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Abstract 

Freshwaters are some of the most vulnerable ecosystems to global change forces, such as land 

use and eutrophication, implicated in the loss of biodiversity and biotic homogenization 

(increased similarity) of species communities. However, much less is known about the impact of 

these forces on the mechanisms underlying biodiversity and the patterns of species co-

occurrence. In this dissertation, I use sub-continental to global stream community datasets to 

investigate the effects of land use and nutrients on algal, macroinvertebrate, and fish biodiversity, 

abundance, and complexity of co-occurrence patterns to pursue three objectives.  I first 

investigate how agriculture contributes to biotic homogenization, and questioned if 

homogenization processes operate at local and regional scales (Chapter 2).  Using US, French, 

and Canadian datasets, I determined that generally agriculture homogenizes communities, 

concurrent with a loss of regional biodiversity and an increase in local diversity, and that relative 

abundances of common species, not spatial distributions, contribute greatly to homogenization. I 

also observed that diatoms and insects diverged from fish in terms of biodiversity, abundance, 

and assembly patterns, emphasizing the importance of body size and/or dispersal capacity over 

trophic position. In my second investigation, I combine network theory and metacommunity 

approaches to explore i) whether nutrient supply and nutrient ratio constrain the complexity of 

sub-continental co-occurrence networks in stream algae and ii) the relative influence of climate 

and dispersal on co-occurrence relationships vs. metacommunity composition (Chapter 3).  I 

found that nutrient supply and ratio are both important drivers of the size and complexity of algal 

co-occurrence networks.  Further, climate and space (surrogate for dispersal processes) were 

major influences on co-occurrence relationships across networks but nutrient context determined 

their relative contributions. Notably, climate and space had differential effect on co-occurrence 
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network topology compared to metacommunity composition, which indicated that processes 

driving individual species relationships are detached from those driving metacommunity-level 

patterns. In my third investigation, I examined the impact of spatial scale and body size on the 

shape of the node degree distribution, which is probability distribution describing how links (co-

occurrences) between nodes (species) are distributed in a co-occurrence network (Chapter 4).  

Using diatom and fish datasets, my results are the first to show an explicit correlation between 

the observation scale (sub-regional to sub-continental) from which the network is constructed 

and the shape of the node degree distribution, which further depended upon body size.  My 

findings advance our understanding of biodiversity and co-occurrence patterns in streams and 

their response to global change, scale and organismal biology.  My work also demonstrates a 

successful integration of mathematical, metacommunity, and network approaches, which 

provides a solid analytical foundation to improve conservation recommendations and develop 

more holistic solutions in the face of the on-going biodiversity crisis. 
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Chapter 1  

General Introduction 

 

Global biodiversity patterns are changing, and generally not for the better.  Losses of 

species and increasingly similar community compositions are slowly becoming the norm 

(Finderup Nielsen et al., 2019) and the alarm is being loudly sounded by many researchers to 

organize, collaborate, and act (Driscoll et al., 2018; Eriksson & Hillebrand, 2019).  Human 

influences, such as climate change, nutrient modification, and land cover alterations, are among 

the principal drivers of global biodiversity loss.  This loss is particularly pronounced in aquatic 

ecosystems owing to their disproportionate representation of species richness and vulnerability to 

landscape-scale hydrological influences and modifications (Sala et al., 2000; Porter et al., 2013).  

Further complicating the crisis is that aquatic systems are generally understudied relative to 

terrestrial systems, which inhibits our ability to synthesize general conservation strategies. 

Therefore, the goal of this dissertation is to improve our understanding of the consequences of 

global change on aquatic biota. 

Ecological communities vary in their constituent species through time and space, a 

pattern known as β-diversity. However, terrestrial and aquatic communities have begun to 

experience biotic homogenization, or the process of communities becoming more similar in 

species composition (decreased beta diversity), as a result of global change, especially through 

agricultural land use (McKinney, 2006; Petsch, 2016; Finderup Nielsen et al., 2019). Local and 

regional scale assembly processes drive the spatial distribution and relative abundance of 

species, which in turn determine β-diversity. However, it is unclear how agriculture affects these 

across taxa differing in body size and dispersal capacity.  Therefore, in my first chapter, I 

explored whether agricultural land cover was associated with biotic homogenization of benthic 
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algae, macroinvertebrate, and fish in streams from the United States, Canada, and France.  This 

comprehensive intercontinental study examined if stream communities in watersheds dominated 

by agriculture vs. forest were driven by different community assembly processes, and to what 

extent two local mechanisms (relative abundance vs. spatial aggregation) played a role.  I found 

that agricultural effects were generally associated with homogenization of all three taxa, and 

such effects were mainly through eutrophication.  I also found that the relative contributions of 

local and regional assembly processes were not strongly influenced by land cover across all taxa, 

but there were clear differences in the magnitudes of these processes across taxa.  I finally found 

that relative abundance patterns generally characterize community variability over spatial 

aggregation, and the role of relative abundance generally increases with agricultural cover.  This 

work broke major ground in finding that i) agriculturally-driven homogenization is a general 

problem for aquatic taxa, ii) local and regional homogenization processes differ across taxa, 

which emphasizes the need for organism-specific considerations, and iii) homogenization is very 

strongly characterized by relative abundance differences across sites, not necessarily spatial 

differences. 

Aquatic biodiversity patterns also reflect how species co-occur, or not, in time and space, 

and these patterns are a product of shared ecological niches or biotic interactions (Araújo et al., 

2011; Poisot et al., 2015; Morueta-Holme et al., 2016; Freilich et al., 2018). In stream 

ecosystems, nutrient effects, such as supply and ratio, are one of the most important 

environmental contexts for species coexistence and response to climate  and dispersal processes 

(Elser et al., 2007; Cardinale et al., 2009; Harpole et al., 2011).  However, it is not known how 

species co-occurrence patterns are influenced by these nutrient dimensions, which is a concern, 

given the ongoing global change of freshwaters, experiencing   anthropogenic nutrient inputs and 
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removal (Allan, 2004).  Therefore, in my second chapter, I used a subcontinental benthic algal 

dataset to investigate whether subcontinental co-occurrence networks, which represent species as 

nodes and co-occurrence relationships among them as edges, differ in their topologies between 

two nutrient supply contexts (eutrophic and oligotrophic) and two nutrient ratio contexts (N-

limited and P-limited). I further explored if nutrient context determine how strongly climate and 

dispersal structure co-occurrence relationships vs. metacommunity compositions.  I found that 

nutrient supply and ratio were important drivers of network properties, metacommunity 

composition, and their response to climate and dispersal, which were differential.  These findings 

emphasize the differences between individual-level vs. metacommunity-level patterns across 

climate and dispersal gradients.   

The node degree distribution (NDD) of ecological networks, i.e. the frequency 

distribution describing how links are distributed among nodes, is of wide interest in science and 

technology because different shapes of the NDD are associated with different information 

transfer rates and susceptibility to targeted or random species removal (Albert et al., 2000; 

Dunne et al., 2002).  NDD shapes are often described using statistical models (Amaral et al., 

2000), but there is general controversy as to which statistical models best fit NDDs (Broido & 

Clauset, 2019; Holme, 2019). Surprisingly, no comprehensive analyses to date have been 

performed to compare NDD models for their plausibility along spatial gradients and organismal 

groups.  Therefore, in my third chapter, I used diatom and fish datasets and examined how the 

variety and quality of statistical models of NDDs depended upon spatial extent (subregional to 

subcontinental) and if the patterns were consistent between taxa differing in body size.  I found 

that there was a strong spatial dependency in the type and number of best fitting statistical 

models. As spatial extent increased, diatom networks became more inhomogeneous (broad-scale) 
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and predictable, explained by fewer plausible models, while the fish networks became more 

homogeneous (single-scale) and less predictable, explained by more plausible models.  Further, I 

found little evidence for power law models as a plausible fit of NDD shapes, shedding light on a 

long-standing debate for the applicability of these models in ecological networks.  This work was 

the first to comprehensively demonstrate explicit spatial and taxonomic constraints on the co-

occurrence network NDDs, deepening our knowledge of the origins of ecological network 

variability.  
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Chapter 2  

Local and regional drivers of taxonomic homogenization in stream  

communities along a land use gradient 
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Introduction 

 

Landscape transformations from continuous undeveloped expanses to agricultural fields and 

urban sprawls have accelerated the global biodiversity decline (Newbold, Hudson, Hill, Contu, 

Lysenko et al., 2015). Human land use (hereafter land use) underlies declines in both regional 

richness, i.e. γ-diversity (Barlow, Lennox, Ferreira, Berenguer, Lees et al., 2016), and 

dissimilarity among biological communities, i.e. β-diversity, resulting in taxonomic 

homogenization across space and time (Petsch, 2016). Biodiversity losses from land use stem 

from habitat loss, fragmentation, eutrophication, and physicochemical stress, altogether 

considered among the primary threats facing global biodiversity (Sala, Stuart Chapin, Iii, 

Armesto, Berlow et al., 2000; Devictor, Julliard, Clavel, Jiguet, Lee et al., 2008). Preventing 

biodiversity losses and mitigating subsequent homogenization remain a top priority because both 

can translate into decreased biological integrity and ecosystem resilience (de Juan, Thrush & 

Hewitt, 2013; Socolar, Gilroy, Kunin & Edwards, 2016). Therefore, it is critical from a 

conservation planning standpoint to continue investigating how land use affects ecological 

processes underlying global diversity in order to mitigate the ongoing biodiversity crisis. 

 Land use effects on biodiversity occur across scales, operating either in a top-down or 

bottom-up fashion or both (Flohre, Fischer, Aavik, Bengtsson, Berendse et al., 2011). Top-down 

mechanisms function through the regional species pool (γ-diversity), which is a product of 

speciation and extinction, large-scale dispersal, climate, and evolutionary, geological, and land 

use history (Zobel, 2016). Bottom-up mechanisms include local-level assembly processes, e.g. 

environmental filtering, interspecific interactions, and small-scale dispersal (Márquez & Kolasa, 

2013), which constrain local (α) diversity and subsequently affect site-to-site community 
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dissimilarity. Studies across terrestrial and freshwater systems have reported a general decline in 

γ-diversity because of land use, but divergent patterns of α-diversity, including decreased α-

diversity, owing to losses of sensitive and endemic species, and stable, or even increased α-

diversity, owing to greater rates of species invasion and colonization (Vellend, Baeten, Myers-

Smith, Elmendorf, Beauséjour et al., 2013; Newbold et al., 2015; Gonzalez, Cardinale, 

Allington, Byrnes, Arthur Endsley et al., 2016). Thus, land use likely exerts differential impact 

on the species pool and local assembly processes that may cause γ- and α-diversity, respectively, 

to vary at different rates, which in turn influences β-diversity response (Kraft, Comita, Chase, 

Sanders, Swenson et al., 2011).   

β-diversity is usually treated as a scalar linking average α-diversity with γ-diversity, thus 

reflecting spatial or temporal differences among localities. One can then measure the influence of 

α- and γ-diversity as proxies of local and regional drivers of β-diversity, respectively.  

Specifically, null models that constrain the observed species pool variation (i.e., γ-diversity) can 

assess the role of local assembly by calculating a β-diversity measure (βDEV) corresponding 

solely to α-diversity variation (e.g., Kraft et al., 2011) (Fig. 2.1a). βDEV can be further 

decomposed into fractions reflecting roles of intraspecific spatial aggregation (i.e., the spatial 

clumping pattern of individuals within species) and the regional species abundance distribution 

(SAD, vector of species abundances) (Xu, Chen, Liu & Ma, 2015) (Fig. 2.1b). Intraspecific 

spatial aggregation results from dispersal, competitive, and environmental mechanisms that 

cluster individuals of species across fewer sites, thus bolstering β-diversity (Veech, 2005). 

However, regional SADs influence β-diversity because rare species are less likely to be locally 

sampled due to low regional abundance (He & Legendre, 2002).  Although examined across 

latitudes, the two fractions of local assembly have not been studied in other contexts and it is 



10 
 

unknown whether these components are responsive to strong ecological influences (e.g., land 

use). 

 

 

 

 

 

 

 

 

Fig.  2.1 a. Conceptual model depicting the land use effect on the species 

abundance distribution (SAD) and intraspecific spatial aggregation, which in turn 

interact with local (α) and regional (γ) diversity. β-diversity is calculated as a 

function of average α-diversity and γ-diversity. Interactions that were controlled for 

by the null models of Kraft et al. (2011) and Xu et al. (2015) are marked with a 

thick dotted line. b. Diagram summarizing the Xu et al. (2015) partition of βDEV 

into fractions explained by the SAD and intraspecific spatial aggregation using an 

occupancy-abundance based null model procedure. The null model βDEV is taken as 

the raw difference between expected β-diversity (βEXP) and observed β-diversity 

(βOBS). The fraction of βDEV explained by the SAD, βSAD, is the difference between 

predicted β-diversity (βPRED) and expected β-diversity (βEXP), whereas the fraction 

of βDEV explained by intraspecific aggregation (βAGG) represents the difference 

between βOBS and βPRED.  
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Studying how local assembly and regional species pool processes interplay is an ongoing 

area of research in terrestrial systems because it may explain how β-diversity varies with land 

use (Socolar et al., 2016). Surprisingly, little attention is focused on freshwater systems, even 

though freshwater biodiversity is more vulnerable to land use relative to terrestrial systems, 

particularly through habitat modification (Sala et al., 2000; Wiens, 2016) and eutrophication 

from agriculture (Withers, Neal, Jarvie & Doody, 2014). Although primary productivity in 

agricultural streams could increase with eutrophication, forest streams, which are usually low in 

nutrients and have more shading, tend to harbor higher biodiversity stemming from greater 

physical and environmental heterogeneity that translates into greater ecosystem complexity  

(Penaluna, Olson, Flitcroft, Weber, Bellmore et al., 2017). Agriculture probably causes changes 

in physicochemical heterogeneity as well, but this subject is poorly explored. Thus, the scarcity 

of data, especially for aquatic taxa, has inhibited general understanding of how land use 

influences local and regional processes driving β-diversity.   

Impacts of agricultural eutrophication on βDEV are not understood, although null models 

have been used to assess environmental disturbance (e.g., Myers, Chase, Crandall & Jiménez, 

2015). We hypothesize β-diversity response to eutrophication, including variation in βDEV, 

depends on trophic level, body size, and dispersal capacity. For example, many unicellular 

producers, like diatoms, have high nutrient demands and may benefit from increased nutrients 

(Passy, 2008; Soininen, Jamoneau, Rosebery & Passy, 2016). Diatom microscopic size, high 

local abundance, and broad geographic distributions, allowing both in-stream and overland 

passive dispersal (Finlay, 2002), may result in weak β-diversity and βDEV response to agriculture. 

Smaller bodied macroscopic organisms, such as aquatic insects, may be more constrained in 

active dispersal capacity during larval stages but exhibit greater overland mobility during winged 



12 
 

adult life stages, which could offset some harmful agricultural effects.  In contrast, larger 

consumers with more limited geographic dispersal capacity, such as fish, may be negatively 

affected by eutrophication due to ammonia toxicity, loss of suitable habitat, and lower quality 

food sources (Allan, 2004).  

 In this study, we compared spatial patterns of biodiversity and abundance in streams with 

watersheds dominated by agriculture vs. forest.  Our objectives were to determine: i) how β-

diversity and related biodiversity properties respond to agriculture (through nutrient enrichment 

or physicochemical heterogeneity), ii) if agriculture alters the relative contribution of local 

assembly effects to β-diversity, iii) whether agriculture differentially constrains the fractions of 

local assembly explained by spatial aggregation vs. the SAD, and iv) if the relationships outlined 

in i) to iii) vary across organismal groups (Table 2.1).   

 

Materials and Methods 

Data sources and site selection 

Our datasets (six in total) comprise stream organisms sampled from the US, France, and Canada 

(Fig. 2.2). Each dataset included community data and physicochemistry from watersheds 

dominated by either forest or agriculture. Only streams with ≥ 50% of their upstream watershed 

belonging to one of the two land cover categories were included in our analyses. We examined 

biodiversity patterns across three US datasets (diatoms, insects, and fish), two French datasets 

(diatoms and fish), and one Canadian dataset (diatoms), constructed as follows. 

 



 

 

1
3

 

 

Table 2.1. Summary of procedures and analyses performed with corresponding expectations and observations. 

Procedures Analyses Expectations Observations 

1) Determine the differences in 

physicochemistry and 

physicochemical heterogeneity 

between land covers. 

PCA, 

PERMDISP, 

MANOVA 

Land cover would be 

characterized effectively by 

physicochemical parameters and 

potentially by physicochemical 

heterogeneity. 

1) All analyses clearly separated streams into 

two groups, corresponding to forest and 

agriculture; 

2) Agricultural streams had elevated nutrient 

levels, suggestive of eutrophication; 

3) Physicochemical heterogeneity was greater 

among agricultural streams except in the 

Canadian diatom dataset. 
 

2) Reveal the responses of α-,  

γ-, and β-diversity, SAD 

evenness, and SAD skewness to 

physicochemistry and 

physicochemical heterogeneity. 

MANOVA, 

Variance 

partitioning 

The responses of biodiversity 

components to physicochemistry 

and physicochemical 

heterogeneity may differ 

depending on body size, 

dispersal capacity, and trophic 

level (autotroph vs. heterotroph). 
 

 

 

 

  

1) In general, β- and γ-diversity were 

negatively related to eutrophication, whereas 

α-diversity increased.  SADs tended to be 

more uneven in agricultural streams due to 

buildup of common species and/or increased 

dominance; 

2) Covariance of land use with 

physiochemistry explained most of the 

diversity variation across datasets, whereas 

environmental heterogeneity poorly 

explained diversity; 

 3) Pure land cover and pure 

physicochemistry generally explained some 

additional variation in the diversity 

components. 
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Table 2.1. Continued: 

Procedures Analyses Expectations Observations 

3) Determine if land use 

influences the relative roles of 

local assembly and the regional 

species pool in driving β-

diversity. 

Null models, 

Permutational 

ANOVA, 

Variance 

partitioning 

The contribution of local 

assembly should be responsive 

to agricultural land use, 

however, the magnitude and 

direction of the response may 

vary across organismal groups. 

1) The role of local assembly was generally 

weakly affected by land use, and not in a 

consistent way across datasets, suggesting a 

potential influence of organismal type and 

biogeography. 

4) Determine if β-deviation 

(βDEV) is explained by the 

species abundance distribution 

(SAD) or intraspecific spatial 

aggregation. 

Null models, 

Permutational 

ANOVA 

It is unknown how land use may 

influence the fractions of βDEV 

explained by the SAD and 

intraspecific spatial aggregation. 

1) The SAD was the dominant fraction of 

βDEV and this pattern was independent of land 

use and organismal group. However, the SAD 

fraction was significantly higher in 

agriculture across all datasets, which may be 

the underlying factor of taxonomic 

homogenization; 

2) Intraspecific spatial aggregation fraction 

was negative for agricultural streams and 

positive for forest streams, indicating that 

intraspecific aggregation was lower than 

expected across disturbed streams 
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United States – US community data, spanning 19 latitudinal degrees and 55 longitudinal degrees, 

were obtained from the National Water-Quality Assessment (NAWQA) Program of the United 

States Geological Survey and the National Rivers and Streams Assessment (NRSA) of the 

United States Environmental Protection Agency. Communities were collected in the warm 

months during low flow conditions (July through September) to constrain seasonal succession 

and variation in temperature and flow. NAWQA communities (diatoms, insects, and fish) were 

sampled between 1993-2010, whereas NRSA communities (fish), between 2011 and 2012. 

Diatoms were collected from the richest-targeted habitats, encompassing hard substrates or 

macrophytes. Depending on available substrate, a defined area of 25 cobbles, 5 woody snags or 5 

Fig.  2.2: Maps of diatom, macroinvertebrate, and fish sampling localities in the US, 

France, and Canada.  Grey triangles represent agriculture samples, whereas black 

circles represent forest samples.  a = US diatoms, b = US insects, c = US fish, d = 

French diatoms, e = French fish, f = Canadian diatoms. 



 

16 
 

macrophyte beds was sampled within a stream reach and the samples were composited. Diatoms 

were identified generally to species in counts of 400-800 cells. Benthic insects (class Insecta) 

were composed of combined sieved samples taken from the richest-targeted habitats (i.e., riffles, 

main-channel, and natural-bed instream habitats). Insects were identified to the lowest possible 

category (order to species) in counts of 400-800 individuals. Both NAWQA and NRSA fish were 

generally identified to species in counts of 400-950 individuals taken from riffle, pool, and run 

habitats using electrofishing equipment with seines.  

Land use and cover data were generated by the NAWQA and NRSA using National Land 

Cover Datasets 1992 and 2006, 30 m resolution. We selected 400 streams for diatoms and 126 

streams for insects split equally between both land cover categories. Since fish communities and 

environmental data in both the NAWQA and NRSA data were sampled with similar methods, we 

combined both fish datasets into a single dataset comprising 231 streams (116 agricultural and 

115 forested streams).   

 

France – French diatom data were sourced from a national dataset including field collections of 

200 streams from 2011.  Algae were collected from stones during the low flow period in June 

through September with a standardized sampling method (Afnor, 2007). Diatoms were identified 

generally to species in counts of about 320-475 cells. The French fish dataset was collected by 

the French National Agency for Water and Aquatic Environments (ONEMA) during low flow 

periods between May and October 2011. The dataset comprised 200 streams with fish identified 

to species in counts of 10-3300 individuals sampled with electrofishers. For both French 

datasets, we used 100 agricultural and 100 forest streams, spanning 8 latitudinal and 14 
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longitudinal degrees. Land use cover data were obtained from the CORINE land cover database 

(European Environment Agency, 2013) 

 

Canada – Canadian diatom data included 46 stream samples (23 streams in both land cover 

categories) collected in August to September during the low flow period between 2002 and 2009 

(Lavoie, Campeau, Zugic-Drakulic, Winter & Fortin, 2014) spanning 3 latitudinal and 6 

longitudinal degrees. Samples were composites of rock scrapes (5-10 rocks) per stream reach, 

targeting riffles and runs. Diatoms were mainly identified to species in counts of at least 400 

valves. Land use cover data were compiled from government GIS databases, including the 

Ecoforestry Information System, Annual Crop Inventory, and the Insured Crop Database. 

 

Environmental data – All datasets had associated physicochemical and coordinate data (i.e., 

GCS coordinates re-projected with Lambert Conformal Conic). Environmental variables in our 

analyses included water temperature, air temperature, nitrite + nitrate (or total nitrogen when 

absent), ammonia, orthophosphate, total phosphorus, specific conductance, and pH (Appendix 1, 

Table S1.1 in Supplemental Information). Environmental data for the US datasets consisted of 

the average for the month of sample collection. Environmental data for French diatoms included 

the median of measurements obtained 30 days before and 15 days after the diatom sample date. 

The French fish environmental data represented the average of 12 monthly measurements prior 

to fish sampling. Air temperature for French diatom data were not recorded at the time of 

sampling and were obtained from the WorldClim database (Hijmans, Cameron, Parra, Jones & 

Jarvis, 2005), whereas air temperatures for French fish streams were measured at the stream.  

Canadian environmental data were seasonal averages calculated from water samples collected 

from July to September.  
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Diversity, spatial aggregation, and species abundance distribution 

We calculated α-diversity (average richness across samples), γ-diversity (total richness per land 

use), and β-diversity of stream samples for both land cover categories for each dataset. We used 

equation (1) to calculate the observed β-diversity (βOBS), 

 β
OBS

= 1 −
α

γ
       (1) 

 

which indicated the average proportion of the species pool absent from a stream.   

We used the null model framework developed by Xu et al. (2015) to quantify i) the 

magnitude of the local assembly effect on β-diversity after controlling for γ-diversity and ii) the 

contributions of the SAD vs. intraspecific spatial aggregation to local assembly (Fig. 1b).  First, 

the difference (i.e., β-deviance, βDEV) between βOBS and the expected β-diversity (βEXP, i.e., β-

diversity expected assuming completely random sampling, see Appendix S2) was taken to 

quantify local assembly absent the effect of γ-diversity. βDEV is bounded between 0 and 1, with 

larger βDEV corresponding to greater local control.  Secondly, we calculated β-diversity predicted 

when intraspecific spatial aggregation is constant across all species (βPRED). Then, the difference 

between βPRED and βEXP reveals what fraction of βDEV is contributed by the SAD (βSAD), while the 

remaining fraction of βDEV is attributed to spatial aggregation (βAGG). In this model, βSAD can 

exceed βDEV if βPRED exceeds βOBS.  The corresponding aggregation fraction will in turn be 

negative because the sum of the two fractions, βSAD and βAGG, must equal 1, thus meaning that 

the pattern is less aggregated than expected by the null model. To test whether the two land 

covers differ in their magnitude of intraspecific spatial aggregation, we used maximum 

likelihood methods and calculated the aggregation parameter, k, across samples within each land 

cover (Appendix S3). Because smaller k corresponded to greater aggregation, we analyzed the 
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reciprocal of the parameter for easier interpretation. In summary, the procedure yielded six 

measurements: βEXP, βPRED, βDEV, βSAD, βAGG, and 1/k.  

Regional SADs for both land cover categories was analyzed by summing abundances of 

each species across all stream samples and calculating the standard deviation (parameter σ) of 

the Poisson-lognormal distribution fit of the abundance data using the `sads´ R package (Prado, 

Mirands & Chalom, 2017). Parameter σ reflects SAD evenness with greater σ values 

corresponding to increased unevenness. To determine if changes in σ were associated with 

prevalence of rare vs. common species, we also examined the relationship of σ with the skewness 

(`skewness´ function from R package `moments´, Komsta & Novomestky, 2015) of the log-

transformed regional species abundances for each land cover category.  Skewness was 

significant if skewness divided by the standard error of the skewness (i.e., (6/n)0.5, where n = 

number of species) was greater than 2.  Significant positive skew indicates greater prevalence of 

abundant species, while significant negative skew reveals higher number of rare species 

compared to the lognormal distribution.   

 

Statistical analyses 

Resampling scheme – The described procedures in our study typically produced a single value 

without any estimate of error, which prohibits statistical comparisons between datasets. 

Therefore, to test for abiotic and biotic differences between land covers, we conducted a 

resampling procedure by randomly selecting 50% of the streams within each land cover category 

for each dataset without replacement 999 times. Each loop calculated the median of each 

physicochemical variable, an estimate of physicochemical heterogeneity, biodiversity (α-, β-, 

and γ-diversity), SAD, and null model measures including the null model β-diversity values, and 
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the within group intraspecific aggregation (1/k). This procedure generated six new datasets that 

contained resampled physiochemistry data and biotic measures, which were used further 

statistical analyses. R scripts are available as supplementary material for online publication only 

(see Appendices S3 and S4). 

 

 Eutrophication and physicochemical heterogeneity – We employed principal components 

analysis with all resampled, standardized median physicochemical variables (mean = 0, standard 

deviation = 1) to create a synthetic variable corresponding to the major physicochemical trend. 

The first PCA axis represented a eutrophication gradient and explained between 53.1% (French 

diatom samples) and 94.3% (Canadian diatom samples) of the variation among samples 

(Appendix 2.2, Fig. S2.1). 

To estimate physicochemical heterogeneity within each land cover, we used 

permutational analysis of multivariate dispersion on standardized physiochemical data with the 

`betadisper´ function from R package `vegan´ (Anderson, Ellingsen & McArdle, 2006; Oksanen, 

Blanchet, Friendly, Kindt, Legendre et al., 2017). In this procedure, physicochemical 

heterogeneity is calculated as the average distance from a multivariate group median (group = 

land cover) with larger distances corresponding to greater within-group heterogeneity.   

 

Environmental effects – We determined how land use-driven eutrophication and physicochemical 

heterogeneity affected diversity components using a combination of univariate and multivariate 

techniques and variance partitioning. For each dataset, we used permutational MANOVA 

function `adonis´ from package `vegan´ to test for differences in the multivariate mean of the  α-, 

β-, and γ-diversity between land covers.  If the permutational MANOVA was significant, we 
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followed with permutational ANOVA using the `perm.anova´ function provided in 

`RVAideMemore´ (999 permutations; Herve, 2018) for each dependent variable. We then used 

RDA-based variance partitioning models (`vegan´ function `varpart´) on each dataset to identify 

major explanatory factors underlying diversity patterns, with eutrophication, physicochemical 

heterogeneity, and land cover (coded as dummy variables) as predictors and the diversity 

measures (α-, β-, and γ-diversity) as response variables.  

We employed permutational MANOVA and permutational ANOVA to determine if the 

resampled βDEV, βSAD, βAGG, 1/k, σ, and skewness differed between land covers. Because total 

abundance and γ-diversity influence the shape of the regional SAD, we controlled their 

influences by regressing parameter σ against total abundance and γ-diversity of the resample and 

obtaining the residuals, which were then used in subsequent analyses. To further explore if βDEV 

was sensitive to variation in SAD unevenness (residual σ) and intraspecific spatial aggregation 

(1/k), we calculated Pearson correlations within both land cover categories for all datasets. 

Pearson correlations were also used to assess whether residual σ correlated with skewness and 

1/k. We then implemented variance partitioning to determine if eutrophication, physicochemical 

heterogeneity, land cover, or their covariance explained the variation in βDEV.  

 

Results 

Eutrophication and Environmental Heterogeneity Effects on Diversity and the SAD 

Permutational MANOVA and permutational ANOVAs of environmental data showed that all 

physiochemistry levels were significantly elevated (P < 0.05) in agricultural land use across all 

datasets.  Permutational ANOVAs also indicated greater physicochemical heterogeneity among 

agricultural streams in all but the Canadian diatom dataset (higher in forest land cover) and the 
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US Fish dataset (no differences, Fig. 2.3). MANOVA of α-, β-, and γ-diversity against land use 

revealed that land use significantly affected the diversity measures across all datasets. Following 

our first objective, we demonstrated that β-diversity declined with agriculture across all datasets. 

Gamma diversity usually decreased, whereas α-diversity often increased with agriculture (Table 

2.2). Except for French fish, SADs were generally significantly more uneven for agricultural 

land use than forest (higher residual σ), although the differences were mainly small (Fig. 2.4, 

columns 1-3). Intraspecific aggregation (1/k) was always greater in forest than in agriculture and 

was negatively correlated with residual σ, meaning more even SADs were always associated 

with higher aggregation (Appendix 2.2, Table S2.2).  Skewness was significantly positive in the 

insect and all three diatom datasets, but non-significant in the two fish datasets. When positive, 

skewness correlated positively with residual σ regardless of land cover (although weakly for 

diatoms), indicating that SAD unevenness was generally characterized by greater abundances of 

more common species.  
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Fig. 2.3 a-f. Boxplots showing differences in resampled 

physicochemical heterogeneity between land covers for each dataset.  a 

= US diatoms, b = French diatoms, c = Canadian diatoms, d = US 

insects, e = US fish, f = French fish.  Points indicate resamples that fall 

outside the interquartile range.  Different letters denote significant 

differences in mean heterogeneity (permutational ANOVA, P < 0.05). 
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Table 2.2.  Summary of the impact of agricultural land use on resampled diversity 

measures as positive or negative percent change relative to forest cover.  Significant 

differences between land covers were detected in all comparisons (permutational 

MANOVA and ANOVA, P < 0.05). 

 % Change from agriculture 

Taxonomic group Country α γ 1βOBS 

Diatoms US +20.71 −3.54 −1.09 

 France +13.33 −7.46 −2.22 

 Canada −12.15 −23.14 −4.64 

Insects US −20.42 −22.98 −0.59 

Fish US +9.55 +12.97 −2.29 

 France +54.99 +26.91 −6.41 
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Fig. 2.4, a-f. Boxplots of resampled SAD and null model metrics showing the differences 

between land covers for each dataset.  a = US diatoms, b = French diatoms, c = Canadian 

diatoms, d = US insects, e = US fish, f = French fish.  Significant differences were 

observed in all comparisons (permutational ANOVA, P < 0.05) except βDEV for US insects 

(panel d3).   
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Our first objective was to determine how biodiversity explained by land use, 

eutrophication, and physicochemical heterogeneity. Variation in all diversity measures was 

primarily explained by covariance effects, while pure land cover, pure eutrophication, and pure 

physicochemical heterogeneity contributed minorly (Fig. 2.5). In general, covariance of 

eutrophication with land cover explained most of the variation, indicating that land use 

constrained biotic variability mainly through eutrophication rather than physicochemical 

heterogeneity. However, the insect dataset differed from the rest in that the covariance fraction of 

land cover, eutrophication, and physicochemical heterogeneity captured most of the variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5, a-f.  Venn diagrams showing output of redundancy analysis-

based variance partitioning of diversity measures (α-, β-, and γ-

diversity).  Values represent model adjusted R2 values.  Values in 

intersections represent covariance fractions, whereas values in circles 

represent pure fractions. 
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Eutrophication-associated shifts in local assembly across organismal groups 

For our second objective, we found local assembly weakly drove diatom and insect β-diversity 

(βDEV generally less than 0.26 across land covers) but had a relatively greater influence on fish β-

diversity (βDEV between 0.38-0.45). βDEV differed significantly between forest and agriculture 

(permutational ANOVA) in all datasets except insects (no difference). However, the magnitude 

of the difference in βDEV was usually small (3.49 to 16.04%), with the direction of the difference 

depending on organismal group and biogeographic region (Fig. 2.4, column 4).  

 

Contribution of the SAD vs. intraspecific spatial aggregation to βDEV 

For objective three, the partitioning of βDEV revealed that βSAD generally exceeded 100% and 

βAGG was negative, regardless of land cover except for the US and French diatom datasets, which 

showed βSAD < 100% and positive βAGG for forest land use (Fig. 2.4, columns 5-6). As changes in 

βSAD correspond to equal and opposite changes in βAGG, we focus on βSAD for brevity. βSAD 

represented nearly all of βDEV regardless of dataset and land cover type (~ 90-110% of total 

deviance) and was significantly (although marginally) larger in agricultural land use than in 

forest cover. Further, βDEV was generally negatively correlated with residual σ, regardless of land 

cover or organismal group, implying that increased SAD unevenness was usually associated with 

greater contribution of the regional species pool (Appendix 2.3, Table S2.2). Variance 

partitioning of βDEV across datasets showed mixed patterns among and within organismal groups 

over what effects best explained βDEV (Fig. 2.6).   

 

 

 



 

28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variability across organismal groups 

Consistent with our fourth objective, we demonstrated that smaller organisms (diatoms and 

insects) with greater dispersal capacity were more similar in terms of SAD and βDEV patterns, but 

diverged from fish. However, we also observed divergence in some ecological patterns between 

datasets within organismal groups (i.e., diatoms and fish) in that α-diversity, γ-diversity, SAD 

Fig. 2.6, a-f. Venn diagrams showing output of regression-based 

variance partitioning of βDEV.  Values represent model adjusted R2 

values.  Values in intersections represent covariance fractions whereas 

values in circles represent pure fractions.   
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skewness, and βDEV responses varied between country of origin, which indicated context 

dependency of our results. 

 

Discussion 

In this comprehensive study of stream organisms from two continents, agriculture and 

subsequent eutrophication were generally associated with reduced β- and γ-diversity and 

increased α-diversity. First, covariance of land use with physicochemical gradients, rather than 

with physicochemical heterogeneity, characterized regional biodiversity loss with land use. 

Second, all datasets showed significant shifts in magnitude of βDEV with eutrophication but the 

direction (i.e., stronger or weaker local assembly effects) depended on organismal group and 

potentially biogeographical factors. Third, the regional SAD overrode intraspecific spatial 

aggregation in explaining βDEV and its influence and unevenness increased with agriculture.   

 

Eutrophication and Environmental Heterogeneity Effects on Diversity and the SAD 

With respect to objective one, regional biodiversity loss, local diversity gains, and increased 

community similarity in aquatic taxa were correlated with agricultural land use, consistent with 

patterns expected for taxonomic homogenization (Petsch, 2016). Recently, Ribiero et al. (2015) 

explored the generality of floral homogenization consequential of agricultural land use and noted 

that too many studies focus on a single spatial scale or a single taxon. For aquatic taxa, 

agriculturally-associated changes in β-diversity have been reported, however, we have only 

begun to examine these changes at broader spatial scales. For example, Winegardner et al. 

(2017) attributed greater temporal β-diversity of diatoms across modified US landscapes to 

richness gains and losses stemming from disproportionate influence of contemporary vs. past 
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land use, yet observed no changes in spatial β-diversity. In contrast, diatom spatial β-diversity 

declined with eutrophication in French streams (Jamoneau, Passy, Soininen, Leboucher & Tison‐

Rosebery, 2018). Our investigation, exploring diatoms, insects, and fish across regional to 

subcontinental scales, demonstrates that the detrimental effects of agriculture on the regional 

biodiversity in stream ecosystems are independent of species biology or scale.   

We further revealed that biodiversity variation between forest and agriculture was mainly 

driven by land use differences in physicochemistries rather than physicochemical heterogeneity, 

a result contrary to conventional wisdom that higher environmental heterogeneity brings greater 

turnover. While agriculture may homogenize the landscape, we show that it tended to lead to 

greater stream physicochemical heterogeneity, possibly due to variability in fertilization and 

landscape management regimes.  Heterogeneity is an important mechanism of co-existence 

because it offsets competitive exclusion (Tilman & Pacala, 1993). However, we observed that 

physicochemical heterogeneity poorly explained β-diversity, because eutrophication in 

agricultural streams may have exceeded the physiological thresholds of sensitive species and 

decoupled compositional and environmental variability (Bini, Landeiro, Padial, Siqueira & 

Heino, 2014). The lack of a relationship may also be due to our measure of heterogeneity, which 

did not incorporate other aspects of heterogeneity, such as variability in substrate size, known to 

diminish with agriculture (Allan, 2004).   

Increased prevalence of common species over spatial and temporal scales is a hallmark of 

taxonomic homogenization (Olden & Rooney, 2006), but our findings are restricted to the spatial 

dimension.  Notably, while across datasets SADs were generally more uneven in agriculture, 

they were more positively skewed compared to forest only in two datasets, i.e. US insects and 

French diatoms. In these datasets, homogenization in agriculture was characterized by greater 
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prevalence of common relative to rare species, which has also been observed in terrestrial 

arthropods (Simons, Gossner, Lewinsohn, Lange, Türke et al., 2015; Komonen & Elo, 2017). 

However, SADs were more positively skewed in forest cover than in agriculture for two datasets 

(US and Canadian diatoms), and not skewed for both fish datasets. This suggested that stronger 

SAD unevenness in agriculture resulted from either buildup of common species or greater 

regional dominance by a relatively few species. Like recent terrestrial and tropical studies 

(Vázquez & Gaston, 2004; Lohbeck, Bongers, Martinez‐Ramos & Poorter, 2016), we showed 

that SAD unevenness was associated with agriculturally-driven homogenization. Future research 

on homogenization should incorporate novel methods and procedures, like we employed, to 

elucidate how habitat modification and trait distribution contribute to the two forms of 

unevenness, i.e. asymmetry vs. dominance. 

 

Land use-associated shifts in local assembly across organismal groups 

Following objective two, we examined how local assembly (βDEV) varied between forested and 

agricultural streams. In general, βDEV marginally differed between land covers, suggesting that 

the strength of local vs. regional mechanisms was relatively unaffected by physicochemical 

stressors, consistent with prior work, reporting that fire disturbance altered β-diversity but not its 

causes (Myers et al., 2015).  Community comparisons revealed that the magnitude of βDEV 

usually increased with body size, which here was linked with dispersal capacity. Smaller βDEV 

values in diatoms and insects indicated that the observed species pool exerted greater influence 

on β-diversity relative to local assembly. These results are corroborated by earlier research 

showing that diatom and insect communities are unsaturated, whereby local richness is limited 

by the size of the regional pool as opposed to local interactions (Passy, 2009; Al-Shami, Heino, 
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Che Salmah, Abu Hassan, Suhaila et al., 2013; but see Thornhill, Batty, Death, Friberg & 

Ledger, 2017). Therefore, it is possible that regional effects play a greater role in structuring 

local richness and β-diversity of smaller and more dispersive organisms than of larger and less 

dispersive organisms, and these relationships are not consistently affected by eutrophication.  

In contrast, βDEV in both fish datasets approaching 0.50 suggested relatively similar local 

and regional control of β-diversity, in agreement with prior observations of comparable 

contributions of regional and local factors to fish richness (Angermeier & Winston, 1998). 

Taxonomic homogenization is a particularly prevalent phenomenon among freshwater fish 

(Petsch, 2016) and our study elucidated that the possible causes include both local and regional 

processes.  

Other nearly uniform patterns, independent of land use, were the negative correlation of 

residual σ of the regional SAD and the positive correlation of intraspecific aggregation (1/k) with 

βDEV. These correlations indicated that more even regional SADs and increased intraspecific 

spatial aggregation were associated with stronger local constraints on β-diversity. Recent work 

has only begun to explore the relationship of SAD evenness with taxonomic homogenization, 

showing clear links between the two with implications for conservation (e.g., Simons et al., 

2015; Komonen & Elo, 2017). Our study is novel in that it demonstrates that local and regional 

processes controlling β-diversity are dependent on SAD evenness—a finding that could guide 

future stream conservation and management decisions, which need to be scale-explicit.  For 

example, if preserving β-diversity, then adopting practices promoting abundance of less common 

species may be beneficial, given that SAD evenness is positively correlated with β-diversity.   
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The contribution of the SAD vs. intraspecific spatial aggregation to βDEV 

To our knowledge, we are the first to explore how land use affects partitioning of βDEV into SAD 

vs. spatial aggregation fractions, i.e. βSAD vs. βAGG (objective three). βSAD accounted for most of 

βDEV, similar to observations for global tree communities (Xu et al., 2015), but opposite to 

findings, with a different null model, for Czech forests (Sabatini, Jiménez‐Alfaro, Burrascano, 

Lora & Chytrý, 2017). We further discovered that βSAD largely exceeded βAGG across organismal 

groups, datasets, and land cover types. However, βSAD was significantly higher in agriculture 

compared to forest in all datasets. The two land covers also diverged in βAGG—less spatial 

aggregation than predicted by the null model (βAGG < 0) was detected in agriculture across all 

datasets, while some aggregation (βAGG > 0) was observed in forest streams in four out of six 

datasets. These results suggest that although land use did not constrain the magnitude of local 

assembly effects (βDEV), it did control the mechanisms of local assembly, i.e. land use increased 

the role of the SAD, but diminished the influence of aggregation.   

 

Organismal and geographic dependencies in biodiversity response to homogenization 

In pursuit of our fourth objective, we found that organismal groups responded differently to land 

use, as reported by other studies (e.g., Angermeier & Winston, 1998; Thornhill et al., 2017). Insects 

resembled diatoms in biodiversity, SAD shape, and βDEV patterns, which suggested that body 

size and dispersal capacity may be more important than trophic position (autotroph vs. 

heterotroph) in predicting ecological responses to agricultural eutrophication. We generally 

expected consistent responses of these metrics to agriculture, regardless of country of origin (i.e., 

diatoms and fish). We reasoned that agriculture, being a major habitat alteration, will override all 

other influences, yet within both groups, there was divergence depending on region. We ensured 



 

34 
 

that variation in individual counts and mean counts among samples and differences in 

geographic spread across datasets did not contribute to their dissimilarity (data not shown). Thus, 

our findings of within-taxon variability with respect to biodiversity and the SAD highlighted the 

importance of considering context dependency. Histories of land use disturbance among 

geographic regions can set biodiversity and relative abundance patterns on different trajectories 

by affecting processes underlying β-diversity (Cramer, Hobbs & Standish, 2008). For example, 

European fish diversity has been historically depauperate relative to North American fauna 

owing particularly to differences in glacial influence (Oberdorff, Hugueny & Guégan, 1997). 

Furthermore, French aquatic communities have been impacted by agricultural activities far 

longer than their North American counterparts (Hahn & Orrock, 2015).  

 In summary, we determined eutrophication is a major driver of β-diversity losses among 

stream taxa, although the importance of geographic context was shown through the varied 

biodiversity responses within taxonomic groups.  Local assembly generally was weakly affected 

by agriculture. However, in agriculture the regional SAD became significantly more uneven and 

its effect on local assembly significantly increased compared to forest, which may be the 

underlying causes of taxonomic homogenization.  Biodiversity, SAD shape, and βDEV depended 

more strongly on body size and/or dispersal than trophic position. Future research should explore 

how local and regional processes operate in tandem with the SAD to uncover whether 

homogenization drivers are specific to organismal groups and the regions from which they were 

sampled.  Here we examined β-diversity loss from a taxonomic perspective.  We recommend 

future investigations on agriculture-driven homogenization to be conducted across space and 

time and on taxonomic, phylogenetic, and functional diversity for more holistic understanding of 

its causes and patterns.  
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Appendix 2.1. Expanded description of environmental data and null model  

correlation results. 

 

 

Fig. S2.1  Principal component analysis of resampled environmental data for each dataset.  A = 

US diatoms, B = French diatoms, C = Canadian diatoms, D = US insects, E = US fish, F = 

French fish.  Light gray = agricultural stream resamples, dark gray = forest stream resamples. 
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Table S2.1  Environmental and landscape variables used for analysis of environmental 

heterogeneity in land covers within each species dataset. 

Organismal group Country Environmental variables Landscape variables 

Diatoms US pH  

Water Temperature (°C) 

Specific conductance (µS/cm) 

Ammonia (µg/L) 

Nitrite + Nitrate (µg/L)  

Orthophosphate (µg/L) 

Drainage area (km2) 

Site elevation (m) 

 France pH 

*Air Temperature (°C) 

Specific conductance (µS/cm) 

Ammonia (µg/L) 

Nitrite + Nitrate (µg/L) 

Orthophosphate (µg/L ) 

Drainage area (km2) 

 Canada pH 

Specific conductance (µS/cm) 

Total nitrogen 

Total phosphorus 

Drainage area (km2) 
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Table S2.1 Continued 

Organismal group Country Environmental variables Landscape variables 

Insects US pH  

Water Temperature (°C) 

Specific conductance (µS/cm) 

Ammonia (µg/L) 

Nitrite + Nitrate (µg/L)  

Orthophosphate (µg/L) 

Drainage area (km2) 

Site elevation (m) 

Fish US pH Drainage area (km2) 

  Water Temperature (°C) Site elevation (m) 

  Specific conductance (µS/cm)  

  Ammonia (µg/L)  

  Nitrite + Nitrate (µg/L)  

  Total phosphorus (µg/L)  

 France  pH Drainage area (km2) 

  Air temperature (°C) Site elevation (m) 

  Ammonia (µg/L )  

  Nitrite + Nitrate (µg/L )  

  Orthophosphate (µg/L )  
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Table S2.2. Table of Pearson correlations of null model and SAD parameters.  All 

correlations were significant (P < 0.05) unless noted by asterisk. 

Land cover Dataset 

σ  

vs. 1/k 

σ 

vs. skew 

σ 

vs. βDEV 

1/k 

vs. βDEV 

Agriculture US diatoms −0.101 0.141 −0.425 0.568 

 French diatoms −0.047* 0.331 −0.426 0.729 

 Canadian diatoms −0.287 0.610 −0.831 0.671 

 US insects −0.024* 0.577 −0.629 0.458 

 US fish −0.242 ---- −0.752 0.487 

 French fish −0.067 ---- −0.464 0.637 

Forest US diatoms −0.155 0.102 −0.380 0.529 

 French diatoms −0.352 0.530 −0.703 0.607 

 Canadian diatoms −0.023* 0.388 −0.622 0.704 

 US insects −0.166 0.431 −0.581 0.506 

 US fish 0.149 ---- −0.532 0.265 

 French fish −0.449 ---- −0.708 0.741 

---- Skewness was not significant for this dataset 
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Appendix 2.2. Description of null model machinery 

 

Although the null model we employed is well explained by Xu et al. (2015), we provide a 

convenient summary of the model here.  This null model is a series of equations that calculates 

β-diversity values based on occupancy-abundance probability distributions (He and Gaston 

2003).  The null model procedure calculates three β-diversity values: observed β-diversity, 

expected β-diversity, and predicted β-diversity.  In this study, observed β-diversity for each land 

use category was originally calculated as the fraction of the species pool not observed at a given 

site: 

βOBS = 1 −
α

γ
         (1). 

However, this relationship can be equivalently re-expressed as the sum total of the proportion of 

sites occupied by the ith species: 

βOBS = 1 −
∑ pi

γ
i=1

γ
        (2). 

The null model uses this alternate form of equation 1 as the base equation for this procedure.  

The pi variable of equation 2 is treated as the focal parameter for the model procedure as two 

additional beta diversity values (expected and predicted β-diversity) are generated by substituting 

in occupancy-abundance models for pi.   Expected β-diversity (βEXP) is first derived using an 

occupancy-abundance model that assumes the probability of sampling the ith species with n 

individuals across m sites is a Bernoulli trial: 

 𝑝𝑖 = 1 − (1 −
1

𝑚
)

𝑛𝑖

        (3). 
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Substitution of equation (3) for pi in equation (2) calculates expected β-diversity, or the β-

diversity expected under a completely random distribution of individuals across sites: 

βEXP =
(∑ (1−

1

𝑚
)

𝑛𝑖𝑦
𝑖=1 )

𝛾
         (4). 

Predicted β-diversity (βPRED) is calculated with a non-random occupancy-abundance relationship 

that assumes the probability sampling the ith species with n individuals across m sites follows a 

negative binomial distribution: 

 𝑝𝑖 = 1 − (1 +
𝑛𝑖

𝑚𝑘
)

−𝑘

         (5), 

where m is the total number of sites and k is a parameter empirically estimated from the negative 

binomial fit and represents the average magnitude of intraspecific spatial aggregation across all 

samples (He and Gaston, 2000).  Equation 5 then substitutes in for pi in equation 2 to yield the 

predicted β-diversity model, which estimates β-diversity when intraspecific spatial aggregation is 

equal across species: 

 βPRED =
(∑ (1−

𝑛𝑖
𝑚𝑘

)
−𝑘𝑦

𝑖=1 )

𝛾
        (6).  

The negative-binomial k parameter in equations 5 and 6 is usually unknown, and therefore it 

must be empirically estimated using maximum likelihood methods. This is done by first pooling 

together all species and samples across datasets into a single metacommunity dataset and then 

maximizing the log-likelihood function: 

 

  𝑙 = ∑ [𝑜𝑖𝑙𝑜𝑔(𝑝𝑖) + (𝑚 − 𝑜𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)]𝛾
𝑖=1      (7), 
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where oi is the proportion of streams occupied by the ith species, m is the total number of streams, 

and pi is the predicted occupancy model (equation 5).  This likelihood-estimated value of k is 

what is used for equations 5 and 6 to generate βPRED.    
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Introduction 

The world's freshwater ecosystems are undergoing global changes in nutrient inputs, which are 

either increasing, causing eutrophication and deterioration of water quality (Dodds & Smith, 

2016; Stoddard et al., 2016) or decreasing, leading to oligotrophication and potentially 

restoration of the original state (Flaim et al., 2016; Verbeek et al., 2018). As anthropogenic 

factors continue to force the pendulum to shift among nutrient extremes, how species and 

communities respond is a topic of great research interest and environmental concern (Tilman & 

Isbell, 2015; Wang et al., 2016).   

Numerous investigations have shown that both availability and balance (i.e., relative 

proportions) of major nutrients, such as nitrogen and phosphorus, constrain biodiversity, 

composition, and biomass production across ecosystems (Elser et al., 2007; Cardinale et al., 

2009; Harpole et al., 2011; Lewandowska et al., 2016; Cook et al., 2018). However, we are just 

beginning to understand the impacts of nutrient supply and balance on the topology of species 

co-occurrence networks. Co-occurrence networks graphically represent the pairwise species 

relationships within a metacommunity, and the topological properties of these networks are 

sensitive to ecological gradients (Poisot et al., 2015). For example, eutrophication was shown to 

increase species inter-connectedness (e.g., the mean number of neighbors) and decrease network 

subdivision into modules (Rocha et al., 2015, Cao et al., 2018, Wang et al., 2019) with 

potentially negative consequences for network resilience and susceptibility to disturbance. 

Nutrient balance effects (e.g., N-limitation vs. P-limitation) on network parameters are much less 

studied, yet modularity and connectance in heterotrophic communities were demonstrated to 

respond to nutrient ratios (Larsen et al., 2019).   
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Notably, our knowledge of nutrient effects on the topology of co-occurrence networks 

comes primarily from terrestrial systems (but see Qu et al. 2019). This is concerning as aquatic 

systems are disproportionately susceptible to human influences because of their relative isolation 

within the surrounding landscape matrix (Woodward et al., 2010). Although we noted that past 

studies have compared co-occurrence network topologies across nutrient categories, e.g. 

oligotrophic, eutrophic, N-, and P-limited, none have explored to what extent they are driven by 

shared niches, dispersal, or actual interspecific interactions, given that all of these factors could 

underlie species co-occurrence relationships (Morueta-Holme et al. 2016).   

The goal of this investigation was to determine how nutrient supply and imbalance affect 

properties of co-occurrence networks in stream benthic algae, growing under oligotrophic (low N 

and P concentrations), eutrophic (high N and P concentrations), and N- or P-limited conditions 

(intermediate N and P concentrations but Redfield ratio below or above 16:1, respectively). We 

focused on network size, i.e. number of nodes (species) and edges (species co-occurrences), edge 

characteristics (mean proportion of positive links), connectivity (mean shortest path length and 

connectance), clustering (local and global), and modularity. Edges can be positive or negative in 

value and their relative proportions indicate the prevalence of mutualism and facilitation vs. 

competition, which has implications for network stability (Mougi & Kondoh, 2012; Suweis et 

al., 2014). Interconnectedness among nodes (Dunne et al., 2002; Estrada, 2007; Borrett et al., 

2010) and their tendency to form cliques (local or global) (Shirley & Rushton, 2005) can 

influence network susceptibility to disturbance and propagation of effects. Modularity reflects 

the overall subdivision of the network into discrete groups (modules), having the potential to 

represent functional groups or niche partitioning (Montoya et al., 2015). 
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We provide the first study of how species co-occurrence networks respond to each of four 

nutrient contexts (oligotrophic vs. eutrophic and N-limited vs. P-limited) at a subcontinental 

scale, while controlling for climate and dispersal. We used as a model system benthic algae 

because their metacommunities are sensitive to nutrient, climatic and dispersal effects (Soininen, 

2007; Verleyen et al., 2009; Soininen et al., 2016; Leboucher et al., 2019) but it still remains 

unknown whether this sensitivity transcends to the level of network topology. We thus pursued 

the following two objectives: 1) quantify network topology under each nutrient context and test 

for differences and 2) determine the relative contributions of climate and space (surrogate of 

dispersal) to network topology vs. community composition and whether these factors differ 

between nutrient contexts.   

In addressing objective 1, we test the hypothesis that nutrient contexts (supply and ratio) 

influence co-occurrence network topology. Greater algal biodiversity with nutrient addition 

(Hillebrand et al., 2007; Passy & Larson, 2019) should translate into overall larger co-occurrence 

networks with more nodes and edges. Eutrophic conditions promote speciose overstory guilds 

(high profile and motile) that are sensitive to nutrient limitation, whereas understory low profile 

species dominate under nutrient limitation (Passy, 2007; Marcel et al., 2017; Wu et al., 2017). 

Eutrophication is, therefore, likely to produce networks with greater local clustering, modularity, 

and path lengths due to coexistence of different functional groups, while oligotrophic conditions 

may lead to greater network connectivity and global clustering among fewer and comparatively 

functionally uniform species. Algal functional responses to N:P ratios are varied and system-

specific, making it difficult to predict how network topology may respond to N:P ratio, but some 

studies have reported a tendency of P-limitation to stimulate high profile diatoms, whereas N-
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limitation to favor cyanobacteria and/or motile diatoms (Smith 1983, Stelzer & Lamberti 2001, 

Qu et al., 2019).  

In addressing objective 2, we used a recently developed null model (Morueta-Holme et 

al., 2016) to test hypotheses that gradients in climate, dispersal, or both structure 

metacommunity composition, which in turn constrains topologies of algal co-occurrence 

networks. In aquatic systems, climate drives local nutrient availability and ratio by affecting 

precipitation runoff and flows (Jeppesen et al., 2009; Özen et al., 2010) and metabolic 

requirements (Woodward et al., 2010). Climate-nutrient relationships in turn impact competitive 

and facilitative mechanisms in algae (Bestion et al., 2018; Marañón et al., 2018), which can have 

consequences for algal co-occurrence patterns, although this topic has not been studied with 

network methods. At the spatial scale of this study, we expected climatic factors to substantially 

constrain network topology across nutrient contexts due to their pronounced influence on algal 

species composition and distribution (Pajunen et al., 2016; Jyrkänkallio-Mikkola et al., 2017). 

However, stochastic processes, which dominate in productive environments (Steiner & Leibold, 

2004; Chase, 2010; Leboucher et al., 2019), could more strongly control eutrophic than 

oligotrophic network topology, but this question has not been explored so far. It is also unknown 

if or how networks differing in nutrient ratio would respond to climatic and spatial control. We 

therefore examined network topology as a function of climatic and spatial factors across nutrient 

contexts and tested whether these factors exercised a similar effect on metacommunity structure.   
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Methods 

Datasets 

We used data from 740 stream sites, where samples were taken from June to September between 

1993-2011 by the National Water-Quality Assessment Program of the US Geological Survey. 

Algae were collected from a defined area in the richest-targeted habitats, which encompass hard 

substrates or macrophytes in faster currents. Generally, 25 cobbles, 5 woody snags or 5 

macrophyte beds were sampled within a stream reach and the material was composited into a 

single sample. All taxa were identified mainly to species and their densities were measured as 

cells per cm2. Species were categorized by ecological guild, following Passy (2007) and Passy & 

Larson (2011), including low profile (growing close to the substratum), high profile (extending 

into the biofilm matrix), and motile (fast moving).     

Each sample was classified based on nutrient supply (eutrophic or oligotrophic) and ratio 

(N-limited or P-limited). Total nitrogen (TN) and total phosphorus (TP) concentrations were 

below 0.669 and 0.025 mg/L, respectively, in oligotrophic samples but above 1.499 and 0.075 

mg/L, respectively, in eutrophic samples (Dodds & Smith, 2016). Nitrogen-limited samples were 

identified as those with Redfield N:P ratios less than 16:1, whereas P-limited samples had ratios 

above 16:1 (Redfield, 1934). Nitrogen and phosphorus-limited sites had mesotrophic conditions 

with TN and TP between those in the oligotrophic and eutrophic sites. Each nutrient context 

dataset consisted of 185 sites. All samples were unique to each nutrient context and samples 

were as similarly geographically distributed as possible (Appendix 3.1, Fig. S3.1). Climatic 

predictors (bioclim variables 1-19, Fick & Hijmans, 2017) were downloaded for each site. 
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Co-occurrence networks 

Prior to network construction (Fig. 3.1), we filtered the species by site metacommunity matrix 

for each nutrient context by removing rare species, which occurred in less than 10% of samples. 

We created weighted co-occurrence networks for each nutrient context by calculating a partial 

Spearman correlation matrix on relative species density, standardized with mean = 0 and 

standard deviation = 1. Partial Spearman correlations were used over raw correlations to account 

for the influence of indirect species associations and because the null model we employed 

requires their use (see Gradient Effects section).  We used random matrix theory (RMT) methods 

from R-package “RMThreshold” (Menzel, 2016) to objectively determine thresholds below 

which correlations were likely spurious and should be removed from further analyses (Appendix 

3.2).  

After thresholding the partial correlation matrix with the RMT-selected correlation value, 

species with all correlations below the threshold were removed. The resulting correlation 

adjacency matrix was used to generate a weighted network using R package “igraph” (Csardi and 

Nepusz 2020). We then used a fast-greedy clustering algorithm to identify the modules in the 

network. After assigning the nodes into their modules, we calculated network topology 

measures, including number of nodes, number of edges, mean node degree, mean shortest path 

length, clustering coefficients (a.k.a transitivities), modularity, and number of modules.  Mean 

shortest path length, measuring on average how many nodes lie between any two nodes in the 

network, was calculated with a harmonic mean. 
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Gradient effects on co-occurrence networks 

To explore whether species co-occurrence networks are driven by niche overlap along climatic 

gradients, small scale environmental filtering and dispersal (space), or both, we used the null 

model outlined by Morueta-Holme et al. (2016), which we briefly describe. This procedure 

compares observed partial correlation values with a distribution of predicted partial correlation 

values and removes observed partial correlations that are less extreme than predicted. The 

predicted correlation distributions are produced by calculating partial correlations on a predicted 

metacommunity matrix that contains the same species as the observed species-by-site matrix, but 

with abundances predicted using species distribution models (SDM). The SDM-predicted 

abundances represent those expected owing to climatic, spatial, or both gradients. The null model 

Fig. 3.1. Flow chart showing the construction of 

nutrient supply and ratio networks.   
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procedure then randomly samples individuals using a lottery model for each site in the predicted 

metacommunity matrix and calculates a partial correlation matrix after randomization. The 

observed value is then statistically compared with the null expectation, and if found significantly 

more extreme, the observed value is retained in the matrix or otherwise deleted as it represents a 

shared response to a gradient.   

Here, we modified the null model procedure to use Spearman partial correlation values 

rather than the Pearson values to account for non-linear but monotonic correlations. We used the 

partial correlation matrix created by the RMT procedure as the observed correlation matrix.  

Densities for each species, predicted by climate or spatial variables, or both, were calculated 

separately using optimally-parameterized boosted regression trees (BRT) with a Bernoulli link-

function and trained using 10-fold cross-validation (Elith et al., 2008). Spatial variables were 

generated using Moran’s eigenvector maps (MEM) with functions in R package “adespatial” 

(Dray et al., 2016). MEMs are orthogonal variables whose values represent spatial 

autocorrelation patterns. They are generated as the eigenvectors of a spatial weighting matrix 

describing the strength of the spatial relationship between pairs of samples. Using function 

“listw.select”, we selected the best fitting combination of spatial weighting matrix and weighting 

definitions that generated a minimum of 10 significant MEMs (identified with permutational 

methods during the selection procedure) and best explained species densities (Bauman et al., 

2018).   

BRTs for each species were optimized by iteratively finding the combination of tuning 

parameters (bag fractions ranging from 0.5 to 0.75, tree complexity parameters ranging from 1 to 

5, and numbers of trees fit), which maximized area under the curve (AUC) values. Then, we 

refitted the models using the parameters corresponding to maximum AUC. For the BRT 
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procedure with the combined climate and spatial predictors, we used all climatic and spatial 

predictors. The BRTs produced probability estimates owing to the specified Bernoulli link 

function, which we transformed to densities by multiplying each species’ observed density by the 

species’ probability for the sample. When a species’ probabilities could not be predicted with 

any combination of tuning parameters, we used its observed abundances in the predicted matrix 

because the model fits indicated that their observed presence patterns were no better predicted 

than a random expectation given the predictor variables used. We then combined the predicted 

abundances for each species into a single predicted metacommunity matrix and subsequently 

used it in the null model. We set the null model to run for 1000 iterations, transforming the 

randomized predicted densities to relative densities for each iteration as described for network 

construction, and identified insignificant correlations, which were then removed from the 

observed partial correlation matrix. We reconstructed the networks and calculated network 

parameters using these newly thresholded correlation matrices, which represented interaction 

networks free of co-occurrences due to climatic niche overlap and/or environmental filtering and 

dispersal.  

 

Statistical analyses 

We tested our first hypothesis by a resampling protocol to examine whether the ecological 

networks differed in their topology between nutrient contexts. This was done by subsampling 

75% of the metacommunity (141 streams) and recalculating all network parameters as described 

previously for 9,999 iterations. We verified that the resampling procedure did not bias our 

comparisons by ensuring that 1) the observed topological measurement fell within the 95% range 
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of the resampled values, and 2) the medians of the resampled distributions followed the same 

ranking patterns across the nutrient contexts as the observed values (data not shown).   

We note the oligotrophic and eutrophic data consisted of samples that were either N- or 

P-limited, therefore we could not make fair pairwise comparisons of these networks with the N- 

and P-limited networks. Therefore, we separated our statistical comparisons and assessed 

differences between oligotrophic vs. eutrophic networks and N-limited vs. P-limited networks. 

For both sets of comparisons, we used R package “RVAideMemoire” to first perform 

permutational MANOVA (function “pairwise.perm.manova”, 999 permutations, Herve et al., 

2018), which examined if the topological parameters differed between nutrient contexts in the 

nutrient supply and ratio networks. We followed significant results with permutational pairwise 

t-tests on each network parameter (function “perm.pairwise.t.test” with 999 permutations).   

We used redundancy analysis-based variation partitioning (Oksanen et al., 2019) on the 

metacommunity matrix of each nutrient context to determine if algal species densities responded 

to climatic and spatial factors, which we compared with the null model output for the respective 

networks to assess objective 2. On each metacommunity, climate variables were reduced to 

principal components axes to represent climatic factors, with the number of axes selected based 

on Kaiser-Guttman criterion (eigenvalues > 1, Peres-Neto et al., 2005). Spatial factors were 

created using MEM, as described above for the BRT procedure, with significant MEMs retained 

using forward selection. The pure fractions of climate and space were tested using permutational 

analysis of variance (R package `vegan  function “anova.rda”). After the null model analysis, we 

qualitatively assessed how climatic, spatial, and climatic + spatial factors influenced overall 

network topologies when compared with the original networks by calculating the absolute 

proportional change in each measured network parameter.   
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Results 

All four networks varied in size, ranging from 66 nodes in the oligotrophic network to 97 nodes 

in the N-limited network (Appendix 3.1, Table S3.1). Examination of the edge counts and 

connectance revealed that all networks were sparse and poorly connected. Positive network 

edges generally constituted the majority of edges in the networks, although their proportion was 

the highest in the P-limited network. All networks consisted primarily of diatoms (86.3% – 

92.4% of nodes) with minor representation by cyanobacteria (4.8% – 7.6%). The remaining algal 

groups generally comprised <5% of the nodes. Motile taxa dominated all networks (46.4-50.5% 

of all classified nodes) except for the oligotrophic network, where high profile taxa prevailed 

instead (39.4% of all classified nodes).  

 

Topological Comparisons Across Contexts 

Permutational MANOVA on subsampled topological measures (Table 3.1) indicated that the 

compared nutrient supply and ratio networks significantly differed from each other. Network size 

was significantly larger (greater numbers of nodes and edges) in the eutrophic and N-limited 

networks than the oligotrophic and P-limited networks, respectively. Other notable differences 

included higher clustering, number of modules and mean node degree in the eutrophic than the 

oligotrophic networks and greater proportions of positive edges in P-limited than N-limited 

networks. The remaining network parameters varied less between network contexts. 
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Table 3.1.  Raw network parameters of algal co-occurrence networks differing in 

nutrient availability (oligotrophic vs. eutrophic) and nutrient ratio (N-limited vs. P-

limited).  All values were significantly different from each other (tested with 

permutational t-tests, P < 0.05, 999 permutations after significant permutational 

MANOVA).    

 

Parameter Nutrient supply Networks Nutrient ratio Networks 

 Oligotrophic Eutrophic N-limited P-limited 

No. Nodes 66 93 97 83 

No. Edges 84 144 164 124 

% Positive Edges 0.60 0.56 0.55 0.66 

Local Clustering 0.07 0.12 0.16 0.11 

Global Clustering 0.09 0.16 0.15 0.09 

Modularity 0.64 0.58 0.57 0.60 

No. Modules 8 11 10 9 

Mean Path Length 3.36 3.48 3.25 3.41 

Mean Degree 2.55 3.10 3.38 2.99 

Connectance 0.04 0.03 0.04 0.04 

 

  

Null Model Analysis and Variance Partitioning 

Qualitative examination of the networks produced by the null model procedure indicated that 

controlling for climatic, spatial, and combined climatic and spatial effects changed network 

topology, i.e. mean absolute % change in network parameters ranged between 38% and 72% on 

average (Fig. 3.2). Notably, controlling for spatial variables produced the greatest proportional 

change in network topology in the oligotrophic network, while climate + space control generated 

the greatest changes in the other three networks. 
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General patterns were observed in some parameters after climate and spatial control, 

owing in part to substantial increases in 0-degree nodes (i.e., nodes without any connections, 

Figs. 3.3, 3.4).  Edge counts, connectance, and mean node degree decreased in a strongly 

correlated fashion across all controlled networks between 35% to 52.5%, whereas modularity 

values increased by 12.4% to 25.8%. Interestingly, some of the largest changes after control 

occurred in the P-limited networks, which underwent the greatest declines in mean degree and  
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Fig 3.2. Mean proportional change in network topology from the original 

network across all network parameters after controlling for climatic, spatial, 

and climatic + spatial variables.  For each controlled network, the absolute 

value of the proportional change in each network parameter was calculated 

and then averaged across all values to obtain the mean proportional change. 
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connectance and the greatest increases in modularity and number of modules. Responses of the 

remaining network parameters to control effects differed greatly among the networks. The 

oligotrophic network showed strong positive changes in mean local and global clustering in 

response to all control effects, whereas changes were relatively small and negative in the 

eutrophic network. Declines in clustering were similar in magnitude for both nutrient ratio 

networks. Responses in mean path length to controlling variables differed across the networks, 

however mean path length generally declined in the oligotrophic network, but increased in the  

 

Figure 3.3.  Raw networks and networks reconstructed after controlling for 

climate = C, space = S, and Climate + Space = C + S in (a) oligotrophic, 

(b) eutrophic, (c) N-limited, and (d) P-limited streams. Solid lines = 

positive co-occurrences, dashed lines = negative co-occurrences. 
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remaining networks. Finally, changes in the fractions of positive edges were strongly dependent 

on nutrient context and showed no clear general trends with respect to any controlling variable.  

Variance partitioning analysis on the metacommunities revealed that climatic and spatial 

variables generally explained significant fractions of algal relative abundances, with spatial 

variables predominating regardless of nutrient context (Fig. 3.5). These results did not 

remarkably change when examining the metacommunity composed of species only found in the 

networks, with the exception of climatic effects, which became insignificant in the reduced 

metacommunities. The analysis further revealed that climatic effects (both pure and spatially 

structured climate) generally explained < 6% of the total variability in composition in contrast to 

pure spatial factors, which explained usually between 14% to 30% of metacommunity variation.   

 

 

Fig. 3.4. Network parameter values across nutrient contexts in the raw 

data and after controlling for climate, space and climate + space.  
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Discussion 

The dependence of algal composition and biomass production on nutrient supply and balance has 

been studied for decades and is generally well recognized (Hecky & Kilham, 1988; Bergström, 

2010; Hayes et al., 2015). Here we examined for the first time how the topology of algal co-

occurrence and interaction networks is structured by nutrient context, consistent with our first 

objective. Networks assembled under various nutrient supply and ratio scenarios differed in size, 

i.e. number of nodes and edges in nutrient supply networks but only number of nodes in nutrient 

ratio networks. Nutrient supply further affected network clustering, complexity and subdivision 

Fig. 3.5. Variance partitioning of algal metacommunity composition into 

fractions (as adjusted R2) explained by pure climatic, pure spatial, and 

covariance effects across nutrient contexts.  Pure climate and space fractions 

within each nutrient context were significant sources of explained variance 

(each fraction was tested for significance using permutational methods). 
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into modules, while nutrient ratio underlined the type of interactions and clustering. The remaining 

topological differences, although significant, were weak. Following objective 2, we found strong 

support for the prediction that climatic and spatial gradients constrain the topology of the networks 

and that the magnitude of this influence depends on nutrient context. We further demonstrated that 

different mechanisms control metacommunity composition vs. network topology. 

Nutrient supply context influenced the size, complexity and modular structure of the 

networks, agreeing with our first hypothesis. Eutrophic networks were dominated by the most 

speciose guild, the motile guild, while the high profile guild prevailed in the oligotrophic 

network but the overall guild distribution was more equitable. Higher richness and dominance 

under eutrophic conditions translated into larger networks that were more clustered and complex 

(higher mean node degree), encompassing more modules than the smaller oligotrophic networks. 

In the nutrient imbalanced networks, higher diversity and greater clustering were observed under 

N-limitation, while P-limitation resulted in proportionately more positive edges. However, these 

differences cannot be attributed to guild composition, which was similar. 

In general, more diverse networks showed proportionately greater clustering consistent with 

similar observations for mutualistic pollinator networks (Gómez et al., 2011). Clustering in 

networks reflects the presence of redundant pathways (Karimi et al., 2017) and stronger 

organization of nodes into distinct subgroups (Girvan and Newman 2002). Much of our 

knowledge on the environmental dependence of clustering comes from research on soil 

microbiota, where clustering decreased with  CO2 concentrations (Zhou et al., 2011; Sauvadet et 

al., 2016) but showed no response to anthropogenic disturbance Zapellini et al. (2015). Our 

findings add to this knowledge by identifying nutrient supply and ratio as drivers of network 

clustering patterns in stream ecosystems. Potential avenues for future research include 
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determining whether network clustering affects ecosystem functions and whether it could be 

used for monitoring nutrient impacts in streams. 

An increase in topological complexity (mean node degree) with node diversity was detected 

only in the nutrient supply context. This was probably a consequence of the stronger guild 

dominance in the eutrophic compared to the oligotrophic network, given that nodes from the 

same guild are likely to co-occur due to similar environmental preference. Topological 

complexity was decoupled from network diversity in the nutrient ratio context as guild 

frequencies were comparable. Thus, we showed that the dependency of algal network size and 

topology presented itself mainly within nutrient supply context, which is consistent with other 

studies that found that network complexity is dependent on trophic conditions (Dai et al. (2017) 

and correlates, albeit not always positively, with biodiversity (Shi et al., 2016; Li et al., 2018).  

Further, our study highlights that differences in guild compositions likely underlay this 

relationship. 

Relationships of network size to certain topological parameters, particularly mean path 

length and modularity, and proportions of positive links cannot be explained easily by guild 

compositions and appear to be more complicated. Much work has shown that network topologies 

are strongly driven by the presence of highly connected nodes (Proulx et al., 2005; Poisot et al., 

2015), which were generally absent in our networks. As a result, these networks were poorly 

connected with connectance of 0.03-0.04, falling below the commonly reported values of 0.05 to 

0.3 (Thompson et al. 2012). Thus, a major conclusion here is that, in subcontinental-scale co-

occurrence networks, higher degree nodes are likely very rare and their absence explains why 

our networks display a poor relationship of biodiversity and some aspects of network topology—

because species lost or gained between nutrient networks were by and large poorly connected. 
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All of our networks were dominated by positive relationships, as expected at large scales, 

due to spatial scaling of mutualisms at the expense of competitive relationships (Araujo and 

Rozenfeld 2014). Proportions of positive connections are typically examined in ecological 

networks because of their role in conferring stability (Muogi and Kondoh 2012, Lurgi et al., 

2015, Garcia-Callejas et al., 2015). However, with our analyses, we found that increased positive 

co-occurrences may not necessarily impart stability. Specifically, the P-limited network, which 

had the greatest proportion of positive edges before and after control, was drastically reduced in 

topological complexity after the null model analysis compared with any other network. We thus 

conclude that positive co-occurrences do not necessarily relate to network topological stability, 

but further work in this area is necessary to determine the generality of this pattern. 

With respect to objective 2, accounting for climatic and/or spatial effects substantially 

altered network topology, consistent with results reported for North American tree communities 

(Morueta-Holme et al. 2016). It has been argued that co-occurrence relationships contain much 

extraneous information (e.g., shared ecological responses) that should be controlled for to 

identify relevant biological interactions (Berlow, 1999; Bairey et al., 2016). Our results support 

this notion and reveal that the two nutrient supply and the N-limited networks controlled for 

climate, space, and both generally retained 56%-66% of the co-occurrences in the original 

networks, while the P-limited network retained only 50% to 53%.  These percentages could be 

attributed in part to biotic interactions. The removal of large fractions of connected nodes and 

edges in our networks by the null model has important ramifications for co-occurrence network 

analyses because many network properties are highly sensitive to network size and sparseness of 

edges (Poisot and Gravel 2014).  For our study, this means that variation in subcontinental co-

occurrence network properties reflects how nutrient contexts influenced climate preferences and 
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spatial relationships across the metacommunity. Our findings also highlight an opportunity worth 

exploring, as null model methods can reveal whether other variables, such as disturbance or 

competition/predation dynamics, underlie co-occurrence patterns, potentially indicating their 

importance in driving community organization. 

As predicted, climatic effects significantly constrained network topology across nutrient 

contexts. Inconsistent with our expectation for a more prominent impact of space on eutrophic 

than oligotrophic networks, we found the opposite—co-occurrences in oligotrophic streams were 

more strongly affected by space. In fact, all three groups of variables, climatic, spatial and 

climatic + spatial, contributed more to the oligotrophic than eutrophic networks. A similar, but 

more striking contrast was observed with the ratio networks, which showed that all three groups 

of variables produced a much greater change in the P-limited relative to the N-limited network.  

Collectively, these results suggest that co-occurrence networks under eutrophic and N-limited 

conditions, with greater diversity and local clustering, were more strongly driven by biotic 

interactions, offsetting the influence of climate and dispersal. This implies that nutrient context 

through its effect on species/guild composition and biotic interactions (Carrick et al., 1988; Law 

et al., 2014), may modulate network response to climate change. We advocate that future 

investigations experimentally test the importance of biotic interactions under different nutrient 

contexts and assess to what extent these interactions provide resistance to environmental 

fluctuation. 

Across nutrient contexts, climate and spatial drivers had different effects on species 

composition vs. network properties. Prior reports as to whether ecological drivers of network 

topology and community composition coincide have been mixed, with some studies showing 

correspondence (Mokross et al. 2014), while others, divergence (Li et al., 2018). In this 
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investigation, network topology was controlled by both climate and space, whereas species 

composition was primarily explained by spatial factors with climate (i.e., pure and spatially 

structured) having only a modest contribution. The discrepant influence of climate on network 

topology vs. species composition could be explained with a scale mismatch in species vs. 

metacommunity response. Individual species distributions, and by extension, pair-wise species 

co-occurrences in the networks, are more spatially constrained and thus may be strongly driven 

by climate, as shown for stream diatoms (Pajunen et al., 2016). Conversely, at the subcontinental 

scale of our metacommunities, geographic barriers among the discrete hydrologic systems that 

comprised their habitats, may have contributed to dispersal limitation subsuming the climatic 

effect. Although environmental factors predict better the variance in diatom metacommunities 

compared to space (Soininen and Teittinen 2019), these factors are generally associated with 

nutrient levels (Soininen 2007), which in our case was accounted for by nutrient context. Thus, 

within nutrient context, spatial predictors outperformed environmental forces at a 

metacommunity level. 

Our study lays groundwork for connecting novel methodology with classic ecological 

research to generate new information explaining why species co-occur. Nutrient supply and 

ratios affected subcontinental co-occurrence network properties and the magnitude of climatic 

and dispersal effects. The differential response of network topology and species composition to 

climate and dispersal calls for broader multi-level ecological approaches to better understand 

how the environment structures biological communities. 
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 Appendix 3.1:  Background for constructing networks with RMT and integrating 

regression trees to select an objective correlation threshold. 

 

Networks displaying species co-occurrence relationships as pair-wise correlations use an 

adjacency matrix format known as a weighted adjacency matrix.  Weighted adjacency matrices 

provide the same information as binary adjacency matrices in that a non-zero value indicates the 

existence of an edge between two nodes, but the edges in these matrices are also numerically 

valued and may or may not be signed (positive or negative).  However, the problem associated 

with the use of correlation matrices as a weighted network adjacency matrix is that, unless the 

adjacency matrix is appropriately thresholded, all nodes will have connections with all other 

nodes, resulting in a completely connected graph that is unsuitable for network analysis (i.e., 

topological comparison).  Threshold selection in correlation-based weighted adjacency matrices 

is a crucial step because threshold selection has major consequences on nearly every topological 

parameter of interest (Perkins and Langston 2009).  Therefore, selection of thresholds, regardless 

of empirical or theoretical justification, introduces bias into network analysis that can impact the 

interpretation of relationships represented in the network. 

Random matrix theory (RMT) has been integrated into the study of networks because it 

may allow for objective selection of a threshold value based solely on statistical patterns within 

the adjacency matrix. Particularly, the RMT approach is attractive as it optimally reveals 

clustering and modular structure in the network adjacency matrix, while removing values most 

likely originating from random Gaussian sampling.  We do not discuss the mathematical 

machinery of the method here and instead point the reader to other resources for more in-depth 

proofs of the method (Bandyopadhyay and Jalan 2007, Rai and Jalan 2015). Instead, we 
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summarize the major points here and describe our modification of the commonly used RMT 

approach. 

RMT-based matrix threshold selection is an iterative procedure with the goal of 

identifying a threshold value given a set of candidate thresholds.  For each candidate value, 

usually differing from each other in intervals of 0.01 unit (although other intervals can be used), 

the network adjacency matrix is zeroed-out below the candidate value, the adjacency matrix 

eigenvalues are calculated, and the pairwise differences between the eigenvalues taken.  Each 

candidate threshold value thus generates a unique frequency distribution of pairwise differences, 

which are termed eigenvalue spacings in RMT parlance.  These spacings are then fit with two 

statistical distributions, the Wigner-Surmise and the exponential distribution.  Generally, 

eigenvalue spacings are usually fit best by the Wigner-Surmise, a unimodal Gaussian-like 

distribution, at low candidate threshold values and exponential distribution at high candidate 

threshold values. The Wigner-Surmise distribution encompasses correlated eigenvalue spacings, 

i.e. the frequency distribution of spacings is clustered around the mean.  The exponential 

distribution, comprises uncorrelated eigenvalue spacings with an exponential decay in frequency.  

With RMT-thresholding, the optimal candidate threshold value is the one that 

corresponds to the transition point at which the eigenvalue spacings are fit better by the 

exponential distribution over the Wigner-Surmise distribution.  This transition point has been 

assessed using chi-squared methods (Deng et al. 2012). However, in this paper, the optimal 

threshold value indicating the transition point is not automatically chosen in the used R-package, 

but instead requires manual selection based on the divergence in behavior of fitted model 

loglikelihoods.  Therefore, we incorporated a regression tree procedure to objectively select the 

threshold value.  In this procedure, the response variable was the difference between the log-
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likelihoods of a Wigner-Surmise fit vs. exponential fit of the distribution of eigenvalue spacings 

and the predictor values were the potential candidate correlation thresholds.  We then used the 

predictor value at the first tree split as the correlation threshold at which the eigenvalue spacings 

become uncorrelated from each other. Visual observation of the plots of fitted model log- 

likelihoods against candidate thresholds supported this approach. 
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Introduction 

How and why species occur together continue to challenge community ecologists. In response, a 

number of methods ranging from simultaneous differential equations (Gause, 1932) to elaborate 

computer algorithms designed to shuffle community tables (Gotelli, 2000) have been developed 

to study this intriguing problem. However, any pairwise methods ignore the complex interwoven 

nature of a community (Bascompte, 2009), where co-occurrence is controlled by direct and 

indirect relationships among species (Barberán et al., 2012). The relatively recent application of 

network theory has moved community ecology forward by allowing description of the origin, 

structure, and consequences of these complex biotic networks. Specifically, co-occurrence 

network analysis treats species as nodes, draws co-occurrence relationships between species as 

edges, and applies graph theory to analyze the complexity of the resulting web. Co-occurrence 

network analysis has shown considerable promise in unravelling the potential ecological 

underpinnings of species relationships, including dispersal limitation, competition, and 

environmental constraint. Nevertheless, much of our current knowledge is reliant on networks 

constructed at relatively small spatial scales. As global change is not inherently local, studies 

examining how co-occurrence networks vary across spatial scales (hereafter referred to in the 

sense of spatial “extents”), and whether scale-dependency is in turn taxonomically dependent, 

are sorely needed. 

The formation and topological properties of a network are strongly correlated with the 

node degree distribution (NDD), a frequency distribution that quantifies the number of nodes 

with k connections to other nodes (Proulx et al., 2005; Newman, 2007; Fortuna et al., 2010). 

Real-world networks generally belong to a class called “small-world”, characterized by short 

path lengths and non-random clustering patterns (Watts & Strogatz, 1998). The NDD of 
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networks with small-world structure generally fall into one of three classes: exponentially-

bounded, power law, and cross-over between the two (Amaral et al., 2000; Lewis et al., 2010; 

Barabási, 2016; Holme, 2019) (Fig. 4.1). Networks with exponentially-bounded NDDs (e.g., 

exponential and Poisson distributions), commonly termed “single-scale,” are homogeneous and 

thin-tailed. Plainly, this means that most nodes have a similar number of edges and the NDD 

rapidly and asymptotically approaches 0 at large k values. The single-scale terminology does not 

refer to a spatial aspect of the NDD, but instead to how the standard deviation (the scale 

parameter) of the NDD is set by the mean (Albert et al., 2000). Power law NDDs, on the other 

hand, are inhomogeneous and fat-tailed — the majority of nodes have only a few edges, but 

some nodes have very high degrees. Power laws are termed scale-free distributions when the 

absolute value of the power law exponent, g, is between 2 and 3, because only the mean node 

degree is defined, while the standard deviation tends to infinity (i.e., there is no “defined” scale). 

Notably, power law models can generally fit only part of the distribution, therefore, it is common 

to test for prevalence of power laws after discarding the lower tail of the distribution (Gillespie, 

2015; Broido & Clauset, 2019). Cross-over NDDs, also termed “broad scale,” including 

exponentially-truncated power law (referred to as truncated power law henceforth), log-normal, 

and stretched exponential (Weibull) distributions, fall between exponentially-bounded and power 

law NDDs and possess properties of both (Amaral et al., 2000). All three classes of NDD have 

been reported for ecological networks (Dunne et al., 2002; Guimarães et al., 2007; Dormann et 

al., 2009) but recent evidence suggests that the power law NDD may be rare (Broido & Clauset, 

2019). 
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Fig. 4.1.  Conceptual diagram showing node degree distributions (NDDs), drawn as 

cumulative frequency, P(k), against node degree, k, on log scales. (a) An ideal power law fit 

over the entire NDD conforms to a linear pattern, while single-scale fits decline more 

rapidly. Broad-scale fits present with a power-law like region before strongly showing 

exponential declines.  (b) More often, real networks tend to be characterized by a slowly 

declining lower tail and an exponentially-truncated upper tail, causing the power law model 

to generate poor fits. (c) To account for these features of real networks and examine the 

power law-like nature of the distribution, procedures commonly use maximum likelihood 

estimation and Komolgorov-Smirnov methods to examine a region of the NDD most closely 

conforming to a power law (oval). This region is identified by estimating a minimum degree 

value, kmin, below which the lower tail of the distribution is ignored, and the remainder of 

the distribution most closely corresponds to the power law. model up to the maximum 

degree value, kmax. (d) The power law model is then fit over the distribution for k ≥ kmin and 

assessed for power law properties (e.g., parameters). 
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The shape of the NDD has been a subject of great interest across numerous fields of 

science and technology, including biology, epidemiology, sociology, transportation, and 

communications (Clauset et al., 2009) because it determines susceptibility to targeted node 

removals and information transmission rates within networks of molecules, individuals, species, 

power supplies, etc. (Albert et al., 2000; Dunne et al., 2002; Estrada, 2007; Gillespie, 2015). In 

ecology, understanding what models generally best describe the NDD patterns and whether 

ecological factors influence the model fits can provide crucial information on species network 

structure and function. Most ecological network analyses have focused primarily on terrestrial 

taxa, with less attention given towards aquatic networks, although recent efforts have begun to 

remedy this deficit (Thompson et al., 2012; Echevarria & Rodriguez, 2017).  Given that aquatic 

communities are disproportionately susceptible to anthropogenic and global change factors (Sala 

et al., 2000; Dudgeon et al., 2006), it is especially important to derive knowledge for this class of 

biota while simultaneously advancing our general understanding of co-occurrence network 

origins and patterns. 

In this study, we examined what models provide optimal fits for NDD in major aquatic 

organisms and whether the frequencies of these models are organism- and spatial extent-

dependent.  We used metacommunity datasets of stream diatoms and fish and examined the 

topologies of their co-occurrence networks from subregional to subcontinental extents with a 

recently developed “windows” methodology (Leboucher et al., 2019). To our knowledge, this is 

the first investigation to explore empirical NDDs at several spatially-explicit extents and provide 

an up to date, and strongly needed, critical analysis of statistical distribution fits to NDDs. 

Additionally, we tested the generality of these patterns between two taxonomic groups that differ 

greatly in body size (small vs. large) and dispersal capacity (passive vs. active).  
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Here we test two hypotheses. We first hypothesized that the NDD fit depends on spatial 

extent. Important ecological phenomena, such as species-area relationship (Palmer & White, 

1994), abundance distributions (McGill et al., 2007), and biotic interactions (Araújo & 

Rozenfeld, 2014), are not conserved across spatial extents. Previous studies have reported that 

networks of increasing spatial extents tend to exhibit properties of larger size (Lafferty & Dunne, 

2010; Galiana et al., 2018) and lower connectance (Sugiura, 2010). The explanations ranged 

from increased sampling of rare species to biological and ecological processes and mechanisms 

preventing links between species (i.e., forbidden links, Jordano et al., 2003), rendering these 

networks sparsely connected. Network size and connectance are among the most important 

determinants of the NDD (Poisot & Gravel, 2014), which we predict constrain the types and 

variety of models observed as spatial extent increases. Consequently, we expected NDDs are 

generally more strongly skewed toward rare species at larger spatial extents, which would thus 

exhibit greater prevalence of single-scaled NDDs.  

We second hypothesized that body size through its effect on dispersal capacity will 

constrain the prevalence of particular best model fits across spatial extents. How body size and 

dispersal differences between taxonomic groups contribute to network variability is not well 

studied. Given the impact of these organismal properties on metacommunity composition (De 

Bie et al., 2012), they may underlie co-occurrence patterns, and consequently, a variation in 

NDD. Stronger dispersal limitation in large organisms, such as fish (Shurin et al., 2009), may 

result in prevalence of exponentially-bounded networks with very few well connected nodes 

across scales, whereas in small and better dispersing diatoms, this tendency may be observed 

mostly at larger spatial scales.  Therefore, to address these two hypotheses, we pursued four 

objectives: 1) assess the dependency of network size and connectance on spatial scale, 2) 
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determine if prevalence of certain NDD classes (i.e., single-scale, broad-scale, and power law) 

varies with spatial extent, 3) establish if network size, connectance, and spatial extent predict the 

classes of NDD, and 4) evaluate if the above relationships differ between taxonomic groups. 

 

Materials and Methods 

Data   

Periphytic diatom and fish data were sourced from the US Geological Survey’s National Water-

Quality Assessment (NAWQA) Program and the US Environmental Protection Agency’s 

National Rivers and Streams Assessment (NRSA). Periphyton and fish were collected from 3314 

and 2964 stream sites, respectively, sampled across the conterminous United States from 1993-

2011 (NAWQA) and 2012-2013 (NRSA, Appendix 4.1, Fig. S4.1). Because community data 

from both government datasets were sampled with similar methods, we compiled them together 

for our analysis. Samples targeted at least 600 individuals for the diatoms.  Individual counts in 

fish samples were highly variable.  Therefore, we rarified sample abundances to 300 individuals 

and used rarified abundances for each species in the fish dataset. Diatom samples were collected 

largely from hard substrates or macrophytes. Fish samples were collected from wadeable streams 

using backpack electrofishing and seining of stream reaches ranging in length from 100 to 550 

m. 

 

Landscape window construction 

We used a method outlined by Leboucher et al. (2019) to create “landscape windows” of fixed 

spatial extents (Appendix 4.1, Fig. S4.2). Briefly, the purpose of the method is to place square 

windows of specific spatial extent at fixed spatial distances,and examine ecological patterns 
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among sites that lie within that window. We created square landscape windows of sizes 400, 800, 

1200, and 1600 km, which respectively corresponded to spatial extents of 160,000 km2, 640,000 

km2, 1,440,000 km2, and 2,560,000 km2. We then specified that valid windows at each size must 

contain samples that occupy at least 77% of the total area of the window, which was determined 

by partitioning the window into a 3 × 3 grid and verifying that samples occurred in at least 7/9 of 

the cells within the window. We also specified that the origins of the windows must be placed at 

1/3 the window size in distance from each other, so that no window contained the exact same 

distribution of sites as another window. Finally, we specified that the minimum number of 

samples for a valid window should increase with the window size to ensure that sample densities 

were similar across window sizes.  

 

Network construction 

For each landscape window, we removed species that occurred in fewer than 10 sites in the 

window and then calculated a Spearman correlation matrix on standardized relative abundances.  

We then used random matrix theory methods (Menzel, 2016) to identify a correlation threshold 

value, below which correlations are likely spurious (see Appendix 3.1). Those correlations were 

eliminated from the correlation matrix (i.e., replaced with a 0). Species that lost all correlations 

with this method were subsequently removed from the correlation matrix. We then used R 

package “igraph” (Csardi & Nepusz, 2019) to transform the thresholded correlation matrix into a 

weighted adjacency matrix format from which we constructed the co-occurrence network. For 

each network, we determined the network size (number of nodes and number of edges), 

connectance (
2∗# 𝑒𝑑𝑔𝑒𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

(#𝑛𝑜𝑑𝑒𝑠2−#𝑛𝑜𝑑𝑒𝑠)
), and the node degree distribution, i.e. the frequency of each node 

degree.   
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Model Fits and Comparisons 

For model fitting, we extracted the degree sequence for each network and fit it to 6 statistical 

distributions describing the shape of the NDD (Alstott et al., 2014; Broido & Clauset, 2019) 

(Table 4.1). We performed two sets of model fits on each window, whereby we fit all 6 models 

on 1) the entire degree distribution and 2) the region of the NDD most likely to conform to a 

power law (Fig 1). For the former, we specified that the model be over the range of the NDD 

from degree of 1 to the maximum network degree (kmax).  For the latter, we used functions from 

R package ‘poweRlaw’ (Gillespie, 2015) which identify using Komolgorov-Smirnov and 

maximum likelihood methods the minimum degree value, kmin, below which the distribution is 

discarded, and above which the distribution most likely corresponds to a power law.  We also 

examined the power law exponent, γ, for all power law and truncated power law models fit over 

the whole NDD and the estimated power law region, which informed us if scale-free patterns 

were present (scale-free if 2 ≤ γ ≤ 3). 

In both model fitting schemes (whole NDD and pawer law region of the NDD), we 

calculated AIC values to assess quality of fit.  We ranked all model fits according to the AIC 

values with lower AIC indicating better quality of fit, and recorded which model produced the 

lowest AIC. For each pair of models (15 total contrasts), we calculated their ΔAIC to determine 

if they differed from each other significantly in quality of fit.  Models that had ΔAIC ≥ 2 were 

considered to be significantly poorer in fit relative to the best model, and ΔAIC < 2 were 

considered similar in quality of fit (Broido & Clauset, 2019).  
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Table 4.1. Probability density and mass functions commonly fit to describe node degree 

distributions. Across models, P(k) is probability for a node degree, k, λ = rate parameter 

(exponential, exponentially-truncated power law, and Weibull distributions), μ = mean 

(Poisson and lognormal distributions), β = scale parameter (Weibull distribution only), 

and γ = exponent of the power law function (power law and exponentially-truncated 

power law distribution). 

 

Class Model Probability functions 

Exponentially-

bounded thin-tailed 

(single scale) 

Exponential 𝑃(𝑘) =  𝜆𝑒−𝜆𝑘 

 Poisson 𝑃(𝑘) =
𝑒−𝜇𝜇𝑘

𝑘!
 

Cross-over 

(broad scale) 

Exponentially- 

truncated 

power law 
𝑃(𝑘) = 𝑎𝑘−𝛾𝑒−𝜆𝑘 

 Lognormal 𝑃(𝑘) =
1

√2𝜋𝜎𝑘
𝑒

(ln 𝑘−𝜇)2

2𝜎2  

 Weibull 𝑃(𝑘) = 𝑎𝑘𝛽−1𝑒−𝜆𝑘𝛽
 

Fat-tailed 

(scale-free if γ = 2-3) 
Power law 𝑃(𝑘) = 𝑎𝑘−𝛾 

 

 

Statistical analyses   

For each taxonomic group, we used Welch’s ANOVA tests to assess if network size (number of 

nodes and edges) and connectance varied across window sizes (i.e., spatial extents). Post-hoc 

Games-Howell pairwise tests (Dag et al., 2018) identified spatial extents where differences 

arose.  

For each window’s NDD and its power law region, we determined which of the 6 tested 

models was the best fitting by raw AIC value, i.e. lowest is best, and by ΔAIC criterion, i.e. the 

difference in AIC between the best fit and all alternative models. Using ΔAIC, we determined for 
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each spatial scale, given the raw AIC, how many models were considered equally plausible (i.e., 

ΔAIC < 2). We used Kruskall-Wallis tests coupled with post-hoc Mann-Whitney pairwise tests 

with Bonferroni P-value correction to examine if the number of plausibly fitting models was 

spatially dependent. We then recorded the scale classes (single-scale, broad-scale, power law, or 

some combination) of these models observed among the plausible models and tabulated their 

frequencies (% of windows). We assessed if the classes of models fit over the NDD and power 

law regions generally depended on spatial extent using Fisher’s exact tests. We followed these 

exact tests with logistic and multinomial logistic regressions to test whether spatial extent, 

network size, and network connectance each predicted the classes of models observed among the 

best fitting models. Stepwise model selection was performed to reduce the predictors in all 

logistic models. All analyses were conducted in R version 3.5.1.   

 

Results 

Network properties vary with scale 

A total of 359 and 171 windows were generated for the diatoms and fish datasets, respectively 

(Appendix 4.1, Table S4.1), with 57% to 69% of the windows in both datasets corresponding to 

the 400 km scale.  We generally found in both taxonomic groups that node count, edge count, 

and connectance depended on window size in agreement with our initial expectations (Fig. 4.2). 

Node counts significantly increased with window size, whereas connectance strongly decreased, 

although in the fish dataset, node counts were not significantly different between the 1200 and 

1600 km windows. In both diatoms and fish, edge counts were significantly lower at 400 km but 

did not differ among 800, 1200 and 1600 km windows. 

 



 

87 
 

 

 
 

 

 

 

Model Fits over the whole NDD and power law region of the NDD 

When examining raw AIC values, there were several prominent differences with respect to best 

NDD fits between diatom and fish networks across spatial extents (Table 4.2). Noticeably, 

diatom network NDDs were best fit by thin-tailed exponential distributions in the smallest  

 

 

 

Figure 4.2. Comparisons of network size (node and edge counts) and connectance across 

spatial extents (km) for (a) diatoms and (b) fish. Different lowercase letters indicate 

statistical differences (P < 0.05) as determined by Welch’s ANOVA and post-hoc Games-

Howell pairwise comparisons. Points indicate values greater than 1.5 × (Interquartile range). 
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windows (57.4% of windows). This fit became rarer at larger spatial extents, where truncated 

power law fits increased (from 11.6% of 400 km windows to 71.4% of 1600 km windows). Fish 

NDDs showed different trends. The cross-over Weibull distribution was the most frequent best fit 

among the smallest windows (68% of 400km windows), becoming rarer in favor of exponential 

and truncated power law distributions, measuring 72.7% and 27.3% of the fits, respectively, in the 

larger windows. For both taxonomic groups, the pure power law distribution never ranked as the 

best fitting model over the entire NDD, and γ-values never exceeded 2 to indicate scale-fee 

Table 4.2.  Frequency table presenting the top model fits of network node degree distributions 

(NDD) across taxonomic groups and window sizes as ranked by raw AIC. Models were fit over 

both the entire NDD and the estimated power law region of the NDD. Values indicate number of 

windows and values in parentheses, % of all windows for a given window size. 

 

 Best fitting model of the entire NDD by AIC (% of windows) 

Taxonomic 

Group 

Window 

size (km) Exponential Poisson 

Truncated 

power law Lognormal Weibull Power law 

Diatoms 400 144 (57.4) 1 (0.4) 29 (11.6) 8 (3.2) 69 (27.5) 0 

 800 27 (41.5) 0 32 (49.2) 1 (1.5) 5 (7.7) 0 

 1200 6 (20.7) 0 21 (72.4) 0 2 (6.9) 0 

 1600 1 (7.1) 0 10 (71.4) 0 3 (21.4) 0 

        

Fish 400 26 (26.8) 1 (1.0) 3 (3.1) 1 (1.0) 66 (68.0) 0 

 800 28 (68.3) 0 3 (7.3) 2 (4.9) 8 (19.5) 0 

 1200 13 (59.1) 0 6 (27.3) 0 3 (13.6) 0 

 1600 8 (72.7) 0 3 (27.3) 0 0 0 

        

  Best fitting model of the power law region of the NDD by AIC (% of windows) 

Diatoms 400 189 (75.3) 48 (19.1) 5 (2.0) 2 (0.8) 2 (0.8) 5 (2.0) 

 800 51 (78.5) 19 (10.8) 6 (9.2) 0 1 (1.5) 0 

 1200 23 (79.3) 3 (10.3) 3 (10.3) 0 0 0 

 1600 12 (85.7) 0 2 (14.3) 0 0 0 

        

Fish 400 37 (38.1) 47 (48.5) 0 4 (4.1) 9 (9.3) 0 

 800 12 (29.3) 20 (48.8) 0 1 (2.4) 8 (19.5) 0 

 1200 13 (59.1) 6 (27.3) 1 (4.5) 0 2 (9.1) 0 

 1600 5 (45.5) 2 (18.2) 1 (9.1) 1 (9.1) 2 (18.2) 0 



 

89 
 

behavior of the NDD (Appendix 4.1, Fig. S4.3). Log-normal and Poisson best fits of the NDDs 

were very few and only observed among smaller windows.   

We then estimated the region of the NDD most likely corresponding to a power law. 

Interestingly, we found that best fitting power law fits of this region were very rare, i.e. only 5 

instances and only in diatoms among the smallest windows (Table 4.2).  Further, of all power 

laws models fit over this region, 71 diatom windows (19.8%) and 18 fish windows (5%) had 

estimated γ-values within the scale-free region and none were found among the 5 instances 

where the power law was the best fitting model (smallest γ observed was 3.78).  Instead, in 

diatoms, the exponential distribution characterized most frequently the power law regions across 

all window sizes, followed by the Poisson distribution (at all but the 1600 km windows) and the 

truncated power law (at all but the 400 km windows). In fish, Poisson fits were more prevalent 

for 400 and 800 km windows and exponential fits, for 1200 and 1600 km windows. Best fits of 

the power law region by the Weibull distribution were observed across all window sizes in fish 

but not in diatoms.  

 

AIC comparison of models describing the whole NDD and the power law region of the NDD 

A comparison of the NDD models using AIC revealed that a single best fitting model was only 

common for the entire NDD, where such model prevailed at the largest window sizes for diatoms 

(1600 km) but the smallest (400 km) for fish (Table 4.3). Conversely, at smaller window sizes in 

diatoms and larger window sizes in fish, three best fitting models were most common. Kruskall-

Wallis tests indicated that window size affected the number of best fitting models over the whole 

NDD of both taxonomic datasets, but not for their power law regions (Fig. 4.3). Post-hoc Mann-

Whitney pairwise comparisons revealed that the number of plausible models generally declined  
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Table 4.3. Frequency table (% of windows) of number of plausible alternative best model fits of 

the entire NDD and the power law region of the NDD.  The number of plausible alternative best 

model fits corresponded to the number of models with DAIC < 2.   Values indicate number of 

windows and values in parentheses, % of all windows for a given window size. 

 

 Number of best fitting models of the whole NDD  

(% of windows)  

Taxonomic 

Group 

Window 

Scale 

(km) 

1 Best 

Model 

2 Best 

Models 

3 Best 

Models 

4 Best 

Models 

5 Best 

Models 

6 Best 

Models 

Diatoms 400 17 (6.8) 42 (16.7) 175 (69.7) 17 (6.8) 0 0 

 800 13 (20.0) 15 (23.1) 33 (50.8) 4 (6.2) 0 0 

 1200 10 (34.5) 9 (31.0) 10 (34.5) 0 0 0 

 1600 7 (50.0) 5 (35.7) 2 (14.3) 0 0 0 

        

Fish 400 38 (39.2) 20 (20.6) 37 (38.1) 2 (2.1) 0 0 

 800 8 (19.5) 0 29 (70.7) 4 (9.8) 0 0 

 1200 4 (18.2) 2 (9.1) 16 (72.7) 0 0 0 

 1600 0 0 11 (100) 0 0 0 

  Number of best fitting models of the power law region of the NDD 

(% of windows) 

Diatoms 400 1 (0.4) 3 (1.2) 103 (41.0) 96 (38.2) 40 (15.9) 8 (3.2) 

 800 0 3 (4.6) 34 (52.3) 17 (26.2) 11 (16.9) 0 

 1200 1 (3.4) 0 14 (48.3) 10 (34.5) 4 (13.8) 0 

 1600 0 1 (7.1) 7 (50.0) 5 (35.7) 1 (7.1) 0 

        

Fish 400 4 (4.1) 6 (6.2) 34 (35.1) 36 (37.1) 13 (13.4) 4 (4.1) 

 800 3 (7.3) 3 (7.3) 17 (41.5) 16 (39.0) 1 (2.4) 1 (2.4) 

 1200 0 1 (4.5) 10 (45.5) 8 (36.4) 3 (13.6) 0 

 1600 1 (9.1) 0 6 (54.5) 3 (27.3) 1 (9.1) 0 
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with window size for diatoms, but increased in fish, albeit up to 800 km. When observed, the 

single best fitting models usually were broad-scale, i.e. either truncated power law or Weibull 

(Appendix 4.1. Fig. S4.5). The whole NDD tended to be best explained by up to 4 alternative 

models (most often 3 models), whereas the power law region was best explained by up to 6 

alternative models (although usually between 3 and 4 models depending on window size and 

taxon). Notably, the set of 3 models that most frequently fit the whole NDD and the power law 

Fig. 4.3.  Results of Kruskall-Wallis tests examining mean 

number of plausible alternative models of (a) whole NDD and 

(b) power law region across spatial extents. Letters, if present, 

indicate significant differences between means as indicated by 

post-hoc Mann-Whitney tests. Error bars denote standard 

deviation. 
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region of the NDD in both diatoms (58.2% and 34.3% of all windows, respectively) and fish 

54.4% and 15.2% of all, respectively), contained the exponential distribution, the truncated 

power law distribution, and the Weibull distribution.   

 

Model fits as a function of scale and network properties 

Only three distinct groupings of model classes were observed among the plausible sets of best 

fitting models: broad-scale only (B), single + broad-scale models (SB), and single-scale + broad-

scale + power law models (SBP).  Fisher’s exact tests on both the diatom and fish data indicated 

that spatial extent influenced the frequency of particular classes of models among the best 

models fit over the NDD, with broad-scale models generally decreasing in frequency and single 

+ broad-scale models increasing in frequency (Fig. 4.4a, both P < 0.05).   However, this 

association was insignificant when considering models fit over the power law region of the NDD 

(Fig. 4.4b). Stepwise logistic regressions tested which variables, i.e. window size, node count, 

edge count, or connectance, predicted the probability of best fitting model class/classes 

(Appendix 4.1, Table S4.2). Important predictors of model class over the whole NDD included 

window size, node count, and edge count for diatoms, but node count and connectance for fish. 

Although window size was a significant predictor for fish, it did not enter the logistic model, 

likely because its effect was subsumed by other variables already in the model. Multinomial 

logistic regressions performed on the power law region of the NDDs indicated that window size 

was a significant predictor of model class only in the diatom dataset and only for distinguishing 

SBP (single-scale + broad-scale + power law) from B (broad-scale). Other difference between 

the diatom and fish multinomial logistic regression results was the greater number of network 

parameters in the fish model. 
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Fig. 4.4.  Frequency chart of the classes of models (single -

scale, S, broad-scale, B, or power law, P) represented among 

the best fitting models for (a) the whole node degree 

distribution (NDD) and (b) the estimated power law region of 

the NDD across spatial scales. Multiple simultaneous letters 

indicate the combinations of classes that were observed among 

the best fitting models. 
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Discussion 

Our subcontinental study reveals that spatial extent along with basic network properties are 

important determinants of the variety of node degree distributions in co-occurrence networks.  

We further demonstrate that taxonomic considerations are crucial as biological differences 

underlie the shape of the NDD and its response to spatial extents and/or network properties.   

 

Spatial considerations on network size and connectance 

In pursuit of our first objective, we found that along the spatial gradient, co-occurrence 

networks sharply increased in node counts, while edge counts were not affected by windows 

beyond 400 km. This led to a corresponding decrease in connectance. Our findings for co-

occurrence networks are thus consistent with past work on other ecological networks, such as 

food webs and pollinator networks (Fonseca & John, 1996; Thompson & Townsend, 2005; 

Olesen et al., 2007; Ings et al., 2009; Wood et al., 2015; Galiana et al., 2018). Two explanations 

are generally offered to explain network size patterns across spatial extents (Lafferty & Dunne, 

2010). First, networks from larger spatial extents not only sample larger species pools, but are 

also more likely to include rare species by incorporating more sites. Second, larger areas are 

more heterogeneous and may allow species to coexist via niche partitioning, which may not be 

possible at smaller spatial extents. Given the subcontinental extent of our investigation and the 

difference in size of our windows, which sampled progressively larger species pools and 

heterogeneity, both explanations for the increase in network size with spatial extent are plausible.  

The negative response of connectance to spatial extent is attributable to the much slower increase 

in edge counts compared with node counts.   
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This finding appears to be in agreement with the constant species-link scaling hypothesis 

(Cohen & Newman, 1985). According to this hypothesis, connectance becomes sparser at larger 

network sizes because the number of links per species does not increase with network size but 

remains constant. This pattern has been observed historically in food webs (Cohen & Briand, 

1984). Here, we explored whether this pattern could have occurred in our data by using 

piecewise regressions to test if there were any relationships between node counts and edges per 

node (Appendix 4.1, Fig. S6). In general, we found that indeed edge counts per node do not scale 

effectively with network size (with the exception of a few very small degrees in fish), consistent 

with the hypothesis. Taken together, this indicates that connectance of co-occurrence networks 

are partly constrained by constant link scaling effects as spatial scale increases, however this 

relationship may be less likely to be observed if networks are too small.  

 

 

Spatial considerations on NDD and its power law region 

Power law nearly always poorly described the NDD regardless of spatial extent. Instead, single-

scale and broad-scale models provided better fits, consistent with a large body of literature 

(Dunne et al., 2002; Williams, 2011; Wood et al., 2015). However, we found that the frequency 

of these fits was determined by spatial extent, addressing our second objective and by taxon, 

addressing our fourth objective. As the spatial extent increased, the best fitting models of the 

whole NDD transitioned from single-scale to broad-scale in diatoms. In contrast, in fish, single 

scale models became more plausible at larger extents.  Divergence in NDD shape has been 

previously reported but in a spatially-implicit manner, e.g. in plant-pollinator networks along 

altitudinal transects (single-scale to power law and vice-versa, Ramos-Jiliberto et al., 2010) and 



 

96 
 

for mutualistic networks along global latitudinal gradients (albeit using evenness indices as 

proxies for NDDs, Sakai et al., 2016). Transition of NDD shape with spatial extent, on the other 

hand, has not been explored. Thus, to our knowledge, this is the first investigation on co-

occurrence networks to demonstrate in a spatially-explicit way that NDD shape shifts with 

spatial extent and that this shift is also taxon-specific.  

The increase in broad-scale models with spatial extent (at the expense of single-scale 

models) in diatoms suggests that at larger extents some power law-like properties of the NDD 

emerge, namely increased probabilities of high degree nodes.  Such nodes are typically treated as 

keystone species and/or generalists owing to their disproportionate degree values relative to the 

rest of the network (Freilich et al., 2018; Galiana et al., 2018).  The prevalence of broad-scale 

NDDs at larger spatial scales in diatoms indicates that the process generating power law regions, 

i.e. preferential attachment (Barabási 2016), is scale-dependent. As diatoms are species-rich, 

highly dispersive and patchily distributed due to environmental filtering, constructing co- 

occurrence networks at smaller scales may eliminate large proportions of the species pool and 

with this, many potential interactions. Therefore, larger scales are necessary to adequately 

capture the species co-occurrence patterns of small-bodied organisms, such as diatoms. In 

contrast, in fish, the increase in single-scale best fits at larger spatial extents implies that the 

processes leading to preferential attachment (e.g., species interactions and sharing of niche 

space) operate at small spatial extents. Studies have correlated single-scale NDDs with strong 

spatial-constraints on species relationships (Barthélemy, 2003; Wright, 2010). This would 

suggest that stronger dispersal limitation in larger-bodied fish (Shurin et al., 2009) may be an 

important mechanism that contributes to the increased abundance of single-scale NDDs as spatial 

extent increases.   
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Opposite to the whole NDDs, the classes of best model fits of the power law NDD region 

showed little spatial dependency for both taxa. This region was mainly characterized by both 

single-scale and broad-scale models in the two organismal groups, regardless of spatial scale, 

while the power law distribution rarely, if ever, was a good fit. Regrettably, studies explicitly 

comparing model fits of the power law NDD region have been ignored in the ecological 

literature, even though this is a very active area of research in general network theory (Broido & 

Clauset, 2019; Holme, 2019). The main impetus for assessing this region is that, after discarding 

“noisy” degree information contained in the lower tail, power law patterns are more clearly 

revealed (Barabási, 2016).  Power law regions more strongly concordant with the power law are 

to be expected in networks with non-random association patterns (Tylianakis et al., 2018). 

However, our findings that the power law was generally a poor fit of this region and instead was 

adequately explained by broad-scale models indicate that non-random association patterns, may 

be severely restricted within the estimated power-law region The probable explanation for this 

general pattern is that the power law region itself may be actually too small to be adequately fit 

by the model (i.e., estimated kmin too high) (Clauset et al., 2009). However, more 

consequentially, these findings also indicate that scale-free NDDs are unlikely to be observed 

within co-occurrence networks, and if power law fits do produce a scale-free exponent, the actual 

model will generally be outperformed by single and broad scale model fits.  Although it is 

possible to assess the truncated power law model for scale-free patterns (Barabási, 2016), which 

accounts directly for the exponential-cutoff behavior in the upper tail of the NDD, we observed 

only one instance of a scale-free model among the best fitting models in only the diatom data.  

Consequently, our findings are strongly consistent with Broido and Clauset (2019) who reported 

that, for a set of 495 biological networks comprising mainly food webs and protein interaction 
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networks and no co-occurrence networks, NDDs that conform to power laws in general, and to 

the scale-free condition in particular, are probably extremely rare. Our analysis complements this 

conclusion by showing that it applies also to co-occurrence networks across spatial scales and 

organismal groups.  

In further support of our hypotheses, we observed spatial patterns in the number of best 

plausible models of the whole NDD, which decreased with scale in diatoms but increased in fish. 

Importantly, this result implies that as scale increases, co-occurrence networks converge on a 

smaller set of topographies and thus likely become more predictable in their whole NDD shape, 

but only in well-dispersing species, such as diatoms. Conversely, in more dispersal limited 

organisms, such as fish, predictability of the NDD was the highest at the lowest scale, where the 

number of best fitting models was the lowest. It is well established that large network sizes, 

coupled with very low connectance, such as those observed in this study, impose very strong 

constraints on the possible alternative configurations (i.e., NDD) of the network (Poisot & 

Gravel, 2014).  However, as we see here, network size and connectance alone cannot explain the 

variability in NDD but organismal biology may also play a role. Specifically, network size 

increased and connectance decreased with window size in both diatoms and fish, but the trends 

in number of best fitting models diverged between the two groups, possibly as a result of their 

differential dispersal capacities.  The number of best plausible models over the power law region 

was independent of scale for both taxa, which may be due to the comparatively limited size of 

this region, allowing multiple models to generate comparable fits. 

To address our objectives, we examined how spatial extent and network properties 

correlated with the class of best fitting models for the whole NDD and the power law region of 

the NDD (third objective) and whether this correlation depended on organismal group (fourth 
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objective). Spatial extent and network size were found to be important determinants of model 

classes in both NDDs, but only for diatoms, whereas network properties alone were sufficient to 

predict the fish model classes. Thus, it is noteworthy that trait differences between species (here, 

body size) can potentially determine whether spatial constraints are direct (in the case of 

diatoms) or indirect through network properties (in the case of fish). Consistent with previous 

work (Thompson & Townsend, 2005; Wood et al., 2015), we demonstrate that ecological 

interpretations of the origins of NDD variability cannot ignore spatial context, but add that 

organismal traits may further contribute to the direct importance of network properties vs. spatial 

extent. As ecological network analyses continue to evolve and find further applications, our 

research here shows that conclusions about species co-occurrence networks should be framed 

with respect to the spatial extent at which the network is constructed and the ecology of the focal 

group. 
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Appendix 4.1. Ancillary Figures and Table Output 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4.1. Continental distributions of sampled sites for 

(a) diatoms, and (b) fish.  Each circle represents a single 

stream sample.   
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Fig. S4.2. Schematic of landscape windows construction.  (a) Origin coordinate points are placed 

across a continental map layer, spaced apart at a distance (in km) of 1/3 the desired window size.  

Thus, for example, for a 400 × 400 km window, the origin spacing will be 133km.  (b) For each 

origin, a landscape window of the desired size is constructed and centered around the origin 

point. (c) The window is then examined for validity by dividing the window into a 3 × 3 grid and 

determining if samples are present in at least 7/9 cells.   
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Fig. S4.3.  Histograms of power law exponents estimated from power law 

models fit over (a) the whole node degree distribution, and (b) the power law 

region of the NDD.  Purple bars indicate those power law fits whose 

estimated exponents fell within the scale-free range, 2 ≤ γ ≤ 3. 
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Fig. S4.4.  Histograms of truncated power law exponents estimated from 

truncated power law models fit over (a) the whole node degree distribution, 

and (b) the power law region of the NDD.  Purple bars indicate those power 

law fits whose estimated exponents fell within the scale-free range, 2 ≤ γ ≤ 3. 
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Figure S4.5. Frequency chart of the types of plausible models of (a) the whole 

node degree distribution (NDD) and (b) the estimated power law region of the 

NDD. Within each row, an individual letter corresponds to one of 6 models: E = 

exponential distribution, S = Poisson distribution, T = truncated power law 

distribution, L = lognormal distribution, W = Weibull distribution, P = power 

law distribution.  Multiple simultaneous letters indicate where several models 

had ΔAIC < 2.  Only models and model combinations comprising > 10% of total 

windows for at least one spatial scale (for the whole NDD) and >20% (for 

models fit over the power law region) are shown. 
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Fig. S4.6. Plots of piecewise regressions examining the relationship between network size 

(node count) and the number of edges per species node (E/S) for (a) diatom networks and 

(b) fish networks. Yellow dots represent individual networks.  Black lines represent the 

regression segments. A single breakpoint existed for the diatom data (indicating the 

presence of non-zero slopes), and the model was generally poorly fit (R2 = 0.02), with 

slope coefficients above and below the breakpoint very close to 0.  Further, below the 

estimated breakpoint (node count = 91), the model almost encompassed nearly half the 

data (44% of windows) network node.  Fish also showed a breakpoint in their data, and the 

model indicated the relationship between edges per node and node count was strongly 

negative (R2 = 0.65), at node counts < 42 before becoming virtually non-existent at larger 

node counts.  However, the data below the breakpoint only comprised 13 windows, 

indicating that this relationship existed in a very narrow range of small network sizes.   
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Table S4.1.  Number of landscape windows generated and summaries of site 

counts within each window scale. 

 

Taxonomic 

Group 

Window 

Scale 

(km) 

No. 

Windows 

Minimum Site 

Count 

Mean Site 

Count (SD) 

Maximum 

Site Count 

Diatoms 400 251 46 86 (37.56) 278 

 800 65 184 292 (89.07) 501 

 1200 29 420 603 (135.41) 849 

 1600 14 755 998 (183.67) 1314 

      

Fish 400 97 62 116 (32.34) 219 

 800 41 182 333 (98.73) 569 

 1200 22 411 633 (170.89) 948 

 1600 11 750 1024 (251.12) 1461 

      

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1
1

1
 

Table S4.2.  Results of binary and multinomial logistic regression tests examining whether network properties 

(node and edge counts and connectance) and spatial scale (window size) predict the classes of models (single-scale, 

broad-scale, power law, or a combination) observed among the best fitting models.  Binary logistic regressions were 

fit for models describing the whole NDD (there were only two dependent variable states, B and SB).  Multinomial 

logistical regressions were used for testing NDD models fit over the power law region (there were three dependent 

variable states, B, SB, and SBP).  Letters in the outcome variable column represent model classes observed among 

the best fitting models (SB = single-scale + broad-scale; SBP = single-scale + broad-scale + power law).  Reference 

categorical outcome for both binary and multinomial logistic regression is “broad-scale”. 

 

Logistic 

Regression: Taxa Outcome Variable Variable Coefficient 

Standard 

Error Z P 

Binary Diatoms SB Node Count 0.019 0.008 2.447 0.014 

   Edge Count -0.005 0.002 -3.480 < 0.001 

   Scale -1.507 0.398 -3.785 < 0.001 

 Fish  Node Count 0.023 0.008 2.765 0.006 

   Connectance -4.032 1.846 -2.185 0.029 

Multinomial Diatoms SB Node Count -0.0016 0.012 -0.135 0.893 

   Scale -0.0018 0.0019 -0.922 0.357 

  SBP Node Count 0.01409 0.013 1.078 0.284 

   Scale -0.005 0.002 -2.275 0.023 

 Fish 
SB 

 
Node Count 0.094 0.041 2.321 0.020 

   Edge Count -0.024 0.008 -3.048 0.002 

   Connectance 11.145 5.515 2.020 0.043 

  SBP Node Count 0.029 0.041 0.697 0.486 

   Edge Count -0.022 0.008 -2.640 0.008 

   Connectance -2.031 0.564 -3.598 < 0.001 



 

112 
 

Chapter 5  

General Conclusions 

  

The goal of my research was to understand the patterns, the causes, and the consequences 

of biodiversity change and species co-occurrence. I investigated these community properties 

from subregional to global scales and along natural and anthropogenic gradients, including 

climate, eutrophication and land use.   

 In chapter 2, I explored biodiversity responses to land cover (agriculture vs. forest) in 

major stream organisms, including diatoms, insects and fish.  The main research questions I 

investigated in this chapter surrounded whether homogenization of aquatic communities (i.e., 

increased similarity in species compositions) was a general consequence of agriculture, if so, 

what were the driving mechanisms (local vs. regional), and if there were taxonomic differences 

in responses owing to differences in body size and dispersal capacity. By examining the α (local 

diversity), γ (regional diversity) and β (community variation) components of biodiversity, I 

found that streams with substantial agricultural land cover contain communities that were 

generally homogenized in their constituent species as a result of decreased γ-diversity, increased 

α-diversity, and increased unevenness in relative abundances.  By using a null model, I found 

that agriculture did not affect the contributions of local vs. regional processes to β-diversity, 

which however varied among studied groups, but controlled the balance between different local 

mechanisms.  The major takeaway with this study was that agriculture represents a major 

detriment to global aquatic biodiversity, but the homogenization mechanisms may vary across 

organismal groups differing in body size and dispersal capacity but not trophic position. 

 In Chapter 3, I examined how the amounts and ratios of nutrients (nitrogen and 

phosphorus) determine algal community co-occurrence network structure, metacommunity 
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compositions, and their responses to climate and dispersal gradients. The main motivation for 

this investigation was that nutrient effects on co-occurrence network topology, particularly in 

freshwater communities, are understudied.  I investigated i) whether nutrient supply (eutrophic 

vs. oligotrophic) and ratio (N-limited vs. P-limited) constrain topological properties of algal co-

occurrence networks and ii) to what extent climate and space (a surrogate for dispersal) affect 

co-occurrence network topology vs. metacommunity composition across nutrient supply and 

ratio contexts. I found that nutrient supply was positively related to network size (node and edge 

counts), which was associated with observable increases in motile algal species, while N-

limitation was linked to higher node counts. Node clustering patterns in the network varied 

within both nutrient contexts, while other topological differences were generally smaller. 

Climatic and spatial factors had pronounced effects on network topology that further depended 

on nutrient context. Thus, the oligotrophic and P-limited networks exhibited much greater 

change when climate and/or space were controlled for compared to respectively eutrophic and N-

limited networks. A comparative assessment of network vs. compositional responses to climate 

and space identified an important distinction—while climate and space contributed to network 

topology, space was the dominant factor behind compositional variability, regardless of nutrient 

context. My findings highlight the need for developing integrative multi-level approaches (from 

metacommunities to co-occurrence networks) to fully understand biological responses to 

complex and interactive abiotic forces.   

 In chapter 4, I examined co-occurrence networks of stream diatoms and fish from the 

perspective of the node degree distribution (NDD), which statistically represents the connection 

patterns observed in the network.  The shape of NDDs is a very active area of research in 

network theory, but comparatively neglected in ecology. As spatial extent dictates the shapes of 
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many ecological patterns, I predicted that it would also constrain the shape of the NDD in 

conjunction with organism-specific traits, such as body size. Therefore, the goal of this chapter 

was to describe the shape of NDD, using single-scale (exponential and Poisson distributions), 

power law or broad-scale/cross-over models (truncated power law, lognormal, and Weibull 

distributions), and whether the model fits depend on spatial extent and organismal group. I found 

that the type and number of best fitting statistical models depended on spatial scale.  However, 

neither the power law, nor its truncated version, was ever a plausible model fit regardless of 

spatial extent, but most NDD models fell either in the single-scale or broad-scale categories.  

Finally, I observed taxonomic patterns in the model fits, transitioning from primarily broad-scale 

to primarily single scale with increasing spatial extent (diatoms) and vice versa for fish. This 

work, being the first to comprehensively demonstrate explicit spatial and taxonomic constraints 

on co-occurrence network NDDs across hundreds of networks, broadens the understanding of the 

origins of network variability. 
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