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Il. EXCECUTIVE SUMMARY

STATISTICAL META-MODEL FOR AIR TRAFFIC FLOW AND CAPACITY MANAGEMENT BASED
ON AIRSPACE OPTIMIZATION-SIMULATION: THE CONTINUOUS CHALLENGE OF THE HUB OF
THE AMERICAS CONGESTION

Juan Marcos Castillo, PhD.
The University of Texas at Arlington, 2018

Supervising Professor: Erick C. Jones

Panama is only Country on the Americas with a Canal and the hub of Logistics that include the interaction
of the Atlantic and the Pacific in a less than a day. This Logistics growth after the Panama Canal Expansion
resulted in an overwhelming growth in Aviation. Furthermore, the economic and Logistic growth at Panama
IS increasing the demand of air transportation and it is creating potential for Air Logistics. Thus, the air

traffic congestion is one of the greatest challenges that the Aviation Industry is seeking to address.

The objective of this research is to understand if the Air Traffic Congestion in Panama can be reduced
through minimizing the impact of historical congestion variables. In order to meet this objective, three

specific criteria are investigated as follows:

» Specific Objective #1: Determine which variables are most relevant to minimize Air Traffic Congestion.

» Specific Objective #2: Determine the significance of the variables and their impact on the Air Traffic

Congestion.

» Specific Objective #3: Identify the cost effectiveness of the variables on Air Traffic Congestion.

A statistical Meta-Model that includes Cause and Effect Analysis, Design and Analysis of Computer
Experiments, Linear Regression, Mixed Integer Linear Programming, and Engineering Economics is used to
address Air Traffic Flow and Capacity Management Uncertainty over the Congestion at the Airspace in

Panama.
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1. INTRODUCTION

A. Problem Definition
The main problem of the Air Traffic Flow and Capacity Management in Panama is the risk reduction

in the Panamanian Air Space Operation during the landing and the departure operations at the Tocumen
International Airport without decreasing the productivity of the system. The safety of the passengers
is at risk when the congestion in the landing affects the operation of the Tocumen airport, so the airport
received penalties from ICAOQ in 2015, after the audit with a qualification of 36.4%, falling from 85.7%
in 2005. Also, FAA changed the Tocumen International Airport from Category 1 to Category 2, in
other words, there are more restrictions in the allowance of carriers, new routes and codeshare
agreements with USA. (1)

Thus, the problem can be described as the seeking of an optimum number of aircrafts that can land per
hour in a time frame of 12 hours where the six bank hub operational model of the Tocumen
International and COPA Airlines takes place, while minimizing the Fuel Burn, the number of
Interactions between pilots and air traffic controllers, the number of air conflicts, the delays, the flight

miles, and the flight time.

The first challenge is operation constraints of the Airport. For example, the two runways work like one
runway, since the design of the runways is not parallel. The airport reported a maximum of 40
operations per hour as a service rate (2). The Tocumen International Airport (“PTY” which is the IATA
code for the airport) is expanding the gate availability from 34 gates in critical day to 54 gates (2).
Consequently, the number of runways is going to be the next bottleneck in the system. In contrast, the
standard capacity per airport with a single runway in the USA lies between 35 to 60 operations per
hour (3). Consequently, even with the actual runway layout, Tocumen may achieve 60 operations per

hour using the actual runway capacity.
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The second challenge is the collaboration between stakeholders. There are three main stakeholders,

The Autoridad de Aeronautica Civil (AAC), Tocumen International Airport (PTY) and Copa Airlines
(COPA). These stakeholders are collaborating together during the six-bank-hub operation in a daily
basis, as Figure 1 shows. Therefore, the main stakeholders can manage the air traffic and landing

operation to move from 40 operations per hour to 60 operations per hour.

P S
O 0 @

6:05am-8:09 am 8:00am-9:48 am 9:54 am-12:38 pm
BREAK
1:47 pm-4:01 pm 4:10 pm-7:24 pm 7:26 pm-10:08 pm

Figure 1 The Six Bank-Hub Operation Schedule of Copa Airlines (52)

Even though, there are three main stakeholders who directly impact on the daily operation, there are
more than 20 organizations involved indirectly. These other 20 organizations are trying to find the way
to optimize the airspace of Panama. One of the efforts is the implementation of Airport Collaborative
Decision Making (ACDM). The second effort is the Air Space Optimization (ASO) which includes
the evaluation of the airspace layout.

There is a specific conflict between the air traffic controllers’ union, the airlines and the Government.
The opinions are different between stakeholders, and those different point of views affect the operation
in a daily basis. So, when the representatives of each sector meet there are disputes about the KPIs and
the weight each stakeholder address. In other words, the safety is the most important factor to address,
however sometimes it conflicts with fuel consumption and controller workload.

The third challenge is the economic impact of the congestion over the country. The aviation

performance in Panama produce a des-acceleration of the economic growth. (1). For example, in 2016
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American Airlines eliminate a direct fly from Dallas-Forth Worth to Panama, which means at least

$10,000 less in daily taxes perceived by the Tocumen International Airport, based on the tax per
passenger (2). The lost income described in this example it does not include flight fees from the Civil
Aviation Authority and side services from suppliers of fuel, food and cleaning to the aircraft.
Consequently, each time the air space is not well managed there are economic consequence such as
close of a regular operation or a cancel route that cannot be sustainable. The opportunity cost can be
even worse than the closing of an existed operation. (2).

The air transportation is growing fast in the whole world, which means that the evolution of the
industry is demanding changes in the air traffic flow and airports efficiency. For example, the Airbus
Global Market Forecast for 2016-2035 anticipates that air traffic will grow at 4.5 percent annually, in

other words, 33,000 new passengers. (12)

In addition, the last 40 years the volume of air logistic growth 7%, so the average in the last 5 years
was 3.8% against an average of 3% in the rest of the world. The Forecast of growth in air logistic for

the next 20 years is 5-6%. The quote of air logistic is 2% of the world commerce in weight (t) and 35%

World air cargo traffic will more than double
over the next 20 years

RTKs
in billions

in (USD). (1)
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Figure 2. Forecast Air Cargo Growing. (www.boeing.com 10)
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As figure 2 shows, the world air cargo traffic is increasing 2.6% per year, and the expected growth in

passenger air transportation is “4.9% over the period of 2010-2030” (12)

Consequently, this constant increment in air traffic has not found an adequate expansion of airport
facilities and flight assistance (6). These situations presented in an airport, in everyday life, are very
unpredictable because those depends on several factors, such as holidays, peak hours, weather
conditions, the number of flights and the increment of passengers (7). Those factors have a strong

impact in the performance of the airports operations.

There are limitations in capacity at specific ranges of time during the day leading to several issues in
the operation, such as large queues in the airspace, congestion in the taxi flow in the ground, waiting

lines to depart. Consequently, these air queues are producing delays, cost impact, and more pollution.

Furthermore, the fail in landing create congestion in the air traffic affecting the fuel consumption,
which means that if the landing is not safe, the air traffic controller sends the aircraft to make circles
in the Balboa Bay until there is another space for landing. That means an increment in the fuel
consumption per aircraft and increase the risk of the operation. The frequency founded by empirical
interviews with air traffic controllers in 2015 was 7 per day.

The level of the actual congestion in landings procedures to the Tocumen International Airport
increases the level of risk in the Air Traffic Management.

Thus, the main problem that we enhance to address is to reduce the actual uncertainty of the decision-
making process in real time from the air traffic controllers to enhance a safe Air Traffic Flow and
Capacity Management, since the Airspace itself is capable of manage the actual and future demand

(2), but it does have issues in the arrival to the main International Airport.
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IV. LITERATURE REVIEW

The literature review includes the description of Air Traffic Flow and Capacity Management
(ATFCM), Panama Context in relationship with ATFCM, the Traditional modeling and optimization
of Air Traffic, and a literature review about Data Analytics, specifically about Cause and Effect

Diagram, Statistical Process Control, Linear Regression and Design of Experiments.

A. Air Traffic Flow and Capacity Management

The most popular Air Traffic Flow and Capacity Management methods are the Point Merge from Euro
Control, Next Gen from FAA and the Collaborative Actions Renovation of Air Traffic Systems from

Japan (4,18, 20, 21, 23).

The capacity and traffic issues in the aviation is a continuous challenge for United States, Europe and
Japan, since the 80s. (12) Therefore, the FAA, Euro Control and the Civil Aviation of Japan has
different approaches to redesign the airspace and to adequate the airport facilities. Then, the Air Traffic
Flow and Capacity Management was born as a research concept to improve the aviation in Europe,
USA and Japan. In 2015, when this research started the concept was just Air Traffic Management in
the 80s (12), then change to Air Traffic Flow Management (12) in the last decade; nowadays the

concept changed to Air Traffic Flow and Capacity Management (11, 12).

The first approach to understand is the Euro Control Model, the Merge Point as shown in figure 3. The
concept of the point merge comes from Queueing Theory, specifically it addresses one line for landing

merging the different operations in one point.
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Figure 3. Merge Point (53)

The second approach to understand is the Next Gen, which includes aspects such as ATM planning
modes and Collaborative Decision Making (CDM) as a way to increase the Reliability of the System
(Decision Support Service, FAA, 2014). As a part of the research, one of the empirical data collections
was the visit to the FAA Air Traffic Control System Command Center at Washington D. C. The FAA
model includes the Common Situational Awareness that enhance the same information for all parties
or stakeholders involved in the Air and Ground operation, aspect that is still absent in the interaction

between AAC, Tocumen International Airport, and the Airlines (29).

There are some facts to take in consideration to understand the context of Panama. The main industry
of Panama is the transportation ever since the discovery of the Pacific by Balboa. Therefore, the
growing of Logistics and Transportation service is 24.3% of the GDP of the Country. (1). This growth
is challenging the air traffic system due to the increment of flights. The changes in the Demand are

making several issues in the actual air traffic management operation.

Figure 2 shows the growth of the Tocumen International Airport (2), the main airport of Panama. The
Passenger movement of Tocumen International Airport has grown steadily during the last few years,
with a growing rate of 11.8% during the 2013 comparing with previous years. This study is based on

the arrivals and departures operations of the Tocumen International Airport.
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Figure 4. Historical growth of passengers using the Tocumen International Airport.

(Tocumen International Airport 25)

Furthermore, this growing in the air traffic industry in Panama leads to the necessity of new technology
and new knowledge to respond. As we stand before, the FAA is working with NextGen in the United
States (FAA 20) and the EUROCONTROL is implementing the Point Merge as solution in the air
traffic flow management in Europe (EUROCONTROL 23, Ivanescu, et al. 16, Invanescu, et. al. 17,
Ozlem, M. 21). Those two are the main sources of ATFCM models to enhance a better aviation in

Panama.

Back in 2015, the AAC was taking in consideration the POINT MERGE, which is the concept to merge
all the traffic in a single point/line to land in the airport, since the queuing theory assumption is that a
single line per server is always more productive than several lines (13). The figure 3, shows an example
of the behavior of the air traffic flow using the POINT MERGE approach. EURO CONTROL, the
agency that manages the air traffic in Europe, developed this methodology with the following

objectives in mind:
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In contrast, the FAA has a great influence over Panama aviation, since before 1999 they did share the

airspace (4,18, 20, 21, 23). The Federal Aviation Administration (FAA) of the United States of
America (USA) and the Autoridad de Aereonatica Civil (AAC) has long relationship, since the USA
Government constructs the Panama Canal in 1914, and the USA Army has several bases to around the
canal that gave a bound between the two Aviation Agencies. However, after the sign of the Torrijos-
Carter Agreement Panama started changing the way they manage all the transportation system,
including aviation (28). In the 80s, the ICAQ started changing the standards of the AAC from FAA
standards to ICAO standards. Consequently, the ICAO was pushing the effort to Air Traffic Flow
Management over the Tocumen International Airport and the AAC (preliminary Diagnostic, 2015).
Furthermore, the FAA is still a model to the AAC, so the Next Gen methodology includes practical

principles that the AAC may apply in the pursuing of a better Air Traffic Management (ATM).

B. Traditional modeling and optimization of Air Traffic

The traditional modeling and optimization of Air traffic includes Optimization Mathematical tools
applied to Aviation to achieve a better air traffic. (30). There are several approaches to enhance air
space optimization and better flow of the air traffic that include queuing theory (30, 31, 32, 33, 34),
simulation models (35, 36, 37, 38), dynamic optimization (30), network analysis (30, 34), scheduling
approaches (30, 39), and combinatorial optimization (30). However, the application of Design and
Analysis of Computer Experiments as a statistical method that is useful in conducting computer
experiments (9, 40, 41, 42, 43, 44) is still not widely applied in Air Traffic Management (ATM)
simulation. There are some computer experiments for ATM simulation since 2000, such as the
computer experiments for ATM simulation to determine the impact of distributed air-ground traffic
management on safety and procedures (45), experiments of the designing for safety: The “Free Flight
‘air traffic management concept (46), Distributed agent-based air traffic flow management (47), and
Factors affecting air traffic controller workload: Multivariate analysis based on simulation modeling

of controller workload (48). Even those experiments did not include Statistical Meta Models as Chen,
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et. al. proposes in 2006. Although, the DACE is a concept from the latest 80s when Sacks, et. al. (49)

started discussing about this, the development of DACE is more evident in the 2000s by Deng, et. al.

(50).

Consequently, the table 1 shows the summary of the literature review of different traditional

approaches of modeling and the optimization of the Air Traffic Flow and Capacity Management.

Table 1. Literature Review Chart

Name

Model Type

Reference

Problem

Relationship to the model of
Panama

A model of inbound air

Queuing Model

Caccavale, et.

Focus in Arrivals

Airspace Optimization

traffic al. (2014)

Data and queuing analysis | Queuing Model Gwiggner & Computational time Airspace Optimization
of a Japanese Air Traffic Nagaoka (2014) | expensive

Flow

Design and Simulation of | Monte Carlo Simaiakis & Computational time Airport Management
Airport Congestion Simulation, Balakrishnan expensive

Control Algorithms Dynamic (2014)

Programming and
Queuing Model

A simulation Model for
Airport Runway Capacity
Estimation

Discrete Evernt
Simulation Model

Zou, Cheng &
Cheng (2014)

Focus in Runway
Optimization

Airport Management

Simulation-based Discrete event Mota, et. al. Focus in Airport not Focus on commercial
Capacity Analysis for a Simulation Model (2014) Airspace Awviation, focus in
Future Airport metropolitan region and just
one international airport

Capacity and Delay Discrete event Celeb, et. al. Computational time Airspace Optimization
analysis Simulation Model (2014) expensive
Airport Runway Dynamic Bennell, et. al. Focus in Runway Airport Efficiency
Scheduling Programming (2013) Optimization

Model

Airport Capacity

Simulation Model

Gelhausen, et.

Forecasting/Empirical

Global impact about Aviation

Constraints impact in al. (2013)

future development of air

traffic

Multi-Objective stochastic | Stochastic -Supply | Franca et. al. Computational time There are more than one

Supply Chain Modeling to | Chain model (2010) expensive optimization in the Airspace

Evaluate Tradeoffs of Panama. For example,

between Profit and Capacity vs Congestion, or

Quality Congestion vs Economic
Impact of Congestion
Reduction

Probability Airspace Stochastic model Zobell et. al. Limits the spectrum Airspace Optimization

Congestion Management (2010) on the air traffic

management

Data Mining of Air Traffic
Control Operational Errors

Data Mining model
(Attribute Focusing

Nazeri (2006)

Limits the spectrum
on the air traffic

Airspace Optimization

Technique) management
Accident Risk Assessment | Risk Management Blom, et. al. Computational time Airspace Optimization
for Advance Air Traffic model using (2001) expensive
Management Markov Chain
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A comparison of Aircraft | Queuing Model Lee, et. al. Taxi ways Airport Operations
Trajectory-Based and (2010)

aggregate queue-based

control of Airport Taxi

Processes

Modeling Delay Queuing Model Pyrgiotis, et. al. | Focus in USA Delay Analysis

Propagation within an (2013)

airport Network

Air Traffic of an airport Discrete event Bevilacqua, Focus just in Aiport Airport Management
using discrete event Simulation model et.al. (2012)

simulation method

Fast-Time Simulations of | Mote Carlo Lee & Focus in Airport Airport Efficiency

Detroit Airport Operations

Simulation Model

Balakrishnan
(2012)

Facilities

C. Simple Linear Regression (SLR)

SLR is used to determine the relationship between a response variable and a single predictor. The

scatter plot of the two variables would contain two-dimensional sample points which can eventually

be represented in the form of a true line which helps in predicting the response as a function of the

predictor. A basic SLR model would be represented as equation 1.

Equation 1: Simple Linear Regression Examplel

Yi=fo+ pLXi+ i

Where, i =1, 2,...., n observations

Xi’s are fixed (nonrandom) and known variables

Yi’s are the corresponding response observations

Jo = y-intercept of the true line

S1= Slope of the true line

¢i= Random error

Figure5 shows an example of an SLR plot
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Figure 5. Example of a SLR scatter plot (51)

In this case, the predictor if the latitude and the response is the mortality rate. The points are plotted,

and the true line is determined whose equation is given as 389.2 — 5.98x.

If the mortality rate for a latitude of 40 is to be predicted, the procedure is a very simple substitution
of 40 in place of x in the equation of true line. Hence, the predicted mortality rate would be 389.2 —

(5.98*40) = 150 deaths/10 mn.

1) Coefficient of Determination (R-square)
R? is the proportion of the variance in the response that is predictable from the predictors. R? value tells

how well the model fits the data. Closer the value of R? is to 1, better the model fits the data.

D. Multiple Linear Regression (MLR)

MLR is another type of linear regression model with two or more independent variables (predictors).

The MLR model with p-1 predictors is showed at equation 2.
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Equation 2. Example of Multiple Linear Regression Model

Yi = fo + f1Xiat+ f2 Xi2 +.....+ + fp-1 Xi,p-1 T &
Where, i =1, 2,...., n observations
Yi = Response when the p-1 predictors are set to (Xi1, Xi2, .... Xip-1)
Xi = (Xit, Xi2, .... Xip-1)T = vector of p-1 predictors
B=(Bo, 1, .... Bp-1)" = vector of unknown parameters
¢i = Random error

An example of a MLR model with two predictors is shown at figure 6.
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Figure 6. Example of an MLR scatter plot (52)

Some MLR models may have huge number of predictors. While it is perfectly fine to have several
predictors in a model, one of the most important things to analyze is the correlation between
predictors. A high correlation between the response and the predictors is desirable. But on the other

hand, if two or more predictors are highly correlated with each other, one predictor can be used to
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predict the other with a substantial degree of accuracy. This phenomenon in statistics is called

multicollinearity. It is an undesirable property of predictors which in practical applications would
require huge calculations and would consume time. Presence of multicollinearity means that there

are one or more redundant predictor variables which does not explain the model.

Variance Inflation Factor (VIF) quantifies the severity of multicollinearity. For practical
applications, models with a VIF greater than 5 would be considered to have highly correlated

predictors. VIF can be calculated by equation 3.

Equation 3. VIF Formula

1

2
1-R?

VIFi =

Where Ri? is the coefficient of determination of the MLR equation with X; on the left hand side, and

all other predictors on the right hand side (53)

E. Modeling Interactions between Quantitative and Qualitative Predictors

The models with qualitative and quantitative predictors can be evaluated using a formulation with interactions
between the qualitative variable and the quantitative variable. The meaning of the regression coefficients in
response function can best be understood by examining the nature of this function. For Example, the equation
4 shows the regression model with one quantitative variable x1 and one qualitative variable x2. Also, this
example equation includes the interaction effect between the qualitative variable and the quantitative variable

as X1X2.(86)

Equation 4. Example of Modeling Interactions between Quantitative and Qualitative Predictors

Y = Bo+ Bixix + Baxiz + BsxizXip + &
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An advantage of this type of model with indicator variable is that one regression run will yield both fitted

regressions. Another advantage is that tests for comparing the regression functions for the different classes of

the qualitative variable can be clearly seen to involve tests of regression coefficients in a general linear model.

F. Study of Design of Experiments (DoE)

Generally, any process under consideration is affected by one or more factors. These input factors may
influence the output in any way. Hence, there is a need to understand the relationships between these
factors and the output. The first step towards achieving that goal is to create a dataset with response to
all the other input factors. Secondly, the interactions between multiple factors must be considered at
each level, for example, if there are two factor is just one interaction between them, but if there are
three factors there are three interactions with two factors and one full interaction with all three factors.
This is where Design of Experiments (DoE) proves to be useful. By manipulating multiple inputs at
the same time, DoE can identify important interactions that may be missed when experimenting with
one factor at a time (54). This chapter explores the classification and applications of DoE and also

provides a framework of which type of DoE must be used in certain cases.

1) Types of Experimental Design

a) Factorial Design

When there are several factors in an experiment, a factorial design can be used (55) In this type of
design, factors are varied simultaneously and all possible combinations of the levels are

investigated. The two classifications of factorial design are discussed below.
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Full Factorial Design

Full factorial design includes all possible combinations of all the levels of all factors. In this way,
it is impossible to miss any interactions. This type of design requires at least one observation for

every combination of factors and levels.

Fractional Factorial Design

In a fractional factorial design, not all possible treatments are considered. Taguchi and Latin

Squares are some examples of fractional factorial design models.

Orthogonal Design

Two vectors are orthogonal when the sum of the products of corresponding elements is zero.

For instance, leta=[2350] andb=[-4114]

4

i=1

If vectors are orthogonal, they are independent and does not affect other factors.

Randomized Block Design (RBD)
RBD is the design where similar factors are grouped/arranged together to minimize the number

of experiments. Using RBD can decrease the unexplained variability which is otherwise known

as the Sum of Squared Errors (SSE) of the model. (56)

Let Ln be the number of levels in the n' factor. The number of runs for the respective multi-

factor models can be calculated as the table 2 shows.
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Table 2. Example of RBD

Number of factors Number of runs

2 Li* Lo
3 Li*L2*Ls
k Li*L2....*% Lk

Two further types of Randomized Block Design are discussed below:

1) Complete Randomized Block Design (CRBD)

It is the type of design in which every block receives all the treatments. The defining feature of
the CRBD is that each block sees each treatment exactly once.

(2) Incomplete Randomized Block Design (IRBD)
In the IRBD, each block receives only some of the selected treatments and not all the treatments.

Nested Design
Also called as hierarchical design, nested design is mainly used in experiments in which there is
an interest in a set of treatments and the experimental units are sub-sampled. An example of a
nested design of a biologist collecting 3 seeds from 3 superior trees in each of three forests A, B

and C would look something like this:

N N N
Forest A Forest B Forest C
~N ~N ~N
-~ —~ —~ ~ ~ —~ —~ A~ ~
Tree 1 Tree 2 Tree 3 Tree 1 Tree 2 Tree 3 Tree 1 Tree 2 Tree 3
) ) ) N ) ) ) N )
I N |/~ | |/~ |~ |~ S N N
Seed 1 Seed 1 Seed 1 Seed 1 Seed 1 Seed 1 Seed 1 Seed 1 Seed 1
N— N— N— N— N— N— N— N— N—
I N N N N N N N\ N\ S
Seed 2 Seed 2 Seed 2 Seed 2 Seed 2 Seed 2 Seed 2 Seed 2 Seed 2
N— N— N— N— N— N— N— N— N—
LN I N I N e N I N N VamS VS VS
Seed 3 Seed 3 Seed 3 Seed 3 Seed 3 Seed 3 Seed 3 Seed 3 Seed 3
N— N— N— N— N— N— N— N— N—

Figure 7. Example of hierarchical Nested Design.
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Crossed Design

This type of design is faintly similar to nested design. In a crossed design, each level of one
factor occurs in combination with each level of another factor. For example, a crossed factor

design of 2 machines which can be serviced by any of the three engineers will look somewhat

like:

Machine 1 Machine 2
N —
R — |
| - ~ P |
| '

v 4 A A »y
Engineer 1 Engineer 2 Engineer 3

Figure 8. Example of Crossed Design.

Latin Hypercube Design
Latin Hypercube design is a random design in which the model parameter values for the

experiments are assigned on the basis of a random process (57). This method is mostly used in
computer experiments.

Design and Analysis Computer Experiments (DACE)

In this method, codes are used to design experiments with no random error. A computer model is
used to make inferences about the system it replicates. For example, climate models are often used

because experimentation on an earth sized object is impossible (58)

G. Engineering Economics

The study of the time value of money is the concern of the Engineers while performing projects that
include project of investments and cost evaluation over time. The Engineering Economics use
statistics, mathematics and cost accounting (60) to establish a logical and analytical framework that
seeks to find solutions of technical problems viability. (60). Typically, the Engineering Economics

convers the analysis of inflexion point, tipping points, depreciation and valuation, capital budget, taxes,
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interest and money, sensitivity analysis and reliability. The basic indicators used to analyze time value

of money are Net Present Value, Future Worth and IRR.

H. Statistical Process Control

The statistical process control is a methodology for monitoring a process to identify special causes of
variation and signal the need to take corrective action when appropriate (62). Some of the most utilized
tools are the Pareto Diagram, the Cause-Effect Diagram, the Check Sheets, the Process Flow Diagram,

the Scatter Diagram, the Histogram and the Control Charts.

For the purpose of the study we use the tools of Cause and Effect Diagrams to understand the factors
that affect directly and indirectly the air traffic congestion. Also, we use the Control Charts to evaluate
the performance of the optimization as a control, specifically the Moving Average Charts for individual
values, which is a special type of control charts. There are other control charts, such as Exponential
Weighted Moving Average, non-acceptance limits, control charts for nonconformities. Usually the

control charts are to measure the variability of the system, and find ways to keep it in control. (77, 81)
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V. BACKGROUND

A. Research Background
The original challenge presented by “The Autoridad de Aereonuatica Civil” (AAC), which is the

Government Agency to manage the Aviation in Panama, was to optimize the airspace to allow
better flow of the aircrafts.

In 2015, the AAC was looking forward to implement new methodologies to expand the capacity
of the actual airspace. The first intention was to apply the Euro Control model, which is the agency
that manage the aviation in Europe and which includes a research center. The methodology of
airspace optimization of Euro Control is the Point Merge. They found a way to merge the air routes
with a standard approximation to minimize fuel burn consumption, conflict and numbers of
interactions between pilot and air traffic controller; also, the methodology aims to maximize
accuracy in the flight plan.

Consequently, the AAC worked with COPA Airlines, which is the main Airline in Panama and
the Leader in Latin America, to find a solution using the Point Merge approach. COPA constructed
a simulation model in the simulation Software from Jepessen named TAAM (26). They
constructed 5 models. The last optimization version was the preferred by COPA Airlines, but the

pilot’s union refuse it. The summary of the timeline is at the appendix A.

B. Preliminary Studies
1) First DACE

a) General Description
There is a preliminary study called “Design and Analysis of Computer Experiments based on

a Simulation Model of Air Traffic Flow Optimization in Panama” from summer 2016 that had



30

3 Factors and 5 Key Performance Indicators. This study was made it between UT Arlington
and The Universidad Tecnol6gica de Panama.

Copa Airlines and AAC were trying to use a combination of the FAA approach and EURO
CONTROL approach combining NEXTGEN and the Point Merge in their air traffic flow
management. In addition, the Autoridad de Aereonautica Civil (AAC), COPA Airlines and the
Tocumen International Airport (Tocumen) are working in a continuous collaboration between
FAA and Panama in order to improve the actual system using COLLABORATIVE DECISION
MAKING (CDM), specifically Airport CDM or A-CDM. The objective of the simulation
model was to select an air traffic alternative that would be able to improve the actual situation.
In other words, COPA and AAC were looking to minimize the numbers of conflicts, the

number of sequence actions, the flight time, the track flight distance and the fuel burn.

A preliminary study was conducted based on the COPA and AAC simulation model to
understand the factors that can affect the air traffic flow in Panama. The objective of the
simulation model is to improve the air operation efficiency. The software used in the simulation
was Total Airspace and Airport Modeler (TAAM) by Jeppesen (26). It is important to mention
that they create 5 scenarios with 5 different airspace layouts. These simulation models are
based on some rules in terms of airport description and geographical location of the airport,
the layout of the airport, the itinerary of the flights and the airways. The simulations were all
based on the old layout with 32 fixed gates. However, there is an expansion of the airport with
more gates, taxiways and runways. However, for the purpose of the preliminary study, those

factors were not part of the simulation itself.



31

The main experiments conducted by COPA and AAC were five models of air traffic flow (22),
Actual situation, an Alternative based on Vectoring, a Point Merge version 1, a Point Merge
version 2, and the Final Draft

The Final Draft, as figure 9 shows, was made it by COPA as a mix of the testing models.
However, this experiment was not constructed with an experimental design and it does not

include the weather seasoning.

Airspace re design project
PBN Concept - MPTO

Figure 9. Final Draft to Optimize the Airspace at Panama (22)

Based on COPA analysis, there are other factors to take in consideration, and important for
future evaluation. Those factors, that needs to be considered, are the wind, the weather
events, the aircraft weight, domestic flights, over flights, aircraft speed and Altitude. In
addition, the demand seasons, the Air Traffic Rules and the Ground Traffic Rules, which

are important when Point Merge is considered.

The most important KPIs from COPA standpoint are the Fuel Burn, the Track mile distance
and the Flight time. On the other hand, the most important KPI's for the AAC are the
number of Sequencing Actions and the airborne conflicts. Therefore, the goal of both

organizations is to optimize the five KPI’s.
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In Contrast, the majority of this studies using simulation models for air traffic flow
management does not use any methodology to understand the impact of the factors at
certain levels. The preliminary study includes Design and Analysis of Computer
Experiments in order to understand how the factors at certain levels can impact the Key
performance indicators or response variables. So, the objective of this study is to analyze
how the Itinerary by Season (Low Season of Demand or High Season of Demand), the
Ground Traffic Rules and the Air Traffic Rules can affect the Air Traffic Management

KPI’s.

b) Model Definition
Q) Factors

(@) Itinerary
The Itinerary is a data base which include Type of aircraft, License plate,

Origin, Destiny, Departure Time and Arrival Time. Each row of the data
base is a flight.

(b) Ground traffic rules
The Ground traffic rules is a time distance between aircraft during the

arrival, which is between 1 minute to 2 minutes.

(©) Air traffic rules

The Air traffic rule is the distance in nautical miles between aircraft during
the approximation to the airport which range lies between 3 NM as a
minimum and 10 NM.

Consequently, the dataset of itinerary is a factor with two levels (high season data set,

low season data set), the Ground traffic rules is a factor with three levels (1 minute,
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1.5 minutes and 2 minutes) and the Air traffic rules is a factor with four levels (3NM,

5NM, 7 NM, and 10 NM)

2 Response Variables

When Copa Airlines run a simulation, they obtain five output as response variables for
each model. The Key performance indicators for the Air Traffic Management in
Panama are the Sequencing actions (number of interactions per day), the Airborne
conflicts (number of conflicts per day), the Flight time (hours per day), the Track mile

distance (Nautical Miles per day) and the Fuel Burn (gallon per day).

3) Experimental Design and Linear Model

The first experiment conducted by COPA used a fixed ground traffic rule, a fixed air
traffic rule, and a data set from the high season.

Therefore, this experimental design is a Three Factor Complete Factorial Experiments.
The table 1 shows the coded layout of the experiment. The following are the factors
description with their levels:

Factor 1: Itinerary (1-high season, 2-low season)

Factor 2: Ground Traffic rules (1- 1 min, 2-1.5 min., 3-2 min.)

Factor 3: Air Traffic rules (1- 3NM, 2 - 5 NM, 3 - 7NM, 4- 10NM)

Table 3 shows the coded layout that was used to conduct the 24 experiments. These
experiments were conducted directly in the COPA office, since the limited license in
place that they have. In addition, there is one replication made in each experiment.

In order to achieve flexibility and efficiency, it is better to select the full factorial

design to run the experiments. This kind of design was originally used in Design of
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Experiments for physical experiments, but it is suitable to apply in Computer

experiments as well. (Chen et. al., 4). Table 3. Layout coded of the Three Factor

Complete Factorial Design.

Table 3. DOE Layout

Factor 1

Factor 2

Factor 3

1

1

1
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The linear model formulation per each response variable is as follows:
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Equation 5. DoE formulation

Yipe = .+ i+ B+ v + (aB)y; + (ay)w + By)jx + (@By)ijk + Eijre

fori=1,...,a,j=1,....,b, k=1, ....,c,and t=1, ....., 1.

Where &, are iid N(0,0%)

Yijke = t-th response observed for trt (i,j k).

i =is the overall mean.

a; = is the effect on the response due to the fact that ith level of factor 1.

B; = is the effect on the response due to the fact that jth level of factor 2.

Yk = is the effect on the response due to the fact that kth level of factor 3.

(aB);; = is the interaction effect in ith and jth of factors 1 and 2.

(ay)ix = is the interaction effect in the ith and kth of factors 1 and 3.

(BY)jk = is the interaction effect in the jth and kth of factors 2 and 3.

(aBy)ijr = is the interaction effect in ith, jth and kth of factors 1, 2 and 3.

COPA mentioned that there is a way to obtain the probabilistic data, but the analyst asked us to
run the model without stochastic data, since they made the previous experiments using
deterministic output. Consequently, the mathematical model is going to suffer a modification,
since there is not going to consider any interaction effect with the three factors in conjunction.

The linear model formulation per each response variable is going to be as follow:



Equation 6. DoE re-formulation without full interaction effect.

Yike = ph.+ ai+ B+ vi + (aB)y + (@V)u + BVjic + Eijie

fori=1,...,a,j=1,.....,b, k=1, ..., c,and t=1, ....., 1.

Where &, are iid N(0,0%)

Yijie = t-th response observed for trt (i j k).

i = is the overall mean.

a; = is the effect on the response due to the fact that ith level of factor 1.

B; = is the effect on the response due to the fact that jth level of factor 2.

Yk = is the effect on the response due to the fact that kth level of factor 3.

36

(aB);; = is the interaction effect in ith and jth of factors 1 and 2.

(ay)ix = is the interaction effect in the ith and kth of factors 1 and 3.

(BY) jx = is the interaction effect in the jth and kth of factors 2 and 3.

C) The Simulation Experiments

1)

The Simulation Model

(@) The Simulation Software
The Total Airspace and Airport Modeler (TAAM) is a fast-time gate-to-gate

simulator of airport and airspace operations. This software can simulate 4D
and 3D. TAAM enables the analyst to identify the system benefits of such
changes in the airport layout for gates, taxi ways and runways. In addition,
other air space requirements.

Some of the features are the 3D multi-color models of airports and aircrafts.

4D full airspace & flight profile calculations, detailed ground functionality,
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detailed airside functionality, a flexible rule base to accommodate different
modelling requirements, statistical data generated in a wide variety of report
forms, direct output to spreadsheet and database tools for further in-depth
analysis.

(b) The Simulation Model

The simulation model consists in set the static files (in our case the itineraries),
the parameter setting, and the rules (Air Traffic Rules and Ground Traffic
Rules for this experiment)

There exist other parameters that most keep standard, such as Airport layout
(32 gates), 2 runways, 3 taxi ways, and the airport geolocation (COPA Airlines
7). The Airport with the specifications most be drawing in AutoCAD and
uploaded in the software. In addition, there is an airspace design, so the regions

of the airspace and the air ways must be drawing.
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(©) The Itinerary Samples
The department of Operation Efficiency of COPA analyzed the air traffic flow

from 1st of January to July 7th and took to days one from the high season and
another from the low season to obtain the sample. Then, COPA took, using
another software called AIMS, the itinerary for each day. However, the
procedure says that it is required to take at minimum of 3 days. This is
necessary since they need to take from the 05:00 a.m. of the actual day to the
05:00 a.m. of the day after the actual day. This is necessary to keep the
continuity of the simulation in terms of time. As an explanation, COPA takes
the 05:00 as a reference, since is the hour zone of Panama based on the
Greenwich Meridian.

As we mention before, the itineraries contain the type of aircraft, the license
plate, the origin, the destiny, the departure time and the arrival time. This
information is per flight.

(d) Simulation Output

In order to obtain the output, it is necessary to use the sample itinerary which
is part of the input information. Then, it is important to change some of the Air
Traffic Rules and the Ground Traffic Rules in 2 windows and in the map of the
air space. The areas of the map changed are for approximation to the Tocumen
Airport. In other words, this rules affect in some ways the departure,
depending if the runways have not conflict in the departure, and this rules affect

all the arrival queue in the air space of Panama.
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Therefore, the simulation is going to run per 5 days, just to check any outlier
and maintain the continuity. However, the model has a rule to stop at some
point (which is 05:00 a.m. as we mention before) to record the information for
the main in study. There is another rule, the clock must stop at 05:00 a.m. the
next day to stop the recording, this process recording is manually. After the
model stop, it is necessary to run the three different queries; two of them were
customized by COPA for the previous analysis.

In addition, the output of time is in seconds and the fuel consumption is
Kilograms, so it is necessary to convert those. The flight time is converted in

hours of flight and the fuel burn is change in gallons.

Statistical Analysis
For the statistical analysis, it is presented each response variable separately in

order to analyze the effect of each factor which their levels. The objective is to
know how the factors and the levels affect each response variable separately. For
this analysis the software used is SAS. Therefore, the analysis shows the ANOVA
table with the main factors and the interaction effects. However, we do not
include the full interaction with the three factors since we don’t have replications.
The model does not include the full interaction effect between the three factors,
since the simulation model is deterministic. Furthermore, the interaction plot and
the “Tukey” comparison per each model is presented with the followed

discussion.

Analysis of Variance
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The analysis of Variance conducted present the results per each response variable.
Therefore, we are working with five different models and 5 different analyses.
Significance level used for the ANOVA is 0.1 as an alpha value.
Consequently, the hypothesis for the linear model stands as:
Ho: There is no difference in the treatments/full model is not statistically significant.
Ha: at least two treatments are different/full model is statistically significant.
So, the p-value must be less than the alpha value 0.1 to reject Ho. Then the model
is statistically significant.
The hypothesis analyzed based on the ANOVA tables for interaction effects are:
Hoa2: factor 1 and factor 2 interaction is negligible.
Hu12: factor 1 and factor 2 interaction is not negligible.
Hoas: factor 1 and factor 3 interaction is negligible.
Hi13: factor 1 and factor 3 interaction is not negligible.
Hoz3: factor 2 and factor 3 interaction is negligible.
Hi23: factor 2 and factor 3 interaction is not negligible.
The decision rule for those hypotheses is that the p-value must be less than the alpha

value 0.1 to reject Ho.



Source DF | Sum of Squares  Mean Square | F Value Pr>F
Model 17 22519 16667 1324 65686 19544 <0001
Error 40.66667 6.7T778
Corrected Total | 23 22559.83333
R-Square | Coeff Var | Root MSE | Sact Mean
0998197 1577032 2603417 1650833

Source DF | Typel S5 Mean Square F Value Pr>F
Iti 1 7561.50000 756150000 111563 <0001
GTRules 2 433333 216667 032 0.7380
ATRules 3 1434583333 478194444 70553 <0001
Iti*GTRules 2 37.00000 18.50000 273 01436
Iti*ATRules 3 517.83333 1726111 2547 0.0008
GTRules*ATRules | 6 52 BEBET 877778 1.30 | 0.3808
Source DF | Type lll 5§ Mean Square | F Value | Pr>F
Iti 1 7561.50000 7561.50000 111563 <0001
GTRules 2 433333 216667 032 0.7380
ATRules 3 1434583333 478194444 70553 <.0001
Iti*GTRules 2 37.00000 18.50000 273 01436
lti*ATRules 3 517.83333 172 61111 2547 0.0008
GTRules*ATRules | 6 52 6B6ET 877778 1.30 | 0.3808

Figure 10. ANOVA Table for Sequence Actions as a Dependent Variable.

Source DF | Sum of Squares  Mean Square | F Value | Pr=F

Model 17

Error

Corrected Total | 23

3835.833333 225637255 26.72 0.0003

50666667 8.444444
3886.500000

R-Square | Coeff Var | Root MSE | Cflict Mean
0.986963

Source

Iti

GTRules
ATRules
Iti*GTRules
Iti*ATRules
GTRules*ATRules

Source

Iti

GTRules
ATRules
Iti*GTRules
Iti*ATRules
GTRules*ATRules

=]

DF

@ W N W N

F

@ W o W N

7.597209 | 2.905933 38.25000

Type | 55 Mean Square | F Value
864.000000 864.000000 102.32
27.000000 13.500000 1.60
2723 500000 907.833333  107.51
3.000000 1.500000 0.18
192.333333 64111111 7.59
26.000000 4.333333 0.51

Type lll S5 Mean Square | F Value
864.000000 864.000000 102.32
27.000000 13.500000 1.60
2723 500000 907.833333  107.51
3.000000 1.500000 0.18
192.333333 64.111111 7.59
26.000000 4.333333 0.51

Pr>F
<0001
0.2776
=.0001
08415
0.0182
07815

Pr>F
«<.0001
0.2776
=.0001
08415
0.0182
07815

Figure 11. ANOVA Table for Number of Conflicts as a Dependent Variable.
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Source DF | Sum of Squares  Mean Square F Value Pr>F
Model 17 216612.1440 12741.8908 3714.94 <0001
Error [ 205794 34299

Corrected Total | 23 216632 7234

R-Square CoeffVar Root MSE FTime Mean
0999305 0.151742  1.851999 1220496

Source DF  Type | SS Mean Square F Value Pr>F
Iti 1 181381.1840  181381.1840  52882.3 <.0001
GTRules 2 2.0598 1.0299 030 07511
ATRules 3 32100.5313 107001771 | 3119.67 <.0001
Iti*GTRules 2 1.9931 0.9965 029 07578
Iti*ATRules 3 3102.3106 10341035 | 301.50 <0001
GTRules*ATRules 6 24.0652 4.0109 117 0427

Source DF Type lll SS Mean Square F Value Pr>F
Iti 1 181381.1840  181381.1840 | 52882.3 <.0001
GTRules 2 2.0598 1.0299 030 07511
ATRules 3 32100.5313 107001771 | 3119.67 <.0001
Iti*GTRules 2 1.9931 0.9965 029 07578
Iti*ATRules 3 3102.3106 10341035 | 301.50 <0001
GTRules*ATRules 6 24.0652 4.0109 117 0427

Figure 12. ANOVA Table for Flight Time as a Dependent Variable.

Source DF | Sum of Squares | Mean Square  F Value Pr>F
Model 17 34949883849 2055875521  3248.03 <0001
Error 6 3797769 632961

Corrected Total 23 34953681618

R-Square  Coeff Var | Root MSE | TMDist Mean
0999891 0.159594  795.5883 498508.5

Source DF Type | 55 | Mean Square | F Value Pr=F
Iti 129912584945 | 29912584945 472581 <0001
GTRules 2 474151 237076 0.37 0.7026
ATRules 3 4560621424 1520207141 | 2401.74 <.0001
Iti*GTRules 2 287703 143852 023 08033
Iti*ATRules 3 471737542 157245847 24843 <0001
GTRules*ATRules | & 4178084 696347 110 04554
Source DF Type lll 55| Mean Square | F Value Pr>F
Iti 129912584945 29912584945 472581 <0001
GTRules 2 474151 237076 0.37 07026
ATRules 3 4560621424 | 1520207141 2401.74 <0001
Iti*GTRules 2 287703 143852 0.23 0.8033
Iti*ATRules 3 471737542 157245847 24843 <0001
GTRules*ATRules | & 4178084 696347 1.10 04554

Figure 13. ANOVA Table for Track Mile Distance as a Dependent Variable.
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Source DF | Sum of Squares  Mean Square F Value Pr>F
Model 17 1.6263486E13 956675650912 | 2099.05 < 0001
Error 6 2734594642 455765773 67

Corrected Total | 23 1.6266221E13

R-Square | Coeff Var | Root MSE FuelB Mean
0999832 | 0177819 21348.67 12005824

Source DF Type | S5 Mean Square F Value | Pr>F
Iti 1 1.3020771E13  1.3020771E13  28569.0 <0001
GTRules 2 206192953.04 103096476.52 023 0.8041
ATRules 3 2.9608878E12 986962604521 2165.50  <.0001
Iti*GTRules 2 291163925.63 145581962.82 032 07382
Iti"ATRules 3 278828016005 92942672002 203.93 <0001
GTRules*ATRules 6 2502124108 417020684 67 091 05416

Source DF Typelll §5 Mean Square FValue | Pr>F
Iti 1 1.3020771E13 1302077113 28569.0 | <.0001
GTRules 2 206192953.04 103096476.52  0.23 | 0.8041
ATRules 3 29608878E12 986962604521 216550 <0001
1ti*GTRules 2 29116392563 14558196282 032 | 07382
Iti*ATRules 3 278828016005 92942672002 20393 <0001
GTRules*ATRules| 6 2502124108 417020684.67  0.91 | 0.5416

Figure 14. ANOVA Table for Fuel Burn as a Dependent Variable.

The evaluation of the 5 models using the ANOVA concludes that, at 0.1 level of
significance, all the linear models are statistically significant. So, we reject Ho in
our first hypothesis analysis. However, the interactions between factor 2 and the
others factors are greater than 0.1 as an alpha value, which means we fail to reject
Ho in the interaction hypothesis. In contrast, the interaction between factor 1 and
factor 3 is significant and we can reject Ho.

The hypothesis analyzed based on the ANOVA table for the main effects is:

Hoz: main effect for factor 2 is negligible.

Hi2: main effect for factor 2 is not negligible.

The decision rule for this hypothesis is that the p-value must be less than the alpha

value of 0.1 to reject Ho.
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The Ground Traffic Rules (GT Rules) or factor 2 is not significant at 0.1 level, since
the three-way ANOVA shows that the p-value of GT Rules (factor 2). So, we fail
to reject Ho and the main effect of factor 2 negligible. There is not necessity to test
the other main effects since the interaction between factor 1 and 3 is not negligible.
Figure 3 shows that the p-value of GT Rules is 0.738 when the number of sequence
actions as a response variable. Figure 4 shows that the p-value of GT Rules is
0.2776 when the response variable is the number of conflicts. Figure 5 shows that
the p-value of GT Rules is 0.7511 when the response variable is the flight time.
Figure 6 presents that the p-value of GT Rules is 0.7026 when the track mile
distance is the response variable. Figure 7 presents that the p-value of GT Rules is
0.7382 when the fuel burn is the response variable. In other words, the GT Rules
has not significant effect in the dependent variables or Air Traffic KPlIs.
As it is mentioned before, the “Iti” or Itinerary and the AT Rules or Air Traffic
Rules are statistically significant at 0.1 level. So, AT Rules and Itinerary have an
effect over the Air Traffic KPIs. Therefore, the following analysis of interaction
plots and Tukey pairwise comparison is going to be considering only between those
two factors.

Interaction Plots
The objective of the interaction plots is to understand how the interaction can

affect each response variable.



Table 4. Interaction Plot Summary

Plot

Plot Description

Interaction plot of Sequence Actions
as a response variable by Air Traffic

Rule

Interaction plot of Sequence Actions

as a response variable by Itinerary

Air Traffic Rulas

Interaction plot of Number of
Conflicts as a response variable by

Air Traffic Rule

Interaction plot of Number of
Conflicts as a response variable by

Itinerary
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Table 5.Interaction Plot Summary

Plot Plot Description
Interaction plot of Flight Time as a
' response variable by Air Traffic Rule
Interaction plot of Flight Time as a
response variable by Itinerary
- Interaction plot of Track Mile
e Distance as a response variable by Air
e Traffic Rule
Interaction plot of Track Mile
Distance as a response variable by
| Itinerary




Table 6. Interaction Plot Summary

Plot

Plot Description

Fuel Bum
14000000

13000000

12000000

11000000 +——

Interaction plot of Fuel Burn as a

response variable by Air Traffic Rule

,,,,,
14000000

13000000

12000000

11000000

Interaction plot of Fuel Burn as a

response variable by Itinerary
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Table 4 shows the interaction plot for Itinerary and Air Traffic Rules using the response

variable as sequence actions, and the same type of plots using the response variable the

number of conflicts. The plots of sequence actions show that the Air Traffic Rule level

1, which is 3NM miles, minimize the numbers of sequence actions. In contrast, the plots

of numbers of conflicts present that the Air Traffic Rule level 3, which is 7NM miles,

minimize the numbers of conflicts and the level 1 of “ATRules” is the worst for this

purpose.
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In addition, table 5 shows the interaction plot for Itinerary and Air Traffic Rules using
the response variable the Flight Time and the same kind of plot using the response
variable the Track Mile Distance. The plots of Flight Time and Track Mile Distance
show the same. The Air Traffic Rule at level 1 minimizes both response variables.
Finally, the table 6 shows the interaction plot for Itinerary and Air Traffic Rules using
the response variable the Fuel Burn. This plots shows that the level 1 of Air Traffic
Rules minimizes the Fuel Burn. Therefore, there is an issue between the interaction plot
results from the number of conflict and the others interaction plots, since the level 1 of
Air Traffic Rules minimize all the response variables except the number of conflict,
which is maximized.

A. Pairwise Tukey Comparison

In order to conduct the corresponding family of tests of the form:

Ho: D=0

Hi: D#O

The objective is to find the significance of the comparison. So, if 0 is included in the

confidence interval that means that is not statistically significant.
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(@) Sequence Actions

Least Squares Weans for Effect It*ATRules

Difference Between Simultaneous 0% Confidence Limits

Least Squares Means for Efect [H#ATRules i Means for LStean{il-L SMean(i
Between | Si fidence Limits

i Mea for LSMean(i}-L SMean(j}
12 56333333 74 101787 53584878 35 77.333333 09.564579 85101787
13 -45,000000 -53.788454 -38.231548 5 29888887 21898213 7435121
14 £2.000000 70 Tes4sa _e5.231548 3|7 24.686867 16838213 32435121
1| 5 31.333333 23564878 38.101787 8 19.000000 11.231548 20788464
16 -16:333333 -24.101787 -8.564579 5 54333333 56564878 102101787
1|7 21333333 -29.101787 -13.664879 48 46660007 38.698213 54435121
18 -27.000000 -34. 788454 -19.231548 a7 #1.660087 33.898213 49436121
23 20333333 12.584879 28.101787 48 36000000 28231548 43768454
24 3333333 -2.435121 11101787 56 47686667 -55.4361 21 39896213
25 7 666687 89.896213 105426121 57 -52.680867 60 436121 2483213
26 50.000000 42731548 57768454 58 58333333 -66.101787 50564378
2|7 45,000000 7 231548 53768454 67 -5,000000 -12.788454 2763454
28 35333333 31564878 47101787 6 8 -10.686667 -18 435121 283213
34 -17.000000 -24 788454 2231548 78 -5.6a668T 13,4351 21 2101787

Figure 15. Pairwise Tukey Comparison for Sequence Actions

Figure 15 shows the 36 pairwise comparison of Tukey. Consequently, the figure 8

shows the following information.

All the comparisons are statistically significant, except:

The comparison between sequencing actions when the interaction is high season
itinerary and 5NM as Air Traffic Rule and the sequencing actions when the
interaction is high season itinerary and 10 NM.

The comparison between sequencing actions when the interaction is low season
itinerary and 5NM as Air Traffic Rule and the sequencing actions when the
interaction is low season itinerary and 7 NM.

The comparison between sequencing actions when the interaction is low season
itinerary and 7NM and the sequencing actions when the interaction is low season

itinerary and 10NM as Air Traffic Rule.
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(b) Number of Conflicts

Least Squares Means for Effect ItFATRules
Least Squares Means for Effect ItFATRules Difference Between  Simultaneous 90% Confidence Limits
Difference Between Simultaneocus90% Confidence Limits i === )

i Means for LSMean(il-L SMean(i) 2[5 [— [ JE—
1)2 semEst el il I -£.000000 12671148 2671148
113 1323282 Z2EE2188 000473 |37 53333 a3e7@1z 14004475
14+ B 1m.eazss bo0ars) [y 2000000 5671148 11671148

15 15000000 8328854 23671148
45 -11.333333 -20.004473 -2662188

18 pLEEr) 17682188 5004472
0 8671146 671145

17 2660887 7585 45337812
= = I P 10323333 1682188 19004479

18 34333333 26682188 43004473
2.000000 0671148 16.671148

23 24600067 15.995521 33337812
11.333333 2682188 20004479

2 4 196666867 10.895521 28337812
57 21.800887 12898821 20337312

25 5233232 0.3a7312 17.00467%
19.333332 10,2128 25004473

26 19.688867 10.925521 28337812
6 7 10233332 1662188 12,004475

27 20.000000 21.228854 8671148
£.000000 0671148 18.871146

28 27 egeee’ 18.995521 6337812
78 233332 -11.004478 sa3m12

3 4 -5.000000 -13671148 3671148

Figure 16. Pairwise Tukey Comparison for Number of Conflicts

Figure shows 16 that the majority of the comparison are significant because they are

not including 0 in the Tukey Confidence Interval. The following are the exceptions:

1. High Season Itinerary with 3NM vs High Season Itinerary with 5SNM.
2. High Season Itinerary with 5SNM vs Low Season Itinerary with 3NM.
3. High Season Itinerary with 7NM vs High Season Itinerary with 10NM.
4. High Season Itinerary with 7NM vs Low Season Itinerary with 5SNM.
5. High Season Itinerary with 7NM vs Low Season Itinerary with 7NM.
6. High Season Itinerary with 7NM vs Low Season Itinerary with 10NM.
7. High Season Itinerary with 10NM vs Low Season Itinerary with 5SNM.
8. High Season Itinerary with 10NM vs Low Season Itinerary with 10NM.
9. Low Season Itinerary with 5NM vs Low Season Itinerary with I0NM.

10. Low Season Itinerary with 5NM vs Low Season Itinerary with 10.



(©) Flight Time, Track Mile Distance and Fuel Burn

i| i Means
1|2 -18.802223
13 -54.110000
14 -125,900000
15 149458887
18 129678667
17 123150000
18 82.378667
z|a -24 308687
24 -108 D9EEET
25 169260000
26 159.480000
27 142952222
2 102180000
34 71720000

Least Squares Means for Effect It*ATRules
Difference Between | Simultaneous 30 Confidence Limits

for L Sheani}-L Sheantj)

2522959
-59.636250
-131.426268
142.20401
134150401
117.623724
77850401
29830930
111622832
183733734
152.953724
137.427088
97.653734
77218258

14277088
-28.583734
-120.373734.
154.962932
145.202932
128.676265
88.502930
28780401
-100.570401
174726086
165.006255
145.479599
108.708265
-58.263724.
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Least Squares Means for Effect It"ATRules

Difference Between  Simultaneous 0% Confidence Limits
i for LSMean(il-L Shean(j)

N o m N o oo w N

@ o~

203.560867
133.788667
177.260000
137486667
275356667
265570667
248.050000
209278667

8780000
-26,208667
56080000
-16:526667
-56:300000

23773333

192.040201
188280401
171733734
131960201
252.820401
280.050401
243573734
202750401
-15.208256
31830820
71608256
22082502
-61.826258
45299559

209.080532
198.312502
182786286
142012832
250882522
71102502
354 578260
214502522

4252734
-20.780401
-50.553724.
11000401
-B0.773TR4.

34247088

Figure 17. Pairwise Tukey

Comparison for Flight Time
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Least Squares Means for Effect Iti*ATRules
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Least Squares Means for Effect Iti*ATRules

Difference Between | Simultanecus 30% Confidence Limits
for LSMean(i}-L SMean(j)

Means
&1404.

TIT4T

71250

58870

108017
105359
99467

84482
3667333333
-BE554 866667
24535
5857333333

-12880

T
75373
69478
54458
108843
102385
7088

6031227122
-11829
25309

8271 227122
-23281

17384

83778
£0121
74224

111281
107733
101238
85658
1283339645
TIE0.6T2ETE
-2z181
3607 339545
-18503

-12608

Figure 18. Pairwise Tukey Comparison for Track Mile Distance

i Weans
12 -18aTT4
13 -518002
14 -1209758
15 1248276
16 1138233,
17 978001
18 802488
23 -a16228
2 4 -1003984
25 1448050
28 1338007
27 117ET7E
28 802272
3 4 883756

Least Squares Means for Effect Iti*ATRules

Difference Between Simultaneous 90% Confidence Limits

for LSMean(il-L SMeanlj)

-aaaT7
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Least Squares Means for Effect tiATRules

Difference Between | Simultaneous 0% Confidence Limits
for L SMean(ij-L Shean(j)

Means
1762278
1854735
1485003
1112500
2456024
2347891
2188759
1812256
-108042
267275
842778
153232
-524725

-a7EE02

1896575
1590532
1431200
1055797
et

2784288
2125058
1749583
171746
330978
-Tog481

-222905
536438

433208

1825982
1717838
1558706
1182203
2519728
2411895
2252462
1878360

44340
203572
-5T0TS.

95529
471032

211798

Figure 19. Pairwise Tukey Comparison for Fuel Burn.
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Figure 17, 18 and 19 shows that none of the comparison include 0 in the interval, so all of

them are statistically significant.
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d) Preliminary Conclusions
As a conclusion, the three-factor complete factorial design linear model is statistically

significant at 0.1 level of significance. However, the Ground Traffic Rules is not significant
at 0.1 level of significance, so it has not effect in the Air Traffic KPIs. After, some empirical
interviews the Air Traffic Controllers were changing the Ground Traffic Rules to make a
Union pressure, so the Ground Traffic Rule produce an effect in the performance of the
operation when the Air Traffic Rules use 7 to 10 minutes, which is way beyond the range
of this particular experiment.

The main objective of the simulation model is to minimize the Air Traffic KPIs, so the
interaction plots shows that the level 1 of Air Traffic Rules is the best to minimize the
number of Sequence Actions, the Flight Time, the Track Mile Distance and the Fuel Burn,
but it is not the case of Number of Conflicts. In other words, 3NM if is used as a standard
for Air Traffic Rule can reduce almost all the KPIs, except the Number of Conflicts, which
i better reduced at 7NM. Which is interesting for this air route redesign used for the
simulation is that over 7NM the tendency for Number of Conflicts increase, while in the
actual layout from empirical interviews over as increase the Air Traffic Rule decrease the
Number of Conflicts.

Based on the Tukey Pairwise Comparison, the analysis when the number of Conflicts is
the response variable appears to have 10 over 36 comparisons as not statistically
significant. Which include 4 of the 8 comparisons using the level 3 of Air Traffic Rules.
The level 3 of Air Traffic Rules is who minimize the number of conflicts based on the

interaction plots.
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2) Second DACE
Also, the RAID lab from the University of Texas at Arlington propose to Panama Academia
a Conference to understand the Air operation and the opportunities to apply Airspace
Optimization and Collaborative Decision Making. This conference was possible thanks to
USA Embassy in Panama, the AAC, COPA, FAA, TOCUMEN, UTP, ICAO, IATA and

other companies and international institutions.

Therefore, we collect a second set of data from TAAM that included 6 Key performance
indicators. Those inputs and several meetings with COPA, Tocumen International Airport
and The Autoridad de Aeronautica Civil (AAC) has the following outcomes to analyze:

a. The first experiment in the software name TAAM had 2 factor that were statistical
significant at all the levels. Four of the Key Performance Indicators behave
similarly, but one was the contrary of the others 4. In other words, safety is
proportionally inverse to Fuel burn consumption.

b. The second experiment included delays, but did not include more than one itinerary,
as result the first 5 Key Performance indicators were not statistically significant and
just delays was. As a matter of fact, this study did not use Ground Traffic Rules,
because was statistically insignificant the first time, and did not use more than one
itinerary. The Factors were growth and Air Traffic Rules.

The results of this Experiment were different than the first one, with not level of
significant at alpha 0.1 for Air Traffic Rules per each KPI.
Consequently, there are two possible options, since the first time the consideration

was a model based on Point Merge, which is more sensible to the Air Traffic Rules.
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The other option is the lack of two itineraries for the study. Although, the research

can take that set of data as a control data in term of forecast for future studies.

3) Data Exploration and Classification
The data exploration includes some previous data from December 2015 that can give
us an idea of the performance of the daily or hourly operation.
For example, figure 20 shows the data exploration of the arrivals and departures of

December 2015.

Behaviour of the Operations in Tocumen - Worst Case Scenario

Figure 20. Behavior of the Operation in Tocumen — Worst Case Scenario- Dec 2015.

December is one of the most difficult months just in terms of volume, but that in
particular was a headache for the Operation, since they lost the only control tower at
the airport for an issue with bug infestation. (5) This data set can be an example of
worst case scenario, that include high season, rain season, and emergency respond,
since some of the flights were not able to land in Panama, but Costa Rica.

In addition, some other data exploration can help to understand the behaviour of that
particular month. For example, the plots can present the behaviour of the arrivals and

departures per hour and per day, or the sum of the operations per day. Figure 21 shows
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how is the pattern of the whole operation per hour. Figure 22 shows that there is not
much difference between the sum of the arrivals and departures per day. Figure 23
shows that when the arrivals are high in one particular hour the departures are low and
vice-versa, which means that from hour 7 to hour 24 the system is close to the maximum

capacity and the maximum number of operations is fixed.
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Figure 21. Sum of Number of Operations during December 2015.
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Figure 23. Contrast between Number of Arrivals and Number of Departures per hour.

VI. RESEARCH GOALS, OBJECTIVES OR AIMS

A. Research questions

The main concern that we found in the Airspace Optimization Conference and Workshop in 2017
was the level of congestion in the air, since the last year Copa Airlines described a comparison

analysis between Tocumen International Airport and other airports in Latin America with better

management of the demand, in number of operations per day, than Panama.

Since, the air traffic is being managed with fixed air routes without any redesign for more than 30
years, the AAC approach to solve the problem was to redesign the air routes. However, it came to
my attention the possibility to improve the actual system without changing the air routes, process
that can take 4 years in studies and implementation (2). In other words, there is something in the
airspace management that can be improved to reduce the air traffic congestion in a short period of

time. Therefore, this logic of improvement of the system without changing the design of the air

routes through reducing congestion leads me to my research question.

56
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Can Air Traffic Congestion in Panama be reduced through minimizing the impact of historical

congestion variables?

B. Objectives
» Specific Objective #1: Determine which variables are most relevant to minimize Air Traffic

Congestion.

+ Specific Objective #2: Determine the significance of the variables and their impact on the Air

Traffic Congestion.

» Specific_Objective #3: Identify the cost effectiveness of the variables on Air Traffic

Congestion.

C. Hypothesis
In order to address the specific objectives, | did investigate the following hypothesis.

Null Hypothesis 1: Equation 17 is statistically significant at 0.05 alpha value.
Alternative Hypothesis 1: Otherwise.

Null Hypothesis 2: The Congestion Factor has an exponential effect over the minimum
Nautical Miles per model.

Alternative Hypothesis 2: Otherwise

Null Hypothesis 3: One objective function can be identified from Rastrigin, Rosenbrock,
Levy and Sphere equations.

Alternative Hypothesis 3: Otherwise

Null Hypothesis 4: A Genetic Algorithm with Game Theory is the better approach to solve
the multi objective integer optimization model.

Alternative Hypothesis 4: Otherwise
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Null Hypothesis 5: All Factors studied in the META Model are statistically significant at
alpha of 0.05.

Alternative Hypothesis 5: Otherwise

After some challenges in the data collection, we decide to adapt the hypothesis 4 and 5.
Null Hypothesis 4: Unified Optimization Method Applied to Vehicle Routing (82, 83) is
the preferred model to minimize value of Nautical Miles.

Alternative Hypothesis 4: Otherwise

Null Hypothesis 5: Genetic Algorithms is the preferred Method for Multi-objective
optimization between minimizing cost for fuel burn in contrast to maximize capacity (79)

Alternative Hypothesis 5: Otherwise

The specific objective 1 is addressed with the hypothesis one and partially the hypothesis
two, the specific objective 2 is addressed for the hypothesis 3 and revised hypothesis 4, and
the specific objective 3 is addressed with the revised hypothesis 5.

In order to test my hypothesis, | seek to create a model, which will be explained at the
Design step of the Methodology, which pursues to minimize the air traffic congestion in

Panama. Therefore, | will test the feasibility of these variables in scientific manner.
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VIl. METHODOLOGY

Figure 24. Design for Six Sigma-Research

A Motorola engineer named Bill Smith credits the term “Six Sigma”. The label “Sig Sigma”
originates from statistical terminology. The meaning of Six Sigma is to reduce defects,
increase company productivity, and improving company profitability. (8). Many
practitioners utilize the Six Sigma methodology DMAIC or Define, Measure, Analyze,
Improve and Control. In the planning phase, problems must be defined and measured before
a set of solutions can be evaluated. In the Predict phase, researchers analyze the data
measured, design and implement new process or tools to solve the problem, and then analyze
the new processes and tools to determine how well the solution solved the problem (8). In
the case of RAID labs, a methodology known as DFSS-R or “Design for Six Sigma-

Research” is applied which is presented in figure 24.
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A. Phase 1: Plan
1) Define: Methodology Definition

a)

b)

Data Management and Data Analytics
The plan for Data Management includes the objective 1 and 2 to understand the data

and select which data is suitable to run any experiment, simulation or optimization.
Also, the previous DACE studies can give a proper guide in the capacity optimization.
In addition, there is a data base from 2007 to 2016 that was evaluated to understand
the pattern in the arrivals and departures behavior.

Data Classification

Since, the operation of the Tocumen International Airport is based on six-bank-hub,
there are two ways to classify the data. The first one is just taking the time frame per
day of the six bank hub form 6:05 a.m. to 10:08 p.m. and the second one is taking the
24 hours of operations (52). This is an important consideration because the congestion
in the arrivals is mainly in the time frame of the six-bank hub. However, the
classification can be based on season, months, days and even per hour.

Multi Objective Optimization

We took in consideration the data from 2016 DACE model to evaluate the feasibility
of the multi-objective optimization. The challenge is to maximize capacity and reduce
5 KPIs studied in the first DACE 2016 model. We evaluated the methodologies of
multi-objective optimization, and we found that the evaluation of more than 3
objectives functions is not real. We tried to select just two Key Performance Indicators
that in our case will be Fuel Burn Consumption and number of Conflicts, since the
number of conflicts is the safety indicator. The safety will be always the first priority

in aviation, so it is better to focus in minimize the number of conflicts alone. However,
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since the economic aspect is really important to balance the operation we will optimize
two objective functions. The first one considering the Number of Conflicts and the
second one minimizing the fuel burn consumption, which has impact on the safety,
because if the aircraft run out of fuel it considers it a high risk situation.

However, one of the fundamental aspects of Air Traffic Flow and Capacity
Management is to optimize capacity, there is a further consideration based on the
DACE 2017 model, which is the direct relation between demands in contrast to each

Key performance indicator.

DACE META MODEL

In many engineering optimization problem, evaluating the objective function is a
challenge since the objective function is unknown. There are some computer
simulators which are capable of simulating the response. However, the running time
of these simulators are considerable. The problem design, like airspace optimization,
is dealing with this challenge mostly. There are several design parameters that affect

the objective function which should be optimized.

Designing a computer model that efficiently estimates the black box function in order
to find the optimum solution is a response to this challenge. However, finding the
optimum modelling parameters is the main focus of this study; number of initial
observations, initial points design method, different objective function evaluation can

be considered to get the best estimate of the objective function.

The model has the following steps: Initialization (Designing the initial data points),

building a tree on top of initial data set, fit a model on terminal nodes’ observations,
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find the confidence band over fitted model, choose the optimum new sample regarding
the bands and rules of the tree for each terminal node, refit the model with the new

data set.

The objective with the initialization is 1) to set different design of experiments
methods (Sobol, Orthogonal Array, Latin Hypercube design) 2) to test different
objective functions; Rastrigin, Rosenbrock, Levy and Sphere per eack key
performance indicator. 3) to test different multiobjective optimization; Goal

attainment, Minimax, Multiobjective genetic algorithm.

After the initialization step, building a tree and fitting a model on terminal nodes come

next. In this study we try fit a Multiple Linear Regression (MLR) on terminal nodes.

Also, the project will include the optimum sample analysis. In this step, we will study

adding one by one the optimum samples obtained by each terminal node.

Thus, the planning of the DACE model did not find a suitable approach, after we select
the data from the AAC historical dataset, since we set the optimization model based

on the actual operations constraints to be a Mixed Integer Linear Programming.

2) Measure
The Measurements was planned to evaluate if the historical data distribution cannot fit the

Weibull, Normal, Logistic, Kernel, or Poisson Distribution, with a Maximum Likelihood
estimate bellow 1. Also, identify a suitable objective function for the black box model,
finding the minimum value per each KPI. Try to find the minimum value of Air Traffic

Rules between 3NM and 7NM that can keep the KPIs in balance.
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However, the actual measurement was the identification of the metrics that affect the
congestion, the dependent variable and the independent variables. Also, the identification
of the metrics for the optimization objective function and the constraints. Furthermore, the
metrics for the transformation of the sum of the flight mileage to cost of fuel burn, took

different measures and transformation of metrics.

B. Phase 2: predict

1) Analyze:
The analysis of the air traffic operation includes the Design and Analysis of Computer

Experiments (DACE) to understand the previous simulation model and the relationship
between factors and Key Performance Indicators. Also, the data mining analysis of the
historical data from AAC. The other phase is the stochastic and probability analysis of the
data from AAC and other inputs from the interviews, workshops, meetings and the
empirical observation. Furthermore, the process diagram from figure 3 shows that the
fourth phase is to define different approaches to minimize the objective function with
multiple objectives. The last phase includes the DACE META MODEL and the control
step that includes the reliability, statistical and economic analysis. However, as we stand
before, we did not perform the DACE META MODEL, but we did a Statistical META
MODEL that made a mixture between Statistical Process Control, Optimization and

Engineering Economics using Operational Research tools for Uncertainty.
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Figure 25. Analysis Process

Model Description
Some organizations and studies are based in the redesign of the Air routes, technology

implementation and the interaction of the air traffic flow with the airports.

However, this study is focused on the necesisty to support the air traffic controler
decision-making in real time. How the air traffic controllers can reduce uncertainty

while making decisions, so the study has two levels

The first level is ideal air traffic flow, base on a simulation model where everything is

smooth and we can even apply standard air traffic rules for every aircraft.

The second level of the study deals with the data availability about the traffic

performanc, in the event that the simulation does not present realistic output. The
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factors include types of aircrafts, arrival distribution per route, time on the air space of

Panama before landing.

Also, the study presents a model that include different stochastic and probability
aproaches to understand the historical data, and translate that information for future
possiblitlities, these will serve as an input for different optimization approaches by
taking training and test data to ahieve a reliable source or options for the air traffic

controllers.

The model starts with some level of uncertainty about the future of the air traffic flow.
However, there are some fixed information, like the itinerary planned by each airline.
The experience of each air traffic controller is a key factor to respond in real time to
the issues about congestion in the arrivals. In contrast, the model does not include the
experience of the air traffic controller as a mathematical factor, the study does include
some of the inputs from interviews, meetings, workshops, and empirical observation

with air traffic controllers, pilots, analyst, executives and real time decision-makers.
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UNCERTAINTY

AIR TRAFFIC CONTROL DECISION-MAKING AIRCRAFT PILOT DECISION-MAKING IN REAL

PROCESS IN REAL TIME TIME
1. DESIGN AND

ANALYSIS OF
COMPUTER
EXPERIMENTS
2. DATA MINING
3. STOCHASTIC AND
PROBABILITY
ANALYSIS
4. COMBINATORIAL
OPTIMIZATION
5. LINEAR
REGRESSION
6. ENGINEERING
ECONOMIC

DATA ANALYTICS

AIR TRAFFIC

FLOW MANAGEMENT CAPACITY MANAGEMENT SAFETY

MORE RELIABLE AND COST EFFICIENT AIR TRAFFIC

Figure 26. Theme Diagram
3) ldentify:
The impact analysis in this case will be the test of each hypothesis. Also, Identifying the cost
associated to the fuel burn and the cost per operation without the fuel consumption, for the final

optimization model.

C. Phase 3: perform

1) Optimize:
The minimization functions can help reducing the risk of the landing and departure operation
of the Tocumen International Airport. However, the other objective is to maximize the number
of operations.
The proposed optimization technique is a linear programming to minimize the cost associated

to the fuel burn obtained per flight time in contrast with the number of operations that the system
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wants to maximize between 40 operations per hour to 60 operations per hour. Based on the data
set of AAC from December 2015, the average number of operations per hour at the Tocumen
International Airport was 18, the minimum was 1 and the maximum was 43. This information
is based on a whole day and not the six-bank hub operation.

Equation 7 Tentative Formulation for cost minimization
Minimize:Z = C,X; — C, X,
S.t.
a < (CX; <bh
c < GX, <d
X, X, <0
Where Z = Total cost per flight
“C1” is the cost per gallon
“a” is the minimum of fuel burn in gallons per flight obtained from the multi-objective
optimization
“b” is the maximum of fuel burn in gallons per flight on record
“X1” 1s the number of gallons per flight
“C2” is the rest of the cost associated per flight per operation does includes the fuel cost.
“c” is the minimum of operations that the airport wants to handle per hour
“d” is the maximum number of operations that airport can handle per hour

“X2” is the number of operations per hour

However, the optimization formulation was not used as it is in equation 7, instead we use the

transformation of the sum of flight mileage to cost of fuel burn used.

2) Verify:
The data exploration and the classification will help in further statistical analysis to understand
or even test with new data the model with DACE. Also, there is a comparison between the
CART with the R-square value versus the p-value. Therefore, the proposal is to check each

factor and if has a statistically significant impact over the percentage.
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VIIl. RESULTS
» The specific objective 1 is to determine which variables are most relevant to minimize Air

Traffic Congestion. Consequently, we took in consideration the information from the empirical
interviews, meetings, model comparison, the literature review and study of the data available
to start using some tools from Statistical Process Control, such as Cause and Effect Diagram
and Linear Regression to test the significance of those factors over the congestion addressing

at the same time the specific objective 2.

A. DATA COLLECTION AND DATA EXPLORATION

During the first study at Panama, we collected data about the 5 key performance indicators that
Copa were using to measure the performance of the airspace over the operation. However, that
data was limited to 24 treatments of 5 key performance indicators, so it was too short to evaluate
historical data. Also, the information was limited, since they did not share the itineraries used. So,
we took the AAC data base that they share to us in 2017 that includes some operations from 2015,
2016 and 2017. The dataset from AAC has all the itinerary information and the specific air routes
the aircraft was using during each operation. Consequently, we started the evaluation of the data
to understand how the congestion can be measure, and what other information can we obtain that

can impact the congestion.

The data sample contains information of 181 days, or 6 months that include February and March

2015 operations, June, July and August 2016 operations, and January 2017 operations.



69

Type | error test:

Ho: The sample is statistically significant at 0.01 alpha value.

Ha: The sample is not statistically significant at 0.01 alpha value.

When we calculate the alpha value for is far less than 0.01 alpha value.
The tools used for the data exploration were Tableau, Microsoft Excel and MATLAB. The tool
used for the statistical analysis was SAS. The tool used for the Optimization was MATLAB, and

the too used for the Economic Analysis was Microsoft Excel.

The original dataset from AAC (Panamanian Government Agency) is confidential, so we did not
add that data and the processed data in the appendix. Consequently, the original dataset from AAC,
the data used for the Multiple Linear Regression Models, the data used for the Optimization and
the data used for Engineering Economic analysis is saved at a digital repository at the Dissertation

Supervisor office.
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B. ISHIKAWA ANALYSIS AND LINEAR MODELS
1) Approach

STEP 1. CREATE
ICHICAGUA
MODEL

STEP 4.
APPROVE
LINEAR MODEL
OR GO BACK TO
STEP 1

STEP 2. SET

LINEAR MODEL

STEP 3. TEST
LINEAR MODEL

Figure 27. Approach for Ishikawa model with Linear model testing

The approach to analyse the linear models include four steps. The first step of the approach
is the design of a Cause and Effect diagram model based on the empirical interviews,
empirical observation, data collected, and literature review. The second step is the
formulation of the linear model of the Cause and Effect diagram. The third step is to test
the linear model based on linear regression methodology. The fourth step is to approve or

not the linear model based on Design of Experiment model selection with F value testing.
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Air Traffic
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Figure 28. Cause and Effect Diagram
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The first Cause and effect diagram shows the whole system with the consideration of the

five main factors that affect the operation in Panama from empirical interview, data

evaluation and the Air Optimization Conference. Also, this model includes sub equations

that describe the sub branches from each main factor.

Equation 8. First Ishikawa Model.

Y =AX; +BX2 + CX3+DXs + FXs + €

Table 7. Model Notation

Variable | Name Metrics
X1 Regulations No of Operations affected by a violation
of the regulation
Xz Stakeholders No of Operations affected by a error or
bad decision from the stakeholders
X3 Investment No of Operations affected by the
investment
Xa Nature No of Operations affected negatively
by the wind, lack of visibility or rain
Xs Operation No of Operations affected inefficiency
Efficiency
£ Error
Y Air Traffic Rate of No of Operations with more
Congestion in than the minimum flight miles per route
Panama per day
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Equation 9. Sub-Equation for Regulations

X1=IGR + IAR + NGR + NAR

Table 8. Equation 8 explanation

Variable | Name Metrics
X1 Regulations No of Operations affected by a
violation of the regulation

IGR International No violations to this regulation
Ground Rules
(Airport)

IAR International Air | No of violations to this regulation
Rules (Airspace)

NGR National Ground | No of violations to this regulation
Rules (Airport)

NAR National Air No of violations to this regulation
Rules (Airspace)

The table 8 shows the sub-variables

that affect the effect of the regulations of the

operations, such as international rules for ground operations, international rules for airspace

operation, national regulations for the airport operation and the regulations that affect the

airspace operation.

The organizations that affect the international regulations in the case of Panama are IATA,

ICAO and sometimes the FAA. For example, if an aircraft does not follow the procedure

of landing it can be send to a penalty box, where the aircraft must wait until there is a space

open in the line for landing.

The Panamanian Government rules over the national regulations, that includes penalties

over the airlines for lack of cooperation or penalties over the airlines for not following a

procedure. Also, the Panamanian Government rules over the permissions and taxes for use

of the airspace or for landing in Panama.



Equation 10. Sub-Equation for Stakeholders.

X2 = Airlines + AAC + Unions + Airport

Table 9. Equation 9 explanation

Variable | Name Metrics
X2 Stakeholders No of Operations affected by a
error or bad decision from the
stakeholders
Airlines | All the airlines that | Number of hours that the
use Tocumen operation was affected by an
International error or bad decision from the
Airport, and Copa airlines
Airlines represent
the 80% of the
operation
AAC Civil Aviation Number of hours that the
Authority operation was affected by an
error or bad decision from the
AAC
Unions | e Air Traffic Number of hours that the
Control Union operation was affected by an
e Pilots Union error or bad decision from the
e Flight Number of hours that the
Attendance operation was affected by an
Union error or bad decision from the
e Mechanic Union | airlines
Airport Employees
Union
Airport | In this particular Number of hours that the
case Tocumen operation was affected by an
International error or bad decision from the
Airport. Airport

Table 9 shows the sub factors that affect operational impact of the decisions of the
stakeholders, such as, the airlines decisions, the Civil Aviation Authority’s decisions, the

Unions decisions and the Airport decisions. For example, a strike from the pilots over Copa
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Airlines can reduce the efficiency of the operation, the issues with the computational

system in Copa Airlines in 2016 that cancel several flights, the energy black outs of June
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2017 or the decision of the Air Traffic Controllers of increasing the Ground Traffic Rules

from 1 to 2 minutes to 7 minutes lack between landing and departure.

Equation 11. Sub-Equation of Investment.

X3 = Airport Investment + Airspace Investment

Table 10. Equation 10 explanation

Variable | Name Metrics
X3 Investment No of Operations affected by
the investment
Airport o New gates Number of hours that the
Investment | ¢«  New Taxi ways | operation was affected for this
e New runways investments
Airspace | e Airspace Number of hours that the
Investment Optimization operation was affected for this
e New investments
Technology

Table 10 shows the

aviation industry at

equation 11 explanation about the two kind of investment in the

Panama. The first type of investment is the Ground or Airport

investment, that include in the last 5 years, expansion of the Airport, new taxi ways,

maintenance of the runways and the evaluation of the expansion to a third terminal with a

third runway. The second type of investment is the evaluation of the airspace optimization

to change the actual routes and to add more equipment that the AAC is in need, such as

radars, radios, and servers (2).

Equation 12. Sub-Equation of the Nature Impact on the operation.

X4 = Wind + Visibility + Birds



Table 11. Equation 11 explanation

Variable

Name

Metrics

X4

Impact of the
Nature over the
congestion

No of Operations affected

by the wind or bad weather

Wind

The wind intensity

and direction can
affect the
performance of the
aircrafts and the
direction of the use
of the runways.

Average wind speed per day

Visibility

Depending of the
rain the visibility
can be low,
medium or clear

Average visibility per day

Rain

Precipitation of
water

Average precipitation per
day
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Table 11 shows the explanation of the equation 12, that includes the weather factors that

impact over the operation, such as wind, visibility and rain precipitation.

Equation 13. Sub-Equation of Operation efficiency.

X5 = Landing Delays + Departure Delays + Flight Miles

Table 12. Equation 12 explanation

Variable | Name Metrics
X5 Operation Efficiency No of Operations
affected by inefficiency

Landing Average landing per Operations per hour
service hour each day
rate
Departure | Average landing per Operations per hour
Service hour each day
rate
Flight The sum of the Nautical | Sum of Nautical Miles
Miles Miles that the aircraft per day

take in the Airspace of

Panama.

Table 12 explain the sub factors that affect the operation efficiency from the Panama

stand point, such as landing service rate, departure service rate and flight miles. In the
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literature, there exist other operational efficiency factors, but we did not include those,
since the evaluation is based on the critical factors that the collaboration between
stakeholders detected back in the “Airspace Optimization Conference and Workshop at
2017”. (2)

After some consideration of the dataset available to address the real impact of each factor
over the extra mileage. Thus, we decline to follow this specific model and we decide to

find the way to address a model in more accordance with the data availability.

D. SECOND ISHIKAWA MODEL

Service rate

Congestion
rate

Air Traffic
Congestion in
Panama

Figure 29. Second Cause and Effect Diagram

Figure 29 shows the description of the second Ishikawa model based strictly on the data
available at the moment. The first assumption to construct the model is that the Airspace
of Panama is a System. The second assumption to construct the model is that the extra
mileage is a type of waste, like Lean Method manifest. The third assumption is that the

extra mileage increases the level of utilization of the system that produce congestion in the
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landing and departure. The fourth assumption is that even though we are trying to describe
at some level which factors can affect the extra mileage is still uncertain which factors can
affect the extra mileage in the future in daily basis operation.

Consequently, we propose to measure the congestion based on the extra mileage produced
by the operation per day. We are going to name this factor of congestion as “Congestion
Uncertainty Factor” (CUF), since we are also trying to measure the unknown that produce
an effect of extra mileage on the daily operation. The CUF is going to be measure based
on the extra mileage rate. There is a minimum distance that an aircraft can achieve during
an operation per route. The question of the extra mileage is what will happen if all the

operations can address the historical minimum mileage per route per day.

The equation of the CUF is as follows:

Equation 14. Congestion Uncertainty Factor

Tzl(mlnMR] * Z?:l Ol])

CUF =

Where:

CUF is the Congestion Uncertainty Factor or rate
minMR; is the minimum number miles per route j
m is the number of routes
n is the number of operations at route j
0;; is the number of operations i in a route
M, is the number of miles at the operation k
Oy is the number of operations k

k is the number of operations per day
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Therefore, the Ishikawa model tries to address which factors can be responsible of the extra
mileage that take each aircraft to flight on a specific route. In other words, the second
Ishikawa model tries to describe, from the available data, which factors can possibly affect

the production of extra mileage per route in a daily basis.

Equation 15. Multiple Regression Model for the Second Ichicagua Model
Y; = Bo + Bixy + Paxy + Baxz + PaXy + Psxs + €

Table 13. Second Ishikawa Model Notation

Variable [ Name

X1 Number of Operations per day

X2 Number of delays

X3 Service rate

X4 Congestion rate

X5 Number of operations affected by high turbulence
€ Random Error

Y Extra Nautical Miles rate

Table 13 is the Multiple Regression model description, from mathematical notation is
important to mention that there are some assumptions to respect on this model, such as
normality assumption and constant variance.

The independent variables are the number of operations per day, the number of delays, the
service rate, the number of operations in the 6 bank hub operation or congestion rate, and

the number of operations affected by high turbulence in wind.



E. FIRST LINEAR MODEL
The Multiple Linear Regression mathematical model is as follows:

Equation 16. MLR

Vi = Bo+ Bix1+ Barxy+ B3 x5+ Baxs + Psxs + &

fori=1,...,a
Where ¢; are iid N(0,02)
Y; = is the ith response of the 5 variables presented
x,=Independent Variable of Number of Operations per day
x,= Independent Variable of Number of Delays
x3= Independent Variable of Service rate
x,= Independent Variable of Congestion Rate
xs= Independent Variable of Number of operations affected by high turbulence

Brn= Itis the least Square estimate from O to 5.

79
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Analyss of Variance

Sum of Mean

Source DF Squares Square F Value Pr>F
Model 5 0.95298 0.19060 18.75 <.0001
Emor 132 1.34148 0.01016

Corrected Total 137 229446

Root MSE 0.10081 R-Square 04153
Dependent Mean 0.10784 AdjR-Sq 0.2932
Coeff Var 93.48200

Pamameter Estimates

Parameter Standard
Variable DF Estimate Error tValue Pr>

Intercept 1 115835  0.20004 285 0.0002
x1 1 001885 001224 -1.28 0.1748
x2 1 001227 0.00143 8.57 <.0001
x3 1 032482 02970 1.09 0.Z764
x4 1 0.35424 0.20819 -1.72 0.0881

x5 1 000379 0.00210 1.80 0.0739

Figure 30. Analysis of Variance of the Multiple Linear Regression model

Ho: The MLR model is statistically significant at 0.01 alpha value.
Hi: The MLR model is not statistically significant at 0.01 alpha value.

This figure 30 shows the Analysis of variance of the model, so it seems that there is low
variability, since the p-value is lower than 0.01 alpha value. So, we fail to reject the Ho,

and the MLR model is statistically significant.

However, the R-square and the adjusted R-Square seems low. Also, the p-values of each
independent variable shows that x1 and X2 are not statistically significant at 0.01, or 0.05

or 0.1 alpha value, which means that are candidates of further evaluation.
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Figure 31. Analysis of Variance of the Multiple Linear Regression model

After the diagnostic of the y, we can see that the residual vs predicted value graph
presented does not shows constant variance, which is one of the assumptions of the MLR
models. Also, the Normal Probability plot does shows an ok normality, not perfect, but

good enough.
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Figure 32. Analysis of Variance of the Multiple Linear Regression model

The plot of residuals versus each independent variable shows funnel image for x1, x2 and
x3. In other words, the residual vs x1, X2 and xs does not show constant variance. In contrast,
the plots of residuals vs xa and xs it shows that the points are highly scatter that means that

there no violation of the assumption of constant variance.
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Figure 33. Correlation Matrix

Figure 19 shows the order of the variables, the first 5 are the independent variables and
the last one is the dependent variable, extra miles. The extra mileage vs each independent
variable it does not shows a strong linear relationship between variables, but shows two

group of scatter points that each of them can be a separate linear model.

Thus, even with the MLR model with good p-value as a whole model there is not, high
linear correlation between independent variables and response variable. Therefore, we

prefer to move to construct another model that can include categorical variables.
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F. THIRD ISHIKAWA MODEL

Visibility Frequency

Capacity
Reduction

Air Traffic
Congestion
in Panama

Tourist

Season

Figure 34. Third Cause and Effect Diagram

The figure 34 shows the description of the third Ishikawa that include one categorical
variable and other 6 numerical variables. The categorical variable is the same categorical
variable we took in consideration in the first DACE model that we did based on the
simulation, which is the volume season or tourist season. The seasons categorize as high
season and low season. The other 6 numerical variables are the average wind speed per
day, the average visibility per day in feet, the volume of operations, the frequency of the
operations per hour, the capacity reduction based on a maximum capacity of 60 operations

per hour and the average number of delays per day(85).

Equation 17. Third Ishikawa Model Formulation

Y =X1+ X2 + X3 +X4 + X5 +X6 +X7 + €
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Table 14. Third Ishikawa a Model Notation

Variable | Name Metrics

X1 Weather Season Categorical Variable based on
weather season, in Panama they
have raining season and summer.

X2 Wind Wind speed in knots

X3 Visibility Number of miles of visibility

X4 Volume No of Operations per hour per
day

X5 Frequency Average Frequency in a hour of
each operation

X6 Capacity Reduction Rate of operations over the
maximum capacity of the airport
per day

X7 Delays Number of delayed operations
per day

£ Error

Y Extra Mileage Rate The sum of the extra mileage per
route per day per operation over
the total number of miles per
day.

Also, table 14 shows the basic linear model that is the mathematical expression of the cause
and effect diagram. However, there will be another expression in the ANOVA linear model
for the statistical analysis.

Furthermore, there are five assumptions to take in consideration for the construction of this
Ishikawa model. The first assumption to construct the model is that the Airspace of Panama
is a System. The second assumption to construct the model is that the extra mileage that an
aircraft takes to flight on a route is a type of waste, like Lean Method manifest. The third
assumption is that the extra mileage increases the level of utilization of the system that
produce congestion. The fourth assumption is factors that affect the production of the extra
mileage that takes a flight to assess route is still uncertain. The fifth assumption is that the
Ishikawa model is an approximation to address the uncertainty of the factors that affect the

extra mileage in the daily operation.
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Consequently, we propose to measure the congestion based on the sum of extra mileage
produced by the operation per day divided over the total sum of mileage produced by the
operation in a day. As we state in the second Ishikawa model, we are going to name the
factor of congestion as Congestion Uncertainty Factor (CUF), since we are also trying to
measure the unknown that produce an effect over extra mileage on the daily operation. The
CUF is going to be measured based on the extra mileage rate. There is a minimum distance
that an aircraft can achieve during an operation per route. The question of the extra mileage
is what happen if all the operations can address the historical minimum mileage per route
per day. So the equation of 13 from the last Ishikawa model states the formula for CUF.
Therefore, the third Ishikawa model try to address which factors can be responsible of the
extra mileage that takes each aircraft to flight on a specific route in a daily basis
G. SECOND LINEAR MODEL

The mathematical expression of the ANOVA linear model is presented as equation 2. For
our case we did not present the model like the linear regression with qualitative and
quantitative variables, since we define the model as an ANOVA model, like is the DOE

models.
Equation 18. ANOVA linear model

Yij= . +x;+ x3+x3+%x5 + X5+ Xg+ X7+ (07 *X3)+(xq % x3)+ (g *x4); +

(1 *x5); + (g * x6) i+ (X1 * X7); + &

fori=1,...,a,j=1,....,b, k=1, ....,c,and t=1, ....., 1.
Where ¢;; are iid N(0,0%)
Y;; = J-th response observed for trt between i and the other 6 variables.
i =is the overall mean.
x4; = i-th independent variable of tourist seasons

x,= IS the independent variable of wind speed
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x3 = is the independent variable of visibility
x4 = is the independent variable of volume
x5 = Is the independent variable of frequency
X = IS the independent variable of capacity reduction
x, = Is the independent variable of delays

(x4 * x,); = Is the interaction effect between the categorical variable of season and the wind
speed.

(x4 * x3); = is the interaction effect between the categorical variable of season and the visibility
(x4 * x4); = is the interaction effect between the categorical variable of season and the volume
(x1 * x5); = is the interaction effect between the categorical variable of season and the frequency

(x1 * x¢); = Is the interaction effect between the categorical variable of season and the capacity
reduction

(x1 * x); = Is the interaction effect between the categorical variable of season and the delays.

1) Analysis of Variance

The SAS System

The GLM Procedure

Dependent Variable: y

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 2.41370988 0.1856€888 701.20 <.0001
Error 167 0.04421958 0.0002€473

Corrected Total 180 2.45792948

R-Square Coeff Var Root MSE y Mean

08982009 17.72842 0018272 0.091797

Figure 35. ANOVA of the Second Linear Model

Ho: The ANOVA model is statistically significant at 0.01 alpha value.
Hi: The ANOVA model is not statistically significant at 0.01 alpha value.

Ho of this section is the first hypothesis of the Research, which is as follows:
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Null Hypothesis 1: Equation 1 is statistically significant at 0.05 alpha value.
Alternative Hypothesis 1: Otherwise.

Consequently, the model shows, at figure 23, that the p value is less than 0.01 alpha
value, so we fail to reject Ho and the ANOVA model is statistically significant at

0.01 level. So, we can say that we avoid type | error.

In addition, the R square value is higher than the first linear model, but we did add

more variables, and the R square always increase when we add more variables.

Source DF Typel S5 Mean Square FValue Pr>F

x1 1 240087013 240087013 9087.14 <.001
x2 1 0.00000780 0.00000780 002 08828
x3 1 0.00071085 0.00071085 268 0.1033
x4 1 0.00044355 0.00044955 1.70 0.1942
x5 1 0.00020710 0.00020710 078 03778
x6 1 0.00001424 0.00001424 005 08189
x7 1 0.00244105 0.00244105 922 0.0028
x2*x1 1 000388520 0.00388520 1468 0.0002
x3x1 1 0.00029104 0.00029104 1.10 0.2580
x4 x1 1 0.00220506 0.00220508 1087 0.0011
x5x1 1 0.00103988 0.0010328 392 0.04n
x6"x1 1 0.00000348 0.00000342 0.01 0.90%
xTx1 1 0.00088351 0.00088351 334 00825

Source DF Typelll 55 Mean Square F Value Pr>F

x1 1 0.00000088 0.00000026 0.00 09548
x2 1 0.00098639 0.00098629 373 00553
x3 1 0.00032188 0.000321868 122 02718
x4 1 0.00008053 0.00006053 023 06332
x5 1 0.000789578 0.00078976 2%8 00880
x6 1 0.00000038 0.00000038 0.00 09898
x7 1 0.00084777 0.00084777 320 00754
x2*x1 1 0.00207175 0.00207175 782 00058
x3x1 1 0.00011282 0.00011282 043 05148
x4vx1 1 0.00008221 0.00008821 028 080%e

x5x1 1 0.00028775 0.00086775 328 0.0720
x6*x1 1 0.00000045 0.00000045 000 0987
xTx1 1 0.00028351 0.00088251 334 00895

Figure 36. Type 1 and type 3 regression
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Figure 36 shows that at the type 3 regression p value of X1, x3, X4 and Xs are not

statistically significant at 0.1 alpha value.

2) Residual Analysis

a) Constant Variance Assumption
Table 15. Residual Analysis plots (Yhat vs Residuals and Y vs Residuals)
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There is none constant variance showed in the plot between residuals and
¥. It also reflects outliers.
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¥

There is none constant variance showed in the plot between residuals and y
values. It also reflects outliers.
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Table 16. Residual Analysis plots (x1 vs Residuals and x. vs Residuals)
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There is none constant variance showed in the plot between residuals and
x1. It also reflects outliers.

© <«—— Outlier
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The residual vs x2 shows none constant variance. | t also shows an outlier
at the top of the plot.




Table 17. Residual Analysis plots (xs vs Residuals and x4 vs Residuals)
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than the previous plots.

The plot of xs vs residuals does not show constant variance. The plot
shows some outliers, but if we take them, the plot can be more scatter
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far at the top of the plot and at the far right.

The plot of x4 vs residuals does not show constant variance. Almost all
the plots at this point shows a funnel shape. The plot shows some outliers,
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Table 18. Residual Analysis plots (xs vs Residuals and xs vs Residuals)

The plot of xs vs residuals does not show constant variance. Almost all
the plots at this point shows a funnel shape. The plot shows some outliers
at the top and the bottom if take out those two outliers, we can have a
better spread in the plot.

0.05

0.04

0.03

0.02

0.01 +

-0.03

-0.04
012 043 014 015 016 017 018 018 020 021 022 023 024 025 026 027 028 029 030
X6

The plot of xs vs residuals does not show constant variance. Almost all
the plots at this point shows a funnel shape. The plot shows some outliers
at the top and the bottom if take out those two outliers, we can have a
better spread in the plot.
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Table 19. Residual Analysis plots (xs vs Residuals and xs vs Residuals)
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The plot of x7 vs residuals does not show constant variance. Almost
all the plots at this point shows a funnel shape. The plot shows some
outliers at the top and the bottom if take out those two outliers, we
can have a better spread in the plot as well as the last two plots.

Normal Distribution Assumption

Normal Probability Plot
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Figure 37. The Normal Probability Plot
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The Normal probability plot in figure 37 shows that the normality is ok, especially

if we take those 4 outliers out of the graph.

Correlation Analysis

The SAS System

The CORR Procedure

2 Variables: e enrm

Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
e 90 -0.0007230 0.01431 -0.06507 -0.03255 0.06740
enrm 9 1.16667 0.37477 105.00000  1.00000 2.00000

Pearson Correlation Coefficients, N = 90
Prob > |r| under HO: Rho=0

e enrm

e 1.00000 0.76754
<.0001

enrm 0.76754 1.00000

<.0001

Figure 38. Correlation Procedure.

The correlation analysis shows from figure 38 that the correlation is above 75% which is

good for a model.

After the lack of a perfect normality and the lack of constant variance we conclude that the

model may need a transformation of the y in order to address the assumptions of a linear

model.
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d) Model transformation

1) Log y transformation.

The SAS System

The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 43.46463257 3.34343327 18.65 <.0001
Error 167 2993868235 0.17927355

Corrected Total 180 73.40331492

R-Square Coeff Var Root MSE logy Mean
0.592134 | -38.70539  0.423407 -1.093923

Figure 39. ANOVA of the transformation of the y to Log y

Ho: First model is negligible
Ha: First model is not negligible

The F value of the first model is 701.2 The F value of the converted model
with logy is 18.65. If value of the new model with logy is greater than the
first model, then we reject Ho. In this case we fail to reject Ho.

@) Inverse of y transformation
The SAS System

The GLM Procedure

Dependent Variable: yinv

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 17411.07417 1339.31340 20.19 <.0001
Error 167 11078.46535 66.33812

Corrected Total 180 28489.53952

R-Square Coeff Var Root MSE yinv Mean
0.611139 | 34.36062 8.144821 23.70394

Figure 40. ANOVA of the transformation of the y to 1/y

Ho: logy model is negligible
H1: logy model is not negligible
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The F value of the converted model with logy is 18.65. The F value of the
converted model 1/y is 20.19. If F value of the inverse of y model is greater
than the first model, then we reject Ho. The F value of the y inverse model
is greater than the first model, then we reject Ho, so we keep the log y

model.

3) Lny transformation

The SAS System

The GLM Procedure

Dependent Variable: Iny

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 125.1140907 96241608 99.97 <.0001
Error 167 16.0769721 0.0962693

Corrected Total 180 141.1910628

R-Square Coeff Var Root MSE Iny Mean
0.886133 -10.68646 0.310273 -2.903422

Figure 41. ANOVA of the transformation of the y to Iny

Ho: logy model is negligible

Ha: logy model is not negligible

The F value of the converted model with logy is 18.65. The F value of the
In y model is 99.97. If value of the new model with In y is greater than the
first model, then we reject Ho. The F value of the In y model is greater than

the log y model, then we reject Ho, so we accept we keep log y.
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4) Square Root of y Transformation

The SAS System
The GLM Procedure

Dependent Variable: sqrooty

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 3.90071129 0.30005471  264.94 <.0001
Error 167 0.18913689 0.00113256

Corrected Total 180 408984818

R-Square Coeff Var Root MSE sqrooty Mean
0.953755 1279303  0.033653 0.263061

Figure 42. ANOVA of the transformation of the y to y*2

Ho: logy model is negligible

H1: logy model is not negligible

The F value of the converted model with logy is 18.65. The F value of the
square root of y model is 264.94. If value of the new model with square root
of y model is greater than the log y model, we reject Ho. The F value of the
square root of y model is greater than the log y model, we reject Ho, so we

keep log y model.

e) Model Selection by Additives

The SAS System

The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 13 43 46463257 334343327 18.65 <.0001
Error 167 2993868235 0.17927355

Corrected Total 180 73.40331492

R-Square Coeff Var Root MSE logy Mean
0592134 -3870539 0423407 -1.093923

Figure 43. ANOVA of the transformation of the y to log y

As we stated before, the selected model was the model with transformation

of log y, even with a lower R-square than the first model offers to fix the
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normality assumption and the constant variance assumption for the model.
Therefore, we need to test the model based on the interactions between the

categorical variable of seasons and the numerical variables.

1) Test of Xx7*x1 interaction

The SAS System
The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 12 43.42786048 3.61898837 2028 <.0001
Error 168 2997545443 0.17842532

Corrected Total 180 73.40331492

R-Square Coeff Var Root MSE logy Mean
0.591634 -38.61372 0.422404 -1.093923

Figure 44. ANOVA of the model without x7*x1 interaction

Ho: Full model is negligible

H1: Full model is not negligible

The DoE procedure said that if the F value of the new model is greater than
the F value of the old model we reject Ho. Based on the new ANOVA, in
figure 31, the F value of the new model lies 20.28, and the F value of the

old model was 18.65. Therefore, we reject Ho and we keep the full model.

(2)  Test of x6*x1 interaction

The SAS System

The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 12 4327234398 3.60602867 2011 <.0001
Error 168 30.13097093 0.17935102

Corrected Total 180 73.40331492

R-Square CoeffVar Root MSE logy Mean
0.589515 -38.71376  0.423499  -1.093923




99

Figure 45. ANOVA of the model without x¢*x1 interaction

Ho: Full model is negligible

H1: Full model is not negligible

The DoE procedure said that if the F value of the new model is greater than
the F value of the old model we reject Ho. Based on the new ANOVA table,
in figure 45, the F value of the new model is 20.11, and the F value of the

old model was 18.65. Therefore, we reject Ho and we keep the full model.

3 Test of x5*x1 interaction

The SAS System

The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 12 4338722088 361560174 20.24 <.0001
Error 168 30.01609403 0.17866723

Corrected Total 180 7340331492

R-Square CoeffVar Root MSE logy Mean
0591080 -3863989 0422690 -1.093923

Figure 46. ANOVA of the model without xs*x: interaction

Ho: Full model is negligible

Hai: Full model is not negligible

The DoE procedure said that if the F value of the new model is greater than
the F value of the old model we reject Ho. Based on the new ANOVA the F
value of the new model is 20.24, and the F value of the old model was 18.65.

Therefore, we reject Ho and we keep the full model.



4) Test of x4*x1 interaction

Model 12
Error 168
Corrected Total 180

The SAS System
The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F

43.34170654 361180888 20.18 <.0001
30.06160837 0.17893815
73.40331492

R-Square  Coeff Var Root MSE logy Mean
0.590460 | -38.66917 0.423011  -1.093923

Figure 47. ANOVA of the model without x4*x; interaction

Ho: Full model is negligible

H1: Full model is not negligible
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The DoE procedure said that if the F value of the new model is greater than

the F value of the old model we reject Ho. Based on the new ANOVA the F

value of the new model is 20.18, and the F value of the old model was 18.65.

Therefore, we reject Ho and we keep the full model.

5) Test of x3*x1 interaction

Source DF
Model 12
Error 168

Corrected Total 180

The SAS System
The GLM Procedure
Dependent Variable: logy
Sum of Squares Mean Square F Value Pr>F
43 46150580 362179215 20.32 <.0001

29.94180912 0.17822505
73.40331492

R-Square Coeff Var Root MSE logy Mean
0.582092 -38.59204 0422167 -1.093923

Figure 48. ANOVA of the model without x3*xu1 interaction

Ho: Full model is negligible

H1: Full model is not negligible
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The DoE procedure said that if the F value of the new model is greater than
the F value of the old model we reject Ho. Based on the new ANOVA the F
value of the new model is 20.32, and the F value of the old model was 18.65.

Therefore, we reject Ho and we keep the full model.

(6) Test of x2*x1 interaction

The SAS System

The GLM Procedure

Dependent Variable: logy

Source DF Sum of Squares Mean Square F Value Pr>F
Model 12 4332349124 3.61029094 2016 <.0001
Error 168 30.07982368 0.17904657

Corrected Total 180 73.40331492

R-Square Coeff Var Root MSE logy Mean
0.590212 -38.68088 0.423138 -1.093923

Figure 49. ANOVA of the model without x2*x1 interaction

Ho: Full model is negligible
H1: Full model is not negligible
Based on the new ANOVA the F value of the new model is 20.16, and the
F value of the old model was 18.65. Therefore, we reject Ho and we keep
the full model. The DoE procedure said that if the F value of the new model
is greater than the F value of the old model we reject Ho.
3) Analysis of the Linear model assumptions for the new model logy.
After the selection of the transformation of the y to log y, there is some analysis to perform.
This section covers the evaluation of the constant variance assumption, the normality
assumption and the correlation between y and the independent variables. Thus, the

following sections will explain the results of those analysis.



a)

Constant Variance Assumption
Table 20. Residual analysis plots (log y vs residuals and logy vs residuals)
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The variance spread of the logyhat vs residuals shows, that there is still
some lack of constant variance between two groups of the sample. In
other words, it seems that the small portion represent the variability of the
high season and the down spread shows the variability of the low season,
which is the majority of the interactions and sample.
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Between -2 and — 1 the variance is constant, but it changes when it comes
to 0. There is not constant variance in the model, but is better than the
previous model without transformation.
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Table 21 Residual analysis plots (x1 vs residuals and x; vs residuals)

AR

The two group of scatter points shows that the spread at each group is not
similar, so x1 vs residuals shows not constant variance.

5 & & & & & & & & = =

i

The x2 vs residuals plot shows a really good spread of the points that leads
to the conclusion that the constant variance assumption is not violated by
X2.
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Table 22. Residual analysis plots (x3 vs residuals and x4 vs residuals)
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The plot of residuals vs x3 shows that there are two outliers. If we take
the two outliers out the plot the points can look better spread. At this point
there is not constant variance.
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The plot of residuals vs x4 shows a good scatter over the points, so the
constant variance is not violated. It looks that there still an outlier from
the plot.
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Table 23. Residual analysis plots (xs vs residuals and Xs vs residuals)
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The plot of residuals vs xs the constant variance assumption is not
violated, except for the last column at 14. Even though we think that the
variance is ok.
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The plot of residuals vs xs shows that the constant variance is violated,
since the plot is not well scatter over the area.
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b)

Table 24. Residual analysis plots (residuals vs x7)
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The plot of residuals vs x7 shows a funnel shape that leads to the
conclusion that the constant variance assumption is violated.

Normal Distribution Assumption
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Figure 50. Normal Probability Plot
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The normal probability plot from figure 50 shows that the normality is better than

before, but it is not perfect, there is a long left tale, that seems to show skewness.



c)

Correlation Analysis

The SAS System

The CORR Procedure

2 Variables: e enrm

Simple Statistics

Variable N Mean Std Dev Sum
e 181 -5.5249E-8 0.40783 -0.0000100 -0.87521
enrm 181 0 0.99329 0 -270180

Pearson Correlation Coefficients, N = 181
Prob > |r| under HO: Rho=0

e enrm

e 1.00000 0.92867

<.0001

enrm 0.92867 1.00000
<.0001

Minimum Maximum

0.57330
2.70180

Figure 51. Normal Probability Plot

Thus, we conclude that the Normality assumption is not violated in from the log y model.
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Figure 51 shows the correlation analysis, the correlation is 0.92867, which is very good.
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H. OPTIMIZATION AND SPC CHARTS

The results of the optimization are part of the analysis to address the hypothesis 3 which is trying
to address the optimization formulation and hypothesis 4 which is trying to address the
optimization model. The control charts are a testing methodology to measure the performance of
the optimization. Thus, the results of the optimization and the control charts is trying to define the

impact of the historical variables over the congestion in the operation.

1) Optimization

The null hypothesis 4 presents the testing of the Unified Optimization Method applied to

Vehicle routing in the following way.
Null Hypothesis 4: Unified Optimization Method Applied to Vehicle Routing is the
preferred model to minimum value of Nautical Miles.
Alternative Hypothesis 4: Otherwise
We reject the Null hypothesis, since we did not utilize genetic algorithms as this
methodology does for searching method. However, we did use the Mix Integer Linear
Programming approach and Heuristics as this method suggests. The difference is that we
use Branch and Bound as a method of searching instead of genetic algorithms.
The objective function is the minimization of the sum of miles per day. The decision
variable is the number of operations and the cost is the number of miles.
The first group of the constraints is for route selection per destination. In other words,
instead of using directly the travel salesman problem we use the constraint of maximum
capacity of operations per route based on the radial separation between aircrafts, for this

study, we use from 3NM to 7NM. As an explanation, route is the internal route at the
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Airspace of Panama and we are going to use destination as the main two airports of
connection for the travel.

The second group of constraints is to set the minimum operation per day per destination. It
helps to set the minimum number of operations to optimize as a control of the optimization,

so the optimum value cannot go to 0 miles.

The formulation mathematical formulation is as follows:

Equation 19. Mixed Integer Linear Programming to minimize Flight Miles.

N
M
ZLpNy ZIPN = mlnz z CiXij
. J
L

Subject to:
A11X11 + QX1 + o+ ayyXy < by

A11X1 + A1pXpp + o+ AyyXoy < by
ay1Xy1 + AnaXnz + 0+ ayyXym < by

A11X11 + Ap1Xp1 + -+ Ay1Xyg = byiq

A12X12 + AppXpp + -+ + AnaXyz = by
AyyXim + AayXoy + -+ AyyXyy < by

All x;; < 0 & Integers

This formulation was coded in MATLAB to solve per day, the sample of 181 days per
arrivals and departures. The iterations were based on the NM radio distance per aircraft.

It is important to mention that for this analysis we use the solver for Mix Integer Linear

Programming. The solver includes some settings, so we used specifically the set listed at
the table 25.



a)
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Table 25. Mixed-Integer Linear Programming solver settings in MATLAB

Nonnegative real.

Branch and Bound as a method of searching, we specifically use the fractional

component with maximum pseudo cost.

Constraint Tolerance of 1e-9 through 1-3.

The normal cut generation

Group of 10 for the cuts

The basic Heuristic algorithm.

The maximum node of 50 and strictly positive integer that bounds the number of nodes.

Real from 1-6 through 1e-3 for integer tolerance

Strictly postie integer for the simplex algorithm.

Nonnegative real where reduced costs must exceed LP optimality.

The use of pre-processing for the solution to the relaxed linear program

Strictly positive integer that is the maximum number of nodes explores in its branch-

and-bound process.

Strictly positive integer for feasible points

Best projection of node exploration.

The objective cut off of real greater than infinity.

The objective improvement threshold of nonnegative real.

The output specifying one or more functions that an optimization function calls at events.

The relative gap tolerance of real from 0 through 1.

The root LP Algorithm of Dual simplex.

Nonnegative integer that is the maximum number of simplex algorithm iterations to

solve the initial programming problem.

Results of the Optimization
After 5 Iterations based on Nautical Miles we kept just 3 of them, since the model did

not found a feasible solution for the fourth and fifth iteration. The optimization ran 905
times for departures and 618 for arrivals. Also, the optimization was divided by days

of the month based on the sample and it was divided based on the type of operation,
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departure or arrivals. In the case of the optimization for arrivals, the routes were 1,119
and the destinations were 265. In the case of the optimization for departures, the routes
were 775 and 231 destinations

Figure 52 shows the results of the interaction for arrivals and figure 53 shows the

results of the interaction for departures.

Comparison between real milage and
optimized milage for arrivals
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Figure 52. Comparison between optimization iterations and the reported daily
mileage for arrivals

Real vs Optimum values for NM per day
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Figure 53. Comparison between optimization iterations and the reported
daily mileage for departures
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There are several observations based on the analysis of the data. One of them is that
if we want to keep the system in control we will need to split the dataset based on
months, as the behaviour of the data shows some the picks to evaluate as well. Also,
the graph shows that the optimization follows similarly pattern that the original
mileage, which the first line of the plot from the top to the bottom. The last
observation based on figures 39 and 40 is that the optimized mileage shows similar

lines through the days, except for the pick area.

2) Sensitivity Analysis

a)

SPC Charts
As a measure of evaluation, we are using SPC charts as sensibility analysis per month

per optimization per type of operation. The types of operations are arrivals and
departures. The SPC charts used was the moving average plots for single sample line.

Table 26 . Arrivals SPC at 3NM distance between aircraft per route for February 2015

Regular SPC Charts SPC Charts with the Congestion

Uncertainty Factor

February 2015 x chart with uncertainty
congestion factor

February 2015 x chart
40000
48000
30000 A3000
38000
33000
10000 28000
23000

18000
1 3 5 7 9 11 13 15 17 19 21 23 25 27

20000

1234567 8910111213141516171819202122232425262728

x bar Xbarbar uckx LCLx x bar Xbarbar UCLx LCLx

The performance of the operations is
practically linear and in control.

The plot with CUF affect the
performance increasing the
variability.
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Table 27. Arrivals SPC at 3NM distance between aircraft per route for March 2015

Regular SPC Charts

SPC Charts with the Congestion
Uncertainty Factor

23000
22000
21000
20000
19000
18000
17000
16000
15000

March 2015 x chart

x bar
Xbarbar
UCLx

LCLx

1 3 5 7 911131517 19 21 23 25 27 29

March 2015 x chart with
uncertainty congestion factor

35000
33000
e N A A~ A A
S P RVAVAV.WAY
P [V vV ¥ \
3 25000 I
23000
21000
19000
17000

X 3T

Xbarbar

UCLx

LCLx

1357 911131517192123252729

The SPC plot of March 2015 shows that the
system is in control and the majority of the
points are over the centre line.

The SPC chart shows that the system is
still in control and it is closer of the
centre line with the inclusion of the
CUF

Table 28. Arrivals SPC at 3NM distance between aircraft per route for June 2016

Regular SPC Charts

SPC Charts with the Congestion
Uncertainty Factor

29000
28000
27000
26000
25000
24000
23000
22000
21000
20000

June 2016 x chart

x bar
Xbarbar
UCLx
LCLx

1 3 5 7 9 1113 15 17 19 21 23 25 27 29

June 2016 x chart with
uncertainty congestion factor

45000

40000

e X AT

Xbarbar

Axis Title
w w
(=] 1%
(=] o
[=] (=)
o o

AR VA

UCLx

25000 LCx

20000

1357 911131517192123252729

The

SPC chart of June 2016 shows that

there are two points out of control.

The SPC chart of June 2016 shows that
the inclusion of UCF kept the system
in control.
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Table 29. Arrivals SPC at 3NM distance between aircraft per route for July 2016

Regular SPC Charts SPC Charts with the Congestion
Uncertainty Factor

July 2016 X Chart with extra mile factor
July 2016 X bar Chart uly with extra mi
90000
56000 5000 ~ -
55000 -
80000
54000 e / \/\/\ o /\/\ /\/
75000 L -
53000 x bar o / \/
70000
52000 Xbarbar 65000 -
51000
uclx 60000
50000 om0
49000 Ll )
50000
48000 1234567 8 910111213141516171819202122232425262728293031

47000
1 3 5 7 9 1113 1517 19 21 23 25 27 29 31

w— Dar Xbarbal UCLx LCLx

The SPC chart of July 2016 shows that the | The SPC chart of July 2016 with CUF
optimization is mostly out of control shows that the optimization is in control
except for two points.

Table 30. Arrivals SPC at 3NM distance between aircraft per route for November 2016

Regular SPC Charts SPC Charts with the Congestion
Uncertainty Factor

November 2016 X Chart November 2016 X Chart with
27000 uncertainty congestion factor
26000 45000
25000 «bar 40000
24000 ¥barbar 35000 AM —xbar
23000 § Xbarbar
Ll 30000 UClx
22000 el
21000 25000 Lebx
20000 20000 I e e e R L e e
1 3 5 7 9 1113 15 17 19 21 23 25 27 29 13 5 7 91113151719 2123252729

The x chart of November 2016 shows that the | The SPC chart of November 2016 with
optimization is in control and that the | CUF decrease the variability of the system
majority of the points are over the mean. and
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Table 31. Arrivals SPC at 3NM distance between aircraft per route for November 2016

Regular SPC Charts SPC Charts with the Congestion
Uncertainty Factor
January 2017 X chart January 2017 X chart with

29000
28000

%A"%*VAQVA e bar

== Xbarbar
/

27000

26000

25000

24000 UCLx

23000 LCLx

22000

21000

1357 91113151719212325272931

uncertainty congestionfactor

52000

47000

42000 X bar

== Xbarbar

L}
oo L AN A
\4 \Y/ =
32000 UClx

LCLx
27000

22000

1357 91113151719212325272931

The SPC chart of January 2017 shows that
the optimization of this month is in control
and that the system is almost all above the
mean value.

The SPC chart of January 2017 with CUF
shows that the system is in control and the
effect of the CUF over the performance is
that the line is closer to the mean.

Table 32. Departure SPC at 3NM distance between aircraft per route for February 2015

Regular SPC Charts

SPC Charts with Congestion
Uncertainty Factor

Feb 2015 X chart

\N_— NS

6 7 B 910111213141516171819202122232425262728

———xbar ==—=Xbarbar uclx LCLx

Feb 2015 X chart with uncertainty congestion
factor
28000
26000

N AL A
P A v/

16000

14000
12000

2 3 45678 910111213141516171819202122232425262728

m— Al —Xbarbar UCLx LCLx

The SPC chart of departures for February
2015 shows that the optimization is in
control during the days.

The SPC chart with CUF keep the system
in control and near to the centre line.
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Table 33. Departure SPC at 3NM distance between aircraft per route for March 2015

Regular SPC Charts

SPC Charts with Congestion Uncertainty
Factor

March 2015 x chart

\/\—/\/\/J\

S A

16000

15000

14000

13000

12000

11000

10000
1234567 8 910111213141516171819202122232425262728293031

X bar e Xbarbar UCLx LClx

March 2015 x chart with uncertainty congestion

factor
26000
24000
22000
20000 M/\./\ I\/\
A,

18000 / . 7 N\
16000
14000
12000
10000

1234567 8910111213141516171819202122232425262728293031

X AT s X harbar UCLx LClx

The SPC chart of departures for March
2015 shows that the optimization is in
control.

The SPC char with CUF keep the system in
control and near to the centre line.

Table 34. Departure SPC at 3NM distance between aircraft per route for June 2016

Regular SPC Charts

SPC Charts with Congestion Uncertainty
Factor

June 2016 X Chart

16000
15000

14000

N AN

13000

12000

11000

10000
12345678 9101112131415161718192021222324252627282930

e x har e Xbarbar UCLx LCLx

June 2016 X Chart with uncertainty congestion

factor
26000
24000
22000
20000 /\ S Ay /\ ’_/\
18000 — A=
16000 \/
14000
12000
10000

1234567 89101112131415161718192021222324252627282930

e X har e Xbarbar UCLx LCLx

The SPC chart of departures for June
2016 shows that the optimization is in
control.

The SPC char with CUF keep the system in
control and near to the centre line.
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Table 35. Departure SPC at 3NM distance between aircraft per route for July 2016

Regular SPC Charts

SPC Charts
Uncertainty Factor

with Congestion

July 2016 x chart

\f\/\/\f\/\\/f—\

12345678 910111213141516171819202122232425262728293031

34000
33000
32000
31000
30000
29000
28000
27000
26000
25000

e X AT s Xbarbar UCLx LCLx

July 2016 x chart with uncertainty congestion
factor

/f\/\.MV/\/\ i

1234567 8910111213141516171819202122232425262728293031

e ar  emXbharbar UCLx LClx

The SPC chart of departures for July 2016
shows that the optimization is in control.

The SPC chart with CUF keep the system
in control and near to the centre line.

Table 36. Departure SPC at 3NM distance between aircraft per route for November 2016

Regular SPC Charts

SPC Charts with Congestion Uncertainty
Factor

Nov 2016 x chart

15500

15000
14500
14000
13500
<
13000
12500
12000
11500
11000
12345678 9101112131415161718192021222324252627 282930
———xbar =m—Xbarbar ucLx LCLx

Nov 2016 x chart with uncertainty congestion

factor
23000
21000

— S~~~ NS A

A

19000
17000
15000
13000

11000

1234567 89101112131415161718192021222324252627282930

— AT s— Y barbar UCLx LCLx

The SPC chart of departures for
November 2016 shows that the
optimization is in control.

The SPC chart with CUF keep the system in
control and near to the centre line.
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Table 37. Departure SPC at 3NM distance between aircraft per route for November 2016

Regular SPC Charts

SPC Charts with Congestion Uncertainty
Factor

Jan 2017 x chart

A

8 91011121314151617181920212223242526272829303

Jan 2017 x chart with uncertainty congestion

factor

\ i /\\//\’_\ I\

2017 shows that the optimizatio
control.

The SPC chart of departures for January

nis in

The SPC chart with CUF keep the system in
control and near to the centre line.

Summary of the Sensitivity Analysis

The objective of the summary of the sensitivity analysis is to see the difference

between the optimization without the CUF and how the impact of uncertainty

increases the sum of the mileage, but keep the system below the historical average

of the sum of miles per day.

Table 38. Sensitivity Analysis per month of the Arrivals

Sensitivity Analysis of the Arrivals at the Tocumen International Airport
) ) Mean Optimum | Difference Real vs .

. Mean Optimum | Difference Real vs ) ) ) ) Reduction

month | Real Mean Mileage R R Milage with Optimum with

Milage at 3NM Optimum N ., %
uncertainty factor uncertainty
Feb-15 39,537 20,849 18,688 29,042 10,495 27%
Mar-15 38,139 20,125 18,015 34,993 3,146 8%
Jun-16 44,520 24,875 19,645 34,993 9,526 21%
Jul-16 90,294 53,142 37,152 77,593 12,701 14%
Nov-16 44,717 24,623 20,094 35,859 8,858 20%
Jan-17 46,817 25,984 20,833 37,852 8,965 19%
Table 39. Sensitivity Analysis per month of the Departures
Sensitivity Analysis of the Departures at the Tocumen International Airport
A ) Mean Optimum | Difference Real vs )

. Mean Optimum | Difference Real vs . . . . Reduction

month | Real Mean Mileage R R Milage with Optimum with

Milage at 3NM Optimum N ) %
uncertainty factor uncertainty

Feb-15 44,447 14,158 30,289 19,685 24,762 56%
Mar-15 43,098 13,920 29,179 19,231 23,867 55%
Jun-16 44,011 13,582 30,429 19,141 24,870 57%
Jul-16 90,093 30,627 59,466 44,753 45,341 50%
Nov-16 43,940 13,771 30,169 20,053 23,887 54%
Jan-17 46,080 31,352 14,728 21,480 24,600 53%
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In addition, the table 38 shows that the reduction of the optimization vs the real
mean mileage per month of the arrivals is lower than the optimization of the
departures at table 39. Consequently, there are several reason of this difference of
the discrepancy in the mileage reduction between arrivals and departures. The first
reason is that the airways used for departures are not the same as the airways of the
arrivals. The second reason is that the 99% of the times the runways are set to land
form the West-South-West and there are 3 International airports in that direction.
The third reason is that there are more operations landing at the same time. The
fourth reason is that there are 1119 air routes in contrast to 775 airways for

departure.
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I. ECONOMIC ANALYSIS AND FORECASTING
The specific objective 3 is fulfilled at this section, which is Identify the cost effectiveness of the

variables on Air Traffic Congestion. The revised hypothesis 5 about Genetic Algorithms as the
preferred Method for Multi-objective optimization between minimizing cost for fuel burn in
contrast to maximize capacity (79) is also related to this section. However, after the analysis of the
optimization there is need to do a multi-objective optimization, since the capability of the airspace
is sufficient to cover the demand, but it requires adjustment to improve the efficiency. In other
words, it is not relevant to do another optimization for the capacity in the airspace, when the issue
with capacity is in the ground. Thus, the economic analysis is a transformation of the optimum

value of the sum of miles to cost per fuel burn.

1) Economic Forecasting Analysis based on Scenarios

Dr. Jorge Beinstein presented at 2017 a workshop about three scenarios that can affect the
Economy in Panama. This workshop took place in the Logistics and Transportation Strategic
Planning for 2030 at the presidency of Panama. The first scenario is the dominant one summarized
at table 18., the second is the alternative one summarized at table 19, and the last scenario is the

one with low probability which is summarized at table 20.
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Table 40. Summary of Economic Scenario 1

Economic Areas

Description

Global Economy

Economy Growth with low variability and with a
moderate rate. Also, China GDP is going to be greater
than the GDP of USA at 2020.

Finance System

The International banking will be stable and the
replications of the crisis of 2008 totally stabilized.
Also, there will be negotiations about the currencies
between the US dollar and the yuan.

International Commerce

The expansion will be moderate, the commercial
globalization will have the same rate of growth and the
inflation will be similar to now.

Evolution of Geo Politics

Multi-polarity in control, the centralization from Asia
will grow, the control of the power from the west will
remains, but with less intensity, and less open wars.

International Maritime
Transportation

Low variability in the growth rate, more volume in
enterprises in these area, predictable seasons and
predictable cost of transportation.

Latin America and the
Caribbean

Low growing rate at upper trend, more regional trade
agreements between the region, more integration of the
region in cooperations, commercial expansion at low
variability in upper trend, and stable commaodities
prices.

Economy of Panama

4% to 6% annual growth rate of the GDP for the
following 13 years and slow decentralization of the type
of incomes.
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Table 41. Summary of Economic Scenario 2

Economic Areas

Description

Global Economy

Economic recession, low economic growth, and high
variability in economic growth rate and more
uncertainty.

Finance System

Des-acceleration in the international loans to the
countries, currency crisis and down trends in the mass
of global finance.

International Commerce

Commerce des-globalization, close of international
trade agreements, and unstable prices of the goods.

Evolution of Geo Politics

Continuous power struggle between economic powers,
war risks and gray zones in the negotiations.

International Maritime
Transportation

Lack of growing, increment in companies trying to
address the same services and lack of accuracy in the
forecasting.

Latin America and the
Caribbean

Lack of growing with a down trend in the regional
GDP and increment in the uncertainty in the
negotiations in the region.

Economy of Panama

Fall in the Government investment, lack of private
sector investment and des-acceleration of the GDP at
down trend of 2%.

Table 42. Summary of Economic Scenario 3

Economic Areas

Description

Global Economy

Economy goes back to the upper trends before the 2008
crisis.

Finance System

Financial derivate grow to 1100 Billion of dollar at
2030

International Commerce

Commercial re-globalization

Evolution of Geo Politics

Multi-polarity in control and good terms between China
and USA.

International Maritime
Transportation

Strong growth of the international maritime commerce
with a large volume of new medium companies, smooth
season cycles, and new commercial routes without a
great alteration of the traditional ones.

Latin America and the
Caribbean

High growing rate, as before the crisis of 2008.

Economy of Panama

Exponential rate growth of the GDP.
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2) Impact of the Flight Miles over the Jet Fuel

The Jet fuel has an upper linear trend in the last two years, which is stable for forecasting. The
scenario method for Forecasting is based in Macro-Economics evaluations of the GDP. In our case
we are taking in consideration those scenarios stablishing the relationship with the GDP and impact
on the fuel rate that William Greiner presents in the Mariner wealth advisor’s webpage. The
relationship that Greiner address is per each 10% increase in the jet fuel there is negative impact
of 0.2% on the GDP.

Table 43. Impact of the economic Scenarios over the Jet Fuel price

Economic Economic Economic
Scenario 1 Scenario 2 Scenario 3
Linear GDP Linear GDP Des- | Exponential
Acceleration Acceleration GDP Growth

S 2.43 S 2.29 S 2.48
S 2.48 S 2.34 S 2.69
S 2.53 S 2.38 S 291
s 257 | $ 242 | S 3.14
s 262 | S 247 | $ 3.40

The timeline used for the analysis of the table 43 is an average jet fuel price per year for the next

5 years. Figure 54 shows the same information as table 43 in a graphical way.
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Figure 54. Jet fuel forecasting over the next 5 years
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Also, figure 54 presents the mix in the air traffic based on aircraft, where the Boing 738 is

representing 49% of the flights at the Tocumen International Airport with a fuel burn rate of

3.17kg/Km. However, the average consumption rate is 3.07 kg/Km with a standard deviation of

0.81.

AIRCRAFT TRAFFIC MIX
MD82 Others
B739 _, %
2o, 2% 11%
B752
2%
8737 B738

13% 49%
()

E190
19%

Figure 55. Air Traffic Mix by type of Aircraft



3) Summary of the Economic Analysis

Table 44. Summary of the Economic Analysis Scenario 1/ Average monthly fuel burn per year

Year

Basic in
Historic WCS

Optimum
based on
Historic WCS

Difference
Real vs
Optimum

Optimum
based on
Historic WCS
with
uncertainty

Difference
Real vs
Optimum
with
uncertainty

315,179,532

146,364,603

168,814,929

213,767,166

168,814,929

321,256,679

149,186,738

172,069,941

217,888,926

172,069,941

327,333,825

152,008,873

175,324,952

222,010,686

175,324,952

333,410,971

154,831,008

178,579,964

226,132,446

178,579,964

b wWwiN|E-

339,488,118

157,653,142

181,834,975

230,254,206

181,834,975
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Table 45. Summary of the Economic Analysis Scenario 2 / Average monthly fuel burn per year

Optimum Difference
Basic in Optimum Difference based on Real vs

Year Historic WCS .base.d on Re.al Vs Histor.ic WCS Optimum with

Historic WCS Optimum wnth. VEETEITY

uncertainty

1 296,996,098 | 137,920,492 | 159,075,606 201,434,445 95,561,653
2 302,722,639 | 140,579,811 | 162,142,829 205,318,411 97,404,228
3 308,449,181 | 143,239,130 | 165,210,051 209,202,377 99,246,804
4 314,175,723 | 145,898,449 | 168,277,274 213,086,343 101,089,380
5 319,902,265 | 148,557,769 | 171,344,496 216,970,309 102,931,956

Table 46. Summary of the Economic Analysis Scenario 3 / Average monthly fuel burn per year

opmean Difference
. . Optimum Difference based on
Basic in . . Real vs
Year Historic WCS based on Real vs Historic WCS Ootimum with
Historic WCS Optimum with . .
. uncertainty
uncertainty

1 321,797,256 | 149,437,774 | 172,359,482 218,255,567 103,541,689
2 348,284,513 | 161,738,055 | 186,546,458 236,220,267 112,064,246
3 376,817,057 | 174,988,136 | 201,828,920 255,572,161 121,244,895
4 407,546,552 | 189,258,449 | 218,288,103 276,414,115 131,132,437
5 440,635,602 | 204,624,503 | 236,011,099 298,856,411 141,779,191
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Tables 44, 45 and 46 shows the summary of the economic analysis that includes arrivals and
departures. The forecast considers the worst case scenario for the average mileage per month. The
worst case scenario for the mileage was the month of July 2016 that registered the largest number
of miles per day. Consequently, we are assuming that the monthly average per year is the monthly
average of July 2016. This average is going to be the input for an Engineering Economic Analysis
to determine he NPV for 5 years, considering each gradient per year.

Table 47. Net Present Value of each scenario per record.

S Basic in Historic Optir.num- based on ?_:::::::nv\?g;i\j’i:hn
WCS Historic WCS e

1 $9,740,257,673.34 $4,528,416,880.88 | $8,160,926,300.09

2 $11,577,728,494.173 | $5,376,521,836.942 | $6,091,335,168.934

3 $13,895,813,225.081 | $6,558,833,289.929 | $9,424,687,550.416

Table 47, shows the summary of the NPV per each scenario and each forecasting, based
on historical Worst Case Scenario for the mileage, the Optimum WCS and the Optimum
WCS with uncertainty. Our approach to this equivalent matrix is going to be the Hurwicz
Criterion for uncertainty with alpha value equal to 0, which is the alpha value for the
most pessimistic attitude. So, if v(ai, sj) represents a loss in our case cost of fuel burn
consumption, then the formula is as follows:
Equation 20. Hurwicz Criterion

ming, {a minsjv (al-, sj) + (1 - a)maxsjv(al-, sj)}
Therefore, the maximum values per column lays at the scenario 3 row, and the minimum
value per row of the row is the optimum based on historic WCS. Thus, the Scenario 3 is
the preferred scenario with the optimum value without the UFC factor, since it offers the

lower cost or loss for fuel burn consumption.



J. Results summary

Table 48. Summary of the results
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Determine the significance
of the variables and their
impact on the Air Traffic
Congestion.

function can be identified from
Rastrigin, Rosenbrock, Levy and
Sphere equations.

Alternative ~ Hypothesis  3:
Otherwise

Specific Objective Hypothesis Conclusion
Specific ___Objective _ #1: | Null Hypothesis 1: Equation 17 is | We fail to reject the Null
Determine which variables | statistically significant at 0.05 | Hypothesis, since the
are most relevant to | alpha value. equation 1 was statistically
minimize  Air  Traffic significant at 0.05 level and
Congestion. Alternative ~ Hypothesis  1: | the transformation of the y

Otherwise. to log y was the alternative
to accomplish the Multiple
Regression Assumptions for
ANOVA models.
Specific ___Objective  #1: | Null ~ Hypothesis 2:  The | We reject the null
Determine which variables | Congestion  Factor has an | hypothesis, since the CUF
are most relevant to | exponential effect over the | hasa logarithmic effect over
minimize  Air  Traffic | minimum Nautical Miles per | the Nautical Miles.
Congestion. model.
Alternative ~ Hypothesis  2:
Otherwise
Specific___Objective _ #2: | Null Hypothesis 3: One objective | We  reject  the  Null

Hypothesis since there was
not a DACE model to test,
we use the Worst case
scenario to test capacity vs
cost, since historically the
capacity was challenged by
the demand.

Specific ___Objective  #2:
Determine the significance
of the variables and their
impact on the Air Traffic
Congestion.

Null Hypothesis 4: Unified
Optimization Method Applied to
Vehicle Routing is the preferred
model to minimum value of
Nautical Miles.

Alternative Hypothesis 4:
Otherwise

We reject the  Null
hypothesis, since the model
utilized was a MILP with
Branch and Bound and
Heuristics.

Specific ___Objective  #3:
Identify the cost
effectiveness of the

variables on Air Traffic
Congestion.

Null Hypothesis 5: Genetic
Algorithms is the preferred
Method  for  Multi-objective

optimization between minimizing
cost for fuel burn in contrast to
maximize capacity (79)
Alternative ~ Hypothesis  5:
Otherwise

We reject the  Null
Hypothesis, since we use the
economic  analysis by
scenario and Engineering
Economics instead of multi-
objective optimization
between cost minimization
and maximization of the
capacity.
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IX. CONCLUSIONS

We conclude that the Air Traffic Congestion in Panama can be reduced through minimizing the
impact of historical congestion variables such as the sum of the mileage based on airways
assignation per route destination using the actual layout of airways. However, the model is not

limited to the actual design of the airspace.

We strongly believe that we achieve the objective one which is to determine which variables are
most relevant to minimize Air Traffic Congestion, in the case of Panama based on the three
Ishikawa models. However, as we state before the model is open to understand more variables,
such as air traffic mix, and the categorical variables from the first Ishikawa model. Also, we studied
using Linear Regression the significance of the variables and their impact on the Air Traffic
Congestion using the optimization analysis and the sensitivity analysis to evaluate the CUF impact
over the MILP over 181 iterations at three levels. Finally, we Identify the cost effectiveness of the

variables on Air Traffic Congestion using the theory of scenarios.

From the practical perspective the Air traffic controllers can take the model to select the preferred
historical air route to minimize the mileage, since there is a lack of standardization in the practice

to manage the air traffic between the air traffic controllers.

In addition, the use of the full model can decrease the existed gap between a future re-design of
the airspace and the actual design of the airspace. As a matter of fact, the actual airspace can handle
the more than 60 operations per hour and the bottleneck in the operation is still Tocumen
International Airport Capacity. However, it is necessary an adequate assignation of air routes in

order to increase the capacity and reduce risks on the operation
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Therefore, the CUF can be utilized as a reference to measure congestion, since the literature review

did not present that indicator specifically (2)

Furthermore, the Ishikawa models can be used for strategic purpose by the Collaboration Decision

Making to study the congestion in the air traffic.

Finally, the economic analysis based on scenarios can serve to evaluate strategic planning in terms

of air transportation.

X. FUTURE STUDIES
There are several small studies that we can conduct based on the previous research, the first one is

being the further evaluation of the first Ishikawa collecting more data that can measure the impact
of those variables and sub-variables affect the CUF. The second future research can be the analysis
of other searching methods such as genetic algorithms for the optimization model. The third future
study can be the evaluation of the different settings and alternatives of the solver of Mixed Integer
Linear Optimization using the DACE approach. The fourth future study can be the change of
formulation of the MILP to make a scheduling optimization model (72). The fifth future study can
be the economic analysis with considering the different studies about rate of fuel consumption
based on individual aircraft performance during the landing and takeoff (70,84). The sixth study
can be considering the adaptation of the model for Artificial Intelligence to give the optimum route

in real time.
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XI. LIMITATIONS
The first limitation was the software’s, since MATLAB was not able to import the millions of data

points for data management at the beginning of the study, so we did split the data to filtering and

clustering using Tableau.

The second limitation was the data availability, since the first effort of the study was to collect
more data directly from the Simulation model, but it was not feasible for Copa Airlines during the
2018. The explanation that they gave was the lack of expertise of the new personnel performing

analysis with the Software TAAM.

The third limitation was the data complexity, there was inaccuracy to challenge and double check,

for example the assignment of flight cancellations, or errors in some indicators or records.

The fourth limitation was the change of plans for data collection from the simulation model, since

| was not able to travel to Panama in 2018.

XIl. PROJECT PLAN
The commitment at the proposal of the dissertation was to complete the analysis of the hypothesis

and the objectives during the summer of 2018. The first objective took the majority of the time,
since we decided to use the historical dataset instead that collect new data from the simulation
model. The second specific objective took the month of July and part of August. In order to
evaluate the model proposed we travel to lowa State University to receive feedback from the
Operations Research department and the Chair of IMSE department. Consequently, we did further
studies in the MLR and we did adjust the MILP. The third objective was completed in August,
which include a direct input from the Logistic Strategic Planning until 2030 that include air

transportation.
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Table 49. Gantt Chart

Phase of the Dissertation

» Specific_Objective #1: Determine which
variables are most relevant to minimize Air
Traffic Congestion.

+ Specific Objective #2: Determine the
significance of the variables and their impact
on the Air Traffic Congestion.

» Specific_Objective #3: Identify the cost
effectiveness of the variables on Air Traffic
Congestion.
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XI1l. CONTRIBUTION TO THE BODY OF KNOWLEDGE

The contributions to the body of knowledge includes the classes that was worked as a Graduate
Teacher Assistant, such as: Advance Engineering Economics, Facilities Planning and Design,
Engineering Probability, Operation Research, Quality Systems, Production and Inventory Control,

Planning Control of Enterprise Systems, Management of Knowledge Technology

In addition, the Design for Six Sigma Research and the Multi-Objective Optimization from Dr.
Erick Jones. Also, Deep Learning and Genetic Algorithms from IE 5345 Management of

Knowledge and Technology of Dr. John Priest.

Furthermore, from the data analytics area, the Design and Analysis of Computer Experiment,
knowledge of DOE and SAS from IE 6308 and IE 6309 the classes of DOE and Response Surface
Methodology and DACE respectively from Dr. Victoria Chen. Data Mining, Data Exploration,
and MATLAB knowledge from the Data Mining and Analytics class from Dr. Shouyi Wang. IE
6318. Linear Optimization from Introduction of Operations Research class of Dr. Bill Corley. IE
5301, Queueing Theory, Dynamic Programming with Dr. Corley as well, and Combinatorial

Optimization with Dr. Jay Rosenberger as instructor.
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XIV. APENDIX A

Table A. Research Journey Summary in a Time Line

Date Steps

January 2015 Presentation of the Air Space Challenge to the
Dean Office

June 2015 Pre Proposal of Airspace Optimization
Conference

January 2016 First Data Collection in Panama

July 2016 First DACE model

June 2017 Airspace Optimization Conference in Panama

July 2017 Second Data collection

June 2018 Dissertation Proposal
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