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Aybüke deserve special recognition and thanks for their love, humor, and sincerety.

Last, but not least, I send big thanks to all my friends in here and in Turkey as

well as the UTA Turkish community for their support and sharing wonderful times

with me during my education.

iv



LIST OF ILLUSTRATIONS

Figure Page

1. A portion of a meshed MTDC grid. The grid is equipped with switching

devices to enable line switching decisions, x~

~

. VSCs couple AC and DC parts

by controlling their voltage and power levels on both sides. . . . . . . . . 11

2. Droop parameters optimized for the load/generation profile at time t1 vio-

lates the safe operating region until the subsequent update that happens at

time t3 + ∆t3. (a) Load/generation profile and DC side voltage variation.

(b) Generalized voltage-droop characteristics. . . . . . . . . . . . . . . . . 15

3. The modified CIGRE B4 DC grid equipped with line switches. DC cable

resistance for +/-400 kv is 0.0095 Ω/km. . . . . . . . . . . . . . . . . . . 23

4. Topology-cognizant OPF testbed on a real-time HIL platform has hard-

ware emulation (Typhoon HIL), controller implementation (dSPACE), and

TCP/IP communication link. . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. MTDC operation with droop control under varying load: (a) DC side volt-

age variation, (b) DC side power variation, and (c) Total power losses. . . 25

6. MTDC operation with static OPF under varying load: (a) DC side voltage

variation, (b) DC side power variation, and (c) Total power losses. . . . . 26

7. MTDC operation with topology-cognizant OPF disregarding voltage safety

constraints in (2.20s). The variations in load/generation have DC voltage

at bus 5 violate the safety limit: (a) DC side voltage variation (dotted line

shows the safety limit, vdc
max = 402.8 kV), (b) DC side power variation, and

(c) Total power losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



8. MTDC operation with topology-cognizant OPF considering the voltage

safety constraints in (2.20s): (a) DC side voltage variation (dotted line

shows the safety limit, vdc
max = 402.8 kV), (b) DC side power variation, and

(c) Total power losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9. Three bus DC distribution network is equipped with sensors at buses 1 and

2 and the line between buses 1-3 to collect data (v̂1, x̂2, ı̂1, ı̂2). Optimizer

jointly performs state estimation and topology identification using these

limited measurements, and infers unknown voltage, v2, v3, and statuses of

the lines, x1, x3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10. Comparative convergence rates of proposed and generalized state estimation

methods for the IEEE (a) 9-bus, (b) 14-bus, and (c) 30 bus systems. . . . 50

11. The modified IEEE 14-bus system populated with 5 DC-DC buck con-

verters (illustrated by ), and equipped with sensors to monitor voltages

(illustrated by ), line statuses (illustrated by ), and injected current at

bus k ∈ N \ {Z}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

12. Load power trajectories at selected buses 1, 3, 4, 5, 6, and 9. . . . . . . . . 51

13. DC network joint observation testbed on a HIL system embodying of con-

troller implementation (dSPACE), real-time hardware emulation (Typhoon

HIL), and TCP/IP communication link for data transfer. . . . . . . . . . 52
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ABSTRACT

HIGH-PERFORMANCE OPTIMIZATION METHODS FOR EMERGING

POWER SYSTEMS

TUNCAY ALTUN, Ph.D.

The University of Texas at Arlington, August, 2020

Supervising Professors: Ali Davoudi, Ramtin Madani

This dissertation investigates the applications of high performance optimization

techniques for emerging power systems with augmented power electronics devices.

One of the main sources of complexity in the analysis of power systems is rooted in

the power flow equations modeling steady-state relationship between power injections

and voltages. Hence, the present work is in-part focused on addressing the complexity

of power flow equations in the presence of power electronic devices. In contrast to the

classic optimal power flow (OPF) solution techniques, we employ convex optimization

methods to reliably find globally optimal solutions in polynomial time.

The first chapter investigates the optimization of droop control set-points, i.e.,

voltage and power levels at each bus, and the switching status of transmission lines,

in multi-terminal direct current (MTDC) grids. Additional constraints, that ensure

a safe operation in response to power fluctuation while updating droop set-points,

are integrated into the problem formulation. This problem is expressed as a mixed-

integer nonlinear program with three sources of computational difficulty: i) Non-

convex power balance and flow equations, (ii) Non-convex converter loss equations,

x



and iii) Binary variables standing for the on/off status of transmission lines. Second-

order cone programming relaxation tackles the non-convexity of converter loss, power

flows and power balance equations, and branch-and-bound search determines the

optimal switching status of transmission lines. CIGRE B4 DC grid benchmark is em-

ulated in a real-time hardware-in-the-loop environment to corroborate the proposed

method.

This dissertation next copes with the long-standing state estimation and topol-

ogy identification problems in direct current (DC) networks. This problem is challeng-

ing due to binary decisions and nonlinear relations between sensor measurements and

state variables. We introduce a non-convex nuclear norm estimator whose nonconvex-

ity is addressed by incorporating two inertia terms. In the presence of noise, penalty

terms are integrated into the objective function to estimate unknown noise values. Nu-

merical results for the modified IEEE 9-bus, 14-bus, and 30-bus systems corroborate

the merits of the proposed technique. Furthermore, this technique is experimentally

validated for a converter-augmented 14-bus system in a real-time hardware-in-the-

loop platform.

Lastly, this work introduces an enhanced modeling for generator response in

the security-constrained optimal power flow (SCOPF) problem, in which every con-

tingency scenario corresponds to the outage of an arbitrary set of generators and

lines. Integrating active and reactive power contingency response into SCOPF prob-

lem is a major computational challenge. We introduce a family of surrogate models

for common-practice power system contingency response decisions such as PV/PQ

switching and active power redistribution. The proposed models prevent physical

and operational violations by means of optimally, allocating active power imbalances

among available generators and determining the most efficient PV/PQ switching de-
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cisions. The efficacy and scalability of the proposed method is numerically validated

on an IEEE benchmark system.
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CHAPTER 1

INTRODUCTION

The reliability and economic operation of electric power systems is a major

concern of power system engineers. The power flow investigation underpins many

static or dynamic applications in power systems. These applications include stability

analysis, optimal power flow, contingency analysis, etc. The power flow equations

amount to nonlinear relationship of voltage and power in a power system. Accurate

solution of the power flow problem ensures that generators meet the required power,

i.e., total load and transmission losses. Solving power flow equations approximated by

linearization techniques falls short of fidelity since physical and operational constraints

are not properly respected.

In traditional power systems, electricity is generated in bulk amount at medium

voltage level far away from the consumer. Even though traditional power system

model is fairly straightforward, it has some serious technical and environmental draw-

backs. These drawbacks include high CO2 emission, complex penetration of renewable

energy technologies, and its obsolete structure that does not allow to accommodate

ever increasing electricity demand. On the other hand, with help of power electronics

devices, distributed generation based future power systems offer improved efficiency,

reliability, expandability, and stability. In distributed generation based power sys-

tems, generation and consumption happen in a close physical region. This future

power system concept also revitalizes the importance of DC distribution/transmis-

sion.
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Convex relaxation methods, consisting of second-order cone programming (SOCP)

and semi-definite programming (SDP), can transform nonlinear power flow optimiza-

tion into convex surrogates by reformulating it in a high-dimensional space while

preserving equivalency with the original non-convex problem [1, 2]. The SDP and

SOCP relaxations, and their variations, have manifested notable success in solving

OPF problems in AC systems [3, 4]. Static OPF solutions, however, overlook the op-

timal switching of transmission lines that can help relieve voltage violations and line

overloads, protect the grid from abnormal operations, minimize transmission losses,

or schedule maintenance [5]. In fact, a transmission line built for a long-term require-

ment could exhibit dispatch inefficiencies [6]. Lately, mixed-integer cone programming

methods have been used to solve AC grid topology problems [7, 8].

These approaches have been extended to deal with state estimation problem

that determines the network states based on a limited number of measurements or

based on a corrupted sensory information. The state estimation process is convention-

ally formulated as a nonlinear least-squares problem, and is usually treated by varia-

tions of Gauss-Newton algorithms [9]. The weighted least-squares (WLS) estimation

criterion has been employed in practice to filter out Gaussian measurement noise with

certain statistical properties [10, 11]. As WLS is susceptible to gross measurement

errors, other gross error detection and identification methods have been proposed to

perform accurate state estimation [12, 13, 14, 15, 11]. Given their non-convex prob-

lem formulation, the Gauss-Newton algorithm is sensitive to the initial points, and

might converge to local minima [16]. Convex relaxation methods can either directly

solve the estimation problem [17] or provide an initial guess for the Newton’s method

[18]. Convergence guarantees for the estimation process using convex relaxation tech-

niques are given in [19]. With measurement redundancy, incorporating penalty terms
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in the formulation of the objective function can help cleansing noise and bad data

[20, 21, 22]. These techniques, however, assume a fixed network topology.

Another issue in power systems is that transmission losses cannot be identified

in advance. Therefore, required total power generation to supply a known demand

is unpredictable [23]. Common practice in power systems is to assume there exist at

least one slack bus. In slack bus, power generation can be readjusted to compensate

the system power imbalances[24]. To this end, power flow algorithms, such as Gauss,

fast decoupled, Gauss-Seidel, Newton-Raphson , backward/forward sweep, and other

derivative approaches compute the flow of electrical power based on single slack bus

model [25]. However, assuming a conceptual generator that has an infinite capacity

or can draw a negative power does not reflect the real behavior of the power systems.

To address aforementioned drawbacks, various modern optimization techniques

have transformed nonlinear power flow and balance constraints into convex alter-

nates while attempting to conserve equivalency to the non-convex original problem.

This dissertation discusses high performance optimization for emerging power sys-

tems while satisfying physical network constraints and operational limits. Followings

categorize the research outcomes:

� Chapter 2 introduces a mixed-integer second-order cone programming (MIS-

OCP) formulation for the topology-cognizant OPF in MTDC grids to minimize

both transmission and converter losses. The proposed formulation includes

safety constraints that prevent voltage violations caused by power fluctuation

in between two droop set-point updates.

� Chapter 3 leverages the physical properties of DC networks to develop a joint

estimation and topology identification algorithm using a limited number of mea-

surement. We formulate this as a non-convex mixed-binary problem, develop

a non-convex nuclear norm estimator, and address this non-convexity by us-
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ing two inertia terms. The presence of zero injection buses (i.e., a bus with

no load or converter) is used to strengthen the convex relaxation and decrease

the number of required sensors. The devised convex optimization framework is

robustified against noise by upgrading to a penalized convex program.

� Chapter 4 presents several equivalent continuously-differentiable security con-

strained OPF (SCOPF) models that respect high fidelity physical model of

generators with respect to extensive list of contingency scenarios. The intro-

duced models prevent physical and operational violations by means of optimally,

allocating active power imbalances among available generators and deciding the

type of bus, i.e., PV/PQ switching, respectively.

The resulting publications are listed below:

[J1] T. Altun, R. Madani and A. Davoudi, “Topology-cognizant Optimal Power Flow

in Multi-terminal DC Grids,” Under Preparation.

[J2] T. Altun, R. Madani and A. Davoudi, “Observation of State and Topology in

DC networks,” IEEE Transactions on Power Systems, Revision submitted in

June 2020, (Manuscript ID: TPWRS-01084-2019.R3).

[J3] T. Altun, R. Madani and A. Davoudi, “Enhanced Modeling of Generator Re-

sponse in Security-constrained Optimal Power Flow,” Under Preparation.
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TOPOLOGY-COGNIZANT OPTIMAL POWER FLOW IN MULTI-TERMINAL

DC GRIDS

T. Altun, R. Madani and A. Davoudi, “Topology-cognizant Optimal Power Flow in

Multi-terminal DC Grids,” Under Preparation.

5



CHAPTER 2

TOPOLOGY-COGNIZANT OPTIMAL POWER FLOW IN MULTI-TERMINAL

DC GRIDS

Multi-terminal direct current (MTDC) grids are becoming popular as they allow

efficient power exchange between synchronized or unsynchronized power grids, and

are suitable candidates for offshore wind farms integration [26] or power exchange in

long-distance (e.g., European supergrid [27]) as its DC grid enjoys a simpler control

mechanism and avoids challenges native to AC grids. Moreover, voltage-source con-

verters (VSCs) based MTDC grids allow interconnection with weak AC grids, black

start in the case of blackouts, and power flow reversal without switching the voltage

polarity [28]. Given their superiority over AC power transmission, there are ongoing

efforts to realize bulk power exchange among independent grids using the VSC tech-

nology. VSC’s DC voltage control is the key measure to proper power dispatch and

loss management in a MTDC grid, and is mainly done via master-slave [29], voltage

margin [30], or voltage droop [31] mechanisms. Droop control approach is more de-

pendable than voltage margin and master-slave controls if several converters actively

participate in the regulation process [32].

The two-tier control hierarchy of MTDC grids [33, 34] includes a faster, lower-

level droop controller that locally regulates the VSC voltage at the cost of power

sharing objectives. Hence, the upper-level optimizer periodically tunes the set-points

of the lower-level droop control to meet predefined optimization objectives, i.e, min-

imizing generation cost, transmission loss, etc. The optimization involved in tuning

droop set-points could become computationally prohibitive for real-time applications
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[35]. This delay, or any interruption in the communication between the two control

layers, could cause a prescribed droop set-point to violate an operational safety limit,

particularly if the load demand or power generation fluctuate noticeably before the

subsequent droop set-points update [36, 37]. Preventive measures, while still pursuing

optimality in MTDC grids, are rare in the literature, e.g., see [38, 39, 40].

The optimal power flow (OPF) in MTDC grids aims to minimize transmission

loss alone [41] or along with conversion loss [42]. Convex relaxation methods can

transform nonlinear power flow optimization into convex surrogates by reformulating

it in a high-dimensional space while preserving the equivalency with the original

non-convex problem [1, 2]. These approaches have been extended to the static OPF

problem of MTDC grids that also suffer from non-convex converter loss equations

[43, 44, 45].

Static OPF solutions, however, overlook the optimal switching of transmission

lines that can help lessen line overloads, minimize transmission losses, address volt-

age violations, protect the grid from abnormal operations, or schedule maintenance

[5]. In fact, a transmission line built for a long-term requirement could exhibit dis-

patch inefficiencies [6]. Recently, AC grid topology problems have been solved using

mixed-integer cone programming approaches [7, 8, 46]. The authors have developed

a mixed-integer second-order cone programming (MISOCP) model to reconfigure a

DC network to minimize the generational cost in static OPF and secure the operation

in response to contingencies [47]. MTDC grid, unlike DC or AC networks, includes

operation in high voltage, presence of VSCs, and combination of AC and DC grid

constraints that bring additional complexities into its MISOCP formulation. Ac-

cordingly, this chapter offers a MISOCP formulation for the topology-cognizant OPF

in MTDC grids to minimize both transmission and converter losses while respect-

ing physical and operational constraints including AC part and VSC characteristics.

7



The proposed formulation involves safety constraints that prevent voltage violations

caused by power fluctuation in between two droop set-point updates. The noticeable

contributions of this chapter are summarized as:

� Additional constraints that sustain a safe operation by further restricting volt-

age limits, in response to volatile generation/load profiles in between two droop

set-point updates, are integrated into the problem formulation.

� Static OPF is extended to derive a topology-cognizant OPF model when binary

variables account for the switching status of transmission lines.

� The proposed mixed-integer nonlinear programming model is transformed into

MISOCP surrogate to obtain a tractable topology-cognizant OPF formulation

for MTDC grids.

� The proposed static OPF, topology-cognizant OPF without safety constraints,

and topology-cognizant OPF with safety constraints are studied on the modified

IEEE 14, 30, 57-bus systems and experimentally validated for the CIGRE B4

DC grid benchmark through real-time hardware-in-the-loop (HIL) experiments.

The rest of the chapter has the following organization. Section 2.1 contains

preliminary materials. Section 2.2 elaborates the modeling of MTDC grids. Section

2.3 incorporates the switching actions of transmission lines into the OPF problem,

and presents its convexified version. In Section 2.4, the OPF and topology-cognizant

OPF solutions are experimentally and numerically validated through CIGRE B4 DC

grid benchmark and several modified IEEE benchmarks, respectively.
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2.1 Notations and Grid Terminologies

2.1.1 Notations

Bold small letter, (x), and capital letter, (X), represent vectors and matrices,

respectively. 1 and 0 refer to vectors with all elements as 1 and 0, respectively. The

sets of complex and real numbers are symbolized with C and R respectively. Hn

and Sn represent the hermitian and symmetric matrices size of n × n, respectively.

imag{·} and real{·} define the imaginary and real parts of a complex number or

matrix, respectively. A matrix’s ith row and jth column is referred with (i, j). The

transpose and conjugate transpose operators are denoted with(·)>and(·)∗, respectively.

| · | refers the cardinality of a set or the absolute/magnitude value of a vector/scalar.

tr{·} refers to the trace of a given matrix. ‖ · ‖2 stands for the euclidean norm of a

vector. diag{·} creates a vector using the matrix’s diagonal entries. [·] composes a

matrix with diagonal entries from a given vector.

2.1.2 Grid Terminologies

Figure 1 demonstrates a schematic for an MTDC grid. Grid buses are connected

via DC transmission lines. Terminologies for grid elements are elaborated here:

� DC Grid: The DC transmission grid is structured using directed graph H =

(N ,L) where the sets of buses and lines are denoted by N and L, respec-

tively. The DC grid from and to line-incidence matrices are defined with the

pairs ~L, ~L ∈ {0, 1}|L|×|N |, respectively. ~Llk = 1 ( ~Llk = 1) for every k ∈ N

and l ∈ L, iff the transmission line l starts(ends) at bus, k. The matrices

Y ∈ R|N |×|N |, ~Y , ~Y ∈ R|L|×|N | represent the bus-conductance, and the from

and to line-conductance matrices of the DC grid, respectively. The from and

to vectors of transmission line power flows are defined as ~f and ~f ∈ R|L|, re-

spectively. The power flow limits is represented with f~

~

max ∈ (R ∪ {∞})|L|.
9



Additionally, x~

~

∈ {0, 1}|L| defines the vector that acts for the switching status

of transmission lines. Let x~

~

min,x~

~

max ∈ {0, 1}|L| encapsulate prior knowledge of

the on/off switches, i.e.,

x~

~

minl =x~

~

maxl =0, if line l∈L is known to be disconnected,

x~

~

minl =x~

~

maxl =1, if line l∈L is known to be connected,

x~

~

minl =0, x~

~

maxl =1, otherwise.

Finally, let vdc,pdc ∈ R|N | represent the vectors of DC bus voltages and active

power injections into the DC side.

� Buses/VSCs: Each DC bus k ∈ N is assumed to accommodate a single

voltage-source converter (VSC) which is connected to a set of loads and gen-

erators through a phase reactor, modeled as a series impedance zk ∈ C. De-

fine z, iac ∈ C|N | as the vectors of phase-reactor impedance and current val-

ues, respectively. Let vac
c ,v

ac
f ∈ C|N | account for the vectors of VSC and

load/generation-side AC voltages, respectively. Let sac ∈ C|N |, and pac, qac ∈

R|N |, respectively, represent the vectors of apparent, active and reactive power

injections from VSCs into the AC sides.

� Generators/Loads: Let G be the set for generators and G ∈ {0, 1}|G|×|N |

as the generator incidence matrix, where Ggk = 1 if and only if the generator

g ∈ G is located at the AC side of the bus k ∈ N . sg ∈ C|G| and pg, qg ∈

R|G|, respectively, represent the vectors of apparent, active and reactive power

generations. Define D as the set of loads and D ∈ {0, 1}|D|×|N | as the load

incidence matrix where Ddk = 1 if and only if the load d ∈ D is located at the

10
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Figure 1: A portion of a meshed MTDC grid. The grid is equipped with switching
devices to enable line switching decisions, x~

~

. VSCs couple AC and DC parts by
controlling their voltage and power levels on both sides.

AC side of the bus k ∈ N . Finally, pd ∈ R|D| represents the vectors of active

power demand.

2.2 MTDC Grid Model

2.2.1 AC/DC Coupling

VSC losses are approximated by a quadratic polynomial with respect to current

magnitude as

pconv
loss , −pac − pdc = a+ [b]|iac|+ [c]|iac|2, (2.1)

where a, b, c ∈ R|N | are the vectors of positive coefficients [43], and pac and pdc are the

vectors of active power injections by the VSCs into the AC and DC sides, respectively.

Additionally, the AC and DC side voltages are related with a modulation factor, m,

|vac
c | ≤

√
3

2
mvdc. (2.2)
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2.2.2 VSC Limits

The AC side complex powers can be calculated as

sac = [vac
c ]
(
[z]−1(vac

c − vac
f )
)∗
, (2.3)

with the VSCs active power is bounded as

pac
min ≤ pac ≤ pac

max. (2.4)

With no loss of generality, the VSC reactive power limits can be formulated as

−mb|s̄ac|≤qac≤ [|imag{z}|]−1
[
vac

cmax

]
(vac

cmax
− |vac

f |), (2.5)

where mb is a positive constant, and |s̄ac| is the vector of nominal VSC apparent power

values [42]. The right side of inequality (2.5) is the outcome of the approximation on

phase-angle difference between phase reactor buses, θci − θfi = 0 for every i ∈ N . To

further simplify (2.5) while finding the maximum reactive power constraint, one can

substitute |vac
f | with vac

fmin
[43]. Finally, according to Ohm’s law,

iac = [z]−1(vac
c − vac

f ), (2.6)

and the current magnitude |iac|, should not exceed an upper limit |iac
max|, to be com-

patible with the limits of phase reactor and controller.

12



2.2.3 Generator/Load Limits

Active power balance at the generator/load sides of phase reactors can be for-

mulated as

G>pg −D>pd = real
{

[vac
f ]
(
[z]−1(vac

f − vac
c )
)∗}

, (2.7)

with

pg
min ≤ pg ≤ pg

max, (2.8)

vac
fmin
≤ |vac

f | ≤ vac
fmax

, (2.9)

enforcing generator/load power and voltage limits.

2.2.4 DC Grid Constraints

Nodal power balance equations of the DC grid can be formulated as

~L> ~f + ~L> ~f = pdc, (2.10)

where ~f and ~f are dictated by nodal DC voltages and the status of transmission

lines:

~f = [x~

~

] diag{~Lvdcvdc> ~Y>} ≤ f~

~

max, (2.11a)

~f = [x~

~

] diag{ ~Lvdcvdc> ~Y>} ≤ f~

~

max, (2.11b)

and constrained by thermal limits of the line. Additionally, nodal voltages and power

injections of the DC grid should be bounded as follows:

vdc
min ≤ |vdc| ≤ vdc

max, (2.12)

13



pdc
min ≤ pdc ≤ pdc

max. (2.13)

Constraints (2.12)–(2.13) enforce steady-state safety requirements. However, due

to transient effects, voltage limits in (2.12) need to be further restricted based on

variations in load and generation, as well as the computational time delays in between

droop set-point updates. In the following subsection, we formulate complementary

voltage constraints that can further improve operational safety.

2.2.5 MTDC Control Strategy

The generalized VSC voltage-droop characteristic [31] can be written as

αkv
dc
k + βkp

dc
k + γk = 0, ∀k ∈ N , (2.14)

where pdc
k and vdc

k are the DC power and voltage set-points of the VSC at bus k. αk,

βk, and γk denote the corresponding converter’s voltage-droop parameters. In this

chapter, we assume that αk = 1. The voltage-droop slope is

κk , βk =
vdc

maxk
− vdc

mink

pdc
maxk
− pdc

mink

, (2.15)

and additionally, γk = −vdc
k − κkpdc

k .

Equation (2.14) guarantees the optimal operation as long as updating droop set-

points is fast enough compared to power fluctuations. However, due to the limits in

computational speed, this assumption remains valid only if changes in load/generation

are negligible. The unwanted voltage deviation, caused by rapid changes, can be

formulated as

∆vk = κk∆pk, (2.16)

14
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t3 +∆t3. (a) Load/generation profile and DC side voltage variation. (b) Generalized
voltage-droop characteristics.
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where ∆vk = |vdc
k (t1) − vdc

k (t2)| and ∆pk = |pdc
k (t1) − pdc

k (t2)|. We seek to obtain

conservative bounds on changes in DC voltage magnitudes, with the aim of ensuring

smooth transition to the next operating point.

An illustrative example is provided in Figure 2 to highlight the necessity of

this constraint. In Figure 2 (a), the optimizer collects the load profile at time t1.

Optimizing droop set-points requires a computational time, ∆t1. During this time, a

noticeable variation in load/generation, as it happens at time t2, invalidates obtained

droop set-points until the subsequent update (at time t3 + ∆t3). Thus, droop set-

points found at time t1 +∆t1 become harmful for grid operation, particularly within

the interval [t2, t3 +∆t3].

To prevent this issue, one can underpin droop control with additional con-

straints so that the DC voltage remains within the pre-described boundaries. We

offer the following additional voltage constraints, instead of (2.12), to guarantee a

safe operation under limited load/generation volatility:

vdc
kmin

+∆vk = vdc
kmin

+ κk∆pk ≤ vdc
k , (2.17)

vdc
kmax
−∆vk = vdc

kmax
− κk∆pk ≥ vdc

k , (2.18)

where ∆pk denotes the power variation in the DC side. A safe operating region can

be devised such that corresponding voltage constraints allow power variation up to

a specified level. This level can be decided based on the predefined percentage of an

existing power injection, i.e., ∆pk ≤ µkp
dc
k .
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2.3 Topology-cognizant OPF

2.3.1 Formulation of the Optimal Grid Topology

In Section 2.2, we have modeled the operational and physical characteristics of

a VSC-based MTDC grid. Herein, we devise an objective function that minimizes

the total active power loss.

The topology-cognizant OPF can be given as

minimize 1>|N|

(
G>pg −D>pd

)
(2.19a)

subject to real{sac}+ pdc + a+ [b]|iac|+ [c]|iac|2 = 0 (2.19b)

|vac
c | ≤

√
3

2
mvdc (2.19c)

sac = [vac
c ]
(
[z]−1(vac

c − vac
f )
)∗

(2.19d)

pac
min ≤ real{sac} ≤ pac

max (2.19e)

qac
min ≤ imag{sac} ≤ qac

max − [q̄ac]|vac
f | (2.19f)

iac = [z]−1(vac
c − vac

f ) (2.19g)

|iac| ≤ iac
max (2.19h)

G>pg −D>pd =real
{

[vac
f ]
(
[z]−1(vac

f − vac
c )
)∗}

(2.19i)

pg
min ≤ p

g ≤ pg
max (2.19j)

vac
fmin
≤ |vac

f | ≤ vac
fmax

(2.19k)

pdc = ~L> ~f + ~L> ~f (2.19l)

pdc
min ≤ pdc ≤ pdc

max (2.19m)

17



| ~f − diag{~L vdcvdc> ~Y
>}| ≤M(1− x~

~

) (2.19n)

| ~f − diag{ ~L vdcvdc> ~Y
>}| ≤M(1− x~

~

) (2.19o)

| ~f | ≤ [f~

~

max]x~

~

(2.19p)

| ~f | ≤ [f~

~

max]x~

~

(2.19q)

x~

~

min ≤ x~

~

≤ x~

~

max (2.19r)

vdc
min + [κ][µ]pdc ≤ vdc ≤ vdc

max − [κ][µ]pdc (2.19s)

variables vdc,pdc ∈ R|N |; vac
c ,v

ac
f , i

ac, sac ∈ C|N |

pg ∈ R|G| ; ~f , ~f ∈ R|L| ; x~

~

∈ {0, 1}|L|

where vectors qac
min, qac

max, and q̄ac are set such that (2.19f) concludes (2.5). The

topology-cognizant OPF formulation (2.19) suffers from (i) non-convex power bal-

ance and flow equations (2.19d), (2.19i), (2.19n) and (2.19o), (ii) non-convex converter

loss equations (2.19b), and (iii) the existence of binary variables, (2.19r), standing

for the lines’ statuses. The non-convex power flow equations corresponding to binary

variables in (2.11a) and (2.11b) are relaxed using disjunctive inequalities, big-M re-

formulation, to (2.19n) and (2.19o), respectively. The big-M reformulation requires

the determination of a sufficiently large multiplier (the big-M value) to ensure the

equivalency to the original formulation when a transmission line is opened, x~

~

l = 0,

[48, 49]. Nonlinear components, namely, vdcvdc> , |vac
f |, |vac

f |2, |vac
c |2, diag{vac

c v
ac∗

f }

and |iac| can be convexified via conic and parabolic inequalities.
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2.3.2 Formulation of the Lifted Problem

First, we introduce auxiliary variablesW dc ∈ S|N |, φac, tac,wac
cc ,w

ac
ff ∈ R|N |, and

wac
cf ∈ C|N | for nonlinear terms vdcvdc> , |iac|, |iac|2, |vac

c |2, |vac
f |2, and diag{vac

c v
ac∗

f },

respectively. The lifted problem can be formulated as

minimize 1>|N|

(
G>pg−D>pd

)
(2.20a)

subject to real{sac}+ pdc + a+ [b]φac + [c]tac = 0 (2.20b)

0 ≤ wac
cc ≤

3

2
diag{W dc} (2.20c)

sac =
(
[z]−1

)∗
(wac

cc −wac
cf ) (2.20d)

pac
min ≤ real{sac} ≤ pac

max (2.20e)

qac
min ≤ imag{sac} ≤ qac

max − [q̄ac]|vac
f | (2.20f)

tac =[|z|]−2(wac
cc +wac

ff −2real{wac
cf }) (2.20g)

tac ≤ (iac
max)2 (2.20h)

G>pg −D>pd = real
{

[z]−1(wac
ff −wac

cf )∗
}

(2.20i)

pg
min ≤ p

g ≤ pg
max (2.20j)

(vac
fmin

)2 ≤ wac
ff ≤ (vac

fmax
)2 (2.20k)

pdc = ~L> ~f + ~L> ~f (2.20l)

pdc
min ≤ pdc ≤ pdc

max (2.20m)

| ~f − diag{~L W dc ~Y>}| ≤M(1− x~

~

) (2.20n)

| ~f − diag{ ~L W dc ~Y>}| ≤M(1− x~

~

) (2.20o)

| ~f | ≤ [f~

~

max]x~

~

(2.20p)
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| ~f | ≤ [f~

~

max]x~

~

(2.20q)

x~

~

min ≤ x~

~

≤ x~

~

max (2.20r)

vdc
min + [κ][µ]pdc ≤ vdc ≤ vdc

max − [κ][µ]pdc (2.20s)

√
tac = φac = |iac| (2.20t)

√
[~Ldiag

{
W dc

}
] ~Ldiag

{
W dc

}
= diag

{
~LW dc ~L>

}
diag

{
(~L− ~L)W dc(~L− ~L)>

}
=
(
~Lvdc−~Lvdc

)2
diag

{
(~L+ ~L)W dc(~L+ ~L)>

}
=
(
~Lvdc+~Lvdc

)2
diag

{
W dc

}
=
(
vdc
)2

(2.20u)

√
[wac

ff ]wac
cc = |wac

cf |,

wac
ff +wac

cc − 2 real{wac
cf } = |vac

c − vac
f |2,

wac
ff +wac

cc + 2 real{wac
cf } = |vac

c + vac
f |2,

wac
ff +wac

cc − 2 imag{wac
cf } = |vac

c + ivac
f |2,

wac
ff +wac

cc + 2 imag{wac
cf } = |vac

c − ivac
f |2,

wac
ff = |vac

f |2, wac
cc = |vac

c |2, (2.20v)

variables vac
c ,v

ac
f ,w

ac
cc ,w

ac
ff ,w

ac
cf , s

ac, iac ∈ C|N |;

W dc ∈ S|N |; φac, tac,pdc ∈ R|N |; pg ∈ R|G|;

~f , ~f ∈ R|L|; x~

~

∈ {0, 1}|L|
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The non-convexity of (2.19) is circumvented by lifting its nonlinear terms into the

form of (2.20) while preserving the equivalency between the two formulations, with

the help of additional constraints (2.20t)-(2.20v). Herein, (2.20t)-(2.20v) impose

φac = |iac|, tac = |iac|2, W dc = vdcvdc> ,wac
cc = |vac

c |2, wac
ff = |vac

f |2, and wac
cf =

diag{vac
c v

ac∗

f }. The main purpose behind these expressions is that it can be immedi-

ately convexified via transformation of equalities in (2.20t)-(2.20v) to inequalities.

2.3.3 Convex Relaxation

Motivated by [50], a MISOCP formulation can be readily obtained, by relaxing

(2.20t)-(2.20v) into the following conic and parabolic inequalities:

√
tac ≥ φac ≥ |iac| (2.21a)

√
[~Ldiag

{
W dc

}
] ~Ldiag

{
W dc

}
≥ diag

{
~LW dc ~L>

}
diag

{
(~L− ~L)W dc(~L− ~L)>

}
≥ (~Lvdc−~Lvdc)2

diag
{

(~L+ ~L)W dc(~L+ ~L)>
}
≥ (~Lvdc+~Lvdc)2

diag
{
W dc

}
≥ (vdc)2 (2.21b)

√
[wac

ff ]wac
cc ≥ |wac

cf |,

wac
ff +wac

cc − 2 real{wac
cf } ≥ |vac

c − vac
f |2,

wac
ff +wac

cc + 2 real{wac
cf } ≥ |vac

c + vac
f |2,

wac
ff +wac

cc − 2 imag{wac
cf } ≥ |vac

c + ivac
f |2,

wac
ff +wac

cc + 2 imag{wac
cf } ≥ |vac

c − ivac
f |2,

wac
ff ≥ |vac

f |2, wac
cc ≥ |vac

c |2, (2.21c)
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The resulting MISOCP-relaxed topology-cognizant OPF problem (2.20) with relaxed

constraints (2.21a)-(2.21c) is compatible with the state-of-the-art branch-and-bound

solvers which enables the search for binary variables.

2.3.4 Penalization

The convex relaxation given in (2.21a)-(2.21c) may sometimes lead to an inexact

solution with infeasible points for the original nonconvex formulation. In order to

ensure that (2.20t)-(2.20v) are satisfied, we incorporate a penalty function of the

form

ρv̌dc,v̌ac
c ,v̌ac

f ,̌iac(W
dc,vdc,wac

cc ,v
ac
c ,w

ac
ff ,v

ac
f , t

ac, iac) =

ηdc
(
tr
{
W dc

}
− 2(v̌dc)>vdc + ‖v̌dc‖2

2

)
+ (2.22a)

ηac
c

(
1>|N|w

ac
cc − (v̌ac

c )∗vac
c − (vac

c )∗v̌ac
c + ‖v̌ac

c ‖2
2

)
+ (2.22b)

ηac
f

(
1>|N|w

ac
ff − (v̌ac

f )∗vac
f − (vac

f )∗v̌ac
f + ‖v̌ac

f ‖2
2

)
+ (2.22c)

ηac
i

(
1>|N|t

ac − (ǐac)∗iac − (iac)∗ǐac + ‖ǐac‖2
2

)
(2.22d)

into the objective of convex relaxation, where (v̌dc, v̌ac
c , v̌

ac
f , ǐ

ac) ∈ R|N |×R|C|×R|C|×

R|C| can be any arbitrary initial point. As shown in [50, 51], the proper selection

of penalty coefficients ηdc, ηac
c , η

ac
f , η

ac
i ≥ 0 guarantees the recovery of near-optimal

feasible points. In the following section, we show that the simple choice of parameters

v̌dc = v̌ac
c = v̌ac

f = ǐac = 0, (2.23a)

ηdc = 10−4, ηac
i = 10−5, ηac

c = ηac
f = 0, (2.23b)

can reliably solve the original non-convex problem in practice.
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Figure 3: The modified CIGRE B4 DC grid equipped with line switches. DC cable
resistance for +/-400 kv is 0.0095 Ω/km.

2.4 Case Studies

2.4.1 System Setup

The modified CIGRE B4 DC grid benchmark [52], equipped with switches to

open/close transmission lines, is illustrated in Figure 3. This MTDC grid is emulated

in a HIL platform, with two dSPACE DS1202 MicroLabBoxes to implement droop

controllers for individual VSCs, and two Typhoon HIL604 units to emulate transmis-

sion lines and VSCs, as depicted in Figure 4. The TCP/IP link between Typhoon

HIL/MATLAB/dSPACE MicroLabBoxes shares the load, set-point information, and

the status of switching devices at every five second. A PC with 16-core, Xeon pro-

cessor, and 256 GB RAM solves the proposed algorithm using the CVX v2.1 [53],

and the optimization solver GUROBI v8.0.1 [54]. In the following studies, four time

intervals, [0s, 120s], [120s, 220s], [220s, 320s], and [320s, 420s], are considered.

The rated power of each VSC is 1200 MW. Variable loads are attached to bus

1 and bus 4. The bounds on power constraints for AC and DC sides are pdc
mink

=

pac
mink

= −1200 MW and pdc
maxk

= pac
maxk

= 1200 MW for every VSC at bus k ∈ N . The

loss coefficients in (2.1) are ak = 2.65 × 10−5, bk = 3.7 × 10−5, and ck = 3.6 × 10−5
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Controller Implementation
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Real-Time 
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VSC-+
∆

∆
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Voltage
Control

vdc,pdc, xpd

vdc

vdcvdc

pdc

pdc

minimize   1T   ( GTpg - DTpd ) + (22)|   |

Figure 4: Topology-cognizant OPF testbed on a real-time HIL platform has hard-
ware emulation (Typhoon HIL), controller implementation (dSPACE), and TCP/IP
communication link.

for every VSC at bus k ∈ N . The converter constant and nominal apparent power

in (2.5) are mb = 0.6 and |s̄ac| = 1.2 pu, respectively. Phase-reactor parameters in

(2.5) are rk = 2.5 × 10−6 and xk = 4 × 10−4 for every k ∈ N . VSC parameters are

ic
ac
max = 1.0526 and vc

ac
max = 1.05. The maximum modulation factor in (2.2) is m = 1.

The voltage bounds are 0.94 pu (352.7 kV) and 1.06 pu (402.8 kV). The lines are

rated at f~

~

lmax
= 0.3 pu (300 MW) for every l ∈ L. The big-M value in (2.19) and

(2.20) is M = 500. Safety constraint coefficients in (2.20s) are µk=10% and κk=5%

for every VSC at bus k ∈ N . Penalty coefficients in (2.22) are chosen from (2.23). A

solution is regarded feasible when the maximum mismatch between the right and left

sides of inequalities in (2.21a)-(2.21c) is less than 10−6.
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Figure 5: MTDC operation with droop control under varying load: (a) DC side
voltage variation, (b) DC side power variation, and (c) Total power losses.

2.4.2 MTDC Grid Operation with Static OPF

Static OPF refers to the problem (2.20) with a connected grid, x~

~

lmin
=x~

~

lmax =1

for every l ∈ L. If OPF results do not update the set-points of the local droop

controller, they arrive at a feasible operating condition shown in Figure 5. The

primary aim of a local controller is to maintain stable operation of a VSC in meeting

the load demand as well as voltage-power tracking. Optimal operation of the MTDC

grid cannot be accomplished with the local controllers alone and requires upper-level

optimizer to reduce the total loss. The total loss obtained via local controllers and

static OPF, Figure 6, are given in Table 1. With the implementation of the static

OPF result, around 10% reduction in loss is reported compared to results obtained
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Figure 6: MTDC operation with static OPF under varying load: (a) DC side voltage
variation, (b) DC side power variation, and (c) Total power losses.

via local droop controllers alone. The average computation time to solve the static

OPF and update droop set-points is 1.4 s.

2.4.3 MTDC Grid Operation with Topology-cognizant OPF

The formulation (2.20), with and without the constraints in (2.20s), finds the op-

timal grid topology with the goal of reducing the total loss. The outcome of topology-

cognizant OPF problem without voltage safety limits in (2.20s) further reduces the to-

tal loss by 4.79%, 13.54%, 12.80%, and 12.00% for the four time intervals as compared

to the static OPF scenarios. Based on the outcome of (2.20) (except (2.20s)), x~

~

2−3 is

always disconnected, while x~

~

1−4 is disconnected only during [0s, 120s] time interval.

Even though the total loss is further reduced, the voltage safety limits are violated at
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Table 1: Total Losses with different Approaches (MW)

Method

Time interval (s)
0-120 120-220 220-320 320-420

Local droop controller 4.40 8.00 6.50 9.00

Static OPF 3.97 7.16 5.86 8.08

Topology-cognizant OPF
without the safety constraints 3.78 6.19 5.11 7.11
(2.20) without (2.20s)
Topology-cognizant OPF
with the safety constraints 3.80 6.22 5.14 7.13
(2.20) with (2.20s)

bus 5 due to load fluctuations and the computation time involved in updating droop

set-points, see Figure 7 (a). Additional safety constraints in (2.20s) mitigate any

voltage violation in response to power fluctuations in between two droop set-points

updates as shown in Figure 8 (a). This safer operation comes with a slightly higher

total loss compared to the case ignoring (2.20s); Nevertheless, it still offers remark-

able reduction in total loss as compared to the static OPF. The total loss obtained by

the topology-cognizant OPF with and without the constraints in (2.20s) are given in

Table 1. Total losses for different loading profiles are about 0.42%, 0.57%, 0.52%, and

0.65% of the total load demand for the four time intervals, respectively. The converter

losses obtained from convex relaxation approach are about 7.31%, 4.71%, 5.65%, and

4.18% of the total loss in corresponding intervals. Updating droop set-points, that

are sent to VSCs every five second, takes around 2.5 s.

2.4.4 Deployment on Larger Networks

The proposed algorithm in (2.20) is applied to several modified IEEE bench-

marks of various sizes. First, we study the static OPF problem, where x~

~

lmin
=x~

~

lmax =1
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Figure 7: MTDC operation with topology-cognizant OPF disregarding voltage safety
constraints in (2.20s). The variations in load/generation have DC voltage at bus 5
violate the safety limit: (a) DC side voltage variation (dotted line shows the safety
limit, vdc

max = 402.8 kV), (b) DC side power variation, and (c) Total power losses.

for every l ∈ L, for IEEE 14, 30, and 57-bus benchmarks, that have been modified

to MTDC networks by adding VSCs to every bus and switches to every transmission

line, and making these lines resistive. Total losses obtained are 0.00550 pu, 0.00860

pu, and 0.02030 pu, respectively. The computation times are roughly 1.59, 3.92, and

10.21 s, respectively. We then study the topology-cognizant problem where, for the

modified IEEE 14, 30, and 57-bus benchmarks, 4 out of 20, 13 out of 41, and 14 out of

80 transmission lines are disconnected, respectively. The total losses, respectively, are

reduced to 0.00538 pu, 0.00813 pu, and 0.0168 pu, which are 2.18%, 5.46%, 17.24%

less compared to those acquired using the static OPF. The status of transmission
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Figure 8: MTDC operation with topology-cognizant OPF considering the voltage
safety constraints in (2.20s): (a) DC side voltage variation (dotted line shows the
safety limit, vdc

max = 402.8 kV), (b) DC side power variation, and (c) Total power
losses.

lines, voltage and power levels at each bus for the modified IEEE 14, 30, and 57-bus

benchmarks take 18, 42, and 136s, respectively, on average, to be determined.

2.5 Summary

This chapter offers a convex optimization framework to solve the grid topology-

cognizant OPF problem for MTDC grids. It provides local voltage and power set-

points for droop controllers of VSCs as well as the operational status of transmission

lines. Additional constraints, that sustain safe operation in response to the power

fluctuation in between two droop updates, are integrated into the proposed formula-

tion. The resulting formulation has computational difficulties due to the non-convex
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power balance, flow and converter loss equations as well as the inclusion of binary

decision variables. Convex relaxation methods are utilized to transform this problem

into a tractable model so that it can be executed with off-the-shelf solvers. Experi-

mental and numerical results validate the practicability and efficacy of the proposed

approach.
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CHAPTER 3

OBSERVATION OF STATE AND TOPOLOGY IN DC NETWORKS

Direct current (DC) networks are gaining prominence with the increasing pen-

etration of DC loads, storages, and sources, since they offer improved efficiency in

conversion/distribution over alternating current (AC) networks. For static distribu-

tion topologies, estimation techniques can extract the system state to be used in

network analysis, control, optimization, or diagnostic under normal, emergency, or

restorative operations [55]. The most recent topology information is needed to mean-

ingfully carry out the state estimation process; any error or misconfiguration in the

assumed topology could result in inappropriate control decisions [56, 57]. Incorporat-

ing statuses of the lines, that collectively describe the overall network topology, into

the state estimation process is challenging as they introduce binary variables [58, 59].

Moreover, converter-populated DC networks might employ fewer sensors due to cost,

security, or privacy concerns, leading to low-observability conditions.

The state estimation process is conventionally expressed as a nonlinear least-

squares problem [9]. The weighted least-squares (WLS) estimation criterion has been

employed in practice to filter out Gaussian measurement noise with certain statistical

properties [10, 11]. As WLS is susceptible to gross measurement errors, other gross

error detection and identification methods have been proposed to perform accurate

state estimation [12, 13, 14, 15, 11]. Given their non-convex problem formulation,

the Gauss-Newton algorithm is sensitive to the initial points, and might converge to

local minima [16]. Convex relaxation methods can either directly solve the estimation

problem [17] or provide an initial guess for the Newton’s method [18]. Convergence
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guarantees for the estimation process using convex relaxation techniques are given in

[19]. With measurement redundancy, incorporating penalty terms in the formulation

of the objective function can help cleansing noise and bad data [20, 21, 22]. These

techniques, however, assume a fixed network topology.

Topology identification is either a prerequisite to the estimation process, or

should be considered concurrently. The combined problem can be handled using a

Gauss-Newton, e.g., generalized state estimation (GSE) [58], or convex relaxation

methods[59]. Inverse power flow formulation can describe the network topology

through a nodal admittance matrix[60]. These studies usually assume imperfect but

highly-redundant measurement. Low-observability condition refers to the sparse sen-

sor that results in an under-determined system. With proper placement, fewer sensors

might be needed to observe the network [61, 62]. [63] finds the required minimal set

of measurement so that an unobservable network can become observable. Alternative

non-iterative numerical solutions are proposed in [64, 65]. However, even an observ-

able network may temporarily become unobservable due to topological changes or

failure in the communication. The sensor placement procedures, considering topol-

ogy changes or communication failures, are developed in [66, 67, 68]. Additional

sensors placement [69] or pseudo measurements from existing sensors data [70] come

with an additional cost, computational burden, or estimation errors [71].

The matrix completion method, that offers a solution to an under-determined

system, has been applied to distribution networks with poor sensors installation [72,

73]. While the joint state estimation and topology identification problem has been

studied for AC networks [59], its solution has not yet been elaborated under low-

observability conditions [74, 75, 76, 71, 77]. Moreover, state estimation and topology

identification of DC networks are rare in the literature [78, 79, 80], and have not even

considered the observability conditions.
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We leverage the physical properties of DC networks to develop a joint estimation

and topology identification algorithm using a limited number of measurement. We

formulate this as a non-convex mixed-binary problem, develop a non-convex nuclear

norm estimator, and address this non-convexity by using two inertia terms. The

presence of zero injection buses (i.e., a bus with no load or converter) is used to

strengthen the convex relaxation and decrease the number of required sensors. The

resulting formulation does not rely on prior knowledge of unmonitored line-statuses,

current, or power flow measurements that could infer topology information. The

devised convex optimization framework is robustified against noise by upgrading to a

penalized convex program. This formulation is in a generic form, and can be solved

with various numerical solvers.

The rest of this chapter has the following organization: Section 3.1 discusses the

preliminaries. Section 3.2 presents the joint state estimation and topology identifi-

cation problem for noiseless measurements. This non-convex problem is transformed

into convex surrogate using two inertia terms and, then, extended to accommodate

noisy measurements. In Section 3.3, the resulting state estimation and topology

identification solution is verified through numerical and experimental benchmarks.

Section 3.4 finalizes the chapter.

3.1 Notations and Terminologies

3.1.1 Notations

Throughout this chapter, bold uppercase (A) and lowercase letters (a) refer

to the matrices and vectors, respectively. The symbols 1n and 0n represent n × 1

vectors of ones and zeros, respectively. 0n×m refers to a zero matrix of size n × m.

In×n indicates an identity matrix of size n× n. The symbol R defines the sets of real
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numbers. The entries of a matrix are presented by indices (i, j). (·)> indicates the

transpose of a matrix. | · | refers the cardinality of a set or the absolute value of a

vector/scalar. Tr(·) shows to the trace of a matrix. ‖ · ‖2 stands for the euclidean

norm of its argument vector. ‖·‖∗ represents the nuclear norm of its argument matrix.

A vector composed from diagonal entries of a matrix is shown by diag{·}. X � 0

indicates a positive semi-definite matrix.

3.1.2 Terminologies

On a DC network, distribution lines are resistive and DC-DC power electronics

converters interface energy resources to the distribution network as demonstrated in

Figure 9. DC network can be articulated using a directed graph, H = (N ,L) with N

and L sets, respectively, representing buses and lines. Every bus can accommodate a

DC-DC converter, a resistive load, and/or a constant power load.

Define the pair ~L, ~L ∈ {0, 1}|L|×|N |, respectively, as the from and to line inci-

dence matrices. ~Ll,i = 1 if the line l starts at bus i. ~Ll,i = 1 implies that the line l

ends at bus i. The conductance of a line l ∈ L is gl, with g ∈ R|L| as the line conduc-

tance vector. G ∈ R|N |×|N | is the bus conductance matrix. ~G and ~G ∈ R|L|×|N | are,

respectively, the from and to line conductance matrices.

Let n define the number of buses, i.e., n = |N |. v =[v1, v2, ..., vn]> is the vector

of voltages with vk ∈ R as the voltage at bus k ∈ N . Let ik ∈ R refer to the current-

injection at bus k ∈ N , while i = [i1, i2, ..., in]> is the corresponding vector. Given

a line l ∈ L, there are two current signals, ~ıl ∈ R and ~ıl ∈ R, entering the line via

its from and to ends, respectively. ~ı = [~ı1,~ı2, ...,~ı|L|]
> and ~ı = [ ~ı1, ~ı2, ..., ~ı|L|]

> are the

vectors of corresponding composites. We assume there is no interlinking converter in

the network; hence ~ı = − ~ı. v̂k, ı̂k, and x̂l denote the measured voltage as well as the

current-injection at bus k ∈ N , and the status of line l ∈ L, respectively. vk and

35



1 2

3

Figure 9: Three bus DC distribution network is equipped with sensors at buses 1 and
2 and the line between buses 1-3 to collect data (v̂1, x̂2, ı̂1, ı̂2). Optimizer jointly per-
forms state estimation and topology identification using these limited measurements,
and infers unknown voltage, v2, v3, and statuses of the lines, x1, x3.

xl refer to the estimated voltage at bus k ∈ N , and the identified status of the line

l ∈ L, respectively.

3.2 Joint State Estimation and Topology Identification

3.2.1 Problem Formulation

We will exploit the power flow equations of a DC network to express this prob-

lem as a constrained minimization program. The available measurements are: (i)

voltage values at some of the randomly-chosen buses, (ii) current-injection values at

some of the randomly-chosen buses, and (iii) some of the line statuses. The Ohm’s law

dictates that the current flow from both sides of each line, and the current-injection

at each bus, can be respectively represented as

~ı = diag{ ~G v x>}, ~ı = −~ı, (3.1)

i = ~L> ~ı+ ~L> ~ı. (3.2)

36



Note that (3.1) and (3.2) hold true unless there is an interlinking converter on

the line.

The state estimation and topology identification algorithm simultaneously finds

the voltage vector, v, and the line-status vector, x, while satisfying all the measure-

ment equations

find v ∈ R|N |,x ∈ R|L| (3.3a)

subject to vk = v̂k ∀k∈Sv (3.3b)

e>k diag{Gvx>} = ı̂k ∀k∈Si (3.3c)

xlb ≤ x ≤ xub (3.3d)

x ∈ {0, 1}|L| (3.3e)

where {e1, ..., eN} are the basis vectors in Rn. Here, measurement equations refer to

the nonlinear relations between sensor outputs and state variables as in (3.3c). For

xlb and xub, the conditional expressions can be given as

xl
lb =xl

ub =1, if line l∈L is known to be connected,

xl
lb =xl

ub =0, if line l∈L is known to be disconnected,

xl
lb =0, xl

ub =1, if the status of line l is undetermined.

Here, xl
lb and xl

ub refer to the lower and upper bound of line statuses.

Equation (3.3b) enforces the voltage value to be equal to the sensor measure-

ment if the corresponding bus is equipped with a voltage sensor (i.e., a monitored bus).

vk and v̂k denote voltage values to be estimated and to be measured for every bus
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k ∈ Sv, respectively. Sv denotes the set of voltage measurements. Equality constraint

(3.3c) aims to find the voltage value and line status that fit the corresponding input

value, ı̂k, from a set of current-injection measurements, Si. Problem (3.3) is non-

convex because of vector multiplication in vx> and the binary variables accounting

for the statuses of the lines. Next, we offer a convex reformulation alternative.

3.2.2 Convexification of the Problem Formulation

We introduce the following convex optimization problem using the auxiliary

variable A accounting for vx>

minimize
A∈R|N|×|L|
v∈R|N|
x∈R|L|

‖M
1
2(A−vx>)N

1
2‖∗+‖v−v0‖2

M +‖x−x0‖2
N (3.4a)

subject to vk = v̂k ∀k∈Sv (3.4b)

e>k diag{GA} = ı̂k ∀k∈Si (3.4c)

e>kA = v̂kx
> ∀k∈Sv (3.4d)

Ad>l = vx̂l ∀l∈Sx (3.4e)

xlb ≤ x ≤ xub (3.4f)

v (xlb)> ≤ A ≤ v (xub)> (3.4g)

where M � 0 and N � 0 are arbitrary basis matrices to be designed later.

{d1, ...,dL} are the standard basis vectors in R|L|. v0 and x0 are the initial guesses

for the elements of the voltage and the line-status vectors. They are chosen as the

nominal voltage value, 1 per-unit and 1n, respectively, to satisfy flat start operating

conditions and imply a fully-connected network.
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Notice that the bi-linear term vx> in (3.3c) is replaced by A in (3.4c) and,

therefore, we are dealing with a linear constraint. The nuclear norm term, ‖A−vx>‖∗,

implicitly imposes the non-convex equality A , vx> by penalizing the difference.

Proposition 1. Let v∗ and x∗ be the solution to (3.3), and define A∗ , v∗x∗>.

The constraints in (3.4d), (3.4e), and (3.4g) are valid for A, v, and x>.

Proof. Consider arbitrary voltage and line-status vectors v and x, respectively. Let

v∗ and x∗ be the solutions to (3.3), when voltage and current-injection measurements

are chosen from the sets Sv and Si, respectively. Constraint (3.4d) becomes

e>kA
∗ = e>k v

∗x> = vkx
> ∀k∈Sv. (3.5)

This implies that the constraint (3.4d) holds for any given k ∈ N . For every l ∈ L,

(3.4e) leads to the following equality

A∗d>l = v∗x>d>l = vxl ∀l∈Sx, (3.6)

where it shows that vxl becomes equivalent to (3.4e). Similarly, for every k ∈ N and

l ∈ L, (3.4g) becomes

xl
lb ≤ xl

∗ ≤ xl
ub, (3.7a)

⇒ vk
∗xl

lb ≤ vk
∗xl
∗ ≤ vk

∗xl
ub, (3.7b)

⇒ vk
∗xl

lb ≤ Akl
∗ ≤ vk

∗xl
ub. (3.7c)

Note that (3.4g), (3.7b), and (3.7c) are equivalent. Equations (3.5), (3.6), and (3.7)

complete the proof for the valid inequalities in (3.4).
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Remark 1. Observe that the nuclear norm term in (3.4a), ‖A−vx>‖∗ is non-convex.

The inertia terms ‖v−v0‖2
M and‖x−x0‖2

N are added to convexify the overall objective

function. This is formally stated by the following theorem.

Remark 2. The presence of matrices M and N indicates that the choice of basis

can be arbitrary. We will demonstrate how M and N can boost the convergence rate

of the proposed approach. A penalty term induced by a physical quantity, such as loss,

can help address the non-convexity.

Theorem 1. The function f : Rn×l × Rn × Rl → R, defined as

f(A,v,x),‖M
1
2 (A−vx>)N

1
2 ‖∗ + ‖v − v0‖2M + ‖x− x0‖2N , (3.8)

is convex.

Proof. Define new variables B ,M
1
2AN

1
2 , s ,M

1
2v, and r ,N

1
2x. It suffices to

show that the following function is convex:

g(B, s, r) , ‖B − sr>‖∗ + ‖s‖2
2 + ‖r‖2

2. (3.9)

According to triangle inequality we have:

g(Λ,ν, ξ)− θg(B1, s1, r1)− (1− θ)g(B2, s2, r2) ≤ 0, (3.10)

where Λ, ν, and ξ are

Λ = θB1 + (1− θ)B2, (3.11a)

ν = θs1 + (1− θ)s2, (3.11b)

ξ = θr1 + (1− θ)r2. (3.11c)
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The inequality in (3.10) can be expanded as

‖Λ−[ν][ξ]>‖∗−θ‖B1−s1r
>
1 ‖∗−(1− θ)‖B2 − s2r

>
2 ‖∗

≤‖θs1r
>
1 + (1− θ)s2r

>
2 − [ν][ξ]>‖∗

=θ(1− θ)‖s1 − s2‖2‖r1 − r2‖2. (3.12)

Further simplification of (3.12) leads to

‖ν‖2
2+‖ξ‖2

2 − θ(‖s1‖2
2+‖r1‖2

2)−(1−θ)(‖s2‖2
2 + ‖r2‖2

2)

= − θ(1− θ)[‖s1 − s2‖2
2 + ‖r1 − r2‖2

2], (3.13)

which completes the proof of Theorem 1.

3.2.3 The Choice of Basis Matrices

The original problem in (3.3) has been expressed as a convex optimization

problem (3.4) with basis matrices M and N . These basis matrices should be chosen

properly such that the solution to (3.4) satisfies the problem in (3.3). Inspired by

[22], matrix M is chosen to represent the network’s total power loss.

Power flow on a line l ∈ L can be calculated for the two neighboring buses

(i, j) ∈ N as

~pl = vi(vi − vj)glxl, (3.14a)

~pl = vj(vj − vi)glxl, (3.14b)
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where ~pl and ~pl denote the power flow from the starting and ending sides of each line

l ∈ L. Power loss on a line is

~pl + ~pl = vi(vi − vj)glxl + vj(vj − vi)glxl (3.15a)

= (vi
2 − vivj + vj

2 − vivj)glxl (3.15b)

= (vi
2 + vj

2 − 2vivj)glxl (3.15c)

= (vi − vj)(glxl)(vi − vj)>. (3.15d)

The total power loss is the sum of power flows entering the lines through their

starting and ending buses as

~p = diag{~L v v> ~G>}, ~p = diag{ ~L v v> ~G>} (3.16a)∑
(~p+ ~p) =Tr(v v>( ~G> ~L+ ~G> ~L)) (3.16b)

= v> ( ~G> ~L+ ~G> ~L) v. (3.16c)

Using (3.16c), we can chose M as

M = ( ~G> ~L+ ~G> ~L). (3.17)

Notice that if M is chosen as in (3.17), which is actually equal to the con-

ductance matrix G, loss minimization will be indirectly embedded in the objective

function (3.4a) with a proper choice of N . N = Il×l implicitly penalizes the power

loss over all the lines as given in (3.15).
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3.2.4 Strengthening the Convex Relaxation

Power networks usually have intermediate buses (or hidden nodes [60]) that do

not demand/supply power or current with any external source or load, e.g., see bus

3 in Figure 9. These intermediate buses are referred to as zero injection buses [81].

We exploit their presence to define a number of valid inequality and strengthen the

convex relaxation in (3.4).

Definition 1. A bus k ∈ N is regarded as a zero injection bus if both power and

current injections at bus k are zero, i.e.,if no load or source is located at the bus [22].

The set of zero injection buses are presented by Z.

Define v∗ and x∗ be the solutions to the original problem (3.3). Then,

e>k diag{Gv∗x∗>} = 0n (3.18)

holds for every k ∈ Z, where n = |Z|.

For zero injection buses, the sum of the currents absorbed from the distribution

network is equal to the sum of the currents they supply to the distribution network.

This feature can be expressed as

e>k diag{Gv∗x∗>} =

|K|∑
l=1

d>l (~L diag{ ~Gv∗x∗>}+ ~L diag{ ~Gv∗x∗>}), (3.19)

where K is the set of neighbor buses of the zero injection bus k. The following

formulation can be inferred from (3.19)

|K|∑
l=1

d>l (~L diag{ ~Gv∗x∗>}) =
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−
|K|∑
l=1

d>l ( ~L diag{ ~Gv∗x∗>}), (3.20)

concluding that (3.18) is valid for any k ∈ Z.

According to (3.20), the set of additional constraints

e>k diag{GA} = 0n (3.21)

can be added in (3.4) to strengthen its relaxation.

3.2.5 Joint Observation in the Presence of Noisy Measurements

The convex problem (3.4) can become infeasible, or result in a poor approxi-

mate, if available measurements become noisy. In this case, solving the state estima-

tion problem requires tackling two concerns: (i) how to address non-linear relation

between sensor measurements and state variables, (ii) how to address corrupted sen-

sor measurements. We introduce auxiliary variables vg, ig ∈ R|N |, ~ig, ~ig ∈ R|L|

and vs, is ∈ R|N |, ~is, ~is ∈ R|L| to handle measurement noise where they account

for Gaussian and sparse noise estimations, respectively. New variables u ∈ R|N | and

S ∈ R|N |×|L| account for the vg2
and vsx>, respectively. Unknown measurement noise

can be estimated by incorporating these auxiliary variables as convex regularization

terms into the objective function (3.4a). The joint state estimation and topology

identification problem, that is robust to noisy and entirely corrupted measurements,

can be formulated as
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minimize
A∈R|N|×|L|
S∈R|N|×|L|
ig,is∈R|N|
u,v,vg,vs∈R|N|
x,~ig,~is, ~ig, ~is∈R|L|

‖M
1
2(A−vx>)N

1
2‖∗+‖v−v0‖2

M +‖x−x0‖2
N

+ µ1(1>u) + µ2||ig||22 + µ3||vs||22

+ µ4||is||22 + µ5||S||∗ (3.22a)

+ µ6||~ig||22 + µ7||~is||22

+ µ8|| ~ig||22 + µ9|| ~is||22

subject to vk = v̂k − vgk − v
s
k ∀k∈Sv (3.22b)

e>k diag{GA} = ı̂k − igk − i
s
k ∀k∈Si (3.22c)

dldiag{ ~GA} = ~̂ık −~igk −~i
s
k ∀l∈S~ı (3.22d)

dldiag{ ~GA} = ~ı̂k − ~igk − ~isk ∀l∈S ~ı (3.22e)

A d>l = v x̂l ∀l∈Sx (3.22f)

S d>l = vs x̂l ∀l∈Sx (3.22g)

xlb ≤ x ≤ xub (3.22h)

v (xlb)> ≤ A ≤ v (xub)> (3.22i)

vs (xlb)> ≤ S ≤ vs (xub)> (3.22j)

vgk
2 ≤ uk ∀k∈Sv (3.22k)

 xl v̂kxl − Akl − Skl

v̂kxl − Akl − Skl uk

 � 0 ∀k∈Sv, ∀l∈L(3.22l)
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where µn ≥ 0 are pre-selected coefficients for every n = {1, 2, ...9} that balance the

data fitting cost µ1(1>u)+µ2||ig||22+µ3||vs||22+µ4||is||22+µ5||S||∗+µ6||~ig||22+µ7||~is||22+

µ8|| ~ig||22 + µ9|| ~is||22 with the remaining elements of the objective function in (3.22a).

S~ı and S ~ı denote the set of current flow measurements from both sides of each line.

The objective function (3.4a) aims to handle the non-linearity of the measurement

equation, while the convex regularization term added in (3.22a) deals with the noisy

and corrupted measurements.

Proposition 2. Let v∗, x∗, vg∗, ig
∗
, ~ig

∗
, ~ig

∗
, vs∗, is

∗
, ~is

∗
, ~is

∗
, and u∗ be the

ground-truth values for the original problem (3.3). Let u∗ , vg∗2
, S∗ , vsx>,

and A∗ , v∗x∗>. Then, the constraint (3.22l) is satisfied.

Proof. Since v∗k and x∗l are positive, one can write

A∗kl = v∗kx
∗
l ⇔ A∗kl = (v̂k − vg

∗

k − v
s∗

k )x∗l (3.23a)

⇒ v̂kx
∗
l − A∗kl = (vg

∗

k + vs
∗

k )x∗l

⇒ v̂kx
∗
l − A∗kl − S∗kl = vg

∗

k x
∗
l

⇔ (v̂kx
∗
l − A∗kl − S∗kl)2 = (vg

∗

k )
2
xl
∗2 (3.23b)

⇒ (v̂kx
∗
l − A∗kl − S∗kl)2 = u∗kx

∗
l or 0

⇔ (v̂kx
∗
l − A∗kl − S∗kl)2 ≤ u∗kx

∗
l or 0 (3.23c)

As seen, (3.23) is equivalent to (3.22l) under the proposition 2. This completes

the proof.

If pre-selected coefficients are chosen as µn = 0, the objective function (3.22a)

is reduced to the objective function (3.4a), which can only contrive the non-convexity

of the measurement equations in noiseless scenarios. If µn = +∞, then the objective
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function (3.22a) prioritizes estimating the unknown noise values while ignoring the

remaining elements.

Remark 3. If the relaxation is exact, then we have A∗ = v∗x∗>, in which case the

solver only minimizes the error values, µ1(1>u) + µ2||ig||22 + µ3||vs||22 + µ4||is||22 +

µ5||S||∗ + µ6||~ig||22 + µ7||~is||22 + µ8|| ~ig||22 + µ9|| ~is||22, within the space of zero residual

points (i.e., the set of all points that satisfy A = vx>). Observe that A = vx> cannot

be imposed as a constraint due to its non-convexity. This is the motivation behind

incorporating its surrogate into the objective. However, this surrogate will ultimately

serve as a hard constraint.

The goal of (3.22) is to determine an approximate solution for the state estima-

tion problem in the presence of noisy measurements without increasing the number

of available sensor, or for the joint state estimation and topology identification prob-

lem despite noisy and entirely corrupted measurements with the help of additional

set of measurements. It should be noted that corrupted measurements can make the

network unobservable, and the number of available sensors should be relatively high

(i.e., Θ ≥ 4Υ -4, where Θ and Υ denote the total number of available sensors and the

state variables to be found, respectively) for a robust estimation [10]. If one considers

a joint state estimation and topology identification problem in the presence of noise

and severely corrupted measurements, the number of unknown parameters could grow

beyond the number of possible measurements. This makes the problem unsolvable

due to information-theoretic limitations [10].

3.3 Case Studies

In the following, standard IEEE AC benchmarks are transformed into DC

benchmarks by substituting AC generators with DC sources coupled with buck con-

verters, and having distribution lines purely resistive. While the standardization of
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future DC networks is under development, IEEE [82], European standard ETSI [83],

EMerge Alliance [84], and IEC SG4 [85] have suggested 380V DC as a suitable rated

voltage level for distribution systems. Herein, the DC distribution line parameters

are adjusted according to the rated voltage level [86, 87]. All lines are equipped with

switches to control the network topology. If monitored, a bus is equipped with a

sensor to measure voltage and/or a sensor to measure current injection. Monitored

lines refer to the lines with a sensor. The optimization problem is run using the conic

interior-point solver, MOSEK [88], in the CVX [53] optimization package.

3.3.1 Numerical Studies

The joint state estimation and topology identification problem is examined for

the modified IEEE 9-bus [89], 14-bus [90], and 30-bus systems [91] when measure-

ments are assumed noiseless. We compare our method in (3.4), using proper basis

M and N values in (3.17) and the set of additional constraints in (3.21), with the

conventional GSE method [58]. Herein, the total number of sensors is initially de-

termined such that the jacobian matrix of estimation equations [58] is surely not full

rank while initial configuration of sensors is randomly chosen. Then, the number of

sensors is gradually increasing to observe the performances of both proposed method

and the method in [58] for varying numbers and locations of sensors.

For a specified number of sensors, the sensors are randomly deployed. This

configuration is simulated for a time horizon with 100 steps while random changes in

voltage levels and an arbitrary line removal happen at every time-step and every fifth

time-step, respectively. Afterward, the sensor configuration is randomly rearranged

without increasing the number of sensors, and then the simulation is run again. To

provide more reliable statistical results, for a given number of sensors, this process

is repeated 250 times. Each approach has a flat start with 10−6 as the mismatch
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threshold to conclude a successful run. The success rate percentage is computed as

νi = 1
c

∑c
1
hic−f ic
hic
×100, where hic, and f ic , are the number of steps in a horizon, and the

number of steps failed to satisfy the mismatch threshold in a horizon, respectively. c,

and i denote the number of random attempts for sensor reconfiguration, and the total

number of sensors, respectively. In this study, hic = 100 for every c ∈ {1, 2, ...250}.

It should be noted that the network observability is ascertained by both the

location of sensors and its total number. The success of the GSE method hinges on a

full observability condition that would require highly-redundant sensor allocation. As

seen in Figures 10 (a)-(c), the proposed method significantly outperforms the GSE

approach.

3.3.2 Experimental Studies

In the modified 14-bus system, the input voltage of DC-DC buck converters is

500 V, while the distribution network is rated for 380 V. The ratings of the power

converters located at buses 1, 2, 3, 6, and 8 are 150 kW, 50 kW, 100 kW, 100 kW,

and 50 kW, respectively. Sample consumption trajectories for the six out of eleven

loads are given in Figure 12. The consumption profiles intentionally mimic a 24-hour

load pattern, and are generated using poisson distribution. This distribution assumes

that the sudden load changes occur randomly with the probability mass function,

P (k) = e−λ
λk

k! . Here, k and λ denote the type and average number of load changes.

The voltage sensors are placed on the buses with a power converter. The current

injection values are measured for buses (N \ Z) that are not zero-injection buses. It

should be observed that bus 7 and bus 14 of the IEEE-14 bus system are zero injection

buses. The statuses of ten lines are monitored as illustrated in Figure 11. The internal

droop mechanism of power converters regulate their output voltage in response to

output power variations due to the changes in the load profile or network topology.
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Figure 10: Comparative convergence rates of proposed and generalized state estima-
tion methods for the IEEE (a) 9-bus, (b) 14-bus, and (c) 30 bus systems.

HIL platform with a dSPACE DS1202 MicroLabBox to perform droop controllers for

each converters, and a Typhoon HIL604 unit to emulate power converters and the

distribution network is used to emulate this network. The proposed optimization

algorithm runs on a PC with 16-core, Xeon processor and 256 GB RAM.

3.3.2.1 Noiseless measurements

We consider a time horizon, where the statuses of unmonitored lines change

randomly and load profiles are dynamic. The proposed formulation in (3.4), with
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controller implementation (dSPACE), real-time hardware emulation (Typhoon HIL),
and TCP/IP communication link for data transfer.

M = G, N = Il×l, and the set of additional constraints in (3.21), finds states and

topology configurations every five seconds. Figure 14 shows the recovered (v) and the

ground-truth (ṽ) voltage values for the unmonitored buses. Figure 15 presents the

recovered (x) and the ground-truth (x̃) values for the statuses of unmonitored lines in

response to the removal of an arbitrary line. It is observed that the maximum errors

in terms of percentage for recovered voltage values and statuses of lines are always less

than 10−6. Consequently, the proposed method yields a very good pursuit of ground-

truth values for voltages and statuses of the lines when measurements are assumed

noiseless. So far, we haven’t used any penalty term or tuning parameter in the convex

program (3.4). The average time for finding states and topology configurations is

2.208 s.
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Figure 14: Estimated (vk), and ground-truth (ṽk) voltage values for unmonitored
buses.
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3.3.2.2 Noisy measurements

In this section, we verify that proposed algorithm is capable of finding an ap-

proximate solution in the presence of noisy measurements. All the voltage and current

measurements are assumed corrupted by zero-mean Gaussian noises with 1% stan-

dard deviation of the corresponding noiseless value. The proposed formulation in

(3.22), with M = G and N = Il×l, finds system states every five seconds. Root-

mean-square error (RMSE) is considered to assess the estimated voltages v under the

zero-mean Gaussian noise that has 1% standard deviation for all the measurements.

The RMSE of the v is formalized as ψ(v) := ‖v − ṽ‖2/‖ṽ‖2
2. The pre-selected co-

efficients in (3.22), that balance the data fitting cost, are set to µ1 = µ2 = 102 and
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µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = µ9 = 1. It should be observed that the coefficients for

the current flow measurements, µ6, µ7, µ8, and µ9, are redundant since S~ı = S ~ı = ∅.

3.3.2.2.1 State estimation Herein, we demonstrate an approximate solution

in the case measurements are noisy, and the number of available sensors remains the

same. The network topology is assumed to be either static or completely monitored

due to existing noisy measurements that do not allow both state estimation and

topology identification simultaneously with the same number and configuration of

sensors as they are in Section 3.3.2.1. We consider a time horizon with a dynamic

load profile and a fully-monitored network topology. The RMSE of the estimated

voltages for the buses with sensors, i.e., ψ(vk) := ‖vk − ṽk‖2/‖ṽk‖2
2 for every k ∈ Sv,

shown in Figure 16 demonstrates that an approximate solution is recoverable with

99.95% accuracy. It is observed that the maximum RMSE values for buses with

and without sensors are 0.024% and 0.001%, respectively. Moreover, the maximum

voltage errors, in terms of percentage for buses with and without sensors, are 0.011%

and 0.0002%, respectively. Figure 17 depicts the corrupted (v̂), recovered (v), and the

ground-truth (ṽ) voltage values where bus measurements are corrupted by 1%. The

proposed method yields a very close pursuit of ground-truth voltage values when all

the voltage and current measurements are subject to noise. Determination of states

in the presence of noisy measurements takes 2.648 s on average.

3.3.2.2.2 State estimation and topology identification We aim to show

an approximate solution for the joint state estimation and topology identification

problem with the help of additional voltage measurements. We assume measurement

of voltage values are available from all the buses while rest of the measurements and

their configurations remain the same as they are in Section 3.3.2.1. The experiment
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Figure 16: The performance of (3.22) to estimate the vector of voltages in the case
where the goal is to solve the state estimation problem in the presence of noisy
measurements without increasing the number of available sensors.

time horizon is considered with a random change in the statuses of unmonitored

lines and dynamic load profiles. The RMSE of the estimated voltages shown in

Figure 18 demonstrates that an approximate solution is recoverable with more than

99.4% accuracy. It is observed that the maximum RMSE value for the estimated

voltages is 0.543%. The maximum percentage errors for recovered voltage values and

statuses of lines are less than 0.098% and 10−6, respectively. Figure 19 shows the

corrupted (v̂), recovered (v), and the ground-truth (ṽ) voltage values for some of

the selected buses. The proposed method also yields a very good pursuit of ground-

truth values for line statuses same as the results shown in Figures 15 or 22. The

average time needed to find states and topology configurations in the presence of

noisy measurements is 3.617 s.

3.3.2.3 Severely corrupted measurements

Herein, we aim to show that the proposed method, with the help of additional

set of measurements, i.e., S~ı, S ~ı, can handle the case where each measurement is

corrupted either by zero-mean Gaussian noises with 1% standard deviation or 100%

of the corresponding original value. We consider a time horizon with a random

change in the statuses of unmonitored lines and dynamic load profiles. The proposed
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Figure 17: Estimated voltage values obtained by (3.22) for the monitored sensor
measurements corrupted by %1 additive noise.

formulation in (3.22), with M = G and N = Il×l, finds system states every five

seconds. Randomly-chosen two of the sensor measurements are severely corrupted,

while the rest of them are under 1% Gaussian noise. These two entirely-corrupted

sensors measure the voltage at bus 5 and the current injection at bus 1. Herein, the
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Figure 18: The performance of (3.22) to estimate the vector of voltages when solving
the state estimation and topology identification problem, in the presence of noisy
measurements, with the help of additional voltage measurements.

pre-selected coefficients are set to µ1 = µ2 = 102 and µ3 = µ4 = µ5 = µ6 = µ7 =

µ8 = µ9 = 1. Figure 20 demonstrates that an approximate solution is recoverable

with more than 99.3% accuracy. It is observed that the maximum RMSE and the

voltage error values for the estimated voltages are 0.660% and 0.288%, respectively.

Figure 21 shows the corrupted (v̂), recovered (v), and the ground-truth (ṽ) voltage

values for selected buses. Maximum percentage error for estimated statuses of lines

is less than 10−6, leading to a very good pursuit of ground-truth values as shown in

Figure 22. It should be observed here that, in the case of a line removal, xl = 0 for

every l = (a, b) ∈ L, the direct voltage correlation between buses a and b disappears.

The internal droop mechanism of power converters regulates their output voltage

such that physical laws, presented in (3.1)-(3.2) and (3.14a)-(3.14b), are conserved

independent of the line status. Figure 23 highlights the variations on ground-truth

voltage levels at bus 4, which has the highest connectivity with neighboring buses,

due to changes in topology and load power trajectories. The determination of the

states and topology configurations in the presence of measurement gross errors takes

4.645 s on average.
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3.4 Summary

This chapter offers a convex optimization framework to solve the state estima-

tion and topology identification problems using only a limited number of measurement

for converter-augmented DC networks. This problem is formulated as a constrained
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Figure 20: The performance of (3.22) to estimate the vector of voltages for the mod-
ified IEEE 14-bus system where each measurement is either corrupted by zero-mean
Gaussian noises with 1% standard deviation or 100% of the corresponding original
value.

minimization problem, where a proper choice of objective function obviates any tun-

ing coefficient in the absence of measurement noise. The problem formulation is then

extended for the noisy measurements by adding auxiliary variables to account for con-

vex regularization terms in the objective function. The proposed method is studied

where the set of measurements are: (i) voltage values at some of the randomly-chosen

buses, (ii) current-injection values at some of the randomly-chosen buses, and (iii)

some of the line statuses. The convex formulation in the absence of measurement

noise is validated through numerical tests using IEEE 9-bus, 14-bus, and 30-bus

benchmarks, and HIL experimentation using modified IEEE 14-bus system. Fur-

thermore, the solution in the presence of 1% measurement noise is verified through

HIL experimentation on the IEEE 14-bus system. With the help of an additional

set of measurements, this solution can handle scenarios where each measurement is

corrupted either by zero-mean Gaussian noises with 1% standard deviation or 100%

of the corresponding original values.
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3.5 Appendix

This section presents model matrices and vectors from network characteristics

using the example of 3-bus network in Figure 9. The bus conductance matrix of 3-bus

network is calculated as

G =


g12 + g13 −g12 −g13

−g21 g21 + g23 −g23

−g31 −g32 g31 + g32

 . (3.24)
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The line conductance matrices, from and to, can be formed as

~G =


g12 −g12 0

g13 0 −g13

0 g23 −g23

 , ~G =


−g12 g12 0

−g13 0 g13

0 −g23 g23

 . (3.25)

The network from and to bus-line incidence matrices for 3-bus network are

~L =


1 0 0

1 0 0

0 1 0

 , ~L =


0 1 0

0 0 1

0 0 1

 . (3.26)

It can be observed that G can be derived from ( ~G> ~L + ~G> ~L) that is also

chosen as the basis matrix M . The basis matrix N , that is designed to penalize

power loss over all the lines, is formed as

N =


1 0 0

0 1 0

0 0 1

 . (3.27)

The vectors of voltages, currents, and statuses of lines can be formed based on the

sensors positioning shown in Figure 9

v =


v̂1

v2

v3

 , x =


x1

x̂2

x3

 , i =


ı̂1

ı̂2

i3

 . (3.28)

Herein, measured values are utilized to infer unknown voltages v2, v3, and statuses of

the unmonitored lines, x1, x3. It should be noted that the bus 3 is a zero-injection
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bus, and it can facilitate the performance of (3.4) by using i3 = 0 as an additional

constraint.

Finally, the auxiliary variable matrixA, accounting for vx>, takes the following

form

A =


v̂1x1 v̂1x̂2 v̂1x3

v2x1 v2x̂2 v2x3

v3x1 v3x̂2 v3x3

 . (3.29)
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CHAPTER 4

ENHANCED MODELING OF GENERATOR RESPONSE IN

SECURITY-CONSTRAINED OPF

Power flow investigation underpins many static or dynamic applications in

power systems. These applications include stability analysis, optimal power flow,

contingency analysis, etc. An accurate power flow solution ensures that generators

meet the required power, i.e., total load and transmission losses. However, transmis-

sion losses cannot be identified in advance. Therefore, required total power generation

to supply a known demand is unpredictable [23]. Common practice in power systems

is to assume there exist at least one slack bus, where active power generation can

be readjusted to compensate the system power imbalances[24]. To this end, power

flow algorithms, such as Gauss, fast decoupled, Gauss-Seidel, Newton-Raphson, back-

ward/forward sweep, and other derivative approaches compute the flow of electrical

power based on single slack bus model [25]. Assuming a virtual generator with an

infinite capacity or negative power does not reflect the physical behavior of the power

systems.

Power flow models that are based on multiple slack bus concepts alleviate the

burden of a pre-specified single slack bus by dispatching the imbalance among par-

ticipating sources. [92]. This approach better mimics the operation of power systems

provided that participation factors of generators are accurately determined. These

factors can be appointed based on machine inertias [93], governor droop characteris-

tics [94, 95], frequency control [96], and economic dispatch [97, 98, 99]. These studies

usually ignore the relation between reactive power and voltage magnitude, as well as
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the generator reactive power limits [100]. However, when reactive power generation

limit is reached, the generator cannot maintain predefined voltage settings, and its

bus type needs to be switched from PV bus to PQ bus [101]. The active and reactive

power limits are handled via controller design [102], [103] by sacrificing the optimal

operation. Moreover, possible component outage, i.e. generator or line, are rarely

studied in the literature [104].

SCOPF formulation focuses on the optimization of robust power dispatch with

respect to the outage of a random number of generators or lines [105, 25]. Preventive

model of SCOPF finds a minimum operational cost that is identical, i.e., no redis-

patch, for both pre- and post-contingency scenarios [106]. Preventive SCOPF usually

ignores generator failures in contingency scenarios [107]. Corrective model of SCOPF

allows the limited exchanges in certain decision variables, i.e., redispatch, in post-

contingency scenarios [108]. Corrective SCOPF considers both the generator and

transmission line contingencies. To encapsulate the realistic behavior of generator in

the case of a random number of contingency scenarios, additional constraints have to

be incorporated into corrective models of SCOPF formulation [109]. These additional

constraints are based on a piecewise-discontinuous model of real and reactive power

responses that prevent both active and reactive power violations [110]. However,

piecewise-discontinuous models prevent the use of power flow algorithms due to their

undifferentiability [111]. This problem, and its possible adverse consequences, such as

increased iteration count and convergence to a unstable region, have been discussed

in [110].

Alternative differentiable power flow models using hyperbolic and sigmoid func-

tions [109], patching functions with complementary homotopy methods [111], and

discrete and continuous auxiliary variables are discussed [101]. These studies, how-

ever, did not validate their methods in the case of a random outage, i.e. a generator
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or a line, and their performance depends on a specific numerical solver. In this chap-

ter, we introduce several equivalent continuously-differentiable models that respect

high-fidelity physical models of generators considering extensive list of contingency

scenarios. These models prevent physical and operational violations by means of op-

timally, allocating active power imbalances among available generators and deciding

the type of bus, i.e., PV/PQ switching, respectively. The proposed SCOPF formula-

tion is in a generic form, and can be solved with various numerical solvers.

The rest of this chapter has the following organization. Section 4.1 discusses

the preliminary materials. Section 4.2 elaborates the enhanced modeling of generator

response including distributed slack bus representation, and generator active and re-

active power contingency response models. Section 4.3 introduces several equivalent

continuously-differentiable models that account for active and reactive power contin-

gency responses in the SCOPF formulation. In Section 4.4, the resulting enhanced

modeling of generator response in SCOPF solution is verified through a numerical

benchmark system. Section 4.5 draws the conclusion.

4.1 Notations and Power Grid Terminologies

4.1.1 Notations

Bold lowercase and uppercase letters (e.g., a, A) represent vectors and matri-

ces, respectively. 1 and 0 refer to vectors with all elements as 1 and 0, respectively.

The sets of complex and real numbers are shown with C and R, respectively. Hn and

Sn represent the hermitian and symmetric matrices of size n×n, respectively. imag{·}

and real{·} define the imaginary and real parts of a complex matrix or number, re-

spectively. Superscripts (·)> and (·)∗ stand for the transpose and conjugate transpose

operator, respectively. | · | represents the cardinality of a set or the absolute/magni-
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1 2
pgen

0,2  + α1,2 Δ1

Contingency 1 : c = 1

1 2
pgen

0,1  + α2,1 Δ2 pgen
0,2  + α2,2 Δ2
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Figure 24: Contingency scenario samples for a portion of power grid. The base case
refers to the scenario 0 that means no contingency. The red labels highlight the
failure of a generator and a transmission line. In Scenario 1, generator 1 fails while
generator 2 readjusts its generation according to weight α1,2. Scenario 2 illustrates a
transmission line failure, while generator 1 and 2 contribute to power redispatch, ∆2.

tude value of a vector/scalar. diag{·} forms a vector using diagonal entries of a given

matrix. [·] composes a matrix with diagonal entries from a given vector.

4.1.2 Power Grid Terminologies

Figure 24 represents a diagram for a power grid, where every single bus can

accommodate an arbitrary set of generators and loads. The set of contingency sce-

narios is referred to as C, and includes a network component outage, e.g., a generator

or a transmission line. Herein, the base case scenario, i.e., normal operation with no

outage, is indicated by 0 ∈ C. For the rest of the scenarios c ∈ C, terminologies for

grid elements are elaborated here:

� Buses and Lines: The transmission grid is structured using a directed graph

H = (N ,L), where the sets of buses and lines are denoted by N and L, respec-

tively.Let ~Lc, ~Lc ∈ {0, 1}|L|×|N | be the pairs for the from and to line-incidence
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matrices in a contingency case, respectively. ~Lc,li = 1 and ~Lc,li = 1 for every

l ∈ L, iff the transmission line l starts at bus i, and vice versa, respectively. Ma-

trices Yc ∈ C|N |×|N |, ~Yc, ~Y c ∈ C|L|×|N | respectively denote the bus-admittance,

and the from and to line-admittance matrices. Let smax
c ∈ (C ∪ {∞})|L| be the

vector of apparent power flow limits on transmission lines. Define v0, vc ∈ C|N |

as the vectors of complex nodal voltages in the base and contingency case,

respectively.

� Generators/Loads: Let G be the set of generators and Gc ∈ {0, 1}|G|×|N |

as the generator incidence matrix in a contingency case, where Gc,gi = 1 if

generator g ∈ G is attached at the bus i ∈ N and not outed in a contingency

scenario c. Gc,gi = 0 if and only if there is no generator g ∈ G located at the bus

i ∈ N or it is outed in the contingency scenario c. Cc ∈ {0, 1}|G|×|N | denotes the

incidence matrix to define whether a particular generator is effected by a given

contingency c. sdem
c ∈ C represents the vectors of apparent power demand.

Let sgen
0 ∈ C|G|, and pgen

0 , qgen
0 ∈ R|G|, respectively, represent the vectors of

apparent, active, and reactive power generations in the base case, while sgen
c ∈

C|G|, and pgen
c , qgen

c ∈ R|G| represent the corresponding power generations in a

contingency case. Define pmax
c , qmax

c ∈ R|G| and pmin
c , qmin

c ∈ R|G| as the vectors

of the maximum and minimum active and reactive power generations allowed,

respectively.

4.2 Enhanced Modeling of Generator Response

In order to capture nonlinear characteristics of power system, such as PV/PQ

switching and generator contingency responses, and streamline these response poli-

cies, we define the following set.
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(a) The characteristics of a pair,
(x, y) ∈ Fθ, for different slope val-
ues.
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(b) The characteristics of a pair,
(x, y) ∈ F smooth

θ , for different slope
values.

Figure 25: The characteristics of Fθ and F smooth
θ when θ = 0, θ = π/8, θ = π/6,

θ = π/4.

Definition 2. For every θ ∈ [0, π/4), define Fθ ∈ R2 as follows:

Fθ ,
{

(x, y) ∈ R2 | − 1 ≤ x ≤ 1

∧ min{max {0, y − tan(θ)x},max{0, 1− x}} = 0

∧ min{max {0, tan(θ)x− y},max{0, 1 + x}} = 0
}
, (4.1)

where θ denotes the slope for a line within the interval [-1,1]. Herein, each pair, (x,

y), represents the coordinates on a piecewise-discontinuous function. In the following

section, we will provide a smooth version of Fθ in order to facilitate a local search

algorithm.
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4.2.1 Generator Active Power Contingency Response

The active power imbalance due to changes in network configuration, trans-

mission losses, or load profile is supposed to be distributed among other generators

within the same area as

pgen
c,g = pgen

0,g + αc,g∆c, (4.2)

where pgen
c,g is the active power generation of a contingency case, while pgen

0,g is the

base case active power generation at generator g ∈ G. ∆c represents the amount

of redispatch in the contingency case. αc,g denotes weight of contribution to this

redispatch by generator g ∈ G. Herein, if a generator is failed in the contingency, the

contingency case active power generation and its contribution to redispatch will be

pgen
c,g = 0 and αc,g = 0, respectively. If a generator is operational but not selected to

contribute to redispatch, it maintains its active power generation from the base case,

pgen
c,g = pgen

0,g .

A generator that contributes to a given contingency readjusts its active power

generation as much as its capacity limits permit according to a predefined weight,

αc,g. In this situation, the active power generation of a corresponding generator will

be pgen
c,g = pgen

0,g + αc,g∆c. If generator g is about to violate its minimum production

or maximum capacity with contribution weight αc,g, it must operate at its lower or

upper limits based on the contribution requirement. A generator active power contin-

gency response can be expressed using logical functions, mixed-integer programming

formulation, and Min-Max operators. The logical functions represent generator active

power contingency response using a disjunction of linear constraints as

pmin
c,g ≤ pgen

c,g ≤ pmax
c,g , pgen

c,g = pgen
0,g + αc,g∆c ∀c ∈ C, g ∈ G, (4.3a)
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pgen
c,g = pmax

c,g , pgen
c,g ≤ p

gen
0,g + αc,g∆c ∀c ∈ C, g ∈ G, (4.3b)

pgen
c,g = pmin

c,g , pgen
c,g ≥ p

gen
0,g + αc,g∆c ∀c ∈ C, g ∈ G. (4.3c)

Another way of formulating (4.3) is to use a mixed-integer programming formulation.

Binary variables are introduced to determine the chosen case among logical constraints

given in (4.3a)-(4.3c). These three conditions in (4.3) can be expressed as

pgen
0,g + αc,g∆c − pgen

c,g ≤M(1− xP+

c,g ) ∀c ∈ C, g ∈ G, (4.4a)

pgen
c,g − p

gen
0,g − αc,g∆c ≤M(1− xP−c,g ) ∀c ∈ C, g ∈ G, (4.4b)

pmax
c,g − pgen

c,g ≤MP xP
+

c,g ∀c ∈ C, g ∈ G, (4.4c)

pgen
c,g − pmin

c,g ≤MP xP
−

c,g ∀c ∈ C, g ∈ G. (4.4d)

The mixed-integer programming formulation employs big-M method that requires

multipliers, M and MP , to be sufficiently large enough to ensure that (4.4) is equiv-

alent to (4.3). For every c ∈ C and g ∈ G, xP
+

c,g , x
P−
c,g ∈ {0, 1} denote the introduced

binary variables.

Equations (4.4a) and (4.4b), when xP
+

c,g = xP
−

c,g = 1, force pgen
c,g to be equal to or

greater than the desired active power response, pgen
0,g +αc,g∆c, as represented in (4.3a).

Similarly, (4.4c) and (4.4d), when xP
+

c,g = xP
−

c,g = 0, respectively, force pgen
c,g to be equal

to pmax
c,g and pmin

c,g .

In addition to (4.3) and (4.4), generator active power contingency response can

be expressed using Min and Max operators as

pgen
c = max{pmin

c , min{Cc (pgen
0 +αc∆c), p

max
c }} ∀c ∈ C. (4.5)
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which can be equivalently formulated based on the defined set (4.1), for every c ∈ C

and g ∈ G, as

((2pgen
c,g − pmax

c,g + pmin
c,g

pmax
c,g + pmin

c,g

)
,
(2(pgen

0,g + αc,g∆c)− pmax
c,g + pmin

c,g

pmax
c,g + pmin

c,g

))
∈Fπ

4
. (4.6)

(4.3)-(4.6) imply a piecewise-discontinuous model as shown in Figure 26(a).

pmin

pmax

(a)

y

x
-1

1

(b)

y

x

^

^

Figure 26: Generator active power response relation between pre- and post-
contingency: (a) Actual characteristics: x = pgen

c,g , y = pgen
0,g +αc,g∆c, (b) Normalization

of the actual characteristics: x̂ =
2pgenc,g −pmax

c,g +pmin
c,g

pmax
c,g +pmin

c,g
, ŷ =

2(pgen0,g +αc,g∆c)−pmax
c,g +pmin

c,g

pmax
c,g +pmin

c,g
.

4.2.2 Generator Reactive Power Contingency Response

A generator that contributes to a given contingency readjusts its reactive power

generation to retain the base case voltage magnitude, |v0| = |vc|, in the contingency

case. If the bus voltage magnitude drops below its base-case level, then the generator

must operate to provide maximum reactive power. Similarly, if the bus voltage mag-
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nitude becomes greater than the base-case level, the generator is supposed to provide

minimum reactive power. These can be summarized with logical constraints as

qmin
c,g ≤ qgen

c,g ≤ qmax
c,g , |vc,i| = |v0,i| ∀c ∈ C, g ∈ G, i ∈ N , (4.7a)

qgen
c,g = qmax

c,g , |vc,i| ≤ |v0,i| ∀c ∈ C, g ∈ G, i ∈ N , (4.7b)

qgen
c,g = qmin

c,g , |vc,i| ≥ |v0,i| ∀c ∈ C, g ∈ G, i ∈ N . (4.7c)

We can formulate (4.7) using mixed-integer programming formulation

|v0,i| − |vc,i| ≤Mv(1− xQ+

c,g ) ∀c ∈ C, g ∈ G, i ∈ N , (4.8a)

|vc,i| − |v0,i| ≤Mv(1− xQ−c,g ) ∀c ∈ C, g ∈ G, i ∈ N , (4.8b)

qmax
c,g − qgen

c,g ≤MQ xQ
+

c,g ∀c ∈ C, g ∈ G, i ∈ N , (4.8c)

qgen
c,g − qmin

c,g ≤MQ xQ
−

c,g ∀c ∈ C, g ∈ G, i ∈ N . (4.8d)

Herein, we have multipliers, M v and MQ, to be sufficiently large enough to ensure

(4.8) is equivalent to (4.7). For every c ∈ C and g ∈ G, xQ
+

c,g , x
Q−
c,g ∈ {0, 1} denote the

introduced binary variables.

Equations (4.8a) and (4.8b), when xQ
+

c,g = xQ
−

c,g = 1, ensure equality, |vc,i| =

|v0,i|, as represented in (4.7a). Similarly, (4.8c) and (4.8d), when xQ
+

c,g = xQ
−

c,g = 0,

respectively, ensure qgen
c,g to be equal to qmax

c,g and qmin
c,g .

In addition to representation in (4.7) and (4.8), generator reactive power con-

tingency response can be expressed using Min and Max operators as

min
{

max{0, Gc(|v0| − |vc|)}, max{0, qmax
c − qgen

c }
}

=

min
{

max{0, Gc(|vc| − |v0|)}, max{0, qgen
c − qmin

c }
}

= 0 ∀c ∈ C. (4.9)
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Equation (4.7) can be equivalently formulated based on the defined set (4.1) for every

c ∈ C, g ∈ G and i ∈ N as

((2qgen
c,g − qmax

c,g − qmin
c,g

qmax
c,g − qmin

c,g

)
,
(
|v0,i| − |vc,i|

))
∈ F0. (4.10)

These representations, (4.7)-(4.10), refer to the PV/PQ switching as demonstrated

in Figure 27(a). Herein, PV bus means that the bus voltage magnitude and the

generation level of active power are fixed whereas its voltage phase angle and reac-

tive power generation are varying. When it hits to reactive power capacity limits

to sustain the value of voltage magnitude in the base case, the bus type needs to

become PQ. This bus type means that the power generations, e.g.,real and reactive,

are constant, whereas the voltage magnitude and phase angle are varying. Similar

to the characteristic of active power, reactive power contingency response implies a

piecewise-discontinuous model where its solution space is not only highly nonlinear,

but also disconnected.

qmin

qmax

(a)

x

y

-1
1

(b)

x

ŷ

^

Figure 27: Generator reactive power response relation between pre- and post-
contingency: (a) Actual characteristics: x = qgen

c,g , y = |v0,i| − |vc,i|, (b) Normalization

of the actual characteristics: x̂ =
2qgenc,g −qmax

c,g −qmin
c,g

qmax
c,g −qmin

c,g
, ŷ = |v0,i| − |vc,i|.
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4.3 Security-constrained Optimal Power Flow

This section elaborates the active and reactive power contingency response mod-

els. Herein, devised objective function minimizes the generational cost in the base

case and provides immunity to the power grid in response to contingency scenarios.

4.3.1 Undifferentiable Problem Formulation

SCOPF with respect to outage of a random number of generators or lines can

be formulated as

minimize h(pgen
0 ) (4.11a)

subject to sdem
c + diag{vcv∗c Y ∗c }

= G>c (pgen
c + iqgen

c ) ∀c ∈ C (4.11b)

|diag{~Lc vcv∗c ~Y ∗c }| ≤ smax
c ∀c ∈ C (4.11c)

|diag{ ~Lc vcv
∗
c

~Y ∗c }| ≤ smax
c ∀c ∈ C (4.11d)

pmin
c ≤ pgen

c ≤ pmax
c ∀c ∈ C (4.11e)

qmin
c ≤ qgen

c ≤ qmax
c ∀c ∈ C (4.11f)

vmin ≤ |vc| ≤ vmax ∀c ∈ C (4.11g)

((2pgen
c − pmax

c + pmin
c

pmax
c + pmin

c

)
,
(2Cc(p

gen
0 +αc∆c)− pmax

c + pmin
c

pmax
c + pmin

c

))
∈ Fπ

4
, ∀c ∈ C (4.11h)((2qgen

c − qmax
c − qmin

c

qmax
c − qmin

c

)
,
(
Gc(|v0|−|vc|)

))
∈ F0, ∀c ∈ C (4.11i)

variables pgen
0 ,pgen

c , qgen
c ,αc ∈ R|G|; v0,vc ∈ C|N |; ∆c ∈ R
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where (4.11a) represents the cost of producing power in the base case. (4.11b)

fulfills the apparent power balances in the network, whereas (4.11c)–(4.11d) enforce

the apparent power flow limits for transmission lines. (4.11e)–(4.11f) represent the

generation boundaries for active and reactive power. The inequality (4.11g) limits

the nodal voltage magnitude. Equation (4.11h) represents coupling constraints on

generators that relate pre- and post-contingency active power dispatch, while (4.11i)

stands for the coupling constraints that relate pre- and post-contingency reactive

power dispatch with respect to generator capacity limits. It should be noted that

(4.11h) and (4.11i) are the normalized versions of (4.3) and (4.7), respectively. (4.11h)

and (4.11i) have made the solution to eh SCOPF problem challenging since the are not

differentiable. The main reason behind the normalizations is to make use of sigmoid

functions that transform values on (−∞, ∞) into numbers (-1,1) so that (4.11h) and

(4.11i) can be represented in a differentiable model. Accordingly, inverse sigmoid

functions transfer values on (-1, 1) into numbers on (−∞, ∞). Figures 26(b) and

27(b) visualize these normalizations. In the following part, we will introduce several

equivalent continuously-differentiable models using inverse sigmoid functions instead

of (4.11h) and (4.11i).

4.3.2 Smoothed Version of the Problem Formulation

The set defined in (4.1) implies a undifferentiable model. We define F smooth
θ to

obtain a continuously-differentiable model of generator contingency responses. To this

end, the piecewise-discontinuous functions, (4.11h) and (4.11i), can be approximated

with continuously-differentiable curves whose coordinates satisfy the smoothed set

F smooth
θ as

((2pgen
c,g − pmax

c,g + pmin
c,g

pmax
c,g + pmin

c,g

)
,
(2(pgen

0,g + αc,g∆c)− pmax
c,g + pmin

c,g

pmax
c,g + pmin

c,g

))
∈F smooth

π
4

, (4.12a)
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((2qgen
c,g − qmax

c,g − qmin
c,g

qmax
c,g − qmin

c,g

)
,
(
|v0,i| − |vc,i|

))
∈ F smooth

0 . (4.12b)

Equation (4.13) introduces an activation function to integrate approximated curves

instead of piecewise-discontinuous functions.

fθ(x) = h−1(a(x)− x)x2k + tan(θ)x, (4.13)

where h denotes a smoothing factor that regulates the closeness of a candidate curve

to the actual function, while θ is the angle of curve at the origin. k denotes the

order of approximation. The effects of different h values, while θ = π/4 and θ = 0, on

(4.14a)-(4.14e) are shown in Figures 28 and 29, respectively. This function, (4.13), ap-

proximates discrete characteristic of a nerve cell operation by a continuous function.

The candidate curve, a(x), chosen among (4.14a) and (4.14e) replaces piecewise-

discontinuous functions, (4.11h) and (4.11i), with continuously-differentiable func-

tions.

a(x) =
log(1 + x)− log(1− x)

2
(4.14a)

a(x) =
2

π
tan
(πx

2

)
(4.14b)

a(x) =
x√

1− x2
(4.14c)

a(x) =
2ierf(x)√

π
(4.14d)

a(x) =
x

1− |x|
(4.14e)

The candidate curves given in (4.14) include inverse hyperbolic tangent (4.14a),

inverse arctangent (4.14b), inverse algebraic (4.14c), inverse error (4.14d), and inverse

absolute value functions.
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Figure 28: The characteristics of (x, y) ∈ F smooth
π/4 for different h values with the

candidate curves (a) (4.14a), (b) (4.14b), (c) (4.14c), (d) (4.14d), (e) (4.14e).
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Figure 29: The characteristics of (x, y) ∈ F smooth
0 for different h values with the

candidate curves (a) (4.14a), (b) (4.14b), (c) (4.14c), (d) (4.14d), (e) (4.14e).

4.4 Case Studies

Numerical studies on an IEEE 30-bus system study the efficacy of the continuously-

differentiable SCOPF model. The main purpose is to minimize pre-contingency power

generation cost while ensuring the secure post-contingency operation. The secure op-

eration prevents physical and operational violations by means of optimally, allocating

active power imbalances among available generators and deciding the type of bus,

i.e., PV/PQ switching, respectively. To this end, we consider several numerical ex-

periments on the IEEE benchmark under an extensive list of contingency scenarios,

each representing the outage of randomly chosen components, e.g., generator or line.

Herein, it is ensured that randomly-chosen lines do not lead to an islanding in the

power grid. These studies are examined on a PC with 16-core, Xeon processor, and
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256 GB RAM using Matpower interior point solver (MIPS) [112]. The allowable fea-

sibility violation is set to 10−6 for the obtained solution of given scenarios in Table 2.

The IEEE benchmark considered has 30 buses connected with 41 transmission

lines, 6 generators, and 20 loads. Herein, bus 1 is assigned as the slack bus; buses

2, 13, 22, 23, 27 are PV buses, and the rest are PQ buses. Consider this IEEE

30-bus system under 12 contingency scenarios as described in Table 2. To maintain

system reliability under certain contingencies, the benchmark data is changed by

reducing the load demand in half. Hence, solution to the OPF problem with no

contingency results in a minimum generation cost of 2847.8. Considering contingency

cases in Table 2 using (4.14a) increases the cost during normal conditions by 11.24%

to 3167.9. Tables 3-5 represent active power, reactive power, and voltage variations of

the power grid in response to given contingencies. The proposed method distributes

network’s active power imbalance complying with (4.3), which is due to the outage

of a network component, among available generators given in Table 3. It can be

observed from Table 3 that the outage of a transmission line, scenarios 7-12, does not

cause a considerable power redispatch. Table 4 and 5 represent the reactive power

and voltage relations in the case of a network component outage. It is expected that

the PV buses maintain their base case voltage levels during contingencies as much as

their capacity limits permit. The highlighted values in red color, for the scenarios 1-6,

in the Table 5 refer to the PV/PQ switching due to a generator outage. It should be

noted that the outage of a transmission line, for the scenarios 7-12, does not require

PV/PQ switching as reported in the Table 5.

Table 6 reports the performance comparison in terms of the objective value

and required time to solve the proposed continuously-differentiable functions (4.14a)-

(4.14e). It can be inferred that (4.14a) and (4.14d) offer the most promising approxi-

mations in terms of objective values while others, (4.14b), (4.14c), (4.14e) successfully
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recover the feasible solution considering the generator response in the case of a ran-

domly chosen component outage.

Table 2: List of Contingencies for IEEE 30-bus system

Contingency Generator Line
Number Number Number

1 5 -
2 6 -
3 1 -
4 4 -
5 3 -
6 2 -
7 - 2
8 - 25
9 - 20
10 - 35
11 - 9
12 - 1

Table 3: Active power variations in response to contingency scenarios (pu)

Bus Nr.
Sc. Nr.

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0.2880 0.2946 0.2945 0 0.2894 0.3152 0.3541 0.2878 0.2875 0.2874 0.2874 0.2874 0.2875
2 0.4073 0.4131 0.4130 0.4488 0.4085 0.4311 0 0.4072 0.4069 0.4068 0.4068 0.4068 0.4069
22 0.1755 0.1788 0.1788 0.1992 0.1762 0 0.2086 0.1755 0.1753 0.1752 0.1752 0.1752 0.1753
27 0.0077 0.0208 0.0206 0.0850 0 0.0528 0.1152 0.0109 0.0105 0.0102 0.0103 0.0103 0.0105
23 0.0386 0 0.0484 0.1096 0.0408 0.0794 0.1376 0.0385 0.0381 0.0379 0.0379 0.0379 0.0381
13 0.0375 0.0478 0 0.1085 0.0401 0.0783 0.1365 0.0378 0.0374 0.0371 0.0371 0.0371 0.0374

Table 4: Reactive power variations in response to contingency scenarios (pu)

Bus Nr.
Sc. Nr.

0 1 2 3 4 5 6 7 8 9 10 11 12

1 -0.0888 -0.0298 -0.0216 0 -0.0257 -0.0245 0.0243 -0.0599 -0.0296 -0.0298 -0.0299 -0.0316 -0.0306
2 0.1016 0.0500 0.0861 0.0345 0.0743 0.1011 0 0.0795 0.0454 0.0463 0.0459 0.0674 0.0886
22 0.1358 0.1554 0.1736 0.1425 0.1603 0 0.1587 0.1447 0.1164 0.1340 0.1470 0.1301 0.1337
27 0.0748 0.0762 0.0750 0.0604 0 0.0905 0.0628 0.0789 0.0729 0.0732 0.0509 0.0709 0.0728
23 0.0356 0 0.0817 0.0024 0.0498 0.0812 -0.0074 0.0392 0.0520 0.0361 0.0465 0.0354 0.0355
13 0.1360 0.1450 0 0.1375 0.1371 0.1569 0.1443 0.1428 0.1399 0.1345 0.1339 0.1333 0.1336
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Table 5: Voltage variations in response to contingency scenarios (pu). Values in red
color refer to the PV/PQ switching due to a generator outage.

Bus Nr.
Sc. Nr.

0 1 2 3 4 5 6 7 8 9 10 11 12

1 1.0462 1.0490 1.0488 1.0469 1.0489 1.0489 1.0479 1.0500 1.0490 1.0490 1.0490 1.0491 1.0491
2 1.0471 1.0472 1.0471 1.0472 1.0471 1.0471 1.0410 1.0471 1.0472 1.0472 1.0472 1.0471 1.0471
22 1.0488 1.0488 1.0488 1.0488 1.0488 1.0230 1.0488 1.0488 1.0488 1.0488 1.0488 1.0488 1.0488
27 1.0489 1.0489 1.0489 1.0490 1.0273 1.0489 1.0490 1.0489 1.0489 1.0489 1.0490 1.0489 1.0489
23 1.0470 1.0374 1.0470 1.0471 1.0471 1.0470 1.0471 1.0471 1.0471 1.0471 1.0471 1.0471 1.0471
13 1.0665 1.0665 1.0326 1.0665 1.0665 1.0665 1.0665 1.0665 1.0665 1.0665 1.0665 1.0665 1.0665

Table 6: Performance Comparison of the Proposed Functions

Continuously-differentiable Objective Required
Function Value Time (s)

Inverse hyperbolic tangent (4.14a) 3167.9 6.32
Inverse arctangent (4.14b) 3168.6 6.25
Inverse algebraic (4.14c) 3168.1 6.44
Inverse error (4.14d) 3167.8 6.86
Inverse absolute value (4.14e) 3169.1 7.60

4.5 Summary

This chapter tackles the SCOPF problem with piecewise-discontinuous model

of generator active and reactive power contingency responses by means of several

equivalent continuously-differentiable models. The proposed approach provides state

and decision variables to ensure continuity of power grid operation even under con-

tingencies. The problem is resulted in a nonlinear programming formulation, and

involves piecewise-discontinuous models due to the active and reactive power con-

tingency characteristics. We replace these undifferentiable functions with several

equivalent continuously-differentiable surrogates that are tractable and can be solved

with various numerical solvers. The solution of the proposed models are verified via

numerical studies on an IEEE benchmark.

83



CHAPTER 5

CONCLUSION AND FUTURE WORKS

This work offers a variety of applications for high performance optimization in

the context of emerging power systems. The research outcomes are outlined below:

� A convex optimization framework is proposed to solve the grid topology-cognizant

OPF problem for MTDC grids. It provides local voltage and power set-points

for droop controllers of VSCs as well as the operational status of transmission

lines. Additional constraints, that sustain safe operation in response to the

power fluctuation in between two droop updates, are integrated into the pro-

posed formulation. The resulting formulation has computational difficulties due

to the non-convex power balance, flow and converter loss equations as well as

the inclusion of binary decision variables. Convex relaxation methods are uti-

lized to transform this problem into a tractable model so that it can be executed

with off-the-shelf solvers.

� The convex optimization approach is developed to solve the state estimation

and topology identification problems using only a limited number of measure-

ment for converter-augmented DC networks. This problem is formulated as

a constrained minimization problem, where a proper choice of objective func-

tion obviates any tuning coefficient in the absence of measurement noise. The

problem formulation is then extended for the noisy measurements by adding

auxiliary variables to account for convex regularization terms in the objective
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function. The proposed method is studied where the set of measurements are:

(i) voltage values at some of the randomly-chosen buses, (ii) current-injection

values at some of the randomly-chosen buses, and (iii) some of the line statuses.

With the help of an additional set of measurements, this solution can handle

scenarios where each measurement is corrupted either by zero-mean Gaussian

noises with 1% standard deviation or 100% of the corresponding original values.

� SCOPF problem that considers piecewise-discontinuous model of generator ac-

tive and reactive power contingency responses by means of several equivalent

continuously-differentiable models is studied. The proposed approach provides

state and decision variables to ensure continuity of power grid operation even

under contingencies. The problem is expressed as a nonlinear programming

formulation and involves piecewise-discontinuous models due to the active and

reactive power contingency characteristics. We replace this undifferentiable

functions with several equivalent continuously-differentiable surrogates that are

tractable and can be solved with various numerical solvers.

Future works may focus on developing distributed optimization framework for en-

suring secure and cost-efficient solutions in DC and/or AC network reconfiguration

problems.
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