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ABSTRACT

LEARNING FOR CLINICAL OUTCOME PREDICTION FROM BIG MEDICAL

DATA

Jiawen Yao, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Dr. Junzhou Huang

With the advance of recent technological innovations, nowadays scientists can

easily capture and store tremendous amounts of different types of medical data such

as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), big patholog-

ical images and high dimensional cell profiling data. Developing deep learning and

machine learning to analyze such large-scale medical data sets for patient health care

is an interesting but challenging problem. Inspired by the trend, in this dissertation,

we focus on solving real-world problems, like survival analysis on image-omics data

and reducing uncertainty from undersampled MRI.

Survival analysis is a crucial tool in the clinical study of cancer patients, as it

allows clinicians to make early decisions in treatments. With respect to the problem

of survival prediction using pathological image data, we first consider to develop a

novel image-based pipeline for lung cancer patients. To deal with the subtype cell

detection, we develop a deep learning-based detection approach to detect subtype cell

locations in images. The proposed pipeline can extract subtype cellular features and
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describe the tissue organization and structures more effectively than standard cellular

imaging features.

With respect to the problem of multi-modality integration on image-omics data,

the dissertation contributes a novel method for the integration. Previous work have

suggested that complementary representation from different modalities provides im-

portant information for prognosis. However, due to the large discrepancy between

different heterogeneous views, traditional survival models are unable to efficiently

handle multiple modalities data as well as learn very complex interactions that can

affect survival outcomes in various ways. To overcome these issues, we present a Deep

Correlational Survival Model (DeepCorrSurv) for the integration of multi-view data.

This results in a more accurate prediction compared with state-of-the-arts methods.

With respect to the problem of directly using Whole Slide Images (WSIs)

for survival prediction, the dissertation proposes an attention guided deep multi-

ple instance survival learning. Classical methods focus on manually selecting smaller

”patches”, which seek to represent the WSIs in order to reduce the computational

burden. However, these patches are often unable to completely and properly reflect

the patients’ tumor morphology. Furthermore, the manual annotation work by med-

ical experts required for these methods can often be infeasible to apply to large scale

cancer datasets. State-of-the-art WSI-based survival models train patch-based CNN

to learn features and then aggregate patch-level results to patient-level decision. How-

ever, those models are trained in a unified manner and the aggregation is not trainable.

Our model can solve above issues and yield much better predictions than recent WSI-

based learning models. Our results also demonstrate the effectiveness of the proposed

method as a recommender system to provide personalized recommendations based on

an individual’s calculated risk.
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Compared with pathological images, Computed Tomography (CT) and Mag-

netic Resonance Imaging (MRI) scans can be collected in much faster ways and thus

are widely used for masses or tumors surveillance. Dynamic magnetic resonance imag-

ing (dMRI) is one very important medical imaging technique that has been widely

used for multiple clinical applications. To achieve clinical outcome prediction using

dMRI, the reconstruction is a necessary first step as dMRI scans are originally under-

sampled. Without a high quality of reconstruction, it is impossible for later diagnosis.

With respect to the problem of dynamic MRI reconstruction, the thesis contributes

an efficient algorithm by solving a primal-dual form of the original problem. The con-

vergence rate of the proposed algorithm can be theoretically proved. It is also very

convenient to extend to parallel imaging which is more used in recent days. Extensive

experiments on single-coil and multi-coil dynamic MR data demonstrate the superior

performance of the proposed method in terms of both reconstruction accuracy and

time complexity.
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CHAPTER 1

INTRODUCTION

This thesis focuses on developing deep learning and machine learning techniques

for the purpose of handling various medical data for prognosis, e.g. clinical outcome

prediction, MRI reconstruction, etc.

1.1 Problem Statement

Predicting clinical outcomes, such as death of cancer patients, plays an impor-

tant role in improving the performance of healthcare system and has huge impacts in

precision medicine as lower healthcare costs improve quality of life. Survival analysis

is a subfield of statistics where the goal is to model the data where the outcome is

the time until the occurrence of an event of interest [2]. If we consider the event

of interest as the death of patients and then survival analysis can provide a good

solution to predict clinical outcomes.

For a survival problem, death time is known precisely only for those patients

who have the event occurred during the study period. For other patients in the

study, since we may lose track of them or their time to event is greater than the

observation time. Those patients are considered to be censored instances in survival

analysis. The censored time C may be the time of lost, withdrawn or the termination

of the observation. In other words, either survival time Ti or censored time Ci can

be observed for any given patient i. In survival analysis, a binary event indicator

δi is usually used to indicate if a instance or patient is censored, i.e., δi = 1 for an

uncensored and δi = 0 for a censored patient. If we use yi as the observed time,
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yi = Ti for an uncensored instance and yi = Ci for a censored instance. Furthermore,

in the study, each patient usually comes with medical records or data and we denote

those data as Xi. Thus, a given patient i will be represented by a triplet (Xi, yi, δi) in

the context of survival analysis. The goal of survival analysis is to estimate the time

to death Tj for a new patient j with predictors denoted by Xj. In this dissertation, we

consider X as image-omics data and develop several algorithms for survival analysis.

1.2 Motivation

In the current era of big data, nowadays scientists can easily capture and store

tremendous amounts of different types of medical data such as 3D CT scans, MRI,

big pathological images and high dimensional cell profiling data. Within this con-

text, how to effectively extract knowledge and efficiently exploit those data is still

an open problem. In this dissertation, we aim at providing effective deep learning

and machine learning approaches for handling various medical data sets on solving

real-world problems.

In this dissertation, we explore image-omics data for a very important clinical

problem - survival prediction. To diagnose tumor, doctors usually take tumor sam-

ples in biopsy procedures like genetic and imaging tests which result in large-scale

imaging and omics data which include pathology or radiology images, and genomics,

proteomics or metabolomics, captured from the same patient. Those data can be used

for tumor diagnosis. Compare with other modalities, pathological images can present

tumor growth and morphology in extremely detailed, gigapixel resolution which are

extremely useful for tumor prognosis. Tumor microenvironment is a complex milieu

that includes not only the cancer cells but also the stromal cells and immune cells. All

this ”extra” genomic information may muddle results and therefore make molecular

analysis a challenging task for cancer prognosis while imaging data can overcome such
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issues by providing morphology information [3, 4]. Therefore, a lot of research inter-

ests have started to focus on developing image-based survival methods in recent years.

Besides image-based survival models, there has been validated that complementary

information from different modality from image-omics data can benefit the survival

prediction. But since image-omics data are very heterogeneous, how to effectively

integrate those multi-modalities data is another challenge that needs to be solved.

Secondly, we investigate the problem of handling Whole Slide Images (WSIs) for

diagnosis. The most challenge one is that pathological images in real cancer dataset

might be in terabytes (1012 pixels) level which makes most models computationally

impossible. Another issue is that the label information in survival analysis is only

given on patient-level while in the traditional supervised learning, each training in-

stance is typically associated with one label. As the solid tumor may have a mixture

of tissue architectures and structures, multiple WSIs from different parts of the pa-

tient’s tissue are collected for diagnosis. Those terabyte-size large WSIs from one

patient will share the survival label which will make the problem more challenging.

Instead of handling original WSIs, state-of-the-art survival methods adopted several

discriminative patches from manually annotated Region Of Interests (ROIs) and then

extracted hand-crafted features for predictions [5, 1, 6]. However, a small set of image

tiles cannot completely and properly reflect the patients’ tumor morphology. These

approaches have very high risks to lose survival-discriminative patterns if only select

several tiles from very heterogeneous whole pathological image slides.

Thirdly, we investigate the problem of handling dynamic MRI reconstruction.

Dynamic magnetic resonance imaging (dMRI) is an important medical imaging tech-

nique but the scanning is inherently a very slow process due to a combination of

different constraints such as nuclear relaxation times and peripheral nerve stimu-

lation. Since the speed of acquisition in dynamic MRI has physical limits, there
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exists a trade-off between temporal and spatial resolution. Additionally, long scan

durations can make patient uncomfortable and also increase the chance of motion

artifacts. Hence, many approaches have been proposed to reduce scanning time by

requiring partial k-space data for reconstruction instead of full sampling. However,

most existing methods still suffer from expensive running time devoted to complex

iterative learning. Therefore, we are trying to develop an approach to reduce the

computational cost of the running time.

1.3 Our Techniques

Solid tumors are heterogeneous tissues composed of a mixture of cells and have

special tissue architectures. However, cellular heterogeneity, the differences in cell

types are generally not reflected in molecular profilers or in recent histopathologi-

cal image-based analysis of lung cancer, rendering such information underused [5].

At first, we present the development of a computational approach in H&E stained

pathological images to quantitatively describe cellular heterogeneity from different

types of cells. In our work, a deep learning approach was first used for cell subtype

classification. Then we introduced a set of quantitative features to describe cellu-

lar information. Several feature selection methods were used to discover significant

imaging biomarkers for survival prediction. These discovered imaging biomarkers

are consistent with pathological and biological evidence. Experimental results on

two lung cancer data sets demonstrated that survival models built from the clinical

imaging biomarkers have better prediction power than state-of-the-art methods using

molecular profiling data and traditional imaging biomarkers.

Second, for the integration topic, we develop a Deep Correlational Survival

Model (DeepCorrSurv) for the integration of multi-view data. This is based on the

recent study that complementary representation from different modalities provides

4



important information for prognosis [7, 4]. However, due to the large discrepancy

between different heterogeneous views, traditional survival models are unable to ef-

ficiently handle multiple modalities data as well as learn very complex interactions

that can affect survival outcomes in various ways. In our work, The proposed network

consists of two sub-networks, view-specific and common sub-network. To remove the

view discrepancy, the proposed DeepCorrSurv first explicitly maximizes the correla-

tion among the views. Then it transfers feature hierarchies from view commonality

and specifically fine-tunes on the survival regression task. Extensive experiments on

real lung and brain tumor data sets demonstrated the effectiveness of the proposed

DeepCorrSurv model using multiple modalities data across different tumor types on

small training samples.

Thirdly, for the Whole Slide Pathological Images (WSIs) topic, we take advan-

tage of a deep multiple instance learning to encode all possible patterns from WSIs and

view the problems of tumor patient survival analysis in a unified manner. Different

from the existing works [8, 9] on learning using key patches or clusters from WSIs, We

consider use a trainable attention-based pooling layer for efficient aggregation. With-

out annotated patch-level labeling, our model yields performance that is much better

than state-of-the-art WSI-based survival learning models. More importantly, the pro-

posed approach has good interpretability to locate important patterns that contribute

more to predictions. We evaluate our model in its ability to predict patients’ survival

risks across the lung and colorectal tumor from two large whole slide pathological

images datasets. The proposed framework can significantly improve the prediction

performances compared with existing state-of-the-arts survival analysis approaches.

Results also demonstrate the effectiveness of the proposed method as a recommender

system to provide personalized recommendations based on an individual’s calculated

risk.
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In this thesis, for the dynamic MRI topic, we propose an efficient algorithm for

dynamic magnetic resonance (MR) image reconstruction. With the total variation

(TV) and the nuclear norm (NN) regularization, the proposed TVNNR model can

utilize both spatial and temporal redundancy in dynamic MR images. Such prior

knowledge can help model dynamic MRI data significantly better than a low-rank

or a sparse model alone. However, it is very challenging to efficiently minimize the

energy function due to the non-smoothness and non-separability of both TV and NN

terms. To address this issue, we propose an efficient algorithm by solving a primal-

dual form of the original problem. We theoretically prove that the proposed algorithm

achieves a convergence rate of O(1/N) for N iterations, which is much faster than

O(1/
√
N) by directly applying the black-box first-order method. In comparison with

state-of-the-art methods, extensive experiments on single-coil and multi-coil dynamic

MR data demonstrate the superior performance of the proposed method in terms of

both reconstruction accuracy and time complexity.

1.4 Thesis Overview

Finally, we provide the overview of this thesis in summary. In Chapter 2, we

present our pipeline for subtype imaging biomarkers for lung cancer survival predic-

tion. Then, Chapter 3 presents the work to integrate multi-modality image-omics

data for survival prediction on lung and brain tumor dataset. Chapter 4 shows the

proposed deep multi-instance survival learning framework to process WSIs. Chapter

5 shows the proposed algorithm for dynamic MRI reconstruction which is a key step

to acquire high-quality MRI images from under-sampled data for the further diagnosis

purpose.
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As the ending, Chapter 6 draws our conclusions of the thesis, where we summa-

rize the presented deep learning techniques, highlight their contributions and provide

future research directions for medical imaging applications.
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CHAPTER 2

IMAGING BIOMARKER DISCOVERY FOR LUNG CANCER SURVIVAL

PREDICTION

This chapter investigates the problem of survival prediction using pathological

images. A novel pipeline is proposed to extract subtype cellular imaging biomarkers

for prediction [5]. Experimental results on two lung cancer data sets demonstrated

that survival models built from the clinical imaging biomarkers have better prediction

power than state-of-the-art methods using molecular profiling data and traditional

imaging biomarkers.

2.1 Introduction

Lung cancer is the second most common cancer in both men and women. The

non-small cell lung cancer (NSCLC) is the majority (80-85%) of lung cancer and

two major NSCLC types are Adenocarcinoma (ADC) (40%) and Squamous Cell Car-

cinoma (SCC) (25-30%).1 The 5-year survival rate of lung cancer (19.4%) is still

significantly lower than most other cancers.2 Predicting clinical outcome of lung

cancer is an active field in today’s medical research.

Molecular profiling is a technique to query the expression of thousands of molec-

ular data simultaneously. The information derived from molecular profiling can be

used to classify tumors, and help to make clinical decisions [10, 11]. Many efforts

have been made to search for biomarkers from molecule data that are significantly re-

1http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/
2http://seer.cancer.gov/statfacts/html/lungb.html
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lated to patient death in lung cancer [12, 10, 11]. In 2008, Shedden et al. [10] showed

that the gene expression signatures are able to predict lung cancer patients prognosis.

However, their signature contained a large number of genes (over 1000 genes), which

largely exceeded the 50 genes that most clinical assays can handle. Yuan et al. [11]

investigated the benefit of integrating traditional clinical variables with diverse molec-

ular data to predict patient survival. However, tumor microenvironment is a complex

milieu that includes not only the cancer cells but also the stromal cells and immune

cells. All this “extra” genomic information may muddle results and therefore make

molecular analysis a challenging task for cancer prognosis [4].

TCGA-60-2706TCGA-34-2596

(A) (B)

Figure 2.1: Tumor morphology are correlated with patient survival.

Recently, Arne Warth et al. [3] showed that there exists connections between

lung tumor morphology and prognosis. Advances in imaging have created a good

chance to study such information using hispathological images to help tumor diagno-

sis [4, 13, 14]. In general, a pathologist can visually examine stained slides of a tumor

to discover imaging biomarkers that can be used for diagnosis. For example, Fig. 2.1-

(A) shows two pathology images from ADC lung cancer patients. (A) is an image

from one patient who had the worse survival outcome while (B) is captured from a
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patient who lived longer. A distinct pattern can be found in Fig. 2.1-(A) as the more

advanced tumor cells clustered in a larger more condensed area indicates a worse sur-

vival outcome than Fig. 2.1-(B) where tumor cells are scattered into a smaller region

with lymphocytes and stromal cells nearby. However, the process of manually search-

ing for such imaging biomarkers is very labor-intensive and cannot be easily scaled

to large number of samples. Wang et al. [1] proposed an automated image analysis

to help pathologists find imaging biomarkers that could identify lung cancer survival

characteristics. They proposed a multi-scale distance map-based voting algorithm

for cell detection and introduced an interactive scheme to form a repulsive balloon

snake (RBS) model for touching cell segmentation. Based on cell detection and seg-

mentation results, image morphometrics features are extracted for survival analysis.

However, those traditional cell segmentation and detection approaches are unable to

classify cell subtypes and achieve clinically interpretable imaging biomarkers in lung

cancer.

In this chapter, we introduced a computational image analysis to discover clin-

ically interpretable imaging biomarkers for lung cancer survival prediction. Exper-

iments on two lung cancer cohorts demonstrate that: 1) Two major subtypes of

NSCLC should be treated separately since they have different key imaging biomark-

ers. 2) Spatial distribution of subtype cells are informative imaging biomarkers for

lung cancer survival prediction. 3) The proposed framework can better describe tu-

mor morphology and can provide powerful survival analysis than the state-of-the-art

method with molecular profiling data.

2.2 Methodology

An overview of our method is presented in Fig. 2.2. An expert pathologist

first labels regions of tissues. Several image tiles are extracted from the interested
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Figure 2.2: Overview of the proposed framework.

regions. Then a deep learning approach is applied to detect different types of cells

(tumor, stroma and lymphocyte cells). A set of quantitative descriptors is used to

cover granularity and subtype cellular heterogeneity. Our image analysis pipeline au-

tomatically segments H&E stained images, classifies cellular components into three

categories (tumor, lymphocyte, stromal), and extracts features based on cell segmen-

tation and detection results. Feature selection methods are used to find important

features (image markers). These imaging biomarkers can then be applied for building

survival models to predict patient clinical outcomes.

2.2.1 Subtype Cell Detection

In cell biology and medicine, microscopy images analysis is a very popular

topic and automatic cell detection is the basis. Different cell types (cancer cells,

stromal cells, lymphocytes) play different roles in tumor growth and metastasis, and

accurately classifying cell types is a critical step to better characterization of tumor
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growth and outcome prediction [7, 4]. Due to the large appearance variation and

high complexity of lung cancer tissues, traditional machine learning approaches do

not clearly distinguish or define the different cell types. Most models focus on single

cell detection and few works are proposed for automatic microscopic subtype cell

analysis with deep convolution neural networks (DCNN). In this work, we introduce

an accelerated deep convolution neural network [15] for subtype cell detection and

the main architecture of the network can be seen in Fig.2.3.

× 

C

F S

F
S

Subtype Detection

Cell DetectionCell Probability

Subtype Probability

Image Tile

DCNN for Cell Subtype Detection  

Figure 2.3: The architecture of DCNNs for cell type classification (C stands for the
multiple shared convolution and pooling layers between two models. F stands for
fully-connected layer and S stands for softmax layer).

Motivated by recent deep learning methods for cell detection [16, 17], the sub-

type cell detection network has a two partially shared-weighted deep convolution

neural networks (DCNNs). One DCNN model is for cell/non-cell classification and

the other is for subtype cell classification task. To train two partially share-weighted

DCNN models for classification, cell patches are extracted according to their anno-

tations. Sparse kernels [18] are applied in the two DCNN models to eliminate all

the redundant calculations for acceleration. Sparse kernels are created by inserting

all-zero rows and columns into original kernels to make every two original neighbor-

ing entries d-pixel away [19]. They are applied for all the convolution, pooling and
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fully-connected layers in the network. Cell detection branch is for cell/non-cell task.

After the softmax layer, the model outputs cell probability of the tile image. To get

final cell detection result, the moment centroid based method is performed. The other

branch is the DCNN for the subtype cell classification and it gives the probabilities

of each pixel in the tile belongs to subtypes. In the final step, results of two DCNN

models are merged by simple multiplying to achieve subtype cell detection.

2.2.2 Quantitative Imaging Feature Extraction

Motivated by [1, 20], three groups of cellular features were extracted using sub-

type cell detection results. These features cover cell-level information (e.g., appear-

ance and shapes) of individual subtype cells and also texture properties of background

tissue regions.

Group 1: Geometry Features. Geometry properties are calculated for each

segmented subtype cell, including area, perimeter, circularity, major-minor axis ra-

tio. Zernike moments were also applied on each type of cells. When combined with

different tiles, we calculated mean, median and std. of each feature with a total of

564 features.

Group 2: Texture Features. This group of features contains Gabor “wavelet”

features, co-occurrence matrix and granularity to measure texture properties of ob-

jects (e.g., cells and tissues), resulting in 1,685 texture features.

Group 3: Holistic Statistics. The four holistic statistics include overall

information like the total area, perimeter, number and the corresponding ratio of

each subtype cells.
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2.2.3 Imaging Biomarkers Discovery

The objective of this step is to find important imaging biomarkers since not

all features were highly correlated with patients’ survival outcomes. Different from

traditional applications, selecting features in survival analysis is a censoring problem

(subjects are censored if they are not followed up or the study ends before they die). In

this study, we built the predictive models using two well-established types of methods:

(1) the multivariate Cox proportional hazards model with L1 penalized log partial

likelihood (Lasso) [21] or component-wise likelihood based boosting (CoxBoost) [22]

for feature selection, and (2) random survival forest (RSF) [23]. Because of the high

dimension of the image features, we first applied univariate Cox regression and kept

those with Wald test p value less than 0.05. Then we conducted the feature selection

on a small candidates set for survival model to improve the speed.

2.3 Experimental Results

2.3.1 Materials

We focused on two widely used lung cancer dataset NLST (National Lung

Screening Trial) 3 and TCGA Data Portal. Both dataset contains complete patients’

pathology images with survival and clinical information while TCGA cohorts can

provide additional molecular profiling data. In NLST, we collected 144 ADC and

113 SCC patients. In TCGA, we focused on SCC case and collected 106 patients

with four types of molecular data including: Copy number variation (CNV), mRNA,

microRNA and protein expression (RPPA). To examine whether imaging biomarkers

from the proposed framework can achieve better predictions than traditional imaging

3https://biometry.nci.nih.gov/cdas/studies/nlst/
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biomarkers and molecular profiling data (biomarkers), we evaluated with two state-

of-the-arts framework in lung cancer [1, 11].

To evaluate the performances in survival prediction, we take the concordance

index (C-index) as our evaluation metric [24]. The C-index quantifies the ranking

quality of rankings and is calculated as follows

c =
1

n

∑
i∈{1...N |δi=1}

∑
tj>ti

I[fi > fj] (2.1)

where n is the number of comparable pairs and I[.] is the indicator function. t.

is the actual time observation. f. denotes the corresponding risk. The C-index is

a nonparametric measurement to quantify the discriminatory power of a predictive

model: 1 indicates perfect prediction accuracy, and a C-index of 0.5 is as good as a

random guess.

2.3.2 Imaging Biomarker Discovery for Survival Analysis

ADC vs SCC samples. In this experiment, we followed the framework in

[1] and investigated differences in imaging biomarkers selecting from the set of ADC

and SCC markers, and combining ADC and SCC markers together. To ensure the

robustness of selection, we resampled the whole dataset with replacements and per-

formed the boosting feature selection procedure [22] and calculated the frequency of

choosing a variable. Fig. 2.4 shows that key features (high frequencies shown in the

green rectangle) chosen from the combination set are very different from those of

ADC and SCC, respectively. These differences convinced us the prognosis models for

ADC and SCC should be developed separately. This discovery verified the evidence

in lung cancer pathology, that lung cancer subtypes are highly heterogeneous and

cannot be combined together.
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Figure 2.4: Frequencies of features on ADC, SCC and ADC+SCC set.

For ADC and SCC, selected features include information about suptype cell

distributions, cell shape and granularity. Among them, subtype cell distributions and

granularity have been confirmed to be associated with survival outcomes [25, 4]. To

test these imaging biomarkers, we built multivariate Cox regression using the top 50

selected features on testing sets (47 for ADC and 37 for SCC). Fig. 2.5 presents the

predictive power on a partitioning into two groups on testing set (a-b for ADC and

c-d for SCC). A significant difference (Wald-Test) in survival times can be seen in

Fig. 2.5-a,-c. It demonstrates that discovered imaging biomarkers which cover subtype

cell distributions and granularity are more often associated with survival outcomes

than traditional imaging biomarkers.

Then we randomly divided the whole set to 50 splits (2/3 for training, 1/3

for testing). Each feature selection method performed 10-fold cross validation for

parameter optimization. Fig. 2.6 shows the concordance index (C-index) results of

the two methods on ADC and SCC set. From Fig. 2.6, it can see the higher median C-

index of the discovered imaging markers in both cases with different survival models.

This illustrates the robustness of the proposed method since the discovered imaging

biomarkers are highly associated with tumor growth and survival outcomes.
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Figure 2.5: Kaplan-Meier survival curves of two groups on testing set. The x axis is
the time in days and the y axis denotes the probability of overall survival. (a,c) are
from the framework developed in this research, while (b,d) are using features from [1].

CoxBoost RSF CoxBoost RSF

CoxBoost RSF CoxBoost RSF

Figure 2.6: Boxplot of C-index distributions (Left: ADC, Right: SCC).
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2.3.3 Comparison of Survival Model with Imaging and Molecular Data

To examine whether the proposed imaging biomarkers can provide better pre-

diction power than traditional molecular data, we conducted experiments on TCGA

LUSC cohort following the recent study [11]. We applied 50 random splits and as-

sessed the C-index of a model built from the individual imaging and molecular data

sets alone. Fig. 2.7-A presents the highest median C-index value of survival mod-

els built on the discovered imaging biomarkers. When each type of data integrates

with clinical variables (”+” means the integration), all prediction accuracies increase

while the proposed method still has the best results (Fig. 2.7-B). It verified the dis-

covered imaging biomarkers can better describe tumor morphology which enabled the

proposed framework to have the best predictions for survival analysis.

Figure 2.7: Comparison of the survival predictive power using Cox+Lasso model.

2.4 Conclusions

In this paper, we investigated subtype cell information and found that they

have useful patterns for predicting patients survival. These results are consistent
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with recent study in lung cancer pathology [3]. Extensive experiments have been

conducted to demonstrate that imaging biomarkers from subtype cell information

can better describe tumor morphology and provide more accurate prediction than

state-of-the-art method using imaging and molecular profilers. In the future, we will

try to find more quantitative measurements to better describe tumor morphology and

further improve the prediction performances.
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CHAPTER 3

DEEP CORRELATIONAL LEARNING FOR MULTI-MODALITY DATA

In this chapter, we develop a Deep Correlational Survival Model (DeepCorrSurv)

for the integration of multi-view data. Extensive experiments on real lung and brain

tumor data sets demonstrated the effectiveness of the proposed DeepCorrSurv model

using multiple modalities data across different tumor types on small training sam-

ples [26].

3.1 Introduction

Survival analysis aims at modeling the time that elapses from the beginning of

follow-up until a certain event of interest (e.g. biological death) occurs. The most

popular survival model is Cox proportional hazards model [27]. However, the Cox

model and recent approaches [28, 29, 30, 5] are still built based on the assumption

that a patient’s risk is a linear combination of covariates. Another limitation is that

they mainly focus on one view and cannot efficiently handle multi-modalities data.

Recently, Katzman et al. proposed a deep fully connected network (DeepSurv) to

learn highly complex survival functions [31]. They demonstrated that DeepSurv out-

performed the standard linear Cox proportional hazard model. However, DeepSurv

cannot process pathological images and also is unable to handle multi-view data.

To integrate multiple modalities and eliminate view variations, a good solution

is to learn a joint embedding space which different modalities can be compared di-

rectly. Such embedding space will benefit the survival analysis since recent study has

suggested that common representation from different modalities provide important
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information for prognosis [4, 14, 32]. To learn the embedding space, one very popular

method is canonical correlation analysis (CCA) [33] which aims to learn features in

two views that are maximally correlated. Deep canonical correlation analysis [34] has

been shown to be advantageous and such correlational representation learning (CRL)

methods provide a very good chance for integrating different modalities of survival

data. However, since these CRL methods are unsupervised learning models, they

still have the risk of discarding important markers that are highly associated with

patients’ survival outcomes.

In this chapter, we develop a Deep Correlational Survival Model (DeepCorrSurv)

to integrate views of pathological images and molecular data for survival analysis. The

proposed method first eliminates the view variations and finds the maximum corre-

lated representation. Then it transfers feature hierarchies from such common space

and specifically fine-tunes on the survival regression task. It has the ability to dis-

cover important markers that are not found by previous deep correlational learning

which will benefit the survival prediction. The contribution of this paper can be sum-

marized as: 1) DeepCorrSurv can model very complex view distributions and learn

good estimators for predicting patients’ survival outcomes with insufficient training

samples. 2) It used CNNs to represent much more abstract features from patho-

logical images for survival prediction. Traditional survival models usually adopted

hand-crafted imaging features. 3) Extensive experiments on TCGA-LUSC and GBM

demonstrate that DeepCorrSurv model outperforms those state-of-the-art methods

and achieves more accurate predictions across different tumor types.

3.2 Methodology

Given two sets X,Y with m samples, the i-th sample is denoted as xi and yi.

Survival analysis is about predicting the time duration until an event occurs, and in
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Figure 3.1: The architecture of the DeepCorrSurv. ’st’ is short for ’stride’.

our case the event is the death of a cancer patient. In survival data set, patient i has

observation time and the censored status, denoted as (ti, δi). δi is the indicator: 1

is for a uncensored instance (the death event occurs during the study), and 0 is for

a censored instance (the event is not observed). The observation time ti is either a

survival time (Si) or a censored time (Ci) which is determined by the status indicator

δi. If and only if ti = min(Si, Ci) can be observed during the study, the dataset is

said to be right-censored which is the most common case in real world.

Figure 3.1 illustrates the pipeline of the proposed DeepCorrSurv. It consists

of two sub-networks, view-specific sub-network f1, f2 and the common sub-network

gc. We proposed Convolutional Neural Networks (CNNs) as one image-view sub-

network f1 and Fully Connected Neural Networks (FCNs) as another view-specific

sub-network f2 to learn deep representations from pathological images and molecular

profiling data, respectively. The sub-network f1 consists of 3 convolutional layers, 1

max-pooling layer and 1 fully-connected layer. In each convolutional layer, we employ

ReLU as the nonlinear activation function. The sub-network f2 includes two fully

connected layers with 128 and 32 neurons equipped with ReLU activation function.
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3.2.1 Deep Correlational Model

For any sample xi,yi passing through the corresponding view sub-network,

its representation is denoted as f1(xi;wx) and f2(yi;wy) respectively where wx,wy

represent all parameters of two sub-networks. The outputs of two branches will be

connected to a correlation layer to form the common representation.

Deep correlational model seeks pairs of projections that maximize the corre-

lation of two outputs from each networks f1(xi;wx), f2(yi;wy). If wx,wy mean all

parameters of two networks, then the commonality is enforced by maximizing the

correlation between two views as follows

L = corr(X,Y) =

∑m
i=1(f1(xi)− f1(X))(f2(yi)− f2(Y))√∑m

i=1(f1(xi)− f1(X))2
∑m

i=1(f2(yi)− f2(Y))2
, (3.1)

where we omit networks’ parameters wx,wy in the loss function (3.1). We can maxi-

mize the correlation loss function to provide the shared representation indicating the

most correlated features from two modalities.

3.2.2 Fine-tune with Survival Loss

Denote the shared representation from the two views as Z. Denote O =

[o1, ..., om]> as the outputs of common sub-network gc, i.e., oi = gc(zi). Denote

the label of the i-th patient as (ti, δi) where ti is the observed time, δi is the indicator,

1 is for a uncensored instance (death), and 0 is for a censored instance.

We assume that censoring data (δ = 0, death not observed) is non-informative

in that, given xi, the event and censoring time for the j-th patient are independent.

Let t1 < t2 < · · · < tD denote the ordered event times. The risk set R(ti) is the set

of all individuals who are still under study at a time just prior to ti. Conditioned
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upon the existence of a unique event at some particular time t the probability that

the death event occurs in the patient i is

Li =
exp(oi)

Σj∈R(ti) exp(oj)
, (3.2)

Assuming the patients’ events were statistically independent, the joint proba-

bility of all death events conditioned upon the existence of events at those times is

the partial likelihood:

L =
∏
i:δi=1

exp(oi)

Σj∈R(ti) exp(oj)
, (3.3)

The corresponding log partial likelihood is

l = log(L) =
∑
i:δi=1

(oi − log
∑
j:R(ti)

exp(oj))

=
∑
i

δi(oi − log
∑
j:R(ti)

exp(oj)), (3.4)

The function can be maximized over the network parameters to produce maxi-

mum partial likelihood estimates. It is equivalent to minimize the negative log partial

likelihood. We then use the negative log partial likelihood as the loss function in our

model as shown in below

L(oi) =
∑
i

δi(−oi + log
∑

j:tj>=ti

exp(oj)). (3.5)

where j is from the set whose survival time is equal or larger than ti (tj ≥ ti). In

a simplified view, the loss function contributes to overall concordance by penalizing

any discordance in any values of higher risk patients if they are greater than lower

those of lower risk. Different from Cox-based models which only handle the linear

condition in the risk function, the proposed model can better fit realistic data and

learn complex interactions using deep representation.
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3.2.3 Discussions

Although different views of health data are very heterogeneous, they still do

share common information for prognosis. Deep correlational learning is first trained

to find such common representation using the correlation function (3.1). However,

this procedure has a risk of discarding the discriminant markers for predicting pa-

tients’ survival outcomes due to it belongs to unsupervised learning. To overcome this

problem, the DeepCorrSurv transfers knowledge from the deep correlational learning

and fine-tunes the network using the survival loss function (4.3). This will make

DeepCorrSurv able to discover important markers that are ignored by correlational

model and learn the best representation for survival prediction. Compared with the

recent deep survival models [31, 35] which can only handle one specific view of data,

the DeepCorrSurv can achieve more complex architecture for the integration of multi-

modalities data which can be used in the practical application on more challenging

dataset.

3.3 Experiments

3.3.1 Dataset Description

We used a public cancer survival dataset TCGA (The Cancer Genome At-

las) project [36] which provides high resolution whole slide pathological images and

molecular profiling data. We conducted experiments on two cancer types: glioblas-

toma multiforme (GBM) and lung squamous cell carcinoma (LUSC). For each cancer

type, we adopted a core sample set from UT MD Anderson Cancer Center [11] in

which each sample has information for the overall survival time, pathological images

and molecular data related to gene expression.
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• TCGA-LUSC: Non-Small-Cell Lung Carcinoma (NSCLC) is the majority of

lung cancer. Lung squamous cell carcinoma (LUSC) is one major type in

NSCLC. We collected 106 patients with pathological images and protein ex-

pression (reverse-phase protein array, 174 proteins).

• TCGA-GBM: Glioma is a type of brain cancer and it is the most common

malignant brain tumor. 126 patients are selected from the core set with images

and CNV data (Copy number variation, 106 dimension).

With the help of pathologists, we have annotations that locate the tumor regions

in whole slide images (WSIs). We randomly extract patches of size 1024× 1024 from

the tumor regions. To analyze pathological images in comparison survival models,

we calculated hand-crafted features using CellProfiler [37] which serves as a state-of-

the-art medical image feature extracting and quantitative analysis tool. Similar to

the pipeline in [20], a total of 1,795 quantitative features were calculated from each

image tile. These types of image features include cell shape, size, texture of the cells

and nuclei, as well as the distribution of pixel intensity in the cells and nuclei.

3.3.2 Comparison methods

We compare our DeepCorrSurv with five state-of-the-art survival models and

three baselines deep survival models. Five survival methods include LASSO-Cox [12],

Parametric censored regression models with components with Weibull, Logistic dis-

tribution [38], Boosting concordance index (BoostCI) [39] and Multi-Task Learning

model for Survival Analysis (MTLSA) [40]. To demonstrate the effectiveness of the

integration in our model, We adopted structured sparse CCA-based feature selection

(SCCA) [41] to identify stronger correlation patterns from imaging genetic associa-

tions. Then we applied MTLSA using such associations for survival analysis.
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Three baseline deep survival models are listed as follows: 1) CNN-Surv: CNN

sub-network f1 followed by survival loss [35]. 2)FCN-Surv: FCN sub-network f2 fol-

lowed by survival loss. It will use molecular profiling data for prediction. It can be

also regarded as the DeepSurv [31] version on the dataset in this paper. 3)Deep-

Corr+DeepSurv: Since finding the common space by maximizing the correlation

between two views belongs to unsupervised method, it cannot ensure that the em-

bedding space is highly correlated with survival outcomes. We extract the shared

representation by Deep correlational learning and feed them to another DeepSurv

model.

Overall speaking, the DeepCorrSurv is optimized by the gradient descent fol-

lowing the chain rule, i.e., firstly compute the loss of objective, and then propagate

the loss to each layer and finally employ gradient descent to update the whole net-

work. These procedures can be automatically processed by Theano [42]. To make

fair comparisons, the architectures of different deep survival models are kept the same

with that corresponding parts in the proposed DeepCorrSurv. The source codes of

MTLSA and SCCA are downloaded from the authors’ websites. All other methods

in our comparisons were implemented in R. LASSO-Cox and EN-Cox are built using

the cocktail function from the fastcox package. The implementation of BoostCI can

be found in the supplementary materials of [39]. The parametric censored regression

are from the survival package.

3.3.3 Results and Discussion

In order to evaluate the proposed approach with other state-of-the-arts meth-

ods, we used a 5-fold cross-validation. For each of the 5 folds, models were established

using the other 4 folds as the training subset, and performance was evaluated with

the unused fold. To evaluate the performances in survival prediction, we take the
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Table 3.1: Performance comparison of the proposed methods and other existing re-
lated methods using C-index values on TCGA-LUSC and GBM

Data Model LUSC GBM

Images

LASSO-Cox [12] 0.5945 (0.1849) 0.5476 (0.0949)
BoostCI [39] 0.5769 (0.2599) 0.5235 (0.1263)
Weibull [38] 0.4988 (0.1924) 0.4885 (0.0127)
Logistic [38] 0.4498 (0.1432) 0.4865 (0.0061)
MTLSA [40] 0.6074 (0.1128) 0.6223 (0.1897)

CNN-Surv [35] 0.5540 (0.2170) 0.5053 (0.0264)

Protein/CNV

LASSO-Cox [12] 0.5005 (0.1565) 0.5779 (0.0609)
BoostCI [39] 0.4309 (0.1160) 0.4610 (0.1470)
weibull [38] 0.4334 (0.1587) 0.5131 (0.0895)
logistic [38] 0.5821 (0.1653) 0.5013 (0.1406)
MTLSA [40] 0.5911 (0.2532) 0.6150 (0.1773)

FCN-Surv [31] 0.5989 (0.1131) 0.5596 (0.0934)

Integration
SCCA [41] + MTLSA 0.5518 (0.0882) 0.5915 (0.1195)
DeepCorr+DeepSurv 0.5760 (0.1645) 0.5842 (0.0450)
DeepCorrSurv 0.6287 (0.0596) 0.6452 (0.0389)

concordance index (CI) as our evaluation metric. The C-index quantifies the ranking

quality of rankings and is calculated as follows

c =
1

n

∑
i∈{1...N |δi=1}

∑
tj>ti

I[oi > oj] (3.6)

where n is the number of comparable pairs and I[.] is the indicator function. t. is the

actual observation and o. represents the risk obtained from survival models.

Table 3.1 presents the C-index values by various survival regression methods on

two datasets. Results of using each individual view in the table present that patholog-

ical images and molecule data can provide predictive powers while the integration of

both modalities in the proposed DeepCorrSurv achieves the best performance for both

lung and brain cancer. Because the proposed DeepCorrSurv can remove view discrep-

ancy as well as learn the survival-related common representations from both views,

it obtains the highest C-index with low standard variation. When looking at deep

survival models, CNN-Surv cannot achieve good prediction using imaging data alone.
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But when integrating with information from another view, DeepCorr+DeepSurv and

the proposed DeepCorrSurv can achieve better performances than CNN-Surv using

the same imaging data. This demonstrates that the common representation by maxi-

mizing the correlation between both views can benefit the survival analysis when the

samples are not sufficient.

Another observation is DeepCorr+DeepSurv and SCCA+MTLSA cannot ob-

tain a very good estimation compared with some predictions from one view. This

demonstrates that the common representation by maximizing the correlation in an

unsupervised manner still has the risk of discarding markers that are highly associated

with survival outcomes. On the contrary, the DeepCorrSurv can consider discrimi-

nancy as well as view discrepancy which can ensure a representation that is robust

to view discrepancy and also discriminant for survival prediction.

Results on TCGA-GBM dataset suggest that most models using CNV data can

have better predictions than same models using imaging data. This observation is

different from that in LUSC cohort. This reminds us, due to the heterogeneous of

different tumor types, it is not easy to find a general model that can successfully

estimate patients’ survival outcomes across different tumor types using only one spe-

cific view. In addition, the original data in each view might contain variations or

noises which are not survival-related and might affect the estimation of survival mod-

els. The proposed DeepCorrSurv can effectively integrate with two views and thus

achieve good prediction performances across different tumor types.

3.4 Conclusion

In this paper, we proposed Deep Correlational Survival model (DeepCorrSurv)

that is able to efficiently integrate multi-modalities censored data with small samples.

One challenge is the view-discrepancy between different views in recent real cancer
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database. To eliminate the view discrepancy between imaging data and molecular

profiling data, deep correlational learning provides a good solution to maximize the

correlation of two views and find the common embedding space. However, deep

correlational learning is an unsupervised approach which cannot ensure the common

space is suitable for survival prediction. In order to find the truly deep representations

for prediction, the proposed DeepCorrSurv transfers knowledge from the embedding

space and fine-tunes the whole network using survival loss. Experiments have shown

that DeepCorrSurv can discover important markers that are ignored by correlational

learning and extract the best representation for survival prediction. The results have

shown that since DeepCorrSurv can model non-linear relationships between factors

and prognosis, it achieved quite promising performances with improvements. In the

future, we will extend the framework with other kinds of data sources.

30



CHAPTER 4

DEEP MULTI-INSTANCE SURVIVAL LEARNING FROM WHOLE SLIDE

IMAGES

Above image-based survival models rely on discriminative patch labeling, which

are both time consuming and infeasible to extend to large scale cancer datasets. The

main challenge is that the gigapixel resolution of Whole Slide Pathological Images

(WSIs) makes traditional approaches computationally impossible. Different from the

existing works on learning using key patches or clusters from WSIs, in this chapter,

we take advantage of a deep multiple instance learning to encode tissue patterns as

instances from WSIs and view the problems of tumor patient survival analysis in a

unified manner. Attention-based MIL pooling is performed to efficiently aggregate

instance-level information to patient-level representation which is more flexible and

adaptive than aggregation techniques in recent survival models.

4.1 Introduction

Recent technological innovations are enabling scientists to capture big whole

slide images (WSIs) at increasing speed and resolution for diagnosis. The learning

model is required to correctly predict the survival risk of each patient from his/her

tumor tissue pathological images. The more precise is risk assessment for a can-

cer patient, the better the patient can be treated. Compared with other modalities,

pathological images can present tumor growth and morphology in extremely detailed,

gigapixel resolution which is extremely useful for tumor prognosis [3, 4]. The high

resolution greatly benefits survival analysis with more precise information. However,
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the diagnosis is extremely laborious and highly dependent on expertise which re-

quires pathologists to carefully examine the biopsies under the microscope [43]. To

reduce the risk of misdiagnosis, pathologists have to conduct a thorough inspection

of the whole slide which make the diagnosis quite cumbersome. Automatic analysis

of histology has become one of the most rapidly expanding fields in medical imaging.

Computer aided diagnostics in digital pathology can not only alleviate pathologists’

workload, but also help to reduce the chance of diagnosis mistakes. However, using

WSIs for survival prediction is very challenging due to several reasons: 1) pathological

images in real cancer dataset might be in terabytes (1012 pixels) level which makes

most models computationally impossible. 2) the large variations of textures and bio-

logical structures from tumor heterogeneity, As the solid tumor may have a mixture

of tissue architectures and structures, multiple WSIs from different parts of the pa-

tient’s tissue are collected for diagnosis; 3) label on patient-level while each patient

might have multiple WSIs for diagnosis. Those terabyte-size large WSIs from one

patient will share the survival label which will make the problem more challenging.

4.1.1 Related Work

During recent years, many methods have been proposed for survival prediction

using pathological slides. They can be categorized as ROI-based and WSI-based

methods.

4.1.1.1 Region of Interest Analysis

Previously due to the lack of computational power, most of the literature fo-

cused on regions of interest (ROI) patches which are selected by pathologists from

WSIs [44]. Instead of handling original WSIs, state-of-the-art survival methods ex-

tracted hand-crafted features from ROIs for predictions [4, 13, 14, 5, 1, 6, 45]. Wang
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et al. [1] proposed a novel framework to first segment cells in annotated patches and

then perform cellular morphological properties from those cells which result in 166

imaging features. Yu et al. [6] extract 9,879 quantitative image features from anno-

tated regions of interest and results suggest that automatically derived image features

can predict the prognosis of lung cancer patients and thereby contribute to precision

oncology. Beyond classical cell detection, Yao et al. [5] used a deep subtype cell detec-

tion first to classify different cell subtypes and then extracted features from cellular

subtype information. Cheng et al. [45] used a deep auto-encoder to cluster cell patches

into different types and then extracted topological features to characterize cell type

distributions from ROIs for prediction. These methods extracted hand-crafted fea-

tures based on nuclei detection and segmentation and those features were considered

to represent prior knowledge of boundary, region or shape. However, hand-crafted

features are limited in representation power and capability.

Recently, with the advance of deep neural networks, deep learning-based sur-

vival models are proposed for seeking more powerful deep representation [31, 35, 26,

46]. Katzman et al. first proposed a deep fully connected network (DeepSurv) to

represent the nonlinear risk function [31]. They demonstrated that DeepSurv outper-

formed the standard linear Cox proportional hazard model. Another improvement is

deep convolutional survival learning (DeepConSurv) which is the first attempt to use

pathological images in deep survival model [35]. Later, Yao et al. [26] integrated

genome modality with DeepConSurv for survival prediction using multi-modality

data. However, DeepConSurv is designed to use pre-selected ROI patches by pathol-

ogists from WSIs and then perform CNN based on those patches. A small set of

image tiles might not completely and properly reflect the patients’ tumor morphol-

ogy. Also, those methods perform average pooling to achieve patient-wise predictions

from patch-based results. Such combination cannot effectively aggregate predictions
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from patch-level and needs further attention. Thus, it would be much helpful if we

can facilitate knowledge discovery from big whole slide images.

4.1.1.2 WSI-based Analysis

Although recent deep neural networks have achieved very promising perfor-

mances on various computer vision tasks [47, 48], they are unable to perform con-

volutional operations directly on whole slide images in gigapixel. With detailed and

densely annotations on WSIs, nowadays a series of approaches whole-slide image anal-

ysis have been proposed for a variety of applications including classification, detection

or segmentation [19, 43, 49, 50, 51]. However, the success of those applications is built

on integrating detailed patch contents and using labor-extensive annotations which

might not be applicable for survival prediction. Recent classification tasks actually

are for slide-level decision making while survival prediction is based on patient-level

analysis and one patient might have multiple whole slide images. How to make

patient-level decision from slide-level results is not the target of those studies.

To achieve weakly-supervised survival prediction without annotations, Zhu et

al. [8] proposed a patch-based two-stage framework to predict patients’ survival out-

comes. Patches are extracted from the WSIs and clustered to different patterns de-

fined as ”phenotypes” according to their visual appearances in the first stage. Then

WSISA [8] adopted DeepConvSurv [35] to select important patch clusters and aggre-

gated those clusters for final prediction. Although this framework has practical merits

to consider important patch clusters, it is hard to incorporate it into state-of-the-art

deep learning paradigm as the whole approach has separate steps. In addition, it is

not a scalable solution because the first stage will be significantly inefficient if more

patches are sampled. Moreover, it treats each cluster within a patient as independent

of each other and doesn’t consider any connections among clusters. One recent work

34



Proposed MTLSA RSF

WeibullEn-Cox Lasso-Cox Logistic

WSISA

10894

2716 days
11352

1281 days

Proposed MTLSA RSFWSISA

WeibullEn-Cox Lasso-Cox Logistic

A B

Figure 4.1: Gigapixel Whole Slide Histopathological Images of two lung cancer pa-
tients (best viewed in color). Patient B has worse clinical outcome than patient A.
Patches shown in red are from lung tumor. Patches in blue are from low-grade tumor
or non-tumor tissue regions. Discriminative patterns from both A and B are very
similar but patient A has more non-tumor or low-grade tumor regions.

CapSurv [9] is proposed by introducing Capsule network [52]. However, CapSurv

still has similar issues with WSISA as the main framework is following the WSISA

pipeline.

The relationship of tissue patterns on WSIs is the great importance on survival

analysis. Fig.4.1 shows whole slide images from two lung cancer patients. Patches

framed in red represent tumor regions and those in blue show low-grade tumor or

non-tumor regions. Patient B has much worse clinical outcome than patient A and

one distinct pattern in patient A is that the biopsy sample has more non-tumor tissue

regions. This observation reminds us that the joint effects of phenotypes could be

used to better predict patients’ survival outcomes. Li et al. [53] proposed a graph

convolutional network (GCN) based method to consider such relationship of patches

in the WSIs and then learn effective representation for survival prediction. However,

this method requires detailed graph structure knowledge to construct a complete
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graph representation for effective GCN training which is not flexible and needs prior

knowledge.

4.1.2 Contributions

Though many works can be found on WSI analysis for segmentation, classi-

fication and detection, there were limited works on weakly-supervised learning for

survival prediction. In this study, we propose a novel framework, referred to as Deep

Attention Multiple-Instance Survival Learning (DeepAttnMISL) for Whole Slide Im-

ages. By viewing the problem of survival prediction in a unified manner as a form

of the multi-instance learning, the proposed model can identify patients’ survival

outcomes from WSIs without any additional annotations. More specifically, DeepAt-

tnMISL uses the siamese MI-FCN network to learn features from different phenotype

clusters. Attention-based MIL pooling layer is added to perform a trainable weighted

aggregation and generate the patient-level representation from all instance representa-

tions. The proposed framework can effectively highlight the prognosis-related clusters

and extract image features from larger range in WSIs without small region limitations

of ROIs. The contributions can be summarized as follows

• Different from recent WSI survival models [8] that treated and trained patch

clusters independently from all patients, we formulate survival prediction in the

Multiple instance learning (MIL) which increases the flexibility of the approach

and allows to train the model by optimizing survival objective function.

• Each phenotype provides morphology-specific representation, the proposed Deep-

AttnMISL aggregates them using a trainable weighted average where weights

can be fully parameterized by neural networks that corresponds to the atten-

tion mechanism which is much flexible than fixed pooling operators in recent

work [8, 9].
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• With the advantage of MIL and attention mechanism, the proposed has a good

interpretability to find important patterns of patients are more likely to achieve

better patient-level predictions.

To evaluate the performance of the proposed DeepAttnMISL model, one large WSI

datasets on lung cancer is used and extensive experimental results verify the effec-

tiveness —our method can efficiently exploit and utilize all discriminative patterns

in whole slide pathological images to perform accurate patients’ survival predictions.

Additionally, we present results representing a patient’s treatment group to illustrate

how to view the proposed model as a treatment recommender system. Results validate

that the proposed model can accurately model the risk functions of the population

and thus guide treatment decisions for improving patient lifespan.

4.2 Methodolodgy

Given a set of N patients, {Xi}, i = 1 . . . N , each patient has the label (ti, δi)

indicating the survival status. The observation time ti is either a survival time (Oi)

or a censored time (Ci) for each data instance. If and only if ti = min(Oi, Ci) can

be observed during the study, the dataset is said to be right-censored [54]. δi is the

indicator which is 1 for an uncensored instance (death occurs during the study) and

0 for a censored instance. Survival model predicts a value of a target variable y for

a given patient where Y measures the hazard risk. As we discussed above, patient

Xi will have multiple WSIs and our goal is to predict the corresponding target Yi

from those imaging data. As we don’t have WSI-level annotations but only know

patient-level information, this weakly-supervised learning can be solved by Multiple

Instance Learning (MIL).

37



4.2.1 Multi-Instance Learning

In contrast to the standard supervised learning, multi-instance learning (MIL)

considers a set of bags, each containing multiple feature vectors referred to as in-

stances. The available label is only assigned to bag-level and labels of individual

instances in the bag are not known. In MIL, not all the instances are necessarily

relevant and some of them in the bag might not be relevant to certain labels. In

the case of MIL problem, patient X is a bag of instances, X = {x1, ..., xK} and K

could vary for different bags. Furthermore, we assume that individual labels exist for

the instances within a bag, i.e., y1, ..., yK but those labels remain unknown during

training. One very important assumption is that neither ordering nor dependency of

instances within a bag and a MIL model must be permutation-invariant.

Based on the nature of MIL, it seems to perfectly fit medical imaging where

medical domain often encounters annotations problem as labeling is much more ex-

pensive and requires long-time expertise training than that in the computer vision

field. Dividing a medical image into smaller patches could be further considered as

a bag with a single label. Recently, researchers have developed many MIL-based

algorithms to medical images for segmentation [55], classification [56, 57] and gene

annotation [58]. Hou et al. [56] proposed a MIL approach to train CNN to iden-

tify gigapixel resolution pathology images. It is the first work to use MIL method

for WSIs classification. A more recent work [57] investigated a multi-instance based

model on a multiple label classification task. However, survival prediction is more

challenging than the segmentation or classification problem because it is a regression

problem where the ranking of patients’ prediction values matters [59] while in the tu-

mor classification task, the prediction result of one patient’s category is independent

with others. More importantly, since the individual labels for instances are unknown,

there is a threat that the instance-level classifier might be trained insufficient. Because
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these methods aggregated instance-level to bag-level results by pre-defined pooling

(e.g. max-pooling), it might introduce additional error to the final prediction which

will be inappropriate for a more challenging task.

4.2.2 DeepAttnMISL
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Figure 4.2: An overview of the proposed DeepAttnMISL model.

Fig.4.2 shows the overview of the proposed Deep Attention Multiple Instance

Survival Learning (DeepAttnMISL) framework. Each patient Xi may contain mul-

tiple whole slides. To construct the bag in MIL, we choose phenotypes instead of

sampling patches as instances within the bag because it will considerably reduce the

complexity of the problem as there are a large number of heterogeneous patches.

Phenotype patterns have been verified in state-of-the-art methods [8, 9] and are ca-

pable of representing different patterns in WSIs. By using phenotype patterns which

are constructed by clustering, we can build the model for different types of tissue

to extract morphology-specific features. To learn patient-level information from phe-

notype clusters, we design a multiple Multi-Instance Fully Convolutional Network

(MI-FCN) running inside our deep learning architecture with weights being shared

among them as in the Siamese architecture. To detect important phenotypes asso-
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ciated with patients’ clinical outcomes, attention-based MIL pooling layer is used to

aggregate phenotype-level representation. The output is the hazard risk to represent

how well for the patient behaves in the population of certain type of diseases.

4.2.2.1 Sampling and Clustering

At the first step, we extract patches from all WSIs which belong to the same

patient and then cluster them into different phenotypes. To capture detailed infor-

mation of the images, those patches are extracted from 20X (0.5 microns per pixel)

objective magnifications and then fixed to 500× 500× 3 size. We use the pre-trained

VGG model from ImageNet [60] to extract features for each image patch (d = 4096)

which have more representation power than smaller size (50 × 50) thumbnail images

to represent their phenotypes [8]. Then we adopt K-means to cluster patches based

on their VGG features. Notice that one patient might have multiple WSIs and we

actually perform clustering on patient-level instead of the whole database. Fig.4.3

shows one patient’s example. This patient has three WSIs that were sampled from

different locations of the biopsy tissue. The corresponding phenotype clustering are

shown in the right and each color means one type of phenotype clusters. In this ex-

ample, we set the number of phenotypes C to 10. The results show the effectiveness

of the clustering as we can see similar patches are grouped into the same cluster. This

example demonstrates that VGG features are capable of identifying patterns of whole

slide images and we would expect them to be distinctive and informative for survival

learning task.

By clustering different patches from all WSIs of the patient into several dis-

tinguished phenotype groups, we will have different phenotype groups with various

prediction power on this patients clinical outcome. The proposed DeepAttnMISL
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takes phenotypes as multiple inputs and consider their connections for predicting

survival status.

Patient

Figure 4.3: Phenotype patterns visualization after clustering on three WSIs belong
to the same patient.

4.2.2.2 Siamese MI-FCN

After clustering, the patient is a set of phenotype clusters and we design a

siamese MI-FCN to learn features from those patterns. Most existing well-known

pre-trained models were trained based on single-instance bases, and the labels are

associated with each image which is not the case of our problem. We embed multiple

sub-networks running inside our deep learning architecture with weights being shared

among them as in the Siamese architecture. Each sub-network is based on fully

convolutional neural networks (FCN) that can learn informative representation for

individual phenotype of the patient.
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The architecture of each Multi-Instance Fully Convolutional Networks (MI-

FCN) is shown in Fig.4.4. The combination of multiple layers of fully convolutional

layers and non-linear activation functions has proven to be a powerful non-linear

feature mapping in Multi-Instance problem [61]. The reason to use the fully convo-

lutional networks (FCN) without including any fully connected layers is that FCN

is more flexible and can handle any spatial resolution, which is needed for the con-

sidered problem since the number of patch samples in each phenotype varies. For

each phenotype, the input is a set of features from mi patches, can be organized as

1 ×mi × d (d is the feature dimension or channel). The network consists of several

layer-pairs of 1 × 1 conv layer and ReLU layer (we show 2 pairs in Fig.4.4). The

global pooling layer (e.g. average pooling) will be added at the end. For j-th pheno-

type, its representation is denoted as rj. The network receives one kind of phenotypes

(tensor) as input and it can focus on local information and generate representation

for the phenotype. Since the number of patches in each phenotype varies, the fully

convolutional network is more flexible to handle this scenario.
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Figure 4.4: The network architecture in each MI-FCN.
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4.2.2.3 Aggregation via Attention-based MIL pooling layer

Local representations from MI-FCN encode information of the corresponding

phenotype clusters and how to aggregate them into patient-level representation is

one necessary step. Let R = {r1, r2, ..., rC} be one patient with C phenotype lo-

cal representations and the goal is to get patient-level representation z. The very

straightforward choice is to use maximum or the mean operator, but drawbacks are

very clear that they are pre-defined and non-trainable which might not be flexible

and adjustable to the specific task. Previous work [8] used weighted average of fea-

tures from clusters to get the patient feature but they performed such patient-level

aggregation in a separate stage and the whole approach cannot be trained end-to-end

from patient-level to instances-level. A better way to integrate phenotype-level infor-

mation is to leverage an attention mechanism that considers the importance of each

phenotype. In this paper, we propose to use the attention-based MIL pooling [62]

for aggregation which is flexible and adaptive. By using such pooling operator, the

patient-level representation can be calculated as

z =
C∑
k=1

akrk, (4.1)

where

ak =
exp{w> tanh(Vh>k )}∑K
j=1 exp{w> tanh(Vh>j )}

. (4.2)

In the weight ak calculation, w ∈ RL×1 and V ∈ RL×M are trainable parameters. Tan-

gent tanh(.) element-wise non-linearity is introduced both negative and positive values

for proper gradient flow. The attention-based MIL pooling allows to assign different

weights to phenotype clusters within one patient and hence the final patient-level

representation could be highly informative for survival prediction. In other words,

it should be able to locate key clusters and provide potential ROIs. Different from
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traditional attention mechanism that all instances are sequentially dependent [63, 64],

Multi-instance learning assumes all instances are independent. As phenotype in our

problem is more natural to be independent to each other, attention mechanism used

in MIL pooling will be beneficial to achieve good results.

4.2.2.4 Loss Function

We use the same negative log partial likelihood described in the previous chapter

as the loss function in our model as shown in below

L(oi) =
∑
i

δi(−oi + log
∑

j:tj>=ti

exp(oj)). (4.3)

where j is from the set whose survival time is equal or larger than ti (tj ≥ ti). In a

simplified view, the loss function contributes to overall concordance by penalizing any

discordance in any values of higher risk patients if they are greater than lower those

of lower risk. Different with other deep models used the same loss function [31, 35, 8],

the proposed model can better fit realistic patients’ whole slide imaging data and learn

complex interactions using deep multi-instance representation that cover both holistic

and local information. Since patient’s risk is correlated with phenotypes from WSIs,

the proposed framework can efficiently exploit phenotypes by deep multi-instance

learning and attention mechanism for clinical outcome prediction at patient-level.

4.2.3 Discussion

There are several differences from the state-of-the-art method survival method

using WSIs [8, 9]. First, clustering is performed on patient-wise while those ap-

proaches need to cluster on all patches from patients of the database. It is obvious

that clustering patches within each patient will be more scalable as the number of
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Figure 4.5: Visualization of selected patches and clusters from the proposed method
and WSISA.

patients is much less than the number of patches. Because WSISA [8] needs indepen-

dent DeepConvSurv to select important clusters and it has to divide the whole dataset

into different types by clustering on all patches. With the advantage of MIL and at-

tention mechanism, the proposed DeepAttnMISL can easily find important instances

(clusters) within the bag are more likely to achieve better patient-level predictions.

There is no need to perform clustering on the whole dataset. A trainable and adaptive

attention-based MIL pooling in DeepAttnMISL can adjust to a task and data which

could help succeed in calculating the better bag representation. Fig.4.5 shows one

illustration example. This patient has three WSIs with two have clear tumor tissues.

Black points on images record sampling positions. We present selected patches after

WSISA and the proposed DeepAttnWISL in the right. The colors represent which

clusters those patches belong to. Because clustering in WSISA is performed on the

whole dataset, results will be easily biased by the heterogeneity of the dataset and

the robustness of clustering algorithm. Results suggest selected patches from WSISA

contain many non-tumor regions while the proposed DeepAttnMISL can better fo-
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cus on tumor regions with attention mechanism which present better interpretability.

More experimental results can be found in the next section.

4.3 Experiments

In this section, we will first describe data we use and then present performances

of the proposed method on each dataset.

4.3.1 Dataset Description

To validate the performance of the proposed DeepAttnMISL, we use the very

large dataset on lung cancer with high-resolution WSIs - the National Lung Screen-

ing Trial (NLST) [65]. NLST is a very large lung cancer dataset collected by the

National Cancer Institute’s Division of Cancer Prevention (DCP) and Division of

Cancer Treatment and Diagnosis (DCTD). Clinical and pathological data were col-

lected on all those cases, including 5-year follow-up data. In one whole slide image,

usually about 50% of areas are background and it is easy to select regions to contain

tissues rather than background or irregular regions according to pixel values. We ex-

tract patches from 20X objective magnifications and then fixed the size to 500× 500.

Even we only extract tissue patches and ignore background regions, it can still get

tens of thousands of patches per WSI which will result in a huge number of images

from the whole dataset. State-of-the-art WSI models [8, 9] need to control the scale

of data as they will have significant computational issues on the very large number of

patches. They sampled hundreds patches per WSI and collected around 20K-200K

patches in total. One advantage of the proposed model is it has less computation is-

sues because it uses MIL with attention to aggregate features from pre-trained models

instead of training patch-based CNNs which is very time costly [66].In summary, the

numbers of WSIs and patients in each dataset are shown in Table.4.1.
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Table 4.1: The numbers of WSIs, patients, patches extracted.

Dataset #patients #WSIs #patches #patches/WSI
NLST 387 1,177 275,244 233

4.3.2 Implementation details

For training, we use Adam optimization with weight decay 5 × 10−4. The

learning rate is set to 10−4 and the training monitors the loss on validation dataset

and it will early stop if the loss goes increased much. To select parameters of our

model, we split the data into 80% training and 20% testing. 25% of training data will

be used as validation data for achieving early stop training. Then we conducted 5-

Fold cross-validation and report the average value on testing folds for more extensive

evaluations.

To evaluate the performances in survival prediction, we take the concordance

index (C-index) and area under curve (AUC) as our evaluation metrics [24]. The

C-index quantifies the ranking quality of rankings and is calculated as follows

c =
1

n

∑
i∈{1...N |δi=1}

∑
tj>ti

I[fi > fj] (4.4)

where n is the number of comparable pairs and I[.] is the indicator function. t. is

the actual time observation. f. denotes the corresponding risk. The value of C-index

ranges from 0 to 1. The larger the value is, the better the model predicts.

4.3.3 Results

To compare with state-of-the-art image-based survival models, we make exten-

sive experiments on NLST dataset as we have annotations that locate the tumor

regions in whole slide images (WSIs) with the help of pathologists. Following the re-

cent framework [6], we calculated hand-crafted features using CellProfiler [37] which

serves as a state-of-the-art medical image feature extracting and quantitative analysis
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tool. A total of 1,795 quantitative features were obtained from each image tile. Then

we averaged those features across different patches for each patient. These types of

image features include cell shape, size, texture of the cells and nuclei, as well as the

distribution of pixel intensity in the cells and nuclei.

We compare our framework with several state-of-the-art survival models using

pathological images. We can summarize the comparison methods into five categories

as follows:

• Cox models: The Cox proportional hazards model is the most commonly used

semi-parametric model in survival analysis. Two regularized Cox models l1-

norm (LASSO-Cox) [12] and boosting cox model (Cox-boost) [22] are compared

in experiments.

• Parametric censored regression models: PCR models formulates the joint

probability of the uncensored and censored instances as a product of death

density function and survival functions, respectively [67]. We choose Weibull,

Logistic distribution to approximate the survival data.

• MTLSA: Multi-Task Learning model for Survival Analysis (MTLSA) [40] re-

formulates the survival model into a multi-task learning problem.

• WSISA: WSISA can learn effective features from WSIs [8]. We then train

LassoCox and MTLSA using WSISA learned features as they are top models

based on their report.

4.3.3.1 Quantitative Results

We reported results from a few possible numbers of phenotypes, such as {6, 8, 10, 12}

on the testing dataset. From the Table 4.2, we can see models using fewer clusters

are unable to achieve good results. The reason might be patches of lung cancer

patients are very heterogeneous and it is relative difficult to learn survival-related
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representations from fewer phenotypes. Results suggest the number of 10 achieves

slightly better predictions which is consistent with findings in WSISA [8]. Thus, we

decide to choose to cluster 10 phenotypes in our model. In each MI-FCN, we use one

convolutional-ReLU layer pair with Global Average Pooling.

Table 4.2: Performances with different number of phenotypes.

No. 6 8 10 12
CI 0.6734 0.7691 0.7748 0.7417

Table 4.3 shows C-index and AUC values by various survival regression meth-

ods on 5-fold cross validation. It shows the prediction power of the proposed method

compared with different survival models. One can see that the proposed method

achieves both highest C-index and AUC values which present the best prediction

performance among all methods. From the table, baseline models using hand-crafted

features perform not well due to following reasons: 1) the limitation of local informa-

tion provided by the patches extracted from the ROI using hand-crafted features; 2)

the non-effective aggregation way to represent the heterogeneity of tumor and patient

from patch-based results. Instead of using a small set of patches and human-designed

features, the proposed method can effectively learn complex deep bag representation

from phenotype patterns to predict patient survival outcomes.

WSISA [8] is the most representative WSI-based survival learning but it only

extracts features from WSIs and needs a separate survival learning to get final pre-

dictions. We choose top survival models according to settings in WSISA [8], they are

Lasso-Cox [12] and MTLSA [40]. WSISA achieves better results than baseline mod-

els which shows the good representative ability of features from WSISA. However,

WSISA needs a separate stage to train several DeepConvSurv models independently
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Table 4.3: Performance comparison of the proposed methods and other existing re-
lated methods using C-index values on NLST dataset. The larger C-index value is
better.

Type method C-index AUC

Deep Learning
DeepAttnMISL 0.6829 (0.0385) 0.7143 (0.0541)
WSISA-LassoCox 0.5996 (0.0750) 0.5957 (0.0674)
WSISA-MTLSA 0.6305 (0.0575) 0.6479 (0.0936)

Cox-based
Lasso-Cox 0.4842 (0.0508) 0.4903 (0.1011)
Cox-boost 0.5474 (0.0370) 0.5271 (0.0386)

Parametric models
Logistic 0.4998 (0.0881) 0.5013 (0.1146)
Weibull 0.5577 (0.0395) 0.5618 (0.0976)

Multi-task based MTLSA 0.5053 (0.0509) 0.5362 (0.0416)
Ranking based BoostCI 0.5595 (0.0610) 0.5487 (0.0532)

and will discard some phenotypes in the final stage, the performance actually de-

pends on how well to select important clusters and WSISA still has the chance to

lose in selecting survival-related clusters for a good final survival prediction. In-

stead of selecting phenotypes, the proposed model is designed to consider all possible

survival-related patterns and uses more flexible attention mechanism to learn more

informative and discriminate patterns. This architecture of multiple instance makes

the proposed method can better learn heterogeneous information encoded in WSIs

from large number of patches which will make it more practical in real applications.

4.3.3.2 Personalized Recommendations

Given the trained survival models, we can use the estimated testing risk scores to

classify patients into low or high-risk group for personalized treatments. Two groups

are classified by the median of predicted risk scores. We evaluate if those models can

correctly classify death patients (uncensored data) into two groups since uncensored

data is more informative. Patients with longer survival time should be classified into

low risk group and vice versa. If the model cannot correctly distinguish high and low
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DeepAttnMISL WSISA-MTLSA WSISA-LassoCox

LassoCox CoxBoost

BoostCI

MTLSA

WebuillLogistic

Figure 4.6: Kaplan-Meier survival curves of different models for one testing fold. High
risk (great than median) groups are plotted as green lines, and low risk (less than or
equal to median) groups are plotted as red lines. The x axis shows the time in days
and y axis presents the probability of overall survival. Log rank p value is shown on
each figure. ”+” means the censored patient.

risk death patients, two average death times should be very close. We plot Kaplan-

Meier survival curves in Fig.4.6. From the figure, one can see that the proposed model

can more successfully group testing death patients into two groups than other meth-

ods in all datasets. The log rank test is conducted to test the difference of two curves.
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It is shown that the proposed method can achieve the most significant log rank test

outcome (p-value = 4.527e−3) while some of others do not reach statistical signif-

icances. Kaplan-Meier curves suggest that the proposed comprehensive prediction

model can offer personalized risk scores which can better group individuals into two

groups. The proposed model has a significant impact on population survival times.

It can be used as a recommendation system for offering personalized treatments by

determining the relationship between a patient’s whole slide pathological images and

his or her risk of an event (death).

4.3.3.3 High-risk Regions Localization

The most important advantage of DeepAttnMISL is its good interpretability

and we create a heatmap by showing the corresponding attention weight of each

phenotype cluster. Red color indicates the highest attention weight while blue means

the lowest values. From the obtained heatmap, we can see the proposed approach

can identify higher risk regions properly because most of patches with high attention

weights are from tumor regions. When we look at selected patches from WSISA, we

can observe that many patches from non-tumor regions are also selected. That is

because WSISA selects clusters based on patches from the whole database and thus

it cannot guarantee reliable selection on the specific patient due to the heterogeneity

across patients.

We pick one patient as the example to show visualization results. Fig.4.7

presents this patient’s all WSIs and the corresponding tumor region annotations. We

present the usefulness of the attention mechanism of the proposed model in providing

high-risk regions compare with WSISA. Fig.4.8-4.9 shows results WSIs of the same

patient. This patient has three whole slide images and two of them have clear tumor

regions. Fig.4.8 shows results from the proposed model. The first row shows heatmaps
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Heatmap

Phenotype patterns

Phenotype patterns

Selected patterns

Figure 4.7: WSI Annotations of one example patient.

and the second row shows phenotype pattern distributions on original WSIs. The bot-

tom presents randomly selected patches with higher attention weights ( patches with

red colors in heatmaps). We can see interested patches are all from tumor regions

of WSIs. The comparison visualization from WSISA can be seen in Fig.4.9. Patches

from cancerous regions can be grouped in similar clusters but not all of them will

be selected as the selection is performed via DeepConvSurv on all patches of the

database. Selected phenotypes are more likely discriminated for the whole database

with all patients and they are not well interpreted for the specific patient.

Fig.4.10 shows annother whole slide image and the first row presents results

from the proposed model. Fig.4.10-(a) visualizes phenotype patterns after clustering

on original WSI. Each color represents one type of phenotypes. We plot the cor-

responding heatmap in (b) and red color means the highest attention weight. The

second row shows results from WSISA and Fig.4.10-(d) shows selected pattern af-

ter WSISA. It is clear to see that the proposed model can localize tumor regions

correctly especially more sampling patches in this case are normal tissues. WSISA

cannot properly identifies patches from tumor and normal region. It will treat tumor

and normal region patches equally for prediction while our model can assign different

weights on them, in which will result in better prediction.
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Heatmap

Phenotype patterns

Phenotype patterns

Selected patterns

Figure 4.8: Phenotype patterns distribution and the corresponding heatmaps from
the proposed model on three WSIs of the same patient. The bottom shows patches
from phenotypes with high attention values.

Heatmap

Phenotype patterns

Phenotype patterns

Selected patterns

Figure 4.9: Phenotype patterns distribution and selected patterns from WSISA. Miss-
ing tumor patches can be observed from selected patterns.
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(a) (b)

(c) (d)

Figure 4.10: (a) Phenotype patterns distribution from our model; (b) Generated
heatmap; (c) Phenotype patterns distribution from WSISA; (d) Selected patches
from WSISA.

4.4 Conclusion

In this paper, we proposed a deep multi-instance model to directly learn sur-

vival patterns from gigapixel images without annotations which make it more easily

applicable in large scale cancer dataset. Compared to existing image-based survival

models, the developed framework can handle various numbers and sizes whole slide

images among different patients. It can learn holistic information of the patient us-

ing bag representations and achieve much better performance compared to the ROI

patch based methods. Moreover, the flexible and interpretable attention-based MIL

pooling can overcome drawbacks from fixed aggregation techniques in state-of-the-art

survival learning models. We showed that our approach provides an interpretation of

the clinical outcome prediction by presenting reasonable ROIs which is very impor-

tant in such practical application. Additionally, We illustrated the proposed method

can provide personalized treatment for patients and can be used by doctors to guide
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their treatment decisions for improving patient lifespan. With future research and

development, the proposed approach has the potential to be applied in other tumor

types.

56



CHAPTER 5

AN EFFICIENT ALGORITHM FOR DYNAMIC MRI RECONSTRUCTION

Compared with pathological images, computed tomography (CT) and MRI

scans have excellent availability for organs or tumors surveillance. Dynamic mag-

netic resonance imaging (dMRI) is an important medical imaging technique that has

been widely used for multiple clinical applications. However, dynamic MRI is in-

herently a very slow process due to a combination of different constraints such as

nuclear relaxation times and peripheral nerve stimulation. Before using dMRI for

clinical applications, a good reconstruction is necessary. In this chapter, we study

the problem of dynamic MRI reconstruction. We propose an efficient algorithm for

dynamic magnetic resonance (MR) image reconstruction. In comparison with state-

of-the-art methods, extensive experiments on single-coil and multi-coil dynamic MR

data demonstrate the superior performance of the proposed method in terms of both

reconstruction accuracy and time complexity [68, 69].

5.1 Introduction

Since the speed of acquisition in dynamic MRI has physical limits, there exists

a trade-off between temporal and spatial resolution. Long scan durations can make

patient uncomfortable and also increase the chance of motion artifacts. Hence, many

approaches have been proposed to reduce scanning time by requiring partial k-space

data for reconstruction instead of full sampling. Popular techniques are echo planar

imaging [70] and parallel MR imaging [71, 72, 73, 74, 75] with multiple receiver coils.
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In general, when k-space is under-sampled, the Nyquist criterion is violated

and the inverse Fourier transform will exhibit aliasing artifacts. Fortunately, it has

recently received interest due to the development of Compressive Sensing (CS) the-

ory [76, 77]. CS studies the topic of signal reconstruction from incomplete measure-

ments using the fact that the signal of interest is sparse in its original representation

or another domain after applying certain transformations. By incorporating prior in-

formation, researchers have proposed different transformations to represent the MR

signal [78, 79, 80, 81, 82]. For example, it is possible to reconstruct high quality

MR images with the sparsity-induced regularization such as Wavelets [80] or Total

Variation [81, 82].

CS-MRI reconstructions typically suffer from artifacts at high undersampling

factors with fixed, non-adaptive signal models like wavelets [83]. Therefore, there has

been interest in image reconstruction methods where the dictionary is adapted to

provide highly sparse representation of data. Recent research has shown benefits for

such adaptation of dictionaries in dynamic MRI [83, 84, 85, 86, 87]. These models

jointly estimate the image and dictionary for the image patches from under-sampled k-

space data. They assume that unknown image patches can be well approximated by a

sparse linear combination of the atoms of a learned dictionary. Although these models

improve image reconstructions with dictionaries, they are harder than conventional

compressed sensing dynamic MRI approaches which take much more time to process.

For example, DLTG [87] usually takes much time to process one real dynamic MRI

images.

Various alternative models have been explored for dynamic data in recent years.

They used one important property that dynamic MRI provides redundant temporal

information because it records motions of organ(s). Since the changes of the same or-

gan(s) are subtly slow, dynamic MR frames actually are temporally correlated through
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the whole image sequence. Such high correlation in the temporal domain becomes one

piece of important prior knowledge for guiding dynamic MRI reconstruction. To use

such correlation, Chen et al. [88] applied a sparsity constraint in the temporal domain

and proposed Dynamic Total Variation (DTV). Several work have demonstrated the

efficacy of low-rank models for dynamic MRI reconstruction [89, 90, 91]. There has

been growing interest in decomposing the data into the sum of a low-rank (L) and

a sparse (S) component (L+S) [92, 93, 94, 95]. Some other related work consider

modeling the dynamic image sequence as both low-rank and sparse (L&S) [96]. In

dynamic MRI, since these methods collect the data from all frames in the reconstruc-

tion, they can exploit the redundancies of the whole dataset and reconstruct accurate

results. However, when the acquired data are contaminated with noise, the sparse

prior cannot exploit the local spatial consistency of dynamic MR images and thus

make them sensitive to noise and unable to recover clean images.

The limitation of the low-rank regularization in dynamic MR image reconstruc-

tion could be remedied by incorporating the piecewise smoothness which can enforce

the local spatial consistency during the optimization. One possible choice is total

variation (TV) [97] which has been widely used in CS-MRI as the piecewise smooth-

ness constraint of MR images [98, 81] and Dynamic MRI [99, 100]. The joint TV/NN

minimization problem may be efficiently solved by popular optimization techniques

known as the Fast Composite Splitting Algorithm (FCSA) [81] and Alternating Di-

rection Method of Multipliers (ADMM) [101]. FCSA has been successfully applied in

CS-MRI applications, e.g., multi-contrast MRI [102], CS-MRI with tree sparsity [103].

ADMM has been applied for dynamic MRI in k-t SLR [99]. Although the idea of

combining low-rank and total variation in a unified framework is intuitive and has

been explored in the literature [104, 99], the problem is very difficult to solve be-

cause of the non-separability and non-smoothness of the TV and NN term and there
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still lack of efficient algorithms to provide theoretical guarantee for dynamic MRI

reconstruction.

In this chapter, we propose a Fast algorithm for Total Variation and Nuclear

Norm Regularization for dynamic MRI reconstruction (FTVNNR). In our TVNNR

model, nuclear norm (NN) exploits the low-rank property of dynamic MR images,

while total variation encourages each MR frame’s intensities to be locally consistent,

which can enforce the piecewise smoothness constraint and make reconstruction more

robust to noise. The intuition of combining both TV and NN terms is simple, but

the joint TV/NN minimization problem is actually difficult to solve because of the

non-separability and non-smoothness of the two terms. A fast algorithm (FTVNNR)

is then proposed to efficiently solve this problem. It can obtain a O(1/N) convergence

rate for N iterations. Our approach 1) exploits redundancies in both temporal and

spatial domains, 2) has an explicit solution in each step which can be solved inexpen-

sively, and 3) has a theoretically proved convergence rate. Extensive experiments on

dynamic MR data demonstrate its superior performance over all previous methods in

terms of both reconstruction accuracy and computational complexity.

The rest of this chapter is organized as follows. In Section II, we will give a

brief review of the widely used dMRI reconstruction models. The motivation of this

work and details can be found in Section III. Experiments on dynamic MR images of

both single-coil and parallel imaging can be found in Section IV.

5.2 Related Work

5.2.1 Compressed Sensing Dynamic MRI Reconstruction Approaches

In this section, we describe how recent methods reconstruct dMRI images from

a minimum number of samples. At first, we denote one image at time t as xt ∈ Cm×n
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and X = [x1, x2, ..., xT ] denotes the whole T images. The acquisition domain for MR

data is k-space, which is equivalent to the Fourier domain. The dMRI sequence in

image space xt is related to the k-space data by x̂f = Fxt + ε, where F performs

a 2D Discrete Fourier Transform (DFT) on each temporal frame and ε ∈ Cm×n is

additive white Gaussian acquisition noise. The only data available for reconstruction

is under-sampled k-space data, which is a subset Ω of k-space, refereed to bt = Rtx̂f .

Rt denotes the undersampling operator to acquire only a subset of k-space, which

contains the rows from the identity matrix that corresponds to the samples of x̂f that

are in Ω. Since this problem is ill-posed and requires regularization, many CS-based

methods were proposed to exploit the temporal correlation in dMRI reconstruction.

It can be formulated as:

min Φ(X) s.t.
T∑
t=1

||RtFxt − bt||22 ≤ ε (5.1)

where Φ denotes the regularization term. Based on Φ, here we review some of the

widely used approaches.

Temporal Fourier transform. Temporal Fourier transform is proposed to spar-

sify periodic motions [79]. That is Φ(X) = ||FtX||1, where Ft denotes the Fourier

transform along the temporal direction, || · ||1 denotes the vector `1 norm. This

technique was used in many later works, e.g. [105][106].

Temporal total variation. It assumes that the images change smoothly along the

temporal direction [107]. Therefore the gradient along the temporal direction should

be small: Φ(X) = ||∇tX||1. In order to achieve the online scheme, Chen et al. [88]

extended the temporal TV to dynamic TV by using a reference image x1 (e.g. the

first frame): Φ(xt) = ||xt − x1||TV .
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Low rank approximation. Recently, researchers observed that the matrix X may

be usually rank deficient due to the high correlation among different frames. Based

on low rank assumption, some methods are proposed in dynamic MRI [91, 99, 100,

93, 92]. To achieve the rank deficient solution, the non-convex Schatten p-norm is

used in k-t SLR [99] and locally low rank method [100]. Another type of work [93, 92]

focused on the nuclear norm as the convex envelope of rank operator. In this case,

Φ(X) can be defined as ||X||∗ where || · ||∗ denotes the nuclear norm and means the

sum of singular value of X.

5.3 Method

5.3.1 Framework

Following the previous notations, we have the undersampling k-space data at

time t as

bt = RtFxt + εt, (5.2)

where bt is the measurement vector which may contain noise (εt represents noise in

k-space).

With prior knowledge in the temporal and spatial domains, it is possible to

reconstruct xt with fewer k-space measurements bt. Based on a batch scheme, X =

[Vec(x1),Vec(x2), ...,Vec(xt)] ∈ CP×T denotes the whole dynamic MR images. Since

dynamic MRI data are complex-valued and we first give the definition of matrix inner

product on complex space as < A,B >= tr(AHB) where AH denotes the Hermitian

transpose of A. The Frobenius norm now is defined as ‖A‖F =
√
tr(AHA) and thus

‖A‖2F = tr(AHA).

The proposed TVNNR model for dMRI reconstruction is defined as follows

min
X

1

2
‖RFX−B‖2F + λ1‖X‖TV + λ2‖X‖∗. (5.3)
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where ‖.‖∗ is the nuclear norm—the sum of singular values of the matrix X. ‖.‖TV de-

notes the anisotropic total variation of the matrix X. It is defined as
∑T

t=1

∑
ij(|∇1xi,j,t|+

|∇2xi,j,t|) where ∇1 and ∇2 denote the forward finite difference operators on the first

and second coordinates, respectively. If we define ∇ = [∇1,∇2], ‖X‖TV can be

simplified as ‖∇X‖1. B = [b1, b2, ..., bT ]T , which represents the collection of all the

measurements. In (5.3), the Nuclear Norm regularization considers the global infor-

mation of the sequence, while Total Variation minimization encourages each frame

to be locally consistent. The proposed TVNNR model (5.3) combines both types

of prior information by exploiting spatial and temporal redundancy to achieve more

robust performance.

5.3.2 Optimization

Instead of directly solving the primal problem, we propose to solve a primal-dual

form [108, 109] of the original problem (5.3). Motivated by recent algorithms [110, 111]

to solve TV regularization using its dual form, we can have the primal-dual form of

the primal problem (5.3) by the Legendre-Fenchel transformation of total variation

[112, Example.3.26, p. 93] as

min
X

max
Y

1

2
‖RFX−B‖2F + λ2‖X‖∗ + λ1<{〈∇X,Y〉} − IB∞(Y), (5.4)

where Y is the dual variable and IB∞(Y) is the indicator function of the `∞ unit

norm ball

IB∞(Y) =

 0 ‖Y‖∞ ≤ 1,

+∞ otherwise.
(5.5)

First, we denote RF as A. Then we can get

min
X

max
Y

1

2
‖AX−B‖2F + λ2‖X‖∗ + λ1<{〈∇X,Y〉} − IB∞(Y), (5.6)

63



The min-max problem (5.6) can be solved by a splitting scheme [109] as

Xn+1 = arg min
X

1

2
‖X−Xn‖2F +

t1
2
‖AX−B‖2F + t1λ1<{〈∇X,Yn〉}+ t1λ2‖X‖∗

(5.7)

Yn+1 = arg min
Y

1

2
‖Y −Yn‖2F + IB∞(Y)− t2λ1<{〈∇(2Xn+1 −Xn),Y〉},

(5.8)

where Xn,Yn are the primal and dual variables in the n-th iteration, respectively,

and t1, t2 denote the corresponding iteration step sizes.

To simplify (5.7), one widely used technique in many similar methods is to

approximate the least squares term [113, 114]. Let f(X) = 1
2
‖AX − B‖2F . One can

easily verify that ∇f(X) = AH(AX−B) where AH is the adjoint operator of A. The

(smallest) Lipschitz constant L is given by L = λmax(AHA) where λmax(.) denotes

the largest eigenvalue of a linear operator [114].

Following the similar relaxation [114], we can relax (5.7) to

Xn+1 = arg min
X

1

2
‖X−Xn‖2F +

t1
2
‖AXn −B‖2F + t1λ1<{〈∇X,Yn〉}

+
t1L

2
‖X−Xn‖2F + t1λ2‖X‖∗ + t1<{〈AH(AXn −B),X−Xn〉}, (5.9)

Omitting the constant term t1
2
‖AXn−B‖2F and combining least square terms, it can

become

Xn+1 = arg min
X

1

2
‖X− (Xn − t1

1 + t1L
AH(AXn −B))‖2F

+
t1λ1

1 + t1L
<{〈∇X,Yn〉}+

t1λ2
1 + t1L

‖X‖∗. (5.10)

So far, the closed-form solution of (5.10) is still unclear. To continue simplifying

the problem, we introduce the adjoint operator of the difference operator. By refor-

mulating the inner product term to its adjoint one, we can convert the problem into a
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nuclear norm regularized de-noising problem. First, we revisit the forward difference

operator denoted by ∇X. It is written as

∇X = (P,Q),

where P ∈ C(m−1)×n and Q ∈ Cn×(m−1) are the matrix defined by

Pi,j = xi,j − xi+1,j,

Qi,j = xi,j − xi,j+1.

Thus the dual variable Y is constructed by the matrix pair (P,Q). By definition, the

adjoint operator of ∇ denoted by ∇H satisfies

〈∇X,Y〉 = 〈X,∇HY〉,

where

(∇HY)i,j = (∇H(P,Q))i,j = Pi,j +Qi,j − Pi−1,j −Qi,j−1. (5.11)

Following (5.11), we could simplify problem (5.10) to the de-noising problem:

Xn+1 = arg min
X

1

2
‖X− X̄n‖2F + λ‖X‖∗, (5.12)

where

X̄n = Xn − t1
1 + t1L

AH(AXn −B)− t1λ1
1 + t1L

∇HYn, (5.13)

λ = t1λ2
1+t1L

and L = λmax(AHA). That’s problem (5.7) in this paper. It is not hard to

find that the problem has a closed-form solution by Matrix Shrinkage Operator [115].

Suppose that X̄n = Udiag(σ(X̄n))VH is any singular value decomposition of X̄n.

Then the solution of (5.12) can be obtained by the matrix shrinkage operator as

Xn+1 = Sλ(X̄
n) = Udiag(σλ(X̄

n))VH where σλ(X̄
n) = max(σ(X̄n)− λ, 0).
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Then we consider the Y subproblem in (5.8)

Yn+1 = arg min
Y

1

2
‖Y −Yn‖2F + IB∞(Y)− t2λ1<{〈∇(2Xn+1 −Xn),Y〉}, (5.14)

After simplification, it becomes

Yn+1 = arg min
Y

1

2
‖Y − Ȳn‖2F + IB∞(Y), (5.15)

where

Ȳn = Yn + t2λ1∇(2Xn+1 −Xn),

The solution of (5.15) can be obtained by the Euclidean projection of Ȳn onto a `∞

unit ball, which can be evaluated by

Yn+1 = sgn(Ȳn) ·min(|Ȳn|, 1). (5.16)

where sgn(x) is the sign function; it outputs 1 if x > 0, −1 if x < 0 and zero otherwise.

All the operations in (5.16) are element-wise.

According to the notation, the dimension of input data X is P × T .

• In the Step 1, the dominate operations are matrix multiplication AH(AXn−B)

and ∇HYn. In practice, the operator A is the partial Fourier transform and

performed on X at every time step, so the cost of this operation is O(TP logP )

when the Fast Fourier Transform (FFT) is applied. The cost of second linear

operation is O(TP ).

• In the Step 2, matrix shrinkage operator requires SVD computation, and its

complexity is O(T 2P ) because P > T in our case.

• The Step 3 and 4 include linear and project operations where each has the cost

of O(TP ).

Considering the computational cost of each step, the main cost of FTVNNR

should be O(T 2P ) in each iteration. A key feature of the FTVNNR is its fast con-
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vergence performance and the ergodic convergence rate of FTVNNR is O(1/N) for

N iteration [69].

5.4 Experimental Results

In this section, we first compare the convergence performance of FTVNNR

with two very popular algorithms - FCSA and ADMM. Then the proposed method is

compared extensively with state-of-the-art schemes using real single coil and multi-coil

dynamic MRI. All experiments were conducted with MATLAB R2015a on a standard

PC using a single thread of an Intel core i7 4770 3.4GHz CPU and 16.0 GB RAM.

5.4.1 Convergence Performance

The experiments were tested using the simulation data from 2013 ISMRM Chal-

lenge1 Sample case (256×256, 20 frames). This is a test dataset provided for method

development and debugging. Fig.5.1(a) shows one frame from the data. In this ex-

periment, we use Cartesian mask with 25% sampling ratio. The stopping criteria for

all algorithms is ‖Xn+1 − Xn‖F/‖Xn‖F < 10−4 with a maximum iteration number

of 200. Two parameters are set as λ1 = 0.01 and λ2 = 1. Two metrics were chosen

for quantitative evaluation against fully-sampled reference images: the peak signal-

to-noise ratio (PSNR) and high frequency error norm (HFEN) which was used to

evaluate the reconstruction of edges and fine structures [83, 84]. In HFEN, the kernel

size is 15×15 pixels and the standard deviation is 1.5 pixels.

5.4.1.1 Results

In FCSA, it is time-consuming to solve TV subproblem to achieve good results.

We tune the iteration numbers in TV subproblem from 50 to 10 to see if we can reach

1http://challenge.ismrm.org/node/53
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(a) (b)

Figure 5.1: One frame of Sample case from 2013 ISMRM Challenge (a). The under-
sampling mask (b) was applied in k-space.

reasonable results using the minimum iterations. k-t SLR [104] introduced ADMM

to solve the TV/NN problem. It splits the joint minimization to five subproblems by

Augmented Lagrangian (AL) scheme and needs a conjugate gradient (CG) to exactly

solve the first subproblem. We keep the default CG solver parameters in k-t SLR for

experiments.

Figure 5.2: The convergence speeds of FCSA, k-t SLR and FTVNNR. Left: Function
Value vs. Iteration Number. Right: Function Value vs. CPU Time (s)

Fig.5.2 presents their convergence performances. ”FCSA-50” in the figure refers

to results from the FCSA using 50 iterations. It can be seen that function values of

FCSA and k-t SLR decrease slightly faster than that of FTVNNR in the early stage

(fewer than 40 iterations). However, the complexity of each iteration in FCSA and

68



Original
FTVNNR

(27.52 dB)

FCSA-50

(26.88 dB)

FCSA-20

(26.88 dB)

FCSA-10

(26.84 dB)

k-t SLR

(26.57 dB)

Figure 5.3: The first row shows the reconstructed results, and the second row shows
the close-up views of the selected regions.

k-t SLR is much higher than the cost of FTVNNR. The right plot in Fig.5.2 shows

the decrease of function values for each method until 80 seconds. We can see that

the computational cost of k-t SLR is higher than FTVNNR and FCSA. Even the

iteration number is set to 10, FCSA is still slower than the proposed FTVNNR. The

proposed method converges much faster than FCSA and ADMM using much smaller

computational time. After convergence, the energy function value of the proposed

algorithm is smaller than that of FCSA and k-t SLR.

Fig.5.3 presents visual comparisons of the reconstructed 14th frame using dif-

ferent algorithms. It can be seen that even though FCSA and k-t SLR are solving

the same optimization, they still cannot achieve better results than FTVNNR. That’s

because the main subproblem might not be solved exactly while FTVNNR has closed-

form solution for each subproblem. From the close-up views of selected regions, one

can clearly see that artifacts exist in results from FCSA and k-t SLR while the image

from FTVNNR is clean and perfect.

Quantitative evaluations for selected regions on the whole sequence (20 frames)

can be seen in Fig.5.4. The proposed FTVNNR outperforms all other comparisons

in terms of PSNR and HFEN. All experiments clearly illustrate that the proposed

69



Figure 5.4: Boxplot of PSNR and HFEN results.

algorithm can more solve the TVNNR model much better than other optimization

techniques in terms of both efficiency and effectiveness.

Table 5.1 summarizes the computational time and performances of each method.

From the table, we can reduce the iteration number to 20 to have best reconstruction

in FCSA but the proposed FTVNNR can still reconstruct higher quality images and

it is approximately 7 times faster than FCSA.

Table 5.1: Performances of different algorithms (Time: Seconds)

Proposed FCSA-50 FCSA-20 FCSA-10 k-t SLR
Time 93 1434 613 339 872
PSNR 27.08(0.30) 26.56(0.29) 26.57(0.29) 26.48(0.35) 26.20 (0.34)
HFEN 0.202(0.011) 0.225(0.011) 0.224(0.011) 0.227(0.012) 0.223(0.011)

5.4.2 Real Data Evaluation

We then explored our method on one real publicly available dataset from [84].

The myocardial perfusion MRI data was acquired using a saturation recovery FLASH

sequence (three slices, TR/TE = 2.5/1.5 ms, sat.recovery time = 100 ms, phase ×
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frequency encodes × time = 190×90×70). To test the robustness of our method, the

k-space data is corrupted with additional complex Gaussian white noises with varying

standard deviation. The most practical Cartesian masks with varying sampling ratios

were used as the undersampling mask in our experiments. We compared our method

with four state-of-the-art methods, the undersampled (k,t)-Space via low-rank plus

sparse prior (ktRPCA) [93], blind compressive sensing (BCS) [84], dictionary learning

based method DLTG [87] and k-t SLR [99]. The source codes for these methods are

downloaded from each author’s website. BCS is implemented with both 50 inner

and outer iterations. The rest of the parameters in each method is tuned for each

dataset separately to achieve the best performance. Similarly, the regularization

parameters (λ1, λ2) were selected empirically by examining the reconstruction results

over a range of possible values. The effect of varying the parameters is discussed later.

We choose λ1=0.03 and λ2=100 by exploiting the best performances from parameter

optimization.

Fully Sampling FTVNNR ktRPCA BCS DLTG ktSLR

Cartesian

Input

Figure 5.5: Results of the 29th frame of the perfusion sequence at 20% sampling ratio.
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Fig.5.5 presents the 29th reconstructed frame of the myocardial perfusion data

with 1/5 sampling ratio. Metrics were computed within the manually defined region

of interest. For each method, the reconstructed image is presented together with its

error. Clear visible artifacts can be observed on the image by k-t SLR. Our approach

achieves the lowest reconstruction error among all rest methods.

Figure 5.6: Average PSNR with different levels of under-sampling.

Fig.5.6-5.7 present PSNR and HFEN measurements for all methods while chang-

ing the sampling ratio from 0.17 to 0.47. It is obvious that the proposed FTVNNR

outperforms all other comparison methods in all undersampling cases for both PSNR

and HFEN. Compared with the other four methods, the proposed FTVNNR can

achieve the best reconstruction with different levels of under-sampling. From the re-

sult, it is also observed that our approach is more robust to the changes of sampling

ratios, compared to BCS.

To test the reconstruction performance to noise, we added Gaussian white noise

with standard deviation σ = {0.01, 0.03, 0.05, 0.07, 0.09, 0.1} and applied the under-

sampling mask with 20% ratio. Since DLTG requires much more time (1-2 hours) and
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Figure 5.7: Average HFEN with different levels of under-sampling.

Fully Sampling FTVNNR ktRPCA BCS ktSLR

Figure 5.8: Results of 29th frame with σ = 0.05.

thus we only compare the proposed with other comparison methods. Fig.5.8 shows

visual comparisons when using noisy data at σ = 0.05. It is evident from the error

that our method achieves superior visual reconstruction quality. The interest region

is zoomed up for better visual inspection. Compared to the original image, results
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of ktRPCA and ktSLR appear blurry. BCS provides better reconstruction while the

proposed method shows more fine and clear details. From the figures, it can be seen

that FTVNNR better preserves the various details in the images including edges and

boundaries.

All metrics among timeframes can be found in Fig.5.9. The proposed method

outperforms others almost every frame in both PSNR and HFEN. It can be seen that

ktRPCA is unable to perform well on noisy data since the sparsity constraint cannot

exploit the local spatial consistency or piece-wise smoothness of dynamic MR images.

Figure 5.9: PSNR and HFEN metrics among all timeframes

Fig.5.10 demonstrates the results when using noisy data changing σ from 0.01

to 0.1. Performance reduces when noise level increases while the proposed FTVNNR

still achieves best results than all comparison methods. That’s because the FTVNNR
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can utilize the local consistency in the spatial domain which makes it more robust to

noise.

Figure 5.10: Average PSNR and HFEN with different levels of noise.

Running Time: Time usages of different methods in the case of no noise and

with noise can be seen in Fig.5.11 and Fig.5.12. Table 5.2 summarizes the execution

time of the methods in all cases. We recorded the mean and standard deviation of

the different running times for each method.

One can see that DLTG requires nearly 1-2 hours for processing. The proposed

method is significantly efficient over other methods, which is almost at least 4 times

faster than state-of-the-arts algorithms. Therefore, the proposed method outperforms

others in terms of both accuracy and efficiency.

5.4.3 Parallel Imaging

Although the problem (5.3) is the single coil case, it has the potential to process

multi-coil parallel MRI data. When the coil sensitivities are available, it can be

combined with SENSE in the k-t SPARSE-SENSE framework [106] by multiplying
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Figure 5.11: CPU Time for each method with different sampling ratios.

Figure 5.12: CPU Time for each method with different noise levels.

coil sensitivities E after the undersampled Fourier transform, which means the least

square term in (5.3) will be ||RFEX−B||2F .
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Table 5.2: The average time cost of different methods (Seconds)

Methods No Noise Noise
FTVNNR 52.64 ± 9.17 59.70 ± 0.99
ktRPCA 410.64 ± 7.14 208.26 ± 2.70

BCS 896.53 ± 146.41 509.34 ± 151.41
DLTG 4511.1 ± 8.98 –
ktSLR 399.26 ± 39.89 453.03 ± 9.32

Original FTVNNR

(38.14 dB)

L+S

(33.29 dB)

DTV

(35.82 dB)

K-t Sparse Sense

(31.22 dB)

Figure 5.13: Comparison of the reconstruction results from the 3rd frame. The radial
mask with the sampling rate of 0.10 is used. The first row shows whole images. The
second row shows images from ROIs and the third row shows the corresponding error
images.

To further evaluate performances, we used one fully-sampled cardiac cine data

distributed by the 2013 ISMRM Recon Challenge committee2. The data was collected

using a 2D cine breath-held bSSFP sequence with 32-channel cardiac receiver coils.

Scan parameters were spatial resolution 1× 1mm2, matrix size 346× 210× 27. The

2http://challenge.ismrm.org/node/66
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data was retrospectively under-sampled using Cartesian golden-angle radial sampling

patterns with the acceleration factors ranged from 5 to 30 (sampling ratio from 1/5

to 1/30). We compared the proposed method with three state-of-the-art parallel

MRI approaches including low-rank plus sparse reconstruction (L+S) [92], dynamic

Total Variation (DTV) [88] and k-t SPARSE-SENSE [106]. For all methods, we tune

parameters to achieve the best result under the 1/30 sampling rate and then perform

on other cases using these parameters. The stopping criteria for all methods is 10−4

with a maximum iteration number of 50. All quantitative evaluations are calculated

within the Region of Interest (ROI).

Reconstruction results at the sampling ratio 10% are shown in Fig.5.13. When

looking at details of the cardiac region, it can be observed that FTVNNR presents

less noisy and more clear results because it can utilize the local consistency in the

spatial domain while the temporal FFT in k-t SPARSE-SENSE and sparse prior in

L+S cannot exploit the spatial sparsity. PSNR value of each time frame can be seen

in Fig.5.14. It can be seen that the proposed FTVNNR outperforms other state-of-

the-arts parallel dynamic MRI methods in each time frame.

Figure 5.14: Results of every frame at the 10% sampling rate.
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Fig.5.15 depicts the PSNR of the reconstructed images at different sampling

rates. DTV performs the worst when the sampling ratio is very low. That’s because

DTV needs a relative high sampling rate at the first frame to reconstruct the reference

image. If the high quality reference image cannot be guaranteed, it will not produce

satisfactory dynamic MR sequence.

Figure 5.15: Results with different levels of under-sampling.

The average running time of all methods under different sampling rates can be

found in Table 5.3. One can see that the proposed method has the fastest reconstruc-

tion speed compared to others, due to its fewer iterations and faster convergence.

Table 5.3: The average time cost on different sampling ratios. “ktSS” is k-t SPARSE-
SENSE

Time (Seconds) Proposed L+S ktSS DTV
Data (346× 210× 27) 511.33 539.36 1298.6 960.81
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5.5 Conclusion

We have proposed an efficient algorithm for dynamic MRI. The contributions of

our work are as follows. First, the proposed FTVNNR can achieve lower computation

cost at each iteration than other popular optimization methods such as FCSA and

ADMM. The convergence rate can be theoretically proved as O(1/N). Second, the

proposed FTVNNR achieves the best reconstruction performance when compared to

state-of-the art methods. Also, experiments demonstrate that it is faster than other

dMRI methods. These properties make the proposed method more powerful than

conventional dMRI methods in terms of both accuracy and time efficiency. Moreover,

the proposed method can be easily extended to parallel MRI. The parallel version

of FTVNNR can also share good properties like fast convergence. Numerous exper-

iments were conducted to show its better performance. In our future work, we will

investigate on using reconstructed dynamic MRI for clinical outcome prediction.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The aim of this thesis is to present learning techniques for large-scale medical

data. We investigated several typical types of medical data in important applications

including 1) survival analysis; 2) image reconstruction.

We have demonstrated our deep learning and machine learning approaches

formed effective and efficient solutions with clear improvements in extensive experi-

ments on different data types. Specifically, we have developed the following methods:

Imaging biomarker discovery for survival prediction. We investigated

subtype cellular information and proposed a pipeline for predicting patients survival.

We adopted a deep learning based subtype cell detection method to detect cells into

different types. Then subtype cellular information and features are collected and

imaging biomarkers are searched with traditional survival regression methods. As

subtype cellular information can better describe tumor morphology, our results have

shown that those imaging biomarkers can provide more accurate prediction than state-

of-the-art method using traditional imaging and molecular profilers. In the future, we

will try to find more quantitative measurements to better describe tumor morphology

and further improve the prediction performances.

Deep correlational learning for integrating multi-modality data. A

deep correlational survival model (DeepCorrSurv) is proposed to efficiently integrate

multi-modalities censored data with small samples. In the literature, one challenge

is the view-discrepancy between different views in recent real cancer databases. To

eliminate the view discrepancy between imaging data and molecular profiling data,
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deep correlational learning provides a good solution to maximize the correlation of two

views and find the common embedding space. The proposed DeepCorrSurv transfers

knowledge from the embedding space and fine-tunes the whole network using survival

loss. Experiments have shown that DeepCorrSurv can discover important markers

that are ignored by correlational learning and extract the best representation for

survival prediction. In the future, this framework will be introduced for other kinds

of data.

Attention Guided Multi-instance networks for survival prediction us-

ing Whole Slide Images. Above two presented works need image patches extracted

from ROIs. Nowadays, weakly-supervised learning using Whole Slide Images (WSIs)

for survival prediction attracts much attentions. This kind of methods don’t need

to use ROI annotations but it should have the ability to fuse results from sampling

patches. We proposed a attention guided deep multi-instance model to directly learn

survival patterns from gigapixel images without annotations which make it more eas-

ily applicable in large scale cancer dataset. The flexible and interpretable attention-

based MIL pooling can overcome drawbacks from fixed aggregation techniques in

state-of-the-art survival learning models. We showed that our approach provides an

interpretation of the clinical outcome prediction by presenting reasonable ROIs which

is very important in such practical application.

Dynamic MRI reconstruction using total variation and nuclear norm

regularizations. Dynamic MRI is one of the most widely utilized data source for

organ surveillance owing to its high diagnostic performance and excellent availability.

Reducing the number of k-space measurements is a standard way of speeding up the

dynamic MRI examination time. However, undersampled k-space often exhibit blur

or aliasing effects and this will make them unsuitable for clinical use. The goal of the

reconstruction is to restore a high fidelity image from partially observed measurements
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for future monitoring. We proposed an efficient dynamic MRI reconstruction that

can both keep the low-rank property and piece-wise smoothness of dynamic MRI

images making reconstruction more robust to noise. Experiments have shown that

the proposed algorithm can reconstruct very high quality images with much fewer time

compared with recent reconstruction algorithms. The reconstructed MRI images can

be further used for monitoring.
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