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ABSTRACT  

TWO-STAGE STOCHASTIC MODEL FOR ENHANCING SEISMIC 

RESILIENCE OF WATER PIPE NETWORKS  

  

AZAM BOSKABADI, Ph.D.   

 The University of Texas at Arlington, 2020   

  

Supervising Professor: Dr. Jay Rosenberger  

  

Earthquakes are sudden and inevitable disasters that can cause enormous losses and 

suffering, and having accessible water is critically important for earthquake victims. To address this 

challenge, utility managers do preventive procedures on water pipes periodically to withstand future 

earthquake damage. The existing seismic vulnerability models usually consider simple methods to 

find the pipes to rehabilitate with highest priority.  In this research, we develop an optimization 

approach to determine which water pipes to rehabilitate subject to a limited budget to achieve highest 

network serviceability after a disaster. We propose a two-stage stochastic mixed integer nonlinear 

program (MINLP). The MINLP model cannot be solved by commercial optimization software, like 

BARON even for problems with a very small number of scenarios. Consequently, we propose 

piecewise linear functions (PLF) to approximate the nonlinearity in the MINLP. Therefore, we 

formulate a mixed integer linear program (MILP) to approximate the MINLP. The optimization of 

the MILP is still challenging to solve, so we introduce a sequential heuristic algorithm to mitigate 

this computational issue and find bounds for the approximated optimal solution. Consequently, the 

solution we find using the sequential algorithm is within 2% of optimality. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering. 

Preparing enough utility resources right after the earthquake is one of the most vital actions. Water, as the 

most important resource for keeping humans alive in these kinds of disasters, plays an important role. In 

addition, disruption in water supply causes other problems like disturbance in firefighter work. Historical 

data from past earthquakes show the importance of providing drinkable water right after an earthquake. 

For addressing this challenge, utility managers do a preventive procedure that repairs some of their water 

pipes periodically, but the important question is which pipes should be repaired since utility managers 

have limited budget. Existing seismic vulnerability models just consider simple methods to find pipes with 

highest priority (Shahandashti and Pudasaini 2019). 

1.1. Water Resource Optimization Overview 

Water resource optimization problems in the last three decades were reviewed in Tayfur (2017). Most 

of the reviewed papers notably employed simulation and meta-heuristic methods to optimize decisions. 

OPTIMA is a software that designs a new water pipe network in a new area by simulation techniques. It 

considers different criteria like economic ones and shows the final design in a geographical and spatial 

map (Fedra 2005). Some researchers used mathematical modelling to find an optimal design in new water 

pipe networks. Sarbu (1997) introduced a linear programming model that optimizes the diameter and 

length of each pipe in a new or extension of a water pipe network. His model used analysis of flow in 

water pipe networks with hydraulic equations introduced by Cross (1936). In another study, Yan et al. 

(2013) evaluated the hydraulic performance of a system by using hydraulic equations to assess the effect 

of rotational speed of different pumps on pump heads and flow rates in all loops in a water pipe network. 

Alvisi and Franchini (2010) used hydraulic equations to calibrate the roughness of the pipes in a water 
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pipe network considering grey numbers. In other work, Sarbu and Kalmar (2002) introduced a nonlinear 

model that considers hydraulic equations, resource consumption, operating costs, along with other factors. 

They optimized the head loses along with pipe diameters by using a gradient method. Djebedjian, Herrick, 

and Rayan (2016) introduced a nonlinear model for designing a new water pipe network. They considered 

hydraulic equations, flow rate, pressure, and cost to evaluate the pipe diameter according to existing pipe 

diameters. They found a local optimal solution for the model by the sequential unconstrained minimization 

technique of Fiacco and McCormick (1964). Rayan et al. (2003) used their method in a real extension in 

an Egyptian water pipe network by considering Newton-Raphson method for the hydraulic analysis. 

Caballero and Ravagnani (2019) introduced a mixed integer nonlinear problem (MINLP) to design a new 

network with unknown flow direction and pipe diameters. They ignored pressure and flow speed in their 

network. They used the commercial solver BARON to solve their problem by calculating a tight bound 

for their nonlinear and nonconvex equations. Audu and Ovuworie (2010) introduced a Geospatial 

Information System (GIS) for planning and managing water pipe networks in Nigeria by acquiring data 

from a Global Positioning System (GPS) and integrating data in a GIS. Bilal and Pant (2020) introduced 

a new water distribution network for a Hanoi water network that has a complex structure. They optimized 

their model by introducing a hybrid metaheuristic algorithm along with a simulation software called 

EPANET. Cassiolato et al. (2020) proposed a mixed integer nonlinear problem (MINLP) for extending an 

existing water distribution network. They minimized the cost of the water distribution network and solved 

their model using GAMS (general algebraic modelling system) for four test problems. As we mentioned 

before, most of the papers in this area used meta-heuristic approaches to optimize the network (Abdel-

Gawad 2001, Djebedjian, Yaseen, and Ryan 2008, Yaseen 2007, AbdelBary 2008). As discussed in these 

papers, they designed a new or an extension of an existing water pipe network. What if the water pipe 

network already exists, and we want to find an optimal rehabilitation policy in the network? 
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1.2. Water Pipe Network Rehabilitation Overview 

Most of the water resource optimization papers design a new or an extension of an existing water pipe 

network. However, some researchers studied existing complex infrastructure problems like existing water 

pipe network rehabilitation problems. In Bernhardt and McNeil (2004), they introduced an agent-based 

model to simulate civil infrastructure systems. In Al-Khafaji, Mesheb and Jabbar Abrahim (2019), they 

presented a decision support mathematical model that decides a best maintenance strategy for an existing 

water pipe network. In Aşchilean et al. (2017a), they introduced the Analytic Hierarchy Process (AHP) 

method for solving a water pipe network rehabilitation problem. They concluded using a slip-line method 

is the best method and apply it to Cluj-Napoca, Romania, as their case study. In another study, Aşchilean 

et al. (2017b) analysed priorities selecting in a water pipe network rehabilitation problem. They concluded 

that asbestos cement pipes should be rehabilitated first.   

1.3. Water Pipe Network Response to Earthquake Overview 

Earthquakes, as a sudden and inevitable disaster, can cause enormous losses and suffering. Preparing 

enough utility resources right after the earthquake is one of the most vital actions. Water, as the most 

important resource, for keeping humans alive in these types of disasters, plays an important role. Historical 

data from past earthquakes show the importance of providing drinkable water right after the earthquake 

(Pudasaini and Shahandashti 2018, Shahandashti and Pudasaini 2019). To address this challenge, utility 

managers do a preventive procedure and decide to repair some of their water pipes periodically, but the 

important question is which pipes should be repaired since the underground placement of the pipes 

imposes an uncertainty on this decision, and the budget source is always limited. Existing seismic 

vulnerability models consider simple methods to find pipes with the highest priority (Pudasaini and 

Shahandashti 2018, Shahandashti and Pudasaini 2019). In order to increase reliability of the water pipe 

network in disasters like an earthquake, Wu and Baker (2017) assessed a water pipe network in each stage 
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of an earthquake to find a best retrofit decision. In their study, they described how earthquake factors 

affect a water pipe network. Then they estimated the network reliability, and finally they introduced three 

methods for retrofitting pipes. O'Rourke et al. (2014) analyzed water and wastewater network response to 

several recent earthquakes in New Zealand. Next, they evaluated repair rate according to topological 

factors after an earthquake. In another report, Shi and O'Rourke (2006) developed a GIS-based model to 

simulate performance of a water pipe network in an earthquake. They evaluated their model results by 

comparing them with the 1994 Northridge earthquake. Trautman et al. (2013) proposed a structure for 

designing a decision support system for water pipe network planning, engineering, and management. They 

tested their model by applying it to a San Francisco water pipe network in a hypothetical earthquake. 

Macaskill, and Guthrie (2018) assessed the role of funding in disaster recovery, and they considered New 

Zealand earthquakes. 

None of these studies included a solid mathematical optimization model. Simulation optimization 

techniques are the most used approach in water pipe rehabilitation optimization due to the uncertain nature 

of earthquakes.  

Although this problem is an example of a network flow problem since it is a network, and a knapsack 

problem since it has budget limit, it is not being considered in these areas of knowledge.  

1.4. Knapsack Problem Overview 

Knapsack problems have been studied for over a century (Mathews 1896). In this literature review we 

only studied recent papers. Researchers have used different methods on multi-objective knapsack 

problems (Lai et al. 2018, Correia, Paquete, and Figueira 2018), meta-heuristic methods are popular in 

this area (Zouache, Moussaoui, and Abdelaziz 2018, Manicassamy et al. 2018, Arin and Rabadi 2017, 

Chih 2017, Chen and Hao 2017, Chen and Hao 2016, Haddar et al. 2016, Zhang et al. 2016, Arin and 
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Rabadi 2016). Song et al. (2018) represented a stochastic quadratic multiple knapsack problem (SQMKP). 

They proposed a three-step algorithm called Repair-Based Optimization Approach (RBOA) to solve the 

problem. Furini, Monaci, and Traversi (2018) worked on a special kind of Knapsack Problem with Setup 

(KPS) where items are categorized upon their fixed cost and capacity. They used three integer linear 

programming models and compared their results with an improved dynamic programming algorithm. 

Schulze et al. (2017) considered a bi-dimensional knapsack problem. By relaxing one of the constraints 

and adding it to the objective function, and they introduced their new model and conducted a sensitivity 

analysis. At last, by applying dynamic programming they solved their problem. Gao et al. (2017) proposed 

a new algorithm to solve a multi-dimensional multiple-choice knapsack problem. Their iterative pseudo-

gap enumeration method uses some more cuts of the non-basic variables. Avci and Topaloglu (2017) 

developed a multi-start iterated local search algorithm to solve the quadratic multiple knapsack problem. 

In other work, Meng and Pan (2017) solved the multidimensional knapsack problem by applying a 

modified harmony search method in an Improved fruit fly optimization algorithm. Christian and 

Cremaschi (2017) continued their research from 2015 in a Knapsack Decomposition Algorithm (KDA) 

that decomposed the pipeline management challenges into some knapsack problems in a special time 

horizon. They showed that the parameters do not affect results, while the time of solving the problem 

grows linearly by increasing number of items and lingering time horizon. 

1.5. Fixed Charge Network Flow (FCNF) Problem Overview 

Metaheuristics approaches have also been used to solve a Fixed Charge Network Flow (FCNF) 

problem (Gendron, Hanafi, and Todosijevic 2018, Calvete et al. 2018). Nicholson and Zhang (2016) 

introduced a statistical method to assess the impact of different network features on optimal solutions of 

an FCNF problem. Zhang and Nicholson (2016), in another article, proposed a new probabilistic model 

to reformulate and relax an FCNF problem and model a linear programming problem. Munguía, et al. 
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(2017) proposed a local search method for solving a Fixed Charge Capacitated Multi Commodity Network 

Flow (FCMNF) problem. González et al. (2016) introduced an iterated local search for solving a bi-level 

Fixed Charge Un-capacitated Multi commodity Network Design problem with User-Optimal Flow 

(FCMNDP-UOF). Agarwal and Aneja (2017) attempted to choose edges out of a given undirected graph 

to satisfy given demands in a network with minimum cost. They considered sub-graphs by p-partitioning 

to decide which one is the best. Angulo and Vyve (2017) used dynamic programming for an FCNF 

transportation problem. Fakhri and Ghatee (2016) proposed a new partitioning method in Benders 

decomposition that utilize the branch-and-bound algorithm to solve MINLP problems such as FCMNDP 

models. 

1.6. Contribution 

In this research, we develop an optimization model that finds a best rehabilitation policy before an 

earthquake that maximizes expected service to the people right after the earthquake (Boskabadi, 

Rosenberger, and Shahandashti 2018, Boskabadi, Rosenberger, and Shahandashti 2019). Figure 1 shows 

the two-stage stochastic process considered in this research. In stage 1, an initial rehabilitation 

policy/decision is made subject to the limited budget. Then a hypothetical earthquake occurs and generates 

a random scenario that determines which pipes are broken. In stage 2, right after the earthquake, a recourse 

function determines the water flow in the unbroken pipes and maximizes the output flow in generated 

subgraphs.  
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Figure 1 – Two-Stage Stochastic Model 

The contribution of this paper is as follows. We formulate the aforementioned optimization model 

as a two-stage stochastic mixed integer nonlinear program (MINLP). The MINLP model cannot be solved 

by commercial optimization software, like BARON even for problems with a very small number of 

scenarios. Consequently, we propose piecewise linear functions (PLF) to approximate the nonlinearity in 

the MINLP. Therefore, we formulate a mixed integer linear program (MILP) to approximate the MINLP. 

The optimization of the MILP is still challenging to solve, so we introduce a sequential heuristic algorithm 

to mitigate this computational issue and find bounds for the approximated optimal solution. 

In conclusion, the main contributions of this study can be summarized as follows: 

1. We develop an optimization procedure to determine which water pipes to rehabilitate subject to a 

limited budget to achieve highest network post-disaster serviceability. 

2. We formulate a novel optimization model as a two-stage stochastic mixed integer nonlinear 

programming (MINLP) model. 

3. Due to the NP-hard nature of our MINLP model, we propose a MILP-based formulation using 

PLF. 

4. We introduce a sequential heuristic algorithm to mitigate computational issues for finding bounds 

for the approximated optimal solution. 
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The remainder of this study is as follows. The two-stage stochastic programming model and the 

piecewise linear approximation is described in chapter 2. A sequential heuristic algorithm to mitigate this 

computational issue and problem instances are provided in chapter 3. Finally, conclusion and future 

research are provided in chapter 4.  
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CHAPTER 2: MODEL DESCRIPTION  

 

2.1.  General Formulation 

A water pipe network is typically represented as a graph 𝐺𝐺 =  (𝑁𝑁,𝐴𝐴), where N is the set of nodes 

and A is the set of arcs/pipes (figure 2). A node 𝑛𝑛 ∈ 𝑁𝑁 shows an Origin, Destination, or just a transition 

node/ a junction of pipes. An arc 𝑎𝑎 ∈ 𝐴𝐴 shows a pipe in the network connecting two nodes. Each arc 𝑎𝑎 ∈

𝐴𝐴 has some features such as flow, velocity, length, and diameter. Since the ultimate goal of a water pipe 

network is transferring water through the network, we consider flow as the main feature in each arc, and 

we define each arc with its flow from node i to j (𝑓𝑓𝑖𝑖𝑖𝑖). 

 

Figure 2 – Network Flow 
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We consider an existing hydraulic method - originally proposed by professor Hardy Cross (Cross 

1936) - that depends on the head balance method in a water pipe network. This method considers closed-

loop pipe networks. In this method, we assume the following: 

• Water is withdrawn from nodes only, not directly from pipes. 

• The water entering the system will have positive value, and the water leaving the system will 

have negative value. 

• Minor losses in long pipes are ignored. 

• For any individual pipe in the network, there is flow associated with it. 

• The summation of inflow is equal to the summation of outflow at any junction/node. 

For clarification, we present the formulation in an example. Let Tij be a constant number for each 

pipe from node i to j presenting its physical features. let 𝜌𝜌 be an experimental constant, usually equal to 

1.852. The Hardy Cross formulation says that summation of Tij times fij1.852 for all pipes in special loop 

must be equal to zero.  

It is worthwhile to note that the direction of the flow in each pipe has a critical role. In this 

formulation, each closed loop has a predefined direction, and if the direction of the flow in any pipe in 

that loop is the same, the coefficient Tij is considered to be positive, and negative otherwise. 

For simplicity, consider the example in figure 3 from hydraulics lecture notes.1 We labeled each 

pipe with a number. In following network, we have three loops, loop 1 consists of pipes 1, 2, and 3; loop 

2 consists of pipes 2, 4, and 5; and loop 3 consists of pipes 1, 3, 4, and 5. One of these three loop equations 

is redundant which means if two of them are satisfied the third one will be satisfied automatically, but we 

present all three equations here. Figure 3 shows predefined directions for the loops and flow directions in 

                                                            
1 http://site.iugaza.edu.ps/sghabayen/files/2012/02/ch4-part-2.pdf 

http://site.iugaza.edu.ps/sghabayen/files/2012/02/ch4-part-2.pdf
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the pipes. Tij for pipes 1 to 5 are given as 0.0187, 0.0187, 0.0092, 0.0280, and 0.0023. By using Hardy 

Cross method, we can guarantee head balance in the network. 

N= {1, 2, 3, 4}; A= {1, 2, 3, 4, 5}; Tij = {0.0187, 0.0187, 0.0092, 0.0280, 0.0023} 

 

Figure 3 – Water Pipe Network Example 

Loop 1: 𝑇𝑇12𝑓𝑓121.852 + 𝑇𝑇23𝑓𝑓231.852 − 𝑇𝑇13𝑓𝑓131.852 = 0  

0.0187 ∗ 24 
1.852 + 0.0187 ∗ 11.4 

1.852 − 0.0092 ∗ 39 
1.852 = 0 

Loop 2: 𝑇𝑇24𝑓𝑓241.852 − 𝑇𝑇23𝑓𝑓231.852 − 𝑇𝑇34𝑓𝑓341.852 = 0 

0.0280 ∗ 12.6 
1.852 − 0.0187 ∗ 11.4 

1.852 − 0.0023 ∗ 25.2 
1.852 = 0 

Loop 3: 𝑇𝑇12𝑓𝑓121.852 + 𝑇𝑇24𝑓𝑓241.852 − 𝑇𝑇13𝑓𝑓131.852 − 𝑇𝑇34𝑓𝑓341.852 = 0 

0.0187 ∗ 24 
1.852 + 0.0280 ∗ 12.6 

1.852 − 0.0092 ∗ 39 
1.852 − 0.0023 ∗ 25.2 

1.852 = 0 

2.2.  Stochastic programming model for water pipe rehabilitation  

We introduce a stochastic programming model for the water pipe rehabilitation problem with a 

recourse flow function to maximize the output flow after the earthquake.  
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Let the water pipe network be represented as a graph G = (N, A), where N is a set of nodes, and A 

is a set of arcs/pipes as mentioned before. For each arc (i,j) ∈ A, let rehabilitation decision variable 

𝑥𝑥𝑖𝑖𝑖𝑖 = �1;                 if pipe from node 𝑖𝑖 to 𝑗𝑗 is rehabilitated
0;                 otherwise                                                       

In addition, let Ξ be a set of random scenarios in which each determines which pipes break 

according to a Monte Carlo simulation. For each scenario ξ ∈ Ξ, let 𝑃𝑃𝜉𝜉 be the probability that scenario ξ 

occurs. We can calculate the 𝑃𝑃𝜉𝜉 as follows: 

𝑃𝑃𝜉𝜉 = frequency of special scenario 𝜉𝜉 happens 
all scenarios

             (1) 

Let a loop be a sequence of connected pipes that begins and ends with the same node.  In network 

literature, a loop is usually referred to as a cycle, but in this research, we have elected to use the term loop 

to be consistent with the hydraulic literature. Before the earthquake, let K be the set of all loops in the 

network G. For each loop 𝑘𝑘 ∈ 𝐾𝐾, let the loop variable 𝑂𝑂𝑘𝑘
𝜉𝜉 be 

𝑂𝑂𝑘𝑘
𝜉𝜉 = �1;     if all pipes in loop k are unbroken in scenario 𝜉𝜉                       

0;     if at least one of the pipes  in loop 𝑘𝑘 is broken in scenario 𝜉𝜉   

We consider 𝐴𝐴𝑘𝑘 as a subset of A which contains pipes in special closed loop k in each scenario. 

We define binary parameter 𝑟𝑟𝑖𝑖𝑖𝑖
𝜉𝜉  that is 1 when the pipe from node i to j breaks in scenario ξ ∈ Ξ if 

unrehabilitated and 0 otherwise. Therefore, a network with |𝐴𝐴| pipes creates 2|𝐴𝐴| rehabilitation policies. 

For each of rehabilitation policy, there are 2|𝐴𝐴|′′scenarios where |𝐴𝐴|′′  is the subset of A containing 

unrehabilitated pipes. Each scenario corresponds to a sub-graph 𝑔𝑔 ∈ 𝐺𝐺. Therefore, the model becomes 

huge even for a small-sized water pipe network. 

For each arc (i,j) ∈ A and scenario ξ ∈ Ξ, let 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 be the flows from node i to j in scenario ξ ∈ Ξ. In 

addition, we define 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉  to be the net flow (inflow/outflow) of node i in scenario ξ ∈ Ξ. Let Nt be the 

subset of N consisting of demand nodes and Ns be the subset of N that contains source nodes. Therefore, 
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 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉 = 0 𝑖𝑖𝑓𝑓 𝑖𝑖 ∈ 𝑁𝑁\𝑁𝑁𝑡𝑡 ∪ 𝑁𝑁𝑠𝑠,𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉 ≥ 0 𝑖𝑖𝑓𝑓 𝑖𝑖 ∈ 𝑁𝑁𝑡𝑡 , and 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉 ≤ 0 𝑖𝑖𝑓𝑓 𝑖𝑖 ∈ 𝑁𝑁𝑠𝑠. 

In addition, let 𝑙𝑙𝑖𝑖𝑖𝑖  be the cost of rehabilitating the pipe from node i to j, and let L be the 

rehabilitation budget.  Moreover, let 𝑇𝑇𝑖𝑖𝑖𝑖 be a certain coefficient for each pipe that depends on the physical 

features of the pipe like its material and diameter, let 𝜌𝜌 be an experimental constant, usually equal to 

1.852, the hydraulic literature often defines the pressure in a pipe (i, j) to be 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉   𝜌𝜌 (Cross, H. 1936). In 

addition, let 𝑈𝑈𝑖𝑖𝑖𝑖 be the maximum possible flow in each pipe (i, j) ∈ A. Therefore, the extensive form of 

the stochastic programming model for the water pipe rehabilitation problem is formulated as: 

Max 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 = ∑ (𝑃𝑃𝜉𝜉)�
∑ 𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉
𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡

pre earthquake outflow
� 

𝜉𝜉∈Ξ       (2) 

∑ 𝑙𝑙𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖 (𝑖𝑖 𝑖𝑖)∈𝐴𝐴 ≤ 𝐿𝐿           (3) 

∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁: (𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 –∑ 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁:(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉    ∀𝑖𝑖𝑖𝑖𝑁𝑁, ∀𝜉𝜉 ∈ Ξ   (4) 

𝑂𝑂𝑘𝑘
𝜉𝜉 = ∏ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ  (5) 

𝑂𝑂𝑘𝑘
𝜉𝜉(∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉   𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 

) = 0     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ  (6) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ  (7) 

𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉 = 0        ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴, ∀𝜉𝜉 ∈ Ξ  (8) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}       ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (9) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ∈ {0, 1}       ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝜉𝜉 ∈ Ξ  (10) 

In this MINLP, the objective function (2) maximizes the Expected System Serviceability Index 

(ESSI). Constraint (3) is a knapsack constraint that restricts the cost of rehabilitation to be less than a 

predetermined budget. Constraint set (4) ensures that the difference between input and output flow at each 

node is equal to the supply or demand of that node, also referred to as flow conservation constraints. 

Constraint set (5) ensures that each loop exists if and only if all of its pipes are unbroken after the 
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earthquake. We discuss these constraints in more detail in Section 2.3. Constraint set (6) ensures that each 

remaining loop, satisfies head balance with 𝜌𝜌 = 1.852. Constraint set (7) defines the relationship among 

x, r, and f. It guarantees that if a pipe is rehabilitated before the earthquake (x = 1), the earthquake does 

not break it. On the other hand, if a pipe is not rehabilitated before the earthquake (x = 0), it is broken after 

the earthquake if 𝑟𝑟 𝜉𝜉  = 1. Consequently, the flow f on an arc in scenario ξ can be nonzero if x = 1 or 𝑟𝑟 𝜉𝜉  = 

0. Constraint set (8) makes sure that each flow is just in one direction in each pipe. Constraint sets (9) and 

(10) are integer restrictions. 

The deterministic equivalent (DE) model for water pipe rehabilitation problem is: 

𝑀𝑀𝑎𝑎𝑥𝑥 𝑄𝑄(𝑥𝑥𝑖𝑖𝑖𝑖 )           (12) 

s.t.: ∑ 𝑙𝑙𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖 (𝑖𝑖 𝑖𝑖)∈𝐴𝐴 ≤ 𝐿𝐿          (3) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}       ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (9) 

Where 𝑄𝑄(𝑥𝑥𝑖𝑖𝑖𝑖 ) is the expected second-stage recourse function defined as: 

𝑄𝑄�𝑥𝑥𝑖𝑖𝑖𝑖 � = 𝐸𝐸𝜉𝜉𝑄𝑄�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝜉𝜉�,  and         (13) 

𝑄𝑄�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝜉𝜉� = 𝑚𝑚𝑎𝑎𝑥𝑥∑ 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉

𝑖𝑖𝑗𝑗𝑁𝑁𝑡𝑡          (14) 

s.t.: 

∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁: (𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 –∑ 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁:(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉    ∀𝑖𝑖𝑖𝑖𝑁𝑁, ∀𝜉𝜉 ∈ Ξ   (4) 

𝑂𝑂𝑘𝑘
𝜉𝜉 = ∏ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ  (5) 

𝑂𝑂𝑘𝑘
𝜉𝜉(∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉   𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 

) = 0     ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ  (6) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ  (7) 

𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉 = 0        ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴, ∀𝜉𝜉 ∈ Ξ  (8) 

Given a rehabilitation decision variable x ∈ X, the constraints in (4-8) can be decomposed by each 

rehabilitation decision variable and scenario resulting in |𝑋𝑋| × |𝛯𝛯| recourse sub-problem.  
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2.3. Challenges with MINLP 

Challenges in this MINLP are as follow: 

1. Constraint (7) is not tight enough, which can be slow down Branch and Bound. 

2. The number of loops is exponentially large with respect to the number of pipes in the network, 

and we need to detect all minimum loops in the network. This challenge affects the number of 

constraints in constraint sets (5) and (6). 

3. Constraint sets (5), (6), and (8) are nonlinear and nonconvex. 

2.3.1. Tightening Flow Upper Bound 

To address first challenge, we compute the maximum possible flow in each pipe (i, j) ∈ A by 

solving a network flow problem as follow: 

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑎𝑎𝑥𝑥 𝑓𝑓𝑖𝑖𝑖𝑖           (11) 

s.t.: ∑ 𝑓𝑓𝑖𝑖𝑖𝑖  𝑖𝑖𝑗𝑗𝑁𝑁: (𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 –∑ 𝑓𝑓𝑖𝑖𝑖𝑖  𝑖𝑖𝑗𝑗𝑁𝑁:(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑖𝑖    ∀𝑖𝑖𝑖𝑖𝑁𝑁, ∀𝜉𝜉 ∈ 𝛯𝛯   (4) 

𝑓𝑓𝑖𝑖𝑖𝑖 ≥ 0          ∀(𝑖𝑖,  𝑗𝑗) ∈ 𝐴𝐴   (7a) 

In this model, the objective function (11) maximizes the flow in a given pipe, while the model considers 

the flow conservation constraint set that we described before. 

2.3.2. Minimum Loop Detection 

 The second challenge we encounter in this model is the detection of all loops in the network. To 

address this challenge, we consider a minimum loop to be one with no internal loops. For example, Loops 

1 and 2 in figure 3 are minimum loops, but Loop 3 is not minimum. If a pipe breaks, the set of minimum 

loops may change in the created subgraph. let 𝐾𝐾𝜉𝜉 be the set of all minimum closed loops in scenario 𝜉𝜉. In 

this study, we detect all minimum loops for subgraphs dynamically in each scenario. The detection of 

minimum loops in a graph can be done by different methods (Sedgewick 1983, Tucker 2006). Topological 

https://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)
https://en.wikipedia.org/wiki/Alan_Tucker
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sorting algorithms and Depth-First Search are the prevalent algorithms in loop detection. The GrTheory 

toolbox for MATLAB, used in this research, adds one edge at a time to the spanning tree to find loops. 

On the other hand, the number of minimum loops changes in each scenario, therefore the number of 

constraints in constraint sets (5) and (6) is changes in our model dynamically with respect to the scenario. 

We revisit this challenge in the sequential algorithm. 

2.3.3. Linear Approximation Models 

Since the previously given stochastic MINLP model is computationally intractable, even for a 

small number of scenarios, we formulate an approximation as an MILP.  We have three nonlinear 

constraint sets, (5), (6) and (8). For linearization of constraint set (5), we introduce two new constraint 

sets that can substitute for constraint set (5): 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉     ∀𝑘𝑘 ∈ 𝐾𝐾,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5a) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≥ ∑ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉
 ∀(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − (𝐴𝐴𝑘𝑘 − 1) ∀𝑘𝑘 ∈ 𝐾𝐾,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5b) 

It guarantees if all the pipes in a special loop k is rehabilitated before earthquake, (𝑥𝑥𝑖𝑖𝑖𝑖 = 1), the 

loop will exist in the scenario ξ∈ Ξ, (𝑂𝑂𝑘𝑘
𝜉𝜉 = 1). On the other hand, if at least one of the pipes in loop k 

breaks, �𝑟𝑟𝑖𝑖𝑖𝑖
𝜉𝜉 = 1�, the loop is gone in scenario ξ∈ Ξ, (𝑂𝑂𝑘𝑘

𝜉𝜉 = 0). 

Since constraint (6) is a nonlinear equality constraint; it is not convex, nor concave. Linearization 

of binary variable 𝑂𝑂𝑘𝑘
𝜉𝜉 ,𝑘𝑘 ∈ {1, … ,𝐾𝐾}  interacts with continuous variables 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉    𝜌𝜌, 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑁𝑁} in each 

scenario 𝜉𝜉 ∈ Ξ is as follows (McCormick 1983), where M is a big positive constant: 

−𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘

𝜉𝜉 ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ  (6a) 

These constraints can be written as two constraints: 

−𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝜌𝜌 
(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0  ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6b) 
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∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘:𝑟𝑟𝑖𝑖𝑖𝑖=0 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6c) 

However, we still have the term 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 that is nonlinear. By using Piecewise Linear Functions (PLF) 

(Ahuja, Magnanti and Orlin 1988), constraint sets (6b) and (6c) can be approximated and linearized. The 

term 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 can be estimated by a PLF with S linear pieces. For each linear piece s = 1, …, S, let 𝑚𝑚𝑠𝑠 be the 

slope,  𝑐𝑐𝑠𝑠 be the intercept, (𝑎𝑎′𝑠𝑠, 𝑎𝑎′𝑠𝑠+1) be the domain, and 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 be a binary variable that indicates the flow 

of pipe (i, j) is in the domain of s. Figure 3 shows an example for 3 linear pieces in PLF. 

 

Figure 4 – Piecewise Linear Approximation (PLA) 

As it can be seen in figure 4, 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 can be estimated by the summation of f functions (3 functions 

in the example shown in figure 4) in the form of 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠
𝜉𝜉  that satisfy the following condition: 

𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝜌𝜌 ≈ �𝑚𝑚1𝑓𝑓𝑖𝑖𝑖𝑖 1 

𝜉𝜉 + 𝑐𝑐1𝑤𝑤𝑖𝑖𝑖𝑖 1� + �𝑚𝑚2𝑓𝑓𝑖𝑖𝑖𝑖 2 
𝜉𝜉 + 𝑐𝑐2𝑤𝑤𝑖𝑖𝑖𝑖 2� + ⋯+ �𝑚𝑚𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 

𝜉𝜉 + 𝑐𝑐𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠�  (15) 

s.t.: 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 1 
𝜉𝜉 ≤ 𝑎𝑎′1𝑤𝑤𝑖𝑖𝑖𝑖 1   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ    (16) 

 𝑎𝑎′𝑠𝑠−1𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 
𝜉𝜉 ≤ 𝑎𝑎′𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ;  ∀𝑠𝑠𝑖𝑖{2, 3, … , 𝐸𝐸}  (17) 
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𝑤𝑤𝑖𝑖𝑖𝑖 1 + 𝑤𝑤𝑖𝑖𝑖𝑖 2 + ⋯+ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 = 1   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴     (18) 

𝑤𝑤𝑖𝑖𝑖𝑖 1,𝑤𝑤𝑖𝑖𝑖𝑖 2, … ,𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ {0,  1}   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴     (19) 

Therefore, constraints (6b) and (6c) can be approximated as follows: 

−𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
− ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
  

        ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6d) 

∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉    

        ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝜉𝜉 ∈ Ξ   (6e) 

The linearization method for constraint set (8) when multiplication of two continuous variables 

must be equal to zero can be formulated as below1. We use a set of binary variables 𝑔𝑔𝑖𝑖𝑖𝑖
𝜉𝜉 .  

𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ 𝑔𝑔𝑖𝑖𝑖𝑖

𝜉𝜉 𝑈𝑈𝑖𝑖𝑖𝑖      ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴, ∀𝜉𝜉 ∈ Ξ   (8a) 

𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − 𝑔𝑔𝑖𝑖𝑖𝑖

𝜉𝜉 )𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴, ∀𝜉𝜉 ∈ Ξ   (8b) 

𝑔𝑔𝑖𝑖𝑖𝑖
𝜉𝜉 ∈ {0, 1}      ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴, ∀𝜉𝜉 ∈ Ξ   (8c) 

On the other hand, when two continuous variables cannot take positive values at the same time 

and at least one of them must be zero, we can use a set of auxiliary binary variables 𝑔𝑔𝑖𝑖𝑖𝑖
𝜉𝜉  and some large 

positive numbers like Uij to transform the complementary condition to linear constraints.  

In network simplex it is known that even when we consider flow in two directions, just one of 

them will get a number (Ahuja, Magnanti and Orlin 1988). Therefore, we relax constraint (8). 

2.4. Revised Two-Stage Stochastic Programming Formulation 

The final approximate MILP consists of objective function (2), and constraints (3), (4), (5a), (5b), 

(6d), (6e), (7), (9), (10), (16), (17), (18), and (19): 

                                                            
1  https://www.leandro-coelho.com/linearization-product-variables/ 

https://www.leandro-coelho.com/linearization-product-variables/
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Max 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 = ∑ (𝑃𝑃𝜉𝜉)�
∑ 𝑁𝑁𝑁𝑁𝑖𝑖

𝜉𝜉
𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡

pre earthquake outflow
� 

𝜉𝜉∈Ξ       (2) 

∑ 𝑙𝑙𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖 (𝑖𝑖 𝑖𝑖)∈𝐴𝐴 ≤ 𝐿𝐿           (3) 

∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁: (𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 –∑ 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁:(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉    ∀𝑖𝑖𝑖𝑖𝑁𝑁, ∀𝜉𝜉 ∈ Ξ   (4) 

 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉      ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5a) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≥ ∑ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉
 ∀(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − (𝐴𝐴𝑘𝑘 − 1)  ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5b) 

−𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
− ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
 

         ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 , ∀𝜉𝜉 ∈ Ξ  (6d) 

∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉   

         ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 , ∀𝜉𝜉 ∈ Ξ  (6e) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ  (7) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}       ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (9) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ∈ {0, 1}       ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀𝜉𝜉 ∈ Ξ  (10) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 1 
𝜉𝜉 ≤ 𝑎𝑎′1𝑤𝑤𝑖𝑖𝑖𝑖 1    ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ    (16) 

 𝑎𝑎′𝑠𝑠−1𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 
𝜉𝜉 ≤ 𝑎𝑎′𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ;  ∀𝑠𝑠𝑖𝑖{2, 3, … , 𝐸𝐸}  (17) 

𝑤𝑤𝑖𝑖𝑖𝑖 1 + 𝑤𝑤𝑖𝑖𝑖𝑖 2 + ⋯+ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 = 1   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴     (18) 

𝑤𝑤𝑖𝑖𝑖𝑖 1,𝑤𝑤𝑖𝑖𝑖𝑖 2, … ,𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ {0,  1}   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴     (19) 

Moreover, the expected MILP second-stage recourse function consists of objective function (14), 

and constraints (4), (5a), (5b), (6d), (6e), (7), (9), (10), (16), (17), (18), and (19).  

𝑄𝑄�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝜉𝜉� = 𝑚𝑚𝑎𝑎𝑥𝑥∑ 𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉

𝑖𝑖𝑗𝑗𝑁𝑁𝑡𝑡          (14) 
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∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁: (𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 –∑ 𝑓𝑓𝑖𝑖𝑖𝑖

𝜉𝜉  𝑖𝑖𝑗𝑗𝑁𝑁:(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑖𝑖
𝜉𝜉    ∀𝑖𝑖𝑖𝑖𝑁𝑁, ∀𝜉𝜉 ∈ Ξ   (4) 

 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉      ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5a) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ≥ ∑ 1 − �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉
 ∀(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − (𝐴𝐴𝑘𝑘 − 1)  ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴𝑘𝑘, ∀𝜉𝜉 ∈ Ξ (5b) 

−𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉 ≤ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
− ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠  

𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘  
 

         ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 , ∀𝜉𝜉 ∈ Ξ  (6d) 

∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 − ∑ 𝑇𝑇𝑖𝑖𝑖𝑖(∑ 𝑚𝑚𝑠𝑠 𝑓𝑓
𝑖𝑖𝑖𝑖 𝑠𝑠  
𝜉𝜉 + 𝑐𝑐𝑠𝑠 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠

𝑆𝑆
𝑠𝑠 =1 ) 

(𝑖𝑖 𝑖𝑖)𝑗𝑗𝐴𝐴𝑘𝑘 ≤ 𝑀𝑀𝑂𝑂𝑘𝑘
𝜉𝜉   

         ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 , ∀𝜉𝜉 ∈ Ξ  (6e) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖
𝜉𝜉 ≤ (1 − (1 − 𝑥𝑥𝑖𝑖𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

𝜉𝜉) 𝑈𝑈𝑖𝑖𝑖𝑖     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ  (7) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}       ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (9) 

𝑂𝑂𝑘𝑘
𝜉𝜉 ∈ {0, 1}       ∀𝑘𝑘 ∈ 𝐾𝐾𝜉𝜉 ,∀𝜉𝜉 ∈ Ξ  (10) 

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 1 
𝜉𝜉 ≤ 𝑎𝑎′1𝑤𝑤𝑖𝑖𝑖𝑖 1      ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ  (16) 

 𝑎𝑎′𝑠𝑠−1𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 𝑠𝑠 
𝜉𝜉 ≤ 𝑎𝑎′𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠   ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴,∀𝜉𝜉 ∈ Ξ;  ∀𝑠𝑠𝑖𝑖{2, 3, … , 𝐸𝐸}  (17) 

𝑤𝑤𝑖𝑖𝑖𝑖 1 + 𝑤𝑤𝑖𝑖𝑖𝑖 2 + ⋯+ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 = 1     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (18) 

𝑤𝑤𝑖𝑖𝑖𝑖 1,𝑤𝑤𝑖𝑖𝑖𝑖 2, … ,𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ {0,  1}     ∀(𝑖𝑖, 𝑗𝑗)𝑖𝑖𝐴𝐴   (19) 

2.5.  Evaluation Procedure 

 As we mentioned before, in our study, the problem finds a best rehabilitation policy X before the 

earthquake that maximizes the expected SSI right after the earthquake. We find bounds for the 

approximated optimal solution by employing the solution method described in (Mak, Morton, and Wood 

1999). Consequently, we solve the MILP defined above for a limited budget or limited rehabilitation 

length by using the MATLAB and Gurobi. Since the optimization of the MILP is still challenging to solve, 
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we introduce a sequential revised two-stage stochastic solution to find an optimality gap for the MILP 

optimal solution. 

2.5.1. Accuracy of MILP Recourse Function  

The evaluation of the MILP and the MINLP has been done in a case when there is no break in the 

network. We use fmincon function in MATLAB to find an optimal solution for MINLP. Hence, we 

evaluate how well our MILP approximates the MINLP. 

2.5.2. Sequential Revised Two-Stage Stochastic Algorithm 

 The optimization of the MILP is still challenging to solve. To mitigate this computational issue 

and find bounds for the approximated optimal solution, we introduce a sequential revised two-stage 

stochastic solution in Algorithm 1 to find an optimality gap for the MILP optimal solution (Mak, Morton, 

and Wood 1999). We used MATLAB and Gurobi. Programming code was written in MATLAB to 

generate the minimum loops and formulate the MILP. GUROBI was used to optimize the MILP.  

 

Algorithm 1. Sequential Revised Two-Stage Stochastic Solution 

Sort scenarios by their descending probabilities. 

Divide them into groups of size G, therefore we have |𝛯𝛯|
𝐺𝐺�  groups. 

Consider a predefined L for length of rehabilitation. 

Initialize 𝑖𝑖 
 
← 0, predefine flow direction, predefine loop direction. 

While i≤ |𝛯𝛯|
𝐺𝐺�  AND remaining rehab length L>0 do: 

• Solve the MILP (2-4, 5(a), 5(b), 6(d), 6(e), 7, 16-19, 9,10) over 𝛯𝛯𝑖𝑖   to obtain �̅�𝑥𝑖𝑖  and 

ESSI�̅�𝑥𝑖𝑖
  (MATLAB – GUROBI). 
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• Let 𝐿𝐿
 
←𝐿𝐿 − ∑ 𝑙𝑙𝑖𝑖�̅�𝑥𝑖𝑖𝑖𝑖𝑖𝑖 . 

• Let 𝑥𝑥�́�𝚥 = 1,  if �̅�𝑥𝑖𝑖𝑖𝑖 = 1. 

• Let 𝑟𝑟𝑖𝑖
𝜉𝜉 = 0, if �̅�𝑥𝑖𝑖𝑖𝑖 = 1,  ∀𝜉𝜉 ∈ 𝛯𝛯𝑖𝑖+1,…,|𝛯𝛯|

𝐺𝐺�  . 

• i=i+1. 

End while. 

C𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 ESSI�̅�𝑥Seq = ∑ ∑ 𝑝𝑝𝜉𝜉 
𝜉𝜉∈𝛯𝛯𝑖𝑖 

ESSI�̅�𝑥𝑖𝑖
 

|𝛯𝛯|
𝐺𝐺�

𝑖𝑖=1 . 

Report �̅�𝑥Seq,  ESSI�̅�𝑥Seq. 

 

Algorithm 1 sorts all scenarios by their descending probabilities; then they are divided into groups 

of size G.  Let L be the predefined rehabilitation length. On each iteration, we solve the MILP model over 

each group of scenarios to find a best-known decision policy and its ESSI. With the pipes in the best-

known decision policy, we force them to be rehabilitated in subsequent groups of scenarios. Then we 

reduce the remaining rehabilitation length by length of these pipes. Algorithm 1 terminates when there are 

no more groups of scenarios or remaining rehabilitation length. Finally, we calculate expected system 

serviceability index which is a Lower Bound (LB) for the optimal solution by multiplying each of 

calculated ESSIs by its probability. Note that if we do not update the rehabilitation length and next groups 

of scenarios by the pipes in the best-known decision policy in algorithm 1, the expected ESSI is an Upper 

Bound (UB) for our model. 

2.5.3. Discussion 

Mak, Morton, and Wood (1999) proved that for an maximization problem with continuous random 

variables, we can sample a huge number of scenarios, divide these scenarios into smaller subsets of 

scenarios, solve the maximization problem over each of these group of scenarios, and then take the average 
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of the objective values to determine an expected UB on the objective value of the original maximization 

problem, since the expected value of maximums is greater than or equal to the maximum of the expected 

values. Similarly, we can use a modified version algorithm 1 to determine an upper bound in this research. 

In this particular algorithm (algorithm 1), by not adjusting the length, we essentially solve the original 

problem within each group of scenarios. Consequently, this creates an expected value of the maximums 

that is greater than the objective value of an optimal solution and is an UB for our problem.  

The other component is the LB. By definition, any feasible first stage solution is less than or equal 

to an optimal solution. Consequently, any rehabilitation plan we find that is feasible, by definition is a LB 

to our problem. In this particular algorithm (algorithm 1), by continually reducing the remaining length 

and solving this problem under the remaining groups of scenarios, we find a feasible rehabilitation plan, 

Therefore, algorithm 1 will form a bound in expectation on our problem. Note that Mak, Morton, Wood 

1999 do not just create an expected bound, but they also create 95% Confident Intervals (CIs), which was 

not done here but a topic of future research. 

 It is also worthwhile to note that when we are creating these bounds, we are doing this subject to 

all of the approximations we explained in section 2.3.3. Consequently, our ESSI�̅�𝑥Seq in algorithm 1 yields  

approximated expected bounds.  

 

CHAPTER 3: COMPUTATIONAL STUDY 

We consider two networks, networks 1 and 2. Network 1 consists of 117 pipes, 92 nodes, and 22 

loops before the earthquake (figure 5). The water pipe network length is 65,749 meters. Figure 6 shows 

network 2, the Modena network. Network 2 consists of 317 pipes, 272 nodes, and 46 loops before the 

earthquake. The water pipe network length is 71806 meters. The maximum expected system serviceability 

before earthquake is 387.67 (liter/second). For network 2, we generated 3000 random scenarios using 

Monte Carlo Simulation from a hypothetical earthquake (Shahandashti and Pudasaini 2019). 308 pipes 
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out of the 317 pipes break at least once in the 3000 scenarios. Consequently, most of the pipes in the 

network breaks at least in one of the scenarios, and finding a best policy for rehabilitation plays an 

important role in making decision about which pipe is rehabilitated. However, many of the scenarios 

within the 3000 are repeated, and we note that there are in fact only 1505 unique scenarios. The probability 

of each unique scenario has been calculated by (1). We used MATLAB and GUROBI to solve the MILP 

model. Programming code was written in MATLAB to generate the minimum loops and formulate the 

MILP. GUROBI was used to optimize the MILP. The model was solved on a workstation with the 

following device specification: Processor, Intel® Xeon® CPU E3-1285 v6 @ 4.10 GHz., and Installed 

RAM, 32.0 GB. 

 

 

    Figure 5 – Network 1 
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Figure 6 – Network 2 

3.1. Accuracy of MILP Recourse Function 

First, we evaluate the accuracy of the MILP recourse function. For Network 1, we consider a single 

scenario case in which the earthquake does not break any pipes. We solve the MILP using Gurobi to 

determine the flows in Network 1. In this case model does not recommend any rehabilitation policy. Then, 

we use FMINCON function in MATLAB to find an optimal solution for the nonlinear recourse function. 

We should mention that the result from FMINCON function may not be global optimal. The results show 

the linear approximated flow from the MILP recourse function is 210.5 liters/second, while the local 

optimal solution for the non-linear recourse function is 209.3 liters/second. Consequently, in this case the 

piecewise linear approximation is 99.4% accurate. 

3.2. Sequential Heuristic Revised Two-Stage Stochastic Programming  

We apply algorithm 1 in network 2 to evaluate our sequential algorithm. Since network 2 is huge, 

we divide the 1505 unique scenarios into groups with five scenarios each. We assume rehabilitation cost 

is proportional to the pipe length, and the budget limit is 1500 meters. First, we solve the MILP over the 
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most probable five scenarios. Then, we reduce budget limit by the length of the pipes in the solution. We 

repeat this process until we have either no remaining scenario groups or budget limit. Table 1 shows the 

results. The final policy rehabilitates 4 pipes with a total length of 1498.97 meters and a serviceability of 

373.25 liters/second (figure 7). 

We use the method in (Mak, Morton, and Wood 1999) and determine the following optimality 

bounds for the solution as discussed in previous chapter: 

373.25 � liters
second

� ≤ 𝑧𝑧∗ ≤ 386.64 � liters
second

�       (20) 

Consequently, the solution we find using the sequential algorithm is within 2% of optimality. 

Table 1- Sequential MILP 

Iteration Sum Rehab Remaining Rehab 
Length 

# of Rehabilitated 
Pipes Pipes get Rehabilitated 

 1 to 27 1411.84 88.16 2 22, 154 
28 to 60 1492.94 7.06 3 22, 154, 26 

61 1498.97 1.03 4 22, 154, 26, 13 
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Figure 7 – Rehabilitation policy X  

3.3.  Evaluation with Previous Results 

As we mentioned before, Network 2 has been considered before by Shahandashti and Pudasaini 

(2019). They employed Simulated Annealing (SA) to solve the same problem. For evaluating sequential 

algorithm solution from algorithm 1, we compare its second-stage recourse function results for its 

rehabilitation policy with the ones for rehabilitation policy concluded by SA. Table 2 shows the solutions 

of the two approaches:  

Table 2 – comparisons of results 

Method Rehab 
Length (m) 

Remaining Rehab 
Length (m) Rehabilitated Pipes Expected 

Flow (l/s) 
Sequential Algorithm 
solution 1,498.97 1.03 13, 22, 26, 154 373.3 

Simulated Annealing (SA) 
solution 1,489.06 10.94 3, 48, 79, 137, 160, 

273 372.5 

 

As we can see in table 2 sequential algorithm solution provides 0.8 (liter/second) outflow more 

than SA solution for the same network and earthquake. 

Note that, SA solution did not use up the entire budget. There are multiple pipes that are under 10 

m in length, like pipe 13, that breaks in at least one scenario out of 3000 scenarios. From a knapsack 

perspective, we know there is better results than SA solution, since any pipe under 10 m could be added 

to the rehabilitation policy. On the other side, the sequential algorithm solution has a remaining 

rehabilitation length that is smaller than every pipe that breaks in the 3000 scenarios in the network. 

3.4. Problem Instances 

In this study, we created 30 new networks by deleting certain pipes from network 2 to evaluate the 

performance of the sequential algorithm. Since network 2 is a water pipe network, we were very careful 
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about the pipes we deleted to create new networks. Pipes were deleted according to their position in a 

loop. Therefore, created new loops were perfect closed-loop, and the new networks had rational structure. 

In other words, to avoid extraneous pipes, if a sequence of pipes is only connected by couplings, and one 

of the pipes is deleted, then the remaining pipes in the sequence are deleted as well. Then we reduced the 

network length by the total deleted pipe length. For determining new sets of unique scenarios in each new 

network, we removed the deleted pipes in the 3000 original scenarios, and then we found unique scenarios 

in each new network. 

Figure 8 and 9 are summary statistics of the 30 new networks. Figure 8 shows the number of nodes 

and pipes in the 30 new networks, while figure 9 summarizes the network lengths. Figure 10 shows 

drawing of 30 new networks. 

 

Figure 8 – Number of nodes and pipes in 30 networks  

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Network

No. of Nodes No. of Pipes



37 | P a g e  
 

  

Figure 9 – Length of new networks 

63000

64000

65000

66000

67000

68000

69000

70000

71000

72000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

M
et

er

Network



38 | P a g e  
 

 

 



39 | P a g e  
 

 

Figure 10 – Drawings of 30 new networks 

For each network, the sequential algorithm was used to achieve bounds according to the method 

described in (Mak, Morton, and Wood 1999). Table 3 shows results.  
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Table 3- Rehabilitation policies of 30 new networks 
Network 1: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 5 2 22, 142 1269.39 230.61 
6 to 30 3 22, 142, 254 1457.08 42.92 
31 to 275 4 22, 142, 254, 8 1496.99 3.01 

Network 2: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 113 1456.99 43.01 
30 to 290 3 22, 113, 8 1496.9 3.1 

Network 3: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 292 3 22, 114, 8 1496.9 3.1 

Network 4: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 21 2 19, 111 1456.99 43.01 
22 to 291 3 19, 111, 5 1496.9 3.1 

Network 5: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 24 2 22, 148 1411.84 88.16 
25 to 30 3 22, 148, 220 1455.09 44.91 
31 to 290 4 22, 148, 220, 8 1495 5 

Network 6: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 289 3 22, 114, 8 1496.9 3.1 

Network 7: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 290 3 22, 114, 8 1496.9 3.1 

Network 8: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 290 3 22, 114, 8 1496.9 3.1 

Network 9: 
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Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 20 2 22, 154 1411.84 88.16 
21 to 49 3 22, 154, 81 1463.88 36.12 
50 to 275 4 22, 154, 81, 310 1492.33 7.67 

276 to 298 5 
22, 154, 81, 310, 
13 1498.36 1.64 

Network 10: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 293 3 22, 114, 8 1496.9 3.1 

Network 11: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 295 3 22, 114, 8 1496.9 3.1 

Network 12: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 30 2 22, 114 1456.99 43.01 
31 to 290 3 22, 114, 8 1496.9 3.1 

Network 13: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 111 1456.99 43.01 
30 to 297 3 22, 111, 8 1496.9 3.1 

Network 14: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 27 2 22, 144 1411.84 88.16 
28 to 271 3 22, 144, 73 1491.31 8.69 
272 to 293 4 22, 144, 73, 13 1497.34 2.66 

Network 15: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 19, 151 1411.84 88.16 
29 to 270 3 19, 151, 80 1491.31 8.69 
271 to 292 4 19, 151, 80, 13 1497.34 2.66 

Network 16: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 299 3 22, 114, 8 1496.9 3.1 

Network 17: 
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Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 295 3 22, 114, 8 1496.9 3.1 

Network 18: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 21, 110 1456.99 43.01 
30 to 294 3 21, 110, 7 1496.9 3.1 

Network 19: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 20, 111 1456.99 43.01 
30 to 295 3 20, 111, 8 1496.9 3.1 

Network 20: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 154 1411.84 88.16 
29 to 49 3 22, 154, 81 1463.88 36.12 
50 to 274 4 22, 154, 81, 310 1492.33 7.67 

275 to 297 5 
22, 154, 81, 310, 
13 1498.36 1.64 

Network 21: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 151 1411.84 88.16 
29 to 49 3 22, 151, 81 1463.88 36.12 
50 to 274 4 22, 151, 81, 310 1492.33 7.67 

275 to 297 5 
22, 151, 81, 310, 
13 1498.36 1.64 

Network 22: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 151 1411.84 88.16 
29 to 49 3 22, 151, 115 1462.6 37.4 
50 to 273 4 22, 151, 115, 310 1491.05 8.95 

274 to 296 5 
22, 151, 115, 310, 
13 1497.08 2.92 

Network 23: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 154 1411.84 88.16 
29 to 271 3 22, 154, 83 1491.31 8.69 
272 to 294 4 22, 154, 83, 13 1497.34 2.66 

Network 24: 
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Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 154 1411.84 88.16 
29 to 295 3 22, 154, 98 1499.38 0.62 

Network 25: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 110 1456.99 43.01 
30 to 299 3 22, 110, 8 1496.9 3.1 

Network 26: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 296 3 22, 114, 8 1496.9 3.1 

Network 27: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 29 2 22, 114 1456.99 43.01 
30 to 295 3 22, 114, 8 1496.9 3.1 

Network 28: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 154 1411.84 88.16 
29 to 48 3 22, 154, 81 1463.88 36.12 
49 to 275 4 22, 154, 81, 310 1492.33 7.67 

276 to 298 5 
22, 154, 81, 310, 
13 1498.36 1.64 

Network 29: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 151 1411.84 88.16 
29 to 48 3 22, 151, 81 1463.88 36.12 
49 to 275 4 22, 151, 81, 310 1492.33 7.67 

276 to 298 5 
22, 151, 81, 310, 
13 1498.36 1.64 

Network 30: 

Iteration 
No. of Rehab. 
Pipes Rehab. Pipes 

Sum of their 
Length 

Remaining Budget 
Limit 

1 to 28 2 22, 151 1411.84 88.16 
29 to 49 3 22, 151, 81 1463.88 36.12 
50 to 276 4 22, 151, 81, 310 1492.33 7.67 

277 to 299 5 
22, 151, 81, 310, 
13 1498.36 1.64 
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Table 4 summarizes features and results of the new networks. The rehabilitation length was fixed to 

be 1500 m. We evaluated CPU time for LB and UB. 

Table 4- Features and results of 30 created networks 

Network 

No. of 

Nodes 

No. of 

Pipes 

Network 

Length 

Lower 

Bound 

CPU 

Time LB 

Upper 

Bound 

CPU 

Time 

UB 

No. of Unique 

Scenarios 

% of 

Optimality 

1 256 299 66387.56 353.86 6205.3 364.24 3660.2 1378 0.014 

2 265 308 69204.70 353.75 7565.8 366.12 4616.8 1450 0.017 

3 268 310 69435.74 304.52 8546.8 315.52 5467.9 1462 0.017 

4 269 311 69585.41 370.05 8836.2 383.27 5795.2 1457 0.017 

5 265 308 69316.98 362.58 7879.3 374.94 4865.4 1452 0.016 

6 266 309 69053.98 345.14 6929.1 357.57 4674.3 1449 0.017 

7 269 311 70026.56 347.52 8114.9 359.66 5234 1453 0.017 

8 266 309 70014.29 372.36 8116.9 385.28 5239.6 1450 0.017 

9 270 314 71123.78 375.17 9159.8 388.36 5876.6 1490 0.017 

10 265 308 69689.81 368.57 8426 381.23 5440.1 1466 0.017 

11 268 311 70945.06 372.77 8957.5 385.69 5791.3 1478 0.017 

12 268 310 69880.05 334.16 8905.9 346.97 5866.3 1450 0.018 

13 270 314 70729.64 366.54 8930.3 379.86 5723.3 1487 0.018 

14 263 307 70183.87 372.02 8046.2 384.40 4917.7 1468 0.016 

15 270 313 69923.61 365.74 9379.8 378.71 6310.3 1464 0.017 

16 270 314 71303.06 371.84 10071 385.12 6731.1 1496 0.017 

17 271 314 70763.63 367.41 10241 380.88 6791.3 1476 0.018 

18 271 313 70306.57 367.62 9856.3 380.92 6555.8 1471 0.017 

19 270 313 70642.50 373.20 9912.1 386.53 6620.4 1478 0.017 

20 270 314 71295.31 374.04 7660.8 387.18 5288.9 1485 0.017 

21 270 314 71107.37 371.26 8767 384.40 5640.8 1487 0.017 
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22 270 314 70877.79 374.07 7559 387.12 5198.8 1482 0.017 

23 269 313 70878.43 374.89 8403.3 387.96 5354.9 1470 0.017 

24 270 314 71008.02 366.41 8852.8 379.23 5614.2 1478 0.017 

25 269 313 71458.63 376.08 7090.4 389.17 4672.9 1497 0.017 

26 269 313 70724.95 366.53 8642.3 379.18 3646.2 1482 0.017 

27 268 312 70628.24 367.96 7397 380.93 5467.6 1477 0.017 

28 270 314 71111.92 343.80 8978.1 356.12 5772.3 1490 0.017 

29 270 314 71282.24 370.77 8612 383.99 5286.6 1490 0.017 

30 270 314 71493.17 376.40 8762.6 389.70 5422.1 1495 0.017 

Average 268.16 311.5 70346.10 363.57 8493.52 376.34 5451.43 1470.26 0.017 

 

In addition, figures 11 and 12 are boxplots reporting LB, UB and their CPU time. Figure 13 

shows box and whisker plot of number of unique scenarios in 30 new networks. 

 

Figure 11 – LB and UB of 30 new networks 
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Figure 12 – CPU time LB and CPU time UB of 30 new networks 

 

Figure 13 – Number of unique scenarios in the new networks 

Figure 14 shows the box plot of percentage of optimality in these 30 networks. Figure 15 compares 

CPU time LB and CPU time UB in each network. CPU time LB is greater than CPU time UB in all 30 

networks.  
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Figure 14 – Percentage of optimality in 30 networks 

 

 

Figure 15 – CPU time for UB and LB in 30 networks 
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CHAPTER 4: CONCLUSIONS AND FUTURE RESEARCH 

 

This study proposed a two-stage stochastic programming model for the water pipe rehabilitation 

problem with a recourse flow function to maximize the output flow right after an earthquake. The MINLP 

model cannot be solved by commercial optimization software, like BARON even for problems with a 

very small number of scenarios. Consequently, we proposed piecewise linear functions (PLF) to 

approximate the nonlinearity in the MINLP. Therefore, we formulated a mixed integer linear program 

(MILP) to approximate the MINLP. The optimization of the MILP is still challenging to solve, so we 

introduced a sequential algorithm to mitigate this computational issue and find bounds for the 

approximated optimal solution. The solution we found using the sequential algorithm is within 2% of 

optimality. We created 30 more networks and tested our sequential algorithm on those. The solution is still 

within 2% of optimality 

In future research, the model can be used for rehabilitation plans of corroded pipes. In addition, 

we can consider leakage in the model, another objective function, using Benders Decomposition for 

solving the model, and developing software for helping municipalities to rehabilitate their water pipes, 

especially in cities where an earthquake may occur with higher probability. 
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Appendix 

Piecewise Linear Function (Knot selection) 

For linearization the first step was finding the maximum possible flow in the network. 

Consequently, we used our mathematical model, the objective function (11), constraints (4) and (7a) for 

each pipe before earthquake to achieve maximum flow in each pipe. We described it in section 2.3.1. We 

found the maximum pipe flow in Modena network is 223 liter/second before earthquake. Then, we 

visualized drawing of function x1.852 for x in [0, 223]. We selected the knots to be in x= 0, 20, 60, and 223. 

The reason we considered 3 pieces in our linearization is that the model gets huge as the number of PLF 

gets higher, therefore, we started with the minimum number of pieces that is 3. We described the PLF 

general formulation in 2.3.3. Studying more pieces and different methods for finding knots are our future 

research that will affect the result and create better solution. In other words, sensitivity analysis in finding 

knots is our future research. 

Then we considered x’s be a number between 0 and 223 with 0.1 step length and we calculated 

x1.852 and we considered 3 pieces [0, 20], [20, 60], [60, 223] as we described before. The PLF must be 

continuous in the knots so we considered it in our calculation. By using linear regression tool in excel we 

found the formulation of linear functions fitted to each piece of the curve and finally we concluded slope 

and intercept of each PLFs. Then we added equations (15- 19) to our model with concluded slopes and 

intercepts. 
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