organized as follows: In Chapter 2, we introduce assumptions, the model
and how we estimate mean residual life function by giving a new methods result in survival
outcomes.The estimation of component of the model is presented in Section 3. We give
the uniform convergence rate for mean and co-variance function in Chapter 4 In Chapter
5, we discuss the performance of our method by applying the the degradation signal under
censored data taken in engineering system and simulated degradation signals, followed by

discussion and concluding remarks in Section5.



2. PROPOSED MODEL.

2.1. INTRODUCTION OF CO-VARIATE TRAJECTORIES

We denote lifetime or age-at-time of subject by T and observed trajectories X;(s;;) for
j = 1,...,m;(the number of observation time points for individual 4) and ¢ = 1,...,n (
number of subjects), where{s;;};=1,..m;, are observation time points in a bounded time
domain [0, M] for trajectory i. However, the available data for estimation of residual life
distribution is not (7})i=1,..» but the list of pairs (T” ¢;), where ¢; > 0 is a fixed deter-
ministic censoring time of i and T; = min(T},¢;). Then (X;(.),T;)'s are available data
for each subject, where X;(.) is co-variate trajectory with domain [0.7]. We will show the

trajectory for subjects that is still alive at time t by X (t,8),0<s<t

) X(s) T >t0<s<t,
X(t,s) = A
unobserved T <t

We decompose the co-variate trajectories as
Xi(t, s) = p(s,t) + Si(s,t) + oei(s, t) (2.1)

Where for ¢ € [0, M] with some large define M, we define u(s,t) = E{X(s)|T > t} is
assumed to be fixed, but unknown, and S;(s, t) represents the random deviation from the
underlying trend. We also assume S;(s,t) and €;(s,t) are independent.In this study, we
assume that €;(s,t) is standard normal distribution.o is deviance of ¢(s, t)

Let’s define the eigenfunctions or principal component functions of the conditional co-

variance as solutions of the eigenequations are given as follows

| conl{X(6), XHT > ol = Aa()ost(s) (22)
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where A;; > Ay > ... > 0 are eigenvalues and py(.), p2:(.), --., Pme(.) are orthonormal
eigenfunctions associated with these eigenvalues. Then ,one has the representation for
0<s1,5 <t

cov(s1, 82T > t) = Z Ajepie(s1)pje(s2) (2.3)

where
cov(sy, 52|T > t) = cov[{ X (51), X (82)}IT > t] = cou(X (51, 1) — (51, 1), X (82, ) — (52, 8))

Therefore, the observed trajectories X (s,t) for individuals with 7" > ¢ can be decomposed

by the Karhunen-Loéve extension [16].

o
X(s,t) = p(s,t) + ) &iepyee), 0 < s < £, >0 (2.4)

j=1
where §;;are random scores , they are uncorrelated random effect with E(¢;;) = 0 and

E (fzzt) =X\

The decomposition in equation (2.4) is infinite sum. Normally only a small number of
eigenvalues are commonly significantly nonzero. For the eigenvalues which approximately
zero the corresponding scores will also be approximately zero.Consequently, we will use a

truncated version of this decomposition.Thus,

K
X(s,8) = p(s,) + > €apje(s),0< s <, >0 (2.5)

Jj=1

where K is the number of significantly nonzero eigenvalues. We select K to minimize
the modified Akaike Criterion defined by Yao, Muller, Wang[18]. In the statistical ter-
minology, this method is called Functional principle Component Analysis(FPCA).The
main source for FPCA is seen by Ramsay-Silverman[19]. On the other hand, Yao, Muller

and Wang [18] derived theoretical results for model parameter consistency, asymptotic (n
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large) distribution result under the assumption that the scores follow a normal distribu-
tion.

The number N; of trajectories X (s,t) observable up to time t is random. Assuming
F(t) = P(T > t), we have N, ~ Binomial(n, F(t)) where n is total number of sub-
jects.Doneting by risk set at time t, R(t) = {i : T} > t} then X;(s,t) ~ X(s,t) for all

1 € R(t) . In survival analysis, the remaining lifetime function at t is
e(t)=E(T—-t0<t<T) (2.6)
and the corresponding distribution function of remaining lifetime at y, where y > 0, is
F(y)=PT —-t<yl0<t<T) (2.7

so that e(t) = [* ydFi(y) . It is well known (Cox,1972) that the corresponding survival

F(.) and hazard \(.) functions are
) = Zgpeant- | g

and

AE) = {e(t) + 1}/e(t)

2.2. MODELING MEAN REMAINING LIFETIME FOR CENSORING DATA

QOur aim is to relate the remaining life time T-t for given arbitrary ¢ € [0, M] to the

observed trajectory X in [0, ¢] which may complete or incomplete that is to estimate

ex(t) = E(T —t|X(s5,1),0<s <t,0<t < T) (2.8)

10



and corresponding distribution function of remaining lifetime
Fru ) =P(T —t <y|X(s,4),0<s<t,0<t < T). (2.9)

Let’s define modified Survival function as FX(t) (t) = P(T > t|X(s,1))

we get the mean remaining lifetime function as the following;

%@:[7y4mawm
_ / ” / " dudFy(v) (2.10)

/ / P@<MX@)
P(T > t|X(t))

When we apply Fubini’s Theorem to the integrals above, we obtain e %) 88

ex(t) = ftoo fu;dFX(t) (y)du
a()(t)
S = Py (w)du
- ?X(t) ()
ftoo (FX(t) (u))du
Fgw(t)

(2.11)

To predict mean residual lifetime function, we need to estimate at least one of proba-
bilities; P(T > t|X(t)) or P(T < t|X(¢t)). However , for censoring data we don’t have
(T3)i=1,..n but the list of pairs (ff’,,c,) To overcome this issue we give the proposition
below.

Proposition 2.1

If censoring time ¢ of event k exceeds t (¢ >t) then

T, = ¢ hold true if only if Ty = t,

11



Tk >t hold true if only if T}, > ¢,

Let k be such that cx > t, then P(T' > t|X(t)) = P(T > #|X(t)) = Fg(t) The
Proposition 2.1 helps the residual lifetime function transit from the unknown random T
variables to be able to estimate probability. Therefore, we need to estimate at least one
of the probabilities;P(T" > ¢|X(t)) or P(T < t|X(t)) which is similar distribution (2.9).
Thus,random scores §;; are key random variable which were assumed as normal distribu-
tion by Zhou,Serban,Gebraeel [13] with mean E(£;) = 0 and variance E(£2) = ); and

they estimated the distribution in (2.9) under given assumption A1,A2. as

®2(g(ylt)) — Pz (g(0[t))
1—a,(g0) (212)

where @z represents the standard normal cumulative distribution function and g(y|t) =

P(T —t<y|X(s,8), T >t) =

uip) D , D is threshold for degradation signal and

VVilt+y)

pe(t +y) = plt +y) + (Cd)'p(t +y)

Vit +y) = Z Z [Chyk2Pr1 (E + ) Pr (T + )]

k1=1ko=1
In the above equations,p(t +y) = (p1(t+¥), ..., px (t +¥)) and Ck, x, refers to the (k1,k2)
element of matrix C.

Under the assumptions, A1,A2, We can obtain the distribution we need to estimate in
equation (2.11) as P(T' > y|X(¢)) = 1 — ®(g(y|t).
On the other hand, If we choose random scores as &;; = fot X(t,s) — u(s, t))p;t(s)ds, then

we can estimate mean remaining lifetime in(2.8) as follows

rxwt) =BT —tX(s,t),0< s <t,0<t < T)

12



and corresponding distribution
P ) = P(T—t <y|X(s,t),0< s <t,0 <t < T)

as the follows:
We assume that there exists a family of smooth link functions h; with A.(s) = H(s,t) :
[0, M]x[0, M] — R for a function H that is continuous in s and t associated evaluation

function (s, t) satisfying 8 € L3(C;), C; = {(5,1).0 < s < t,0 <t < M} such that
t -~
re(t) = o / X(s,)B(s, t)ds)
0

This assumption puts mean remaining lifetime function into the framework of an extension

of function regression [19, 20, 6].

For given t and orthonormal basis ¥;:(.),7 = 1,2, ..,onL?[0,] , the evaluation function
B(.,t) can represented by B(s,t) = > 72, ¥;hjs(s),0 < s < £,0 < t < M with varying
coefficient fj;. A special choice for the basis are the eigenfunctions pj; of cov(X (s1), X (s2))

. Then we obtain remaining lifetime
t ~
relt) = hu(ro®) + [ ((5,8) = (5,185, )ds)
0

where 7o(t) is nonrandom function ,so we can introduce another link function ¢(z(¢)) =

ro(t) + z(t) . We get

re(t) = a [ (R (1) — (s, 1)8(s, £)ds).

13



IfX(.,t) and B(.,t) are expressed in terms of the same orthonormal basis py, pay, -..,and

assuming the link function as identity function, we obtain remaining lifetime as
K
Txw(t) = Z &5eBit (2.13)
1

where K is a finite number of component such that the trajectories X (.) can spanned by

first K eigenfunctions and

Bis = _/Otﬁ(s,t)pj(s)ds.

Having summarized the co-variate trajectories X’ (.,t) by linear predictor function r¢(.),

we assume that the linear predictor function determines the conditional distribution
Fy(y) = P(T —t <y|X(s,t)) = P(T —t < ylr(t)) (2.19)

Hence estimating conditional remaining life time distributions then is equivalent to esti-

mating function ex(t).

14



3. ESTIMATING THE MODEL COMPONENTS

3.1. PRELIMINARIES

We use local polynomial kernel regression for shooting purposes to estimate E(y|X = z).

Given data{(z;,y;) € R?,i =1,...,n} and Let B = {bp, by, ..., bp} minimize

181 A x—x
i _ 4 N . 2
’nz mi ZK( h ){Zh b() 3oy p(-’L‘ 1.'2) }

where K is non-negative kernel function, h is a convenient bandwidth. Assuming the

invertibility of P;Wsz , standard weighted least squares theory leads to the solution

B = (P.W,P,) 'P.W,Y (3.1)
1l zy—z - (z1—2x)P

where Y = {y1, .42}, is a vector of response, P, = | : : is an
1 z,—z (z, — x)P

nz(p + 1) design matrix and

W, = dig{ K (2-%), K(%72), ..., K(#2=2)} is nxn diagonal matrix of weights[21] When

we specify B as p =1, we obtain that the non-parametric regression estimate is

m{xi; (xi, Yi)i=1,..n; h} = E’(le =z)= I;O

- {82(z; h) — §1(z; h)(x; — 2) } Kp (21 — 2)y;
Z Sa(z; h)So(z; h) — §1(z; h)?

(3.2)

where §.(z;h) =n"1> 5 L o e (@i — @) Kp(%; — ).
Our first step is to estimate the function p(.,.) in (2.1) at current time t for all subject

who are at risk at t. The estimate of u(s,t) is

fi(s,t) = ms; (ti, Xi(tij, t)icR(t),je(iost<t; 1 ] (3.3)

15



where R(t) is the risk set at time t. the ¢;;" s are the pooled time points of all observation.
Second step is that the co-variance surface is estimated using the demeaned data X}-(s, t)—
£(s,t). The raw co-variances is defined by R:(s;;, su) = Cov[(Xi(sij, t)—@(sij, 1), (Xi(sa, t)—
fi(sy,t))] which can be expressed as following;
o0
Ri(s,8) =) = Mipse(s)pje(s) (3.4)

i=1

where eigen-function and eigenvalues are solutions of estimated eigen-equations,
t
| B ) = ps(s) (35)
0

with the constraints ] pj:(s)2ds = 1 andf; p;s:(s)pu(s)ds = 0, for j < 0. we obtain
these solutions by discretizing (3.4). Details can be found in Yao et al[22].After then we

estimate the functional principal component scores are then determined by
~ t A
Sijt = / (Xi(s,t) — fis,1))pse(s)ds (3-6)
0

Here the random scores can be determined by using numerical integration.Consistency

results for pj, fi, éz-jt can be found by P.Hall andM.Hossein-Hassab(2003).

3.2. ESTIMATING MEAN REMAINING LIFETIME

We purpose to estimate remaining lifetime for incomplete data in (2.11),s0 we use the

least squares estimates of 8 = (Bos, fat, -, Bxt) in model (2.13),

K
By = argming, Y  {T; —t— (Bo: + > &by

1ER(t) j=1

16



the fitted model for expected value r4 () is obtained as;

K
Pre(t) = Bo(t) + Zéjtﬁjt (3.7)
1

where f3y; the mean remaining lifetime function.Finally, we estimate the conditional dis-
tribution in (2.14) after r4(t) is estimated via (3.6) ,using kernel polynomial regression
for smooth estimate. Consider i.i.d pairs {(X1,Y2), ..., (Xn, Yn)} such that (X,Y) € R?
. The conditional distribution F(y|z) = P(Y < y|X = z) from this sample equals to
E(I(Y; € y)|X = z) ,where is I indicator function.Therefore,we can estimate it as regres-
sion problem by using the kernel polynomial regression for p=0 in (3.1),then we obtain

the Nadara-Watson kernel,

‘When we apply the conditional distribution we get

X =2)= 3 st (38)

1:Y; <y

where Kj,(.) = K (;) for a bandwidth h. Combining estimate (3.7) with (2.14),

F(y|X (s, 8)) = P(T —t < ylf (1))
> Kn(r —4(t))
_ie{uTy—t<y}nR(1) " (3.9)

> Kn(r—75(t))

JER(D)

Where 7;(t) ( 3.7) is the linear predictor for the ith individual and R(t) the risk set at
time t. Here we always use the Epanechnikov kernels for estimating the conditional
distribution. To estimate conditional density function for more details ,see Yu and

Jones,(1998),[17]. Finally, we estimate mean remaining lifetime by using its complement

17



for estimator of modified survival function -}%X(t) (y) =1 — P(T —t < y|#(t)) in order to

obtain mean residual life function in(2.11) as

gy (w))du

éx(t) =
F X (t)

(3.10)

where we use the numerical integration to calculate the integral.

18



4. TUNIFORM CONVERGENCE RATES OF THE MEAN AND

COVARIANCE FUNCTION FOR CENSORED FUNCTIONAL DATA

4.1. INTRODUCTION

In this section, we consider the convergence rate of mean u(s,t) = E{X(s)|T > t}
and co-variance function R(s1,ss) = cov[{X(s1),X(s2)}|T > t| as we introduced in
section 2.1. Strong uniform convergence rates are developed for estimator which are
local-linear smooths.We obtain the result in unified/non-unified framework where the
number of observation may depend on the sample size. We show that the convergence rate
depends on both of the number observations and sample size on each trajectory.Also, in
sparse data this rate is equivalent to optimal non-parametric regression rate.Many recent
scientist focused on the non-parametric estimation in order to model mean and co-variance
estimations.Some of such work includes Ramsay and Silverman (2005)[19],Lin and Lee
(2006), Hall, Muller and Wang (2006) and Yehua Li and Tailen Hsing(2010)[23].On other
hand, The studies on kernel smoothing [Yao,Muller and Wang(2005a)[24], Hall,Muller
and Wang(2006)].

In the Section 4.2 we review the model and data structure as well as all of the es-
timation procedures. We introduce the asymptotic theory of the procedures in Section
4.3, where we also discuss the results and their connections to prominent results in the

literature.In section 4.4 we prove two given theorems in Section 4.3.

4.2. MODEL AND METHODOLOGY
Let X;(s), s € [0, T] be a stochastic process defined on a fixed interval [a, b]. As we denoted

mean co-variance function of process by

u(s,t) = E{X(s)|T > t}, and  R'(s,s) = cov(X(s), X(s))

19



which are assumed to exist.The model (2.1) can be rewritten as
Xij ZX,;(SZ'j),-I—Eij, 7= 1,...n,j = 1,,..,mi,

where the S;;’s are random observations points with density functionfs(.) and the ¢;; are

identically distributed random errors with mean zero and finite variance o.Assume m; > 2

and let N; = m;(m; — 1).

QOur approach is based on the local-linear-smoother ; see for example, Fan and Gi-
jbels(1995). As we mentioned in section 3.1, let K(.) i be a symmetric kernel density

function on[0,1]. The estimator for mean fi(s,t) was obtained in Section 3.1 can been

seen easily as

oo GoS2 — G5
0 ="55 -5 )
where

1o 1 & ,

S, = E Z E— ZKh“(Sij - S){(Sij - 3)/hp} (42)
i=i v =i

e 1 & >

Gr==2 —> Kn(Sy—s){(S5 — 8)/h} Xy (4.3)
i=i ¢ j=i

To show estimator for co-variance function R(s,s’), we first estimate C(s,s’) =
E{X(s), X(s')} explicitly as C(s,s’) = @, by minimizing
n

N 1 1 PPN
(ao, a, (12) = argmin— Z ﬁ Z{Xinik — Qg — A (Sij — S) - ag(Sik — S)}2
=t Yok (4.4)

Ky (Sij — 8)Knge (Sik — 8)

with >, ; denoting sum over all k, j =1, ..., m; such that & # j. It follows that

é(S, S’) = (AIGOO — A2G10 — A3G01)B_1, (45)
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where

Ay = S20Se2 — 53, Az = S10502 — So1511 (4.6)
Az = Sp1.820 — S10511, B = A1S00 — A2S10 — A3So1 (4.7)

Also

Spg =~ Z Z(S”_s> (ShR )Khm( — 8)Knp, (Sik — )

— S8 P S,;j -5 q
qu - Z Z X”J hg Kth (Sij - S)Kth (Sik - 3)

n= N k)

Then we estimate R'(s,s’) by

Ri(s,s) = C(s,s") — s, t)ji(s, t)

We concentrate the mean and co-variance estimation for dense and sparse functional. The
sparse case roughly refers to the situation where each m; is essentially bounded by some
finite number M. The local-linear smoothers in these estimation procedures was stud-
ied by Yao,Muller and Wang (2005a) and Hall, Muller and Wang(2006).We attach the
weigths m; and; to each curve i in order to optimize the estimations.As will be seen,
our approach is suitable for dense functional data and sparse data.The one benefit of our
method is that we don’t have to discern data type dense, sparse or mixed and decide
which methodology should be used accordingly. Almost-sure(a.s) uniform rates of conver-
gence for u(s,t) and R'(s, s’) over the entire range of s,s’ will be proved. The sample size

m; for each trajectory will be completely flexible. These rates match the best known rates.
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4.3. AsSYMPTOTIC THEORY

In asymptotic approach, we assume that m; may depend on n as well, namely, m; = my,.

However, for simplicity we continue to use the notation m; Define

n -1
Vnk = (n“l Zm;’“) k=12, ..
i=1
which is the kth order harmonic mean of m; and for any bandwidth h,

Gua () = {1 + s} 0

1 1 .1
+ } Ogn]l/Z

5n2(h) - [{1 * h7n1 h7n2 n

We prove the uniform convergence rate of mean and convergence functions under the

following conditions which k2, and hg are bandwidths.

(a) Let m > 0 and M > 0 be constants m < fg(s) < M for all s € [a, b] .Further, fs is

differential with derivative with a bounded derivative.

(b) The kernel function K(.) is a symmetric probability density function on [—1,1] and

is of bounded variation on [~1,1],v; = [, s*K (s)ds < 00
(c) u(.) is twice differentiable and the second derivative is bounded on [a, b]
(d) All second-order partial derivatives of R'(s,s’) exist and are bounded on [a, b]2.

(e) E(le;|™) < oo and E(supsefa,n)] X (s)|™) < oo for some A, € (2,00);h, — 0 and

(h2 + hy/v1) Y(logn/n) =2 -0 as  n— oco.

(f) E(lei;]**) < 00 and E(supsepa,y| X (s)[**?) < oo for some Ag € (2,00); hg — 0 and

(R + hd /1 + h%/Yn2) t(logn/n)t 222 0  as  n— oo.
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The conditions (e) and (f) hold generally, where they hold for normal process with contin-
uous sample paths for all A > 0. Hall, Muller and Wang(2006) adopted those conditions
as well.

THEOREM 4.1. (Convergence rate of Mean Estimation)

Assume that (a), (b),(c) and (e) hold. Then

Supsefay | (s, t) — (s, t)] = O(hi + 01 (hy)) a.s. (4.8)

While 6,1 (h,) is bound for supie(ay|fi(s, t) — E(fi(s,t))| ,O(h2) is bound for the bias
whose derivation is easy to figure out and is essentially the same as in classical non-
parametric regression.The second bound of the last is derived more difficult and repre-
sents our main contribution in this result. We obtain uniform bound for supsc(a4|2(s,t) —
E(ii(s,t))| over [a,b] and obtained a uniform bound over a finite grid on [a, d] where the
grid grows increasingly dense with n and then that the difference between two uniform
bound is asymptotic negligible.The main difficulty of our approaches is that it is nec-
essary to deal with curve dependence .Note that the dependence between X(s,t) and
X (¢, t) typically becomes stronger as |s — s'| becomes smaller.For dense functional data,
Hall,Muller and Wang(2006) and Zhang Chen(2007) address the dense functional data by

setting as following ;

If ming <ienmy; > M, for some sequence M, where M7! < h—u < (logn/n)Y/* is bounded

away from 0 then

suptefap (s, t) — u(s,t)] = O({logn/n}'’?)

where both papers take the approach of first fitting a smooth curve to X,-j(s, t),l <j<m
for each i and then estimating (s, t) andR(s, s’) by sample mean and co-variance functions

respectively of fitted curves. However, their methods have two drawbacks are:

e Differentiate of the sample curves is required. Therefore this approach of first will not
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suitable for Brownian motion, which has continuous but non-differentiable sample
paths.
e The sample curves that are included in the analysis need to be all densely observed;

those that do not meet denseness criterion are dropped even though they may contain

useful information.

Our approach does not require sample-path differentialbility and all of the data are used

in the analysis
THEOREM 4.2. (Convergence rate of Co-variance Estimation)
Assume that (a), (b),(c),(e) and (f) hold. Then

supte[a,bﬂﬁ,(s, sy — R(s,s")| = O(hf, + 0n1(hy) + A% + 6n2(hr)) a.s. (4.9)

e The rate in(4.9) is the classical non-parametric rate for estimating a surface( bi-
variate function) which will be referred to as a two-dimensional rate. Note that &
has one dimensional rate in sparse setting, while both 1:1’(5, s') and 4? have root-n
rates in the dense setting. Most of the discussion in Sections 4.3 obviously apply

here will not be repeated.

e Yao, Muller and Wang (2005a) smoothed the products of residuals instead of X;; Xy
in the local linear smoothing algorithm in (4.4) .There is some evidence that a slightly

better rate can be achieved in that procedure.

4.4. PROOFS
4.4.1. THE PrROOF OF MEAN CONVERGENCE RATE OF MEAN
ESTIMATION

For simplicity,throughout this subsection, we abbreviate &, as h.Also
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e let s1 A 5o = min(sy, 52)

e 51V s3 = max(sy, Sg)

o K =s'K(s)

o Knp(v) = (1/R)Kq(v/h)

Before starting the proof of theorem we will give two lemmas.

LEMMA 1: Assume that
E(sup|X(s,t)*) <o and Ele} <oco  for some \€ (2,00) (4.10)

Let ¢;; = X(Si;) or €; for 1<i<n 1<j<m Letc, any positive sequence

tending to 0 and B, = c2 + ¢u/Vn1- Assume that 371 (logn/n)'~%* = o(1) .

Let i
R, (s1,82) = %Z {CijI(Sij E[s1As2,5V 32]} (4.11)
i=1
R(s1,52) = E(Rn(s1,52))
and
Va(s, €) = supp<c|Ra(s, s + u) — R(s, s + u)| c>0
Then

5UPselab) Vn(S; Cn) = O(n‘l/zﬂnlognl/z) a.s (4.12)

Proof of Lemmal:
Assume (;; is non-negative, define equally space grid = {v;} with vy = a + k¢, for
k=0,1,2,..,[(a — b)/c,] and for any s € [a,b] and |u| < ¢,.

Let vx be a grid point that is with ¢, of both s and s 4+ u ,which exists

|Rn(3,8 +u) — R(s,s +u)| < |Rn(vk,s +u) — R(vg, s + u)| + |Rn(vk, 8) — R(uv, 8)|
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|Rn(s,s +u) — R(s,5 + u)| < 25uPsen(n,) Va(s, cn)

thus
SUPseab) Va(S, tn) < 25upscoVa(s, cn) (4.13)

From now we focus on the rigth-hand side of the inequality above . Let
Qp = 71_1/2{,3nlogn}1/2 and Qn = Bn/an, (4.14)

If we define new functions R%(s1,s2), R*(s1,82) and V?(s,c,) in the same way as
R.(s1,82), R(s1,82) and Vp(s,c,), respectively, except with (;I({;; < Qn) replacing
Cij- Then

5UPseoVa (S, €n) < supscsVy (5, ¢n) + Ant + An2 (4.15)

where

An = SUPscoSUP|u|<cn (Rﬂ(37 s+ u) - R’:L(s7 s+ u))
Ans = suBcasuppie, (R(s, s+ u) — B* (5,5 +1))

We firstly focus on A,; and A,2. when we plug the equality of a, and @, into a,;1QL™

we get

0. Qy ™ = {8, (logn/n)' 2APV2 = o(1) (4.16)

For all s and u, by Markov’s inequality,

a; (Ru(s,s +u) — Ri(s,s+u)) = a;I% Z{ ZQJI(Q] > Qn)}

i=1 T =1

< a'Qy *12{ Z Cz_7>Qn)} (4.17)
<G_IQH1_Z{7;Z }
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Consider the case (;; = X(S;;), the other case being simpler.It follows that
1 &
EZI f} <W where W = supieiay | Xi(s, ).
J:

Thus
0z (R(s, s +u) — R:(s, 5+ u)) < a,;lQ:;A% S w; (4.18)

i=1
By the SLLN, ™! 3°7 | W; =% E(supsejay| X (5)}) < 00. By(4.16) and (4.17) a; ' Apy —**
0. By(4.16) and (4.17) again a,'A,s —%* 0.. Therefore, we have proofed that

JLIEO(Anl + Ang) =0(a,) a.s (4.19)

To bound V*(s, ¢, for a fixed s € 8, we need to get new partition. Define w, = [@Qncn/an+
1] and u, = rep/wy, for r = —wy, —w, + 1, ..., w,. Note that R} (s, s + u) is monotone in

|u| since ;; > 0. Suppose that 0 < u, < u < 447 Then

Ry(s,s+u,) — R*(s,s +u,) + R*(s, s + u,) + R*(S,8 + try1)
< Ry(s,s+u)— R*(s,s+u) (4.20)

< R:(S, 5+ u'r+1) - R*(S: s+ ur+1) + R*<3> s+ ur+l) - R*(37 s+ ur)

By defining &,, = R} (s, s + u,) — R*(s, s + uy)
|Ry (s, s +u) — R*(s, s + u)| < maz(&nr,&nri1) — B (s +ur, 8 + tryq)
The same holds if u, < u,,1 < 0. Thus we get

Vi(s,cn) < max (&) + max R(s+ur, s+ upy)

—wnSr<wn —wp <r<wn
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for all r,
Ri(s+up,s+uq1) SQnP(s+u <S5 <s+um) < MsQn(trr —ur) < Msay

since f(s) < Mg < 00 and ury1 — Ur = cpfwy

Therefore for any B.

P(V*(s,cn) > Bay) < P(mazéy, > (B — Ms)an) (4.21)

Now let Z; = ,,%,E}’Zl Cil (G < @n)I(Si; € (5,5 + up)) so that &, = |23 (Z; —
E(Z,;))|.-We have |Z; — E(Z;)| < Q, and

vaar(Zi) < Z E(Z}) < ME:(C,Z1 + ¢ fmi) < Mng,
i=1 i=1 i=1

for some finite M. Bernstein’s inequality is that ,
Let Xi,..., X, be independent zero-mean random variables. Suppose that |X;| < M

almost surely, for all i. Then, for all positive ¢,

1/2¢
PO Xi>t)< exp( - m)

if we replace t by (B — Ms)a, and Y X; by &, since > i EX? = Var(&,) = %&Z’) we

get
(B — Ms)aln?
P(&y > (B— Msg)a,) < ewp{ o 2> var(Z;) + (2/83)(3 - MS)anan}
(B — Ms)?agn?
< EIEP{ - QMTlﬁn + (2/3;(3 — Ms)n,@n} (4.22)

<nF
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—Mr)? . :
where B* = M&% By (4.21) and (4.22) and Boole’s inequality

P(supV, (s, cn) > Bay) < ([bc_na] n 1)(2[ann

+1]+ 1) < 95
an an

for some finite C. Consider 9= = f—; = -2 5o P(V*(s,c,) < Bay) is sum able in n if we

ki3
an logn

select B large enough such that B* > 2. By the Borel-Cantelli Lemma

supVyy (s, cn) = Ofan)  as (4.23)

Thus we get(4.12) by considering the expressions in(4.13),(4.15),(4.19) and (4.23).
LEMMA 2:

Let ¢;; be as in lemma 1 and assume that the conditions of lemmal holds.Let h = h, be
a bandwith and let 8, = h? + h/7p;. Assume that A — 0 and 3; }(logn/n)}~%* = o(1).

For any nonnegative integer p, let
n

1 1 &
Dyn(s) = - > [E_ Z; K@) (Si5 — S)Cij}
J:

i=1

then we have

sup /nh?/(Bplogn)|Dp.(s) — ED,n(s) =O0(1)  a.s (4.24)

s€[a,b)

Proof Of Lemma 2: Since both K and P are bounded variations.Thus we can write
K = Kp1) — Kp2) where K1) and K, are both increasing functions; without

loss of generality, assume that K, 1)(—1) = K 2)(—1) = 0. Below, we apply Lemmal by
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letting ¢, = 2h. It is clear that the assumptions of Lemma 1 hold here.Write.

D) =133 ZKh (S5 = 5)Gs

i=1 =1

1 Sij—s
= _Z [m Z(”I —h<8j—s< h)/ th,(p)(v)}

J=1 (4.25)

/hnz{ ZC” U<S”_S<h}d-"fh<p)()

= / Ry(s +v,5 4 h)dKp, ) (v)
—h

where R, is as defined in (4.11).Therefore , we have

sup |Dpn(s) — E(Dpn(s))]

tea,b]
= e | “’; Ru(s+v,5+ h)dKy ) (v) — E /_ Z R(s +v, 5+ h)dK}, ) (v)]
= su | _:(m<s 0,5+ h) = ERu(s +v,5 + h))dKi g (0)]
= {kp1(1) + Kpay(1)}Ih™! sm{zp]V w(8,2h)
< k(1) + K(p,g)(l)}h_lO((n_l/z(,@nlogn)l/z)
(4.26)
Thus we get

SUP | Dp,n(8) — E(Dp,u(s))| = O(8n1(h))

t€[a,b}

or

sup +/nh?/(Bplogn)|Dpq(s) — E(Dpn(s))] = O(1)

tc(a,b]

1/2
where d,; = {(1+ (h’ynl)_l)logn/n] and \/nh2/(Bulogn) = 6,1(h)~
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Proof of Theorem 4.1 From the equality in (4.2) and in (4.3), we have

S = 2303 K (S — (S — )/}

1em 1 & .
GT Z 7—n— Z Khu(Sij - S){(SZJ - 5)/hll} Xij
(] _7'=1;

n

=i

and
o GoS—GiSy

Thus, if we define a new function
G; = Gr — p(s,1)S, — bt (s,1) S
By straightforward calculations, we have
GyS2 — G1Sh

a(t) — p(s,t) = 5.5 57
1

where Sy, S1, S; are defined in the equation (4.27).

(4.27)

Gr =233 KalSly = Sty = /Y (Xig(5,8) =l ) = 05,0855 — )

=1

n-

By Taylor’s expansion and Lemma2, uniformly in it.

R B N R .
Gr==3 —> Ku(Sy—s){(Sy— s)/h} ;s + O(h)
i=1 " =1
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and it follows from Lemma 2 that
G = O(h? + 6,1 (R)) a.s (4.30)

1/2
where 6,1 = [(1 + (h'yﬂl)_l)logn/nJ Now , at any interior point s € [a+ h,b— h] since

f has a bounded derivative

B(s) = [ K@i(s+ho)do= [ K@)+ Fohldo= )+ 01

B(S) = /_ KV s+ hodo = /_ K@R{f(E) + £ (kv = O(h)

Similarly, We can get
E(5z) = f(s)va+ O(h)

where v, = [v2K (v)dv
By Lemma2 uniformly for s € [a + h,b — h] direclty we can get uniformly converges rate
for Sp, 51,5, as

So = f(s) + O(h + 0n1(h)

Sl = O(h + 5111 (h)

and

Sz = f(s)vz + O(h + 6n1(h))
Thus, we get

sup |fi(s) — p(s)| = O(hj; + 6n1 (hy))

s€[a,b]
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4.4.2. THE PROOF OF THEOREM 4.2(CONVERGENCE RATE FOR

CO-VARIANCE FUNCTIONS

Before starting the proof we give two lemma;Lemma4.3 and Lemma 4.4.

LEMMA 3

Assume that E(sup|X(s,t)|**) < co and Ele|/** < oo for some A € (2, 00).

Let Z;x be X(5i;)X (Si)- Let ¢, = 0on ac, >0 and B, = (¢ + & /m1 + 2/ Yn2) =
O(1).Let N; = m;(m; — 1) Define a new function as

n

1
Ry (s1,8],92,85) = ~ Z {ZijI(Sij € [s1 A 82,81V 82), Six, € [$] A 55,87V s'z])} (4.31)

i=1
R(sh 3,17 52, 312) = E{Rﬂ(slv 3,17 52, 5,2)}

and

Vn(s,.'s',é):| |s’upI 5|Rn(s,s',s+u1,s'+u2)—R(s,s',s+u1,s'+u2)
ul,u2<

Then
sup V,(s,8',cn) = O(n"V2(B,logn)'/?)| @8

s,8'€[a,b]
Proof of Lemma 3
Let a, = n"Y2(B,logn)/? and Q,, = B./a..Let P be a two-dimension grid on [a, b]? with

mesh ¢, that is P = {(vk,, vk,)} where vy is defined as in the proof of Lemmad.1

sup V{(s,s,c,) <4 sup (s,s,cn)
(8,8’ )E[a,b] (s,8)EP

Define new functions R (s1, s}, 82,55), R*(s1,8],92,85) and V7i(s,s,¢,) in the same

way as Rn(s1,s),s2,85) R(s1,8),82,8) and Vy(s,s',¢,) , respectively, except with
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Ziitl(Ziji < Qy) replacing Z;;;. Then

sup Vi(s,s,¢,) < sup Vi (s,¢n) + Ant + An2 (4.32)
(s,8")EP (s,8)eP

where

A= sup sup (Rn(s,s,s+uy, s +us) — Ri(s, 8,5+ uy, s +up)

(5,8")EP lu1l|uz|<cn
Ap= sup sup (R(s,s',s+uy,s +us)— R*(s,s,s+u,s +up)
(8,8")EP |urlllual<en
We firstly focus on A,; and Apz. when we plug the equality of a,, and @, into a,;'QL™"

we get

a;'Qh™ = {B; (logn/n) "2 = (1) (4.33)

For all s, s’ and u, by Markov’s inequality,

a; (Ru(s,8, s +u1, 8 +us — Ri(s,8,5 +uy, 8+ ug)

n

N‘
1 1 <«
= a,;;lg Z {F Z ZijkI(Zijk > Qn)}

i=1

<aigiil Z{ Z (o >Qn)}
<a,'Qy AlZ{ Z z]k}

]—-1

(4.34)

Consider the case Z;;; = X (S;;)X(Six), the other case being simpler.It follows that

N.
1 k3
N ZZ”,C < W where  W; = sup(s,s)ean| (Xi()X:(s))-
L

34



Thus

1 n
a; (Ro(s, 8,8 +u1, s +uy — Ri(s,8, 8 +up,8 +up) < a;lQ,lz"\E > Wi (435)

i=1
By the SLNN, n=! 3" | W; —»%° E(supseian|X (s)*) < co. By(4.33) and (4.35) a1 A, —
0 a.s. By(4.33) and (4.35) again a,'A,2 = 0 a.s. Therefore, we have proofed that

li_>m (Ap1 + An2) = o(ay) a.s (4.36)

To bound V*(s,s,c,) for a fixed (s,8’) € P, we need to get new partition. Define
Wy, = [@QnCn/an + 1] and w, = rep/w, for 1 = —wy,, —w, +1, ..., wy. Note that R:(s, s, s+
uy, 8’ + up) is monotone in |uy ||uy| since Zy;; > 0. Suppose that 0 < u,, < uy < u,,4; and

0 S Ury S U2 S Urg+1 Then

R (s,8',8+ U, 8 +un) — R*(s,8, 5+ ur,, 8 +up,)
+R*(s,8', 8+ tp41, 8 + Urps1) — R¥(5, 8", 8+ py, 8 + Upy)

< R:(s,8,8+uy,s +uy) — R*(s,8', 5 +uy,s +up) (4.37)
< Ry (s,8, s+ Upy41,8 + Uppr1 — R*(5, 8, 8 + Ury41, 8 + Upyi1)

+R*(S7 SI) 5+ Ury+1, SI + u”r2+1) - R*(S7 8,7 s+ Uy, S, + u’rz)

By defining
6",7‘1,"‘2 = |R:|.(s7 SI? S + uT11 S’ + u’rz) - R*(S) 5,7 s + u’rly 5’ + urz)l

|R:(s, 8,8 +up, 8 +us) — R*(s,8', s +u1, s +u2)| <max(&nrres Enpritlrats)

! !
+R;(S Tt Uy 8 Upyy S+ Upy g1, S F ur2+1)
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The same holds if u,, <u; < up 41 <0 and v, < up < Upyyy < 0. Thus we get

V;(S: 3'1 c'n) < max (’Eﬂ,ﬁ,rz) + max . R;;(S + Uy, s+ Uryy 8+ Upy 41, '+ ur2+1)

~wp<r1,r2<Wn —wn<r1,r2<wn

For all r1, 79,
Ry (s+ury, 8 +tyy, SHUr 11, 8 Ftpp1) < QnP (s+ur1 < S < sty ands’+u, < S < S’+uT2+1)

< MSQn(ur1+1 - u’rl)(u'r2+1 - 'Ulrz) < Mga,,

Therefore for any B.

P(V*(s,s,cn) 2 Ba,) <P max  &npyr = (B— Mr)ay) (4.38)

—wn<r1,m2<5wn

Now let Z; = ;—i: ;."z"l Zijpl(Ziji < Qu)I(Si € (8,5 + uy,), Six € (5,8 + ur,)) so that
Enmirs = I% ?:1(Zi — E(Z;))|. We have |Z; — E(Z;)| < Q,, and

> var(Z) <> E(ZH <MY (G +ca/Ni) < Mnp,
i=1 =1 =1

For some finite M, using Bernstein’s inequality, We get;

(B - M )2ain2
P(&npire = (B— Msg)an) < e“’p{ T2 war(Z) + (273)(B - MS)anan}
(B — .Z\Js)zaqz,ﬁl2
= eop { " 2MnB, + (2/3)(B — Ms)nf, } e

<n ¥
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By (4.39) and Boole’s inequality

P(supV) (s, §,¢n) > Bay) < ([b_c_na] + 1)(2[62;—6”71‘3* +1)n 8 < C%n_B*

for some finite C. Consider S—: = ;L;‘ = a0 P(Vi(s,s',¢n) < Bay) is sum able in n if

we select B large enough such that B* > 2. By the Borel-Cantelli Lemma

sup V7 (s,s',cn) = O(ay) a.s (4.40)
(s,8')EP
Thus we obtain the result of Lemma3 by considering the expressions in(4.32),(4.36)and

(4.40).

LEMMA 4:
Assume that E(sup|X(s,t)[**) < oo and E|e|** < oo for some X € (2, 00).
Let Zijr be X(Si;)X(Sik), X(Si)ex, or enei.Letc, >0o0nac,>0andf, =
(A + B /yn1 + 2 /vm2) = O(1). Let N; = m;(m; — 1). For any p,q > 0 let

Io-1
Dypq(s,8) = ~ > [ﬁ > ZijKn)(Sij — ) Knq) (S — )
b itk

=1

Then

sup +/nh4/(Balogn)|Dpgn(s,s’) — E(Dpgn(s, s))| = O(1)

(s,5)€lard]

Proof of Lemma 4.4:

’ 1 & 1 ’ ’
Dp,q(s, S ) = H Z [F Z ZijkI(S'L'j S s+ h)I(Szk S s -+ h)Kh(p) (Sq:j - S)Kh(q)(Sik — 8 )

i=1 Yotk
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:// { Z‘Zzyk-’(swe[3+u s+ hlI(Si €8 +v,8 +h])
(u,v)el— hh]zn im1 wy

Kn(z)(Sij — 8) Kn(g)(Six — S')} dKh, () (u)dKp,(g) (V)

1
//(>[ pn s [ Y Ra(s+us +v,5+h,s +h)
u,v)E[—h,h

btk
Kh(p)(Sz-j — S)Kh(q) (S,;k — S’):| th’(p) (u)th,(q) (U)

where R, is as(4.31).Now

sup |Dpgn(s, s') — E(Dyp (s, s'))|
(s>s,)e[a’b]

< s Vils,som) [ [ [Kip()lKug(©)
(s:8")€[a,b] (u,v)E[—h,A]Z

= O((Bplogn/nh*)Y/?) a.s

Proof of Theorem 2:
Define a new function

Gpq = Gpg—C(s, §)Spg—heCU0 (5, 4)Sp11,4—hrC®Y (s, t)Sp 441 Considering the variables

)KhRA K (St — )

G20 - Z Z Xz]sz (

i=1 "' k#j

2
) K, (Sij — 8)Knp, (Sik — §')

GOZ - Z ZXz]sz(

"o Ni k#j

Sy—
Gu = Z ZX’LJsz( 3) ( JhR S )Kth (Sz'j _ S)Kth (Sz'k _ Sl)

=1
Therefore

(C = 0)(s,8) = (A1Gly — AGry — A3Gh) B~} (4.41)
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By standard calculation, we have the following notes uniformly on [a + hg,b — hg]?;

E(So0) = / 1 / Kig(Ss = 5)Kig (S — o)1) (< dsds

B /—1 /-1 Kng () Kngz (0) f(uh + 5) f(vh + §')dsds’
= f(s)f(s") + O(hg)

Bso) = [ [ Kia(Ss ~ )King(Ss =) (B2=2) storsts)asas

- /_1 /—1 Kng(W)EKng(v)uf(uh + s)f(vh + §')dsds’
= O(hr)

Similarly, E(Sio) = O(hz) , E(Su) = O(hr)
E(S02) = f(5)f(s")v2 + O(hr) and E(Sz) = f(s)f(s)v2 + O(hr)
By Lemma 4 we get;

S10 = O(hg + 6n2(hr))

S11 = O(hg + 6na(hr))
Soo = f()f(s") + O(hr + 6na(hr)))
Sz0 = f(8)f(5")v2 + O(hg + 6na(Br)))
Soz = f(5)f(s)v2 + O(hr + dn2(hr)))

B = f3(s)f*(s")v3 + O(hg + 6p2(hr)))
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When we plug these values into A;, A3, As and B we can reach almost sure uniform rates:

Ay = f2(s)f2(s)v2 + O(hg + 6n2(hR)))
Ay = O(hg + 6n2(hR)))

(4.42)
Ay = O(hg + 6na(hr)))

B = f3(3)f*(s')v: + O(hg + 6,2(hr)))

To analyze the behaviour of the components of (4.41) it suffices now to analyze G,,. Write

L1~ , : : :
Goo = > [N — D XX — C(s,s') — CMO(s,8)(Si; — 5) — COV(s,5)(Sy; — 5'})
i=1 kAj

K (Sij ~ 8)Kng(Sij — S')}

Let &;x = Xij X — C(Syj, Sir), By Taylor’s expansions
Xii X, — C(s,8") — CU0(s,5')(Si; — 8) — C®V(s,5)(Si; — &)

= Xinz'k — C(S, S’) - C(S,;j, Silc) + C(Sij, S’ik) - 0(1’0)(8, S') (Sij - S) - C(O’l) (S, S’)(Sij - S’
=&+ O(h%) a.s
Thus we get

- 1
80 = -71; E |:N———z- E £ijk)KhR(Sij - S)KhR(Sij - 3’)] + O(h?%)
k#j

i=1

Applying Lemma4 we obtain uniformly rate in s, s’

Gy = +O(0na(hr) + %)  as
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By(4.42)
AB™H = [f(s)f (8N + O(hg + 6n2(hg)))  as

We reach uniform rate of
GSOAlB'l = O(hg + 6n2(hgr))) a.s

Similarly we can reach the uniform rate of GiA4;B~! = O(hg + 0y2(hr))), G5 AsB™! =
O(hg + 0n2(hgr))). Therefore, we have obtained the uniform rate claimed in theorem 4.2

for (s,8') € [a+ hgr,b— hg].
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5. PERFORMANCE OF OUR MODEL

5.1. SIMULATION STUDY

The non-parametric degradation modeling framework introduce in this paper applies
to both complete as well incomplete degradation signal.To ensures accurate estimation
of the mean function and the co-variance surface,it is significant to have a sampling
plan. Yao,Muller and Wang(2005) provide theoretical results on the estimation of the co-
variance surface using FPCA under large n but small m; for i=1,...,n. and Zhou, Serban
and Gebraeel(2011) introduce a new sampling scheme for sparse and fragment data by
considering uniform sampling and nonuniform sampling methods.For censoring data we
assume that the sample size of sample data is enough large size to reach dense time-line.

For fitted model(3.10), the one-leave out prediction for the ith subject is

= (FX(t)(u))du (5.1)
Py X(t) (t)

(1) =

e PR . .
Where is Fzpy(y) = 1 — P(T'—t < y[f™*(t)). The estimation of #7*(t) is obtained
by coefficientsé;;; for eigenfunctions pj'"(t), j=1,.., M which is estimated eigenfunctions
after removing the ith subject’s trajectory.The one-leave-out predictions lead to the rood

squared prediction error at t,

RSPE(t) = {—— P GROBIGED)EE (5.2)

N iER(?)

Where N, is the number of subjects in the risk set R(t). Root squared prediction error
functions for various completed predictors is displayed below for 3 different data types ;

complete, sparse and fragmented data.All of them are special cases of the general model

(2.1).More specifically:
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e For complete data, we choose X;(s,t) = X;(s,t) + oe(s, t) such that o = 2, €(s,t) ~
N(0,1) and X(s,t) = exp(s?), Xao(s,t) = 3s%, X3(s,t) = 25°, X4(s,t) = 1/2exp(s),
Xs(s,t) = exp(2s), Xo(s,t) = exp(s), Xr(s,t) = 252, X5(s,t) = 273, Xo(s,t) =
3, X10(s,t) = 3s® we run simulation 4 times for each trajectory on [0,2] which
is made space grid ¢y, ..., c100 With ¢g = 0, andcigo = 2 .Then we obtain 40 different

co-variate trajectories, which estimate mean function u(s,t) as we introduce in (3,3).
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Figure 3: Complete Degradation Signal: The first graph shows the growth of degradation
signal. Top right plot compares the averages of remaining lifetime for true failure time
and the estimator in (3.10). In left bottom plot compares this mean remaining lifetime for
censoring version.The last graph shows average root squared prediction errors(RSPE)(4.2)
for censoring and non-censoring completed data

e For sparse data, we generate the observations from complete signal by dividing the
interval [0, 2] to 8 part randomly and we choose just 4 parts for each trajectory. The

stopping time for each signal is genarated from Uniform distribution [Uniform(0.8,2)]

Across all the types of data, the failure threshold is set to D=10 for uncensored
data and is set to D=7 for censored data.We use local linear weighted least squares for

smoothing the mean function and the variance-co-variance surface as describe above(3.3)
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Figure 4: Sparse Degradation Signal: The first graph shows the growth of degradation
signal. Top right plot compares the averages of remaining lifetime for true failure time
and the estimator in (3.10). In left bottom plot compares this mean remaining lifetime for
censoring version.The last graph shows average root squared prediction errors(RSPE)(4.2)
for censoring and non-censoring sparse data

e For fragmented data, we generate the observations from complete signal by dividing
the interval [0,2] to 8 part randomly and we choose just 2 parts for each trajec-
tory. The stopping time for each signal is genarated from Uniform distribution

[Uniform(0.7,2)]
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Figure 5: Fragmented Degradation Signal: The first graph shows the growth of degrada-
tion signal. Top right plot compares the averages of remaining lifetime for true failure time
and the estimator in (3.10). In left bottom plot compares this mean remaining lifetime for
censoring version.The last graph shows average root squared prediction errors(RSPE)(4.2)
for censoring and non-censoring fregmented data

and(3.5). The bandwidth for smoothing the co-variance function from one-curve-leave-out
cross validation was h=1.3.The bandwidths for smoothing the mean function were visually
chosen as h=.6. The number of significantly nonzero eigenvalues was chosen as K=2.
by minimizing the modified Akaike Criterion defined by Yao, Muller, Wang|[18].Once the
evolution of mean and eigenfunctions has been determined, estimated functional principal
component scores éjjt for each trajectory 0 < ¢ < T are obtained via (3.6).These serve

as predictors in various regression models that can be consider for predicting remaining

lifetime.

5.2. RESULT AND ANALYSIS

In Figure 3, we present the new estimator of mean residual distribution and the mean
remaining lifetime of the actual co-variate trajectories for complete non-censoring and

censoring case.Also, we compare the root squared prediction errors (RSPE) for complete
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non-censoring and censoring data using non-parametric model. The first observation is
that there is a small difference in the predictor error between censored non-parametric
model and uncensored non-parametric model. Difference is larger for high degradation
percentiles. This framework is consistent the result of Zhou, Serban, and Gebraeel[13] even
if the data they used wasn’t contaminated by right censoring data and they assumed the
random scores as normal distribution in parametric case. As expected, the root Squared
Prediction errors (RSPE) for Censoring complete data is higher than the root squared
prediction errors (RSPE) for non-censoring complete data when the prediction include
many failure time since each calculation of used numerical integral and estimator includes
errors.The second observation is that the nonuniform or uniform sampling methods can
be applicable to our proposed method. Overall, when we look at the comparison of the
our estimator and average remaining lifetime of true trajectories, and when we look at the
root squared prediction errors for complete censored/uncensored data, the performance of
our method is good as much as the result of Zhou,Serban and Gebraeel(2011). In Figure
6 the evolution of mean degradation signal function for complete data and of the first
two eigenfunction are displayed (for t=1.2, 1.5 and 2 respectively). These components
describe the time-evolution of degradation signal trajectories.We find that mean and first
eigenfunction quite smooth but second eigenfunction fluctuates more than first eigenfunc-
tion.While increased the time t,the smoothness of the second eigenfunction increases as
same as the first eigenfunction does .

In Figure 4, we present the observations, mean remaining lifetime function and root
squared prediction for sparse data using non-uniform sampling method for each indepen-
dent trajectory. The mean residual lifetime function of uncensored sparse data approach
the true value of average remaining lifetime better than for censoring data as expected
since censoring data includes missing some failure time. Therefore, the right graph at
bottom in Figure 4 shows RSPE for censored sparse data is higher than the RSPE of

uncensored sparse data.
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Figure 6: Evolution of mean functions(left column), and of first(middle column) and
second(right column) eigenfunctions for current times t=1.2(first row),t=1.5(second
row),t=2(third row) for degradation signal data
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The observations , mean residual function and root squared prediction errors are dis-
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Figure 7: Evolution of mean functions(left column)for censoring fragmented data, and of
first(middle column) and second(right column) eigenfunctions for current times t=1.2(first
row),t=1.5(second row),t=2(third row) for degradation signal data

played in Figure 5 for fragmented data.As seemed, mean remaining lifetime function for
non-censoring data approaches very well to true mean remaining lifetime function. How-
ever,although initial mean residual function for censoring data has gap with true average
remaining lifetime, while time increases, that gap decreases. The root squared prediction
error verifies the fact that non-uniform sampling models for fragmented data is can be
applied to our methods. Furthermore, the Figure 7 proves that reduction of the dimension

to just two eigenfunction simply the model sufficiently.
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6. CONCLUSION AND DISCUSSION

The time-evolution of mean and eigenfunction is a concept that provides a stepping stones
to extend to reach of functional data analysis to the analysis of trajectories that are
truncated by death or other events.The interpretation of Figure 6-7 depicting this time-
evolution and implying an reduction of the durability of each component of system, which
proposed analysis tools can lead to interesting insight that would be hard to come for cen-
sored data in traditional methods. In studies on aging, predicted remaining lifetime is a
useful measure for security of the system.The proposed methods yield estimates for such
measures base on observed co-variate trajectories.

Under right censored Sparse/Fragmented sampling, the selection of the observation times
of the degradation signals impacts the accuracy of the degradation censored modeling.For
example, if the degradation signals are uniformly but fragmented censored sampled, the
degradation process will not be adequately observed at the later extreme time point M,
since few component will survive up to this time point. To apply the proposed method
like this data, the time points at which the degradation signals have been observed cover
the domain [0,M].Nonuniform sampling guarantees to be dense-sty of domain enough.
The proposed methods allow for straightforward inclusion of more than one predictor
trajectory per subject and also additional multivariate co-varieties that may be available

for each subject in some applications.
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