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ABSTRACT

SUPERVISED SPARSE LEARNING WITH APPLICATIONS IN

BIOINFORMATICS

Kin Ming Puk, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Shouyi Wang

In machine learning and mathematical optimization, sparse learning is the use

of mathematical norms such as L1-norm, group norm and L21-norm in order to seek

a trade-off between the goodness-of-fit measure and sparsity of the result. Sparsity of

result leads to a parsimonious learning model - in other words, only few features from

the data matrix are required to build the learning model and for further interpretation.

The motivations of employing sparse learning in bioinformatics are two-fold: firstly,

a parsimonious learning model enhances the explanatory power; and secondly, a

parsimonious model generally allows better prediction and generalizes better to new

data.

This dissertation is a collection of recent advances of sparse learning in bioin-

formatics, and consists of 1) L21-regularized multi-target support vector regression

(L21-MSVR), 2) the application of L21-MSVR in predicting optimal tibial soft-tissue

insertion of the human knees, 3) hierarchical sparse group lasso (HSGL), which im-

proves the hierarchical lasso by incorporating an extra group-norm regularization, and

4) the use of HSGL on an electroencephalography (EEG)-based emotion recognition
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problem. The commonality between these articles is the use of mathematical norms,

and improvement from existing optimization formulations in order to learn better and

to allow a better interpretation of feature selection.
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CHAPTER 1

INTRODUCTION

Machine learning [1] can be loosely defined as the use of computer systems to

learn from data without being explicitly programmed in order to perform specific

tasks. As an example, in figure 1.1, linear regression [2] attempts to model the linear

trend of the blue points with the red line. This is the classical case of simple linear

regression, where both the dependent and independent variables are one-dimensional.

The equation of linear regression is given by:

y = Aw + ε (1.1)

where the notations of the term are explained in table 1.1.

In order to solve (1.1), mathematical optimization is one possible way (it can also

be solved via closed-form solution using normal equation, QR matrix decomposition

and singular value decomposition [4]). The formulation of least-square optimization is

as follows:

Figure 1.1: An illustration of linear regression [3].
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Table 1.1: Notations used in chapter 1.

Symbol Meaning
N No. of observation
M No. of features

A ∈ R
N×M Data matrix (Arranged as observation by feature)

y ∈ R
N×1 Single learning response

Y ∈ R
N×P Multi learning response

w ∈ R
M×1 Model vector

W ∈ R
M×P Model matrix

ε ∈ R Residual

min
w
||Aw− y||2 (1.2)

However, the solution obtained from (1.2) is not necessarily unique, especially

when the number of observations is less than that of features. In that case, an extra

L1-regularization on the model vector can be added, resulting in lasso (least absolute

shrinkage and selection operator) [5]:

min
w
||Aw− y||2 + λ||w||1 (1.3)

Lasso is one of the classical examples in sparse learning, where the use of L1-norm

encourages the model vector w to be sparse. If λ is large, then the optimal w has

only few non-zero elements (i.e. sparse) in the vector, and thus an appropriately

tuned lasso model allows to select the few but yet important features that are the best

predictors of the response [6].

If there is more than one response variable to predict simultaneously, then the

formulation (1.2) can be generalized in matrix term, resulting in multi-response (or

multi-target) regression [7], as follows:

min
W
||AW− Y ||2,2 + λ||W||1,1 (1.4)

2



In general, sparse (machine) learning [6] is a collection of learning methods in

order to seek a trade-off between the goodness-of-fit measure (i.e. how well a learning

model can describe a set of observations [8]) and sparsity of the model vector [6].

Mathematical norms such as L1-norm ( ||w||1 =
∑

i |wi|), group norm (||wk||2 =√
w2
k1 + · · ·+ w2

kGk
) and L2,1-norm (||W||2,1 =

∑M
m=1

√∑P
p=1 w

2
mp =

∑M
m=1 ||wm||2)

are popular choice in sparse learning. They are better known as sparsity-promotion

norms [9] because:

• The presence of L1-norm on vector w in a minimization optimization will force

the sum of elements in w as small as possible, thus encouraging sparsity. For

example, consider the following simple optimization example:

min
w
||w||1

s.t. w ≥ 0

(1.5)

In this case (1.5), the optimum solution is w = 0, with the objective value being

zero. So the model vector w is very sparse, with all elements in the model vector

being zero.

• In the case of group norm, the entire vector w will be divided into groups

such as w = [w1,w2, . . . ,wG]T , where there are G groups in this case. Group

norm is basically to apply a L2-norm on each of the group vector, resulting

in
∑G

g=1 ||wg||2. L2-norm processes the ”all-in-all-out” property [10] (where all

other variables in the same group tend to be selected when only one variable is

selected in that group). Consider the following numerical example,

3



min
w
||w||2

s.t. w = [w1, w2, w3]T

w1 + w2 + w3 > 1

w1, w2, w3 > 0

(1.6)

It is assumed that the above selection problem requires at least one of the

elements to be chosen in the above optimization problem (1.6), and that is why

the constraint ”w1 + w2 + w3 > 1” is included. The optimum solution for (1.6)

is w = [0.33, 0.33, 0.33]T , meaning that all three features are selected (all-in).

If the ”w1 + w2 + w3 > 1” is removed from (1.6), then w = [0, 0, 0]T (all-out).

That explains the so-called ”all-in-all-out” property.

Because of the ”all-in-all-out” property of L2-norm , either the variables of the

whole group will be selected or ignored. Thus group norm encourages group

sparsity on the model vector.

• L2,1-norm is row-sparsity inducing (i.e. elements in a row are all zero). Similar

to group norm, L2,1-norm is to apply L2-norm on each row vector of the model

matrix. This explains why features on the entire row vector are selected or

ignored, which is similar to group norm.

In view of the above, the motivation of this dissertation is the use of mathematical

norms, and improvement from existing optimization formulations in order to learn

better and to allow a better interpretation of feature selection. Chapter 2 proposes

L21-regularized multi-target support vector regression (L21-MSVR). Starting from

single-target support vector regression, it introduces how L21-MSVR is developed and

the optimization algorithm used to solve it. Chapter 3 is the application of L21-MSVR

in predicting optimal tibial soft-tissue insertion of the human knees. L21-MSVR

is indeed developed in order to deal with the regression problem where there are
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more features than observations and when there is a considerable number of response

variables. Chapter 4 proposes hierarchical sparse group lasso (HSGL), which improves

the hierarchical lasso by incorporating an extra group-norm regularization. Last but

not least, chapter 5 is the use of HSGL on an EEG-based emotion recognition problem.

Chapter 6 concludes this dissertation.
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CHAPTER 2

L2,1-Regularized Multi-Response Support Vector Regression (L21-MSVR)

Abstract

A novel L2,1-norm based multi-response support vector regression method is proposed.

The L2,1-norm based loss function is especially effective in selecting common features

relevant to learning all the response variables at the same time. The unconstrained

optimization problem can be efficiently solved by an iterative FISTA optimization

algorithm. Simulated data is used to evaluate the robustness and effectiveness of

the new proposed algorithm, and the result show promising performance when there

are more features than observations, and when there are a considerable number of

response variables.

Keywords: support vector regression, multi-response regression, L2,1-norm, FISTA

2.1 Introduction

The L2,1-regularized multi-response support vector regression was developed in

order to better handle the prediction of optimal surgery location of human knees in

the next chapter.

Predicting several responses simultaneously requires multi-target prediction

models, also known as multi-response or multi-output learning. According to [1, 2],

there are mainly two types of multi-response learning approaches:

• Problem transformation methods transform multi-target regression into other

well-established, single-target learning models. One drawback of this type of
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Table 2.1: Notations used in chapter 2.

Symbol Meaning
N No. of observation
M No. of features
P No. of response variables

A ∈ R
N×M Data matrix (Arranged as observation by feature)

Y ∈ R
N×P Learning response (or learning target)

w ∈ R
M×1 Model vector

W ∈ R
M×P Model matrix

ε ∈ R Tuning parameter for L21-MSVR

ξ, ξ∗ ∈ R
N×P Slack variables for L21-MSVR

methods is that the relationships among the targets are often ignored so that the

prediction performance might not be satisfactory. Examples include multi-target

regressor stacking [3], which uses the prediction of the first response as part

of the input data in predicting the next response variable, and multi-output

support vector regression (SVR) [4], which considers the correlations between

the targets using a vector virtualization method.

• Algorithm adaption methods learn by considering all dependencies and internal

relationships between response variables. This type of methods is easier to

interpret and produces better learning performance when response variables are

correlated. Examples include statistical methods [5], multi-output SVR [6, 7],

kernel methods [8], regression trees [9] and more. Interested readers can refer to

[1] for a list of the state-of-the-art algorithms in this category.
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2.2 Method

The proposed regression model1 is an algorithm adaption method, which consid-

ers all the response variables at the same time during learning. Recall the formulation

of L2-regularized, L2-loss support vector regression (SVR) model, where N , M and

P are the number of observations, features and response variables respectively, as

follows:

min
wp,ξ,ξ∗

P∑
p=1

[
||wp||2 + C

N∑
n=1

(ξpn)2 + (ξ∗pn)2

]

s.t. ypn −wT
p xn ≤ ε+ ξpn,∀p = 1, . . . , P, n = 1, . . . , N

wT
p xn − ypn ≤ ε+ ξ∗pn,∀p = 1, . . . , P, n = 1, . . . , N

ξ, ξ∗ ≥ 0

(2.1)

fp(x) = wT
p x+ b, ∀p = 1, . . . , P (2.2)

The bias term b is eliminated for simplifying the presentation. It can be achieved

by adding a column of one into the data matrix (or design matrix). Furthermore, the

above can be generalized in matrix terms as follows, where X ∈ R
N×M , Y ∈ R

N×P ,

W ∈ R
M×P , ξ, ξ∗,1 ∈ R

N×P and || · ||F is the Frobenius Norm:

min
W,ξ,ξ∗

||W||F + C||ξ||F + C||ξ∗||F

s.t. Y−XW ≤ ε1 + ξ

XW−Y ≤ ε1 + ξ∗

ξ, ξ∗ ≥ 0

(2.3)

1In the model, a scalar is represented by a non-bold lower-case letter, a vector is represented by a

bold lower-case letter and a matrix is represented by a bold upper-case letter.
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f(X) = XW (2.4)

The unconstrained version of formulation (2.3) is:

min
W

J(W) = ||W||F + C||(Y−XW− ε1)+||F

+ C||(XW−Y− ε1)+||F
(2.5)

where the hinge loss operator is (·)+ = max (·, 0). To further modify the formulation,

consider the L2,1-norm, which is defined as:

||W||2,1 =
M∑
m=1

√√√√ P∑
p=1

w2
mp =

M∑
m=1

||wm||2 (2.6)

where wm denotes the m-th row vector of matrix W. The initial formulation of

L2,1-regularized, L2,2-loss multi-response support vector regression (L21-MSVR), is

proposed:

min
W

J1(W) = ||W||2,1 + C||(Y−XW− ε1)+||F + C||(XW−Y− ε1)+||F (2.7)

As a heuristics to further enhance computational efficiency, the final version of

L21-MSVR is reformulated from (2.5) with the removal of hinge loss and equality loss

constraints as follows [10]:

min
W,ξ,ξ∗

||W||2,1 + C||ξ||F + C||ξ∗||F

s.t. Y−XW = ε1 + ξ

XW−Y = ε1 + ξ∗

(2.8)

min
W

J2(W) = ||W||2,1 + C||Y−XW− ε1||F + C||XW−Y− ε1||F (2.9)
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The reformulation of the slack variables ξ and ξ∗ removes the hinge-loss operator

so that the gradient of the Frobenius loss term can be computed directly instead of

computing its subgradient. The derivative of formulation (2.15) is consequently as

follows [11]:

∂J2(W)

∂W
=

∂

∂W
||W||2,1

+ C
∂

∂W
||Y−XW− ε1||F

+ C
∂

∂W
||XW−Y− ε1||F

=
∂

∂W
tr(WTDW) + C(4XTXW− 4XTY)

= 2DW + 4CXTXW− 4CXTY

(2.10)

One may be tempted to develop analytical solution as in [10]. From derivative

(2.10), it is found that W = (2D + 4CXTX)−14CXTY. However, as pointed out

in [12], the matrix D is dependent on W and is unknown. Therefore, an iterative

optimization algorithm will be more appropriate for computation.

2.2.0.1 Optimization Algorithm - FISTA

Formulation (2.7) can be easily solved with a commercial convex programming

package such as CVX [13]. However, doing so may take more than a week in order

to tune the parameters and get an optimal solution. In order to enhance computa-

tional efficiency, the FISTA (Fast ISTA) algorithm [14], which combines Nesterov’s

accelerated gradient descent with ISTA (iterative shrinkage-threshold algorithm), is

chosen to efficiently solve formulation (2.7) because i) the formulation is in the form of

standard, unconstrained quadratic programming; ii) a subgradient can be computed

for the objective function consisting of L2,2-norm and L2,1-norm; iii) FISTA is easy to

implement [15]; and iv) instead of having a sublinear convergence rate of O(1/j) as in
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gradient descent, FISTA enjoys a favorable convergence rate of O(1/j2), where j is

the number of iterations.

A a summary of FISTA can be found in Algorithm (1). Its convergence is well

analyzed and can be found in [15].

2.2.0.2 Implementation Specifics of the Algorithm

When wm = 0, then dmm = 0 is a subgradient of ||W||2,1, w.r.t. wm [12].

However, if dmm is set to 0 when wm = 0, the derived algorithm may not converge

(i.e. dmm = 1
0

= inf). Therefore, a small number ρ is used for regularization as in

dmm = 1

2
√

(wm)Twm+ρ
.

There are a lot of choices for termination criteria such as the difference of

objective values between successive iterations. For better computational efficiency,

the ratio of the Frobenius Norms
(
||W(j+1)−W(j)||F

||W(j)||F

)
is used at [12] in order to avoid

the expensive computation of the objective value.

In practice, the starting step size γ and the parameter σ in backtracking (γ = σγ)

are set to 1 and 0.8 respectively [16].

2.3 Simulation Study

2.3.1 Data Generation

The simulation in [17, 18] was extended. A model that has both categorical and

continuous prediction variables was considered.

To begin with, the number of observations and features in the simulated dataset

is either 35 or 350. For the case of 35 features (or 350 features), ten (or one hundred

(100)) independent standard normal variables, Z1, . . . , Z10 (or Z1, . . . , Z100) and W

were generated. The covariates were then defined as Xj = (Zj +W )/
√

2. Then the last
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Algorithm 1 Solving multi-response support vector regression with L2,1-norm regu-

larization [12, 15]

Require: X ∈ R
N×M (data matrix), Y ∈ R

N×P (response matrix), C, ε, α ∈ R

(learning parameters), ρ ∈ R (regularization parameter), σ ∈ R (backtracking

parameter), tol ∈ R (termination parameter).

1: Initialize projection matrix W(0) = {wmp = 0},∀m, p, Z(0) = W(0), t(0) = 1.

2: Set j = 0.

3: while termination criterion is not met (tol > ||W(j+1)−W(j)||F
||W(j)||F

) do

4: Initialize diagonal matrix D(j+1), where the m-th diagonal element is d
(j+1)
mm =

1

2||w(j)
m ||2

(or d
(j+1)
mm = 1

2
√

(w
(j)
m )Tw

(j)
m +ρ

if ||w(j)
m ||2 = 0).

5: t(j+1) = 1
2

+ 1
2

√
1 + 4(t(j))2.

6: W(j+1) = Z(j) - γ ∂J2(Z(j))
∂Z

according to (2.10).

7: Z(j+1) = W(j+1) + t(j)−1
t(j+1) (W(j+1) −W(j)).

8: Use backtracking to find the appropriate step size γ.

9: Set j = j + 1.

10: end while

five (or fifty (50)) covariates X6, . . . , X10 (or X51, . . . , X100) were discretized to 0, 1, 2,

and 3 by Φ−1(1/4), Φ−1(1/2), and Φ−1(3/4). Each of X1, . . . , X5 (or X1, . . . , X50) was

expanded through a fourth-order polynomial, and only the main effects of X6, . . . , X10

(or X51, . . . , X100) were considered. Therefore a total of five (or fifty (50)) continuous

groups with four variables in each group and five (or fifty (50)) categorical groups

with three variables in each group were simulated.

Each response is generated by randomly selecting and summing up 20%, 50% or

80% of the available features among the dataset together with the error term. Each

feature is weighted with a normalized coefficient (a1, . . . , aN) as follows:
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y = a1x1 + a2x2 + . . . + aNxN + ε

1 = a1 + . . . + aN

(2.11)

The error term ε in the above follows a normal distribution N(0, σ2), where

σ2 was set such that each of the signal to noise ratios, Var(XTW )/Var(ε)), was

equal to 3. For example, assume the data matrix X consists of 10 features, i.e.

X = [xT1 , . . . ,x
T
10]T . Also assume the ratio of features used to construct each response

is 20%, then 2 out of 10 features will be used to construct the response as follows:

y = aixi + ajxj + ε, where i, j ∈ 1, . . . , 10 and ε is the error term.

In summary, there are 30 cases as follows:

1. Number of observations and features: i) 35 observations and 350 features, ii)

350 observations and 35 features

2. Number of responses: 2, 5, 10, 15, 20

3. Percentage of available features used to construct each response: 20%, 50%, 80%

In addition, there are two performance measures:

aRRMSE =
1

P

P∑
p=1

√∑Ntest
n=1 (ypn − ŷpn)2∑Ntest
n=1 (ypn − ȳp)2

,

Feat. Density =
No. of non-zero elements in feat. matrix

Row size of feat. matrix ∗ Column size of feat. matrix

(2.12)

A double 5-fold cross validation was conducted. Parameters, if any, were tuned

using the training dataset and five-fold cross validation to provide a realistic estimation

of prediction errors and to prevent over-fitting. After running all possible combinations

of parameters, those with the highest accuracy or lowest average relative root mean

squared error (aRRMSE) was chosen. The above procedure was repeated 30 times.
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2.3.2 Baseline Regressors

The following methods in the literature were used to compare with the proposed

method. Notations in the following models have been changed for better consistency

with the above.

• Generalized linear model via penalized maximum likelihood (GLMNET, [19, 20]):

GLMNET is an extension of the single-target case where it is designed to model

correlated responses with a multi-response Gaussian distribution. The absolute

penalty on each single coefficient is replaced with a group-lasso penalty.

min
(W0,W)∈R(M+1)×P

1

2N

N∑
n=1

||yn −WT
0 − WTxn||2F

+ λ

[
1

2
(1− α)||W||2F + α

M∑
m=1

||wm||2

] (2.13)

• Multi-target regressor stacking using decision tree (MTRS-DT, [21]): MTRS-DT

is inspired from ”stacked generalization” which was designed for multi-label

classification. There are two stages in the learning process. Firstly, P single-

target models are learned as usual. MTRS-DT then predicts the target one-by-

one with stacking: after predicting the first response variable, its output will be

attached to the original testing dataset to build a new meta model, which is in

turned used to predict the second target variable. The process continues until

all response variables are predicted in this manner [1, 21]. The stacking idea

is powerful and can be applied to any single-target regression model. However,

the sequence of stacking affects the regression performance. In this experiment,

the prediction of the first response variable will be used in the prediction of the

next.

• Multi-target random forest (MTRF, [22, 23, 24, 25]): A random forest is a meta-

learner that trains a number of decision trees, each of which uses a subset of

15



the original dataset and outputs the final prediction by averaging the prediction

from each decision tree. Generally speaking, MTRF differs from its single-target

counterpart in that during the splitting of a tree node, the performance measure

considers all the output variables instead of considering a single output variable

at a time.

• Single-response support vector regression (SSVR): It is simply the single-response

L2-regularized, L2-loss support vector regression from Liblinear.

2.3.3 Result

The result are presented in tables 2.2, 2.3 and 2.4. In general, the strongest

competitor of L21-MSVR is GLMNET, which performs generally well across different

cases. L21-MSVR performs the best when there are more features than observations.

To begin with, L21-MSVR does not perform well in terms of aRRMSE when

only 20% of features are used to form the responses, especially when there are more

observations than features. Recall the property that L2,1-norm is to sum the L2-norm

of each row vector in the model matrix. Considering the following hypothetic cases

using only 20% of the available 10 features to form the responses:

y1 = x1 + x2

y2 = x3 + x4

(2.14)

In the above case, the first response y1 requires the 1st and 2nd features, whereas

the second response y2 requires the 3rd and 4th features. For L21-MSVR, because

of the ”all-in-all-out” features of L2-norm, even though the 3rd and 4th features are

not responsible for learning the first response variable, they will be all selected for

L21-MSVR. The same applies to the 1st and 2nd features in learning the second

response variable for L21-MSVR. As a result, under cases where response variables
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Figure 2.1: Model matrix and vectors as solved by L21-MSVR and SSVR in the
hypothetical case. In the following, non-zero elements in the vector/matrix are
represented by a variable such as w1 and W11. This figure is associated with the
hypothetical case (2.14).

do not have a lot of correlation between each other such as this case of using 20% of

available features in forming each response variable, L21-MSVR tends not to learn well

and its model matrix W tends to have high density because ”unnecessary features”

tend to be selected, as illustrated in figure 2.1.

If the percentage of available features used to construct each response is increased

to 50% and 80%, L21-MSVR performs well in the case of having more features than

observations, as illustrated in Tables 2.3 and 2.4. Following the same rationale in the

above, the number of ”unnecessary features” to be included to learn the features gets

relatively smaller when compared with the case of using 20%, as the same feature is

probably more relevant to learning several responses at the same time.
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Table 2.2: aRRMSE density of feature matrix (or vector), if any, of simulation
experiments of L21-MSVR against other baseline regressors using 20% of the available
features to generate each response. All of the numbers outside of parentheses are
means over 30 repetitions, and the numbers in the parentheses are the corresponding
standard errors.

aRRMSE Density of Feature Vector/Matrix
No.
of

Ob-
sns.

No.
of

Feat.

No.
of

Resp.

GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR
GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR

35 350 2
0.675

(0.211)
0.718
(0.235)

1.08
(0.146)

1.074
(0.173)

1.276
(0.212)

0.106
(0.01)

0.381
(0.162)

N/A N/A
0.102
(0.092)

35 350 5
0.633

(0.151)
0.729
(0.192)

1.091
(0.126)

1.061
(0.165)

1.296
(0.133)

0.17
(0.015)

0.457
(0.135)

N/A N/A
0.102
(0.102)

35 350 10
0.71

(0.139)
0.788
(0.217)

1.073
(0.078)

1.087
(0.132)

1.304
(0.145)

0.21
(0.017)

0.523
(0.11)

N/A N/A
0.062
(0.065)

35 350 15
0.681

(0.114)
0.71

(0.158)
1.097
(0.084)

1.04
(0.14)

1.349
(0.15)

0.229
(0.025)

0.541
(0.148)

N/A N/A
0.096
(0.079)

35 350 20
0.699
(0.1)

0.763
(0.16)

1.093
(0.092)

1.077
(0.111)

1.27
(0.107)

0.247
(0.026)

0.519
(0.151)

N/A N/A
0.077
(0.061)

350 35 2
0.072

(0.065)
0.476
(0.4)

0.309
(0.066)

0.718
(0.263)

0.656
(0.256)

0.096
(0.02)

0.769
(0.11)

N/A N/A
0.583
(0.238)

350 35 5
0.074

(0.048)
0.341
(0.324)

0.312
(0.064)

0.769
(0.233)

0.688
(0.138)

0.173
(0.029)

0.717
(0.149)

N/A N/A
0.6

(0.241)

350 35 10
0.077

(0.035)
0.366
(0.268)

0.328
(0.073)

0.775
(0.177)

0.735
(0.11)

0.225
(0.042)

0.732
(0.137)

N/A N/A
0.548
(0.19)

350 35 15
0.097

(0.062)
0.281
(0.271)

0.361
(0.117)

0.715
(0.207)

0.716
(0.086)

0.242
(0.033)

0.724
(0.138)

N/A N/A
0.572
(0.224)

350 35 20
0.087

(0.043)
0.227
(0.254)

0.329
(0.076)

0.729
(0.212)

0.729
(0.102)

0.241
(0.028)

0.678
(0.138)

N/A N/A
0.552
(0.248)

Table 2.3: aRRMSE density of feature matrix (or vector), if any, of simulation
experiments of L21-MSVR against other baseline regressors using 50% of the available
features to generate each response. All of the numbers outside of parentheses are
means over 30 repetitions, and the numbers in the parentheses are the corresponding
standard errors.

aRRMSE Density of Feature Vector/Matrix
No.
of

Ob-
sns.

No.
of

Feat.

No.
of

Resp.

GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR
GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR

35 350 2
0.965
(0.718)

0.652
(0.215)

1.085
(0.21)

1.197
(0.18)

1.323
(0.172)

0.108
(0.006)

0.436
(0.12)

N/A N/A
0.042
(0.064)

35 350 5
0.745
(0.174)

0.653
(0.188)

1.084
(0.143)

1.131
(0.2)

1.322
(0.227)

0.158
(0.019)

0.447
(0.14)

N/A N/A
0.062
(0.079)

35 350 10
0.753
(0.214)

0.633
(0.167)

1.107
(0.118)

1.188
(0.182)

1.324
(0.176)

0.191
(0.016)

0.465
(0.112)

N/A N/A
0.047
(0.062)

35 350 15
0.735
(0.158)

0.684
(0.208)

1.132
(0.096)

1.222
(0.177)

1.224
(0.214)

0.202
(0.016)

0.537
(0.112)

N/A N/A
0.04

(0.045)

35 350 20
0.684
(0.163)

0.67
(0.157)

1.105
(0.13)

1.176
(0.164)

1.284
(0.177)

0.207
(0.02)

0.49
(0.117)

N/A N/A
0.042
(0.047)

350 35 2
0.081

(0.043)
0.249
(0.253)

0.432
(0.107)

0.829
(0.318)

0.642
(0.188)

0.211
(0.039)

0.695
(0.155)

N/A N/A
0.439
(0.245)

350 35 5
0.075

(0.047)
0.267
(0.264)

0.446
(0.121)

0.724
(0.281)

0.694
(0.167)

0.251
(0.032)

0.684
(0.1)

N/A N/A
0.524
(0.217)

350 35 10
0.062

(0.024)
0.292
(0.235)

0.416
(0.101)

0.728
(0.242)

0.711
(0.099)

0.267
(0.032)

0.741
(0.125)

N/A N/A
0.534
(0.225)

350 35 15
0.069

(0.033)
0.236
(0.195)

0.415
(0.083)

0.765
(0.287)

0.716
(0.091)

0.254
(0.026)

0.663
(0.17)

N/A N/A
0.434
(0.245)

350 35 20
0.062

(0.023)
0.346
(0.208)

0.426
(0.081)

0.684
(0.224)

0.69
(0.091)

0.264
(0.031)

0.766
(0.131)

N/A N/A
0.561
(0.192)
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Table 2.4: aRRMSE density of feature matrix (or vector), if any, of simulation
experiments of L21-MSVR against other baseline regressors using 80% of the available
features to generate each response. All of the numbers outside of parentheses are
means over 30 repetitions, and the numbers in the parentheses are the corresponding
standard errors.

aRRMSE Density of Feature Vector/Matrix
No.
of

Ob-
sns.

No.
of

Feat.

No.
of

Resp.

GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR
GLM-
NET

L21-
MSVR

MTRS-
DT

MTRF SSVR

35 350 2
0.788
(0.171)

0.591
(0.184)

1.088
(0.197)

1.228
(0.238)

1.356
(0.169)

0.104
(0.006)

0.445
(0.134)

N/A N/A
0.038
(0.046)

35 350 5
0.703
(0.173)

0.51
(0.146)

1.058
(0.168)

1.101
(0.275)

1.268
(0.24)

0.137
(0.013)

0.493
(0.118)

N/A N/A
0.088
(0.093)

35 350 10
0.769
(0.16)

0.607
(0.19)

1.1
(0.153)

1.268
(0.258)

1.312
(0.299)

0.164
(0.02)

0.45
(0.106)

N/A N/A
0.042
(0.062)

35 350 15
0.745
(0.183)

0.644
(0.2)

1.103
(0.149)

1.263
(0.29)

1.259
(0.195)

0.166
(0.025)

0.484
(0.11)

N/A N/A
0.036
(0.052)

35 350 20
0.672
(0.151)

0.605
(0.201)

1.07
(0.162)

1.242
(0.241)

1.279
(0.254)

0.172
(0.025)

0.506
(0.109)

N/A N/A
0.044
(0.058)

350 35 2
0.06

(0.032)
0.159
(0.088)

0.46
(0.124)

0.586
(0.296)

0.668
(0.174)

0.275
(0.038)

0.733
(0.131)

N/A N/A
0.535
(0.23)

350 35 5
0.07

(0.049)
0.182
(0.13)

0.426
(0.083)

0.659
(0.323)

0.653
(0.119)

0.28
(0.019)

0.692
(0.151)

N/A N/A
0.465
(0.254)

350 35 10
0.047

(0.009)
0.17

(0.183)
0.405
(0.073)

0.668
(0.302)

0.683
(0.151)

0.271
(0.033)

0.704
(0.131)

N/A N/A
0.48

(0.226)

350 35 15
0.05

(0.014)
0.201
(0.138)

0.445
(0.085)

0.643
(0.278)

0.686
(0.141)

0.284
(0.017)

0.732
(0.14)

N/A N/A
0.547
(0.197)

350 35 20
0.049

(0.012)
0.276
(0.165)

0.433
(0.099)

0.634
(0.257)

0.699
(0.149)

0.278
(0.019)

0.775
(0.086)

N/A N/A
0.468
(0.255)

2.4 Concluding Remarks

This chapter presents a novel L2,1-regularized, L2,2-loss multi-response support

vector regression, which handles the multi-response regression problem well when

there are more features than observations. L21-MSVR learns especially well when the

individual feature is relevant in learning most if not all of the response variables at

the same time. This is probably not the usual case for most of the multi-response

learning problems, where an individual feature is relevant to the learning of some (but

not most) of the response variables only. However, as illustrated in the next chapter,

L21-MSVR is particularly suitable for the prediction of tibial soft-tissue insertion

of human knees, where the features are the surface points of the shape of a human

knee so that each relevant feature is believed to be helpful in predicting the optimal

insertion centroid of each and every of the tibial soft tissues simultaneously.
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Future direction includes the incorporation of the extra L1,1-norm, in order to

encourage the sparsity of each row in the model matrix, as follows:

min
W

J2(W) = ||W||2,1 + ||W||1,1 + C||Y−XW− ε1||F + C||XW−Y− ε1||F

(2.15)
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CHAPTER 3

An Efficient L2,1-Regularized and Structure-Supervised Multi-Response Prediction

Model with Application to Tibial Soft Tissue Insertion Predictions

Abstract

The knee is the largest joint in the human body and is integral to movement. In the

case of any tearing of the cruciate ligaments, it is essential to identify their original

position for reconstruction and recovery. During surgical operation, it is difficult

to locate ligaments intra-operatively and there is a high inter-person morphological

variability between patients. Failing to do so will affect adjacent tissues, hindering

the knee recovery. In a previous study, the feasibility of predicting optimal insertion

sites of the cartilages and soft tissues under a reduced two-dimensional scenario was

investigated. Such prediction problem is challenging because of the large number

of features (508) and response variables (24), as opposed to the limited number of

observations (20). Extended from the previous study, this research is one of the first

few to precisely identify such positions under a three-dimensional setting. Because

the tibia outline can be accurately and reliably measured from computed tomography

(CT) imaging, features can be extracted for model building. In addition, a novel

three-step structure-learning model using multi-response support vector regression

and L2,1-norm regularization is employed so that the optimal insertion position of the

cartilages and soft tissues can be predicted simultaneously. The proposed model is

easy to implement and outperforms other state-of-the-art prediction models in the

experiment.
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Keywords: ligament, meniscal insertions, knee anatomic reconstruction, structured

supervised learning, X-ray imaging, computed tomography, multi-response prediction,

support vector regression, L2,1 regularization.

3.1 Introduction

The knee is a complex joint that provides basic human function and mobility,

enabling ambulatory or sports activities such as walking, running, and jumping [1].

The structural components of a knee joint include cartilage, ligaments (connecting

one bone to another), tendons (connecting muscle to bone) and bones (connected by

ligaments, or by tendons to muscles). As a union of bones, the knee is where the

thigh bone (femur) joins the shin bone (tibia) to form the tibiofemoral joint, and the

kneecap (patella) joins the femur to form the patellofemoral joint. Articular cartilage

covers the knee joint, helps absorb shock, and improves joint movement. Over-use

and excessive stress or force can make the knee prone to a variety of injuries. Typical

knee injuries include fractures, dislocations, anterior cruciate ligament (ACL) injuries,

posterior cruciate ligament (PCL) injuries, collateral ligament injuries, meniscal tears

and tendon tears [2, 3]. Injuries to the cruciate ligaments (ACL and PCL) are

particularly devastating as they do not heal and would most often require surgical

reconstruction. Among the two, the ACL is more commonly injured: an estimated

175,000 ACL reconstructions are performed annually, with a financial impact exceeding

2 billion dollars in the United States alone. On the other hand, PCL injuries occur

less frequently and are thus believed to be under diagnosed; yet they affect about

3% of the general population and account for as many as 40% of patients with knee

trauma seen in emergency rooms.

The anatomic reconstruction procedure involves creating bone tunnels and

placing substituting grafts in the exact positions as the native ligaments. An ac-
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Table 3.1: Notations used in chapter 3.

Symbol Meaning
N No. of observation
M No. of features
P No. of response variables

A ∈ R
N×M Data matrix (Arranged as observation by feature)

Y ∈ R
N×P Original learning response (or learning target)

Ŷ ∈ R
N×P Predicted learning response (or learning target)

w ∈ R
M×1 Model vector

W ∈ R
M×P Model matrix

ε ∈ R Tuning parameter for L21-MSVR

ξ, ξ∗ ∈ R
N×P Slack variables for L21-MSVR

Figure 3.1: Right knee, seen from an angle between anteriorly and laterally [4]. The
three main parts of the knee are the thigh bone (femur), the shin bone (tibia) and
the kneecap (patella). The femur joins the tibia to form the main joint, whereas the
patella meets the femur to make another joint [1].
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curate replication of the natural anatomy in anatomic reconstruction is crucial to

fully restore knee joint function and reduce impingement on or iatrogenic injury to

adjacent structures [5]. However, current approaches to treating knee injuries may be

inconsistent and ineffective in restoring knee function and preventing the development

of osteoarthritis (OA). Analyses of long-term outcomes after ACL reconstruction have

revealed that only 37% of patients were restored back to normal in terms of knee

structure and function [6], and 90% of ACL reconstructed knees exhibited radiographic

evidence of OA 3-10 years after injury [7]. A growing body of clinical evidence sug-

gests that anatomic reconstruction can better restore joint function and deter the

development of OA. However, a number of challenges are present in the practice of

anatomic reconstruction of the cruciate ligaments.

Intraoperative identification of native cruciate ligament insertion sites, as a

requisite for anatomical reconstruction, poses a tremendous challenge. Not all surgeons

can maintain an acute awareness of the anatomy: about 85% of ACL reconstructions

are done by surgeons who perform fewer than ten cases per year [8], and PCL

reconstructions are even less frequently performed by most surgeons; for those who

can, factors including the arthroscopic distortion, and disappearance of the ligament

remnant (naturally or due to a notchplasty procedure) can still cause misidentification

of the natural insertion or attachment sites. There is considerable variability of knee

anatomy in terms of bone and soft tissue insertion morphology (position, size, and

shape) [9]. Sample data from our preliminary study of tibial insertion site morphometry

suggest that simplistic cross-referencing or generalization from one patient to another is

likely to lead to nonanatomical tunnel drilling and iatrogenic injury to adjacent tissue

structures such as meniscus roots. Although it may be difficult to gauge the incidence

and impact of these iatrogenic injuries as complications of ACL or PCL surgeries,

the importance of minimizing the risk of such injuries is readily recognized [10, 11].

27



The key to anatomic surgery of cruciate ligaments with minimized risk of iatrogenic

injury is accurate, quantitative knowledge of the tissue morphology, documenting

interperson variability and specificity versus uncertainty associated with alternative

ways to predict morphometrics. Studies have investigated the quantification of the

insertion sites of cruciate ligaments and other soft tissue components using statistical

and quantitative approaches [12, 13, 14]. However, such quantitative analysis and

measures cannot fully capture accurate spatial arrangement of soft tissues. The

location and morphological measures cannot account for the interperson variability

of cruciate ligaments and meniscus insertions, which are mostly characterized by

qualitative measures [15, 16]. While in surgery, it is crucial to identify the native

location of the cruciate ligaments to reconstruct the natural anatomy of the ligament

structure. Therefore, one needs inference on the appropriate insertion sites of native

cruciate ligaments. Due to the complex anatomy of the knee, identification of insertion

sites of cruciate ligaments and meniscus roots in knee reconstruction surgery presents

a great challenge intra-operatively or pre-operatively during surgical planning.

This study presents a new multi-response regression framework in order to

achieve accurate prediction of the insertion sites for the six cruciate ligaments and

two cartilage surfaces (collectively referred to as ”cartilage and soft issues” in the

following). The challenge of this study lies in the large number of features (508)

and response variables (24) as opposed to the limited number of training samples

(20). In particular, the proposed framework first digitalized outlines of the tibia from

three-dimensional computed tomography (CT) images and aligned the outlines using

generalized procrustes analysis (GPA) techniques. It then extracted patient-specific

morphological features of the knee. Last but not least, the three-step structure-learning

model identifies the insertion locations of all cartilages and soft tissues simultaneously.
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In the first learning step, an L2,1 sparsity-inducing regularization was incor-

porated into the multi-response support vector regression (SVR) to cope with the

challenge of having more features and response variables than observations. Secondly,

sparse learning model was constructed to learn the intrinsic spatial relationship be-

tween the cartilages and soft tissues. Finally, a structure-supervised prediction model

that considers both the feature-response relationship from step 1 and the intrinsic spa-

tial relationship from step 2 was used to simultaneously predict the optimal insertion

centroids of the cartilages and soft tissues.

As opposed to ridge regression in [17], support vector regression is chosen to

be the base algorithm. It generally performs better than ridge regression or lasso

regression with careful parameter tuning at the expense of one more parameter (ε) to

tune. Instead of training the projection vector wm one-by-one in formulation (2.1),

L21-MSVR trains the projection matrix W considering all responses. In addition,

the L2,1-norm encourages row sparsity, where the number of rows corresponds to the

number of features. As a result, the L2,1-norm encourages parsimony of features,

which is itself a method of feature selection for features in the matrix representation

[18, 19]. It is especially sparse when the number of features is a lot larger than that

of the observations.

In summary, the contribution of this study includes the following: 1) a new

method of feature extraction was developed to capture morphological features of the

knee from aligned three-dimensional CT scan images; 2) a novel three-step structure-

learning and structure-supervised prediction framework was developed. The proposed

framework outperforms the state-of-the-art multi-response regression models.
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3.2 Methods

3.2.1 Data Collection

Twenty tibia specimens (ten left and ten right unpaired knees; 11 from men and 9

from women; mean age at death: 61 ± 5 years) were used to acquire the morphometric

data [20]. All epithelial, subcutaneous, and muscular tissues were removed from the

specimens. High-resolution CT scans of the tibias were taken with slice spacing of

0.625 mm and 3-D bone models of the tibias were created in Mimics (Materialise Inc.,

Belgium). A Polaris Spectra optical tracking system (Northern Digital Inc., Ontario,

Canada), with a manufacturer-reported accuracy of ±0.25 mm, was used to digitize

the outlines of the ACL, PCL, the medial cartilage (MCART), the lateral cartilage

(LCART), the anterior and posterior medial meniscal roots (AMMR and PMMR),

and the anterior-lateral and posterior-lateral meniscal roots (ALMR and PLMR). The

digitization was performed by the same experimenter with repeatability, as assessed

by intraclass correlation coefficients, ranging from 0.94 to 0.99. The digitized outlines

were mapped onto the CT-based 3-D tibia models with a fiducial registration error

smaller than 2% [13]. A closed spline was then fitted to each outline, resulting in 100

equidistant discrete points to represent the outline, as shown in figure 3.2.

A 3-D coordinate system was defined on each tibia based on its digitized and

mapped cartilage outlines (see figure 3.2). First, the origin of the coordinate system

was determined as the midpoint of the medial and lateral cartilage centroids. Principal

component analysis (PCA) was then performed on the equidistant discrete points

representing the cartilage outlines (200 points in total). The X-axis was the first

principal component axis passing through the origin and pointing laterally. The Y-axis

was orthogonal to the X-axis, passing through the origin and pointing anteriorly. To
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Figure 3.2: Digitized cartilage and insertion site outlines mapped onto the CT-based
3-D tibia model. The digitized points (asterisks) were spline-fitted, generating 100
equidistant points (circles on the close-up view of ACL insertion outline) on the fitted
outlines to facilitate the subsequent analyses [13, 20].

make the Z-axis point proximally, the coordinate system was designed as a right-handed

system for the right tibia and a left-handed system for the left tibia.

3.2.2 Image Alignment and Normalization Using Generalized Procrustes Analysis

Cartilage outlines for all 20 tibias were optimally aligned using GPA, which

is an iterative process of applying procrustes superimposition to all possible pairs

of configurations; a configuration here refers to a set of cartilage outline landmark

coordinates in a predefined order. For each cartilage configuration pair, one config-

uration served as the base and the other as the target. Procrustes superimposition

matches the target configuration onto the base, centering, rotating, and uniformly

scaling the target configuration to minimize the shape difference. For multiple (20
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Figure 3.3: Outlines of tibial cartilage and six insertion sites from 20 subjects before
(left plot) and after (right plot) cartilage-based GPA [13, 20].

in this study) configurations, GPA identified the reference or overall base configura-

tion as the one with the smallest overall procrustes distance to all others (i.e., the

19 remaining tibial cartilage configurations). The 19 remaining configurations were

then procrustes-superimposed onto this selected reference and their insertion sites

transformed accordingly by the same translation, rotation, and scaling rules, without

any shape distortion. Figure 3.3 shows the outlines of tibial cartilage and six insertion

sites from 20 subjects before and after cartilage-based GPA.

3.2.3 Feature Engineering Using Spherical Coordinates

The outline of the tibia can be easily and reliably measured, making it a feature

candidate to predict the locations of intangible soft tissues. Features are selected via

a spherical coordinate system, which consists of radial distance (r), polar angle (θ)

and azimuthal angle (φ). See figure 3.4 for an illustration.

A 3-D point with Cartesian coordinates (x, y, z) can be transformed into polar

coordinates (r, θ, φ) following the rules: r =
√
x2 + y2 + z2, θ = arc cos(z/r), and

φ = arc tan(y/x). Thus the direction of a tibia point from the origin can be described

by the two angles (θ, φ). The entire range of each angle ([−π, π]) is divided into N
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Figure 3.4: A visual illustration of feature selection. Points in the tibia feature space
are converted to a spherical coordinate system. The entire range of each angle in the
spherical coordinate is divided into N = 13 equal intervals, rendering 169 combinations
for θ and φ. Outline points that are nearest to these directions are chosen as features
in the form of Cartesian coordinates. Together with the side of the knee (left or right),
there are 169× 3 + 1 = 508 features for each observation.

equal intervals, resulting in a combination of N ×N = N2 directions from the origin.

Points along the outline tibia that are closest to these N2 directions will be selected

as features in the form of Cartesian coordinates. In this regard, N was chosen to be

13, and thus the number of selected features of each subject is N2 × 3 = 507.

In addition, raw CT image data consist of knees from left and right legs. Another

useful feature is whether it is a left or right knee. Therefore the total number of

features is 507 + 1 = 508.

3.2.4 Response Variable

There is high variability in ligament and meniscus insertions. In a surgical

procedure, the centroids of insertions are of particular importance to tunnel locations.

Thus, this work focuses on the prediction of centroids of the ligament and meniscus

insertions instead of the complete morphology of insertions.
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For each subject i ∈ 1, . . . , 20, the centroid of an insertion site j, (aij, bij, cij), is

defined as:

(
max(xij) + min(xij)

2
,

max(yij) + min(yij)

2
,
max(zij) + min(zij)

2

)
.

(3.1)

3.2.5 Proposed Three-Step Spatial-Structure Supervised Learning and Prediction

Model (L21-SSSL)

Extended from the L2,1-Regularized, L2,2-Loss Support Vector Regression Model

(2.15) in the last chapter, the following L21-SSSL model is proposed, where A ∈ R
P×P

is a matrix describing the linear relationship between each component of Y:

Learning Step 1: Solve L2,1-Regularized, L2,2-Loss Support Vector Regression

Model with formulation (2.15) to obtain the projection matrix W.

Learning Step 2:

min
A

α||YA||1 + ||A||1

s.t.
P∑
p=1

ynpapk = 0, akk 6= 0,

n ∈ {1, . . . , N}, k ∈ {1, . . . , P}

(3.2)

Prediction Step:

min
Ŷ
||Ŷ−XW||1 + α||ŶA||1 (3.3)

As suggested in [17], the A matrix in (3.2) learns the spatial arrangement of

the centroid of the soft tissues, by formulating each coordinate of the soft tissues as

the linear representation of the remaining response variables. By forcing one of the

elements along each column (or each row) of the A matrix to be non-zero, a linear

representation is enforced.
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In other words, the objective function of formulation (3.3) considers both the

prediction error and the error of the spatial arrangement in the three-dimensional

feature space, thus avoiding too much deviation of the centroid prediction from the

original centroid position. In [17], formulation (2.7) (or formulation (2.15)) and

formulation (3.2) are combined. However, these two formulations can be separated.

For the prediction step (3.3), the L1-norm is used to minimize the prediction

error of the objective function.

Both formulations (3.2) and (3.3) can be solved efficiently by any convex pro-

gramming package such as CVX [21].

3.3 Evaluations

Experiments were executed on a workstation with an Intel i7-5960X CPU and

64 GB RAM with Ubuntu 16.04 operating system. Programming code was developed

in Matlab R2016b.

3.3.1 Performance Measures

As presented in [22], evaluation measures for multi-response regression include

average correlation coefficient, mean square error, average relative error, average root

mean squared error (aRMSE) and average relative root mean squared error (aRRMSE).

Among these measures, aRRMSE is considered as a more robust measure over others

for multi-response prediction problems. It can be viewed as a normalized root mean

squared error (RMSE) for each response variable as follows:

aRRMSE =
1

P

P∑
p=1

√∑Ntest
n=1 (ypn − ŷpn)2∑Ntest
n=1 (ypn − ȳp)2

, (3.4)
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where ȳp is the average of responses for the p-th response variable, ypn and ŷpn are

the actual and predicted responses of the p-th response variable and n-th observation

respectively. During parameter tuning of the model, the performance using aRRMSE

is considered so that learning will not be skewed towards variables of large error

values and will not be affected by different scaling of the response variables. Finally, a

leave-one-out cross validation was used for predicting the out-of-sample error. For each

fold, one of the 20 observations is used as testing, and the remaining 19 observations

are used for training.

3.3.2 Comparison with Baseline Methods

To illustrate the advantages of the proposed methods, four other multi-target

prediction models are compared. All implementations are Matlab-based except for

multi-target random forest, which is implemented via the scikit-learn package in

Python. Parameters in each model, if any, are aRRMSE-tuned via a two-level grid

search to ensure the learning performance is fair. The two-level grid search [23] consists

of two parts - a coarse grid is applied to find a good region first, and then a finer grid

search is applied on the identified area. Instead of running a full grid search, which is

time consuming and computationally expensive, a two-level grid search is robust and

at the same time reduces computational time.

The following methods in the literature were used to compare with the proposed

method. Notations in the following models have been changed for better consistency

with the above.

• Spatial Structure Supervised Learning (SSSL): SSSL was the first of its kind

to learn an optimal insertion position of tibia soft tissue of knees in a two-

dimensional setting and is the basis of this work [17]. The A matrix, which

stores the spatial structure, is learnt during the first step and is carried over
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to the prediction step. SSSL is an algorithm adaption method. Without the

structural learning term, such method is reduced to the regular lasso model.

Learning step:

min
A,W

N∑
n=1

||yn −WTxn||2 + α1

N∑
n=1

||Ayn||2

+ α2

P∑
i,j=1

|Aij|+ α3

M∑
j=1

P∑
p=1

|Wmp|

s.t. [y1, . . . ,yP ] ap = 0, app 6= 0, p = 1, . . . , P

(3.5)

Prediction step:

min
y
||y−WTx||1 + α1||Ay||1 (3.6)

• Generalized linear model via penalized maximum likelihood (GLMNET, [24, 25]):

GLMNET is an extension of the single-target case where it is designed to model

correlated responses with a multi-response Gaussian distribution. The absolute

penalty on each single coefficient is replaced with a group-lasso penalty.

min
(W0,W)∈R(M+1)×P

1

2N

N∑
n=1

||yn −WT
0 − WTxn||2F

+ λ

[
1

2
(1− α)||W||2F + α

M∑
m=1

||wm||2

] (3.7)

• Multi-target regressor stacking using decision tree (MTRS-DT, [26]): MTRS-DT

is inspired from ”stacked generalization” which was designed for multi-label

classification. There are two stages in the learning process. Firstly, P single-

target models are learned as usual. MTRS-DT then predicts the target one-by-

one with stacking: after predicting the first response variable, its output will be

attached to the original testing dataset to build a new meta model, which is in

turned used to predict the second target variable. The process continues until

all response variables are predicted in this manner [22, 26]. The stacking idea

37



is powerful and can be applied to any single-target regression model. However,

the sequence of stacking affects the regression performance. In this experiment,

the prediction of the first response variable will be used in the prediction of the

next.

• Multi-target random forest (MTRF, [27, 28, 29]): A random forest is a meta-

learner that trains a number of decision trees, each of which uses a subset of

the original dataset and outputs the final prediction by averaging the prediction

from each decision tree. Generally speaking, MTRF differs from its single-target

counterpart in that during the splitting of a tree node, the performance measure

considers all the output variables instead of considering a single output variable

at a time.

3.3.3 Discussion of Computational Result

Table 3.2 summarizes the performance of predicting each of eight insertion

centroids as well as predicting all eight locations at the same time with the proposed

models and baseline models using data of the left knee only, the right knee only and

both knees. For each soft tissue centroid, the average relative root mean squared

error (aRRMSE) over the 20 subjects is reported. In general, the proposed L21-SSSL

performs better than other baseline models in terms of aRRMSE in five insertion

areas (see ACL, ALMR, AMMR, MCART, and PLMR using data of both knees at

Table 3.2). The proposed model is also the best method for predicting all centroids

simultaneously (0.8524 for L21-SSSL).

The advantage of the proposed model, as well as GLMNET and SSSL, is that the

more responses available in the dataset, the better the learning performance, provided

that responses are related to each other, such as having spatial relationship in this

38



Figure 3.5: Outline of tibia and the centroids of soft tissues of a subject viewed at
(θ, φ) = (0, 90). Original centroid position of a soft issue is highlighted as black. The
predicted centroids are as follows: red triangle for L21-SSSL, blue cross for MTRS-DT,
cyan triangle for SSSL, pink diamond for GLMNET and green square for MTRF.
The L21-SSSL predicted centroids are closer to the original centroids. This figure is
generated with Matlab.

case. Because of the limited number of observations, a non-linear regression model,

such as kernelized learning, may not be applicable because of possible over-fitting.

MTRS-DT and MTRF perform worse than the other three methods in this

application. This is likely due to a lack of available observations. Decision trees and

random forests are particularly suitable for datasets with many observations and high

non-linearity in the decision boundary. Computational speed is also their strength.

Figure 3.5 shows the insertion centroids of the cartilages and soft tissues (in

black) as well as the predicted positions using different algorithms - red triangle

for L21-MSVR, blue cross for MTRS-DT, cyan triangle for SSSL, pink diamond for

GLMNET and green square for MTRF. L21-MSVR is noticeably closer to the original

position, followed by GLMNET and SSSL. Such experimental results confirm that
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the proposed supervised learning can improve prediction of the eight soft tissues

simultaneously.

3.4 Concluding Remarks

The motivation of this study is to develop a quantitative, automated framework

in order to localize the optimal position of soft tissue insertion using patient-specific

features from knee imaging data. An extensive quantitative analysis of the location and

the interrelationship of soft tissue insertions on the tibial plateau has been performed,

including digitalization of tibia outlines from 3-D CT images, imaging alignment

using GPA, patient-specific morphological feature extraction from tibia outlines and

multi-response support vector regression. The proposed methodology yielded the best

prediction performance as compared with other baseline models for eight soft tissue

structure locations.

A few directions are recommended for future exploration. A non-linear learning

model might be considered, in addition to increasing the number of observations and

other innovative ideas of feature extraction. Predicting the shape and size of the

insertion sites, and predicting the performing angle of the surgical tools can be a

promising direction to continue this work. This quantitative analysis framework could

be the basis of a clinical application to assist surgeons to better identify soft tissue

insertion sites. Such an application, preferably on a computer-aided surgery platform,

would render a close replication of the native anatomy so that the risk of non-anatomic

tunnel placement or iatrogenic injury to adjacent tissue structures can be minimized.
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Table 3.2: The following table shows the prediction performance in average relative
root mean squared error (aRRMSE) of the centroids of eight insertion sites using
left-side, right-sided and both knees using leave-one-out cross validation. A lower
aRRMSE indicates a better prediction performance. Bold entries correspond to the
best prediction for the insertion area. Generally, learning performance is enhanced
if the knee data of both sides is used and if multiple insertion sites are learned
simultaneously.

Left

SSSL GLMNET
MTRS
-DT

MTRF
L21-

MSVR
ACL 1.0057 1.0206 1.1018 1.3590 0.8977

ALMR 1.0687 1.0655 1.1018 1.4793 0.8905
AMMR 0.8764 1.1000 1.0914 1.4421 0.8638

LCO 1.0336 1.0247 1.1203 1.7627 0.8391
MCO 1.2163 1.2023 1.0839 1.4627 1.0215
PCL 1.4237 1.3492 1.0921 1.6554 1.2344

PLMR 1.1319 1.0168 1.0947 1.5869 1.0350
PMMR 1.6138 1.3762 1.1382 1.5326 1.3821

All 1.1713 1.1444 1.1212 1.5351 1.0205

Right

SSSL GLMNET
MTRS
-DT

MTRF
L21-

MSVR
ACL 1.3455 1.3259 1.1067 1.3336 1.1679

ALMR 1.2636 1.2609 1.0909 1.1339 1.0676
AMMR 1.0767 1.0926 1.1340 1.3009 0.9975

LCO 1.1871 1.0845 1.1063 1.1748 0.9617
MCO 0.9374 0.7977 1.1026 1.1124 0.7434
PCL 1.3829 1.0841 1.0734 1.4416 1.1303

PLMR 1.2519 1.1376 1.0955 1.1747 1.0474
PMMR 1.2564 1.1213 1.0992 1.2166 1.0343

All 1.2127 1.1131 1.0891 1.2361 1.0188

Both

SSSL GLMNET
MTRS
-DT

MTRF
L21-

MSVR
ACL 1.0380 1.0055 1.0320 1.4772 0.9458

ALMR 0.9673 0.8844 1.2293 1.4026 0.8574
AMMR 0.7801 0.7255 1.2682 1.3257 0.7157

LCO 0.7200 0.7087 1.1775 1.2702 0.7090
MCO 0.6961 0.6839 1.2931 1.2407 0.6783
PCL 1.1923 1.2238 1.4040 1.3068 1.0918

PLMR 0.9900 0.9115 1.2621 1.4934 0.8868
PMMR 0.9073 0.9038 1.3180 1.3834 0.9341

All 0.9114 0.8809 1.2480 1.3625 0.8524
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CHAPTER 4

Selection of Hierarchical Features via Sparse Group Regularization

Abstract

This research presents a framework of hierarchical sparse group lasso (HSGL), which

selects features arranged in a hierarchical manner with sparse group regularization.

HSGL is proposed to better address cases in which features can be naturally grouped,

especially in bioinformatics and medical imaging. HSGL generalizes from sparse group

lasso (SGL) and hierarchical lasso (HL) and is particularly successful in identifying

a handful but yet important features from a large group of irrelevant features. In

addition, HSGL is easy to interpret and implement, converges quickly and has better

learning performance than other baseline learners when there are more features than

observations.

Keywords: Feature selection, group selection, lasso, regularization, supervised learn-

ing, hierarchical group structure learning, sparse group lasso, hierarchical lasso, classi-

fication, regression.

4.1 Introduction

Feature selection is a popular research area in bioinformatics [1, 2, 3]. Problems

such as gene expression, microarray analysis and medical imaging rely heavily on

feature selection techniques in order to identify important features for interpretation.

In the domain of machine learning, feature selection can be under supervised learning

46



or unsupervised learning [4]. Within the scope of supervised learning, there are three

categories: i) wrapper methods, ii) filter methods and iii) embedded methods.

Wrapper methods use a predictive model to score feature subsets. Each new

subset is used to train a model, which is tested on a validation set. Counting the

number of mistakes made on that validation set (the error rate of the model) gives

the score for that subset. A subset of features with the best performance is selected.

The advantages of wrapper methods are that performance scores are easy to compute,

and they identify optimal subsets to build learning models without specifying the

number of features required beforehand. However, they are relatively slower than

the other two methods. Examples include sequential forward selection (SFS) and

sequential backward selection (SBS). Filter methods use proxy measures instead of

learning error rates to score feature subsets. These measures are chosen to be fast to

compute, while still capturing the usefulness of feature sets. Performance scores are

assigned to features, and features with the highest scores are chosen. Filter methods

are fast and intuitive, but the number of features needs to be specified. Examples

include minimum redundance maximum relevance (mRMR) [5], Pearson’s correlation,

linear discriminant analysis (LDA) and ANOVA. Embedded methods combine the

qualities of filter and wrapper methods. They are implemented by algorithms that

have their own built-in feature selection methods. Examples include lasso [6] and

support vector machines [7]. New effective supervised feature selection enhances the

learning performance and eliminates irrelevant features for better interpretability of

the model [3]. In this paper, a new framework for feature selection - hierarchical sparse

group lasso (HSGL) - is proposed in order to better select features in a hierarchical

structure. HSGL is the embedded method of supervised feature selection. Similar to

lasso, HSGL can accommodate both (binary) classification and regression problems,

depending on a decision function.
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Table 4.1: Notations used in chapter 4.

General
Symbol Meaning
N No. of observation
M No. of features

A ∈ RN×M Data matrix (Arranged as
observation by feature)

y ∈ RN×1 Learning target (label or response)

x,d,β ∈ RM×1 Feature vector (or model vector)

λ, λ11, λ12, λ2 ∈ R Regularization parameters

For Group Lasso with L2-norm (L2-GL) and L∞-norm (Linf-GL), and Sparse Group Lasso (SGL)
Symbol Meaning

βg ∈ R, g = 1, . . . , G Feature vector β at the gth group

For Hierarchical Lasso (HL) and Hierarchical Sparse Group Lasso (HSGL)
Symbol Meaning

βkg ∈ R, k = 1, . . . ,K, g = 1, . . . , Gk
Feature vector β at the kth top group

and gth bottom group

dk ∈ R
Feature coefficient of the top layer d

at the kth top group

xkg ∈ R
Feature coefficient of the bottom layer x at the

kth top group and gth bottom group

Mkg ∈ R, M =
∑K
k=1

∑Gk
g=1Mkg

No. of features at the gth
bottom group within the kth

top group

Lasso (least absolute shrinkage and selection operator) [6] was originally devel-

oped as a regression analysis method. It minimizes the usual sum of squared errors,

with a bound on the sum of the absolute values of the coefficients. A L1-norm penalty

in the formulation is an effective way to alleviate the problem of over-fitting. In

addition, lasso involves solving an easy convex optimizaiton problem. The formulation

of the lasso optimization problem with least-square loss is as follows, where A ∈ R
N×M ,

y ∈ R
N×1, β ∈ R

M×1 and λ ∈ R:

min
β
||y −Aβ||2 + λ||β||1 (4.1)

Lasso was later generalized to many variants such as elastic nets [8] and group

lasso [9]. Group lasso consists of predefined groups of covariates regularized by an

L2-norm, where ||βk||2 =
√
β2
k1 + · · ·+ β2

kGk
and pg ∈ R:
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min
β
||y −Aβ||2 + λ

G∑
g=1

√
pg||βg||2 (4.2)

The group lasso with L2-norm penalty was extended to the one with L∞-norm

penalty [10], where ||βk||∞ = max(|βk1|, |βk2|, . . . , |βkGk |):

min
β
||y −Aβ||2 + λ

G∑
g=1

√
pg||βg||∞ (4.3)

Both the L2-norm and L∞-norm of βg become zero when βg = 0; hence when λ

is appropriately tuned, the penalty term can effectively remove unimportant groups.

However, the limitation of using the L2-norm and L∞-norm penalties is that, when

one variable in a group is selected, all other variables in the same group tend to be

selected, better known as an ”all-in-all-out” property [11]. Once a component of βg is

non-zero, the value of the two norm functions are no longer zero.

To select variables inside a group (instead of choosing all in a group as in group

lasso), sparse group lasso (SGL) [9, 12] has an additional L1-norm penalty:

min
β
||y −Aβ||2 + λ1||β||1 + λ2

G∑
g=1

||βg||2 (4.4)

SGL enforces sparse effects both on a group and within-group level of features.

There have been successful implementations using accelerated gradient descent [13]

and blockwise coordinate descent [9].

Close variants of HSGL include hierarchical lasso (HL) [11], hierarchically

penalized support vector machine (H-SVM) [14] and tree structured group lasso

(TSGL) [13, 15]. Zhou and Zhu [11] proposed a two-layer hierarchical lasso (HL) with

least-square loss as follows, where there are K groups in the top layer, and under the

kth top group, there are Gk sub-groups in the bottom layer:
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min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 + λ1

K∑
k=1

dk + λ2||x||1 (4.5)

H-SVM replaces the least-square loss in HL with hinge loss (•)+:

min
d≥0,x

N∑
n=1

[1− yi(x0 +
K∑
k=1

dkA
T
n,kgxkg)]+ + λ1

K∑
k=1

dk + λ2||x||1 (4.6)

For TSGL, the hierarchical structure of the features is represented as a tree with

leaf nodes as features and internal nodes as clusters of features. The formulation of

TSGL is as follows, where β ∈ R
N×1 forms a certain tree structure and wij is a weight

at jth node of depth i (see figure 4.1 for illustration):

min
β

N∑
n=1

||yn −AT
nβ||2 + λ

I∑
i=0

Ji∑
j=1

wij||β|| (4.7)

TSGL allows variation for the number of features in each group and at each

layer, whereas l-layer HL, HSVM and HSGL always have l group assignments for each

feature.

In short, TSGL, H-SVM, HL and HSGL all take hierarchical features as input.

TSGL outputs a single feature vector that can be presented with the same hierarchical

tree structure as the input, whereas HL, H-SVM and HSGL output l feature vectors

that correspond to the n-layer hierarchical structure. Figure 4.1 visually illustrates

their differences.

The contribution of this work includes (1) the improvement of hierarchical

lasso by incorporating sparse group regularization to achieve better feature selection

and learning performance, (2) mathematical analysis to analyze the mathematical

properties of HSGL, which is similar to that in [11, 14] for HL and H-SVM, and (3) an

illustration of the appropriate usage of HSGL in selecting and interpreting features.
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Figure 4.1: Comparing 1) Tree Structured Group Lasso (TSGL) on the left and 2)
Two-Layer Hierarchical Lasso (HL), Hierarchically Penalized Support Vector Machine
(H-SVM) and Hierarchical Sparse Group Lasso (HSGL) on the right. For TSGL,
features are arranged into a tree-like hierarchy (Gi

j refers to the jth node at depth i),
where features are represented as leaf nodes and groups of features are represented
as internal nodes. In this example [13], there are eight features. The root node is
G0

1 = {1, 2, 3, 4, 5, 6, 7, 8}, depth 1 consists of G1
1 = {1, 2}, G1

2 = {3, 4, 5, 6}, G1
3 = {7, 8}

and leaf (depth 2) consists of G2
1 = {1}, G2

2 = {2}, G2
3 = {3, 4}, G2

4 = {5, 6}. On the
other hand, for l-layer HL, H-SVM and HSGL, each feature has l group assignments,
and there will be l feature vectors obtained in the end. All l feature vectors are
multiplied together in an element-wise manner to determine the final feature vector β.
In this example, there are two layers (i.e. l = 2).

4.2 Hierarchical Sparse Group Lasso

Hierarchical lasso and hierarchically penalized support vector machine [11] were

extended for effectively removing unimportant variables at both group level and

within-group level. To begin with, the feature vector βkg is parameterized as

βkg = dkxkg, k = 1, . . . , K; g = 1, . . . , Gk (4.8)

where dk ≥ 0 for identifiability. In (4.8), d and x are the feature vectors at the top and

bottom layers respectively. This decomposition indicates that feature vectors at the

top layer dk and bottom layer xkg are all under the same top kth layer. The coefficient

dk thus affects all of its bottom sub-groups. Consider a two-layer hierarchical sparse

group lasso (HSGL) with K groups in the top layer, and under the kth top group,
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there are Gk sub-groups in the bottom layer, where A ∈ R
N×M , y ∈ R

N×1, d ∈ R
K×1,

x ∈ R
M×1, and λ11, λ12, λ2 ∈ R. The formulation of the HSGL optimization problem 1

is given by:

min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2

+ λ11

K∑
k=1

dk + λ12||x||1 + λ2

K∑
k=1

Gk∑
g=1

d2
k||xkg||2

(4.9)

Decision functions for prediction are:

f(Atest) = AT
testβ (for regression)

f(Atest) = sign(AT
testβ) (for classification)

(4.10)

In (4.9), An,kg is the nth observation at the kth top layer under the gth bottom

layer. Parameters λ11 ≥ 0, λ12 ≥ 0 and λ2 ≥ 0 are tuned. λ11 controls the estimates

at the upper group level, which can effectively remove unimportant groups; when dk

is zero, all βkg in the kth group are equal to zero. λ12 controls the estimates at the

variable-specific level: when dk is not equal to zero, some of the xkg hence some of the

βkg, g = 1, . . . , Gk, still have the possibility of being zero. Similar to λ11, λ2 controls

the estimates at the lower group level and can remove unimportant groups effectively.

As a side note, two-layer HSGL with least-squares loss (4.9) can be extended to

three or more layers by similar parametrization of βzkg = czdzkxzkg where z = 1, . . . , Z,

k = 1, . . . , Kz, and g = 1, . . . , GKz as follows:

1In the model, a scalar is represented by a non-bold lower-case letter, a vector is represented by

a bold lower-case letter and a matrix is represented by a bold upper-case letter. Symbols in the

formulations are changed for consistency.
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min
c≥0,d≥0,x

N∑
n=1

||yn −
Z∑
z=1

cz

Kz∑
k=1

dzk

GKz∑
g=1

AT
n,zkgxzkg||2

+ λ11

Z∑
z=1

cz + λ12

Kz∑
k=1

dzk + λ13||x||1 + λ2

Z∑
z=1

Kz∑
k=1

GKz∑
g=1

c2
zd

2
zk||xzkg||2

(4.11)

Two-layer HSGL is the focus of this chapter though.

Zhou and Zhu [11] claim that HL can effectively remove all unimportant groups

and some of the unimportant variables within important groups, but it cannot ef-

fectively remove all unimportant variables within important groups. HSGL aims at

addressing this issue by including the extra group-norm penalization at both the upper

and bottom group layers to further improve its selection ability. Indeed, empirical

experiments show that it is sometimes inappropriate to enforce regularization at both

levels. Therefore, depending on the dataset, either the top or bottom level can be

regularized instead of both as in (4.12) and (4.13) respectively:

HSGL with top-level penalization:

min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 + λ11

K∑
k=1

dk + λ12||x||1 + λ2

K∑
k=1

d2
k (4.12)

HSGL with bottom-level penalization:

min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 + λ11

K∑
k=1

dk + λ12||x||1 + λ2

K∑
k=1

Gk∑
g=1

||xkg||2

(4.13)

Indeed, HSGL with top-level penalization does not have any group-norm penal-

ization. Instead, it has the extra term d2
k and formulation (4.12) is similar to elastic

net-regularized lasso. Interested readers are encouraged to implement formulations

(4.12) and (4.13) in addition to the original formulation (4.9).

To reduce the challenge of parameter tuning, two of the three tuning parameters

λ11 and λ12 can be combined into two as λ1 = λ11λ12. It can be shown that formulation

(4.9) is equivalent to
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min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 +

K∑
k=1

dk + λ1||x||1 + λ2

K∑
k=1

Gk∑
g=1

d2
k||xkg||2

(4.14)

Lemma 4.2.1 (d̂∗, x̂∗) is a local minimizer of (4.9) if and only if (d̂? = λ11d̂
∗, x̂? =

x̂∗/λ11) is a local minimizer of (4.14) such that d̂∗kx̂
∗
kg = d̂?kx̂

?
kg [14, 16].

The proof of Lemma 4.2.1, along with those of Lemmas 4.2.2 and 4.2.3 below,

can be found in the Appendix. Lemma 4.2.1 indicates that the final fitted models

from (4.9) and (4.14) are equivalent.

Lemma 4.2.2 Suppose (d̂, x̂) is a local minimizer of (4.14). Let β̂ be the estimate

of hierarchical sparse group lasso related to (d̂, x̂), i.e. β̂kg = d̂kx̂kg. If d̂k = 0, then

x̂(k) = 0, where x̂(k) = [x̂Tk1, . . . , x̂
T
kGk

]T and x̂ = [x̂T(1), . . . , x̂
T
(K)]

T ; if d̂k 6= 0, then

||β̂(k)||1 6= 0 and d̂k =
√
λ1||β̂(k)||1, x̂(k) =

β̂(k)√
λ1||β̂(k)||1

, where β̂(k) = [β̂Tk1, . . . , β̂
T
kGk

]T

and β̂ = [β̂T(1), . . . , β̂
T
(K)]

T .

Lemma 4.2.3 If (d̂, x̂) is a local minimizer of (4.14), then β̂, where β̂kg = d̂kx̂kg, is

a local minimizer of

min
β

N∑
n=1

||yn − ATnβ||2 + 2
√
λ1

K∑
k=1

√√√√ Gk∑
g=1

||βkg||1 + λ2

K∑
k=1

Gk∑
g=1

||βkg||2 (4.15)

Moreover, there exists a local minimizer (d̂, x̂) of (4.14) such that (1) if ||β̂(k)||1 =

0 then d̂k = 0 and x̂(k) = 0, and (2) if ||β̂(k)||1 6= 0 then d̂k =
√
λ1||β̂(k)||1 and

x̂k =
β̂(k)√

λ1||β̂(k)||1
.

The penalty function in (4.15) employs the L1-norm penalty ||β(k)||1 =
∑Gk

g=1 ||βkg||1

under each square root. The reformulated HSGL is indeed similar to SGL. Therefore,

HSGL not only effectively selects important groups but also removes irrelevant features

within a group. Furthermore, the presence of group-norm regularization on each group

54



k will further strengthen its selection ability, which is an improvement over HL and

H-SVM.

4.3 Algorithm

HSGL involves solving a non-linear biconvex optimization problem [16]. Recall

that a function f : X × Y → R is called biconvex, if f(x, y) is convex in y for fixed

x ∈ X, and f(x, y) is convex in x for fixed y ∈ Y . It is proposed to locally optimize

HSGL with alternate convex search (ACS) [11, 16], as summarized in algorithm (2).

In essence, the two variables to be solved are optimized in turn until convergence

criteria for the variable β
(i)
kg = d

(i)
k x

(i)
kg

||β||2 − ||βold||2
||βold||2

< ε (4.16)

is met. The solution of the iterative algorithm is guaranteed to converge by Lemma

4.3.1 below.

Lemma 4.3.1 Let Q(λ1, λ2,d,x) denote the value of the objective value of formulation

(4.9), and let the two optimization problems in algorithm (2) be solvable. Then the

sequence {Q(λ1, λ2,di,xi)}i∈N converges to a limit value a ∈ R [14, 16].

It is interesting to note that for HSGL, when d(i) is fixed and Ãkg = dkAkg,

formulation (4.17) is essentially a sparse group lasso optimization problem:

x(i) ∈ arg min
x

N∑
n=1

||yn −
K∑
k=1

Gk∑
g=1

ÃT
n,kgxkg||2 + λ1||x||1 + λ2

K∑
k=1

Gk∑
g=1

(d
(i)
k )2||xkg||2

(4.17)

Similarly, when x(i) is fixed and Âkg = Akgxkg, formulation (4.18) is a quadratic

programming problem:
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Algorithm 2 Solving hierarchical sparse group lasso with alternate convex search

Require: A ∈ R
N×M (data matrix), y ∈ R

N×1 (label), λ1, λ2 ∈ R (regularization

parameter), indexlayer1, indexlayer2 ∈ R
M (group assignment of features for layers

1 and 2), ε ∈ R (termination parameter).

1: Initialize d(0) = 1, x(0) = 1, β(0) = 1.

2: Center y (for regression only). Center and normalize Akg.

3: Set j = 0.

4: while termination criterion (16) is not met do

5: Fix d(i), set Ãkg = d
(i)
k Akg and solve for formulation (17).

6: Fix x(i), set Â(k) =
∑Gk

g=1A
T
kgx

(i)
kg and solve for formulation (18).

7: Update β
(i)
kg = d

(i)
k x

(i)
kg .

8: Set i = i+ 1 and go to line 4.

9: end while

d(i) ∈ arg min
d≥0

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

ÂT
n,kg||2 +

K∑
k=1

dk + λ2

K∑
k=1

Gk∑
g=1

d2
k||x

(i)
kg ||2 (4.18)

HSGL with top-level penalization (4.12) or bottom-level penalization (4.13) can

be solved similarly with ACS as in algorithm (2).

4.4 Simulation Study

The simulation in [11, 14] was extended. A model that has both categorical

and continuous prediction variables was considered. There are two cases – (1) more

observations than features, and (2) more features than observations, and under each

case, there will be three sub-cases: (1) “All-in-all-out”, (2) “Not all-in-all-out” and (3)

“Hybrid”.
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For the case of more (training) observations (400) than features (54), seventeen

independent standard normal variables, Z1, . . . , Z16 and W were generated. The

covariates were then defined as Xj = (Zj + W )/
√

2. Then the last eight covariates

X9, . . . , X16 were discretized to 0, 1, 2, and 3 by Φ−1(1/4), Φ−1(1/2), and Φ−1(3/4).

Each of X1, . . . , X8 was expanded through a fourth-order polynomial, and only the

main effects of X9, . . . , X16 were considered. Therefore a total of eight continuous

groups with four variables in each group and eight categorical groups with three

variables in each group were simulated.

The error term ε in the above simulations follows a normal distribution N(0,

σ2), where σ2 was set such that each of the signal to noise ratios, Var(XTβ)/Var(ε)),

was equal to 3. For group lasso with L2-norm (L2-GL), group lasso with L∞-norm

(Linf-GL) and sparse group lasso (SGL), there are two kinds of group assignments:

1. Variable: For the eight continuous groups, polynomials Xi, X
2
i , X3

i and X4
i are

in the same group, whereas for the eight categorical groups, indicators I(Xj = 0),

I(Xj = 1), and I(Xj = 2) are in the same group. There will be 16 such groups

in this category.

2. Order and discretization: For the eight continuous groups, there are four groups –

polynomials Xi, X
2
i , X3

i , and X4
i which correspond to the each polynomial order

i, whereas for the eight categorical groups, there are three groups – indicators

I(Xj = 0), I(Xj = 1) and I(Xj = 2) which correspond to the three discretization

level out of the total four. There will be seven such groups in this category.

For hierarchical lasso (HL) and hierarchical sparse group lasso (HSGL), the top

and bottom group assignments are “variable” and “order and discretization”.

As for the case of more features (350) than (training) observations (100), artificial

data is generated similarly. There are 50 groups of continuous variables with each
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group having four variables corresponding to the polynomial order between one and

four, and another 50 groups of categorical groups with three variables in each group.

For both cases, there are three types of labels to be considered.

Case 1. “All-in-all-out”

Yregression =[X3 + 0.5X2
3 + 0.1X3

3 + 0.1X4
3 ]

+ [X6 − 0.5X2
6 + 0.15X3

6 + 0.1X4
6 ]

+ [I(X9 = 0) + I(X9 = 1) + I(X9 = 2)] + ε

(More observations than features)

Yregression =[X3 + 0.5X2
3 + 0.1X3

3 + 0.1X4
3 ]

+ [X6 − 0.5X2
6 + 0.15X3

6 + 0.1X4
6 ]

+ [I(X51 = 0) + I(X51 = 1) + I(X51 = 2)] + ε

(More features than observations)

(4.19)

Case 2. “Not all-in-all-out”

Yregression =[X3 +X2
3 ] + [2X6 − 1.5X2

6 ]

+ [I(X9 = 0) + 2 I(X9 = 1)] + ε

(4.20)
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Case 3. “Hybrid”

Yregression =[X3 + 0.5X2
3 + 0.1X3

3 + 0.1X4
3 ]

+ [X6 − 0.15X3
6 ]

+ [I(X9 = 0) + I(X9 = 1) + I(X9 = 2)]

+ [I(X12 = 0)− 0.5 I(X12 = 2)] + ε

(More observations than features)

Yregression =[X3 + 0.5X2
3 + 0.1X3

3 + 0.1X4
3 ]

+ [X6 − 0.15X3
6 ]

+ [I(X51 = 0) + I(X51 = 1) + I(X51 = 2)]

+ [I(X53 = 0)− 0.5 I(X53 = 2)] + ε

(More features than observations)

(4.21)

For all three sub-cases,

Yclassification =


+1, if Yregression ≥ median(Y )

−1, otherwise.

(4.22)

In addition, there are five performance measures:
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Accuracy =
No. of correctly classified observations

Total number of observations

(for classification)

MSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2

(for regression)

Zero Var. : Percentage of correctly removed

unimportant variables

Non-zero Var. : Percentage of correctly identified

important variables

Feat. Density =
No. of non-zero elements in feat. vector

Length of feature vector

(4.23)

10,000 testing observations were generated. Parameters, if any, were tuned using

the training dataset and five-fold cross validation to provide a realistic estimation of

prediction errors and to prevent over-fitting. After running all possible combinations of

parameters, those with the highest accuracy or lowest mean squared error (MSE) were

first chosen. Then, among all the chosen combinations, the one with lowest density of

feature vector were chosen to train the model. It is observed that there can be multiple

combinations of parameters that can achieve the best learning performance, and that

using classification accuracy or MSE alone may not be robust for parameter tuning.

The above procedure was repeated 200 times for both the classification and regression

experiments. The result are found in tables 4.2 and 4.3 for more observations than

features, and in tables 4.4 and 4.5 for more features than observations.

In general, HSGL performed well across all cases, having the ability to remove

the unwanted features and to select the relevant features. It is followed by HL, which

has a weaker ability of removing unwanted variables as noted in [11], and SGL.
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For more observations than features, all the learners (classifiers and regressors)

performed comparatively in terms of learning performance (MSE for regression, accu-

racy for classification). A possible explanation is that there are enough observations

for learning generalization. On the other hand, the density of the feature vector, the

percentage of correctly removed unimportant variables (Zero Var.), and the percentage

of correctly identified important variables (Non-zero Var.) vary a lot across regressors

and classifiers. In the case of regression (table 4.2), HSGL has the highest average

of “Zero Var.” and “Non-zero Var.” and the lowest feature density. In the case of

classification (table 4.3), SGL produced the most parsimonious model and selected

the fewest number of features for satisfactory learning performance. However, this

simulated experiment shows empirically that it is not always good to select the fewest

number of features as possible, but rather to select all the relevant features. HSGL has

the capability of doing so and performed better than HL and other baseline learners, as

indicated by its high “Zero Var.” and “Non-Zero Var.” across different test sub-cases.

For more features than observations, in the case of regression (table 4.4), HSGL

has the lowest MSE and feature density and the highest average of ”Zero Var.” and

”Non-Zero Var.”, followed by SGL (Variable Grouping), L2-GL (Variable Grouping)

and Linf-GL (Variable Grouping). HL performed worse than HSGL in terms of MSE,

probably because HL does not have group-norm regularization and is not good at

removing lots of unimportant variables when there are more features than observations.

As for classification (table 4.5), HSGL had the highest accuracy and the lowest feature

density in general. No classifiers obtained 50% of ”Non-Zero Var.” while maintaining

low feature density (e.g. 10% or less), implying that classification with more features

than observations is a difficult learning problem.
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4.5 Real-Data Analysis

As the correct features related to the learning target are not known beforehand,

the goal of real-data analysis is therefore not to compare the density of the feature

vector x but to show that HSGL has comparable learning performance when compared

with other baseline learners.

In this section, the Breast Cancer Wisconsin (Diagnostic) Dataset (WDBC)

[17, 18] is used because (1) it can be easily obtained at the Machine Learning Repository,

the University of California at Irvine, (2) it was preprocessed and (3) features can be

presented in a hierarchical structure in order to run HSGL. Features were determined

from a digitized image of a fine needle aspirate of a breast mass, which describes the

characteristics of the cell nuclei present in the image. For each cell nucleus, ten features

- radius, texture, perimeter, area, smoothness, compactness, concavity, number of

concave points, symmetry and fractal dimension - were generated. To summarize,

there are 569 observations and 30 features in this dataset.

For group lasso with L2-norm (L2-GL), group lasso with L∞-norm (Linf-GL)

and sparse group lasso (SGL), there are two kinds of group assignments:

1. Cell Nucleus: There are three such groups in this category corresponding to the

three cell nucleus in this case.

2. Feature Type: There are ten such groups in this category as described.

For hierarchical lasso (HL) and hierarchical sparse group lasso (HSGL), the

top and bottom group assignments are cell nucleus-feature type or feature type-cell

nucleus.

A double five-fold cross validation was used for predicting the out-of-sample

error. Data is divided to into five random subsets. One of the subsets is used as testing,

and the remaining four subsets are used for training, and such procedure is repeated

for five times. Parameters, if any, were tuned using the training dataset using another
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five-fold cross validation to provide a realistic estimation of prediction errors and to

prevent over-fitting. After running all possible combinations of parameters, those with

the highest accuracy were first chosen. Then, among all the chosen combinations, the

one with lowest density of feature vector was chosen to train the model. The above

procedure was repeated for 100 times. The result can be found in table 4.6.

In general, the accuracy across different classifiers remains similar, but the

density of feature vectors varies substantially. HSGL excels in both accuracy and

feature density, followed again by HL and SGL. The feature density for SGL using

assignment of feature type can be as low as 0.24. However, as illustrated in the

previous simulation experiment, that may not account for all but just some of the

relevant features regarding this learning problem. On the other hand, since there

can be useful variables in each group, L2-GL and Linf-GL are not able to remove

unimportant variables inside the important group, resulting in a high feature density.

Surprisingly, lasso as a simple method performs well.

This experiment illustrates the importance of choosing the appropriate top and

bottom group assignments for HSGL and HL. The difference of accuracy of HSGL

using 1) cell nucleus-feature type and 2) feature type-cell nucleus is 0.03 (0.95 vs.

0.92). Therefore, it is important to try different hierarchical group assignments in

order to find an optimal hierarchy of arranging the features for a particular problem.
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Finally, table 4.7 shows the average density of feature groups selected by HSGL,

HL and SGL in the five-fold cross-validated experiment with 100 repetitions. For

the group assignment of cell nucleus, cell nucleus 3 always has high feature density

(HSGL: 1, HL: 1, SGL: 0.897) regardless the choice of classifier, showing that it is

an important group for further interpretation. Cell nucleus 1 and 2 were not always

selected and have high standard deviation of feature density. In the case of SGL,

features from cell nucleus 2 were not selected at all for all 100 repetitions. On the other

hand, for group assignment of feature type, four feature groups - radius (OLS acc.:

0.881), texture (OLS acc.: 0.744), perimeter (OLS acc.: 0.887) and number of concave

points (OLS acc.: 0.918) - were selected by all three classifiers, whereas the six feature

groups - area (OLS acc.: 0.853), smoothness (OLS acc.: 0.75), compactness (OLS

acc.: 0.833), concavity (OLS acc.: 0.883), symmetry (OLS acc.: 0.723) and fractal

dimension (OLS acc.: 0.739) - were not selected by SGL. This does not mean these six

groups are unimportant to this learning problem. Indeed, according to the simulation

study in the above, SGL may not be able to select features (or feature groups) that

are relevant to the learning target. Those six feature groups may be relevant to the

learning target and are subject to careful confirmation and interpretation by experts

with prior knowledge in the subject area.

4.6 Concluding Remark

In this research, hierarchical sparse group lasso (HSGL) is proposed to improve

hierarchical lasso, which cannot effectively remove all unimportant variables within

important groups. Lemma 4.2.3 shows that HSGL is similar to sparse group lasso and

can address the issue of HL in light of the results in both simulation and real-data

experiments. Moreover, HSGL can be used as both a learner (for classification or

regression) and a feature selector.
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In order to apply HSGL on real datasets, users need to be aware of several

issues. To begin with, the group-norm penalization at both top and bottom levels

might be too strong and can result in inferior learning performance. Interested

readers are encouraged to (1) try different hierarchical group assignment and (2) try

penalization at top level (4.12), bottom level (4.13) or both (4.14) in order to seek

the best hierarchical structure of features for a particular problem. Another issue is

the interpretation of the selected features. Interested readers are encouraged to run

both SGL and HSGL (or SGL, HL and HSGL if computational resources are allowed).

From the classification results of simulated experiments, well-tuned SGL is likely to

select fewer features than HSGL. Feature groups selected by both SGL and HSGL can

be given more attention, while feature groups selected by HSGL but not SGL may

be considered as well, but they require careful evaluation on their relevance to the

learning problem.

Future directions include the change of loss function such as logistic loss for

multi-class classification or hinge loss resulting in hierarchical sparse group support

vector machine. HSGL can also be kernalized for non-linear decision boundaries.

Finally, the mathematical analysis on two-layer HSGL can be extended to n-layer

case.
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CHAPTER 5

Emotion Recognition and Analysis Using Hierarchical Sparse Group Lasso

Abstract

This paper presents the use of hierarchical sparse group lasso (HSGL) on an

EEG-based emotion recognition problem. It is well known that features in EEG-based

studies can often be arranged in a hierarchical structure. In this regard, HSGL exploits

such property in order to further investigate the emotion recognition problem on hand.

Similar to SGL, HSGL does feature selection and classification at the same time.

Besides, HSGL is easy to interpret, is computationally efficient, and has comparable

classification accuracy when compared with other baseline classifiers. The experimental

result and its associated interpretation can be helpful for researchers in identifying

discriminating features in order to better design and build a light-weighted emotion

recognition system.

Keywords: emotion recognition, multi-modal emotion processing, supervised learning,

feature selection, electroencephalogram, EEG, group structure learning.

5.1 Introduction

In the context of machine learning, emotion recognition is a classification problem

under supervised learning. A typical classification workflow includes data collection,

data preprocessing, feature extraction, feature selection (if any), and classification.

In other words, innovations of any emotion recognition system take place at one or
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more of these steps. There has been many attempts of building emotion recognition

systems before. Interested readers are referred to recent reviews [1, 2, 3, 4].

A good emotion recognition system requires generalization ability, computational

efficiency and preferably interpretability. In order to do so, a light-weighted classifier

using a handful of mathematical and time-series features is desired. There are several

hurdles for achieving these three goals.

In most of the surveyed literature on non-deep learning approaches, the number

of features is probably more than the number of observations in the data matrix. While

it is easy to extract features from data, it is difficult to obtain observations/samples

from more subjects, among other reasons (e.g. availability of funding, approval of

ethics committee). A good emotion recognition system under laboratory settings

should handle this situation well, unless data can be collected from a lot of experiment

subjects or data from different experiments can be unified, which is unlikely. Neverthe-

less, there has been successful implementations of emotion recognition system which

generalizes well under laboratory settings. In this regard, typical classifiers include

linear discriminant analysis [5], support vector machine [6, 7, 8], k-nearest neighbor

[9], and hidden markov model [10, 11]. Tree-based and neural-network classifiers are

not usually used because they easily over-fit the training data under such situation.

Another hurdle is the ability of choosing only the essential features for model

building. Typical non-neural network approach in machine learning after feature

extraction would be to apply one of three methods in feature selection - wrapper,

filter and embedded methods - before applying a classifier model. Wrapper and

filter methods may not use classification accuracy as the selection criteria. Hence,

satisfactory learning performance is not guaranteed. Embedded methods allow the use

of classification accuracy (or other appropriate performance measures such as F1-score)

in parameter tuning. It may lead to over-fitting because the set of parameters with

75



the best performance score will be chosen. However, such problem can be mitigated,

if not solved completely, via a wider range of parameters during tuning and a higher

fold of cross validation. The name of embedded method originates from the fact that

such method is an embedded learner (either classifier or regressor). Sparse group lasso

[12], hierarchical lasso [13] as well as hierarchical sparse group lasso applied in this

work, all fall under the category of embedded method.

Last but not least, without computational efficiency, parameters cannot be tuned

within acceptable amount of time. Computational efficiency of a classifier depends on

the choice of optimization algorithm, algorithmic complexity, implementation quality

and programming environment of the project, among other factors. Although CVX

[14] is not a good package for large-data processing, it is especially good for rapid

prototyping for formulations of linear programming (LP), quadratic programming

(QP) and semi-definite programming (SDP). IBM ILOG CPLEX and Gurobi are

commercial-grade optimization solvers which are well recognized in both industrial

and academic communities. Sparse Learning with Efficient Projects (SLEP) toolbox

[15] and Inria SPAMS (SPArse Modeling Software) [16] implements many sparse group

learning methods very well such as sparse group lasso and tree structure group lasso.

As in chapter 4, HSGL is implemented with IBM ILOG CPLEX and SLEP Toolbox,

and is computational efficient.

On the other hand, sparse learning refers to the use of L1-norm ( ||β||1 =
∑

i |βi|)

on the learning model (β), whereas group learning [17] refers to the use of group norm

(||βk||2 =
√
β2
k1 + · · ·+ β2

kGk
, where k refers to the kth group in the group structure)

on the learning model.

Lasso (least absolute shrinkage and selection operator) [18] was originally devel-

oped as a regression analysis method. It minimizes the usual sum of squared errors,

with a bound on the sum of the absolute values of the coefficients. Its decision function
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can be amended so that classification can be solved via lasso. The regularization

component in the formulation of lasso is an effective way to alleviate the problem of

over-fitting. Lasso is closely related to statistical models such as generalized linear

model and soft-thresholding.

Lasso is later generalized to a lot of its variants such as elastic net [19] and

group lasso [20]. Group lasso consists of predefined groups of covariates regularized

by L2-norm, i.e.

||β||2 =
√
β2

1 + · · ·+ β2
n (5.1)

According to [13], appropriately tuning the coefficient of the L2-norm can

effectively set the whole coefficient vector β to be zero because of the singularity of

||β||2 at β = 0. Therefore, the features in a particular group can be either selected

or excluded completely. To select variables inside a group (instead of choosing all in

a group as in group lasso), sparse group lasso [12] is proposed by having one term

regularized by the L1-norm, i.e.,

||β||1 = |β1|+ · · ·+ |βn| (5.2)

SGL enforces sparse effects both on a group and within-group level of features.

There have been many successful implementation using accelerated gradient descent

[15] and blockwise coordinate descent [20]. The formulation of SGL is as follows:

min
β
||y −Aβ||2 + λ1||β||1 + λ2

G∑
g=1

||βg||2 (5.3)

Close variants of HSGL include hierarchical lasso (HL) [13], hierarchically

penalized support vector machine (H-SVM) [21] and tree structured group lasso

(TSGL) [15, 22]. Zhou and Zhu [13] proposed a two-layer hierarchical lasso (HL) with
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least-square loss as follows, where there are K groups in the top layer, and under the

kth top group, there are Gk sub-groups in the bottom layer:

min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 + λ1

K∑
k=1

dk + λ2||x||1 (5.4)

H-SVM replaces the least-square loss in HL with hinge loss (•)+:

min
d≥0,x

N∑
n=1

[1− yi(x0 +
K∑
k=1

dkA
T
n,kgxkg)]+ + λ1

K∑
k=1

dk + λ2||x||1 (5.5)

For TSGL, the hierarchical structure of the features is represented as a tree with

leaf nodes as features and internal nodes as clusters of features. The formulation of

TSGL is as follows, where β ∈ R
N×1 forms a certain tree structure and wij is a weight

at jth node of depth i (see figure 4.1 for illustration):

min
β

N∑
n=1

||yn −AT
nβ||2 + λ

I∑
i=0

Ji∑
j=1

wij||β|| (5.6)

TSGL allows variation for the number of features in each group and at each

layer, whereas l-layer HL, HSVM and HSGL always have l group assignments for each

feature.

In short, TSGL, H-SVM, HL and HSGL all take hierarchical features as input.

TSGL outputs a single feature vector that can be presented with the same hierarchical

tree structure as the input, whereas HL, H-SVM and HSGL output l feature vectors

that correspond to the n-layer hierarchical structure. Figure 4.1 in chapter 4 visually

illustrates their differences.

There are three discrete states of emotion in the EEG dataset - neutral, anger and

happiness. Figure 5.1 shows where the three states are located in a two-dimensional

valence-arousal model. Please note that emotion can be categorized as discrete states

[23], continuous states [24, 25] or a mix of both (i.e. placing discrete emotion states on
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Figure 5.1: An illustration of the hybrid discrete-dimensional model of affect. This
work focuses on the states of neutral, happiness and anger. They are considered far
away along the valence dimension of the two-dimensional model of affect.

the multi-dimensional affective space [26, 27, 28]), and there is no unilateral agreement

on the definition of emotion [29]. Only discrete states of neutral, happiness and anger

are focused because 1) they are easy to define and induce in experiments and 2) they

are considered far away in the hybrid discrete-dimensional model of affect.

Last but not least, contribution of this work includes i) the evaluation of

discriminating features on emotion recognition with SGL, HL and HSGL, and ii) a

stringent approach of cross validation - a double 5-fold cross validation was run for

only one time in most of the surveyed literature. As assigning observations to different

folds can introduce randomness, and it is possible that the accuracy obtained in one

cross validation would be different from another. In this work, 30 times of a double

5-fold cross validation was run in order to get the mean and standard deviation of the

accuracy and density of the feature vector for evaluation purposes.
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5.2 Methods

5.2.1 Data Collection

Participants (n = 41) were recruited using university-approved fliers and given

compensation for participation in the research project. Two participants were ex-

cluded from the experiment because of too thick of hair, which is a limitation of the

electroencephalogram (EEG) device. All participants were 18 years or older and signed

an informed consent form prior to participating in the experiment. Each participant

completed a demographic form, a mental health form, a happiness assessment form,

and an anger assessment form. After completing the forms, participants were sized in

regard to the appropriate EEG cap size. An EEG cap was placed on the participant’s

head and electro-gel was applied to the hair to improve signal conductance from the

scalp to the EEG electrodes.

Baseline measures of heart rate, blood pressure, and oximetry were recorded.

These measures were also monitored throughout the experiment to detect physiological

changes in response to different emotional stimuli. The initial twenty participants

(n = 20) watched 3 brief video clips which are 2 minutes long. The movie length was

chosen under the recommendation in [30, 31] that videos from 1 to 10 minutes can

effectively elicit a single emotion. After that, they completed a brief self-report form

of their emotional reactions following each clip. Blood pressure was also measured

immediately following the conclusion of each video. There was a seven minute rest

following the administration of each video clip. During this period, simple math

problems were presented to the participant on a computer screen. One video clip

depicted a screen saver which was thought to induce a neutral emotion, one video clip

depicted a high school student being physically bullied at school which was thought to

induce anger, and one video clip depicted nature scenery or baby which was thought
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Figure 5.2: The procedure of the experiment for each showing of movie clips consists of
hint of start, showing of the movie clip, administration such as filling in questionnaire
and measuring blood pressure and rest. Sequence of movies (neutral, anger and happy)
are randomized for each experiment subject. It takes around 30 minutes for the entire
procedure.

to induce happiness. The video presentation order of the three video clips were

randomized for each participant. After watching the series of videos, each participant

was de-capped and given shampoo and towel to wash the gel from their hair.

5.2.2 Data Preprocessing

EEG data of 32 electrodes (figure 5.3) are imported into Matlab with software

package ”EEGlab” [32]. EEG signals will then be re-referenced at channels M1 and

M2 since these two channels are least influenced by cognitive processing, resampled

from 1000 Hz to 256 Hz for reducing data size, and bandpass filtered at 1-50 Hz for

removing unnecessary signal noise.

Artifact is then removed from EEG signal with EEGlab plugin - ADJUST (An

Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal

features) [33]. Artifact features including eye blinks, (vertical and horizontal) eye
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Figure 5.3: Position of the 32 EEG electrodes. Electrodes of four areas - left frontal
(LF), right frontal (RF), left parietal (LP) and right parietal (RP) - are focused and
highlighted in color. M1 and M2 are not available for analysis after re-referencing.

movements and generic discontinuities are accounted for. The four stages are that i)

epoched EEG signal is first decomposed into different independent components using

independent component analysis (ICA); ii) artifact features for each component are

computed; iii) the value of each artifact feature for each component is to be checked

against threshold value computed by Expectation-Maximization [34] in order to

determine whether that component is an artifact; and iv) EEG signal is reconstructed

using independent components which are not rejected.
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Last but not least, the entire EEG signal is first partitioned into three epochs

corresponding to the time the movie was shown to the participant. EEG signal of each

movie will be further extracted from each 10-second window including 0-10 seconds,

10-20 seconds until 110-120 seconds. There are 24 epochs for each emotion state.

5.2.3 Feature Extraction

Seven groups of mathematical features are extracted from each trial of subjects as

in [35, 36, 37]. These features are extracted for each of the 30 channels1. They are then

concatenated as a feature vector. This procedure is applied to data of all three kinds

of movies all time epochs and all participants. In the following, X = {x1, x2, ..., xm}

denote a single-channel signal with m time points. The seven groups are:

1) Statistical features: Mean, variance, skewness, kurtosis are computed. More

specifically, mean is the averaged signal amplitude, variance measures the signal

variability to the mean, skewness quantifies the extent to which the distribution leans

to one side of the mean, and kurtosis measures the ’peakedness’ of the distribution.

2) Curve length [38, 36]: It is the sum of distances between any two pair of

consecutive points. Intuition behind this feature is that curve length increase with the

signal magnitude, frequency and amplitude variation. It is mathematically calculated

as follows:

1

m− 1

m−1∑
i=1

|xi+1 − xi| (5.7)

3) Number of Peaks [36]: It measures the overall frequency of a signal. It is

mathematically calculated as follows:

1

2

m−2∑
i=1

max[0, sign(xi+2 − xi+1)− sign(xi+1 − xi)] (5.8)

1M1 and M2 are not available after re-referencing.
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4) Average nonlinear energy [39]: It is sensitive to spectral changes and is thus

useful for capture spectral information of a signal [40]. It is calculated as:

1

m− 2

m−1∑
i=2

x2
i − xi−1xi+1 (5.9)

5) Number of zero crossing: It is the number of points where the sign of the

EEG signal changes from positive to negative (or vice versa).

6) Spectral edge frequency: It measures the frequency below which a certain

percentage of total power of the EEG time-series signal [41]. In this project, percentage

values of 50%, 90% and 95% are considered.

7) Relative band power: Band power of EEG signals [42] in commonly used

frequency bands of brain signal including theta (2.5 - 7 Hz), alpha (7.5 - 12 Hz), beta

(12.5 -29 Hz), and gamma bands (30 - 50 Hz) is computed. Relative band power is

computed as the ratio of the band power of the individual band over the sum of band

power of all four bands.

Table 5.1 summarizes the features extracted in this work. For each channel and

each time epoch, there are 15 features in total. Therefore, the total number of features

is 10,800 (15 features, 30 channels, 24 time epochs).

Figure 5.4 shows the hierarchy of the features. The possible group assignment

of features for HSGL can be time epoch, channel and feature group. Besides, the 30

channels can be divided into five groups as in figure 5.3.
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Table 5.1: Summary of 7 groups of time-series features in chapter 5.

No Group Name Explanation Count
1 Statistical mean, variance, skewness, kurtosis 4
2 Curve length - 1
3 No. of peaks - 1
4 Average nonlinear energy - 1
5 No. of zero crossing - 1
6 Spectral edge frequency 50%, 95%, 99% 3
7 Relative band power theta/all, alpha/all, beta/all, gamma/all 4

Figure 5.4: An visual illustration of the hierarchy of features in this EEG studies.
The possible group assignment of features for HSGL can be time epoch, channel and
feature group. Besides, the 30 channels can be divided into five groups as in figure 5.3.

5.2.4 Hierarchical Sparse Group Lasso

Hierarchical sparse group lasso2 is based on lasso, SGL and HL. The formulation

of a two-layer hierarchical sparse group lasso (HSGL) is as follows:

min
d≥0,x

f(d,x)

= min
d≥0,x

N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2 + λ1

K∑
k=1

dk + λ2||x||1 + λ3

K∑
k=1

Gk∑
g=1

||xkg||2

(5.10)

2In the model, a scalar is represented by a non-bold lower-case letter, a vector is represented by

a bold lower-case letter and a matrix is represented by a bold upper-case letter. Symbols in the

formulations are changed for better consistency.
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Figure 5.5: Adaptive training of multi-class HSGL classification with hierarchical
splitting [45].

5.2.4.1 Optimization

HSGL is a non-linear biconvex optimization problem [43]. Recall that a function

f : X × Y ← R is called biconvex, if f(x, y) is convex in y for fixed x ∈ X, and f(x, y)

is convex in x for fixed y ∈ Y . It is proposed to solve HSGL with alternative convex

search [43, 13]. In essence, the two variables to be solved are optimized in turn until

convergence criteria is met. For detail, please refer to section 4.3 in chapter 4.

5.2.4.2 Extension to Multi-Class Classification

Developed as a regression method, HSGL can be used as classification for labels

with two classes. To cope with the multi-class classification, two classifications can be

conducted [44, 45]: firstly, the classification of i) neutral vs. ii) happy and anger can

be performed, i.e. happy and anger states are considered as the same class; after that,

predicted labels that are happy and anger will be chosen for another classification

between i) happy and ii) anger states. An visual illustration can be found in figure

5.5.
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5.2.5 Personalized Feature Standardization

An observation obtained from preliminary experiments which is not reported

in this paper is that classification accuracy tends to decrease with the number of

experiment subjects available in the data. It indicates that there is high inter-person

variability for the features extracted. To tackle this issue, personalization of feature

measures in [36, 46] is adopted as follows:

whiskerlower = max(minimum value,LQ− 1.5 ∗ IQR)

whiskerupper = min(maximum value,UQ + 1.5 ∗ IQR)

featnew =
feat− whiskerlower

whiskerupper − whiskerlower

(5.11)

where LQ means lower quartile, UQ means upper quartile and IQR means interquartile

range. Please note that such personalization is applied for each feature individually.

For example, if your feature matrix is arranged as observation by feature, the person-

alization in equations (5.11) are applied column-wise for each subject.

The basic idea of this personalization is that the upper and lower whiskers define

a personalized interval which contains most of the feature values. Outliers that do not

fall within the whisker-interval are mapped to either 0 or 1. The implementation is

easy but the enhancement on learning is surprisingly tremendous.

5.2.6 Classification

30 times of a double five-fold cross validation (CV) were run for predicting the

out-of-sample error. For each run of CV, data is divided to into five random subsets.

One of the subsets is used as testing, and the remaining four subsets are used for

training, and such procedure is repeated for five times for each CV. Previous literature

often runs CV for one time only. However, this work ran the double 5-fold CV for 30
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times in order to evaluate the impact of randomly splitting data into different folds

on classification accuracy and feature density.

Parameters, if any, will be tuned using the training dataset using another

five-fold cross validation to provide a realistic estimation of prediction errors and

to prevent over-fitting, explaining the term ”double 5-fold CV”. After running all

possible combinations of parameters, those with the highest accuracy will be taken

out. Then, among all the taken combinations, the one with lowest density of feature

vector will be chosen to train the model. It is observed that there can be multiple

combinations of parameters which can achieve the best accuracy. It follows that using

classification accuracy alone may not be robust enough for parameter tuning.

5.3 Evaluations

Experiments were executed on a workstation with an Intel i7-5960X CPU and

64 GB RAM with Ubuntu 17.04 operating system.

5.3.1 Performance Measures

There are two performance measures in this regard - i) classification accuracy

which is the ratio between the number of correctly classified number of emotion states

and total number of emotion states, and ii) density of feature vector x (for SGL and

SVM) or β = d� x (for HSGL) which is the ratio between the number of non-zero

elements of the feature vector and that of the length. Model is deemed to be good if

accuracy is high. As for density of feature vector, as there is no ground truth for the

selection result, a lower density of feature vector does not mean the selection result is

more superior. However, it is preferable to have a low density of feature density such

as 2% vs. 20%.
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5.3.2 Comparison with Baseline Methods

To illustrate the advantages of the proposed methods, four other baseline

prediction models are compared. All implementations are Matlab-based. Notations in

the following models have been changed for better consistency with the above.

• Support Vector Machine (SVM): It is simply the L2-regularized, L2-loss support

vector machine implemented by Liblinear.

min
x

1

2
||x||2 + C

N∑
n=1

||max(0, 1− yiaTi x)||2 (5.12)

• Decision Tree (DT): Random forests are an ensemble learning method for

classification, regression and other tasks, that operate by constructing a multitude

of decision trees at training time and outputting the class that is the mode of

the classes (classification) or mean prediction (regression) of the individual trees.

Random decision forests correct for decision trees’ habit of over-fitting to their

training set.

• Adaptive Boosting (Adaboost): AdaBoost, short for ”Adaptive Boosting”, is a

machine learning meta-algorithm which is used in conjunction with many other

types of learning algorithms to improve their performance. The output of the

other learning algorithms (’weak learners’) is combined into a weighted sum that

represents the final output of the boosted classifier. AdaBoost is adaptive in

the sense that subsequent weak learners are tweaked in favor of those instances

misclassified by previous classifiers.

• Sparse Group Lasso (SGL): It has been introduced in earlier section. The

formulation can be found in (5.3). SGL is implemented with the SLEP Toolbox

[15].
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5.3.3 Discussion of Computational Result

5.3.3.1 Overall

Table 5.2 lists the mean and standard deviation of accuracy and density of

feature vector of running 5-fold cross-validated classification for 30 times, if any, for

HSGL, SGL, adaboost, decision tree (DT) and L2-regularized L2-loss support vector

machine (SVM) using all 10,800 available features. In other words, each number in

the table is the mean and standard deviation of the 150 models obtained from each of

the 5-fold cross validated classifications across the 30 cases.

Classification in the binary cases of ”neutral vs. anger” and ”neutral vs. happy”

using HSGL (around 95%) performs competitively with SGL (around 93%) and other

baseline classifiers (80%-96%). However, for the binary case ”anger vs. happy” and

the tertiary case (”neutral vs. anger vs. happy”), SGL performs better than HSGL in

terms of accuracy. In addition, the choice of feature hierarchy affects significantly on

learning performance of HSGL (66%-78% for ”anger vs. happy”).

Especially for the tertiary case, since SGL (82%) and HSGL (66%-78%) are not

native multi-class classifiers, they do not perform well as compared with SVM (85%).

There are certainly better multi-class classifiers for real-life emotion recognizer. SGL

and HSGL are, nevertheless, good analysis tools on the identifying the discriminating

features.

The density of feature vector of SGL is generally lower than that of HSGL across

different cases.
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5.3.3.2 Hierarchical Structure: Time Epoch - Channel

Table 5.3 lists the average group density of feature vector with HSGL using group

assignment of ”Time Epoch - Channel” versus those of SGL using group assignment of

”Channel” from all 10,800 available features. Each number in the table is the average

density of feature groups at a particular time epoch from each of the 5 folds across

the 30 classification runs.

For the selection result of the top hierarchy, only 1 time epoch out of 24 was

selected with HSGL - features of ”0-5s” were required for classification of ”neutral vs.

anger” and ”neutral vs. happy”, and those of ”60-65s” were required for ”anger vs.

happy”. For the selection result of SGL (the right table of Table 5.4), features of 2, 1,

and 9 time epochs were required for ”neutral vs. anger”, ”neutral vs. happy” and

”anger vs. happy”. HSGL clearly has the ability of using features from fewer feature

groups while maintaining comparable classification accuracy.

For the selection result of the bottom hierarchy, HSGL selects more features

across different channels as opposed to SGL. SGL and HSGL do not show a consistent

choice of important channels for the bottom hierarchy.
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5.3.3.3 Hierarchical Structure: Feature Group - Time Epoch

Table 5.4 lists the average group density of feature vector with HSGL using group

assignment of ”Feat Gp - Time Epoch” versus those of SGL using group assignment

of ”Time Epoch” from all 10,800 available features. Each number in the table is the

average density of feature groups at a particular time epoch from each of the 5 folds

across the 30 classification runs.

The left table shows the result of feature selection of bottom hierarchy - time

epoch - under statistical features. The right table shows the result of feature selection

of SGL using group assignment of time epoch.

For the selection result of the top hierarchy of HSGL, two groups of features -

statistical features and relative band power - were selected. For SGL (the right table

of table 5.5), features were selected from all 7 feature groups for ”anger vs. happy”.

Again, HSGL is able to select features from fewer feature groups for ”anger vs. happy”.

In addition, feature groups including curve length (CL), number of peaks (Peaks),

average non-linear energy (ANE), number of zero crossings (ZC) and spectral edge

frequency are not selected by HSGL at all, meaning that they are not important in

discriminating emotion.

For the bottom hierarchy of HSGL, under the top feature group (d) of statistical

features for HSGL, almost features from all time epochs for three binary classification

cases were selected, as illustrated in the left of Table 5.4. It further explains the

importance of statistical features in emotion discrimination. For ”neutral vs. anger”

and ”neutral vs. happy”, features of earlier time epochs (0-20s) were more chosen,

whereas for ”anger vs. happy”, features of later times epochs (60-120s) were more

chosen. Such observation is important in designing an real-life emotion recognizer

- for example, a device just needs EEG signals of the first 20 seconds to detect the
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deviation of the subject’s emotion from the neutral state, whereas a device needs focus

on EEG signals of 60 seconds or later in order to differentiate happy from anger.

Most importantly, comparing the result of HSGL with that of SGL, it seems that

SGL requires fewer features than HSGL in emotion recognition (left and middle tables

as opposed to the right table in table 5.4). However, the total number of statistical

features is 4 (mean, std, skewnewss, kurtosis)×24 time epochs×30 channels = 2880,

whereas the total number of features used by SGL is 10800. From HSGL, classification

using statistical features alone would be sufficient, at least in the cases of ”neutral vs.

happy (around 95% accuracy)” and ”neutral vs. anger (around 94% accuracy)”, but

it would require more features across the time epochs, as opposed to the situation of

SGL that it requires only features at a few time epochs.
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5.3.3.4 Hierarchical Structure: Epoch Time - Feature Group

Table 5.5 lists the average group density of feature vector with HSGL using

group assignment of ”Time Epoch - Feature Group” versus those of SGL using group

assignment of ”Time Epoch” from all 10,800 available features. Each number in the

table is the average density of feature groups at a particular time epoch from each of

the 5 folds across the 30 classification runs.

The left two tables show the result of feature selection of bottom hierarchy -

feature group - under ”0-5s” and ”5-10s”. The middle two tables show the result of

feature selection of bottom hierarchy - feature group - under ”60-65s” and ”100-105s”.

The right table shows the result of feature selection of SGL using group assignment of

time epoch.

The selection result of the top hierarchy for HSGL in this case is similar to

that using ”Epoch Time - Channel”. As for the bottom hierarchy, features from all

time epochs were selected - such an observation is similar to the above in that HSGL

requires a certain portion of features in order to conduct classification, and that is

why it selects most of the features under the bottom hierarchy.
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5.4 Concluding Remarks

This paper attempts to address the interesting problem in EEG studies that

features often follow a hierarchical structure. On the whole, SVM performs generally

well in terms of classification accuracy and SGL yields the lowest density of feature

vector. HSGL offers an refreshing view of hierarchical feature selection, and such

result is consistent with that using SGL while having a lower group density of feature

vectors. As presented in the computational result, HSGL is able to select a few feature

groups at the top hierarchy, and these identified feature groups can be analyzed in

details.

In order to learn better, there are still more directions for further exploration.

Obviously the use of an optimization algorithm to which can attain global optimum in

order to solve HSGL is essential. Other EEG and time-series features can be used in

the study as well. Physiological signals such as heart rate and blood pressure should

be incorporated in the analysis. This quantitative analysis framework could be the

basis of a real-life applicable tool to assist social workers to help monitor emotion

states and to do anger management of an individual.
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CHAPTER 6

Overall Conclusion

In this dissertation, various sparsity-inducing mathematical norms including

L1-norm, group norm and L2,1-norm were used to improve existing mathematical

formulations in machine learning, and the improved learning methods were applied on

two problems in bioinformatics - i) predicting optimal tibial soft-tissue insertion of

the human knees and ii) emotion recognition and analysis.

To begin with, the novel method of L2,1-regularized multi-response support

vector regression (L21-MSVR) in chapter 2 learns well when there are more features

than observations and there is a considerable number of response variables. The

L2,1-norm is able to select features which learn most if not all of the response variables

at the same time. This is particularly suitable for the prediction of optimal tibial

soft-tissue insertion of the human knees in chapter 3, where the centroids of each and

every of the eight soft tissues and cartilages to be predicted is especially dependent on

the shape of the knee. The computational result shows that the proposed three-step

spatial-structure supervised learning and prediction model (L21-SSSL) is able to

slightly outperform the learning performance in terms of aRRMSE when compared

with baseline regressors including GLMNET, which is the strongest competitor in this

work.

On the other hand, features in bioinformatics learning can often be arranged in a

hierarchical manner. Generalized from sparse group lasso (SGL) and hierarchical lasso

(HL), hierarchical sparse group lasso (HSGL) proposed in chapter 4 is particularly

successful in identifying a handful but yet important features from a large group of
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irrelevant features. Computational results show that HSGL is able to yield comparable

learning performance in terms of accuracy (for classification) or mean squared error

(for regression) and, at the same time, select less features arranged in a hierarchical

manner when compared with HL in both simulated and real-life datasets. The novel

HSGL was then applied on an electroencephalography-based emotion recognition

problem as in chapter 5. The result of feature selection with SGL and HSGL was

analyzed and compared in order to seek the relevant groups of features for group

assignment ”time epoch”, ”channel” and ”feature group”. Such analysis would be

useful for researchers and practitioner in designing a light-weighted emotion recognizer.
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APPENDIX A

Mathematical Proofs for HSGL
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The following proofs are very similar to those in [1, 2, 3]

A.1 Proof of Lemma 4.2.1

Let Q∗(λ11, λ12, λ2,d,x) be the criterion to be minimized in formulation (4.9),

and let Q?(λ1, λ2,d,x) be the criterion to be minimized in formulation (4.14). The

goal is to prove that (d̂? = λ11d̂
∗, x̂? = x̂∗/λ11) is a local minimizer of Q?(λ1, λ2,d,x),

and vice versa.

Let (d̂∗, x̂∗) be a local minimizer of Q∗(λ11, λ12, λ2,d,x). It follows that

Q∗(λ11, λ12, λ2,d,x)

=
N∑
n=1

||yn −
K∑
k=1

dk

Gk∑
g=1

AT
n,kgxkg||2

+ λ11

K∑
k=1

dk + λ12||x||1 + λ2

K∑
k=1

d2
k

Gk∑
g=1

||xkg||2

=
N∑
n=1

||yn −
K∑
k=1

(λ11dk)

Gk∑
g=1

AT
n,kg

xkg
λ11

||2 +
K∑
k=1

(λ11dk)

+ λ11λ12

∥∥∥∥ xλ11

∥∥∥∥
1

+ λ2

K∑
k=1

(λ11dk)
2

Gk∑
g=1

∥∥∥∥xkgλ11

∥∥∥∥
2

=
N∑
n=1

||yn −
K∑
k=1

(λ11dk)

Gk∑
g=1

AT
n,kg

xkg
λ11

||2 +
K∑
k=1

(λ11dk)

+ λ1

∥∥∥∥ xλ11

∥∥∥∥
1

+ λ2

K∑
k=1

(λ11dk)
2

Gk∑
g=1

∥∥∥∥xkgλ11

∥∥∥∥
2

= Q?(λ1, λ2, λ11d,
x

λ11

).

(A.1)

Since (d̂∗, x̂∗) is a local minimizer of Q∗(λ11, λ12, λ2,d,x), there exists δ > 0

such that if (d′, x′) satisfy ||d′− d̂∗||1 + ||x′− x̂∗||1 < δ, then Q∗(λ11, λ12, λ2, d̂
∗, x̂∗) ≤

Q∗(λ11, λ12, λ2,d
′,x′).
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Choose δ′ such that δ′

min(λ11,
1
λ11

)
≤ δ. Consider any (d′′,x′′) within a neighborhood

satisfying ||d′′ − d̂?||1 + ||x′′ − x̂?||1 < δ′. Thus,

|| d
′′

λ11

− d̂∗||1 + ||λ11x
′′ − x̂∗||1

≤
λ11|| d

′′

λ11
− d̂∗||1 + 1

λ11
||λ11x

′′ − x̂∗||1
min(λ11,

1
λ11

)

=
||d′′ − λ11d̂

∗||1 + ||x′′ − x̂∗

λ11
||1

min(λ11,
1
λ11

)

=
||d′′ − d̂?||1 + ||x′′ − x̂?||1

min(λ11,
1
λ11

)

<
δ′

min(λ11,
1
λ11

)

≤ δ.

(A.2)

Consequently, ( d
′′

λ11
, λ11x

′′) is in a neighborhood of (d̂∗, x̂∗).

Hence,

Q?(λ1, λ2, d̂
?, x̂?)

= Q∗(λ11, λ12, λ2, d̂
∗, x̂∗) By (A.1)

≤ Q∗(λ11, λ12, λ2,
d̂′′

λ11

, λ11x̂
′′) By (A.2)

= Q?(λ1, λ2,
λ11d̂

′′

λ11

, λ11
x̂′′

λ11

) By (A.1) again

= Q?(λ1, λ2, d̂
′′, x̂′′)

(A.3)

Therefore, (d̂? = λ11d̂
∗, x̂? = x̂∗/λ11) is a local minimizer of Q?(λ1, λ2,d,x).

It can be similarly proved that, for any minimizer (d̂?, x̂?) of Q?(λ1, λ2,d,x),

there is a corresponding local minimizer (d̂∗, x̂∗) of Q∗(λ11, λ12, λ2,d,x) such that

d̂∗kx̂
∗
kg = d̂?kx̂

?
kg.
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A.2 Proof of Lemma 4.2.2

Suppose (d̂, x̂) is a local minimizer of (4.14). Let β̂ satisfy β̂kg = d̂kx̂kg.

To begin with, d̂k = 0 if x̂(k) = 0, where x̂(k) = [x̂Tk1, x̂
T
k2, . . . , x̂

T
kGk

]T and

x̂ = [x̂T(1), . . . , x̂
T
(K)]

T because, in Algorithm (2), the first (least-square loss) and third

(group-norm penalization) terms of formulation (4.18) will become constant, and the

second term (
∑K

k=1 d̂k) will achieve minimum when d̂k = 0. It can be similarly proved

that, if d̂k = 0, then x̂(k) = 0, according to formulation (4.17).

Hence, it remains to prove that if d̂k 6= 0, then d̂k =
√
λ1||β̂(k)||1 and x̂(k) =

β̂(k)/d̂k. Let β be fixed at β̂. Recall that there are four terms in formulation (4.14) -

the loss term l(d,x), the term d (
∑K

k=1 dk), the term x (λ1||x||1) and the group-norm

term (λ2

∑K
k=1 d

2
k

∑Gk
g=1 ||xkg||2 = λ2||β||2). Thus, in order to minimize Q?(λ1, λ2,d,x),

only the terms d (
∑K

k=1 dk) and x (λ1||x||1) need to be considered because β is fixed.

For some k with ||β̂(k)||1 6= 0, what remains to be optimized in formulation (4.14) is

dk + λ1||β(k)||1/dk, which is minimized at d̂k =
√
λ1||β̂(k)||1 by differentiation with

respect to dk. Substituting this back to β̂(k) = d̂kx̂(k), x̂(k) =
β̂(k)√

λ1||β̂(k)||1
follows

immediately.

A.3 Proof of Lemma 4.2.3

Suppose (d̂, x̂) is a local minimizer of Q?(λ1, λ2,d,x), the criterion in formulation

(4.14) and let Q(λ1, λ2,β) be the corresponding criterion in formulation (4.15). It is

first shown that β̂, where β̂kg = d̂kx̂kg, is a local minimizer of Q(λ1, λ2,β), i.e. there

exists a δ′ such that if ||4β||1 < δ′, then Q(λ1, λ2, β̂) ≤ Q(λ1, λ2, β̂ +4β).

Denote 4β = [4βT(1), . . . ,4βT(K)]
T , 4β(1) = [4β(1)T

(1) , . . . ,4β(1)T
(K) ]T , 4β(2) =

[4β(2)T
(1) , . . . ,4β(2)T

(K) ]T , and 4β = 4β(1) +4β(2) such that, ∀k = 1, . . . , K:
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4β(k) =


4β(1)

(k) if ||β̂(k)||1 6= 0 (i.e. 4β(2)
(k) = 0)

4β(2)
(k) if ||β̂(k)||1 = 0 (i.e. 4β(1)

(k) = 0)

It follows that ||4β||1 = ||4β(1)||1 + ||4β(2)||1.

It remains to show that Q(λ1, λ2, β̂) ≤ Q(λ1, λ2, β̂+4β(1)) if δ′ is small enough.

By Lemma (4.2.2), d̂(k) =
√
λ1||β̂(k)||1, x̂(k) =

β̂(k)√
λ1||β̂(k)||1

if |d̂k|1 6= 0, and x̂(k) = 0

if |d̂k|1 = 0. Furthermore, let d̂k
′ =

√
λ1||β̂(k) +4β(1)

(k)||1, x̂(k)
′ =

β̂(k)+4β
(1)
(k)√

λ1||β̂(k)+4β
(1)
(k)
||1

if

|d̂k|1 6= 0. Let d̂k
′ = 0, x̂(k)

′ = 0 if |d̂k ′|1 = 0. It follows that Q?(λ1, λ2, d̂
′, x̂′) =

Q(λ1, λ2, β̂ +4β(1)) and Q?(λ1, λ2, d̂, x̂) = Q(λ1, λ2, β̂).

Hence it is only required to show that Q?(λ1, λ2, d̂, x̂) ≤ Q?(λ1, λ2, d̂
′, x̂′).

Since (d̂, x̂) is a local minimizer of Q?(λ1, λ2,d,x), there exists a δ such that

Q?(λ1, λ2, d̂, x̂) ≤ Q?(λ1, λ2,d
′,x′) for any (d′,x′) satisfying ||d′−d̂||1 +||x′−x̂||1 < δ.

For e = mink{||β̂(k)||1 : ||β̂(k)||1 6= 0},∀k = 1, . . . , K and δ′ < e/2,∣∣∣d̂k ′ − d̂k∣∣∣
=

∣∣∣∣√λ1||β̂(k) +4β(1)
(k)||1 −

√
λ1||β̂(k)||1

∣∣∣∣
≤
∣∣∣∣√λ1||β̂(k)||1 + λ1||4β(1)

(k)||1 −
√
λ1||β̂(k)||1

∣∣∣∣
(By

√
||a+ b||1 ≤

√
||a||1 + ||b||1)

≤
√
λ1||4β(1)

(k)||1

2
√
||β̂(k)||1

(By
√
||a||1 + ||b||1 −

√
||a||1 ≤

||b||1
2
√
||a||1

)

≤
√
λ1||4β(1)

(k)||1
2
√
e
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Furthermore, for ||4β(1)||1 < δ′ (and thus ||4β(1)||1 < e/2),

||x̂(k)
′ − x̂(k)||1

=

∥∥∥∥∥ β̂(k) +4β(1)
(k)

d̂k ′
−
β̂(k)

d̂k

∥∥∥∥∥
1

=

∥∥∥∥∥4β
(1)
(k)

d̂k ′
−
β̂(k)(d̂k

′ − d̂k)
d̂k ′d̂k

∥∥∥∥∥
1

≤

∥∥∥∥∥4β
(1)
(k)

d̂k ′

∥∥∥∥∥
1

+

∥∥∥∥∥ β̂(k)(d̂k
′ − d̂k)

d̂k ′d̂k

∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥
4β(1)

(k)√
λ1

∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1

∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥
β̂(k)

(√∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1
−
√∥∥∥β̂(k)

∥∥∥
1

)
√
λ1

∥∥∥β̂(k)

∥∥∥
1

∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1

∥∥∥∥∥∥∥∥
1

≤

∥∥∥4β(1)
(k)

∥∥∥
1√

λ1

∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1

+

∥∥∥β̂(k)

∥∥∥
1√

λ1

∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1

∥∥∥4β(1)
(k)

∥∥∥
1

2

√∥∥∥β̂(k)

∥∥∥
≤ 1√

λ1


∥∥∥4β(1)

(k)

∥∥∥
1√∥∥∥β̂(k) +4β(1)

(k)

∥∥∥
1

+

∥∥∥4β(1)
(k)

∥∥∥
1

2

√∥∥∥β̂(k) +4β(1)
(k)

∥∥∥
1


≤

3
∥∥∥4β(1)

(k)

∥∥∥
1

2
√
λ1

1√∥∥∥β̂(k)

∥∥∥
1
−
∥∥∥4β(1)

(k)

∥∥∥
1

≤
3
∥∥∥4β(1)

(k)

∥∥∥
1

2
√
λ1

1√
e− e/2

=
3
∥∥∥4β(1)

(k)

∥∥∥
1√

2λ1e
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Therefore, there exists a small enough δ′ satisfying δ′ < e/2 such that ||d̂′− d̂||1 +

||x̂′− x̂||1 < δ. Hence Q?(λ1, λ2, d̂, x̂) ≤ Q?(λ1, λ2, d̂
′, x̂′) due to local minimality and

Q(λ1, λ2, β̂) ≤ Q(λ1, λ2, β̂ +4β(1)).

The following proves that Q(λ1, λ2, β̂ +4β(1)) ≤ Q(λ1, λ2, β̂ +4β(1) +4β(2)).

The Lipschitz continuity of the least-square loss function l(β) = ||y −Aβ||2 implies

that

∣∣∣l (β̂ +4β(1) +4β(2)
)∣∣∣− ∣∣∣l (β̂ +4β(1)

)∣∣∣
≤ L1

′
∥∥∥4β(2)

∥∥∥
1

(A.6)

for some L1
′ > 0. Moreover, a real number L1 can be chosen such that

∣∣∣l (β̂ +4β(1) +4β(2)
)∣∣∣− ∣∣∣l (β̂ +4β(1)

)∣∣∣
= L1

∥∥∥4β(2)
∥∥∥

1

(A.7)

For the group-norm term (λ2

∑K
k=1 d

2
k

∑Gk
g=1 ||xkg||2 = λ2||β||2), there exists a

number ε > 0 such that

λ2

∥∥∥β̂ +4β(1) +4β(2)
∥∥∥

2
− λ2

∥∥∥β̂ +4β(1)
∥∥∥

2
= λ2ε > 0 (A.8)

Hence, there exists the following numbers L1, L2 ∈ R such that

Q(λ1, λ2, β̂ +4β(1) +4β(2))−Q(λ1, λ2, β̂ +4β(1))

= L1

∥∥4β(2)
∥∥

1
+ 2
√
λ1

K∑
k=1

√∥∥∥β(2)
(k)

∥∥∥
1

+ λ2ε
(A.9)

Since
∥∥∥4β(2)

∥∥∥
1
< δ′, for a small enough δ′, the second and third terms dominate

the first term in (A.9) if λ1 is large enough and λ2 is small enough. It follows that

Q(λ1, λ2, β̂ +4β(1)) ≤ Q(λ1, λ2, β̂ +4β(1) +4β(2)).
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Overall, there exists a small enough δ′ > 0 such that, if ||4β||1 < δ′, then

Q(λ1, λ2, β̂) ≤ Q(λ1, λ2, β̂ + 4β), which implies that β̂ is a local minimizer of

Q(λ1, λ2,β).

Similarly, it can be proved that if β̂ is a local minimizer of Q(λ1, λ2,β), and if

it is assumed that d̂k =

√
λ1

∥∥∥β̂(k)

∥∥∥
1
, x̂(k) =

β̂(k)√
λ1‖β̂(k)‖1

for
∥∥∥β̂(k)

∥∥∥
1
6= 0 and d̂k = 0,

x̂(k) = 0 for
∥∥∥β̂(k)

∥∥∥
1

= 0, then (d̂, x̂) is a local minimizer of Q?(λ1, λ2,d,x).

A.4 Proof of Lemma 4.3.1

To begin with, Q?(λ1, λ2,d,x) is bounded below due to the positivity of each

term in the criterion. Denote x̂(t) and d̂(t) the minimizers of the criterion in problems

(4.17) and (4.18) at the t-th iteration respectively. Note that the minimization prob-

lems in Steps 5 and 6 of algorithm (2) are equivalent to minimizing Q?(λ1, λ2, d̂
(t−1),x)

with respect to x and Q?(λ1, λ2,d, x̂
(t)) with respect to d. Since x̂(t) is the min-

imizer of Q?(λ1, λ2, d̂
(t−1),x), thus Q?(λ1, λ2, d̂

(t−1), x̂(t)) ≤ Q?(λ1, λ2, d̂
(t−1), x̂(t−1)).

Similarly, since d̂(t) is the minimizer of Q?(λ1, λ2,d, x̂
(t)), thus Q?(λ1, λ2, d̂

(t), x̂(t)) ≤

Q?(λ1, λ2, d̂
(t−1), x̂(t)).

Combining these two together, it follows that,

Q(λ1, λ2, d̂
(t), x̂(t)) ≤ Q?(λ1, λ2, d̂

(t−1), x̂(t))

≤ Q?(λ1, λ2, d̂
(t−1), x̂(t−1)).

(A.10)

which implies that Q?(λ1, λ2,d,x) decreases for each iteration.
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