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ABSTRACT 
 

 
STATISTICAL MODELS OF PIPE SERVICE LIFE 
TOWARDS ARTIFICIAL INTELLIGENCE BASED 

DECISION SUPPORT 
 
 

Vahid Eghbalifarkoosh, Ph.D. 
 

The University of Texas at Arlington, 2020 
 
 

Supervising Professor: Dr. Ali Abolmaali 
 

 
 

In this dissertation, through utilizing various artificial intelligence-based as well as 

statistical models, an effort has been made to investigate the deterioration of sewer pipes. 

Once the deterioration rates of sewer pipes are estimated, by assuming failure criteria, as 

specified in the dissertation, the associated service lives for the sewer pipes can therefore 

be estimated. However, it should be noted that for different sewer pipes and based upon 

the availability of suitable data, and due to various failure modes that could transpire in 

various sewer pipes, the results will thus be subjected to uncertainties and variations. In 

other words, depending on different sewer pipes, the adequacy and the availability of 

suitable data, the decision-makers’ priorities and failure criteria, the estimated service lives 

as well as the associated deterioration curves could be subjected to variation. 

Selecting a suitable model plays an important role in reducing the amount of uncertainty 

associated with estimation of service life of sewer pipes. In order to estimate the service 

lives of sewer pipes, the first step is to estimate the rate of deterioration which affects the 

condition rating of sewer pipes. Next, by designating a certain threshold or cut-off value, 

the service life of sewer pipes could thus be estimated as well. Therefore, depending on the 

type of selected deterioration modeling, the assignment of threshold (cut-off value) needs 

to be conducted with adequate engineering judgement. Additionally, based upon the 
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criteria of decision-makers, the certain threshold for service life may be subject to further 

change and improvement. Hence, the suitable modeling approach may differ for various 

projects and sewer pipes; i.e. a model which yields suitable results for one project may not 

necessarily yield suitable and reliable results in another project. This stems from the 

assumptions and uncertainties associated with each of the modeling approaches. 
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Chapter 1 : Introduction 
 

1.1 Introduction and Project Description 

This project aims at identifying the service life of sewer pipes via utilization of statistical, 

probabilistic, and artificial intelligence models. In order to facilitate the decision-making 

process with regards to allocating suitable schedules, i.e. intervals and frequency of 

inspections, for performing maintenance and rehabilitation for sewer pipes, the estimation 

of service life of sewer pipes is thus of utmost significance. Various factors could affect 

the deterioration rate of different sewer pipes; these factors may depend upon the 

environmental conditions that different sewer pipes are exposed to, or the intrinsic 

characteristics of the materials and processes through which the sewer pipes is constructed. 

Furthermore, depending upon different sewer pipes, factors such as transportation and 

installation processes may also contribute to the service life of these assets. 

In the case of large-diameter buried gravity sewer pipes, which is the focus of this study, 

depending on the material from which the sewer pipe is made of, the approach in 

determining the deterioration rate, and thus service life, of these assets can vary from one 

to another. This variation stems from different contributing factors such as:  

 Various corrosion mechanism in different pipe materials,  

 Different. modes of failure for different pipe materials (flexible pipes vs. rigid 

pipes), 

 Distinct change of material properties for different materials (PVC pipes vs. HDPE 

pipes). 

Furthermore, whether the pipes are located under heavy traffic or they are rarely exposed 

to external loads, can also play an important role in their associated service life. In addition 

to the stated factors, the properties of the flow, such as flow rate, acidity of the flow, etc. 

can also influence the deterioration rates of these sewer pipes. With regards to installation 
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process, depending on the diameter of the pipes and the material of the pipes, the precision 

by which the pipe is being installed as well as the assigned slope of the sewer pipe, can be 

influential in determining the corresponding service lives of these sewer pipes. 

In this study, the applicability of various methodologies such as artificial intelligence, 

probabilistic models, and different regression techniques will be investigated for large-

diameter buried gravity sewer pipes. These assets will be of varying materials, diameters 

and other properties. Due to significant uncertainties associated with estimating service life 

of sewer pipes, utilization of different estimation techniques can be beneficial in 

designating an appropriate service life for these assets. 

1.2 Project motivation 

By using sewer pipe networks, various types of sewage, including commercial, industrial, 

and domestic, are collected and sent to treatment facilities. The majority of sewers are 

designed as gravity sewers. In gravity sewer pipes, the flow of sewer is become possible 

by using slopes in pipes. About 14,748 treatment facilities assist with treatment of sewage 

from 240 million users. Sewer pipes are further categorized into public and private sewer 

pipes; there are about 500,000 miles of private sewer pipes and 800,000 miles of public 

sewer pipes within the United States. 

Moreover, it is projected that by year 2032, 56 million additional users will be connected 

to the centralized treatment facilities [ASCE, 2017]. Based on ASCE (2017), to attend to 

the aging problem of both the water and wastewater infrastructures, by year 2025, capital 

funding gap in. the amount of $150 billion will be required. 

Considering the fact that most of the sewer infrastructures were constructed over 100 years 

ago, and taking into account the annual occurrence of 23,000 up to 75,000 sanitary sewer 

overflows, which are resulted from various influential parameters such as aging of the 

pipes, environmental factors, etc., the significance of investigation of sewer pipes with 

respect to these factors becomes clear [EPA, 2004]. Moreover, prediction of deterioration 
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rate and service life of sewer pipes can also help decision makers in the process of 

determining the frequency and intervals of the sewer pipe inspections. 

1.3 Scope of project 

In the study at hand, different approaches will be used to estimate the service life of large-

diameter buried sewer pipes. The diameters of sewer pipes in this project vary from 21 

inches up to 66 inches. Furthermore, the pipe materials considered in implemented 

methodologies are as follows: 

 FRP (Fiberglass Reinforced Plastic) 

 VCP (Vitrified Clay Pipes) 

 PVC (PolyVinyl Chloride) 

 RCP (Reinforced Concrete Pipes) 

Some of the features which will be used within the post-processing data are pipe slope, 

pipe material, average flow depth, average velocity of sewer flow, length of pipes, etc. The 

maximum length of individual pipe segment is 1471.2 ft and the average pipe length, 

considering all pipes, is equal to 357.9 ft. 

1.4 Project objectives 

The main objective of this project is to predict the service life of sewer pipes. Various 

approaches will be utilized in the prediction process for the service life of sewer pipes. 

These methodologies will include the following: 

 Deterministic deterioration models 

 Statistic deterioration models  

 Artificial intelligence approach  

Depending upon the abovementioned category, various methods (sub-categories) which 

are appropriate for obtaining the deterioration rates will be used. 
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Furthermore, for selected deterioration models, the influence of different independent 

variables on the service life of sewer pipes will be investigated as well. The need for 

implementation of different deterioration modeling stems from the fact that based on each 

individual independent variable, mainly the material of the sewer pipe, the failure 

mechanisms vary widely. Therefore, the need for an investigation of a method which can 

be applicable to a set of sewer pipe networks is of utmost significance. 

Moreover, a comparison between the various methods will be beneficial in identifying the 

best approach for different cases. 

1.5 Overview of dissertation  

Chapter one presents an overview of this study; topics pertaining to literature review such 

as various inspection methodologies, condition grading of assets, and several deterioration 

methods are presented in chapter two. Chapter three contains various methodologies 

utilized in constructing the deterioration models of assets, and each of these models are 

discussed in details. 

The acquisition and analysis of available data set are illustrated in chapter four. In this 

chapter, available independent variables as well as various condition gradings of assets are 

investigated. These condition gradings include O&M (operational), structural, and overall 

conditions of assets, and furthermore, the corresponding binary condition gradings are 

presented as well. Spearman rank correlations between various independent variables as 

well as cross table analysis are demonstrated in chapter four too. By using cross table 

analysis, significances of categorical variables are investigated. 

In chapter five, results associated with various models are presented. In this chapter 

suitability of each model through various tests is investigated as well. Moreover, influence 

of various independent variables on probabilities of failure with respect to age of assets 

and therefore, the corresponding service lives are studied too. Additionally, in chapter five, 

the effect of population growth on probability of failure and service lives are presented as 
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well. Finally, chapter six includes the summary of results and concluding remarks achieved 

through this study. 

1.6 Contribution  

In this dissertation, through applying two artificial intelligence-based approaches, namely 

LightGBM as well as CatBoost, an effort has been made to investigate the deterioration of 

sewer pipes. Once the rates of deterioration associated with sewer pipes are estimated, 

subsequently, by designating certain failure criteria, the service lives associated with the 

sewer pipes are estimated. Furthermore, the effect of population growth on service lives as 

well as the deterioration rates of sewer pipes has been investigated herein as well. The 

annual rate of population growth is assumed to be 0.01 and the impact of population growth 

is incorporated through the volume of sewer flow in sewer pipes.  

The results pertaining to service life as well as probability of failure with respect to age of 

sewer pipes can be utilized as a means to prioritize assets for maintenance, rehabilitation 

or replacement. However, it should be noted that considering different sewer pipes and 

based on the availability of both suitable and sufficient data, and by further considering 

that various failure modes could transpire in different sewer pipes, the results will thus be 

subjected to uncertainties and variations. In other words, depending on different sewer 

pipes, the availability and the adequacy of suitable data, the decision-makers’ priorities and 

failure criteria, the estimated service lives as well as the associated deterioration curves 

could be subjected to changes. Moreover, the aforementioned uncertainties and variations 

also stem from the assumptions and uncertainties associated with each of the modeling 

approaches as well. 

 

   



6 
 

Chapter 2 : Literature Review 

 

2.1 Overview 

Based on the report card published by American Society of Civil Engineers (ASCE) in 

2017, considering the noticeable funding gap between what is required and what is indeed 

expected to be allocated for wastewater infrastructures, it is thus evident that there is a need 

for efficient allocation of funds for wastewater infrastructures. This implies the 

significance of asset management programs utilized for achieving desirable service levels 

through minimized spending of funds.  

For instance, with regards to sewer pipelines, condition assessment and service life 

estimation provides criteria for prioritizing the available assets based on their current 

condition gradings or estimated service lives. The condition grading of sewer pipes can be 

attributed based on the data obtained through inspection of sewer pipes and by 

incorporating standard coding systems [EPA 2009]. 

Based on an ASCE survey it was realized that for small and large wastewater infrastructure 

systems, the amount of average density of sewer is equal to 23 feet per capita and 19 feet 

per capita, respectively. The small and large wastewater infrastructure systems are 

identified per below categorizations:  

 Small wastewater infrastructure systems: Include less than 100,000 people 

 Large wastewater infrastructure systems: Include greater than 500,000 people 

Furthermore, based on the ASCE survey, the overall average density of sewer is equal to 

21 feet per capita. Considering the whole population of the United States at the time of the 

survey, the total length of the wastewater infrastructure systems can be estimated to be near 

1.2 million miles [USEPA and ASCE 1999, USEPA 2002]. Moreover, as stated earlier, 

sewer pipes are also categorized in either public or private sewer pipes and based on ASCE 
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report card published in 2017, there are about 500,000 miles of private sewer pipes and 

800,000 miles of public sewer pipes within the United States [ASCE, 2017]. 

2.2 Management of Infrastructures 

With regards to the standpoint of civil engineering, infrastructures encompass a collection 

of physical systems / facilities utilized in order to meet necessary public service 

requirements. Furthermore, management of infrastructures refers to provisions taken in 

order to maintain the status of these infrastructures at a satisfactory level of performance 

[Hudson et al. 1997].  

 

 

Figure 2.1: Provisions throughout the infrastructure management [adapted from Grigg 2003] 

Appraisal is 
required

Preparation of 
Master Plan

Allocated 
Budget

Design and 
Construction 

Stage

Operations and 
Maintenance

Renewal / 
Decommissioning
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As shown in the above cycle, management of infrastructure can be considered as a cyclic 

process. Based on the aforementioned figure, the provision throughout the infrastructure 

management follow a cyclic chain; in this cycle, requirement of appraisal of the 

infrastructures denote the beginning of each cycle. Following this activity is the preparation 

of master plan. Master plan is identified based on the results of the first step of the cycle. 

Next, based upon the availability of allocated budgets, various options within the master 

plan will be investigated. The next step of the cycle is design and construction stage, in 

which once the projects are approved, they will be executed. After completion of 

construction of the project, through scheduled inspections and maintenance activities, it 

will be assured that the infrastructure is indeed functioning at an acceptable performance 

level as envisioned. In case through operations and maintenance activities the performance 

level of the infrastructure cannot be increased to the required level of performance, renewal 

or decommissioning of the infrastructure will transpire. Renewal of the infrastructure 

includes rehabilitation or replacement of infrastructure [Grigg 2003]. 

By utilizing infrastructure management systems, agencies will be able to achieve the 

following forefronts [Grigg 2003]: 

 Through elimination of unexpected failures and regulatory charges, the costs will 

be substantially reduced  

 The performance level of service will be subjected to improvement 

 Capital improvement programs as well as operations and maintenance (O&M) will 

be handled efficiently  

 Approval and funding regarding capital improvements will be facilitated 

 Publicity as well as customer service will be enhanced. 

In an ideal infrastructure management, through implementation of all the necessary 

provisions, the available resources will be allocated optimally in such a way that the service 

level of the infrastructures are maximized [Hudson et al. 1997]. 
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Furthermore, it should be noted that the operational level of infrastructure management can 

be categorized in two different levels as stated below: 

 Network level 

 Project level 

Furthermore, asset management is commonly utilized in infrastructure management. In 

asset management, services related to management of infrastructures are attempted to be 

as efficient and cost effective as possible. In the 1980s and 1990s, infrastructure systems 

were considered assets which have monetary values. Therefore, corporate business 

principles are utilized in asset management, which contain both financial and management 

accounting methodologies [Cowe Falls et al. 2001]. 

2.3 Deterioration of Sewer Pipes 

Sewer pipes can be constructed of various materials. In general, the material type of sewers 

can be either flexible or rigid. For instance, clay pipes as well as concrete pipes (both with 

and without reinforcements) are considered as rigid sewers [Davies et al. 2001b]. Rigid 

sewers are designed so as to carry the vertical load on top of them, whereas flexible pipes 

carry the load based on the adjacent soil support [Abraham et al. 1998].  

According to Water Environment Federation (WEF) and ASCE, the rigid pipes utilized in 

stormwater infrastructures may include the following materials [WEF/ASCE 1992]: 

 Asbestos-cement pipes 

 Cast iron pipes 

 Concrete pipes 

Additionally, the flexible pipes utilized in stormwater infrastructures can be of the 

materials stated below [WEF/ASCE 1992]: 

 Corrugated aluminum pipes 

 Ductile iron pipes 
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 Fabricated steel pipes 

 Thermoplastic pipes  

 Thermoset plastic pipes 

Rigid have been conventionally more commonly used than flexible pipes. For instance, it 

is estimated that a large percentage of sewer pipes (90%) in the United Kingdom are indeed 

constructed from rigid pipes [Read and Vickridge 1995]. 

Sewerage Rehabilitation Manual was published by Water Research Center in 1983 and it 

was considered as the first coherent study which intended to determine the suitable process 

of sewer appraisal considering the significance as well as condition grading [Davies et al. 

2001a]. Based on this manual, considering sewer pipes, a three-stage failure mechanism 

was introduced as presented below: 

 First stage: Initial defect takes place 

 Second stage: Due to deterioration soil support is lost 

 Third stage: Sewer pipe is collapsed due to occurrence of a random event 

Therefore, occurrence of a random event is considered to be the cause of collapse in sewer 

pipes. In other words, the exact time of failure in sewer pipes cannot be computed; 

however, considering the observed deteriorations within the sewer pipes, the likelihood of 

failure can be estimated [Abraham et al. 1998]. 

Furthermore, WEF/ASCE (2009) also considers the same three-stage failure mechanism 

as well. At the first stage of this mechanism, leaky joints, improper connections at joints, 

and excessive loading can be considered as some of the possible defects. Moreover, at this 

stage, the cracks may appear at springline, crown or invert of the sewer pipe. At the second 

stage, occurrences such as exfiltration, infiltration can result in the loss of soil support. At 

this stage, defects such as slight deformation as well as fractures may appear. At the final 

stage, excessive deformation of the sewer pipe can result in the collapse of the asset. 

Weather related occurrences as well as nearby excavations are considered as some of the 

potential events resulting in the collapse of the sewer pipe. 
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Concrete sanitary sewer pipes are especially subjected to corrosion due to presence of 

hydrogen sulfide from the sewer flow [WEF/ASCE 2009]. When the flow in the pipe is 

turbulent, or the slope of the pipes are negative or zero, the probability of occurrence of 

corrosion and its attributed risk will be increased. Based on the study conducted by Ablin 

and Kinshella in 2004, due to existence of flat slopes in the pipes as well as higher 

temperatures, they observed that corrosion had become even more severe [Ablin and 

Kinshella 2004]. The occurrence of corrosion is explained in two different stages as 

follows: 

Stage 1: The calcium within concrete is removed due to presence of acidic environment. 

The present acid is caused due to certain bacteria within the sewer pipe. 

Stage 2: Once the calcium is removed from the concrete, ettringite is thus created due to 

presence of sulfuric acid. Calcium hydroxide will then be substituted with the ettringite. 

Corrosion itself can be categorized in three different classes as follows: 

 Uniform corrosion 

 Springline corrosion 

 Crown cutting 

In uniform corrosion, the portion of the pipe which is located above the sewer level will be 

impacted. Furthermore, the deterioration rate due to uniform corrosion is considered to be 

slow. However, the deterioration rate in springline corrosion is high; springline corrosion 

is a result of changes in the flow level within the sewer pipe. When there is more flow in 

the pipe, the parts of the pipe which were subject to corrosion during the lower flow levels 

will be washed away. On the other hand, when the pipe is fully filled with flow, crown 

cutting will occur. Crown cutting is observed at the joints [Salman 2010]. 

A thorough investigation of the influential factors regarding the structural deterioration of 

the rigid sewer pipes is conducted by Davies et al. (2001a). Based on the aforementioned 
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research, various influential factors were classified in three different categories as follows 

[Davies et al. 2001a]: 

 Construction features 

 Local external factors 

 Other factors (Maintenance, age, sewage properties) 

Herein a brief summary of the aforementioned research is presented: 

 Infiltration and exfiltration in joints, structural failures or collapses, may be due to 

poor standard of workmanship [Boden et al. 1975]. 

 When compared to pipes located in higher depths, pipes placed in shallow depths 

experience greater number of defects [Lester and Farrar (1979), Anderson and 

Cullen (1982), O’Reilly et al. (1989), Fenner and Sweeting (1999), Fenner et al. 

(2000)]. 

 Studies illustrated conflicting findings with regards to the effect of sewer size on the 

structural condition of sewer pipes. Findings of one study demonstrated that the 

smaller diameter sewer pipes were in worse condition comparted to larger diameter 

sewer pipes [Balmer and Meers 1982]. On the other hand, another study 

demonstrated that by increasing the sewer pipe diameter, the longitudinal cracks 

were also increased [O’Reilly et al. 1989].  

 In a study conducted by Sikora in 1979, it was determined that angular bedding 

materials possess greater bedding factors compared to round granular bedding 

materials [Sikora 1979]. 

 If the sewer pipe is located below the ground water level, the risk of ground loss 

will be increased [WRC 2001]. 

 Greater sewage exfiltrations were observed when there are larger particle sizes 

within the bedding material [Rauch and Stegner 1994]. 

 The defect rate is observed to be increased as the sewer pipe age increases [O’Reilly 

et al. 1989].  
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 Sewer pipes located in clay soils are observed to have higher defect rates [Balmer 

and Meers 1981, O’Reilly et al. 1989]. 

In addition to structural issues, flow capacity (hydraulic condition) of the sewer pipe and 

various maintenance issues might occur as well [WEF/ASCE 2009]. For instance, 

infiltration is a major hydraulic related problem in sewer pipes. Infiltration refers to the 

additional flow forcing its way to the sewer pipe through various defects at joints or other 

locations within the sewer pipe. A similar event is occurrence of inflow. Inflow, unlike 

infiltration, which stems from storm occurrences, finds its way to the sewer pipe via ground 

connections. Both inflow and infiltration drastically impact the hydraulic condition of the 

sewer pipes [Abraham et al. 1998, WEF/ASCE 2009].  

Occurrences of infiltration and inflow (I/I), can result in overflows and also increase the 

need for sewer pipes. When overflows occur in the sanitary or combined sewer pipes, raw 

swage will be exposed to the environment, therefore resulting in serious environmental as 

well as public health issues. In addition to hydraulic capacity, with regards to maintenance 

issues can transpire as a result of root intrusions, oil and grease, etc. within the sewer pipe 

[WEF/ASCE 2009]. 

It should be noted that the due to the fact that structural problems, hydraulic capacity, and 

various maintenance issues can transpire simultaneously as well, therefore, these aspects 

should not be considered independently [Wright and Dent 2007, WEF/ASCE 2009]. For 

instance, if there are structural problems, such as cracks in the pipe, I/I may occur in the 

sewer pipe, which results in issues in hydraulic capacity aspect. Next due to occurrence of 

the I/I, support from the surrounding soils may no longer exist, thereby causing a structural 

problem within the sewer pipe. This is just an example of how occurrence of one category 

of problems can result in a problem in the other category and it demonstrates that these 

categories cannot be viewed independently. In this case, the order of observation of 

problems in the sewer pipe were: structural, hydraulic, structural. Although it should be 

noted that any other order might also transpire in sewer pipes [Salman 2010]. 
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Considering that in a large network of assets, some assets have not yet been inspected, by 

utilizing the available information from the inspected assets, and through condition 

prediction models as well as applying the related data, i.e. defects, etc., the behavior of all 

pipes can be predicted [Opila 2011]. 

2.3.1 Deterioration of Rigid Sewer Pipes 

Based on laboratory as well as site experiments, Water Research Center based in UK [WRC 

1986] investigated the deterioration of rigid pipes. The materials of these rigid pipes were 

vitrified clay as well as concrete. In this study, the deterioration occurring in rigid sewer 

pipes were classified in two different categories as follows: 

 Structural deterioration 

 Hydraulic deterioration 

Structural deterioration of rigid sewer pipes is associated with structural defects such as 

occurrences of either fractures or cracks, etc.; whereas hydraulic deterioration of pipes is 

associated with hydraulic defects such as root intrusions in the pipes, or deposits gathered 

in rigid sewer pipes. The conclusions made by Water Research Center based in UK were 

as follows: In rigid sewer pipes, due to the fact that random occurrences of events such as 

storms or excavations near sewer pipes have a significant impact on the deterioration 

process of rigid sewer pipes, therefore, the deterioration is considered to be complicated 

and probabilistic. Furthermore, it was concluded that the deterioration rate of these sewer 

pipes is nearly impossible to be measured [Tran 2007]. 

2.3.2 Structural Deterioration of Rigid Sewer Pipes 

Structural defects affecting the shape and the load carrying capacity of rigid sewer pipes 

are associated with the structural deterioration of these sewer pipes. In other words, defects 

impacting the structural integrity of the sewer pipes are considered to fall in this category 

of deterioration. The main structural defects observed in the study conducted by Water 

Research Center (WRC) based in UK are as follows: 
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 Fractures, cracks, holes, and deformed pipes (distorted in shape) 

Furthermore, WRC utilized three phases in order to demonstrate how structural defects are 

developed. These three phases alongside concept of random damage occurrences are used 

to further describe the events resulting in the collapse of rigid sewer pipes. These phases 

are described below: 

Phase 1: Poor handling as well as improper construction process may result in minor 

defects such as leaking in joint or cracks. 

Phase 2: Depending on the combination of influential factors, the initial defects mentioned 

in phase one will be subject to extension with various rates. These influential factors are 

chemical corrosions, external loading (either static or dynamic loading), erosions, or 

ground loss. For instance, if the surrounding soil of the sewer pipe is entered in the sewer 

pipe (through groundwater), ground loss will take place. Therefore, the structural support 

of the pipe will drastically alter. 

Phase 3: Probabilistic damage occurrences including excavations near the sewer pipe and 

excessive loading conditions could result in the collapse of the rigid sewer pipes. Hence, 

based on the nature of these events, determining the time at which the sewer pipe will 

collapse is not possible. 

 

Figure 2.2: Structural deterioration of pipes demonstrated as a bath-tub curve [Tran 2007] 
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In asset management the aforementioned three phases can be illustrated through a bath-tub 

curve for sewer pipes as well as water pipes [Davis et al. 2001a, Kleiner and Rajani 2001]. 

The three zones are schematically demonstrated in the bath-tub curve presented herein. 

Each of these three zones correspond to the following: 

Zone 1: When the pipe is at zone one and when the pipe is at early stages of construction, 

the probability of failure has a substantial value. However, by completion of construction 

and when the pipe is ready for use, the probability of failure reduces significantly.  

Zone 2: At zone 2, when pipe is in normal operation, due to deterioration process, an 

increase in the deterioration will be observed in the pipes.  

Zone 3: Eventually, when the failure probability is increase to a hazardous level, pipes will 

be at zone three, indicating that there is a need for the pipes to be either rehabilitated or 

replaced [Tran 2007]. 

Additionally, the rigid stormwater pipes can also be presumed to follow the same 

deterioration model [Micevski et al. 2002]. Micevski et al. (2002) observed the similar 

deterioration process occurring in stormwater pipes of Newcastle City located in Australia. 

In the aforementioned study, it was realized that a stochastic process and multi-stage 

transition from perfect to collapse of the pipes can be considered for structural deterioration 

of stormwater pipes. In addition to this realization, it was also observed that the intensity 

of deterioration in the future depends upon the intensity of deterioration in the present. 

Various studies conducted in the US also demonstrated the same stochastic feature 

regarding the structural deterioration of sewer pipes [Wirahadikusumah et al. 2001, 

Kathula 2001, Baik et al. 2006]. 

The deterioration mechanism in pipes resulting in the failure of pipes depends on the pipe 

material. On the other hand, the rate of the deterioration of pipes is dependent upon the 

environmental condition the pipe is exposed to as well as the operational conditions of the 

pipe [Makar and Kleiner 2000]. In other words, the rate of deterioration for each individual 

pipe, depends on its specific influential factors.  
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2.3.2.1 Influential Factors in Structural Deterioration of Pipes 

As sated earlier, the rate of structural deterioration for each pipe will be dependent upon 

the individual characteristic of pipes. For instance, some of these influential factors are as 

follows: 

 Age of pipe 

 Material of pipe 

 Diameter of pipe 

 Ground water level 

 Type of soil/backfill 

 Depth of pipe 

 Location of pipe 

In general, the first three properties, i.e. age of pipe, material of pipe and diameter of pipe, 

due to the fact that are the typically available properties of the pipes, are the most frequently 

factors that are considered in studies. Although, once these influential factors are available, 

depth of pipe and location of pipe can also be considered in models as well [Davis et al. 

2001b, Tran 2007]. The impact of each of these factors on the structural deterioration of 

pipes are presented in the following. 

2.3.2.1.1 Effect of Material of Pipes on Structural Deterioration 

Based on previous studies, for pipes buried in lower depth and considering similar wheel 

loads, it is observed that when compared to the maximum stress in a flexible pipe, 

maximum stress in a rigid pipe (for instance vitrified clay pipe or concrete pipe) will be 

five times greater. Vitrified clay pipes have a much higher resistance to corrosion and 

chemical agents, on the other hand, vitrified clay pipes can withstand lower stresses 

compared to concrete pipes [Moser 2001, Kawabata et al. 2003]. 
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2.3.2.1.2 Effect of Diameter of Pipes on Structural Deterioration 

Previous studies suggest that due to the fact that pipes with smaller diameters have less 

moment of inertia, hence, when compared to pipes with larger diameters, they will possess 

lower resistance to bending moments [Young and O’Reilly 1983]. Typically, the bending 

moment has the potential to result in failure in pipes which have diameters of 300 mm or 

less. For smaller diameter pipes, the loads from the traffic as well as the cover requirements 

may be underestimated. This underestimation can be the main factor resulting in greater 

deterioration rates in pipes with smaller diameters [Micevski et al. 2002]. Another study 

suggests that the major component resulting in larger diameter pipes to have lower 

deterioration rates, is due to the more experienced staff, greater effort and precision that is 

used in their installation and laying [Davis et al. 2001b]. 

2.3.2.1.3 Effect of Depth of Pipes on Structural Deterioration 

The impact of surface loads (for instance traffic load) is found to be lessened at lower 

depths of burial in pipes [Davis et al. 2001a]. With regards to pipes buried in shallow depths 

and considering the traffic load, in rigid pipes with a depth of two meters as cover, the earth 

pressure on the pipes were four times less than the pipes with one meter depth of cover 

(while similar wheel loadings occur) [Kawabata et al. 2003].  

2.3.2.1.4 Effect of Location of Pipes on Structural Deterioration 

Typically, the location of pipes has significant influence on the surface load on buried 

pipes. Surface loads include both probabilistic and deterministic loads; probabilistic loads 

are loads resulted from events such as excavation near pipes or repairs, whereas 

deterministic loads include cyclic loads as well as traffic loads. When discussing location 

of pipes, it represents the burial position of pipes; for instance, pipes could be buried under 

gardens, buildings, roads, footpaths, fields, or railways. Furthermore, depending on the 

location of burial of pipes, exposure to corrosive agents may increase as well. For instance, 
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if pipes are buried near coast lines, pipes will be exposed to corrosive environments [Davis 

et al. 2001a, Micevski et al. 2002, Tran 2007].   

2.3.2.1.5 Effect of Bus Route on Structural Deterioration of Pipes 

Structural deteriorations and subsequently failure of buried pipes occur as a result of 

external loads; therefore, in some cases wheel loads as well as cyclic loads are represented 

through the “bus route” factor. This is due to the fact that both the frequency of occurrence 

and the magnitude of the aforementioned loads can be subject to variation, hence the 

collection of data becomes a more difficult task. Furthermore, these cyclic loads can be 

categorized as smaller cyclic occurrences transpiring with various frequencies (for 

instance, they may be seasonal or daily) and also as large one time occurrences [Hahn et 

al. 2002]. 

With regards to the smaller cyclic occurrences, they can stem from regular trucks, or 

various maintenance operations related to other facilities. On the other hand, larger one 

time occurrences can stem from events which are not related to construction, such as 

earthquakes, or landslides; or these occurrences may be due to construction related 

activities such as surface constructions, and in-ground utility constructions. When these 

occurrences are overlapped with pipes which have significantly deteriorated, they can 

result in serious impacts on the pipes [Tran 2007]. 

2.3.2.1.6 Effect of Sewage Type on Structural Deterioration of Pipes 

Although pipes may be properly installed and dynamic loads pose low risks, 

electrochemical, biochemical, and physical reactions can result in deterioration of the 

material of pipes, for instance can cause the loss of resistance to loads, and therefore result 

in susceptibility of pipes to structural deterioration. The major categories of deterioration 

of materials of pipes are as follows: 

 Erosion of invert 

 External corrosion 
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 Internal corrosion 

Velocity of the sewer flow, presence of solid sewage material, and the material of the pipes 

can have significant impacts on the erosion of invert in the pipes. Presence of groundwater 

as well as acidic surrounding environments (such as acidic soils) can result in corrosion on 

the outside of the pipes (External corrosion). Additionally, the characteristics of the sewage 

flow will determine the occurrence and severity of internal corrosions in pipes. For 

instance, hydrogen sulphide is one of the major causes of internal corrosion in concrete 

sewer pipes [Hahn et al. 2002]. 

2.3.2.1.7 Effect of Groundwater Level on Structural Deterioration of Pipes 

If groundwater is present, this could result in the ground loss and therefore, affecting the 

support to underground buried pipes [Davis et al. 2001a]. 

2.3.2.1.8 Effect of Soil Type on Structural Deterioration of Pipes 

Based on the sewer rehabilitation manual, fine sands and silts are considered to pose greater 

risks of resulting in ground loss; on the other hand, when the soil/backfill is clay, it is 

considered to be of low risk [WRC 1983]. If the bedding of the pipe is of deformed peaty 

soil, then due to occurrence of differential settlement by presence of external loading, 

failure would transpire in pipes. Peaty soil is the kind of soil which when soaked in water 

will experience deformation [Li 2003]. Compared to sand backfill, by utilizing expanded 

polystyrene (EPS) as backfill material, the reaction force due to interaction between soil 

and pipe was observed to drastically fall by 50%-60% in magnitude [Yoshizaki and 

Sakanoue 2003].  

Another example of impact of soil/backfill material on pipes is observed by treatment of 

adjacent soil sections through cement mixing piles which significantly improves the 

modulus of elasticity of soil by increasing it as much as ten times. This event improvement 

in modulus of elasticity of oil will therefore result in a decrease of 56% in horizontal 
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deflection as well as a decrease of 57% in vertical deflection of the buried pipe due to deep 

excavation occurring near pipe [Li et al. 2003]. 

2.3.2.1.9 Effect of Age on Structural Deterioration of Pipes 

Based on the age of pipe, and depending on the both available design procedures and 

technologies utilized when manufacturing or installing the pipes, and various other 

parameters, the age of pipe can illustrate significant variations regarding the structural 

deterioration of pipes. Developments observed due to technological advances are 

considered to be the main cause of reduction in the defect rate in sewer pipes within the 25 

years after the World War II [Davis et al. 2001a]. Pipes are expected to deteriorate with 

times, however, due to the fact that the rate of deterioration in pipes can vary drastically 

from one pipe to another, therefore, if a pipe is older, it might not necessarily be in a lower 

condition compared to a new pipe [Tran 2007].   

2.3.3 Hydraulic Deterioration of Sewer Pipes 

Hydraulic deterioration in sewer pipes is associated with the decrease in the cross sectional 

area of sewer pipes as well as increase in the value of coefficient of roughness [Hahn et al. 

2002]. For instance, presence of deposits such as encrustations could result in an increase 

the in the value of coefficient of roughness. Furthermore, tree root intrusions as well as 

presence of materials such as silts, metals or various other debris resulting in obstruction 

within the sewer pipe can cause the cross sectional area of sewer pipes to be reduced 

dramatically [WRC 1986]. 

Similar to structural deterioration of sewer pipes, various influential factors could impact 

the hydraulic condition of sewer pipes. These factors include the following [Tran 2007]: 

 Age and type of trees 

 Depth of pipe 

 Location of pipe 

 Soil type 



22 
 

Effect of each of aforementioned influential factors on the hydraulic deterioration of sewer 

pipes are presented below. 

2.3.3.1 Effect of Age and Type of Trees on Hydraulic Deterioration 

In general, areas which possess older trees typically have root masses. If structural defects 

including cracks, fractures, or open joints exist in the sewer pipe, these root masses can 

find their way into the pipe through these structural defects [WRC 1986]. In certain 

situations, the biological growth of the roots of trees can ultimately enter the concrete pipes, 

through the wall of these pipes [ASCE 1994]. In an example of tree roots intrusion, in 

Victoria (located in Australia) and in areas where Eucalyptus and Melaleuca trees were 

present close to the pipes, and considering low values of temperature and evaporation 

levels, blockages in sewer pipes had occurred [Pohls 2001]. 

2.3.3.2 Effect of Depth of Pipes on Hydraulic Deterioration 

Typically, when the depth of burial of pipes are at shallow depths, tree roots intrusion has 

a higher probability of occurrence and these pipes will probably experience roots intrusion 

more frequently compared to deeper buried pipes [Pohls 2001]. However, for pipes buried 

in deeper depths, encrustation can occur due to the fact that groundwater can find its way 

to the sewer pipe through structural defects of the pipe and result in encrustation in the 

sewer pipe. Encrustation can transpire when groundwater and sea water, considering they 

both can contain salt, are partially evaporated and therefore deposits are left within the 

sewer pipe [WRC 1986].  

2.3.3.3 Effect of Location of Pipes on Hydraulic Deterioration 

The location of sewer pipes can impact both the level and the type of both deposits and 

debris which accumulate within the sewer pipes. Deposit sources as well as debris sources 

are substantially dependent upon the portion of impervious surfaces as well as condition of 

traffics. The aforementioned sources can include biological materials from vegetation and 

automobiles, materials transferred (through water) from surrounding soils, as well as dry 
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and wet atmospheric depositions [Tai 1991, Sutherland and Tolosa 2000, Tran 2007]. 

Additionally, soil can play an important role in the accumulation of materials within the 

sewer pipes. For instance, it has been observed that the majority of the street surface 

particles stemmed from erosion of surrounding soils [Tai 1991], and in another study it was 

realized that 76% of the overall street dust mass stemmed from soil materials [Hopke et al. 

1980, Tran 2007].  

2.3.3.4 Effect of Soil Type on Hydraulic Deterioration of Pipes 

If pipes are buried in soil types wherein a suitable growth condition for tree roots are 

present, the likelihood of the occurrence of blockage due to intrusions from tree roots is 

greater. For instance, in a previous study it has been observed that deep sands which do not 

have lime as well as dark grey sand over clay can be suitable growth conditions for tree 

roots, therefore, the likelihood of tree roots intrusion in sewer pipes located in such 

environments will be significantly greater [Pohls 2001, Tran 2007]. 

2.4 Condition Monitoring of Pipes 

In the United States, infrastructures such as bridges and pavements are regularly inspected 

so that any structural defects occurring in these infrastructures is identified. Specifically, 

regular inspections are required to be carried out in bridges every two years [Madanat et 

al. 1995]. Therefore, for infrastructures such as bridges, a database containing regularly 

inspected data or longitudinal data is available. With the help of these inspection data, 

decision-making procedure can be conducted in a timely manner for performing required 

maintenances in these assets. Additionally, these inspection data can also be used for 

modeling the deterioration rates associated with bridge infrastructures. With the help of 

these deterioration models as well as longitudinal data, condition of bridges can be 

predicted for future [Tran 2007].   

However, in both the United States and Australia, with regards to sewer pipes, the 

inspection is typically carried out only one time; therefore, no longitudinal database is 
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available for sewer pipes. The associated database available for sewer pipes is considered 

to be of snapshot type [Kathula 2001, Kleiner 2001, Tran 2007, Wirahadikusumah et al. 

2001, Baik et al. 2006]. 

2.4 Selection of Sewer Pipe Material 

The selection regarding the appropriate materials to be used in sewer pipes is dependent 

upon various factors and expected conditions of service. Some of the influential factors are 

stated below [WEF/ASCE 1992]: 

 Intended use of sewer 

 Abrasion conditions of sewer 

 Requirements regarding the installation of sewer pipes 

 Conditions affecting corrosion of sewer pipes: For this item, both chemical and 

biological factors related to surrounding soil as well as within the sewer pipe needs 

to be taken into consideration 

 Requirements of flow within sewer pipes: Includes factors such as slope of the 

pipes, size of the pipe, flow velocity 

 Characteristics of pipe material: Includes factors such as fittings and connection 

requirements, supplementary protective coatings, cross sectional shapes, strength 

considerations 

 Cost analysis and efficiency: Factors such as installation process, maintenance 

schedules, estimated durability are considered 

 Requirements related to handling of the sewer pipe: Includes factors such as weight 

of the sewer, resistance to impact 

 Major physical properties:  

Regarding physical properties, for rigid sewer pipes, crush strength is a significant 

factor; however, for flexible sewer pipes, stiffness factor of the pipe, or pipe stiffness 

needs to be taken into consideration.  
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Furthermore, condition of soil, pipe loading strength and shear loading strength, 

and pipe flexural strength needs to be considered as well. 

2.5 Classification of Sewer Pipe Material 

As stated earlier, sewer pipes can be classified in two different categories:  

 Rigid pipes 

 Flexible pipes 

In the first section materials commonly used in rigid pipes will be discussed; flexible pipes 

will then be discussed as well. 

2.5.1 Rigid Pipe Material 

Rigid pipes carry a substantial amount of their basic earth load through the structural 

strength provided by their corresponding rigid wall capacity. The following denote the 

most commonly used rigid pipe materials [WEF/ASCE 1992]: 

2.5.1.1 Asbestos Cement Pipe 

In the past Asbestos Cement Pipe (ACP) was utilized for applications in gravity sewer 

pipes as well as pressure sewer pipes. Asbestos Cement Pipe is constructed from cement 

and asbestos fibers. The nominal diameters which this pipe material is used for is from 4 

inches up to 36 inches. However, in some cases diameters of 46 inches have been used as 

well. With regards to gravity drain applications, seven strength classification of ACP were 

available. Each classification is designated by using the minimum crushing strength of 

ACP, in units of pounds per linear foot of pipe [WEF/ASCE 1992]. 

The potential advantages of ACP include the following: 

 The availability of long laying lengths 

 The availability of wide range of strength 

 The availability of wide range of fittings 
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However, the potential disadvantages of ACP include: 

 Corrosion will take place in the presence of acids 

 If improperly bedded, shear and beam breakage will occur 

 Low value of beam strength 

When specifying the ACP, pipe diameter as well as class or strength are used. The ASTM 

specifications related to ACP are as follows: 

 ASTM C 428:  

"Standard Specification for Asbestos-Cement Non-Pressure Pipe” 

 ASTM C 644: 

"Standard Specification for Asbestos-Cement Non-Pressure Small Diameter Sewer 

Pipe," 

2.5.1.2 Cast Iron Pipe 

Cast Iron Pipe (CIP) has been utilized in gravity as well as pressure drainage networks. 

However, in recent years, ductile iron pipe has been taking its place. The nominal diameter 

for this pipe material ranges from 2 inches up to 48 inches. However, the availability of 

this pipe material is limited, due to the fact that ductile iron may be preferred instead of 

cast iron. 

Cast Iron Pipes are produced with various thicknesses and strengths. Typically, on the 

inside of these pipes, cement mortar linings alongside asphaltic seal coatings can be 

utilized. Moreover, exterior asphalt coatings are generally utilized as well. Various 

coatings can also be used with CIP [WEF/ASCE 1992]. 

The potential advantages of cast iron pipe or gray iron include the following: 

 The availability of long laying lengths 

 High capacity of loading bearing 

 High capacity for pressure 
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Moreover, the potential disadvantages of cast iron pipe or gray iron include: 

 Corrosion will take place in the presence of acids 

 Limited availability of this product 

 Corrosive soils will cause chemical attack 

 If improperly bedded, shear and beam breakage will occur 

 The weight per length ratio is high 

When specifying cast iron pipe, pipe diameter as well as lining, class and the joint type are 

used. The AWWA and ANSI specifications related to CIP are as follows: 

 ANSI A 21.6 (AWWA C 106):  

“Cast Iron Pipe Centrifugally Cast in Metal Molds, for Water or Other Liquid” 

 ANSI/AWWA C 110: 

“Gray-Iron and Ductile Iron Fittings, 2 through 48-inch, for Water and Other 

Liquids" 

 ANSI/AWWA C-105~A 21.5 

“Polyethylene Encasement for Gray and Ductile Iron Piping for Water and Other 

Liquids” 

 ANSI A 21.15 (AWWA C 115). 

“Flanged Cast-Iron and Ductile-Iron Pipe with Threaded Flanges” 

 ANSI A 21.4 (AWWA C-104) 

 “Cement Mortar Lining for Cast-Iron and Ductile Iron Pipe and Fittings for 

Water” 

Further details related to cast iron pipes can be obtained from Ductile Iron Pipe Research 

(1984). 

2.5.1.3 Concrete Pipe 

Concrete pipes, with and without reinforcements, can be used as gravity storm drainage. 

However, prestressed concrete pipes and reinforced concrete pressure pipes can be utilized 
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for both gravity and pressure applications. The nominal diameters available for reinforced 

concrete pipes and non-reinforced concrete pipes are 12 inches through 200 inches and 4 

through 36 inches, respectively. Different linings and coatings can be used with these pipes. 

Based on the required tightness and the operational pressure, various jointing methods can 

be used in these pipes.  

In the process of producing concrete pipes, various procedures such as vibration, 

centrifugation, packing and tamping are utilized. Based on the required strength for these 

pipes, through modified strength of concrete, wall thicknesses, reinforcement and through 

utilizing prestressing process, the required strengths in concrete pipes can be achieved 

[WEF/ASCE 1992].  

The potential advantages of concrete pipes are as follows: 

 The availability of wide range of standard lengths: 4 ft- 24 ft 

 The availability of wide range of strength (structural as well as pressure) 

 Concrete pipes are resistant to abrasion and galvanic corrosion 

 The availability of wide range of diameters 

 Losses due to friction are low 

Moreover, the potential disadvantages of concrete pipes include the following: 

 Corrosion will take place in the presence of acids 

 Concrete pipes have significant weight 

When specifying concrete pipes, pipe diameter as well as D-load strength or class and the 

joint type are used. The ASTM and ANSI specifications related to concrete pipes are as 

follows: 

 ANSI/ASTM C 14: 

“Concrete Sewer, Storm Drain, and Culvert Pipe” 

 ANSI/ASTM C 76: 

“Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe" 
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 ANSI/ASTM C 655:  

“Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe” 

 ANSI/ASTM C 507: 

“Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe” 

 ANSI/ASTM C250, C789M, and C789: 

“Reinforced Concrete Box Culvert” 

 ANSI/ASTM C 361: 

“Reinforced Concrete Low-Head Pressure Pipe” 

 ANSI/ASTM C 443: 

“Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets” 

 ANSI/ASTM C 877: 

“External Sealing Bands for Non-Circular Concrete Sewer, Storm Drain, and 

Culvert Pipe” 

2.5.1.4 Vitrified Clay Pipe 

Vitrified clay pipes (VCP) are produced by using clay and shales. VCP is typically used 

for gravity storm drainage. At the temperature wherein the clay mineral particles are fused, 

the pipe becomes vitrified. The nominal diameters available for vitrified clay pipes are 

from 3 inches up to 36 inches, and in some cases up to 42 inches. Furthermore, various 

jointing methods are used with these pipes.  

Vitrified clay pipes are produced of both standard-strength and extra-strength categories. 

In general, for diameters of 12 inches and below, standard-strength vitrified clay pipes are 

not commonly produced. These pipes are produced up to 10 ft in length. The strengths of 

these pipes are also dependent on their strength classification and diameter [WEF/ASCE 

1992]. 

The potential advantages of VCP include the following: 

 The availability of wide range of fittings for VCP 
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 Losses due to friction are low 

 VCP is highly resistant to abrasion 

 VCP is highly resistant to chemical corrosion 

Moreover, the potential disadvantages of VCP include: 

 VCP has significant weight 

 The availability of sizes is limited 

 If improperly bedded, shear and beam breakage will occur 

 The beam strength in VCP is low 

When specifying vitrified clay pipes, pipe diameter as well as strength and the joint type 

are used. The ASTM, ANSI, and NCPI specifications related to vitrified clay pipes are as 

follows: 

 ANSI/ASTM C 700: 

“Standard Specification for Vitrified Clay Pipe, Extra Strength, Standard Strength 

and Perforated” 

 ASTM C 425: 

“Compression joints for Vitrified Clay Pipe and Fittings " 

 ANSI/ASTM 301:  

“Pipe, Clay, Sewer," Federal Specification SS-P361d, Standard Methods of 

Testing Vitrified Clay Pipe” 

 NCPI ER4-67: 

“Crushing Strength for Pipe and Fittings for Perforated VCP” 

2.5.2 Flexible Pipe Material 

Unlike rigid pipes where they carry a substantial amount of their basic earth load through 

the structural strength provided by the rigid wall capacity of the pipe itself, in flexible pipes, 

their load carrying capacity is obtained through a summative contribution of both the pipe 

strength as well as the embedment soil. The load carrying capacity through embedment 
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soil depends on the interaction between pipe and soil and also the amount of deflection of 

the pipe. The following denote the most commonly used flexible pipe materials 

[WEF/ASCE 1992]: 

2.5.2.1 Ductile Iron Pipe 

Ductile Iron Pipe (DIP) is utilized for applications in both gravity as well as pressure drain 

systems. In the process of producing ductile iron pipe, cerium or magnesium is added to 

cast iron (gray iron) right before the casting procedure. Ductile iron pipes are produced in 

lengths up to 20 ft and with nominal diameters of 3 inches up to 54 inches. Both ductile 

iron fittings as well as cast iron fittings can be utilized for ductile iron pipes. Similar to 

previously mentioned pipes, there are a number of jointing methods for DIP as well. 

Ductile iron pipes are typically used in circumstances where the factors mentioned below 

are required to be considered: 

 High impact capacity 

 High loading capacity 

 Minimum cover thickness 

 Long service life 

 Minimum maintenance 

Similar to other pipes, ductile iron pipes are available in different classes, strengths, and 

thicknesses. On the interior of these pipes, various lining choices can be used. For instance, 

cement mortar lining with asphaltic coating, epoxies and polyethylene can be used as 

interior linings. Generally, asphaltic coatings as well as polyethylene exterior wrappings 

can be used as exterior coatings [WEF/ASCE 1992].  

The potential advantages of DIP are as follows: 

 Losses due to friction are low 

 The availability of long laying lengths 

 Ductile iron pipes have significant impact strength 
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 High capacity of loading bearing 

 High capacity for pressure 

 Ductile iron pipes have significant beam strength 

Moreover, the potential disadvantages of ductile iron pipe include the following: 

 Ductile iron pipe has significant weight 

 Corrosion will take place in the presence of acids 

 Corrosive soil will cause chemical attack in the pipe 

When specifying ductile iron pipe, pipe diameter as well as lining, class, and the joint type 

are used. The ASTM, ANSI, and AWWA specifications related to ductile iron pipes are as 

follows: 

 ANSI A 21.5 (AWWA C 10): 

“Polyethylene Encasement for Gray and Ductile Cast-Iron Piping for Water and 

Other Liquids” 

 ASTM A 746: 

“Ductile Iron Gravity Sewer Pipe" 

 ANSI/AWWA C 110: 

“Gray-Iron and Ductile Iron Fittings. 3 inch through 48 inch, for Water and Other 

Liquids” 

 ANSI A 21.4 (AWWA C 104):  

“Cement Mortar Lining for Cast-Iron and Ductile-Iron Pipe and Fittings for 

Water” 

2.5.2.2 Fabricated Steel Pipe 

This section includes various elements such as corrugated steel pipes, arches, as well as 

pipe arches will be covered. Galvanized corrugated steel is available in various shapes for 

different conduits; furthermore, supplementary coatings can be implemented as additional 
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protection as well. The following are some of the different shapes and features for these 

pipes: 

 Pipes in circular shapes with diameters ranging from 12 inches up to 144 inches 

 Pipe arches produced from circular profiles with diameters of 15 inches up to 120 

inches 

 Structural plate structures with diameters ranging from 60 inches up to 312 inches 

 Structural plate arches with concrete bases with spans of 6 ft up to 25 ft in length 

These pipes are available in standard lengths of 20, 30, and 40 ft and in multiples of 2 ft 

and 4 ft. Welded seam pipe or lock seam pipe are produced from continuous coils and 

therefore can be cut to desired lengths. This allows the selection of various lengths of these 

sections.  

By using coupling bands, the sections are joined. These coupling bands can be single piece, 

two piece or they can be internal expanding types which are used in lining procedures. 

Sections with larger sizes, such as structural plate conduits, are field bolted. Additionally, 

helical corrugations which allow for enhanced flow properties, are also available among 

corrugated pipes. Moreover, corrugated pipes can be used particularly for jacking purposes 

[WEF/ASCE 1992].  

The potential advantages of these pipes are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

 Providing flexibility in sections 

 The availability of wide range of coatings 

 Can be useful for application of lining in repair of structures 

Moreover, the potential disadvantages of these sections include the following: 

 Corrosion will take place in aggressive environments 

 Low hydraulic coefficient (this coefficient can be increased by using linings of 
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bituminous materials) 

 Needs special attention for bedding 

 The springline of the upper semi-circular arch in pipe or culvert requires satisfactory 

horizontal support 

As stated earlier, in order to improve the hydraulic performance of these sections, 

bituminous linings can be utilized. Bituminous linings create smooth surfaces by covering 

the crests of the corrugations. Therefore, these smooth surfaces enhance the hydraulic 

properties of the flow. Additionally, in order to improve the hydraulic performance of these 

sections, the invert can also be paved as well. The main issue when using coatings with 

corrugated steel sections is the bonding between the pipe and the coating.  

When coating is used with these sections, the durability of these pipes is expected to 

increase. However, the coatings will be damaged before the full expected service life of 

these pipes. If the materials are expected to be frozen and thawed frequently, in these 

situations, smooth coated corrugated steel pipes should not be utilized. Furthermore, based 

on the surrounding soil conditions, there may be a need for using external corrosion 

protection as well. Bituminous coatings are flammable and petroleum waste or solvents 

can result in damage or destruction of these coatings. During installation of coated pipe, 

special care should be paid so that the coating remains intact. In order to make sure that the 

pipe is structurally stable, continuous and sufficient lateral support is required.  

When specifying these pipes, the following are used: 

 Size of pipe including nominal diameter, span and rise, or length of arc 

 Shape of pipe including circular, elliptical, arch, or segment plate arch 

 Gage of metal (based on the required strength) 

 Assembly by using bolts or bands 

 Linings or coatings 

 Coupling (single piece and two-piece widths) 
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2.5.2.3 Corrugated Aluminum Pipe 

Various shapes and sizes of corrugated aluminum pipes, arches, and box culverts are 

available. The following are the general properties for these sections: 

 Pipes with circular shapes are available with diameters ranging from 6 inches up to 

180 inches 

 Arches are available with spans of up to 30 ft in length and with rises of up to 14 ft 

 Box culverts can be selected with spans up to 25 ft-5 inches in length and with rises 

of up to 10 ft-2 inches 

The pipes strength can be noted by using range of gages, the type of joints, which can be 

bolted, welded, or achieved by using mechanical coupling. Furthermore, bedding as well 

as backfilling methods are also used in specifying the pipe strength. Aluminum pipe 

sections are lighter in weight and therefore are easier to manage. Aluminum pipe sections 

are available in up to 40 ft in length. Box culverts and arches with larger sizes are typically 

filed bolted. On the other hand, smaller sizes of aluminum sections have great versatility 

to be fabricated in the field and can be cut and welded on site [WEF/ASCE 1992]. 

The potential advantages of these sections are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

 Providing flexibility in sections 

 Fabrication and connections can be done on site 

 Resistant to corrosive environments (e.g. saltwater) 

Moreover, the potential disadvantages of these sections include the following: 

 Low hydraulic coefficient (this coefficient can be increased by using linings of 

bituminous materials) 

 Similar to steel pipe, requires satisfactory horizontal support 

The specifications related to these sections are as follows: 
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 AASHTO Designation M-196: 

“Standard Specification for Corrugated Aluminum Alloy Culverts and 

Underdrains” 

 AASHTO, Designation M-219:  

“Standard Specification for Aluminum Structural Plate for Pipe, Pipe Arches, and 

Arches" 

 AASHTO, Designation M-197: 

“Standard Specification--For Clad Aluminum Alloy Sheets for Culverts and 

Underdrains” 

 Federal Specification - Pipe, Corrugated (Aluminum Alloy) WW-P-402 

2.5.2.4 Thermoplastic Pipes 

Various thermoplastic pipes can be used in applications for either sanitary sewer pipes or 

drainage systems. Some of these thermoplastic pipe materials are as follows: 

 Acrylonitrile-Butadiene-Styrene (ABS),  

 Polyethylene (PE),  

 Polyvinyl Chloride (PVC). 

In general, thermoplastic pipes are wide range of plastic materials which through adjusting 

temperatures and by heating and hardening can be used for manufacturing pipes. Below, 

some of these pipe materials are discussed. 

2.5.2.4.1 Acrylonitrile-Butadiene-Styrene Pipes 

Acrylonitrile-Butadiene-Styrene (ABS) pipes have applications in both gravity and 

pressure drainage systems. The nominal diameters in which gravity acrylonitrile-

autadiene-atyrene pipes are available include ranges of 3 inches up to 12 inches. 

Furthermore, the lengths of these pipes are up to 35 ft. Various jointing systems as well as 

fittings are available for these pipes.  



37 
 

Through extrusion of acrylonitrile-autadiene-atyrene plastic, ABS pipes are produced. 

Acrylonitrile-Butadiene-Styrene (ABS) pipes are available in three different ratios; 

dimension ratios (DR) represent the ratio of mean outside diameter of the pipe to the 

minimum thickness of wall. The values of dimension ratios are as follows: 23.5, 35, 42. 

These dimension ratios are selected based on the diameters of the pipes. The pipe stiffness 

(PS) values for each of the above dimension ratios are respectively as follows (in units of 

psi): 150, 45, 20. 

The potential advantages of ABS pipes are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

 Providing high values of impact strength 

 Facilitates cutting and tapping on site 

Moreover, the potential disadvantages of ABS pipes include the following: 

 The available sizes of ABS pipes are limited 

 ABS pipes can be affected by environmental stress cracking 

 Specific organic chemicals can affect ABS pipes 

 Long term UV exposure can alter the surface of ABS pipes 

 If improperly bedded and haunched, excessive deflection will occur 

When specifying acrylonitrile-autadiene-atyrene pipes, pipe diameter as well as dimension 

ratio, pipe stiffness, and the joint type are used. The ASTM and ANSI specifications related 

to ABS pipes are as follows: 

 ANSI/ASTM D 2751: 

“Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings” 

 ANSI/ASTM D 2235:  

“Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and 

Fittings” 
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 ANSI/ASTM F 477: 

“Elastomeric Seals (Gaskets) for Jointing Plastic Pipe” 

 ANSI/ASTM D 3212:  

“Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals” 

 ANSI/ASTM F 545: 

“PVC and ABS Injected Solvent Cemented Pipe Joints” 

2.5.2.4.2 Acrylonitrile-Butadiene-Styrene Composite Pipes 

Acrylonitrile-Butadiene-Styrene (ABS) composite pipes have applications in gravity 

drainage systems. The nominal diameters in which gravity acrylonitrile-autadiene-atyrene 

composite pipes are available include ranges of 8 inches up to 15 inches. Moreover, the 

lengths which these pipes are available are from 6.25 ft up to 12.5 ft. Various ABS systems 

fittings can be utilized for these pipes. Furthermore, the elasatomeric gasket joints as well 

as solvent cemented joints are some of the jointing systems that can be used in ABS 

composite pipes. 

Through extrusion of acrylonitrile-autadiene-atyrene plastic, and by using a series of truss 

annuli, ABS composite pipes are produced; these truss annuli are filled with materials such 

as light weight Portland cement concrete. 

The potential advantages of ABS composite pipes include the following: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

 Facilitates cutting on site 

Moreover, the potential disadvantages of ABS composite pipes are as follows: 

 The available sizes of ABS composite pipes are limited 

 ABS composite pipes can be affected by environmental stress cracking 

 Specific organic chemicals can affect ABS composite pipes 

 Long term UV exposure can alter the surface of ABS composite pipes 
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 If improperly bedded rupture may occur 

The ASTM and ANSI specifications related to acrylonitrile-autadiene-atyrene composite 

pipes are as follows: 

 ANSI/ASTM D 2680: 

“Acrylonitrile-Butadiene-Styrene (ABS) Composite Sewer Piping” 

 ANSI/ASTM D 2235:  

“Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and 

Fittings” 

 ANSI/ASTM F 477: 

“Elastomeric Seals (Gaskets) for Jointing Plastic Pipe” 

 ANSI/ASTM D 3212:  

“Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals” 

2.5.2.4.3 Polyethylene Pipes 

Polyethylene (PE) pipes have applications in both gravity and pressure drainage systems. 

The nominal diameters in which gravity polyethylene pipes are available include ranges of 

4 inches up to 48 inches. Gravity polyethylene pipes are generally used for relining 

purposes in sewer pipes. Butt fusion as well as flanged adapters are utilized in jointing 

procedures. Through extrusion of polyethylene plastic PE pipes are produced 

The potential advantages of polyethylene pipes include the following: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

 Facilitates cutting on site 

 Provided high values of impact strength 

Moreover, the potential disadvantages of polyethylene pipes are as follows: 

 The available sizes of polyethylene pipes are limited 
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 If improperly bedded and haunched, excessive deflection will occur in polyethylene 

pipes 

 Specific organic chemicals can affect polyethylene pipes 

 Values of pipe stiffness and tensile strength are low 

 Long term UV exposure can alter the surface of polyethylene pipes 

 In order to fuse joints, specific tools are needed 

When specifying polyethylene pipes, pipe diameter (inner or outer diameter) as well as 

material type, dimension ratio, and the joint type are utilized. 

2.5.2.4.4 Polyvinyl Chloride Pipes 

Polyvinyl Chloride (PVC) pipes have applications in both gravity and pressure sanitary 

sewer and drainage systems. The nominal diameters in which gravity polyvinyl chloride 

pipes are available include ranges of 4 inches up to 27 inches. Both pressure and gravity 

fittings are available for these pipes. The maximum length for which polyvinyl chloride 

pipes are typically available is 20 ft. Elastomeric seal gasket joints is mainly utilized for 

jointing purposes. However, in particular situations, solvent cement joints can also be used 

with polyvinyl chloride pipes. 

Similar to previously mentioned pipes, through extrusion of particular plastic, polyvinyl 

chloride pipes are produced. polyvinyl chloride pipes are available in three different ratios; 

dimension ratios (DR) represent the ratio of mean outside diameter of the pipe to the 

minimum thickness of wall. The values of dimension ratios are as follows: 35, 41, 51. 

These dimension ratios are selected based on the diameters of the pipes. The pipe stiffness 

(PS) values for each of the above dimension ratios are respectively as follows (in units of 

psi): 46, 28, 80. 

The potential advantages of PVC pipes are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 
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 Providing high values of impact strength 

 Facilitates cutting and tapping on site 

Moreover, the potential disadvantages of PVC pipes include the following: 

 The available sizes of PVC pipes are limited 

 Specific organic chemicals can affect PVC pipes 

 Long term UV exposure can alter the surface of PVC pipes 

 If improperly bedded and haunched, excessive deflection will occur 

When specifying polyvinyl chloride pipes, pipe diameter as well as dimension ratio, pipe 

stiffness, and the joint type are used. The ASTM and ANSI specifications related to PVC 

pipes are as follows: 

 ANSI/ASTM D 3034: 

“Type PSM Polyvinyl Chloride (PVC) Sewer Pipe and Fittings” 

 ANSI/ASTM D 3033:  

“Type PSP Polyvinyl Chloride (PVC) Sewer Pipe and Fittings” 

 ANSI/ASTM F 477: 

“Elastomeric Seals (Gaskets) for Jointing Plastic Pipe” 

 ANSI/ASTM D 3212:  

“Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals” 

 ANSI/ASTM F 545: 

“PVC and ABS Injected Solvent Cemented Pipe Joints” 

 ANSI/ASTM D 2564:  

“Solvent Cements for Polyvinyl Chloride (PVC) Plastic Pipe and Fittings” 

 ASTM F 679: 

“Standard Specification for Polyvinyl Chloride (PVC) Large Diameter Plastic 

Gravity, Sewer Pipe and Fittings” 
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2.5.2.5 Thermoset Plastic Pipes 

In general, thermoset plastic pipes are classified in two different categories as follows: 

 Reinforced thermosetting resin (RTR)  

 Reinforced plastic mortar (RPM) 

A wide range of plastic materials are included in the thermoset plastic category. Once 

thermoset plastic materials are cured, for instance through heating procedure, they become 

significantly insoluble and infusible. Below the aforementioned pipes are described. 

2.5.2.5.1 Reinforced Thermosetting Resin Pipes 

Reinforced thermosetting resin (RTR) pipes have applications in both gravity and pressure 

drainage systems. Reinforced thermosetting resin are produced based on ASTM 

specifications and the nominal diameters available for this product ranges from 1 inch up 

to 12 inches. However, when produced based on particular manufacturers’ specifications, 

nominal diameters of 12 inches up to 144 inches are also available for reinforced 

thermosetting resin pipes. For large diameters RTR pipes, fittings need to be produced 

based on particular requirements; on the other hand, for small diameter reinforced 

thermosetting resin pipes, RTR fittings are available. Various jointing methods can be used 

for reinforced thermosetting resin pipes. Different protections on the interior of the RTR 

pipes can be used; for instance, thermosetting or thermoplastic liners and coatings can be 

considered as protections inside RTR pipes. 

When manufacturing reinforced thermosetting resin pipes, firbrous reinforcements are 

used. Examples of these fibrous reinforcements are fiberglass which is surrounded by or 

embedded within the cured thermosetting resin. The methodologies utilized in producing 

reinforced thermosetting resin pipes include the following: 

 Centrifugal casting 

 Pressure laminating 

 Filament winding 
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Insituform process is an example of reinforced thermosetting resin pipe material. 

Insituform process is typically utilized in order to rehabilitate the existing pipes. In this 

procedure, a liquid thermosetting resin impregnated a polyester fiber tube which has 

impermeable layer on one side of it. From an access point, for instance a manhole, the tube 

is placed within the existing pipe; then by using cold water, the tube will be pushed towards 

the pipe material.  

Once the tube is pushed inside the pipe, the temperature of the water inside will be 

increased, therefore, it will cure the tube. This will leave a pipe inside the existing pipe. 

The Insituform procedure can be used for a wide range of pipe diameters starting from 4 

inches up to several feet. Moreover, this procedure can be used for conduits with various 

shapes. The thickness of wall is noted as the standard dimension ratio (SDR) and can be 

chosen based on the structural requirements. 

Furthermore, based upon the specific corrosion requirements, the thermoset resin can be 

chosen to meet this requirement. Once this procedure is completed, due to further 

smoothness of the inner surface of the pipe, hydraulic performance will be increased; 

therefore, even though the sectional area for the flow was reduced, due to reduction in the 

dimensions of the conduit, however, smoothness will compensate for that. 

The potential advantages of reinforced thermosetting resin pipes are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

Moreover, the potential disadvantages of reinforced thermosetting resin pipes include the 

following: 

 Strain corrosion may occur in specific environments 

 Specific organic chemicals can affect RTR pipes 

 Long term UV exposure can alter the surface of RTR pipes 

 If improperly bedded and haunched, excessive deflection will occur in RTR pipes 
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When specifying reinforced thermosetting resin pipes, pipe diameter as well as method of 

production, coating and lining, plastic material, pipe stiffness, and the joint type are used. 

The ASTM and ANSI specifications related to RTR pipes are as follows: 

 ASTM D 2996: 

“Filament-Wound Reinforced Thermosetting Resin Pipe” 

 ANSI/ASTM D 2997:  

“Centrifugally-Cast Reinforced Thermosetting Resin Pipe” 

 ASTM D 2310: 

“Machine-Made Reinforced Thermosetting Resin Pipe” 

2.5.2.5.2 Reinforced Plastic Mortar Pipes 

Reinforced plastic mortar (RPM) pipes have applications in both gravity and pressure 

sanitary sewer systems. The nominal diameters available for reinforced plastic mortar pipes 

range from 8 inches up to 144 inches. Various jointing methods can be used for reinforced 

plastic mortar pipes. Different protections on the interior of the RPM pipes can be used; 

for instance, thermosetting or thermoplastic liners and coatings can be considered as 

protections inside RPM pipes. 

When manufacturing reinforced plastic mortar pipes, firbrous reinforcements are used. 

Examples of these fibrous reinforcements utilized in RPM pipes are aggregates (for 

instance sand) as well as fiberglass which is surrounded by or embedded within the cured 

thermosetting resin.  

The potential advantages of reinforced plastic mortar pipes are as follows: 

 The availability of long laying lengths 

 Providing sections with lighters weights 

Moreover, the potential disadvantages of reinforced plastic mortar pipes include the 

following: 
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 Strain corrosion may occur in specific environments 

 Specific organic chemicals can affect RPM pipes 

 Long term UV exposure can alter the surface of RPM pipes 

 If improperly bedded and haunched, excessive deflection will occur in RPM pipes 

When specifying reinforced plastic mortar pipes, pipe diameter as well as beam strength, 

coating and lining, hoop tensile strength, plastic material, pipe stiffness, stiffness factor, 

and the joint type are used. The ASTM and ANSI specifications related to RPM pipes are 

as follows: 

 ASTM D 3754: 

“Reinforced Plastic Mortar Sewer and Industrial Pressure Pipe” 

 ANSI/ASTM D 3252:  

“Reinforced Plastic Mortar Sewer Pipe” 

2.6 Inspection Methodologies in Pipes 

Based upon the capabilities of inspection methodologies as well as the information needed 

by the asset manager, these methodologies can be categorized in three different levels as 

presented below [Ratliff 2003]: 

 Level 1: Field reconnaissance 

 Level 2: Internal inspection 

 Level 3: External inspection  

2.6.1 Field Reconnaissance in Pipes 

In field reconnaissance, the associated data for manholes, pits and pipes are gathered and 

furthermore, the manhole structures will be subject to evaluation for accessibility of both 

inspectors as well as the required equipment for conducting the inspection. Below are some 

of the available techniques for field reconnaissance: 

 Sonde locators 
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 Manhole survey 

 Global positioning system 

At this stage, the existing drawings as well as the current available information are studied. 

Furthermore, if new information is available at any time, i.e. pipe replacement or repair 

occurs, the tasks associated with this stage need to be continued [Tran 2007]. 

2.6.2 Internal Inspection of Pipes 

At this stage, the internal inspection of pipes is intended to gather data with regards to the 

condition of the pipes on the inside. Therefore, by collecting the inspection data at this 

stage, the required considerations which need to be taken, depending on the condition of 

pipes, to prevent pipes from undergoing failure or collapse, or experiencing blockage of 

cross sectional area, will be identified. The following are examples of methodologies for 

this stage of inspection [Tran 2007]: 

 Sonar 

 Closed circuit television  

 Man-walk through 

 Focused electrode leak location 

 Sewer scanner and evaluation technology 

 Multi-sensor pipe inspection systems 

 Laser-based scanning systems 

2.6.3 External Inspection of Pipes 

This level of inspection of pipes is associated with studying the condition of soil 

surrounding the pipe which is considered to provide the support for pipes. If voids or loss 

of support from soil transpire, the pipe can be subjected to collapse [Ratliff 2003]. At this 

stage of inspection, the following methodologies can be utilized: 

 Ground penetrating radar 
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 Micro deflection 

 Infrared thermographs 

 Impact echo wave impedance probe 

With regards to various inspection methodologies, there have been studies conducted with 

review related to these methodologies [Wirahadikusumah et al. 1998, Morrison and 

Thomson 2003, Koo and Ariaratnam 2006]. 

2.7 Condition Grading of Assets 

The first condition grading system which included protocols as well as guidelines 

pertaining to evaluation of existing condition of each pipe by utilizing the data obtained 

based on the inspection performed through closed-circuit television was presented by 

Water Research Center based in UK [Tran 2007, WRC 1986]. Some other condition 

grading systems were subsequently devised based on the condition grading system 

proposed by Water Research Center in Europe, Canada, and Australia as well [McDonald 

and Zhao 2001, Cemagref 2003, WSAA 2002]. Even though the deterioration in pipes 

(either hydraulic deterioration or structural deterioration) are considered to be continuous, 

in the aforementioned condition grading systems, in order to record the current condition 

of pipes, ordinal gradings were attributed to the deteriorations observed in pipes. For 

instance, in WRC the proposed condition gradings were ordered from 1 to 3 [WRC 1986]. 

In this grading system, condition grading 1 demonstrated the perfect condition for the pipe, 

and condition gradings 2 and 3 demonstrated pipes in fair and poor conditions, respectively. 

With regards to other infrastructures, similar approaches have been taken in proposing 

condition grading of assets. For instance, in pavements and bridge infrastructures, the 

deteriorations of assets were graded from 1 to 8 and 0 to 9, respectively [Madanat et al. 

1995]. The condition grades utilized for assessment purposes illustrate a relative ordering 

rather than illustrating the distance between these grades. Additionally, utilizing these 

grading systems helps with decreasing the intricacy of the decision-making procedure 

[Madanat et al. 1997]. 
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In Australia, in 1991 and in order to increase awareness with regards to deterioration of 

assets, the Australia Conduit Condition Evaluation Manual (ACCEM) was provided by 

Sydney Water. However, later in year 2002, Water Service Association of Australia 

provided the Sewer Inspection Reporting Code (SIRC) [WSAA 2002]. In this grading 

system, grades of 1 through 3 were used for condition evaluation of assets. The Sewer 

Inspection Reporting Code (SIRC) was used for condition evaluation of rigid sewer pipes, 

such as concrete pipes as well as vitrified clay pipes. Later, the Conduit Inspection 

Reporting Code (CIRC) was developed as an update to the Sewer Inspection Reporting 

Code (SIRC). Unlike SIRC, the Conduit Inspection Reporting Code (CIRC) included 

flexible pipes as well as rigid pipes and had grading systems from 1 through 5. The tables 

presented below, demonstrate the associated hydraulic as well as structural conditions for 

each condition grading [WSAA 2006, Tran 2007].   

Table 2.1: Condition grading and corresponding attribution based on WSAA 2002 [Tran 2007] 

Condition 
grading of 

asset 

WSAA 2002 

Hydraulic Deterioration Structural Deterioration 

1 No apparent need for 

action 

No apparent need to 

investigate further 

 

2 

Consider response on a 

program basis 

Consider overall 

circumstances on a 

program basis 

 

3 

Appropriate action to 

be investigated 

urgently 

Urgent need to 

investigate overall 

circumstances 
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Table 2.2: Condition grading and corresponding attribution based on WSAA 2006 [Tran 2007] 

Condition 
grading of asset 

WSAA 2006 

Hydraulic Deterioration Structural Deterioration 

 

1 

No or insignificant loss of 
hydraulic 

performance has occurred. 
Appears to 

be in good condition 

Insignificant deterioration of 

the sewer has occurred. 

Appears to be in good 
condition 

 

2 

Minor defects are present causing 

minor loss of hydraulic 
performance 

Minor deterioration of the 

sewer has occurred 

 

3 

Developed defects are present 

causing moderate loss of 
hydraulic 

performance 

Moderate deterioration has 

occurred but defects do not 

affect short term structural 

integrity 

 

4 

Significant defects are present 

causing serious loss of hydraulic 

performance 

Serious deterioration of the 

sewer has occurred and 
affected 

structural integrity 

 

5 

Failure of the sewer has occurred 
or 

is imminent 

Failure of the sewer has 

occurred or is imminent 

 

2.8 Condition Grading Utilizing PACP 
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Pipeline Assessment and Certification Program (PACP) is the North American Standard 

utilized for evaluation of pipelines. National Association of Sewer Service Companies 

(NASSCO) has provided PACP in partnership with the Water Research Center based in 

UK. Utilizing the coding proposed by NASCOO, the defects and features of the pipes can 

be categorized in five different categories. These categories are presented below [EPA 

2015]: 

 Structural defects 

 Operational and maintenance 

 Continuous defects 

 Construction features 

 Miscellaneous features 

For each of these defects, a combination of capital letters is utilized to illustrate the defects. 

For instance, longitudinal fracture in pipes is represented by FL, and circumferential cracks 

are illustrated by CC. In addition to this letter combination, the numeric values associated 

with each of these defects illustrate the severity of these defects [EPA 2015]. 

The previously stated five categories are briefly discussed below [EPA 2015]: 

 Structural defects: Structural defect codes comprise of various coding categories. 

These codes are utilized to identify the deteriorations in pipes which are related to 

structural degradation of pipes and can stem from numerous causes such as breaks, 

fractures, and cracks. 

 Operational and maintenance defects: Operational and maintenance (O&M) defects 

are utilized to describe the defects which are originated from lack of maintenance. 

These defects can include infiltration, roots intrusion, deposits, etc. 

 Continuous defects: Continuous defects coding is categorized in two different 

classes:  

1) Truly continuous defects: Truly continuous defects run along the sewer pipe 
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2) Repeated continuous defects: Repeated continuous defects can transpire in 

regular intervals along the sewer pipe 

 Construction features: Construction features coding describes the defects which are 

positioned within or around the sewer pipe. Examples of construction features are 

intruding seal materials and taps 

 Miscellaneous features:  Miscellaneous features contains various categories. By 

using these coding features, miscellaneous features can be demonstrated. Various 

other letters are combined with the miscellaneous coding letter to describe the 

specific defect type within miscellaneous class. 

 

The gradings assigned based on Pipeline Assessment and Certification Program (PACP) 

coding can be described as follows [NASSCO 2015, EPA 2015]: 

 Grade 1: Demonstrates minor defect 

 Grade 2: Demonstrates minor to moderate defect 

 Grade 3: Demonstrates moderate defect 

 Grade 4: Demonstrates significant defect 

 Grade 5: Demonstrates most significant defect 

Furthermore, the relative likelihoods of failure with respect to time based on PACP coding 

can be described based on the gradings as follows [NASSCO 2015, EPA 2015]: 

 Grade 1: Demonstrates unlikely failure in the foreseeable future  

 Grade 2: Demonstrates unlikely failure for at least 20 years 

 Grade 3: Demonstrates that the deterioration may continue at a timeframe of 10 to 

20 years 

 Grade 4: Demonstrates risk of failure within 5 to 10 years 

 Grade 5: Demonstrates need of immediate attention and illustrated failed segment 

of pipe or a likely failure in the next 5 years 
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Moreover, Pipeline Assessment and Certification Program (PACP) also utilizes a quick 

rating system as well. The quick ratings system demonstrates the frequency by which the 

two highest grades have been transpired [EPA 2015]. 

2.9 Deterioration Models 

Various types of models may be utilized for different civil infrastructures; for instance, 

models may be of the following natures [Morcous et al. 2002a]: 

 Deterministic,  

 Statistical 

 Artificial intelligence (also known as soft computing methods)  

Moreover, in an upper level, each of these deterioration models maybe viewed as model-

driven or data-driven. As an example, deterministic modeling is considered a model-driven 

approach. This is due to the fact that the detailed construction of these models is dependent 

upon the expert view. The same reasoning holds true for statistical deterioration models 

and thus they are also categorized as model-driven approach [Dasu and Johnson, 2003]. 

On the other hand, data-driven models are deterioration models which are constructed 

based upon the available data (sample data available from inspections). Deterioration 

models constructed based on soft-computing or artificial intelligence approach, are 

considered as data-driven models [Dasu and Johnson, 2003]. 

Furthermore, each of the abovementioned modeling classifications contains various 

modeling techniques as presented below [Tran 2007]: 

Deterministic Models:  

1) Linear Models 

2) Exponential Models 

Statistical Modeling 
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1) Markov Chain Models 

2) Ordinal Regression 

3) Linear Discriminant Analysis 

Artificial Intelligence Models (also known as soft computing methods)  

1) Case-Based Reasoning 

2) Fuzzy Set Theory 

3) Neural Networks 

 The following section contains a brief discussion pertaining to each of these models. 

2.9.1 Modeling based upon deterministic approach 

Deterministic approach modeling is suitable for occurrences in which the associated 

relationship between the dependent variable and the independent variables can be 

expressed by certainty. For instance, power law expressions and time linear relationship 

fall into deterministic modeling category; these relationships were applied for pavements 

by Lou et al. in 2001, and in water main by Kleiner and Ranjani in 2001. Furthermore, 

linear and exponential models are also some of the commonly used approaches for 

expressing the relationship between the dependent variable and the independent variables 

in deterioration models. The following section describes application of these methods to 

obtain deterioration rates. 

2.9.1.1 Linear deterioration models 

With regards to civil infrastructures, in order to construct a linear model, the following 

steps can be taken [Madanat et al. 1995]: 

 Step one: By taking into account the similarities of predictors among various assets, 

cohorts containing specific facilities are created. Some commonly used predictors 

are type of material for each asset, size of assets, type of loading exerted on facilities, 

etc. 
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 Step two: Once the cohorts of facilities are provided, by considering the age of 

facilities as the independent variable and the condition rating of assets as the 

dependent variable, the linear deterioration model is thus expressed as follows: 

𝐶𝑅 =  𝑎 + 𝑎 ×  𝑡 + 𝜖                                                                                          (2.1) 

In which the parameters are as follows: 

𝐶𝑅  denotes the condition rating of ith
 facility, 

𝑎  is the intercept term of the linear model, 

𝑎  denoted the coefficient of age in the model, and 

𝜖   is the random error associated with the linear model. 

Typically, the least square method is the calibration technique which is used in the linear 

models [Aldrich and Nelson 1990]. Therefore, when using linear models, the rate of 

deterioration of infrastructures is supposed to be constant throughout the service life of the 

assets, whereas the actual deterioration of civil infrastructures is a mixture of both damages 

transpired from random events as well as time dependent processes resulting in 

deterioration [Morcous et al. 2002b]. Additionally, discrete condition ratings are not 

suitable to be modeled by utilization of linear deterioration models [Madanat and Ibrahim 

1995, Madanat et al. 1997]. 

2.9.1.2 Exponential deterioration models 

Another deterministic approach in modeling the deterioration rate of civil infrastructure is 

the exponential model. Generally, exponential deterioration models are used for the cases 

which it is believed the rate of degradation of assets is increasing as the asset ages. For 

instance, in the case of sewer pipes, assuming that the deterioration rate pertaining to sewer 

pipes increases by the age of pipe, Wirahadikusumah et al. (2001) used the exponential 

approach to model the deterioration of sewer pipes in the city of Indianapolis resulting in 

a model as follows: 

𝐶𝑅 = exp (𝑎 + 𝑎 ×  𝑡 + 𝜖 )                                                                                         (2.2) 
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In which the parameters are similar to that of linear models, although the intercept and the 

coefficient of age of pipe are within the exponential function. Additionally, these models 

are calibrated through least square technique.  

2.9.2 Limitations of deterministic deterioration models 

Even though the deterministic approach in modeling the deterioration rate of infrastructures 

provides an analytical method which seems to be versatile, the following limitations are 

still present in this type of modeling: 

The only contributing factor which is present in the stated deterioration models is the age 

of the sewer pipes. Albeit using cohorts of assets, other independent variables are not 

explicitly present in the relationship describing the deterioration rate. Furthermore, on one 

hand the range each cohort covers needs to be as narrow as possible in order to result in a 

homogenous model; and on the other hand, the range of variables in the cohorts need to be 

sufficiently wide so that they can cover influence of all other predictors contributing to the 

deterioration of infrastructures [Kleiner et al. 2007]. 

Based on the abovementioned facts, when using the stated deterministic models for 

obtaining the deterioration rate of infrastructures, the intricacies involved within the 

interactions of various independent variables cannot be introduced to the model in a 

comprehensive approach [Mishalani and Madanat 2002]. Even though creating cohorts of 

pipes is a step in this direction. 

Furthermore, there are numerous uncertainties associated with infrastructures which can 

vary substantially from one civil infrastructure to another based on their particular 

applications. As an example, the uncertainties associated with highway bridge structures 

vary from those present for sewer pipes. For instance, random occurrences resulting in 

damages can be considered for both of these infrastructures, even though the nature and 

instances may vary [Morcous et al. 2002b].  
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Therefore, the aforementioned uncertainties demonstrate the need for a probabilistic 

approach for identifying the deterioration rate and service life of sewer pipes. However, as 

stated earlier, deterministic approach in modeling the deterioration rate of infrastructures 

does not fully cover the probabilistic outcomes predating to service life of these assets; 

neither do they represent the time-dependent properties influential in deterioration of sewer 

pipes. Additionally, as it is stated earlier, linear deterioration model as well as exponential 

deterioration models do not suitably represent the deterioration rates within discrete 

condition rating system [Madanat and Ibrahim 1995, Madanat et al. 1997]. 

2.9.3 Statistical deterioration models 

With regards to these deterioration models, statistical theory is utilized; in which the effect 

of random noises within elements are accounted for. Statistical modeling approach has 

been applied in numerous engineering areas [Johnson and Albert, 1999; Henley and 

Kumamoto, 1992; and Kuzin and Adams, 2005]. As mentioned earlier, the statistical 

deteriorating models are categorized as model-driven approach; moreover, in statistical 

models, relationship between the outcome, i.e. the dependent variable, and the independent 

variables is assumed to be probabilistic, and therefore, compared to deterministic 

deterioration models, it provides a more appropriate methodology for considering the 

uncertainties associated with each of independent variables and their relationship with the 

dependent variable [Dasu and Johnson, 2003]. 

2.9.3.1 Linear discriminant analysis 

By applying a set of independent variables (predictors of the statistical model), and through 

utilization of Fisher’s linear discriminant analysis (LDA), objects and individuals can be 

both classified and predicted into classes which are mutually exclusive and exhaustive 

[Huberty 1994]. Due to the fact that each class is comprised of objects which are similar 

and are further accompanied by errors when observed or measured, therefore, achieving a 

linear transformation of the independent variables of the model which maximize the ratio 

of between class scatter and within class scatter, is the main goal of  linear discriminant 
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analysis (LDA) [Laitinen 2007]. Maximizing this ratio is known as Fisher’s criterion as 

well. In linear discriminant analysis (LDA), the classes are taken into consideration and the 

subspace in which the samples of the same class are the most compact will be found. In the 

meantime, the samples pertaining to other classes are as far as they could possibly be [Tran 

2007]. 

Both linear discriminant analysis (LDA) and multiple regression method have the 

similarity in utilizing a linear function of independent variables of the model. However, in 

multiple regression method, the dependent variable, or the output of the model, needs to be 

a real number, whereas in linear discriminant analysis, the dependent variable should be of 

categorized nature. A further restriction when utilizing linear discriminant analysis is the 

fact that the independent variables of the model need to follow multivariate normal 

distribution [Tabachnick and Fidell 2001]. 

Furthermore, linear discriminant analysis (LDA) can be used for cases where the dependent 

variable is either dichotomous or can be assigned with multiple classes. In cases where 

multiple response categories are considered for the dependent variable of the model, the 

linear discriminant analysis is known as multiple discriminant analysis (MDA) [Huberty 

1994]. 

In engineering field as well as researches pertaining to business filed, linear discriminant 

analysis has been used with various applications [Yang et al. 1999, Shan et al. 2002, 

Galletti et al. 2003, Tsai 2006, Tran 2007]. Additionally, maximizing the Fisher’s criterion 

is also referred to as the calibration method used for linear discriminant analysis [Johnson 

and Wichern 2002]. 

2.9.3.2 Markov chain model 

Markov chain model is based on the methodology proposed by Andrei Markov in 1906. 

Markov chain is indeed a discrete-time stochastic process [Winston 1994] and if a 

stochastic process has Markov property, it can be labeled as a Markov chain; furthermore, 
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in order for a stochastic process to possess the Markov property, the conditional probability 

distribution pertaining to the future states of the variable of interest, independent from the 

past condition states, only depend upon the condition state of the present; in other words, 

having both the current and the past condition states of the variable of interest, only current 

condition state, without considering the past condition states, will be influential in 

determining the future condition states of the variable of interest [Ross 2000]. Considering 

a discrete parameter stochastic process (denoted by Xt) having a discrete state space, the 

abovementioned property can be illustrated as follows. 

𝑃(𝑋 =  𝑖  |𝑋 =  𝑖 , 𝑋 =  𝑖 , 𝑋 =  𝑖 , … , 𝑋 =  𝑖 , 𝑋 =  𝑖 ) =

 𝑃(𝑋 =  𝑖  |𝑋 =  𝑖 )                                                     (2.3) 

In the above equation, P denotes the conditional probability of the state of the process for 

future events with respect to the past and current states, and it denotes the state of the 

process at time t. It should be noted that t ≥ 0 and i0, i1, i2, … it-1, it, … represent the different 

condition states associated with the system characteristic [Baik 2003]. 

With regards to development of deterioration models for infrastructures, and that the 

present state of the variable of interest is in state i, the probability that the future state of 

the variable transitions from condition state i to condition state j, is denoted by pij and based 

on the aforementioned assumption of Markov chain, is independent of the past condition 

states and can be computed as follows. 

An assumption pertaining to the Markov chain is the stationary assumption; based on the 

stationary assumption, the probability does not vary with time; in other words, the 

probability of the condition state to move to state j at time t+1 from state i at time t, will 

not be dependent upon time t. The stationary assumption is demonstrated in the below 

equation [Baik 2003]. 

𝑃(𝑋 =  𝑗 |𝑋 =  𝑖) = 𝑝           (2.4) 

In this equation, pij is known as the transition probability from state i to state j.  
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Considering the variable of interest has k possible condition states associated with it, a 

matrix with a dimension of k×k will be utilized to construct the transition probability matrix 

(P), which each of its individual elements contains the transition probabilities. The 

following equation demonstrates a typical transition matrix attributed to Markov chain 

models. 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 𝑃 𝑃 … 𝑃

𝑃 𝑃 𝑃 … 𝑃

𝑃 𝑃 𝑃 … 𝑃

… … … … …

𝑃 𝑃 𝑃 … 𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

        (2.5) 

In a transition probability matrix, also called transition matrix, the following relationship 

should be valid. 

∑ 𝑃 = 1             (2.6) 

In which Pij is the transition probability from condition state i to condition state j, and i can 

take on values of 1, 2, 3, …, and k. 

In order to determine the probability that the condition state i is transitioning to the 

condition state j, after n transition states (n periods), Chapman-Kolmogorov relationship 

can be utilized. Therefore, the n-step transition probability matrix P(n), containing the n-

step transition probabilities pertaining to each condition state, Pij
(n), can be computed by 

multiplying the one-step transition matrix n times; in other words, the n-step transition 

probability matrix can be computed by taking the one one-step transition matrix to the 

power n, as demonstrated below [Baik 2003, Park 2009]. 

𝑃( ) = 𝑃             (2.7) 

Furthermore, the one-step transition probability is shown by Pij
(n=1)

= Pij. 
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Assuming the initial state vector is the probability of the Markov chain to be in state i at 

time t=0, in order to compute the probability of the chain to be in state j after n transition 

periods, the following equation can be used. 

𝑄( ) = 𝑄( ). 𝑃( )          (2.8) 

In the above equation, 𝑄( ) denotes the probability of the Markov chain to be in state i at 

time t=0 and is equal to: 

𝑄( ) = [𝑞 𝑞 … 𝑞 𝑞 ]         (2.9) 

In which q1, q2, …, qk-1, qk denote the probabilities of system characteristic to be in 

condition states 1, 2, …, k-1, and k, respectively. 

Additionally, 𝑄( ) is the state vector after n transitions, and contains the probability of the 

chain to be in state j after n transition periods [Winston 1994]. 

In order to estimate the transition probabilities in a Markov chain methods such as 

approaches based non-linear optimization and ordered probit model can be utilized [Baik 

2003]. 

2.9.3.3 Estimation of transition probabilities in a Markov chain 

Estimating the transition probabilities in a Markov chain is a crucial task. Two different 

methodologies are stated herein:  

 Approach based on non-linear optimization 

 Approach based on ordered probit model 

2.9.3.3.1 Approach based on non-linear optimization 

The non-linear optimization-based approach is comprised of two major steps: 1) 

Regression analysis, 2) Non-linear optimization. One of the most popular methodologies 

for obtaining the values of transition probabilities is using the regression-based expected 

value method. In this approach, first the regression analysis is conducted and next the sum 
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of absolute distances between the expected values of the model achieved through 

regression analysis and the Markov chain model, and by utilizing the non-linear 

optimization methodologies, each of the elements of the transition probabilities are 

estimated. This procedure is vastly used for predicting the transition probabilities for 

various infrastructures such as sewers, bridges, and pavements [Wirahadikusumah et al. 

2001, Baik 2003, Jiang et al. 1988, Butt et al. 1987, Carnahan et al. 1987].  

In some sources, a step by step procedure is used to for non-linear optimization and 

obtaining the transition probabilities in deterioration models [Park 2009]. In this step by 

step approach, first, by taking into account the various available properties of the pipes, 

such as length of pipes, size of pipes, installation depth, water level, condition of soil near 

pipe, and pipe material, the existing pipes are categorized in different groups. Once the 

grouping of pipes is completed, then for each group, the relationship between the age of 

the pipe and the condition rating of the pipe is estimated through regression analysis. 

An assumption pertaining to non-linear optimization is that in order to capture the trend of 

increasing rate of deterioration for later years, a “zoning” concept is thus used. The 

environment surrounding the infrastructure which contributes to the deterioration of it, and 

therefore, its impact on the deterioration of the infrastructure might vary with time. This 

indicates that the transition of the condition states of a system, such as pavements, cannot 

be estimated with constant components in the transition probability matrix [Butt et al. 

1987]. In order to address this issue, the “zoning” concept can be used. Through this 

concept, the lifetime of an infrastructure is assumed to be comprised of multiple zones, in 

which each of the zones are indeed periods of times for which the elements of the transition 

probability matrix are considered to be constant. Therefore, the resulting Markov chain 

will be homogenous. 

Therefore, the transition probability matrix is assumed to be constant in each zoning period 

and the amount of time considered as a zone is dependent upon inspection frequency and 

intervals and engineering judgment [Park 2009, Butt et al. 1987, Baik 2003]. For instance, 

a typical time period of six years can be assumed for pavements, as considered in some 
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sources [Butt et al. 1987] or for bridges [Jiang and Sinha 1989]. However, some sources 

have used larger time periods, i.e. 25 years, as the period for large combined sewers 

[Wirahadikusumah et al. 2001]. 

Finally, by conducting a non-linear optimization process, the transition probabilities 

corresponding to each condition state of the pipe are determined. This process is illustrated 

below [Baik 2003]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ |𝑌(𝑡) − 𝐸(𝑛, 𝑃)|        (2.10) 

In the above equation, the parameters are as follows. 

 i and j = 1, 2, 3, … , k (k being the number of condition states) 

 0 ≤ Pij ≤ 1 

 N denotes the total number of transition periods pertaining to each zone, 

 t is the age of the pipe, 

 tin denotes the initial age pertaining to each zone 

 tf denotes the final age pertaining to each zone 

 n is the number of transition periods (also known as stages) 

 Y(t) is the mean estimated condition obtained from the regression analysis,  

 E(n,P) denotes the expected value of condition state of pipe for n transitions and is 

based upon the Markov chain approach 

For instance, by considering the condition rating from 1 to 5, where condition rating 1 

illustrates that the pipe is in perfect condition and condition rating 5 corresponds to the 

worst condition of the pipe, the expected value of condition state of pipe will be as shown 

below. 

𝐸(𝑛, 𝑃) = 𝑄( ). 𝐶 = 𝑄( ). 𝑃( ). 𝐶         (2.11) 

In the above equation, the parameters are as follows: 

Q(0) denotes the initial vector pertaining to condition state of the infrastructure 
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Q(n) denotes the condition state vector of the infrastructure at the nth stage 

P(n) denotes the transition probability matrix after n transitions 

𝐶  is the column vector pertaining to the condition rating system of the pipe. 

It should be noted that the transition probabilities are the unknown parameters and the task 

is mainly to identify these knowns by using non-linear optimization; the obtained transition 

probabilities will pertain to each of the different zones for which the probabilities of 

transition from one condition state to another are supposed to remain constant. 

Furthermore, the above equations can be rewritten as follows. 

𝐸(𝑛, 𝑃) = [1 0 0 0 0]. 𝑃( ).

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

2

3

4

5⎦
⎥
⎥
⎥
⎥
⎥
⎤

          (2.12) 

In the above relationship: 

[1 0 0 0 0] demonstrates the initial condition state of the pipe, Q(0), which is 

assumed to be the perfect condition where the condition of the pipe is in condition rating 

1. 

𝑃( ) denotes the transition probability matrix after n transitions. 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

2

3

4

5⎦
⎥
⎥
⎥
⎥
⎥
⎤

 denotes the column vector pertaining to the condition rating system of the pipe. 

By utilizing this methodology, a transition probability matrix will be calculated as 

illustrated below. 
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𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 𝑃 𝑃 𝑃 𝑃

𝑃 𝑃 𝑃 𝑃 𝑃

𝑃 𝑃 𝑃 𝑃 𝑃

𝑃 𝑃 𝑃 𝑃 𝑃

𝑃 𝑃 𝑃 𝑃 𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.13) 

However, by using several assumptions, the transition probability matrix will become 

simpler; first, it is assumed that no rehabilitation or maintenance is conducted and 

therefore, it is realized that the elements of the matrix below the diagonal elements do not 

exist, thus resulting in a transition probability matrix of the form below. 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 𝑃 𝑃 𝑃 𝑃

0 𝑃 𝑃 𝑃 𝑃

0 0 𝑃 𝑃 𝑃

0 0 0 𝑃 𝑃

0 0 0 0 𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.14) 

Additionally, it can be assumed that the condition rating of a particular pipe will not be 

reduced more than one condition level in each year. Therefore, considering these 

assumptions, the transition probability matrix will be simplified as illustrated below. 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 𝑃 0 0 0

0 𝑃 𝑃 0 0

0 0 𝑃 𝑃 0

0 0 0 𝑃 𝑃

0 0 0 0 𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.15) 

Moreover, considering the restriction stated earlier as (the value of k is equal to 5, 

demonstrating the 5 possible condition levels of the pipe): 

∑ 𝑃 = 1            (2.16) 
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In which i can be assigned values of 1, 2, 3, 4, and 5.  Therefore, the transition probability 

matrix will further simplify to the following format. 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 1 − 𝑃 0 0 0

0 𝑃 1 − 𝑃 0 0

0 0 𝑃 1 − 𝑃 0

0 0 0 𝑃 1 − 𝑃

0 0 0 0 𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.17) 

Finally, considering that for the last row of the transition probability matrix only one 

element is remaining and that the following equation should be satisfied: 

∑ 𝑃 = 1           (2.18) 

Therefore, it is realized that 𝑃 = 1; in other words, considering that no maintenance is 

taking into account in this approach, therefore, once the pipe is in the condition rating 5, 

which is the worst condition, with a probability of 1, it will stay in that condition. The 

transition probability matrix is thus achieved to be as follows. 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃 1 − 𝑃 0 0 0

0 𝑃 1 − 𝑃 0 0

0 0 𝑃 1 − 𝑃 0

0 0 0 𝑃 1 − 𝑃

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.19) 

Now assuming that the transition period considered for each zone is 5 years, i.e. N = 5, 

therefore, considering the first zone, the values corresponding to tin and tf , i.e. the initial 

and final timeline of the first zone, will be equal to 1 and 5, respectively. For the second 

zone however, tin = 6 and tf = 10; and this process continues for the other zones as well. 

Additionally, when computing the mean value of Y(t), in the case of pipelines for instance, 

if the condition rating obtained based on the regression is greater than the maximum 
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condition rating, in this case 5, the maximum condition rating will replace the value 

calculated based on the regression analysis for those time periods.  

After computation of the transition probability matrix for each zone, the condition state 

vector pertaining to each transition can be easily obtained. For illustration purposes, for the 

first zone with a period of 5 years, the condition states for each transition can be obtained 

as demonstrated below. 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 1: 𝑄( ) = 𝑄( ). 𝑃         (2.20) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 2: 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃        (2.21) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 3: 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃        (2.22) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 4: 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃        (2.23) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 5: 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃         (2.24) 

In the above equation, P1 denotes the transition probability matrix for the first zone. 

Once the state vectors for each of the transitions in the first zone are obtained, by 

considering the last state vector pertaining to the first zone as the initial state vector for the 

subsequent zone, i.e. zone 2, the state vectors for each of the transitions in the second zone, 

assuming the transition probability matrix for the second zone is denoted by P2, can be 

obtained as illustrated below. 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 6 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑛 1 𝑖𝑛 𝑧𝑜𝑛𝑒 2): 𝑄( ) = 𝑄( ). 𝑃  = 𝑄( ). 𝑃 . 𝑃    (2.25) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 7 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑛 2 𝑖𝑛 𝑧𝑜𝑛𝑒 2): 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃 . 𝑃    (2.26) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 8 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑛 3 𝑖𝑛 𝑧𝑜𝑛𝑒 2): 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃 . 𝑃     (2.27) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 9 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑛 4 𝑖𝑛 𝑧𝑜𝑛𝑒 2): 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃 . 𝑃    (2.28) 

𝑇𝑟𝑎𝑛𝑠𝑡𝑖𝑜𝑛 10 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑛 5 𝑖𝑛 𝑧𝑜𝑛𝑒 2): 𝑄( ) = 𝑄( ). 𝑃 = 𝑄( ). 𝑃 . 𝑃    (2.29) 
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Following this process, the state vectors corresponding to all zones of the infrastructure 

will be calculated; once the state vectors are obtained, then by using the rating column 

vector, i.e. CT, the values associated with the condition ratings of each transition for all 

zones will be obtained based upon the Markov chain model. Therefore, the deterioration 

model, based on the condition rating, with respect to age of the infrastructure, in this case 

sewer pipes, can be procured. 

2.9.3.3.2 Approach based on ordered probit model  

When utilizing ordinary regression, the ordinal scale of the dependent variable, in this case 

the condition rating system, will not be fully comprehended by the model. This is due to 

the fact that when using ordinary regression, the actual variation between different levels 

of condition rating will be assumed to be based on the difference between each level. 

Therefore, the variation of the condition of an infrastructure will be assumed to be the same 

when condition rating changes from 1 to 2, when compared to change of condition rating 

from 3 to 4 [Greene 2003].  

The condition rating system pertaining to sewer pipelines is a discrete and ordinal variable. 

Approximately since the 1970s, two substantial probability methods that are used to model 

ordinal discrete dependent variables, are the ordered probit model and the ordered logit 

model [Washington et al. 2003]. The main difference between the ordered probit model 

and the ordered logit model is the probability distribution that is assumed for the 

disturbance terms of each of these models. In the ordered logit model, the probability 

distribution for the disturbance term is considered to be normal, whereas it is assumed that 

in the ordered probit model, the disturbance term follows a logistic probability distribution 

[Baik 2003]. 

Some examples of the application of the ordered probit model is its utilization for bridge 

decks [Madanat et al. 1995] as well as bridge expansion joints [Lee and Chang 2003]. 

Additionally, ordered probit model in conjunction with incremental models has also been 
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utilized for wastewater infrastructure assets [Baik 2003]. Below is a detailed description of 

the incremental model as well as the ordered probit model. 

2.9.3.3.3 Incremental modeling for probability transitions 

Incremental model has been developed in order for the probabilities procured by the 

ordered probit model to be used for obtaining a deterioration model based on a Markov 

chain [Madanat et al. 1995]. The increments are indeed the variations in the condition 

ratings within a transition period and are utilized as the discrete outcome variables in the 

ordered probit model. Each of the probabilities associated with discrete outcome variables 

(which are in fact the increments) are then used as the transition probabilities in the Markov 

chain approach. For instance, within a transition period, assuming that the condition of an 

infrastructure, following a discrete condition rating system, transitions from condition state 

i to condition state j, then the increment associated with this condition change is equal to j 

- i [Baik 2003]. 

Therefore, for all condition states, the probabilities pertaining to the corresponding 

increments are computed. These probabilities indeed correspond to each row in the 

transition probability matrix. Following this procedure, for each transition, a distinct 

transition probability matrix will be obtained; thus, unlike the approach based on the non-

linear optimization method, in which the elements of the transition probability matrix 

remained constant throughout each zone resulting in a stationary transition probability 

matrix, in the case of incremental modeling, the transition probability matrix will not be 

stationary as it does not remain constant for different transitions [Baik 2003].  

2.9.3.3.4 Ordered probit model 

In the ordered probit model, in order to achieve ranking of the discrete data, the unobserved 

variable (the latent variable), denoted by zim, is utilized as the basis of the ranking. For 

instance, with regards to sewer pipes, the actual degradation of the sewer system is 

considered to be the latent variable; moreover, it is considered to continuous and in the 
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range of (0, +∞). Considering a specific sewer segment is denoted by m and the condition 

associated with it is denoted by i, therefore, the latent variable (zim) will be as demonstrated 

below. 

𝑧 = 𝛽 𝑋 + 𝜖           (2.30) 

In the above equation, the parameters are as follows. 

 𝛽  is the estimated vector parameters for condition state i 

 𝑋  denotes the vector of variables for segment m dictating the discrete ordering 

 𝜖  denotes the random disturbance term 

 

Figure 2.3: Mapping and procedure from latent variables to the indicator variable [Adapted from 

Ben-Akiva and Ramaswamy 1993] 
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In order to identify the relationship between the latent variable and the indicator variable, 

measurement equations are used which can map zim to yim. In other words, the continuous 

latent variable (i.e. deterioration) is mapped to the discrete indicator variable (i.e. condition 

increments). This procedure is also portrayed in the above figure. 

Additionally, the following equation illustrates the relationship between the indicator 

variable and the latent variable. Based on this equation, the variation in the condition rating 

(i.e. increment) is yim, if the latent deterioration, i.e. zim, is between the two defined 

thresholds [Baik 2003]. 

𝑦 = 𝑗 − 𝑖; 𝑤ℎ𝑒𝑛 𝜇 ( ) ≤ 𝑧 ≤ 𝜇 ( ); 𝑓𝑜𝑟 𝑗 − 𝑖 = 0, … , 𝐺 − 1  (2.31) 

In the above equation, the parameters are as follows. 

 j – i denotes the variation in the condition state of segment m for one transition 

 𝜇 denotes the thresholds as follows: 𝜇 = 0 and 𝜇 ( ) =  ∞ 

 G denotes the greatest value of condition rating 

For instance, for sewer pipes, considering that the condition ratings vary from 1 through 5, 

the increment data will be as follows. 

𝑦 = 0;   𝑤ℎ𝑒𝑛 𝑧 ≤ 𝜇 ;         (2.32) 

𝑦 = 1;   𝑤ℎ𝑒𝑛 𝜇 ≤ 𝑧 ≤ 𝜇 ;        (2.33) 

𝑦 = 2;   𝑤ℎ𝑒𝑛 𝜇 ≤ 𝑧 ≤ 𝜇 ;        (2.34) 

𝑦 = 3;   𝑤ℎ𝑒𝑛 𝜇 ≤ 𝑧 ≤ 𝜇 ;        (2.35) 

𝑦 = 4;   𝑤ℎ𝑒𝑛 𝜇 ≤ 𝑧 ;         (2.36) 

Therefore, considering the normal distribution for the disturbance term in the ordered 

probit model, as stated earlier, the ordered probit model is established as follows. 

𝑦 = 𝑗 − 𝑖; 𝑤ℎ𝑒𝑛 𝜇 ( ) − 𝛽 𝑋 ≤ 𝜖 ≤ 𝜇 ( ) − 𝛽 𝑋 ; 𝑓𝑜𝑟 𝑗 − 𝑖 = 0, … , 𝐺 − 1   (2.37) 
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As explained earlier the disturbance term in the ordered probit model, 𝜖 , is assumed to 

be normally distributed; furthermore, the mean and variance pertaining to this disturbance 

term are considered to be 0 and 1, respectively. Hence, the transition probability from 

condition i to condition j, which in fact is the probability that the variation in the condition 

change is equal to j – i (i.e. 𝑦 = 𝑗 − 𝑖), can be written by using cumulative normal 

distribution Φ(. ); this process is illustrated below. 

𝑃(𝑦 = 𝑗 − 𝑖) = Φ(𝜇 ( ) − 𝛽 𝑋 ) − Φ(𝜇 ( )  − 𝛽 𝑋 ); 𝑓𝑜𝑟 𝑗 − 𝑖 = 0, … , 𝐺 − 1 (2.38) 

For the population of Mi, which denotes the overall number of sewer segments being in 

condition i, the likelihood function pertaining to the maximum likelihood estimation 

(MLE), is shown below. 

𝐿(𝑦 | 𝛽, 𝜇) = ∏ ∏ Φ 𝜇 ( ) − 𝛽 𝑋 −  Φ 𝜇 ( )  − 𝛽 𝑋  (2.39) 

In the above equation, if the observed increment of condition rating for mth sewer segment 

is equal to j – i , 𝛿 = 1; else, 𝛿 = 0. 

Therefore, in an ordered probit model, the log likelihood function will be as follows. 

𝐿𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝐿 =  ∑ ∑ 𝛿 𝑙𝑛 Φ 𝜇 ( ) − 𝛽 𝑋 −

 Φ 𝜇 ( )  − 𝛽 𝑋           (2.40) 

Finally, the parameters of the ordered probit model, i.e. 𝛽 and 𝜇, can be obtained through 

maximizing the log likelihood function. 

2.9.3.3.5 Transition matrix via ordered probit model 

When using ordered probit model, in order to obtain the transition probability matrix of the 

Markov chain, firstly, for each condition state of the dependent variable, the probabilities 

associated with the increments in the condition changes are to be computed. As an example, 

in the case of sewer pipes, assuming that no maintenance or rehabilitation of the sewer 

pipes are conducted and thus the condition of the sewer pipe does not undergo any 
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improvement, and considering the condition ratings 1 through 5, there will be five different 

increments associated with condition state 1; these increments are 0, 1, 2, 3, and 4. 

Assuming there are k different condition states pertaining to the dependent variable, in 

order to build the transition matrix in the Markov chain approach, k-1 incremental 

deterioration models will be required (This is due to the fact that the last row of the matrix 

is considered as an absorbing state) [Baik 2003]. 

Once the unknown parameters of the ordered probit model are obtained based on the 

maximum log likelihood function, therefore, for each sewer segment, the transition 

probabilities can be calculated as demonstrated by the following equations. 

 𝑃(𝑦 = 0 | 𝑋 , 𝑖) =  Φ �̂� −  𝛽 𝑋        (2.41) 

 𝑃(𝑦 = 1 | 𝑋 , 𝑖) =  Φ �̂� −  𝛽 𝑋 −  Φ �̂� −  𝛽 𝑋     (2.42) 

 𝑃(𝑦 = 2 | 𝑋 , 𝑖) =  Φ �̂� −  𝛽 𝑋 −  Φ �̂� −  𝛽 𝑋     (2.43) 

… 

 𝑃(𝑦 = 𝐺 − 1 | 𝑋 , 𝑖) = 1 −  Φ �̂� ( ) − 𝛽 𝑋      (2.44) 

In the above equations,  𝑃(𝑦 | 𝑋 , 𝑖) denotes the transition probability from condition 

state i to condition state j, for the segment with attribute vector of Xm. 

In some cases, instead of considering the individual infrastructure facilities, it might be 

more desirable to conduct the decision making process on the basis of results pertaining to 

a set or the entirety of the infrastructure framework. In such cases, in order to compute the 

transition probability matrix pertaining to the whole infrastructure of a set of individual 

facilities, the transition probability matrix of each individual facilities will be taken into 

account. For instance, five methods can be utilized for the purpose of aggregation of the 

transition probability matrices of individual facilities; these methods are namely as follows: 

Classification process, statistical differentials process, explicit integration process, sample 

enumeration process, and average individual process [Ben-Akiva and Lerman 1985]. For 
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instance, considering the average individual process, the transition probability matrix of a 

set of infrastructure facilities can be obtained by averaging the transition probability 

matrices pertaining to the individual facilities involved within the set [Baik 2003]. 

Finally, once by using the ordered probit model, the transition probability matrices are 

obtained for each transition periods (as explained earlier, the transition probability matrices 

will be different for each transition period due to its non-stationary feature in the ordered 

probit approach), then condition vector for each stage can be computed thus resulting in 

the deterioration curve. 

2.9.3.4 Limitations of statistical modeling 

Even though the probabilistic nature of the deterioration can be taken into consideration 

through a statistical modeling, one of the main disadvantages of the statistical modeling is 

the fact that these models are sensitive to noisy data. Additionally, as the exact cause and 

effect in the underlying procedure is not identified, therefore, removing the aforementioned 

noisy data in statistical models is not conveniently possible [Terano et al. 1991, Leung and 

Tran 2000, Dasu and Johnson 2003, Tran 2007].   

2.9.4 Artificial intelligence approach 

Deterioration models based upon artificial intelligence approach, fall into the data-driven 

category. In other words, the construction of the model is based upon the available data 

(procured from inspections) as opposed to model-driven approaches (i.e. deterministic and 

statistical models) [Dasu and Johnson, 2003]. This is due to the fact that artificial 

intelligence approach is essentially designed to operate based on learning through 

improving and generalization, similar to learning pertaining to human brain [Taylor, 1996; 

Soulie and Gallinari, 1998; Taylor, 1993].  

Due to the inherent learning and improving feature of artificial intelligence technique, 

numerous applications of this approach within various engineering areas have been 

observed, wherein the patterns between the inputs and the outputs (in other words, 
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independent variables and the outcomes) are identified through this characteristic of 

artificial intelligence and eventually the classifications are allocated based on the observed 

patterns [Seo et al. 2004; Wilmot and Mei, 2005; Moslehi and Shehab-Eldeen, 2000; Singh 

and Tiong, 2005].  

As an example, case-based reasoning (CBR) is an artificial intelligence method which was 

used by Morcous et al. (2002a) in order to model the deterioration of infrastructures. Case-

based reasoning is essentially a modeling technique based on the experiences gained for 

past cases, in other words it operates based on the process through which human brains 

makes decisions based on previous experiences [Riesbeck and Schank, 1989; Aamondt and 

Plaza, 1994]. However, the shortcoming of case-based reasoning is the fact that 

experienced case library is required in order to obtain the results. 
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Chapter 3 : Modeling Methodology 

 

3.1 Deterioration models 

In the study at hand, the following methodologies are utilized to obtain deterioration 

models associated with the available data set. The deterioration models obtained using 

these approaches are utilized to estimate the probabilities of failure with respect to age of 

assets as well as their associated service lives. Considering the criteria for defining service 

life of assets can vary based on the decision-makers’ priorities and failure criteria, the 

uncertainties and assumptions associated with these approaches, as well as the suitability 

of the available data, the deterioration curves as well as the values of service life estimated 

based on these methods can be subjected to variations and uncertainties for different sewer 

pipes. Therefore, the modeling and results presented herein are solely for the purpose of 

illustrating the application of each of these models for the available data set and thus the 

interpretation of the probabilities of failure and the service lives estimated based on these 

deterioration models need to be proceeded with caution and are valid as long as the 

assumptions as well as the criteria for defining service life are taken into consideration.   

3.2  Logistic Regression 

Logistic regression is a statistical instrument which assists in finding the probabilities of 

the outcome of interest with the potential of handling both categorial and numerical 

predictors within the model. Furthermore, within the logistic regression, three major 

categories are as follows: 

Binary logistic regression (dichotomous dependent variable) 

Ordinal logistic regression (proportional odds model) 

Multinomial logistic regression 
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With regards to the dependent variable of the model, a logit function is applied. The 

utilization of the logit function can be substituted by various appropriate link functions 

should there be a better presentation of the model by using them. Detailed information 

regarding each of the three aforementioned logistic regressions are presented below. 

3.2.1 Binary Logistic Regression 

In order to use the binary logistic regression, the dependent variable is required to be 

dichotomous or binary; a dichotomous variable can only be assigned two different values. 

For instance, these assignments could be failure or success (1 and 0). As an example, when 

applying binary logistic regression model, herein it will be assumed that the structural 

condition of the pipelines can be either at an acceptable or a failed condition. Additionally, 

when modeling the deterioration of the pipelines with binary logistic regression method, 

the dependent variables, also known as predictors of the model, can be assigned either as 

categorial or numerical variables; thus, allowing the model to be holistic in considering the 

parameters influencing the deterioration of the pipelines. 

In order to use the categorial variables in the model, the corresponding independent 

variable will be dummy coded into the model. For instance, if a categorial variable consists 

of m potential values, then m-1 variables would be required to dummy code the model. 

However, numerical independent variables can be simply used by only one variable 

representation in the model.  

In Logistic regression, the logit function of the dependent variable is associated with the 

contributing predictors in the model. Below, the equation pertaining to the binary logistic 

regression is presented [Menard, 2002]. 

Logit (Y) = ln (
( | , ,…, )

( | , ,…, )
) 

     = a + b1 X1 + b2 X2 + b3 X3 + … + bn Xn      (3.1) 
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In which Y is the dependent variable (assumed to be dichotomous), X1 … Xn  are the 

independent variables of the model (predictors), a is the intercept of the model, and b1 … 

bn  are the coefficients of the binary logistic regression model. Moreover, the logit function 

represents the log of the odds ratio. 

In order to calculate the probability that the dichotomous dependent variable ends up with 

the value 1, (for instance corresponding to failure) equation below can be utilized. 

𝑃(𝑌 = 1|𝑋 , 𝑋 , … , 𝑋 ) =  
(        …   )

(         …   )
   (3.2) 

Alternatively, the following equation can be used as well. 

𝑃(𝑌 = 1|𝑋 , 𝑋 , … , 𝑋 ) =  
(       …   )

   (3.3) 

Assuming, for simplicity, that the value of a + b1 X1 + b2 X2 + b3 X3 + … + bn Xn is equal 

to G, then the aforementioned probability can be written as follows. 

𝑃(𝑌 = 1|𝑋 , 𝑋 , … , 𝑋 ) =  
( )

       (3.4) 

Below is a representation of the logit function for various values of G.  

 

Figure 3.1: Variations in the probability of failure with respect to G values 
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Based on the above figure, it is observed that the probability that the dependent variable 

equals to 1 is subjected to significant variations for values of G around 0; however, for 

larger and smaller G values the probability of the dependent variable to be equal to 1 will 

only undergo small changes [Salman, 2010]. 

In order to compute the values for the parameters involved in the binary logistic regression 

model, Maximum Likelihood Estimation (MLE) will be applied. The parameters of interest 

in the binary logistic regression models are the intercept and the coefficients pertaining to 

the independent variables. In case for a particular values of independent variables, more 

than on observation is made in the resulting outcome, then the likelihood function (L) will 

be as follows [Agresti 2002]: 

Likelihood function (L) =  ∏
∑

∑ ∑
 (3.5) 

In which, N is the total number of observations, mi denotes the total number of observations 

pertaining to the fixed set of independent variables, n is the total number of independent 

variables in the model, yi is the number of successes for the observation Xi, Xij denotes the 

j-th value of the independent variable for observation Xi, a is the intercept of the model, 

and b1 … bn  are the coefficients of the binary logistic regression model. 

3.2.1.1 Determining the significance 

Significance can be determined for both the model itself, and the coefficients of the 

independent variables involved in the binary logistic regression model. Below the details 

pertaining to determination of each of these significances are stated. 

Significance of the model 

In a binary logistic regression model, in order to determine the significance of the model, 

a common methodology is by appraisal through the log likelihood values of the full model 

in comparison to the model with only the intercept parameter. Thereafter, for obtaining the 

statistical significance of the model and by multiplying the values of log likelihood by -2, 
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a chi-square distribution is thus obtained. The degrees of freedom for this chi-square 

distribution is equal to the number of additional terms in the logistic model. In case one of 

the models is embedded within another model, the aforementioned strategy may be 

implemented [McCullagh and Nelder 1989].  

To compute the difference between the log likelihood values of the base model, the 

equation presented below can be used [Menard 2002]. 

-2 Log Likelihood (Base Model) = -2[n0.Ln(p0) + n1.Ln(p1)]    (3.6) 

In the above equation, n0 denotes the number of occurrences where Y is equal to 0, p0 is 

the proportion of the occurrences where Y is equal to 0, n1 denotes the number of 

occurrences where Y is equal to 1, and p1 is the proportion of the occurrences where Y is 

equal to 1. 

In the methodology stated above, the null hypothesis is implemented for the binary logistic 

regression model by considering that the coefficients of the independent variables of the 

model are equal to zero, i.e.:  

b1, b2, b3, … , bn = 0          (3.7) 

Therefore, the test statistics is obtained by the following equation. 

X 2 = -2 Log Likelihood (Model) – 2 Log Likelihood (Base Model)    (3.8) 

And considering the fact that the number of the coefficients of independent variables in the 

base model is zero, hence, the number of coefficients of independent variables of the model 

determines the degree of freedom of the model [Salman 2010]. 

Significance of the coefficients 

Once the binary logistic regression model is realized to be a significant model, this 

subsequently implies that the null hypothesis has been rejected. In other words, this means 

that the assumption that the coefficients of the independent variables of the models are zero 

(i.e. b1, b2, b3, … , bn = 0) does not hold true, and there is at least one coefficient of the 
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independent variables which is significant and not equal to zero. In general, two different 

methodology can be used to determine which of the coefficients of the independent 

variables are indeed significant.  

Log Likelihood Method 

The first methodology is similar to the one used for determining whether or not the binary 

logistic regression model is significant. In this method, the model is developed once by 

eliminating the coefficient of interest and once by including that coefficient. Thereafter, 

the -2 log likelihoods of these two models (process is similar to the one explained for the 

significance of the model) are compared through a corresponding chi-square distribution. 

In effect the difference between the -2 log likelihoods determines the ratio of log 

likelihoods of the models. The number of eliminated coefficients from the model 

determines the degrees of freedom related to the chi-square distribution. For numerical 

independent variables, the degree of freedom of the distribution is equal to 1; if the 

eliminated coefficient pertains to a categorial variable with only one potential assignment, 

the degree of freedom of the distribution will still be equal to 1. However, in case the 

categorical independent variable can take on more than one values, for instance m different 

values can be assigned to the categorial variable, then the degree of freedom pertaining to 

the associated chi-square distribution will be m-1 [Salman 2010]. 

Wald Test 

Another strategy to determine whether a specific coefficient of the binary logistic 

regression model is indeed significant or not, is through implementing the Wald statistic, 

as illustrated in the following equation. 

𝑊 =
  ( )

         (3.9) 

When implementing the Wald statistic, the null hypothesis (H0) states that the associated 

coefficient of interest is equal to zero (i.e. bi = 0) and to reject the null hypothesis, the 

critical value computed based on the corresponding chi-square distribution (with only one 
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degree of freedom) is checked with the value of Wi (Wald statistic) obtained from the above 

equation [Salman 2010]. 

In some cases, when the coefficient of the independent variable is a large value and the 

standard errors are large too, using the Wald statistic might result in failure to reject the 

null hypothesis, even though it is in fact not true. Therefore, in such cases, the log 

likelihood comparison yields more acceptable and accurate results [Menard 2002]. 

3.2.1.2 Influence of predictors in the model 

The link function in the binary logistic regression model is a logit function; this function is 

in fact the natural logarithm of the odds ratio of the dichotomous dependent variable. As 

stated earlier, the relationship pertaining to the binary logistic regression model is presented 

as follows. 

Logit (Y) = ln (
( | , ,…, )

( | , ,…, )
) 

     = a + b1 X1 + b2 X2 + b3 X3 + … + bn Xn      (3.10) 

In this equation, it is observed that considering the dependent variable Xi, one unit increase 

in this dependent variable will lead to an increase in the amount of bi in the Logit (Y). It 

should be noted that with regards to categorial predictors, presence of the specific 

categorial independent variable with have the same effect. However, the resulting change 

in the odds ratio due to a unit increase in the variable Xi, is equal to exp(bi). This observation 

in the odds ratio is also presented below. 

𝑃(𝑌 = 1|𝑋 , 𝑋 , … , (𝑋 + 1), … , 𝑋 )
1 − 𝑃(𝑌 = 1|𝑋 , 𝑋 , … , (𝑋 + 1), … , 𝑋 )

𝑃(𝑌 = 1|𝑋 , 𝑋 , … , 𝑋 , … , 𝑋  )
1 − 𝑃(𝑌 = 1|𝑋 , 𝑋 , … , 𝑋 , … , 𝑋  )

= exp(𝑏 )                                            (3.11) 

For instance, assuming that the independent variables X1 and X2 represent the age and 

material type of the pipeline, respectively; then an increase in one year of age of pipeline 

would correspond to exp(b1) change in the odds ratio. Furthermore, considering that the 
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material type of the pipeline is represented by a categorical variable, values 0 and 1 

correspond to Polyvinyl Chloride (PVC) and Vitrified Clay Pipe (VCP). Therefore, the 

variation resulted in the odds ratio due to change of material of the pipeline would be equal 

to exp(b2). It should be noted that as stated earlier, when the Y value is equal to 1 and 0, 

the pipeline is in the failure and acceptable conditions, respectively [Salman 2010]. 

3.2.1.3 Verification and Classification Table 

Once the binary logistic regression model is developed, the next step is to identify the 

proportions of the results which are correctly predicted. This task is accomplished through 

the classification table. The classification table includes the predicted and the observed 

number of occurrences for each of the dichotomous cases. Once the probability of the 

dependent variable belonging to each of the two groups, i.e. 0 and 1, is obtained then by 

utilizing a cut-off value, the dependent variable will be assigned to the appropriate class. 

In general, the cut-off for dichotomous dependent variables is 0.5; if the resulting 

probability is greater than 0.5, then in the classification table, it will be assigned to the class 

corresponding to Y=1; otherwise, if the obtained probability does not exceed the cut-off 

value, class of Y=0 would be selected for the model outcome. Below is a general 

representation of the classification table in the binary logistic regression model.  

Table 3.1: General form of classification table in binary logistic regression 

 Predictions 

Observations 0 1 

0 A11 A12 

1 A21 A22 
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Once the classification table is arranged, by summing up the elements of the diagonal part 

of the classification table, the percentage of correct predictions based on the binary logistic 

regression can be calculated as shown below [Salman 2010]. 

Percentage correct predictions =  
100(𝐴 + 𝐴 )

𝐴 + 𝐴 + 𝐴 + 𝐴
                                        (3.12) 

It is notable that the presented classification table is similar to the confusion matrix used 

in artificial intelligence methods. 

3.2.1.4 Assumptions of the binary logistic regression 

The assumptions needed for binary logistic regression model is less restrictive comparted 

to the assumptions required for the ordinary least squares multiple regression models. 

These assumptions (for binary logistic regression) are presented below [Meyers et al. 

2006]: 

 Perfect multicollinearity should not be present between the independent variables 

used in developing the model 

 No specification error should be present in the model (No irrelevant predictor should 

be used in the model, and all the relevant independent variables should be present 

in developing the model) 

 “A summative response scale, interval or ratio level of measurements” should be 

associated with the independent variables of the model. Dichotomous variables are 

also permitted. (For the cases where the categorial independent variables can take 

on more than two values, they can be dummy coded into dichotomous predictors; 

thus, satisfying the dichotomy rule. For instance, if a categorial predictor can take 

on m different values, by using m-1 variables, it can be dummy coded into 

dichotomous variables.) 
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3.2.1.5 Application of binary logistic regression model 

As it is observed from the characteristics of the binary logistic regression model, it can 

provide versatility in vast areas of research. Various fields of research take advantage of 

the binary logistic regression models in order to determine the relationship between a 

dichotomous dependent variable and known influential independent variables. Marketing, 

pharmacies, and medicine are some notable examples of areas where this type of modeling 

is used [Salman 2010]. With regards to the sewer system assets, several studies have also 

utilized the binary logistic regression models as well. [Ariaratnam et al. 2001, Davies et al. 

2001b] 

3.2.2 Multinomial Logistic Regression Model 

In the binary logistic regression model, the dependent variable was supposed to be 

dichotomous; however, if the dependent variable has more than two potential values 

assigned to it, in this case the multinomial logistic regression can be used to model the 

dependent variable. Assuming that k possible values are associated with the dependent 

variable, by taking one of the possible results of outcome as the reference for calculating 

the odds ratio, k-1 equations will be obtained in order to illustrate the logit functions 

pertaining to the dependent variable. Below is a general form of the multinomial logistic 

regression. 

𝑙𝑛 (
𝑃(𝑌 = 𝑖|𝑋 , 𝑋 , … , 𝑋 )

1 − 𝑃(𝑌 = 𝑘|𝑋 , 𝑋 , … , 𝑋 )

= 𝑎 +  𝑏  𝑋  +  𝑏  𝑋  +  𝑏  𝑋  +  … +  𝑏  𝑋                        (3.13)  

In this equation, i=1,2,…, k-1 pertains to each of the possible outcomes for the dependent 

variable, X1 … Xn  are the independent variables of the model (predictors), ai is the intercept 

of the model for the ith outcome of the dependent variable, and bi1 … bin  are the coefficients 

of the multinomial logistic regression model corresponding to the ith outcome of the 

dependent variable.  
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Considering the possibility of k different categories for the dependent variable, the 

parameters to be found are k-1 intercept terms, and n.(k-1) coefficients of the independent 

variables present in the model. These unknown parameters of the multinomial logistic 

regression model are computed all at the same time for k-1 logit equations [Agresti 2002]. 

In order to obtain the probabilities of the dependent variable taking on each of the k possible 

categories, the equations presented below can be used. 

π  (X) =  𝑃(𝑌 = 𝑖|𝑋 , 𝑋 , … , 𝑋 )

=  
exp(𝑎 + 𝑏  𝑋  + 𝑏  𝑋  + 𝑏  𝑋 +  … +  𝑏  𝑋 )

1 + ∑ exp(𝑎 + 𝑏  𝑋  + 𝑏  𝑋  + 𝑏  𝑋 +  … + 𝑏  𝑋 )
      (3.14) 

In which i=1, 2, 3,…, n-1 

In order to obtain the probability of the dependent variable to be equal to the reference 

category for which i=k (kth category), the following equation is used. 

π  (X) =  𝑃(𝑌 = 𝑘|𝑋 , 𝑋 , … , 𝑋 )

=  
1

1 + ∑ exp(𝑎 + 𝑏  𝑋  + 𝑏  𝑋  + 𝑏  𝑋 +  … +  𝑏  𝑋 )
                            (3.15) 

3.2.2.1 Identifying the unknowns 

In order to identify the coefficients of independent variables as well as the intercept terms 

of the multinomial logistic regression model, the maximum likelihood estimation is used 

(identical to the procedure used for binary logistic regression models). As described earlier, 

if k different categories are possible for the dependent variable, k-1 equations will be used 

to define the model, and when maximum likelihood estimation is used, all these equations 

will be dealt with simultaneously, and the results will be values of parameters maximizing 

the likelihood function. The jth observation, having independent variables Xj = (xj1, xj2, xj3, 

…, xjn), has the log likelihood function presented as below [Agresti 2002]. 
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log 𝜋 𝑥

=  𝑦 log 𝜋 𝑥 +  1 − 𝑦 𝑙𝑜𝑔 1 − 𝜋 𝑥    (3.16) 

 

In which j=1, 2, 3, …, n. yj is the multinomial trial for jth subject and is expressed as yj = 

(yj1, yj2, yj3,… yjk). For each element of yj i.e. yji, if the outcome falls into the ith category, then 

a value of 1 will be assigned to yji, else, it will take on a value of zero. The equation for log 

likelihood, in case all observations are accounted for, can be expressed as follows [Agresti 

2002]: 

log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = log 𝜋 𝑥                                                              (3.17) 

3.2.2.2 Identifying the model significance 

In order to determine the model significance in a multinomial logistic regression model, 

similar procedure described in binary logistic regression method, will be used. By using 

likelihood ratio methodology, one can obtain the significance of a multinomial logistic 

regression model compared to a model which only comprises of intercept term of the 

regression. In order to obtain the log likelihood of the model which only contains the 

intercept term of the multinomial logistic regression (base model), the following equation 

can be used. 

log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 = (𝑛 . ln(𝑝 ) + 𝑛 . ln(𝑝 )

+ 𝑛 . ln(𝑝 ) + ⋯ + 𝑛 . ln(𝑝 )                                                                     (3.18) 

In the above equation, values of n1, n2, n3,… nk, denote the number of observations 

pertaining to different response categories. Moreover, values of p1, p2, p3,… pk, denote the 

proportion of observations pertaining to each response category. 



87 
 

Considering the fact that the number of coefficients represented in the multinomial logistic 

regression model determines the degree of freedom associated with the critical chi-square 

distribution, the significance of the model can be appraised based on the difference between 

the -2 log likelihood of the base model with intercept term only, and the -2 log likelihood 

of the multinomial logistic regression model. This is due to the fact that the difference 

between -2 log likelihoods of the two models can be represented by a chi-square 

distribution [Salman 2010]. 

3.2.2.3 Identifying significant coefficients 

In order to identify which of the coefficients in a multinomial logistic regression model are 

indeed significant, a similar procedures to that of explained for binomial logistic regression 

model can be used. In other words, both Wald statistic method and the likelihood ratio 

method can be applied. Albeit this similarity between binomial and multinomial logistic 

regressions, it should be borne in mind that due to the fact that there are more than one 

equations present in the multinomial logistic regression model (assuming that k possible 

values for the dependent variable, k-1 equations will illustrate the logit functions pertaining 

to the dependent variable), therefore, unlike binomial logistic regression, in multinomial 

logistic regression, a particular variable may be significant in one of the equations but not 

in the other ones. Hence, utilizing the likelihood ratio might have advantage compared to 

using Wald statistic method. If the likelihood ratio is used to determine whether a particular 

variable of the model is significant or not, first the difference between -2 log likelihoods 

of the model comprising of that particular variable and another model which does not have 

that particular variable but contains all the other elements of the model is computed. This 

is in fact the likelihood ratio of the two models. Once the likelihood ratio is obtained, then 

the result will be compared to the associated critical chi-square distribution; thus, 

determining whether that variable is significant or not [Salman 2010]. 
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3.2.2.4 Influence of predictors in multinomial logistic regression 

As stated earlier, assuming that k possible values are associated with the dependent 

variable, considering one of the possible response categories as the reference category for 

calculating the odds ratio, k-1 equations will be used in order to demonstrate the logit 

functions pertaining to the dependent variable. Unlike the binary logistic regression 

models, in multinomial logistic regressions, due to the fact that there are more than one 

equation describing the model, and considering that each of the logit equations will 

potentially possess different coefficients of regression, therefore, the influence of different 

independent variables will be different for each of the possible categories pertaining to the 

dependent variable. This event can be explained through the probabilities of each response 

category of the dependent variable.  

For instance, as illustrated by the following equation, with regards to the probability of 

each response category, depending upon the coefficients of the regression and intercept 

pertaining to each category, the numerator of the following equation will vary; even 

thought the denominator is the same for all response categories of the dependent variable. 

Therefore, the influence of predictors should be examined separately for each response 

category.  

π  (X) =  𝑃(𝑌 = 𝑖|𝑋 , 𝑋 , … , 𝑋 )

=  
exp(𝑎 + 𝑏  𝑋  + 𝑏  𝑋  + 𝑏  𝑋 +  … +  𝑏  𝑋 )

1 + ∑ exp(𝑎 + 𝑏  𝑋  + 𝑏  𝑋  + 𝑏  𝑋 +  … + 𝑏  𝑋 )
      (3.19) 

In which n is the number of influential predictors and i=1, 2, 3,…, n-1. 

3.2.2.5 Verification and Classification Table 

The classification table used for a multinomial logistic regression model is similar to the 

classification table used for binary logistic regression models; however, unlike the binary 

logistic regression model, for which only two possible values were possible and therefore 

the classification table had only 4 elements, in a multinomial regression model with k 



89 
 

possible response category for the dependent variable, the classification table will have k2 

elements (k × k table). Below is a general representation of the classification table used in 

multinomial logistic regressions. 

Table 3.2: General form of classification table in multinomial logistic regression 

 Predictions 

Observations 1 2 … k 

1 A11 A12 … A1k 

2 A21 A22 … A2k 

… … … … … 

k Ak1 Ak2 … Akk 

 

In binary logistic regression models, by calculating the probability of the dependent 

variable belonging to each of the two possible categories, for instance 0 and 1, and by 

utilizing a cut-off value, the dependent variable was then assigned to the appropriate class. 

In general, the cut-off used for dichotomous dependent variables was 0.5; if the resulting 

probability is greater than 0.5, then in the classification table, it will be assigned to the class 

corresponding to Y=1; otherwise, if the obtained probability does not exceed the cut-off 

value, class of Y=0 would be selected for the model outcome. In a multinomial logistic 

regression however, due to greater number of response categories, the assignment of each 

observed probability of the dependent variable is conducted by taking the greatest value of 

probability calculated through the logit functions describing the model. Using this 

procedure for binary logistic regression is analogous to using a cut-off value of 0.5. 
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Once the classification table is arranged, considering the total number of observations is 

equal to T, by summing up the elements on the diagonal part of the classification table, the 

percentage of correct predictions can be computed through using the following equation 

[Salman 2010]. 

 

Percentage correct predictions =  
100(𝐴 + 𝐴  + ⋯ + 𝐴  )

∑ ∑ 𝐴
                            (3.20) 

𝑇 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠) = 𝐴                                                       (3.21) 

3.2.2.6 Assumptions of the regression modeling 

In multinomial logistic regression models, similar assumptions as the ones stated for 

binomial logistic regressions are applied. Overall, multinomial logistic regression can be 

used to model dependent variables for which multiple (more than two) possible response 

categories are defined. However, it should be borne in mind that by modeling a dependent 

variable through multinomial logistic regression, there will be no consideration with 

regards to the ordinal levels present in the model. In other words, when models are created 

using multinomial logistic regression, it is assumed that there is no sequence to the 

corresponding response categories (no ordinal relationship is considered in the model). 

Therefore, in case there exists an ordinal relationship among response categories of the 

dependent variable, in order to reflect this relationship, ordinal regression can be used. 

The main difference between multinomial logistic regression and ordinal regression is the 

fact that in multinomial logistic regression, for each of the multiple logit equations involved 

in defining the model, the coefficients of the independent variables as well as the intercept 

terms used for each individual equation, can take on different values. However, when using 

the ordinal regression model, there is an additional requirement which states that the 

coefficients of the independent variables should be the same for all of the individual logit 
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equations defining the model, further restricting the modeling procedure. This restraint in 

ordinal regression models is also known as proportional odds assumption. Albeit this 

restraint in modeling, the intercept terms can be assigned different values in each individual 

equation. In case the proportional odds assumption cannot be assured in a model, then 

multinomial logistic regression is used to provide flexibility in modeling [McCullagh 

1980]. 

3.2.2.7 Applications of multinomial logistic regression model 

Assuming that multiple alternatives are available for the dependent variable, by applying 

multinomial logistic regression, the significance of different factors involved in the model 

can be studied so that decision makers can have a robust tool by which they can select the 

most efficient alternative. For instance, multinomial logistic regression is utilized in 

transportation engineering filed for various purposes. Some of the areas in which the 

modeling is applied by using multinomial logistic regression are as follows. It has been 

used to study the predictors that influence the selection of airports when several airports 

are available in a city area [Windle and Dresner 1995]; it is further used to investigate the 

influence of parking fees on selecting the travel mode [Li et al. 2008]; it is also used to 

study the factors impacting the purpose of trips [Penn et al. 2008]. Another example is 

using this regression model to estimate access mode choice of passengers [Lei et al. 2009]. 

Multinomial logistic regression was also utilized to investigate if a construction company 

is undergoing declining status [Koksal and Arditi 2004]. 

3.2.3 Ordinal Regression Model (Proportional odds model) 

As explained earlier, through multinomial logistic regression, a dependent variable which 

consists of different categorial levels can be modeled by using a set of equations defining 

the relationship between the independent variables (predictors) and the dependent variable. 

However, in order to use multinomial logistic regression, there is no need for the categories 

of the dependent variable to have an ordinal relationship; i.e. simply the fact that more than 
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two possible categories are available for the dependent variable, alongside with the other 

requirements pertaining to utilization of multinomial logistic regression model which was 

described earlier, suffices using this type of modeling for the dependent variable. On the 

other hand, when there indeed exists an ordinal relationship between the various categories 

of the dependent variable, through applying ordinal regression model, the ordinal 

relationship of various categorial levels of the dependent variable will be accounted for in 

the model developed via proportional odds assumption. The need for the proportional odds 

assumption to be taken into account in ordinal regression models, results in a more 

restrictive strategy for modeling the dependent variable.  

The proportional odds model implies that the influence of each independent variable will 

be similar for all equations defining the model. In other words, unlike multinomial logistic 

regression, in an ordinal regression model the coefficients of independent variables will be 

the same in all equations. Each of the equations pertain to different categories of the 

dependent variable [McCullagh 1980]. This implies that, for instance with regards to the 

probability calculation, the difference between different categorial levels of the dependent 

variable will only be created due to the intercept term in each equation (as the intercept are 

the only parameters that are permitted to vary for different categorial levels of dependent 

variable). 

In general, ordinal logistic regression models can be defined by using the following 

equation. 

𝑙𝑛 (
𝑃(𝑌 ≤ 𝑖|𝑋 , 𝑋 , … , 𝑋 )

𝑃(𝑌 > 𝑖 + 1|𝑋 , 𝑋 , … , 𝑋 )

= 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                                       (3.22)  

In this equation, i=1,2,…, k-1 pertains to each of the ordinal categorial levels of the 

dependent variable,  X1 … Xn  are the independent variables of the model (predictors), ai is 

the intercept of the model for the ith categorial level of the dependent variable, and b1 … bn  
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are the coefficients of the ordinal logistic regression model and are associated with each 

independent variable.  

In order to compute the cumulative probabilities corresponding to various categorical 

levels of the dependent variable, the equation presented below can be applied. 

𝑃(𝑌 ≤ 𝑖|𝑋 , 𝑋 , … , 𝑋 )

=  
𝑒𝑥𝑝(𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋  )

1 + 𝑒𝑥𝑝(𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋  )
                   (3.23) 

By simplifying the numerator and the denominator of the above equation, it can be 

rewritten as follows. 

𝑃(𝑌 ≤ 𝑖|𝑋 , 𝑋 , … , 𝑋 )

=  
1

1 + 𝑒𝑥𝑝(−(𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋 ) )
                                   (3.24) 

Once the cumulative probability corresponding to each of the categorical levels of the 

dependent variable is computed, then the probability corresponding to various categorical 

levels of the dependent variable can be obtained by deducting the cumulative probabilities 

of the each of the two successive categorical levels. The following equation demonstrates 

general form of calculation of probability for each categorical level. 

𝑃(𝑌 = 𝑖 + 1|𝑋 , 𝑋 , … , 𝑋 ) 

= 𝑃(𝑌 ≤ 𝑖 + 1|𝑋 , 𝑋 , … , 𝑋 ) − 𝑃(𝑌 ≤ 𝑖|𝑋 , 𝑋 , … , 𝑋 )                                             (3.25)  

As stated earlier, in an ordinal logistic regression model, the coefficients associated with 

each of the independent variables remain constant for all equations corresponding to 

various categorical levels of the dependent variable; and the only parameter which can take 

on different values for different categorical levels of the dependent variable, is the intercept 

term. By taking this point into consideration, it is thus concluded that the set of equations 

pertaining to an ordinal logistic regression model are indeed parallel to one another (in 
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other words, logit equations for each of the categorial levels of the dependent variable are 

parallel and the difference is due to the intercept term) [Salman 2010]. 

In order to provide a sample representation of results associated with an ordinal logistic 

regression model, herein it will be assumed that the ordinal dependent variable is the 

condition rating of gravity sewer pipes, ranging from 1 to 5. Additionally, assuming that 

there is only one predictor involved in the model, and that predictor being the age of the 

sewer pipe, and assuming that the parameters pertaining to this ordinal regression model 

are as follows: the intercept term for each of the ordinal categories of 1, 2, 3, and 4 are 4, 

5, 6, and 7, respectively; furthermore, the coefficient of the independent variable (i.e. age) 

is 0.1 for all ordinal equations; therefore, by using the general form of equations defining 

the ordinal logistic regression models, the graphs corresponding to the cumulative 

probabilities of the model as well as the graph illustrating the logit equations of the ordinal 

model with respect to the independent variable (i.e. age) are obtained as follows.  

 

Figure 3.2: Results of the logit equations with respect to age of the pipe for each condition rating 

In this example, the abovementioned graphs present the associated values till the age of 

100 years for the sewer pipes (for simplicity only one independent variable (age) is 
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considered for this representation). The equations pertaining to each of the condition 

ratings 1 through 4, considering the parameters stated earlier, are as follows: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑛𝑔 1 = 𝑙𝑛 (
𝑃(𝑌 ≤ 1|𝑎𝑔𝑒)

𝑃(𝑌 > 2|𝑎𝑔𝑒)
= 4 −  0.1 × 𝑎𝑔𝑒                                    (3.26)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑛𝑔 2 = 𝑙𝑛 (
𝑃(𝑌 ≤ 2|𝑎𝑔𝑒)

𝑃(𝑌 > 3|𝑎𝑔𝑒)
= 5 −  0.1 × 𝑎𝑔𝑒                                   (3.27)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑛𝑔 3 = 𝑙𝑛 (
𝑃(𝑌 ≤ 3|𝑎𝑔𝑒)

𝑃(𝑌 > 4|𝑎𝑔𝑒)
= 6 −  0.1 × 𝑎𝑔𝑒                                   (3.28)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑛𝑔 4 = 𝑙𝑛 (
𝑃(𝑌 ≤ 4|𝑎𝑔𝑒)

𝑃(𝑌 > 5|𝑎𝑔𝑒)
= 7 −  0.1 × 𝑎𝑔𝑒                                  (3.29)  

 

Figure 3.3: Values of the cumulative probability of sewer pipe with respect to age for each 

condition rating 

The equations associated with the cumulative probabilities of the ordinal regression 

model in this example, are as follows: 
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𝑃(𝑌 ≤ 1|𝑎𝑔𝑒) =  
𝑒𝑥𝑝(4 −  0.1 × 𝑎𝑔𝑒  )

1 + 𝑒𝑥𝑝(4 −  0.1 × 𝑎𝑔𝑒  )
=  

1

1 + 𝑒𝑥𝑝(−(4 −  0.1 × 𝑎𝑔𝑒 ) )
    (3.30) 

𝑃(𝑌 ≤ 2|𝑎𝑔𝑒) =  
𝑒𝑥𝑝(5 −  0.1 × 𝑎𝑔𝑒  )

1 + 𝑒𝑥𝑝(5 −  0.1 × 𝑎𝑔𝑒  )
=  

1

1 + 𝑒𝑥𝑝(−(5 −  0.1 × 𝑎𝑔𝑒 ) )
    (3.31) 

𝑃(𝑌 ≤ 3|𝑎𝑔𝑒) =  
𝑒𝑥𝑝(6 −  0.1 × 𝑎𝑔𝑒  )

1 + 𝑒𝑥𝑝(6 −  0.1 × 𝑎𝑔𝑒  )
=  

1

1 + 𝑒𝑥𝑝(−(6 −  0.1 × 𝑎𝑔𝑒 ) )
    (3.32) 

𝑃(𝑌 ≤ 4|𝑎𝑔𝑒) =  
𝑒𝑥𝑝(7 −  0.1 × 𝑎𝑔𝑒  )

1 + 𝑒𝑥𝑝(7 −  0.1 × 𝑎𝑔𝑒  )
=  

1

1 + 𝑒𝑥𝑝(−(7 −  0.1 × 𝑎𝑔𝑒 ) )
    (3.33) 

3.2.3.1 Identifying the unknown parameters 

In order to determine the values corresponding to the unknown parameters of the ordinal 

logistic regression model, similar approach which exhibited for the case of binomial 

logistic regression and multinomial logistic regression models, will be used. This approach, 

as stated earlier, is the utilization of maximum likelihood estimation method. For the case 

of ordinal logistic regression models, the likelihood function is presented in the below 

equation. 

𝜋 𝑥

=  𝑃 𝑌 ≤ 𝑖 𝑋 −  𝑃 𝑌 ≤ 𝑖 − 1 𝑋                       (3.34) 

In which j=1, 2, 3, …, n; and it represents the observations of the model, and the various 

categorial levels of the dependent variable (assuming k ordinal levels exist for the 

dependent variable) are represented by i=1, 2, 3, …, k. Furthermore, yji denotes the 

observation result and if the outcome of jth observation falls into the ith categorial level, 

then a value of 1 will be assigned to yji, else, it will take on a value of zero.  

Additionally, assuming that the dependent variable has k different categorial levels 

arranged in an ordinal fashion, similar to what was observed in the multinomial logistic 
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regression model, k-1 equations will represent the logit values corresponding to each of the 

categorial levels of the dependent variable; and by solving these equations simultaneously, 

all the unknown parameters are obtained. As stated earlier, in the multinomial logistic 

regression model, in which considering n number of independent variables are involved, 

the parameters to be found are k-1 intercept terms, and n.(k-1) coefficients of the 

independent variables present in the model. However, unlike multinomial logistic 

regression model, there are less parameters to be determined in ordinal regression models. 

This is due to the similar values of the coefficients of the independent variables for different 

categorial levels of the dependent variables (proportional odds assumption of the model). 

Therefore, in ordinal regression models with the aforementioned properties, there are k-1 

intercept terms to be identified as well as n coefficients for the independent variables of 

the model; hence, a total of n+k-1 unknown parameters are to be determined. 

Identifying the model significance 

In order to determine the significance of the model in an ordinal logistic regression model, 

similar procedure described in multinomial logistic regression method, can be used. By 

using the likelihood ratio methodology, the significance of an ordinal logistic regression 

model can be compared to the base model (a model which only comprises of intercept term 

of the regression without any independent variables). Based on the difference between the 

-2 log likelihood of the model comprising of intercept term only, and the -2 log likelihood 

of the multinomial logistic regression model, the significance of the model can be 

investigated. 

3.2.3.2 Identifying significant coefficients 

In order to identify which of the independent variables have significant coefficients in an 

ordinal logistic regression model, Wald statistic can be utilized. As stated earlier, Wald 

statistic can be calculated based on the equation provided below. 
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𝑊 =
𝑏

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑏 )
                                                                                            (3.35) 

Once implementing the Wald statistic, the null hypothesis (H0) assumes that the coefficient 

of an independent variable is equal to zero (i.e. bi = 0) and in order to reject the null 

hypothesis, the critical value obtained based on the associated chi-square distribution 

(which only contains one degree of freedom) is checked with the value of Wi (Wald 

statistic) computed from the aforementioned equation [Salman 2010]. 

3.2.3.3 Influence of predictors in ordinal logistic regression 

Ordinal logistic regression model is quite similar to the previously discussed multinomial 

logistic regression model; except that in an ordinal logistic regression model, proportional 

odds assumption exerts more restriction in the modeling of dependent variable. 

Furthermore, as it was observed in the general form of equations defining the ordinal 

logistic regression model, unlike multinomial logistic regression, there exists negative 

signs before the coefficients of each of the independent variables of the model. This 

indicates that considering a particular independent variable has a positive coefficient, by 

increasing that particular predictor, the values of the logit functions (set of equations 

defining the model) will be in turn reduced. Additionally, based on the equations presented 

for the cumulative probability for each of the ordinal levels of the dependent variable, a 

similar influence will be observed for the cumulative probabilities of each ordinal level as 

well. This means that assuming the coefficient of an independent variable is a positive 

value, increasing the value of the independent variable will result in a reduction in the 

associated cumulative probability for each of the categorial levels pertaining to the 

dependent variable. 

Moreover, considering that and independent variable is a categorial variable, and that the 

coefficient of that categorial independent variable is a positive value, then the presentence 

of that categorial variable will have the same impact as the increase of a numerical 

independent variable in the values of logit functions and the cumulative probabilities of the 
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ordinal regression model. Similar to the example provided earlier, considering the material 

type of the pipeline is represented by a categorical variable, and that values 0 and 1 

correspond to Polyvinyl Chloride (PVC) and Vitrified Clay Pipe (VCP), it is observed that 

assuming the coefficient of regression based on ordinal logistic regression approach is 

positive for this categorial independent variable, hence for Vitrified Clay Pipe the values 

of logit functions and the cumulative probabilities in an ordinal regression model will be 

decreased compared to Polyvinyl Chloride pipes. 

Furthermore, in the example presented earlier with regards to the age of the sewer pipes as 

the only independent variable used in the ordinal logistic regression model, it was assumed 

that the coefficient of the age is 0.1, and it is positive, and additionally, from the graphs 

representing the values of logit functions and the cumulative probabilities of the ordinal 

regression model, it was observed that both graphs were portraying decreasing functions 

for categorial levels of the dependent variables. 

3.2.3.4 Verification and Classification Table 

The classification table used for a ordinal logistic regression model is similar to the 

classification table used for multinomial logistic regression models; the number of 

elements in the classification table for ordinal logistic regression model is similar to the 

one pertaining to the multinomial regression model. In other words, if there are k possible 

response categories for the dependent variable of the ordinal logistic regression model, the 

dimension of the classification table will be k × k containing k2 elements (similar to 

multinomial logistic regression model). The general form of the classification table used in 

ordinal logistic regressions is identical to the one presented for multinomial logistic 

regression 

Similar to multinomial logistic regression, in an ordinal logistic regression model due to 

greater number of response categories compared to binary logistic regressions, the 

assignment of each observed probability of the dependent variable is conducted by taking 

the greatest value of probability calculated through the logit functions describing the 
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model. As stated earlier, this procedure is analogous to using a cut-off value of 0.5 for 

binary logistic regression. 

Once the classification table is arranged, considering the total number of observations 

(which is equal to the sum of all elements of the classification table), by summing up the 

elements on the diagonal part of the classification table, and dividing the result by the total 

number of observations the percentage of correct predictions can be obtained. 

3.2.3.5 Assumptions of ordinal logistic regression  

As mentioned earlier, in case there exists an ordinal relationship among response levels of 

the dependent variable, ordinal regression can be applied in order to reflect the existing 

ordinal relationship associated with the dependent variable. Furthermore, it was observed 

that the main difference between multinomial logistic regression and ordinal logistic 

regression is the fact that in multinomial logistic regression, for each of the set of logit 

equations used to define the model, the coefficients of the independent variables as well as 

the intercept terms in each individual equation, may differ from one another. However, 

when using the ordinal regression model, there is a more restrictive requirement pertaining 

the coefficient of the independent variables of the model; this additional assumption 

requires that the coefficients of the independent variables remain unchanged for all of the 

individual logit equations in ordinal logistic regression. This assumption makes ordinal 

logistic regression become more restrictive compared to multinomial logistic regression 

and is known as the proportional odds assumption. However, there’s no such restraint with 

regards to the intercept terms and they can be assigned different values in each individual 

logit equation.  

When using IBM SPSS software, the proportional odds assumption can be verified by 

using the option provided by the software, known as Test of Parallel Lines. When using 

Test of Parallel Lines option, in fact, a comparison is made between -2 log likelihood of a 

model which maintains the requirement of proportional odds assumption and -2 log 

likelihood of another model which does not have the restriction of having identical 
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coefficients of independent variable for all individual equations, and the coefficients of 

independent variables can take on different values in each equation [Norusis 2008]. Based 

on the null hypothesis (H0), the coefficients of the independent variables in each of the 

individual equations do not change and remain constant. Therefore, in order for the ordinal 

logistic regression model to be valid for the dependent variable, the null hypothesis should 

not be rejected. In other words, in order for the proportional odds assumption to hold true 

in modeling the dependent variable, the null hypothesis should be validated. 

Hence, if the result of the chi-square test used for the likelihood ratios is not significant, 

therefore, it means that the null hypothesis is not rejected and that the coefficients of the 

independent variables in each of the individual equations do not vary and remain constant; 

thus, the use of ordinal logistic regression is suitable for modeling the dependent variable. 

Therefore, it is realized that the result of Test of Parallel Lines option should not yield a 

significant outcome. On the other hand, if the result of Test of Parallel Lines option is 

significant, therefore the null hypothesis will be rejected; meaning the coefficient of the 

predictors will vary in different equations. The outcome of Test of Parallel Lines option is 

dependent upon the independent variables used in the ordinal regression model. In order to 

avoid the Test of Parallel Lines to be significant, the independent variables which are not 

significant can be removed from the regression model. It should be borne in mind that 

various link functions can be used in order to achieve a suitable model which appropriately 

preserves the ordinal relationship of the dependent variable for the desired predictors. 

Hence, different link functions can be checked to realize which one best models the ordinal 

relationship of the dependent variable. 

3.2.3.6 Alternative link functions for ordinal regression 

As stated earlier, SPSS package has various link functions which can be used instead of 

the logit function, which was the binomial, multinomial and ordinal logistic regressions 

discussed herein, were all built upon. Ordinal logistic regression is a particular form of 

generalized linear models, in which logit functions play the role of link functions and build 



102 
 

the relationship between the ordinal dependent variable and the predictors of the model 

[Norusis 2008]. In some cases, the logit function might not necessarily result in a suitable 

regression result; hence, in such cases, other link functions can be tested to develop the 

most effective set of equations for constructing the relationship between the independent 

variables and the ordinal dependent variable. Therefore, by substituting the logit function 

with the most suitable link function, the regression model pertaining to the ordinal 

regression will have the following format. 

𝐿𝑖𝑛𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑃 ≤ 𝑖) = 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                    (3.36)  

Various link functions are provided by SPSS package; and each of these link functions are 

most suitable for specific cases. Herein, some of the link functions are presented with their 

best applications. 

Complementary log-log is a link function which is best suitable for the cases where the 

dependent variable has greater probabilities for higher levels of the dependent variable; by 

using this link function, the format of the regression equations become as follows [Norusis 

2008]. 

 

ln(−𝑙𝑛 (1 − γ)) = 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                               (3.37) 

 

The next available link function is Probit function which is best suitable when the latent 

variable follows a normal distribution and using Probit function results in the following 

form of regression equations [Norusis 2008]. 

𝜙 (γ) = 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                                             (3.38) 

In case the outcome of the model contains some extreme values, then the most suitable link 

function might be Cauchit function. The following equation illustrates the regression 

equation with Cauchit function as link function [Norusis 2008]. 
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tan 𝜋(γ − 0.5) = 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                             (3.39) 

Another link function which might best suit the modeling in cases where higher 

probabilities are attributed to the lower levels of the dependent variable, is Negative log-

log function. When this link functions is used to describe the model, the equation becomes 

as follows [Norusis 2008]. 

−ln(−𝑙𝑛 (γ)) = 𝑎 −  𝑏  𝑋 −  𝑏  𝑋 −  𝑏  𝑋 −  … −  𝑏  𝑋                               (3.40) 

Therefore, as observed herein, several other link functions with their best application 

scenarios are also available to be used instead of logit function. 

3.2.3.7 Applications of ordinal regression model 

Ordinal regression is used by various researchers in order to model the deterioration rate 

of infrastructures. Various authors have recommended that due to the restrictions of 

ordinary least squares (OLS) regression when used in modeling ordinal data, using ordinal 

regression will result in more appropriate models. Some examples of application of ordinal 

regression models in deterioration modeling of infrastructures are as follows: In order to 

predict the transition probabilities in bridges, ordered probit regression was used along with 

Markov chain [Madanat et al. 1995]. A similar method was also used to predict the 

transition probabilities in sewer pipes [Baik et al. 2006]. Furthermore, the condition rating 

of stormwater pipes was predicted by using proportional odds model and then a comparison 

was made with probabilistic neural network method [Tran et al. 2009]. 

3.3  LightGBM as an Efficient Gradient Boosting Decision Tree 

One of the widely utilized machine learning techniques is gradient boosting decision tree 

(GBDT), and this is mainly due to the fact that it provides accuracy, efficiency and 

interpretability [Friedman 2001, Ke et al. 2017]. With regards to various machine learning 

tasks, state of the art achievements are accomplished through utilizing gradient boosting 
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decision tree. The aforementioned machine learning tasks include the following [Li 2012, 

Richardson et al. 2007, Burges 2010, Ke et al. 2017]: 

 Multi-class classification 

 Click prediction 

 Learning to rank 

With advent of big data, as the number of instances as well as the number of features are 

rapidly increasing, the trade-off between efficiency and accuracy has become significantly 

more notable when using gradient boosting decision tree. With the traditional gradient 

boosting decision tree is employed, and in order to evaluate the information gain of all split 

points, all the data instances are required to be scanned. This ultimately means that the 

number of features as well as the number of instances will determine the computational 

intricacies of these models. In some cases, when using big data, the aforementioned task 

will become time consuming [Ke et al. 2017]. 

One of the possible solutions when using big data is to use less number of features as well 

as less number of instances. This solution may cause problems such as how to sample data 

for use in gradient boosting decision tree. To overcome this problem, various techniques 

have been proposed by researchers which can be used for increasing the speed of the 

training process in boosting [Friedman et al. 2000, Dubout and Fleuret 2011, Appel et al. 

2013, Ke et al. 2017]. These approaches include the following: 

 Gradient-based One-Side Sampling (GOSS) 

 Exclusive Feature Bundling (EFB) 

3.3.1 Gradient Boosting Decision Tree 

The decision tree, when using gradient boosting decision tree (GBDT), is obtained through 

iteration and fitting the negative gradients (residual errors). Therefore, an ensemble model 

of decision trees results in the gradient boosting decision tree (through sequential training) 

[Friedman 2001, Ke et al. 2017]. When learning a decision tree, finding the most suitable 
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split point may require considerable time. Pre-sorted algorithm and histogram-based 

algorithm are two common tools utilized for obtaining the most suitable split point [Mehta 

et al. 1996, Shafer et al. 1996, Ranka and Singh 1998, Jin and Agrawal 2003, Li et al. 

2007]. Through histogram-based algorithm, discrete bins are utilized for continues feature 

values and throughout training, these bins are used to construct feature histograms, whereas 

when using pre-sorted algorithm, the most suitable split point is found on the sorted feature 

values. The algorithm pertaining histogram-based approach is presented below [Ke et al. 

2017]. 

 Input: Training data (I), Max depth (d) 

 Input: m: feature dimension 

 nodeSet  {0}    tree nodes in current level 

 rowSet  {{0,1,2,…}}     data indices in tree nodes 

 for i = 1 to d do:  

o for node in nodeSet do: 

 usedRows  rowSet{node} 

 for k = 1 to m do: 

 H  new Histogram () 

Build histogram 

 for j in usedRows do: 

o bin  I.f[k][j].bin 

o H[bin].y  H[bin].y + I.y[j] 

o H[bin].n  H[bin].n + I 

o  

 Find the most suitable split on histogram H 

 … 

o Update rowSet and nodeSet based upon the most suitable split points 

o … 
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Through down sampling the data, the size of the training data can be lessened. For instance, 

by considering a pre-defined threshold, and by comparing the weights of the data, data 

filtering can therefore be achieved [Friedman et al. 2000]. Furthermore, by considering 

stronger features, the number of features can thus be lessened as well. Both projection 

pursuit as well as principle component analysis can be utilized for this purpose. It should 

be noticed though, that by assuming features include significant redundancies, accuracy 

might be impacted, as this presumption may not always hold true. In other words, as each 

feature may contain specific attributes, therefore, the training accuracy could potentially 

be influenced due to this assumption [Appel 2013, Jolliffe 2002, Ke et al. 2017, Jimenez 

and Landgrebe 1999, Zhou 2012].  

When utilizing the pre-sorted algorithm, within gradient boosting decision tree the features 

which have zero values are disregarded, and therefore, this results in a reduction in the cost 

of training. On the other hand, when utilizing histogram-based algorithm for gradient 

boosting decision tree, whether the feature values are zero or not, the feature bin values are 

required for this approach [Chen and Guestrin 2016, Ke et al. 2017]. In the following 

sections, the two previously stated methods, i.e. gradient-based one-side sampling and 

exclusive feature bundling are described in detail.  

3.3.2 Gradient-Based One-Side Sampling (GOSS) 

Gradient-based one-side sampling (GOSS) which was introduced by Ke et al. in 2017 is a 

sampling approach for gradient boosting decision tree which results in balancing the 

accuracy of decision trees while lessening the number of data instances. 

3.3.2.1 Algorithm for Gradient-Based One-Side Sampling (GOSS) 

When utilizing AdaBoost, the importance of data are judged through the weight of the 

samples. On the other hand, due to the fact that there exist no native sample weights in 

gradient boosting decision tree, therefore, the sampling approaches utilized in AdaBoost 

cannot be directly used. However, within gradient boosting decision tree, it is observed that 
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beneficial information with regards to sampling the data can be achieved through the 

gradient for each data instance. In other words, the data instances which demonstrate minor 

values of gradients can be disregarded. This is due to the fact that when the gradient value 

for a data instance is small, it is observed that the data instance is therefore adequately 

trained and it contains smaller values of training error, which allows these data instances 

to be disregarded. By disregarding these data instances, the distributions associated with 

the data will be subjected to change. As a result of altering the distribution of data, the 

accuracy will therefore be impacted. Gradient-based one-side sampling (GOSS) can be 

utilized to address this issue. 

When applying gradient-based one-side sampling, with regards to the data instances which 

have smaller gradients, random sampling will be conducted while maintaining the data 

instances with greater gradients. However, in order to account for the changes in the 

distribution of data, by using gradient-based one-side sampling, for data instances which 

have smaller gradients a constant multiplier will be utilized in obtaining the information 

gain. In other words, when using gradient-based one-side sampling, based upon the 

absolute gradient values pertaining to each data instance, the data instances are sorted; next, 

the data instances which have greater values of gradients are selected (top a percent of 

sorted data). With regards to the remainder of the data instances, b percent of the data 

instances are randomly selected. 

In the next step, in order to preserve the initial distributions associated with the data as 

much as possible, and yet to concentrate on the data instances which are not adequately 

trained, i.e. data instances which have greater values of gradients, in gradient-based one-

side sampling the selected data instances which demonstrate minor values of gradients are 

multiplied by the following ratio: (1-a)/b [Ke et al. 2017]. 

The following algorithm demonstrates gradient-based one-side sampling approach [Ke et 

al. 2017]:  

 Input: Training data (I), Iterations (d) 
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 Input: Sampling ratio of data instances with greater gradients (a) 

 Input: Sampling ratio of data instances with smaller gradients (b) 

 Input: loss: loss function, L: weak learner 

 models  {}, fact  (1-a)/b 

 topN  a × len (I), randN  b × len (I) 

 for i = 1 to d do: 

 preds  models.predict (I) 

 g  loss (I, preds), w  {1,1,…} 

 sorted  GetSortedIndices(abs(g)) 

 topSet  sorted[1:topN] 

 randSet  RandomPick (sorted[topN:len(I)], randN) 

 usedSet  randSet + topSet  

 w[randSet] × = fact    Assign weight fact to the data instances with smaller 

values of gradients 

 newModel  L(I [usedSet], -g [usedSet], w [usedSet]) 

 models.append(newModel) 

3.3.3 Exclusive Feature Bundling (EFB) 

In order to decrease the number of features, exclusive feature bundling can be used. This 

method was introduced by Ke et al. in 2017. When data are high-dimensional, they are 

typically sparse as well. Therefore, in order to decrease the number of features, and by 

taking advantage of the feature space being sparse, an almost lossless approach can be 

applied. In particular, when feature space is sparse, this indicates that a lot of the features 

do not take on non-zero values at the same time; in other words, a lot of the features are 

mutually exclusive. 

Therefore, exclusive feature bundle can be achieved through bundling the exclusive 

features into a separate feature. Feature histograms constructed by using the feature bundles 

can be made identical to histograms pertaining to individual features through implementing 
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a specific feature scanning algorithm. Through this approach, the training process of the 

gradient boosting decision tree can be performed faster and yet the accuracy will not be 

impacted [Ke et al. 2017].  

3.4  CatBoost as unbiased boosting 

CatBoost is a novel gradient boosting approach which was introduced by Prokhorenkova 

et al. in 2018. In CatBoost methodology, ordered boosting, which is a permutation-driven 

algorithm, as well as an algorithm utilized for handling categorical features are introduced. 

By utilizing the aforementioned algorithms, the prediction shift which occurs due to a 

particular type of target leakage, will be handled [Prokhorenkova et al. 2018]. 

Gradient boosting is a machine-learning approach which can be used in a broad range of 

problems. For instance, gradient boosting can be utilized in learning problems which 

contain noisy data, intricate dependencies, and heterogeneous features. Examples of these 

problems include forecasting weather, web searches, etc.; through gradient boosting 

methodology, and by utilizing gradient descent within a functional space, an ensemble 

predictor will therefore be achieved. Gradient boosting approach is based upon 

constructing strong predictors by iteratively utilizing weaker models, i.e. base predictors 

[Kearns and Valiant 1994, Prokhorenkova et al. 2018, Roe et al. 2005, Wu et al. 2010, 

Zhang and Haghani 2015]. 

When using gradient boosting method, the prediction model, F, which is achieved through 

various boosting steps, is dependent upon the targets of training instances. The paper 

presented by Prokhorenkova et al. in 2018, illustrates that a shift in distribution of F(xk) | 

xk for a training example xk from distribution of F(x) | x for a test sample x will be observed. 

Therefore, a prediction shift will occur in the learned model. Prokhorenkova et al. 

recognize this issue as a particular type of target leakage. Furthermore, with regards to 

preprocessing categorical features, converting categories to their target statistics is an 

effective approach that can be utilized in gradient boosting. Additionally, a target statistic 
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is a statistical model which may result in target leakage as well as prediction shift [Cestnik 

et al. 1990, Prokhorenkova et al. 2018, Micci-Barreca 2001]. 

In order to deal with the aforementioned issues, Prokhorenkova et al. proposed ordering 

principle. By utilizing ordering principle, ordered boosting, which is a modification of 

gradient boosting algorithm, will be achieved. Through ordered boosting, occurrence of 

target leakage will be prevented. Furthermore, Prokhorenkova et al. also introduced a novel 

algorithm in order to preprocess categorical features as well. Categorical Boosting 

(CatBoost) is the result achieved based on combination of the aforementioned algorithms 

[Prokhorenkova et al. 2018]. 

3.4.1 Categorical features 

Categorical features are features which are represented through categories, and furthermore 

these categories cannot be compared to one another. When utilizing boosted trees, a 

common approach for considering categorical features is to apply one-hot encoding. When 

applying one-hot encoding, for each categorical feature, a binary feature will be 

represented instead [Chapelle 2015, Micci-Barreca 2001]. However, in some cases, for 

instance when considering high cardinality features, one-hot encoding can result in large 

number of newly introduced features. In order to deal with this problem, categories can be 

initially grouped into limited number of clusters and after that, one-hot encoding can be 

utilized. A common approach for grouping categories is to utilize target statistics (TS) 

which estimate the expected target values for categories. Furthermore, Micci-Barreca 

proposed to consider target statistics as new numerical features. Utilizing this approach, 

categorical features can be managed efficiently and with minimum information loss. For 

instance, target statistics (TS) can be utilized for click prediction task; in this application, 

regions, ads, publishers, and users may be considered the main categorical features [Bottou 

and Cun 2004, Prokhorenkova et al. 2018, Langford et al. 2009, Ling et al. 2017]. 
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3.4.2  Prediction shift in gradient boosting 

Based on the study conducted by Prokhorenkova et al. in 2018, the prediction shift in 

gradient boosting occurs as a result of a particular type of target leakage; furthermore, in 

this study it is stated that in order to deal with the prediction shift, ordered boosting can be 

utilized. Base predictor ht can be approximated by the following equation: 

ℎ = arg min
1

𝑛
 (−𝑔 (𝑥 , 𝑦 ) − ℎ(𝑥 ))                                                                      (3.41) 

In the above equation, the parameters are as follows: 

D = {(𝑥 , 𝑦 )}k = 1..n denotes the dataset, 

𝑥 = (𝑥 , … , 𝑥 ) denotes random vector of m features, 

𝑦  denotes the target and can be binary or numerical value, 

ht is a base predictor and is selected from a family of functions H to minimize the expected 

loss and can be described as follows: 

ℎ = arg min 𝐿 (𝐹 + ℎ)                                                                                                  (3.42) 

Where,  

L(., .) denotes a smooth loss function 

F is the function which is minimizes the loss function. Furthermore, within a gradient 

boosting methodology, a sequence of Ft are constructed for t = 0, 1, …; Ft is found based 

on Ft-1 and through an additive approach: 

𝐹 = 𝐹 + 𝛼 ℎ                                                                                                                  (3.43) 

In which, 𝛼 is the step size [Friedman 2001, Prokhorenkova et al. 2018]. 

Additionally, in order to deal with the minimization, the Newton method utilizing second 

order approximation of L (𝐹 + ℎ ) at 𝐹  or through negative gradient step is 
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implemented. These methodologies are considered as types of functional gradient descent 

[Friedman et al. 2000, Mason et al. 2000, Prokhorenkova et al. 2018]. Moreover, ℎ  , the 

gradient step, is selected so that −𝑔 (𝑥, 𝑦) is approximated by ℎ (𝑥) in which the following 

equation represents 𝑔 (𝑥, 𝑦): 

𝑔 (𝑥, 𝑦) ∶=
𝜕𝐿(𝑦, 𝑠)

𝜕𝑠
|  ( )                                                                                                  (3.44) 

As described by Prokhorenkova et al., the following shifts can transpire within gradient 

boosting approach: 

 Shift occurring in conditional distribution of gradient 𝑔 (𝑥 , 𝑦 ) | 𝑥  from that 

distribution on a test example 𝑔 (𝑥, 𝑦) | 𝑥 (By considering randomness in D \ {𝑥 }) 

 Furthermore, the base predictor ℎ  will be biased  

 Eventually, the trained model 𝐹  will be impacted [Prokhorenkova et al. 2018]. 

Further details and analysis related to prediction shift can be obtained from Prokhorenkova 

et al. (2018). 

3.4.3 Ordered Boosting 

Prokhorenkova et al. proposed boosting algorithm through which previously stated 

prediction problem will not occur. For each boosting step, a new dataset Dt will be sampled 

independently and therefore, by utilizing the existing model for the new training example, 

unshifted residuals will be achieved. Considering that a model is learned by using I trees, 

and in order to have an unshifted residual rI-1(xk , yk), FI-1 trained without example xk will 

be required. Due to the fact that unbiased residuals are required for every training example, 

therefore, examples cannot be used for training FI-1. For instance, by considering that a 

random permutation σ of the training examples is used and n distinct supporting models 

M1, M2, …, Mn are maintained, wherein Mi is learned through the first i examples within 

the permutation, therefore, for each step, in order to find the residual for the jth sample,  Mj-

1 model will be utilized. This algorithm pertaining to this approach is known as ordered 
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boosting. The boosting approaches utilized in CatBoost be either Ordered or Plain. The 

Ordered boosting is obtained through efficient adjustments made in the algorithm 

illustrated below [Prokhorenkova et al. 2018]. In the following section, the algorithm 

pertaining to CatBoost will be presented. 

 Input:  {(𝑥 , 𝑦 )} , I 

 σ  random permutation of [1,n] 

 Mi  0 for i = 1, 2, …, n 

 for t  1 to I do:  

o for i  1 to n do: 

 ri  yi - 𝑀 ( ) (𝑥 ) 

o for i  1 to n do: 

 ri  yi - 𝑀 ( ) (𝑥 ) 

 ΔM  LearnModel ((xj , rj) : σ(j) ≤ i); 

 Mi  Mi + ΔM 

 Return Mn  

3.4.4 CatBoost Algorithm 

In CatBoost approach, initially s+1 random permutations of the training dataset are 

constructed. The permutations σ1, …, σs, which are independent as well, are utilized for 

finding splits which determine tree structures (internal nodes). Furthermore, σ0 is utilized 

for selecting the leaf values bj pertaining to the acquired trees. The algorithm for CatBoost 

is presented below [Prokhorenkova et al. 2018]: 

 Input:  {(𝑥 , 𝑦 )} , I, α, L, s, Mode 

 σr  random permutation of [1,n] for r = 0.. s; 

 M0 (i) 0 for i = 1, 2, …, n 

 if Mode = Plain then:  

o Mr (i)  0 for r = 1..s, i : σr (i) ≤ 2j+1 
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 if Mode = Ordered then:  

o for j  1 to [log2 n] do: 

 Mr,j (i)  0 for r = 1..s, i= 1.. 2j+1 

 for t  1 to I do:  

o Tt , {𝑀 }   BuildTree ({𝑀 } , {(𝑥 , 𝑦 )}  , α, L, {𝜎 } , Mode); 

o Leaf0 (i)  GetLeaf (xi, Tt, σ0) for i = 1..n; 

o grad0  CalcGradient (L, M0, y); 

o foreach leaf j in Tt do: 

 bt
j  -avg (grad0 (i) for i : leaf0 (i) = j) 

o M0 (i)  M0 (i) + α bt
leaf0 (i) for i = 1..n 

 return F(x) = ∑ ∑ α 𝑏 |{ ( , , ) } 

In the CatBoost algorithm, the BuildTree function is as presented in the following 

algorithm: 

 Input: M, {(𝑥 , 𝑦 )} , α, L, s, {𝜎 } , Mode 

 grad  CalcGradient (L, M, y); 

 r  random (1, s) 

 if Mode = Plain then:  

o G  (gradr (i) for i = 1..n ); 

 if Mode = Ordered then:  

o G  (𝑔𝑟𝑎𝑑  ,[ ( ( ) ] (i) for i = 1..n ); 

 T  empty tree; 

 foreach step of top-down procedure do:  

o foreach candidate split c do:  

 Tc  add splic c to T 

 leafr (i)  GetLeaf (xi, Tc, σr) for i = 1..n; 

 if Mode = Plain then:  

 Δ (i)  avg (gradr (p) for p : leafr (p) = leafr (i)) for i = 1..n; 

 if Mode = Ordered then:  
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 Δ (i)  avg (𝑔𝑟𝑎𝑑  ,[ ( ( ) ] (i) for p : leafr (p) = leafr (i),  

σr (p) < σr (i)) for i = 1..n; 

 loss(Tc)  cos (Δ , G) 

o T  arg minTc (loss(Tc)) 

 leafr’ (i)  GetLeaf (xi, T, σr’) for r’ = 1..s, i = 1..n; 

 if Mode = Plain then:  

o Mr’ (i)  Mr’ (i) – α avg(gradr’ (p) for p : leafr’ (p) = leafr’ (i)) for r’ = 1..s,  

i = 1..n; 

 if Mode = Ordered then:  

o for j  1 to [log2 n] do: 

 Mr’,j (i)  Mr’,j (i) – α avg(gradr’,j (p) for p : leafr’ (p) = leafr’ (i),           

σr’ (p) ≤ 2j ) for r’ = 1..s,  i : σr’ (i) ≤ 2j+1; 

 return T, M 

3.4.5 Reduced Complexity and Feature Combinations in CatBoost Algorithm 

As observed in the algorithm illustrating CatBoost approach, in order to decrease the 

complexity of computations of the model, and when the mode of the CatBoost model is the 

ordered mode, solely the values pertaining to 𝑀 , (𝑖) ≔  𝑀 ,
(𝑖) for values of 𝑗 =

1, … , [log 𝑛] and for values of 𝑖 when 𝜎 (𝑖) ≤ 2  are stored and updated. Implementing 

this approach results in a reduction of complexity of computations in the CatBoost model. 

Additionally, a significant property of CatBoost is that combinations of categorical features 

are utilized as additional categorical features; through this approach, CatBoost will be able 

to deal with high order dependencies [Prokhorenkova et al. 2018].  
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Chapter 4 : Acquisition and Analysis of Data 

 

4.1 Overview 

In this chapter descriptive data analysis associated with sewer pipes is performed. In total 

410 pipe segments were studied in this study. The analysis of sewer pipe data assists with 

understanding of the current condition of data with respect to various independent 

variables. The insights obtained through descriptive data analysis further helps with 

determining which modeling techniques can be utilized for deterioration modeling of 

assets. 

In this chapter of dissertation, the analysis pertaining to the following independent 

variables are presented: 

 Diameter of sewer pipes 

 Sewer pipe material 

 Age of sewer pipe 

 Pipe slope 

 Length of sewer pipe 

 Average flow in pipe (%full) 

 Average velocity of sewer flow 

 Average flow depth 

Additionally, the analysis pertaining to condition grading of sewer pipes are presented as 

well. 

4.2  Diameter of sewer pipe 

In this section the diameters associated with sewer pipes are presented. As observed from 

the below figures, diameters of sewer pipes considered in this study range from 21 inches 
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up to 66 inches. Furthermore, it is observed than more than 50% of the sewer pipes have 

diameters between 20 inches and 30 inches and only 1.46% of the pipes have diameters 

greater than 55 inches. Based on the results obtained from descriptive analysis, it is 

observed that the mean value for diameter of sewer pipes is 32.21 inches and standard 

deviation of sewer pipe diameter is 9.533 inches. 

 

 

Figure 4.1: Distribution associated with pipe diameter 

The following figure illustrates the diameters of sewer pipes for different pipe materials. 

Based on this figure, it is observed that sewer pipe with the following pipe material have 

diameters less than 40 inches: 
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 PVC 

 CCFRPM 

 VCP 

Furthermore, it is observed that pipes with diameters larger than 40 inches are either RCP 

or FRP. 

 

Figure 4.2: Distribution of pipe diameter for different pipe materials 
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4.3  Age of sewer pipe 

The analysis of the age of sewer pipes is illustrated in the following figures. Based on the 

below figure it is observed that the mean value of age of sewer pipes is 25.06 years and the 

standard deviation of the age of sewer pipes is 13.29 years. The two highest frequency of 

the age of pipes are associated with 35 year to 40 year range with 21.71% of the sewer 

pipes and 15 year to 20 year range with 20.24% of the assets. Furthermore, it is observed 

that more than 99% of the sewer pipes are less than 50 years old. The minimum and 

maximum values of the age of the pipes are 4 and 64 years, respectively. 

 

 

Figure 4.3: Distribution associated with age of pipe 
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The following figures illustrates the distribution of ages of pipes for different pipe 

materials. Based on observations made in this figure, the oldest pipes are from vitrified 

clay. Furthermore, FRP pipes are within 15 to 25 years old and CCFRPM and RCP, and 

PVC pipes are less than 15, 45, and 40 years old, respectively. 

 

 

Figure 4.4: Distribution of age of pipe for different pipe materials 
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4.4  Slope of sewer pipes 

The analysis of the slope of sewer pipes is presented in the following figure. Based on this 

figure, it is observed that more than 95% of the sewer pipes have slopes less than 1%. The 

mean value and the standard deviation of the slope of the sewer pipes are 0.44% is 1.072%, 

respectively.  

 

Figure 4.5: Distribution associated with pipe slope 

Based on the following figure, it is realized that the highest slope is associated with PVC 

pipes with the slope value of 9.7%. Moreover, vitrified clay pipes also illustrated the second 

highest slopes among various pipe materials with the slope value of 7.44%. 
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Figure 4.6: Distribution of pipe slope for different pipe materials 

4.5  Length of sewer pipes 

The distribution of length of sewer pipes is provided in the following figure. Based on this 

figure, it is realized that the mean value of length of sewer pipes is 358.77 ft, with standard 

deviation of 270.50 ft. Furthermore, the minimum and maximum values of the length of 

sewer pipe considered in this study are 7.6 ft and 1471.2 ft, respectively. It is further 

observed that the majority of the sewer pipes, i.e. 19.27%, have lengths between 100 ft and 

200 ft. 
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Figure 4.7: Distribution associated with length of pipe 

The following figure illustrates distribution of lengths of sewer pipes for different pipe 

materials. Based on this figure, it is observed that PVC, RCP, and VCP have the three 

longest sewer pipes with 1471.2, 1451.9, and 1377.7 ft lengths for their pipe segments, 

respectively.  
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Figure 4.8: Distribution associated with length of pipe for different pipe materials 
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4.6  Average flow in sewer pipes (%full) 

Considering the distribution of average flow in sewer pipes (normalized values of 

percentage of flow in pipes), it is observed that the mean value and the standard deviation 

of the average flow in sewer pipes are 24% and 10.8%, respectively. Furthermore, it is 

observed that the highest frequency of average flow in pipe is equal to 56.34% and this 

value is associated with average flow in pipe within the range of 20% up to 30%. 

Furthermore, it is realized that more than 87% and 95% of the sewer pipes have average 

flow values of less than 30% and 40%, respectively.  

When considering the average flow in sewer pipes associated with each of the pipe 

materials, it is realized that the value of average flow in pipe for the majority of sewer pipes 

is less than 30%; moreover, it is observed that the highest average flows in sewer pipes 

occur in some of the vitrified clay pipes. 

4.7  Average velocity of flow in sewer pipes 

The distribution pertaining to average flow in sewer pipes, measured in units of feet per 

second, is presented in the following figure. Based on this figure, the highest frequency of 

average velocity of sewer flow in pipes is 25.37% and is between 3 ft/s and 3.5 ft/s. 

Furthermore, the mean value and the standard deviation of average flow velocity in pipes 

are 2.74 ft/s and 0.953 ft/s, respectively. Additionally, the values of average flow velocities 

for more than 80% of the sewer pipes are less than 3.5 ft/s. 
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Figure 4.9: Distribution associated with average flow velocity 

The figure below illustrates the average velocity of sewer flow for various pipe materials. 

It is observed that the maximum velocity of sewer flow (with the value of 5.83 ft/s) is 

associated with reinforced concrete pipes. It is further observed that based on the following 

flow velocity distributions, the average velocity of sewer flow in vitrified clay pipes is less 

than the values observed in other pipe materials. 
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Figure 4.10: Distribution of average flow velocity for different pipe materials 

4.8  Average flow depth in sewer pipes 

The average flow depth distribution in sewer pipes is presented in the following figure. 

Based on this figure, the minimum and maximum values of average flow depths are 1.57 

inches and 29.89 inches, respectively. Furthermore, based on the following figure, the 

values of mean and standard deviations of the distribution of average flow depth are 7.82 

inches and 4.04 inches, respectively. The highest frequency of average flow depth is 

observed to be 35.12% and corresponds to the range within 5 inches and 7.5 inches of flow 

depth. Additionally, the following figure illustrates that more than 56% of sewer pipes have 
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average flow depths of less than 7.5 inches, and about 79.5% of sewer pipes have average 

flow depths of less than 10 inches. 

 

Figure 4.11: Distribution associated with average flow depth 

Values of average flow depths for different pipe materials are presented in the following 

figure. Based on this figure, it is observed that the highest flow depth occurs in vitrified 

clay pipes. Furthermore, for CCFRPM and PVC pipes, the values of average flow depths 

are observed to be lower compared to other pipe materials. In the case of PVC pipes, more 

than 95% of the sewer pipes have average flow depths of less than 7.5 inches (when all 

pipe materials are considered, the corresponding percentage is 56.33%). 
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Figure 4.12: Distribution of average flow depth for different pipe materials 

4.9  Operational condition grading of sewer pipes 

The operational and maintenance (O&M) condition gradings of sewer pipes are presented 

in this section. Operational condition grading discussed in this dissertation refers to O&M 

condition grading. The operational condition grading is obtained by considering the highest 

operational condition grading within each of the individual sewer pipes; this value 

represents the worst O&M defect of the corresponding sewer pipe.  Based on the following 

figure, it is observed that the majority of the sewer pipes have operational condition grading 
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of 1 (59.27% of sewer pipes), and furthermore, 92.93% of the sewer pipes have operational 

condition gradings within ranges of 1 to 3. In other words, this figure illustrates that the 

majority of the sewer pipes are in good condition with respect to operational condition 

grading. 

 

Figure 4.13: Distribution associated with operational (O&M) condition grading 

Distributions of operational condition gradings for various pipe materials are presented in 

the following figure. Based on this figure, it is observed that reinforced concrete pipes and 

vitrified clay pipes have the highest percentages of the sewer pipes in operational condition 

gradings 4 and 5. It is further observed that all CCFRPM pipes considered in this study are 
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in operational condition grading 1, and 90.79% of FRP pipes are in operational condition 

grading 1. 

 

Figure 4.14: Distribution of operational (O&M) condition grading for different pipe materials 

4.10 Structural condition grading of sewer pipes 

The structural condition grading considered in this study is the highest structural condition 

grading associated with each sewer pipe, which demonstrates the worst structural defect 

within the sewer pipe. The following figure illustrates the distribution of structural 

condition gradings of sewer pipes. Based on this figure, the majority of sewer pipes 

(74.63% of sewer pipes) have structural condition grading of 1. Furthermore, 90.49% of 
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the sewer pipes have structural condition gradings of 1 through 3. However, only 0.49% of 

the sewer pipes are in structural condition gradings 2. 

 

Figure 4.15: Distribution associated with structural condition grading 

The structural condition grading for different pipe materials is presented in the below 

figure. Similar to the observation made in operational condition grading of sewer pipes, 

100% of CCFRPM pipes are in structural condition grading 1. Moreover, it is observed 

that all the pipes in structural condition grading 5 are vitrified clay pipes. Additionally, it 

is realized that vitrified clay pipes and reinforced concrete pipes constitute the highest and 

the second highest percentages of pipes in structural condition grading 4 by 22.45% and 
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10.20% of each of the associated pipe materials being in this condition grading, 

respectively. 

 

 

Figure 4.16: Distribution of structural condition grading for different pipe materials 

 

4.11 Overall condition grading of sewer pipes 

The overall condition grading of sewer pipes is considered to be the maximum value of 

operational (O&M) and structural condition gradings of sewer pipes. Therefore, based on 

the condition gradings provided earlier in operational and structural categories, the 
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following figure illustrates the distribution of the overall condition grading of sewer pipes. 

Similar to previous observations, herein it is also realized that the highest frequency of 

pipes are in overall condition grading 1 (51.71% of pipes). The second highest frequency 

of pipes are in overall condition grading 3 with 19.02% of sewer pipes in this category. It 

is further observed that 84.14% of the sewer pipes have overall condition gradings of 1, 2 

and 3. 

 

 

Figure 4.17: Distribution associated with overall condition grading 
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The overall condition grading of sewer pipes pertaining to different pipe materials is 

illustrated in the following figure. Similar to observations made in operational and 

structural condition gradings, herein it is also observed that all of the CCFRPM pipes are 

in overall condition grading 1. It is further observed that vitrified clay pipes and reinforced 

concrete pipes have the highest percentage of the overall condition gradings 4 and 5. 

Moreover, 96.05% of FRP pipes are within overall condition gradings 1 through 3 and 

there are no overall condition gradings 5 associated with FRP pipes.  

 

 

Figure 4.18: Distribution of overall condition grading for different pipe materials 
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4.12 Pipe materials of sewer pipes 

The pipe materials and their associated percentage are presented in the following figure. 

There are five different pipe materials in the sewer pipe data set: PVC, VCP, RCP, 

CCFRPM, and FRP 

The majority of the sewer pipes considered in this study are PVC pipes which constitute 

39.27% of the sewer pipes. The second highest frequency of pipe materials pertains to 

vitrified clay pipes with frequency of 23.90%. Furthermore, it is observed that the lowest 

frequency of pipe material is associated with CCFRPM pipe with only 6.34% frequency. 

 

Figure 4.19: Distribution associated with various pipe materials 
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4.13 Binary operational condition grading of sewer pipes 

Binary operational (O&M) condition gradings of sewer pipes are obtained based on the 

previously stated operational condition grading of pipes. This section contains the 

distribution associated with O&M binary condition gradings. Based on the following 

figure, it is observed that 92.93% of the sewer pipes are in condition grading 0 and only 

7.07% of pipes are in condition grading 1. In this dissertation, it is assumed that operational 

condition gradings 1, 2, and 3 denote that pipes do not show severe problems, and therefore, 

it is assumed that they belong to binary condition grading 0; in other words, for these pipes, 

it is assumed that the failure criterion is not met and they have not failed. Moreover, sewer 

pipes which are in operational condition gradings 4 and 5, are assumed to have failed. It 

should be noted that these assumptions are solely for the purpose of illustration and can 

therefore be subjected to changes based on the decision makers priorities and criteria for 

defining failure of sewer pipes.  

 

Figure 4.20: Distribution associated with binary operational condition grading 
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Furthermore, the following figure shows the details of distribution of binary operational 

gradings of sewer pipes with respect to various pipe materials. Based on this figure, 

reinforced concrete pipes have the highest percentage of pipes in binary operational 

condition grading 1 with 28.57% of RCP pipes in this condition state; moreover, vitrified 

clay pipes have the second highest percentage of binary operational condition 1 with 

13.27%. Similar to previous observations, all pipes in CCFRPM category are in binary 

operational condition state 0. 

 

Figure 4.21: Distribution of binary operational condition grading for different pipe materials 
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4.14 Binary structural condition grading of sewer pipes 

Similar to the binary operational condition gradings of sewer pipes discussed earlier, binary 

structural condition gradings of pipes are also obtained using structural condition grading 

of sewer pipes. The following figure illustrates the distribution associated with binary 

structural condition grading of pipes. The same assumption utilized for categorizing pipes 

in binary operational condition grading of pipes is applied here as well. In other words, 

pipes in structural condition states 4 and 5 are categorized as binary structural grading 1 

and if the structural condition states of pipes are less than 4, they are categorized in binary 

structural condition 0. As stated earlier, these assumptions are utilized for illustration 

purposes and can be altered based on decision maker’s priorities and defining various 

failure criteria. The following figure shows that the majority of the sewer pipes, i.e.90.49% 

of assets, are in binary structural condition grading 0. 

 

Figure 4.22: Distribution associated with binary structural condition grading 
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The following figure shows the percentage of sewer pipes in binary structural condition 

gradings 0 and 1 for various pipe materials. Similar to binary operational condition 

gradings of pipes, vitrified clay pipes and reinforced concrete pipes have the highest 

percentage of pipes in binary structural grading 1 and all CCFRPM pipes are in binary 

structural state 0; however, unlike binary operational grading, vitrified clay pipes have the 

highest percentage of pipes in binary structural condition state 1, with 24.49% of pipes in 

this condition state. The second highest frequency of pipes in binary structural grading 1 

belongs to reinforced concrete pipes with 10.20% of sewer pipes in this condition grading. 

 

 

Figure 4.23: Distribution of binary structural condition grading for different pipe materials 
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4.15 Binary overall condition grading of sewer pipes 

Binary overall condition gradings of pipes are achieved based on overall condition gradings 

of sewer pipes. The designation of condition states to binary condition gradings are similar 

to binary operational and structural condition grading of pipes. If overall condition gradings 

are less than 4, the sewer pipes are assumed to be in binary condition state 0; otherwise, 

they are assumed to be in binary overall condition state 1. As stated earlier, these 

designations may be subjected to changes based on different failure criteria. Based on the 

below figure, it is observed that the majority of sewer pipes are in binary overall condition 

state 0 with 84.15% of pipes in this condition state. 

 

Figure 4.24: Distribution associated with binary overall condition grading 

The following figure contains the shows the percentages of sewer pipes in binary overall 

gradings 0 and 1 with respect to various materials used in pipes. Similar to results from 
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structural and operational binary gradings, observations made based on the following 

figure demonstrate that reinforced concrete pipes and vitrified clay pipes have the highest 

and the second highest percentages of sewer pipes in binary overall condition grading 1 

with 36.73% and 35.71% of their associated sewer pipes in this condition state, 

respectively. Additionally, it is observed that none of the CCFRPM pipes are in binary 

overall condition state 1. 

 

Figure 4.25: Distribution of binary overall condition grading for different pipe materials 
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4.16 Various condition gradings of sewer pipes with respect to age of 

assets 

In this section, operational (O&M), structural, and overall condition gradings of sewer 

pipes with respect to age of pipes are examined. Based on the following figures, it is 

observed that for all condition grading categories, as the age of assets increases, the 

percentage of pipes in categories 4 and 5 emerge. Furthermore, with regards to the 

structural condition grading of sewer pipes, it is observed that for assets with younger ages, 

the proportion of pipes in condition gradings 1 and 2 are greater compared to sewer pipes 

with higher ages. This trend is observed for condition state 2 in operational and overall 

categories as well. These graphs are illustrative of the effect of age of sewer pipes in their 

corresponding condition gradings. Based on these graphs, it is realized that when compared 

to younger pipes, older pipes have transitioned to higher condition gradings. However, in 

various cases throughout these graphs sudden drops and increases are observed with 

regards to condition states of pipes. These observations are due to the fact that the pipes 

presented in these graphs have different properties, and therefore, the effect of all 

independent variables need to be incorporated in order to investigate the effect of age in 

condition grading of sewer pipes. This task is performed through developing various 

modeling approaches in this dissertation.  
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Figure 4.26: Overall condition grading of assets with respect to age of assets 

 

Figure 4.27: Structural condition grading of assets with respect to age of assets 



145 
 

 

Figure 4.28: Operational (O&M) condition grading of assets with respect to age of assets 

 

4.17 Binary condition gradings of sewer pipes with respect to age of 

assets 

Binary condition gradings of sewer pipes in operational (O&M), structural, and overall 

categories and with respect to age of assets are presented in the following figures. Based 

on these figures, it is observed that for all condition grading categories, when the age of 

sewer pipes increase, the condition gradings transition from binary condition state 0 to 

condition state 1; therefore, this illustrates the deterioration of sewer pipes due to aging of 

pipes. Additionally, in these graphs, it is realized that the percentage of sewer pipes in 

binary condition grading 1 associated with different grading categories are increasing as 

the age of assets increase, and on the other hand, the percentage of pipes designated with 

condition state 0 in various binary condition gradings are declining as well. It is further 
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observed that based on these graphs, when considering binary structural condition states, 

sewer pipes transition to binary condition state 1 in earlier ages compared to binary 

operational grading. Therefore, it is realized that compared to sever operational (O&M) 

defects, severe structural defects occur earlier in these sewer pipes. It should be noted that 

the assumption utilized in designation of binary condition states are the same stated earlier, 

and can be changed based on decision maker’s priorities and failure criteria. 

 

Figure 4.29: Binary operational condition grading of assets with respect to age of assets 
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Figure 4.30: Binary structural condition grading of assets with respect to age of assets 

 

Figure 4.31: Binary overall condition grading of assets with respect to age of assets 
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4.18 Spearman rank correlation between predictors 

In order to identify the changes in a predictor due to changes transpired in another predictor, 

the correlation analysis is conducted. When the correlation value between two predictors 

is observed to be high, it thus suggests that with high accuracy, the value of the predictor 

can be estimated using the other predictor. When independent variables with high 

correlation values are utilized in a regression model, even though the multiple 

determination coefficient, R2, will be at a high level, multicollinearity can occur and 

therefore, significance test of the model variables can be impacted. On the other hand, in 

case it is desired to obtain the maximum value of R2, multicollinearity might not result in 

an issue [Meyers et al. 2006, Salman 2010]. 

The typical correlation analysis is conducted through Pearson correlation; however, 

Pearson correlation can be utilized for linear relationship between variables; furthermore, 

if extreme data instances are present, Pearson correlation may be impacted by these data. 

Additionally, in Pearson correlation, it is assumed that the two variables of interest are also 

bivariately normal distributed. However, herein, based on the distributions obtained for the 

independent variables, it is observed that it is more suitable to utilize Spearman rank 

correlation. Therefore, based on the available data set, and for correlation analysis of the 

predictors used in deterioration modeling, it is decided to use Spearman rank correlation, 

which is a non-parametric correlation coefficient. If outliers are present in the data set, 

Spearman rank correlation will not be impacted and furthermore, this non-parametric 

correlation coefficient can also be utilized for nonlinear relationship between predictors as 

well. Spearman correlation coefficient can be obtained based on the following equation 

[Gravetter and Walnau 2004, Salman 2010]: 

𝑟 =
∑ 𝑥𝑦 −  

∑ 𝑥 ∑ 𝑦
𝑛

(∑ 𝑥 −
(∑ 𝑥)

𝑛
)(∑ 𝑦 −

(∑ 𝑦)
𝑛

)
.                                                                           (4.1) 
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The following table demonstrates Spearman rank correlation between various independent 

variables. For instance, based on these correlation values, it is observed that pipe diameter 

and the average flow depth in pipe are significantly correlated at the 0.01 level; 

furthermore, their associated correlation coefficient is +0.732, which indicated a high 

correlation between diameter of the pipe and average flow depth in pipe. Additionally, the 

positive sign of the correlation coefficient indicates that the larger the diameter of the sewer 

pipe is, the greater average flow depth is observed in the sewer pipe. Moreover, considering 

slope of the pipe and average flow velocity in the pipe, it is realized that these predictors 

are also significantly correlated at the 0.01 level; the correlation coefficient obtained for 

these independent variable is +0.283 which once again illustrates that for sewer pipes with 

higher values of pipe slope, the average velocity of the flow was also a greater value. 

However, when considering pipe slope and average flow depth in pipe, it is observed that 

these predictors are significantly correlated at the 0.01 level as well and the correlation 

coefficient pertaining to these predictors is -0.463. The negative sign of the correlation 

coefficient indicates that for sewer pipes where pipe slope was greater, the average flow 

depth in pipe was lower. 
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Table 4.1: Spearman rank correlation between predictors of the model 

Correlations 

  
Pipe 

Diameter 
in 

Age of 
Pipe 
years 

Pipe 
Slope 

Length of 
Pipe ft 

Average 
Flow in 

Pipe 
percent 

full 

Average 
Velocity 

ft/s 

Average 
Flow 
Depth 

Pipe 
Diameter 

in 

Correlation 
Coefficient 

1 -.120* -.289** -0.033 .278** .321** .732** 

Sig. (2-
tailed) 

. 0.015 0 0.503 0 0 0 

N 410 410 410 410 410 410 410 

Age of 
Pipe 
years 

Correlation 
Coefficient 

-.120* 1 -.274** .326** .197** -0.069 0.031 

Sig. (2-
tailed) 

0.015 . 0 0 0 0.161 0.525 

N 410 410 410 410 410 410 410 

Pipe 
Slope 

Correlation 
Coefficient 

-.289** -.274** 1 -.146** -.424** .283** -.463** 

Sig. (2-
tailed) 

0 0 . 0.003 0 0 0 

N 410 410 410 410 410 410 410 

Length of 
Pipe ft 

Correlation 
Coefficient 

-0.033 .326** -.146** 1 0.066 0.021 0.044 

Sig. (2-
tailed) 

0.503 0 0.003 . 0.18 0.678 0.378 

N 410 410 410 410 410 410 410 

Average 
Flow in 

Pipe 
percent 

full 

Correlation 
Coefficient 

.278** .197** -.424** 0.066 1 -.203** .815** 

Sig. (2-
tailed) 

0 0 0 0.18 . 0 0 

N 410 410 410 410 410 410 410 

Average 
Velocity 

ft/s 

Correlation 
Coefficient 

.321** -0.069 .283** 0.021 -.203** 1 0.036 

Sig. (2-
tailed) 

0 0.161 0 0.678 0 . 0.466 

N 410 410 410 410 410 410 410 

Average 
Flow 
Depth 

Correlation 
Coefficient 

.732** 0.031 -.463** 0.044 .815** 0.036 1 

Sig. (2-
tailed) 

0 0.525 0 0.378 0 0.466 . 

N 410 410 410 410 410 410 410 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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4.19 Significance of categorical variables 

In order to determine the significance of categorical variables, cross table analysis was 

utilized. The categorical variable considered herein is the sewer pipe material; moreover, 

the cross tables were constructed considering operational (O&M) condition grading, 

structural condition grading and overall condition grading. In addition to these condition 

gradings, cross tables utilizing the associated binary condition gradings for each of the 

operational, structural and overall states were also taken into account. In order to determine 

significance of categorical variables, the expected and the observed frequencies for each 

individual cell are compared to one another. The expected frequency for various cells can 

be obtained based on the following equation [Cramer 1994, Salman 2010]: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙

𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
                                                              (4.2) 

Furthermore, considering a cross table contains n cells, the chi-square statistic can be 

computer based on the following equation [Cramer 1994, Salman 2010]: 

𝑋 =  
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
                                                  (4.3) 

Additionally, assuming r and c denoted the number of rows and columns, respectively, 

therefore, the degrees of freedom associated with the critical chi-square is equal to (c-1)×(r-

1); and this value will be compared to the chi-square computed based on the cross table 

analysis. 

Based on the following tables, it is observed that considering cross table analyses based 

upon operational, structural, overall, and their associated binary condition gradings, sewer 

pipe material is found to be significant at 0.05 level in all cases. 
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Table 4.2: Cross table of pipe material and operational (O&M) grading 

  
Operational Grading 

Total 
1 2 3 4 5 

CCFRPM 

Count 26 0 0 0 0 26 

% within Pipe 
Material 

100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 

% within 
Operational 

Grading 
10.70% 0.00% 0.00% 0.00% 0.00% 6.30% 

% of Total 6.30% 0.00% 0.00% 0.00% 0.00% 6.30% 

FRP 

Count 69 4 2 1 0 76 

% within Pipe 
Material 

90.80% 5.30% 2.60% 1.30% 0.00% 100.00% 

% within 
Operational 

Grading 
28.40% 4.50% 4.00% 4.00% 0.00% 18.50% 

% of Total 16.80% 1.00% 0.50% 0.20% 0.00% 18.50% 

PVC 

Count 95 46 19 0 1 161 

% within Pipe 
Material 

59.00% 28.60% 11.80% 0.00% 0.60% 100.00% 

% within 
Operational 

Grading 
39.10% 52.30% 38.00% 0.00% 25.00% 39.30% 

% of Total 23.20% 11.20% 4.60% 0.00% 0.20% 39.30% 

RCP 

Count 12 14 9 12 2 49 

% within Pipe 
Material 

24.50% 28.60% 18.40% 24.50% 4.10% 100.00% 

% within 
Operational 

Grading 
4.90% 15.90% 18.00% 48.00% 50.00% 12.00% 

% of Total 2.90% 3.40% 2.20% 2.90% 0.50% 12.00% 

VCP 

Count 41 24 20 12 1 98 

% within Pipe 
Material 

41.80% 24.50% 20.40% 12.20% 1.00% 100.00% 

% within 
Operational 

Grading 
16.90% 27.30% 40.00% 48.00% 25.00% 23.90% 

% of Total 10.00% 5.90% 4.90% 2.90% 0.20% 23.90% 

Total 

Count 243 88 50 25 4 410 

% within Pipe 
Material 

59.30% 21.50% 12.20% 6.10% 1.00% 100.00% 

% within 
Operational 

Grading 
100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

% of Total 59.30% 21.50% 12.20% 6.10% 1.00% 100.00% 
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Table 4.3: Chi-squared tests for operational grading and pipe material 

Chi-Square Tests 

 
Value df 

Asymptotic 
Significance (2-sided) 

Pearson Chi-Square 124.682a 16 .000 
Likelihood Ratio 137.386 16 .000 
N of Valid Cases 410   

a. 9 cells (36.0%) have expected count less than 5. The 
minimum expected count is .25. 
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Table 4.4: Cross table of pipe material and structural grading 

  
Structural Grading 

Total 
1 2 3 4 5 

CCFRPM 

Count 26 0 0 0 0 26 
% within 

Pipe_Material 
100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

% within 
Structural_Grading 

8.5% 0.0% 0.0% 0.0% 0.0% 6.3% 

% of Total 6.3% 0.0% 0.0% 0.0% 0.0% 6.3% 

FRP 

Count 69 0 5 2 0 76 

% within 
Pipe_Material 

90.8% 0.0% 6.6% 2.6% 0.0% 100.0% 

% within 
Structural_Grading 

22.5% 0.0% 7.9% 5.4% 0.0% 18.5% 

% of Total 16.8% 0.0% 1.2% 0.5% 0.0% 18.5% 

PVC 

Count 134 1 18 8 0 161 
% within 

Pipe_Material 
83.2% 0.6% 11.2% 5.0% 0.0% 100.0% 

% within 
Structural_Grading 

43.8% 50.0% 28.6% 21.6% 0.0% 39.3% 

% of Total 32.7% 0.2% 4.4% 2.0% 0.0% 39.3% 

RCP 

Count 33 0 11 5 0 49 

% within 
Pipe_Material 

67.3% 0.0% 22.4% 10.2% 0.0% 100.0% 

% within 
Structural_Grading 

10.8% 0.0% 17.5% 13.5% 0.0% 12.0% 

% of Total 8.0% 0.0% 2.7% 1.2% 0.0% 12.0% 

VCP 

Count 44 1 29 22 2 98 
% within 

Pipe_Material 
44.9% 1.0% 29.6% 22.4% 2.0% 100.0% 

% within 
Structural_Grading 

14.4% 50.0% 46.0% 59.5% 100.0% 23.9% 

% of Total 10.7% 0.2% 7.1% 5.4% 0.5% 23.9% 

Total 

Count 306 2 63 37 2 410 
% within 

Pipe_Material 
74.6% 0.5% 15.4% 9.0% 0.5% 100.0% 

% within 
Structural_Grading 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 74.6% 0.5% 15.4% 9.0% 0.5% 100.0% 
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Table 4.5: Chi-squared tests for structural grading and pipe material 

Chi-Square Tests 

  Value df 
Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 78.710a 16 .000 

Likelihood Ratio 80.918 16 .000 
N of Valid Cases 410     

a. 13 cells (52.0%) have expected count less than 5. The minimum 
expected count is .13. 
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Table 4.6: Cross table of pipe material and overall grading 

  
Overall_Grading 

Total 
1 2 3 4 5 

CCFRPM 

Count 26 0 0 0 0 26 

% within 
Pipe_Material 

100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 

% within 
Overall_Grading 

12.3% 0.0% 0.0% 0.0% 0.0% 6.3% 

% of Total 6.3% 0.0% 0.0% 0.0% 0.0% 6.3% 

FRP 

Count 63 3 7 3 0 76 

% within 
Pipe_Material 

82.9% 3.9% 9.2% 3.9% 0.0% 100.0% 

% within 
Overall_Grading 

29.7% 5.5% 9.0% 5.1% 0.0% 18.5% 

% of Total 15.4% 0.7% 1.7% 0.7% 0.0% 18.5% 

PVC 

Count 87 32 33 8 1 161 

% within 
Pipe_Material 

54.0% 19.9% 20.5% 5.0% 0.6% 100.0% 

% within 
Overall_Grading 

41.0% 58.2% 42.3% 13.6% 16.7% 39.3% 

% of Total 21.2% 7.8% 8.0% 2.0% 0.2% 39.3% 

RCP 

Count 10 10 11 16 2 49 

% within 
Pipe_Material 

20.4% 20.4% 22.4% 32.7% 4.1% 100.0% 

% within 
Overall_Grading 

4.7% 18.2% 14.1% 27.1% 33.3% 12.0% 

% of Total 2.4% 2.4% 2.7% 3.9% 0.5% 12.0% 

VCP 

Count 26 10 27 32 3 98 

% within 
Pipe_Material 

26.5% 10.2% 27.6% 32.7% 3.1% 100.0% 

% within 
Overall_Grading 

12.3% 18.2% 34.6% 54.2% 50.0% 23.9% 

% of Total 6.3% 2.4% 6.6% 7.8% 0.7% 23.9% 

Total 

Count 212 55 78 59 6 410 

% within 
Pipe_Material 

51.7% 13.4% 19.0% 14.4% 1.5% 100.0% 

% within 
Overall_Grading 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 51.7% 13.4% 19.0% 14.4% 1.5% 100.0% 
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Table 4.7: Chi-squared tests for overall grading and pipe material 

Chi-Square Tests 

  Value df 
Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 136.410a 16 .000 

Likelihood Ratio 147.993 16 .000 

N of Valid Cases 410     

a. 8 cells (32.0%) have expected count less than 5. The minimum 
expected count is .38. 
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Table 4.8: Cross table of pipe material and binary operational grading 

  
Binary_Operational_Grading 

Total 
0 1 

Pipe_Material 

CCFRPM 

Count 26 0 26 

% within Pipe_Material 100.00% 0.00% 100.00% 

% within 
Binary_Operational_Grading 

6.80% 0.00% 6.30% 

% of Total 6.30% 0.00% 6.30% 

FRP 

Count 75 1 76 

% within Pipe_Material 98.70% 1.30% 100.00% 

% within 
Binary_Operational_Grading 

19.70% 3.40% 18.50% 

% of Total 18.30% 0.20% 18.50% 

PVC 

Count 160 1 161 

% within Pipe_Material 99.40% 0.60% 100.00% 

% within 
Binary_Operational_Grading 

42.00% 3.40% 39.30% 

% of Total 39.00% 0.20% 39.30% 

RCP 

Count 35 14 49 

% within Pipe_Material 71.40% 28.60% 100.00% 

% within 
Binary_Operational_Grading 

9.20% 48.30% 12.00% 

% of Total 8.50% 3.40% 12.00% 

VCP 

Count 85 13 98 

% within Pipe_Material 86.70% 13.30% 100.00% 

% within 
Binary_Operational_Grading 

22.30% 44.80% 23.90% 

% of Total 20.70% 3.20% 23.90% 

Total 

Count 381 29 410 

% within Pipe_Material 92.90% 7.10% 100.00% 

% within 
Binary_Operational_Grading 

100.00% 100.00% 100.00% 

% of Total 92.90% 7.10% 100.00% 
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Table 4.9: Chi-squared tests for binary operational grading and pipe material 

Chi-Square Tests 

  Value df 
Asymptotic Significance 

(2-sided) 

Pearson Chi-Square 56.180a 4 .000 

Likelihood Ratio 51.383 4 .000 
N of Valid Cases 410     
a. 2 cells (20.0%) have expected count less than 5. The minimum 

expected count is 1.84. 
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Table 4.10: Cross table of pipe material and binary structural grading 

  
Binary_Structural_Grading 

Total 
0 1 

Pipe_Material 

CCFRPM 

Count 26 0 26 

% within Pipe_Material 100.00% 0.00% 100.00% 

% within 
Binary_Structural_Grading 

7.00% 0.00% 6.30% 

% of Total 6.30% 0.00% 6.30% 

FRP 

Count 74 2 76 

% within Pipe_Material 97.40% 2.60% 100.00% 

% within 
Binary_Structural_Grading 

19.90% 5.10% 18.50% 

% of Total 18.00% 0.50% 18.50% 

PVC 

Count 153 8 161 

% within Pipe_Material 95.00% 5.00% 100.00% 

% within 
Binary_Structural_Grading 

41.20% 20.50% 39.30% 

% of Total 37.30% 2.00% 39.30% 

RCP 

Count 44 5 49 

% within Pipe_Material 89.80% 10.20% 100.00% 

% within 
Binary_Structural_Grading 

11.90% 12.80% 12.00% 

% of Total 10.70% 1.20% 12.00% 

VCP 

Count 74 24 98 

% within Pipe_Material 75.50% 24.50% 100.00% 

% within 
Binary_Structural_Grading 

19.90% 61.50% 23.90% 

% of Total 18.00% 5.90% 23.90% 

Total 

Count 371 39 410 

% within Pipe_Material 90.50% 9.50% 100.00% 

% within 
Binary_Structural_Grading 

100.00% 100.00% 100.00% 

% of Total 90.50% 9.50% 100.00% 
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Table 4.11: Chi-squared tests for binary structural grading and pipe material 

Chi-Square Tests 

  Value df 
Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 36.343a 4 .000 

Likelihood Ratio 34.144 4 .000 
N of Valid Cases 410     
a. 2 cells (20.0%) have expected count less than 5. The minimum 

expected count is 2.47. 
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Table 4.12: Cross table of pipe material and binary overall grading 

  
Binary_Overall_Grading 

Total 
0 1 

Pipe_Material 

CCFRPM 

Count 26 0 26 

% within Pipe_Material 100.00% 0.00% 100.00% 

% within 
Binary_Overall_Grading 

7.50% 0.00% 6.30% 

% of Total 6.30% 0.00% 6.30% 

FRP 

Count 73 3 76 

% within Pipe_Material 96.10% 3.90% 100.00% 

% within 
Binary_Overall_Grading 

21.20% 4.60% 18.50% 

% of Total 17.80% 0.70% 18.50% 

PVC 

Count 152 9 161 

% within Pipe_Material 94.40% 5.60% 100.00% 

% within 
Binary_Overall_Grading 

44.10% 13.80% 39.30% 

% of Total 37.10% 2.20% 39.30% 

RCP 

Count 31 18 49 

% within Pipe_Material 63.30% 36.70% 100.00% 

% within 
Binary_Overall_Grading 

9.00% 27.70% 12.00% 

% of Total 7.60% 4.40% 12.00% 

VCP 

Count 63 35 98 

% within Pipe_Material 64.30% 35.70% 100.00% 

% within 
Binary_Overall_Grading 

18.30% 53.80% 23.90% 

% of Total 15.40% 8.50% 23.90% 

Total 

Count 345 65 410 

% within Pipe_Material 84.10% 15.90% 100.00% 

% within 
Binary_Overall_Grading 

100.00% 100.00% 100.00% 

% of Total 84.10% 15.90% 100.00% 
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Table 4.13: Chi-squared tests for binary overall grading and pipe material 

Chi-Square Tests 

  Value df 
Asymptotic 

Significance (2-sided) 

Pearson Chi-Square 70.680a 4 .000 

Likelihood Ratio 71.676 4 .000 
N of Valid Cases 410     
a. 1 cells (10.0%) have expected count less than 5. The minimum 

expected count is 4.12. 
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Chapter 5 : Results Associated with Developed Models  

 

 

5.1 Results Based on Statistical Modeling 

In this section of the dissertation, the results pertaining to statistical deterioration models 

are presented. For all deterioration models, the development of the model is based upon 

the (binary) overall condition grading of the sewer pipe, depending on the approach utilized 

in modeling the deterioration of assets. 

5.1.1 Binomial logistic regression 

The results obtained based on binomial logistic regression model are presented below. 

Based on these results, it is observed that Omnibus tests of model coefficients yield 

desirable result; furthermore, based on Hosmer and Lemeshow test, it is observed that 

binomial logistic regression is a suitable approach for modeling the deterioration of the 

sewer pipes considered in this study. Based on the classification table obtained for binomial 

logistic regression, it is realized that the accuracy associated with binary overall grading 0 

is 95.7%, whereas the accuracy associated binary overall grading 1 is 16.9%. Moreover, 

the overall accuracy of the model is 83.2%. 

Additionally, it is observed that the age of the pipe is a significant independent variable 

and its coefficient is 0.060; therefore, this indicates that when the age of sewer pipe 

increases by one year, the odds ratio will be increased by 6.18%.  
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Table 5.1: Table containing categorical variables codings (binomial logistic regression) 

  Frequency 
Parameter coding 

(1) (2) (3) (4) 

Pipe_Material 

CCFRPM 26 1 0 0 0 

FRP 76 0 1 0 0 

PVC 161 0 0 1 0 

RCP 49 0 0 0 1 

VCP 98 0 0 0 0 

 

 
Table 5.2: Table illustrating Omnibus tests of model coefficients (binomial logistic regression) 

  
Chi-

square 
df Sig. 

Step 1 

Step 100.546 11 .000 

Block 100.546 11 .000 

Model 100.546 11 .000 

 

 
Table 5.3: Nagelkerke and Cox & Snell R-Square values (binomial logistic regression) 

Model Summary 

Step 
-2 Log 

likelihood 

Cox & 
Snell R 
Square 

Nagelkerke R 
Square 

1 257.987a 0.217 0.373 

a. Estimation terminated at iteration number 20 
because maximum iterations has been reached. Final 

solution cannot be found. 
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Table 5.4: Hosmer and Lemeshow test (binomial logistic regression) 

Hosmer and Lemeshow Test 

Step 
Chi-

square 
df Sig. 

1 7.541 8 0.480 

 

 
Table 5.5: Classification table (binomial logistic regression) 

Classification Tablea 

  Observed 

Predicted 

Binary_Overall_Grading Percentage 
Correct 0 1 

Step 
1 

Binary_Overall_Grading 
0 330 15 95.7 

1 54 11 16.9 

Overall Percentage     83.2 

a. The cut value is .500 

 

 

 

 

 

 

 
  



167 
 

 
Table 5.6: Variables in the equation (binomial logistic regression) 

  B S.E. Wald df Sig. Exp(B) 

95% C.I.for 
EXP(B) 

Lower Upper 

Step 
1a 

Pipe_Material     14.553 4 0.006       

Pipe_Material(1) -19.565 7768.602 .000 1 0.998 0 0 . 

Pipe_Material(2) -2.944 1.054 7.798 1 0.005 0.053 0.007 0.416 

Pipe_Material(3) -1.500 0.517 8.417 1 0.004 0.223 0.081 0.615 

Pipe_Material(4) -0.741 0.612 1.465 1 0.226 0.477 0.144 1.582 

Pipe_Diameter_in 0.250 0.099 6.329 1 0.012 1.284 1.057 1.559 

Age_of_Pipe_years 0.060 0.017 12.4 1 .000 1.062 1.027 1.098 

Pipe_Slope 0.196 0.124 2.471 1 0.116 1.216 0.953 1.552 

Length_of_Pipe_ft .000 0.001 0.509 1 0.475 1 0.999 1.002 

Average_Velocity_ft_per_s 0.062 0.211 0.087 1 0.768 1.064 0.703 1.611 

Average_Flow_Depth -0.701 0.31 5.119 1 0.024 0.496 0.27 0.911 

Average_Flow_in_Pipe_percent_full 0.194 0.082 5.549 1 0.018 1.214 1.033 1.428 

Constant -10.146 2.831 12.849 1 0 0     

a. Variable(s) entered on step 1: Pipe_Material, Pipe_Diameter_in, Age_of_Pipe_years, Pipe_Slope, 
Length_of_Pipe_ft, Average_Velocity_ft_per_s, Average_Flow_Depth, 

Average_Flow_in_Pipe_percent_full. 
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5.1.2 Multinomial logistic regression 

The following tables illustrate the results based upon multinomial logistic regression. The 

reference category used in developing the deterioration model is overall condition grading 

1. Based on the classification table obtained through multinomial logistic regression, it is 

observed that the overall percentage of accuracy pertaining to this model is 59.3%; 

furthermore, it is observed that the percentage accuracy of the model associated with 

overall condition gradings 1, 2, 3, 4, and 5 are 88.7%, 1.8%, 11.5%, 72.9%, and 33.3%, 

respectively. Therefore, based on multinomial logistic regression, the highest and the 

lowest percentages of accuracy are associated with overall condition gradings 1 and 2, 

respectively. Additionally, based on the results pertaining to Goodness-of-Fit test and the 

likelihood ratio test available within model fitting information table, multinomial logistic 

regression is found to be a suitable approach for developing deterioration model of the 

sewer pipes considered in this study.  

Table 5.7: Table illustrating model fitting information (multinomial logistic regression) 

Model Fitting Information 

Model 

Model 
Fitting 
Criteria 

Likelihood Ratio Tests 

-2 Log 
Likelihood 

Chi-
Square 

df Sig. 

Intercept 
Only 

1038.953       

Final 828.911 210.042 44 .000 

 

Table 5.8: Results of Goodness-of-Fit tests (multinomial logistic regression) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1681.7 1592 0.058 

Deviance 828.911 1592 1.000 
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Table 5.9: Table containing Pseudo R-Square values (multinomial logistic regression) 

Pseudo R-Square 

Cox and Snell 0.401 

Nagelkerke 0.435 

McFadden 0.202 

 
Table 5.10: Table illustrating likelihood ratio tests (multinomial logistic regression) 

Likelihood Ratio Tests 

Effect 

Model Fitting 
Criteria 

Likelihood Ratio Tests 

-2 Log 
Likelihood of 

Reduced Model 

Chi-
Square 

df Sig. 

Intercept 828.911a .000 0 . 

Pipe_Diameter_in 840.254 11.344 4 0.023 

Age_of_Pipe_years 845.503 16.592 4 0.002 

Pipe_Slope 833.619 4.709 4 0.319 

Length_of_Pipe_ft 831.142 2.232 4 0.693 

Average_Flow_in_Pipe_percent_full 846.989 18.078 4 0.001 

Average_Velocity_ft_per_s 829.806 0.896 4 0.925 

Average_Flow_Depth 844.915 16.004 4 0.003 

Pipe_Material 892.261 63.350 16 .000 

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a 
reduced model. The reduced model is formed by omitting an effect from the final model. The 

null hypothesis is that all parameters of that effect are 0. 

a. This reduced model is equivalent to the final model because omitting the effect does not 
increase the degrees of freedom. 
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Table 5.11: Parameter estimates for overall gradings 2 and 3 (multinomial logistic regression) 

Parameter Estimates 

Overall_Gradinga B 
Std. 

Error 
Wald df Sig. Exp(B) 

95% Confidence 
Interval for 

Exp(B) 
Lower 
Bound 

Upper 
Bound 

2 

Intercept 0.046 3.019 0 1 0.988       

Pipe_Diameter_in -0.027 0.107 0.065 1 0.799 0.973 0.789 1.2 

Age_of_Pipe_years 0.012 0.014 0.65 1 0.42 1.012 0.984 1.04 

Pipe_Slope -0.184 0.213 0.745 1 0.388 0.832 0.548 1.264 

Length_of_Pipe_ft 0 0.001 0.002 1 0.962 1 0.999 1.001 

Average_Flow_in_Pipe_percent_full -0.13 0.094 1.914 1 0.167 0.878 0.731 1.056 

Average_Velocity_ft_per_s -0.138 0.213 0.416 1 0.519 0.871 0.574 1.324 

Average_Flow_Depth 0.429 0.326 1.732 1 0.188 1.535 0.811 2.907 

[Pipe_Material=CCFRPM] 
-

20.901 
0 . 1 . 

8.37E-
10 

8.37E-
10 

8.37E-
10 

[Pipe_Material=FRP] -3.55 1.134 9.8 1 0.002 0.029 0.003 0.265 

[Pipe_Material=PVC] 0.231 0.562 0.169 1 0.681 1.26 0.419 3.791 

[Pipe_Material=RCP] 0.211 0.755 0.078 1 0.779 1.236 0.281 5.428 

[Pipe_Material=VCP] 0b . . 0 . . . . 

3 

Intercept 0.36 2.641 0.019 1 0.891       

Pipe_Diameter_in -0.059 0.096 0.37 1 0.543 0.943 0.781 1.139 

Age_of_Pipe_years 0.006 0.013 0.189 1 0.664 1.006 0.981 1.031 

Pipe_Slope -0.208 0.212 0.962 1 0.327 0.812 0.536 1.231 

Length_of_Pipe_ft 0 0.001 0.529 1 0.467 1 0.999 1.002 

Average_Flow_in_Pipe_percent_full -0.087 0.076 1.296 1 0.255 0.917 0.789 1.065 

Average_Velocity_ft_per_s -0.003 0.205 0 1 0.986 0.997 0.667 1.489 

Average_Flow_Depth 0.425 0.282 2.28 1 0.131 1.53 0.881 2.657 

[Pipe_Material=CCFRPM] 
-

21.176 
9838.481 0 1 0.998 

6.36E-
10 

0 .c 

[Pipe_Material=FRP] -2.94 0.913 10.364 1 0.001 0.053 0.009 0.317 

[Pipe_Material=PVC] -0.414 0.456 0.824 1 0.364 0.661 0.271 1.615 

[Pipe_Material=RCP] -0.221 0.666 0.11 1 0.74 0.802 0.217 2.959 

[Pipe_Material=VCP] 0b . . 0 . . . . 

a. The reference category is: 1.00. 
b. This parameter is set to zero because it is redundant. 

c. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing. 
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Table 5.12: Parameter estimates for overall gradings 4 and 5 (multinomial logistic regression) 

Parameter Estimates 

Overall_Gradinga B 
Std. 

Error 
Wald df Sig. Exp(B) 

95% Confidence 
Interval for 

Exp(B) 
Lower 
Bound 

Upper 
Bound 

4 

Intercept -8.673 3.243 7.152 1 0.007       

Pipe_Diameter_in 0.192 0.114 2.821 1 0.093 1.212 0.968 1.516 

Age_of_Pipe_years 0.069 0.019 12.778 1 .000 1.071 1.031 1.112 

Pipe_Slope 0.154 0.131 1.39 1 0.238 1.167 0.903 1.509 

Length_of_Pipe_ft 0 0.001 0.567 1 0.452 1 0.999 1.002 

Average_Flow_in_Pipe_percent_full 0.108 0.096 1.258 1 0.262 1.114 0.922 1.345 

Average_Velocity_ft_per_s 0.068 0.238 0.081 1 0.776 1.07 0.671 1.706 

Average_Flow_Depth -0.319 0.36 0.782 1 0.377 0.727 0.359 1.473 

[Pipe_Material=CCFRPM] 
-

20.712 
0 . 1 . 

1.01E-
09 

1.01E-
09 

1.01E-
09 

[Pipe_Material=FRP] -4.075 1.201 11.51 1 0.001 0.017 0.002 0.179 

[Pipe_Material=PVC] -1.543 0.587 6.91 1 0.009 0.214 0.068 0.675 

[Pipe_Material=RCP] -0.735 0.72 1.043 1 0.307 0.479 0.117 1.966 

[Pipe_Material=VCP] 0b . . 0 . . . . 

5 

Intercept 
-

16.967 
7.342 5.341 1 0.021       

Pipe_Diameter_in 0.557 0.264 4.453 1 0.035 1.746 1.041 2.93 

Age_of_Pipe_years 0.017 0.049 0.121 1 0.728 1.017 0.924 1.12 

Pipe_Slope -0.904 2.818 0.103 1 0.748 0.405 0.002 101.376 

Length_of_Pipe_ft 0.002 0.002 1.605 1 0.205 1.002 0.999 1.005 

Average_Flow_in_Pipe_percent_full 0.429 0.259 2.742 1 0.098 1.536 0.924 2.552 

Average_Velocity_ft_per_s -0.312 0.607 0.265 1 0.607 0.732 0.223 2.404 

Average_Flow_Depth -1.775 1.003 3.131 1 0.077 0.169 0.024 1.211 

[Pipe_Material=CCFRPM] 
-

19.075 
9667.955 0 1 0.998 

5.20E-
09 

0 .c 

[Pipe_Material=FRP] 
-

19.836 
2574.812 0 1 0.994 

2.43E-
09 

0 .c 

[Pipe_Material=PVC] -1.552 1.559 0.992 1 0.319 0.212 0.01 4.494 

[Pipe_Material=RCP] -0.898 1.673 0.288 1 0.591 0.407 0.015 10.815 

[Pipe_Material=VCP] 0b . . 0 . . . . 

a. The reference category is: 1.00. 
b. This parameter is set to zero because it is redundant. 

c. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing. 
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Table 5.13: Classification table obtained for multinomial logistic regression 

Classification 

Observed 
Predicted 

1 2 3 4 5 
Percent 
Correct 

1 188 0 7 17 0 88.70% 
2 38 1 4 12 0 1.80% 
3 45 2 9 22 0 11.50% 
4 14 0 2 43 0 72.90% 
5 1 0 1 2 2 33.30% 

Overall 
Percentage 

69.80% 0.70% 5.60% 23.40% 0.50% 59.30% 

 

5.1.3 Ordinal regression with Logit link function 

Utilizing ordinal regression with Logit link function with all independent variables, the 

following tables are obtained. Based on these results, it is observed that Goodness-of-Fit 

test (Pearson as well as Deviance) and likelihood ratio test available within model fitting 

information table are both satisfied. However, with regards to test of parallel lines which 

is conducted for verifying the proportional odds assumption associated with ordinal 

regression, it is realized that this test did not yield desirable results. Therefore, the full 

model is not suitable to be used for modeling deterioration of sewer pipes. However, it was 

realized that by removing the average flow in pipe (%full) from the deterioration model, 

the test of parallel lines did yield satisfactory results; and therefore, the proportional odds 

assumption was satisfied. It should be noted that Goodness-of-Fit test (both Pearson and 

Deviance) as well as likelihood ratio test available within model fitting information table 

were still satisfied in the new model. The results pertaining to both modeling approaches 

are presented in the following tables. 
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Model including all independent variables: 

The full model did not pass the test of parallel lines; therefore, the proportional odds 

assumption is not satisfied.  

Table 5.14: Table containing model fitting information (ordinal regression using Logit link 
function: full model) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1038.95       

Final 885.222 153.73 11 .000 

Link function: Logit. 

Table 5.15: Results of Goodness-of-Fit tests (ordinal regression using Logit link function: full 
model) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1419.47 1625 1.000 

Deviance 885.222 1625 1.000 

Link function: Logit. 

 
 

Table 5.16: Table containing Pseduo R-Square values (ordinal regression using Logit link 
function: full model) 

Pseudo R-Square 

Cox and Snell 0.313 

Nagelkerke 0.340 

McFadden 0.148 

Link function: Logit. 
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Table 5.17: Parameter estimates for ordinal regression using Logit link function: full model 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 3.936 1.365 8.316 1 0.004 1.261 6.611 

[Overall_Grading = 2.00] 4.671 1.369 11.641 1 0.001 1.988 7.355 

[Overall_Grading = 3.00] 5.988 1.382 18.764 1 .000 3.279 8.698 

[Overall_Grading = 4.00] 8.799 1.485 35.102 1 .000 5.888 11.71 

Location 

Pipe_Diameter_in 0.143 0.049 8.326 1 0.004 0.046 0.239 

Age_of_Pipe_years 0.025 0.009 7.635 1 0.006 0.007 0.043 

Pipe_Slope -0.01 0.094 0.012 1 0.912 -0.194 0.173 

Length_of_Pipe_ft .000 0 0.409 1 0.522 -0.001 0.001 

Average_Flow_in_Pipe_percent_full 0.088 0.037 5.583 1 0.018 0.015 0.161 

Average_Velocity_ft_per_s -0.02 0.134 0.021 1 0.884 -0.282 0.243 

Average_Flow_Depth -0.281 0.141 3.947 1 0.047 -0.558 -0.004 

[Pipe_Material=CCFRPM] -22.853 0 . 1 . 
-

22.853 
-

22.853 

[Pipe_Material=FRP] -3.605 0.609 35.026 1 .000 -4.799 -2.411 

[Pipe_Material=PVC] -0.877 0.313 7.858 1 0.005 -1.49 -0.264 

[Pipe_Material=RCP] -0.705 0.432 2.657 1 0.103 -1.552 0.143 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.18: Results of test of parallel lines for ordinal regression using Logit link function: full 
model 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 885.222       

General 834.475b 50.748c 33 0.025 
The null hypothesis states that the location parameters (slope coefficients) are 

the same across response categories. 
a. Link function: Logit. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The Chi-Square statistic is computed based on the log-likelihood value of 
the last iteration of the general model. Validity of the test is uncertain. 
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Model without average flow in pipe (%full): 

In the following, the average flow in pipe (%full) is removed from the model and thus the 

test of parallel lines is satisfied; furthermore, it is observed that the age of sewer pipe is 

found to be a significant independent variable as well. 

Table 5.19: Table containing model fitting information (ordinal regression using Logit link 
function) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Intercept 
Only 

1038.95       

Final 889.666 149.286 10 .000 

Link function: Logit. 

 

Table 5.20: Results obtained based on Goodness-of-Fit tests (ordinal regression using Logit link 
function) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1439.06 1626 1.000 

Deviance 889.666 1626 1.000 

Link function: Logit. 

 

Table 5.21: Table containing Pseudo R-Square values for ordinal regression using Logit link 
function 

Pseudo R-Square 

Cox and Snell 0.305 

Nagelkerke 0.331 

McFadden 0.144 

Link function: Logit. 
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Table 5.22: Parameter estimates obtained based on ordinal regression using Logit link function 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 1.163 0.7 2.758 1 0.097 -0.21 2.535 

[Overall_Grading = 2.00] 1.898 0.703 7.295 1 0.007 0.521 3.275 

[Overall_Grading = 3.00] 3.206 0.715 20.081 1 .000 1.804 4.608 

[Overall_Grading = 4.00] 5.946 0.834 50.782 1 .000 4.311 7.581 

Location 

Pipe_Diameter_in 0.043 0.025 2.918 1 0.088 -0.006 0.092 

Age_of_Pipe_years 0.022 0.009 6.247 1 0.012 0.005 0.04 

Average_Flow_Depth 0.033 0.04 0.679 1 0.41 -0.045 0.111 

Pipe_Slope -0.019 0.094 0.041 1 0.839 -0.203 0.165 

Length_of_Pipe_ft .000 0 0.36 1 0.548 -0.001 0.001 

Average_Velocity_ft_per_s 0.05 0.13 0.144 1 0.704 -0.206 0.305 

[Pipe_Material=CCFRPM] -22.867 0 . 1 . 
-

22.867 
-

22.867 

[Pipe_Material=FRP] -3.401 0.601 31.993 1 .000 -4.579 -2.222 

[Pipe_Material=PVC] -1.054 0.304 12.002 1 0.001 -1.651 -0.458 

[Pipe_Material=RCP] -0.578 0.428 1.819 1 0.177 -1.417 0.262 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.23: Results of test of parallel lines obtained based on ordinal regression using Logit link 
function 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 889.666       

General 849.629b 40.037c 30 0.104 
The null hypothesis states that the location parameters (slope coefficients) 

are the same across response categories. 
a. Link function: Logit. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The Chi-Square statistic is computed based on the log-likelihood value of 
the last iteration of the general model. Validity of the test is uncertain. 

 

5.1.4 Ordinal regression with Probit link function 

The following tables demonstrate the results obtained by using ordinal regression with 

Probit link function. Based on these results, it is realized that both Goodness-of-Fit test 

(Pearson and Deviance) as well as likelihood ratio test available within model fitting 

information table are satisfied. Furthermore, the proportional odds assumption is also 

validated through test of parallel lines. Based on the following results, it is observed that 

similar to previous modeling techniques, the age of the sewer pipes is a significant 

independent variable. 

Table 5.24: Table containing model fitting information (ordinal regression using Probit link 
function) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1038.95       

Final .000 1038.953 11 .000 
Link function: Probit. 
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Table 5.25: Results of Goodness-of-Fit tests (ordinal regression using Probit link function) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1588.129 1625 0.739 

Deviance 883.156 1625 1.000 

Link function: Probit. 
 

Table 5.26: Table containing Pseudo R-Square values for ordinal regression using Probit link 
function 

Pseudo R-Square 

Cox and Snell 0.921 

Nagelkerke 1.000 

McFadden 1.000 

Link function: Probit. 
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Table 5.27: Parameter estimates obtained based on ordinal regression using Probit link function 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 2.32 0.788 8.663 1 0.003 0.775 3.865 

[Overall_Grading = 2.00] 2.761 0.79 12.21 1 .000 1.212 4.309 

[Overall_Grading = 3.00] 3.538 0.795 19.791 1 .000 1.979 5.097 

[Overall_Grading = 4.00] 4.99 0.831 36.068 1 .000 3.362 6.619 

Location 

Pipe_Diameter_in 0.082 0.029 8.183 1 0.004 0.026 0.138 

Age_of_Pipe_years 0.015 0.005 8.212 1 0.004 0.005 0.026 

Pipe_Slope 0.001 0.055 .000 1 0.985 -0.107 0.109 

Length_of_Pipe_ft .000 .000 0.518 1 0.472 0 0.001 

Average_Flow_in_Pipe_percent_full 0.051 0.021 5.772 1 0.016 0.009 0.093 

Average_Velocity_ft_per_s -0.005 0.078 0.004 1 0.949 -0.159 0.149 

Average_Flow_Depth -0.163 0.081 4.009 1 0.045 -0.323 -0.003 

[Pipe_Material=CCFRPM] -6.131 327.222 .000 1 0.985 
-

647.474 
635.212 

[Pipe_Material=FRP] -2.042 0.34 36.123 1 .000 -2.708 -1.376 

[Pipe_Material=PVC] -0.523 0.185 7.966 1 0.005 -0.886 -0.16 

[Pipe_Material=RCP] -0.387 0.254 2.316 1 0.128 -0.885 0.111 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Probit. 
a. This parameter is set to zero because it is redundant. 

 

 



181 
 

Table 5.28: Results of test of parallel lines obtained based on ordinal regression using Probit link 
function 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis .000       

General .000b .000 33 1.000 
The null hypothesis states that the location parameters (slope coefficients) are 

the same across response categories. 
a. Link function: Probit. 

b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 

 

5.1.5 Ordinal regression with Negative Log-Log link function 

Utilizing ordinal regression with Negative Log-Log link function for service life estimation 

of sewer pipes, it was observed that although the developed model satisfied Goodness-of-

Fit test (Pearson and Deviance) as well as likelihood ratio test available within model fitting 

information table, however, the results from test of parallel lines illustrated that the 

proportional odds assumption was not satisfied for the sewer pipes considered in this study. 

It was further observed that upon removal of the average flow in pipe (%full) as well as 

the average velocity of flow in pipe from the model, it was observed that in addition to 

satisfying the Goodness-of-Fit test and the likelihood ratio test available within model 

fitting information table, based upon the results obtained from test of parallel lines, the 

proportional odds assumption was also satisfied. It is further observed that the age of sewer 

pipes is a significant variable of this model. The results pertaining to the model with all 

independent variables and the model without average flow in pipe (%full) and average 

velocity of flow are presented below. 
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Model developed by all independent variable: 

Proportional odds assumption was not validated for this model as the full model did not 

pass the test of parallel lines. The following tables include the results from this model: 

 
Table 5.29: Table containing model fitting information (ordinal regression using Negative Log-

Log link function: full model) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1038.953       

Final 894.185 144.768 11 .000 
Link function: Negative Log-log. 

 
Table 5.30: Results of Goodness-of-Fit tests (ordinal regression using Negative Log-Log link 

function: full model) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1368.292 1625 1.000 

Deviance 894.185 1625 1.000 

Link function: Negative Log-log. 

 
Table 5.31: Table containing Pseudo R-Square values for ordinal regression using Negative Log-

Log link function: full model) 

Pseudo R-Square 

Cox and Snell 0.297 

Nagelkerke 0.323 

McFadden 0.139 

Link function: Negative Log-log. 
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Table 5.32: Parameter estimates obtained based on ordinal regression using Negative Log-Log 
link function: full model) 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 2.537 0.896 8.027 1 0.005 0.782 4.293 

[Overall_Grading = 2.00] 3.053 0.9 11.513 1 0.001 1.29 4.817 

[Overall_Grading = 3.00] 4.067 0.912 19.899 1 0 2.28 5.853 

[Overall_Grading = 4.00] 6.612 1 43.677 1 0 4.651 8.572 

Location 

Pipe_Diameter_in 0.081 0.032 6.394 1 0.011 0.018 0.144 

Age_of_Pipe_years 0.02 0.007 9.259 1 0.002 0.007 0.033 

Pipe_Slope -0.004 0.071 0.004 1 0.953 -0.143 0.134 

Length_of_Pipe_ft 7.29E-05 0 0.075 1 0.785 0 0.001 

Average_Flow_in_Pipe_percent_full 0.053 0.024 5.084 1 0.024 0.007 0.1 

Average_Velocity_ft_per_s -0.109 0.094 1.35 1 0.245 -0.293 0.075 

Average_Flow_Depth -0.166 0.091 3.314 1 0.069 -0.345 0.013 

[Pipe_Material=CCFRPM] -21.851 0 . 1 . 
-

21.851 
-

21.851 

[Pipe_Material=FRP] -2.29 0.441 26.946 1 0 -3.154 -1.425 

[Pipe_Material=PVC] -0.505 0.215 5.545 1 0.019 -0.926 -0.085 

[Pipe_Material=RCP] -0.234 0.288 0.659 1 0.417 -0.799 0.331 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Negative Log-log. 
a. This parameter is set to zero because it is redundant. 
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Table 5.33: Results of test of parallel lines obtained based on ordinal regression using Negative 

Log-Log link function: full model) 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Null Hypothesis 894.185       

General 785.466b 108.719c 33 .000 
The null hypothesis states that the location parameters (slope coefficients) 

are the same across response categories. 
a. Link function: Negative Log-log. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The Chi-Square statistic is computed based on the log-likelihood value 
of the last iteration of the general model. Validity of the test is uncertain. 
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Model developed without average flow in pipe (%full) and average velocity of flow: 

By removing both the average flow in pipe (%full) and the average velocity of flow in pipe 

from the model, the test of parallel lines is satisfied; therefore, proportional odds 

assumption is valid for this model. As observed in the following results, the age of pipe is 

determined as a significant independent variable. 

Table 5.34: Table containing model fitting information (ordinal regression using Negative Log-
Log link function) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Intercept 
Only 

1038.953       

Final 897.571 141.382 9 .000 
Link function: Negative Log-log. 

 
Table 5.35: Results of Goodness-of-Fit tests (ordinal regression using Negative Log-Log link 

function) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1396.114 1627 1.000 
Deviance 897.571 1627 1.000 

Link function: Negative Log-log. 

 
Table 5.36: Table containing Pseudo R-Square values for ordinal regression using Negative Log-

Log link function 

Pseudo R-Square 

Cox and Snell 0.292 

Nagelkerke 0.317 

McFadden 0.136 

Link function: Negative Log-log. 
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Table 5.37: Parameter estimates obtained based on ordinal regression using Negative Log-Log 

link function 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 0.951 0.465 4.187 1 0.041 0.04 1.861 

[Overall_Grading = 2.00] 1.465 0.469 9.755 1 0.002 0.546 2.384 

[Overall_Grading = 3.00] 2.474 0.482 26.359 1 .000 1.53 3.419 

[Overall_Grading = 4.00] 5.003 0.622 64.664 1 .000 3.784 6.223 

Location 

Pipe_Diameter_in 0.017 0.016 1.054 1 0.305 -0.015 0.049 

Age_of_Pipe_years 0.017 0.006 7.291 1 0.007 0.005 0.03 

Average_Flow_Depth 0.034 0.025 1.897 1 0.168 -0.014 0.083 

Pipe_Slope -0.023 0.071 0.104 1 0.747 -0.162 0.116 

Length_of_Pipe_ft 6.22E-05 .000 0.055 1 0.815 .000 0.001 

[Pipe_Material=CCFRPM] -21.913 .000 . 1 . 
-

21.913 
-

21.913 

[Pipe_Material=FRP] -2.197 0.431 25.937 1 .000 -3.042 -1.351 

[Pipe_Material=PVC] -0.602 0.207 8.466 1 0.004 -1.007 -0.196 

[Pipe_Material=RCP] -0.182 0.279 0.426 1 0.514 -0.73 0.365 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Negative Log-log. 
a. This parameter is set to zero because it is redundant. 
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Table 5.38: Results of test of parallel lines obtained based on ordinal regression using Negative 

Log-Log link function 

Test of Parallel Linesa 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 897.571       

General 875.982b 21.589c 27 0.758 
The null hypothesis states that the location parameters (slope coefficients) 

are the same across response categories. 
a. Link function: Negative Log-log. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The Chi-Square statistic is computed based on the log-likelihood value of 
the last iteration of the general model. Validity of the test is uncertain. 

 

5.1.6 Ordinal regression with Complementary Log-Log link function 

When ordinal regression with Complementary Log-Log link function is utilized for 

obtaining the deterioration model in sewer pipes, it is realized that only Deviance 

Goodness-of-Fit test yielded desirable result; it was further observed that both likelihood 

ratio test available within model fitting information table as well as test of parallel lines, 

illustrated satisfactory results. Therefore, the proportional odds assumption using 

Complementary Log-Log link function is validated. The following tables contain results 

from this deterioration model: 
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Table 5.39: Table containing model fitting information (ordinal regression using Complementary 
Log-Log link function) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1038.95       

Final .000 1038.95 11 .000 
Link function: Complementary Log-log. 

 

Table 5.40: Results of Goodness-of-Fit tests (ordinal regression using Complementary Log-Log 
link function) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 3650.789 1625 .000 

Deviance 887.914 1625 1.000 

Link function: Complementary Log-log. 
 

Table 5.41: Table containing Pseudo R-Square values for ordinal regression using 
Complementary Log-Log link function 

Pseudo R-Square 

Cox and Snell 0.921 

Nagelkerke 1.000 

McFadden 1.000 

Link function: Complementary Log-log. 
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Table 5.42: Parameter estimates obtained based on ordinal regression using Complementary 
Log-Log link function 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 1.787 0.795 5.058 1 0.025 0.23 3.344 

[Overall_Grading = 2.00] 2.255 0.796 8.032 1 0.005 0.695 3.814 

[Overall_Grading = 3.00] 3.006 0.8 14.126 1 .000 1.438 4.574 

[Overall_Grading = 4.00] 4.152 0.821 25.578 1 .000 2.543 5.761 

Location 

Pipe_Diameter_in 0.074 0.029 6.472 1 0.011 0.017 0.13 

Age_of_Pipe_years 0.014 0.005 7.532 1 0.006 0.004 0.025 

Pipe_Slope 0.005 0.052 0.009 1 0.923 -0.097 0.107 

Length_of_Pipe_ft .000 .000 1.075 1 0.3 .000 0.001 

Average_Flow_in_Pipe_percent_full 0.045 0.022 4.081 1 0.043 0.001 0.088 

Average_Velocity_ft_per_s 0.056 0.074 0.583 1 0.445 -0.088 0.201 

Average_Flow_Depth -0.143 0.083 2.974 1 0.085 -0.306 0.02 

[Pipe_Material=CCFRPM] -2.698 0.627 18.491 1 .000 -3.927 -1.468 

[Pipe_Material=FRP] -1.951 0.316 38.135 1 .000 -2.57 -1.332 

[Pipe_Material=PVC] -0.587 0.187 9.894 1 0.002 -0.952 -0.221 

[Pipe_Material=RCP] -0.479 0.25 3.656 1 0.056 -0.97 0.012 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Complementary Log-log. 
a. This parameter is set to zero because it is redundant. 
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Table 5.43: Results of test of parallel lines obtained based on ordinal regression using 
Complementary Log-Log link function 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Null Hypothesis .000       

General .000b .000 33 1.000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Complementary Log-log. 

b. The log-likelihood value is practically zero. There may be a 
complete separation in the data. The maximum likelihood estimates 

do not exist. 

 

5.1.7 Ordinal regression with Cauchit link function 

Tables below illustrate the results obtained from ordinal regression utilizing Cauchit link 

function. Based on these results, it is observed that even though the Goodness-of-Fit test 

(Deviance and Pearson) and the likelihood ratio test available within model fitting 

information table both were satisfied, however, the test of parallel lines did not yield 

desirable results and therefore the proportional odds assumption cannot be validated. 

Additionally, removal of independent variables (as observed for Logit and Negative Log-

Log link functions) did not yield satisfactory results either. Furthermore, the results 

associated with Cauchit link functions are solely presented for illustration and comparison 

purposes.  
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Table 5.44: Table containing model fitting information (ordinal regression using Cauchit link 
function) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1038.953       

Final 909.646 129.307 11 .000 
Link function: Cauchit. 

 

 
Table 5.45: Results of Goodness-of-Fit tests (ordinal regression using Cauchit link function) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 1449.17 1625 0.999 
Deviance 909.646 1625 1.000 

Link function: Cauchit. 

 

 
Table 5.46: Table containing Pseudo R-Square values for ordinal regression using Cauchit link 

function 

Pseudo R-Square 

Cox and Snell 0.270 

Nagelkerke 0.294 

McFadden 0.124 

Link function: Cauchit. 
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Table 5.47: Parameter estimates obtained based on ordinal regression using Cauchit link function 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 0.201 1.204 0.028 1 0.867 -2.158 2.56 

[Overall_Grading = 2.00] 0.885 1.203 0.541 1 0.462 -1.473 3.243 

[Overall_Grading = 3.00] 2.19 1.224 3.202 1 0.074 -0.209 4.588 

[Overall_Grading = 4.00] 14.933 4.968 9.034 1 0.003 5.196 24.671 

Location 

Pipe_Diameter_in 0.024 0.044 0.307 1 0.58 -0.061 0.109 

Age_of_Pipe_years 0.015 0.008 3.783 1 0.052 0 0.031 

Pipe_Slope -0.125 0.103 1.493 1 0.222 -0.326 0.076 

Length_of_Pipe_ft .000 .000 0.518 1 0.472 0 0.001 

Average_Flow_in_Pipe_percent_full -0.029 0.032 0.853 1 0.356 -0.092 0.033 

Average_Velocity_ft_per_s 0.057 0.12 0.229 1 0.632 -0.177 0.292 

Average_Flow_Depth 0.116 0.123 0.893 1 0.345 -0.125 0.357 

[Pipe_Material=CCFRPM] -
1220.282 

.000 . 1 . 
-

1220.282 
-

1220.282 

[Pipe_Material=FRP] -3.549 0.707 25.16 1 .000 -4.935 -2.162 

[Pipe_Material=PVC] -0.987 0.297 11.029 1 0.001 -1.57 -0.405 

[Pipe_Material=RCP] -0.792 0.404 3.846 1 0.05 -1.583 0 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Cauchit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.48: Results of test of parallel lines obtained based on ordinal regression using Cauchit 
link function 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Null Hypothesis 909.646       

General .000b 909.646 33 .000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Cauchit. 

b. The log-likelihood value is practically zero. There may be a 
complete separation in the data. The maximum likelihood estimates 

do not exist. 

 

5.1.8 Binomial logistic regression considering initial condition gradings 

In this section, the deterioration model for sewer pipes is developed based on binomial 

logistic regression and by considering the initial condition grading of sewer pipes. It is 

assumed that sewer pipes were initially at perfect condition (binary overall condition 

grading 0) and no defects due to inherent defects within sewer pipes or due to installation 

of sewer pipes, etc. were introduced to the pipes at the start of their service life. Based on 

the results presented in the following tables, it is realized that Ombinus tests of model 

coefficients and Hosmer and Lemeshow test both yield satisfactory results, and therefore, 

this approach seems to be suitable for developing deterioration model in sewer pipes. The 

classification table obtained herein shows that the percentage of accuracy associated with 

binary overall condition grading 0 is 97.6%; however, the percentage of accuracy for 

condition grading 1 is 16.9%.  

The overall accuracy of the model is found to be 91.2%. It is also observed that the overall 

accuracy of the model (i.e. 91.2%) is greater than the model developed based on binomial 

logistic regression but without considering the initial condition gradings of sewer pipes 

(i.e. 83.2%). Based on this model, the age of sewer pipe is found to be a significant 

independent variable. Furthermore, in this model, the coefficient of the age of pipe is 0.100, 
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whereas based on binomial logistic regression and when the initial condition gradings of 

sewer pipes were not accounted for, this value was 0.060. This indicates that by considering 

the initial condition grading of sewer pipes, the deterioration rate is increasing. In this 

model, increasing the age of sewer pipe by one year results in 10.52% increase in the odds 

ratio, whereas without considering the initial condition grading of pipes, this value 

corresponds to 6.18%. 

Table 5.49: Table containing categorical variables codings (binomial logistic regression and 
considering initial condition gradings) 

Categorical Variables Codings 

  Frequency 
Parameter coding 

(1) (2) (3) (4) 

Pipe_Material 

CCFRPM 52 1 0 0 0 

FRP 152 0 1 0 0 

PVC 322 0 0 1 0 

RCP 98 0 0 0 1 

VCP 196 0 0 0 0 

 

Table 5.50: Table illustrating Omnibus tests of model coefficients (binomial logistic regression 
and considering initial condition gradings) 

Omnibus Tests of Model Coefficients 

  
Chi-

square 
df Sig. 

Step 1 

Step 181.542 11 .000 

Block 181.542 11 .000 

Model 181.542 11 .000 
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Table 5.51: Nagelkerke and Cox & Snell R-Square values (binomial logistic regression and 
considering initial condition gradings) 

Model Summary 

Step 
-2 Log 

likelihood 

Cox & 
Snell R 
Square 

Nagelkerke R 
Square 

1 272.703a 0.199 0.467 
a. Estimation terminated at iteration number 20 

because maximum iterations has been reached. Final 
solution cannot be found. 

 

Table 5.52: Hosmer and Lemeshow test (binomial logistic regression and considering initial 
condition gradings) 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 3.135 8 0.926 

 

Table 5.53: Classification table (binomial logistic regression and considering initial condition 
gradings) 

Classification Tablea 

  Observed 

Predicted 

Binary_Overall_Grading Percentage 
Correct 0 1 

Step 
1 

Binary_Overall_Grading 
0 737 18 97.6 

1 54 11 16.9 

Overall Percentage     91.2 

a. The cut value is .500 
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Table 5.54: Variables in the equation (binomial logistic regression and considering initial 
condition gradings) 

  B S.E. Wald df Sig. Exp(B) 

95% C.I.for 
EXP(B) 

Lower Upper 

Step 
1a 

Age_of_Pipe_years 0.1 0.014 50.778 1 0 1.105 1.075 1.136 

Pipe_Material     7.997 4 0.092       

Pipe_Material(1) -
17.694 

5441.162 0 1 0.997 0 0 . 

Pipe_Material(2) -1.706 0.976 3.056 1 0.08 0.182 0.027 1.23 

Pipe_Material(3) -1.111 0.497 5.001 1 0.025 0.329 0.124 0.872 

Pipe_Material(4) -0.274 0.593 0.213 1 0.645 0.761 0.238 2.432 

Pipe_Slope 0.218 0.12 3.321 1 0.068 1.244 0.984 1.572 

Average_Flow_in_Pipe_percent_full 0.127 0.041 9.863 1 0.002 1.136 1.049 1.23 

Length_of_Pipe_ft 0 0.001 0.326 1 0.568 1 0.999 1.001 

Average_Velocity_ft_per_s 0.056 0.206 0.073 1 0.787 1.057 0.706 1.583 

Pipe_Diameter_in 0.168 0.06 7.855 1 0.005 1.182 1.052 1.329 

Average_Flow_Depth -0.437 0.166 6.93 1 0.008 0.646 0.467 0.894 

Constant -9.709 1.75 30.764 1 0 0     

a. Variable(s) entered on step 1: Age_of_Pipe_years, Pipe_Material, Pipe_Slope, 
Average_Flow_in_Pipe_percent_full, Length_of_Pipe_ft, Average_Velocity_ft_per_s, Pipe_Diameter_in, 

Average_Flow_Depth. 
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5.1.9 Multinomial logistic regression considering initial condition gradings 

The following table contain the results obtained based on multinomial logistic regression 

and by taking the initial condition grading of sewer pipes into account. As stated earlier, it 

is assumed that the initial overall condition grading of sewer pipes is 1 (similar to binary 

overall condition grading 0) and they were initially in perfect condition. The results 

illustrate that both Goodness-of-Fit test and the likelihood ratio test available within model 

fitting information table yield satisfactory results; therefore, multinomial logistic 

regression considering initial condition gradings of sewer pipes seems to be a suitable 

technique to be used as a deterioration model. Moreover, considering the classification 

table, the results show that the percentage accuracy of this model for overall condition 

gradings 1, 2, 3, 4, and 5 are 96.8%, 9.1%, 3.8%, 72.9%, and 16.7%, respectively. 

Compared to multinomial logistic regression without considering the initial condition 

gradings of sewer pipes, wherein the overall accuracy of the model was 59.3%, herein the 

overall accuracy of the model is computed to be 79.8% which shows an increase by 20.5% 

in the overall accuracy. 

 
Table 5.55: Table containing model fitting information (multinomial logistic regression and 

considering initial condition gradings) 

Model Fitting Information 

Model 

Model Fitting 
Criteria 

Likelihood Ratio Tests 

-2 Log 
Likelihood 

Chi-
Square 

df Sig. 

Intercept 
Only 

1377.578       

Final 953.664 423.914 44 .000 
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Table 5.56: Results of Goodness-of-Fit tests (multinomial logistic regression and considering 
initial condition gradings) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 2621.255 3232 1.000 

Deviance 953.664 3232 1.000 
 
 

 
Table 5.57: Table containing Pseudo R-Square values (multinomial logistic regression and 

considering initial condition gradings function) 

Pseudo R-Square 

Cox and Snell 0.404 

Nagelkerke 0.496 

McFadden 0.308 
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Table 5.58: Table illustrating likelihood ratio tests (multinomial logistic regression and 
considering initial condition gradings) 

Likelihood Ratio Tests 

Effect 

Model 
Fitting 
Criteria 

Likelihood Ratio Tests 

-2 Log 
Likelihood 
of Reduced 

Model 

Chi-
Square 

df Sig. 

Intercept 953.664a 0 0 . 

Pipe_Diameter_in 962.157 8.494 4 0.075 

Age_of_Pipe_years 1227.68 274.013 4 0 

Pipe_Slope 957.43 3.766 4 0.439 

Length_of_Pipe_ft 957.647 3.983 4 0.408 

Average_Velocity_ft_per_s 955.798 2.134 4 0.711 

Average_Flow_Depth 965.537 11.874 4 0.018 

Average_Flow_in_Pipe_percent_full 968.892 15.228 4 0.004 

Pipe_Material 989.329 35.665 16 0.003 

The chi-square statistic is the difference in -2 log-likelihoods between the final model 
and a reduced model. The reduced model is formed by omitting an effect from the final 

model. The null hypothesis is that all parameters of that effect are 0. 
a. This reduced model is equivalent to the final model because omitting the effect does 

not increase the degrees of freedom. 
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Table 5.59: Parameter estimates for overall gradings 2 and 3 (multinomial logistic regression and 
considering initial condition gradings) 

Parameter Estimates 

Overall_Gradinga B 
Std. 

Error 
Wald df Sig. Exp(B) 

95% 
Confidence 
Interval for 

Exp(B) 
Lower 
Bound 

Upper 
Bound 

2 

Intercept -3.076 2.626 1.372 1 0.241       

Pipe_Diameter_in -0.001 0.092 0 1 0.991 0.999 0.834 1.197 

Age_of_Pipe_years 0.091 0.011 69.592 1 .000 1.095 1.072 1.118 

Pipe_Slope -0.103 0.181 0.323 1 0.57 0.902 0.633 1.286 

Length_of_Pipe_ft -0.001 0.001 2.62 1 0.105 0.999 0.998 1 

Average_Velocity_ft_per_s -0.24 0.197 1.481 1 0.224 0.787 0.534 1.158 

Average_Flow_Depth 0.268 0.273 0.969 1 0.325 1.308 0.766 2.232 

Average_Flow_in_Pipe_percent_full -0.084 0.081 1.081 1 0.298 0.92 0.785 1.077 

[Pipe_Material=CCFRPM] 
-

18.884 
9601.375 0 1 0.998 

6.29E-
09 

0 .b 

[Pipe_Material=FRP] -1.968 1.031 3.642 1 0.056 0.14 0.019 1.055 

[Pipe_Material=PVC] 0.944 0.519 3.305 1 0.069 2.571 0.929 7.117 

[Pipe_Material=RCP] 0.271 0.71 0.146 1 0.703 1.311 0.326 5.276 

[Pipe_Material=VCP] 0c . . 0 . . . . 

3 

Intercept -3.131 2.05 2.332 1 0.127       

Pipe_Diameter_in -0.015 0.076 0.039 1 0.843 0.985 0.849 1.143 

Age_of_Pipe_years 0.088 0.009 88.131 1 .000 1.092 1.072 1.112 

Pipe_Slope -0.113 0.172 0.429 1 0.512 0.893 0.638 1.251 

Length_of_Pipe_ft 0 0.001 0.764 1 0.382 1 0.999 1.001 

Average_Velocity_ft_per_s -0.171 0.182 0.88 1 0.348 0.843 0.59 1.205 

Average_Flow_Depth 0.23 0.209 1.209 1 0.272 1.259 0.835 1.897 

Average_Flow_in_Pipe_percent_full -0.034 0.057 0.361 1 0.548 0.967 0.865 1.08 

[Pipe_Material=CCFRPM] 
-

19.108 
8138.529 0 1 0.998 

5.03E-
09 

0 .b 

[Pipe_Material=FRP] -1.439 0.799 3.244 1 0.072 0.237 0.05 1.135 

[Pipe_Material=PVC] 0.331 0.397 0.697 1 0.404 1.393 0.64 3.031 

[Pipe_Material=RCP] -0.252 0.608 0.172 1 0.678 0.777 0.236 2.557 

[Pipe_Material=VCP] 0c . . 0 . . . . 

a. The reference category is: 1.00. 
b. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing. 

c. This parameter is set to zero because it is redundant. 



201 
 

 
Table 5.60: Parameter estimates for overall gradings 4 and 5 (multinomial logistic regression and 

considering initial condition gradings) 

Parameter Estimates 

Overall_Gradinga B 
Std. 

Error 
Wald df Sig. Exp(B) 

95% Confidence 
Interval for 

Exp(B) 
Lower 
Bound 

Upper 
Bound 

4 

Intercept -9.239 2.076 19.8 1 .000       
Pipe_Diameter_in 0.137 0.072 3.636 1 0.057 1.147 0.996 1.321 

Age_of_Pipe_years 0.136 0.016 69.589 1 .000 1.146 1.11 1.183 

Pipe_Slope 0.19 0.128 2.211 1 0.137 1.209 0.941 1.553 

Length_of_Pipe_ft 0 0.001 0.067 1 0.796 1 0.999 1.001 

Average_Velocity_ft_per_s -0.037 0.229 0.026 1 0.872 0.964 0.616 1.509 

Average_Flow_Depth -0.212 0.201 1.116 1 0.291 0.809 0.545 1.199 

Average_Flow_in_Pipe_percent_full 0.08 0.051 2.454 1 0.117 1.083 0.98 1.197 

[Pipe_Material=CCFRPM] 
-

18.587 
8817.956 0 1 0.998 

8.47E-
09 

0 .b 

[Pipe_Material=FRP] -2.23 1.072 4.325 1 0.038 0.108 0.013 0.879 

[Pipe_Material=PVC] -1.017 0.558 3.324 1 0.068 0.362 0.121 1.079 

[Pipe_Material=RCP] -0.437 0.673 0.421 1 0.516 0.646 0.173 2.417 

[Pipe_Material=VCP] 0c . . 0 . . . . 

5 

Intercept 
-

14.925 
4.13 13.062 1 .000       

Pipe_Diameter_in 0.369 0.17 4.746 1 0.029 1.447 1.038 2.017 

Age_of_Pipe_years 0.111 0.04 7.539 1 0.006 1.117 1.032 1.21 

Pipe_Slope -0.444 2.233 0.039 1 0.842 0.642 0.008 51.077 

Length_of_Pipe_ft 0.001 0.001 0.592 1 0.442 1.001 0.998 1.004 

Average_Velocity_ft_per_s -0.306 0.577 0.281 1 0.596 0.736 0.238 2.283 

Average_Flow_Depth -1.091 0.545 4.004 1 0.045 0.336 0.115 0.978 

Average_Flow_in_Pipe_percent_full 0.236 0.081 8.477 1 0.004 1.266 1.08 1.484 

[Pipe_Material=CCFRPM] 
-

17.177 
0 . 1 . 

3.47E-
08 

3.47E-
08 

3.47E-
08 

[Pipe_Material=FRP] 
-

17.145 
2451.012 0 1 0.994 

3.58E-
08 

0 .b 

[Pipe_Material=PVC] -0.868 1.511 0.33 1 0.566 0.42 0.022 8.12 

[Pipe_Material=RCP] -0.544 1.666 0.106 1 0.744 0.581 0.022 15.213 

[Pipe_Material=VCP] 0c . . 0 . . . . 
a. The reference category is: 1.00. 

b. Floating point overflow occurred while computing this statistic. Its value is therefore set to system missing. 
c. This parameter is set to zero because it is redundant. 
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Table 5.61: Classification table obtained for multinomial logistic regression (considering initial 
condition gradings) 

Classification 

Observed 
Predicted 

1 2 3 4 5 
Percent 
Correct 

1 602 1 1 17 1 96.8% 
2 38 5 1 11 0 9.1% 
3 55 3 3 17 0 3.8% 
4 14 0 2 43 0 72.9% 
5 2 0 0 3 1 16.7% 

Overall 
Percentage 

86.7% 1.1% 0.9% 11.1% 0.2% 79.8% 
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5.1.10 Ordinal regression using Logit link function and considering initial 

condition gradings 

Results associated with ordinal regression utilizing Logit link function and considering 

sewer pipes are initially in perfect condition gradings, i.e. overall condition grading 1, are 

presented in the following tables. Based on these results, it is observed that the Goodness-

of-Fit test (Pearson and Deviance) and likelihood ratio test available within model fitting 

information table both yield satisfactory results. Furthermore, based on test of parallel 

lines, it is realized that the proportional odds assumption is also validated. The age of sewer 

pipe has been found as a significant predictor in this deterioration model as well. 

 

Table 5.62: Table containing model fitting information (ordinal regression using Logit link 
function and considering initial condition gradings) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.578       

Final 1011.01 366.567 11 .000 

Link function: Logit. 
 
 

Table 5.63: Results of Goodness-of-Fit tests (ordinal regression using Logit link function and 
considering initial condition gradings) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 2197.07 3265 1.000 

Deviance 1011.01 3265 1.000 

Link function: Logit. 
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Table 5.64: Parameter estimates obtained based on ordinal regression using Logit link function 
and considering initial condition gradings 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 5.923 1.077 30.256 1 .000 3.813 8.034 

[Overall_Grading = 2.00] 6.583 1.084 36.855 1 .000 4.457 8.708 

[Overall_Grading = 3.00] 7.876 1.1 51.25 1 .000 5.719 10.032 

[Overall_Grading = 4.00] 10.656 1.176 82.063 1 .000 8.351 12.962 

Location 

Age_of_Pipe_years 0.093 0.007 196.858 1 .000 0.08 0.106 

Average_Flow_Depth -0.217 0.109 3.944 1 0.047 -0.431 -0.003 

Length_of_Pipe_ft 0 0 0.553 1 0.457 -0.001 0 

Pipe_Slope 0.028 0.086 0.105 1 0.746 -0.14 0.196 

Average_Flow_in_Pipe_percent_full 0.076 0.028 7.502 1 0.006 0.022 0.131 

Pipe_Diameter_in 0.121 0.04 9.269 1 0.002 0.043 0.199 

Average_Velocity_ft_per_s -0.111 0.124 0.802 1 0.371 -0.353 0.131 

[Pipe_Material=CCFRPM] -20.826 0 . 1 . 
-

20.826 
-

20.826 

[Pipe_Material=FRP] -2.091 0.547 14.617 1 .000 -3.164 -1.019 

[Pipe_Material=PVC] -0.02 0.271 0.005 1 0.942 -0.55 0.511 

[Pipe_Material=RCP] -0.394 0.398 0.98 1 0.322 -1.175 0.386 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.65: Results of test of parallel lines obtained based on ordinal regression using Logit link 
function and considering initial condition gradings 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Null Hypothesis 1011.011       

General 973.157b 37.854c 33 0.257 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Logit. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The Chi-Square statistic is computed based on the log-likelihood 
value of the last iteration of the general model. Validity of the test is 

uncertain. 
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5.1.11 Ordinal regression using Probit link function and considering initial 

condition gradings 

Considering initial condition gradings of sewer pipes (overall condition grading of 1 for all 

assets), and by using Probit link function, the following results are obtained. The 

Goodness-of-Fit test (Pearson and Deviance) as well as the likelihood ratio test available 

within model fitting information table both presented desirable results. However, when 

validating proportional odds assumption through test of parallel lines, satisfactory results 

were not obtained and therefore this assumption cannot be validated. By eliminating the 

average flow in pipe (%full) from the deterioration model, in addition to yielding 

satisfactory results associated with the Goodness-of-Fit test (Pearson and Deviance) and 

the likelihood ratio test available within model fitting information table, the result obtained 

from test of parallel lines also indicated that the proportional odds assumption was 

validated too. The tables below, demonstrate the outcome of both models with and without 

average flow in pipe (%full). Moreover, it is realized that the age of sewer pipe is a 

significant predictor in these models. 
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Model with all independent variables: 

The following tables are associated with the ordinal regression model with Probit function 

developed utilizing all independent variables including average flow in pipe (%full). 

Through test of parallel lines, the proportional odds assumption could not be validated. 

Table 5.66: Table containing model fitting information (ordinal regression using Probit link 
function and considering initial condition gradings: full model) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.578       

Final .000 1377.578 11 .000 
Link function: Probit. 

 
Table 5.67: Results of Goodness-of-Fit tests (ordinal regression using Probit link function and 

considering initial condition gradings: full model) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 2600.21 3265 1.000 
Deviance 1003.72 3265 1.000 

Link function: Probit. 

 
Table 5.68: Table containing Pseudo R-Square values (ordinal regression using Probit link 

function and considering initial condition gradings: full model) 

Pseudo R-Square 

Cox and Snell 0.814 

Nagelkerke 1.000 

McFadden 1.000 

Link function: Probit. 
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Table 5.69: Parameter estimates obtained based on ordinal regression using Probit link function 
and considering initial condition gradings: full model 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 3.631 0.606 35.907 1 .000 2.444 4.819 

[Overall_Grading = 2.00] 4.006 0.609 43.269 1 .000 2.812 5.2 

[Overall_Grading = 3.00] 4.74 0.617 59.078 1 .000 3.531 5.948 

[Overall_Grading = 4.00] 6.16 0.646 90.782 1 .000 4.892 7.427 

Location 

Age_of_Pipe_years 0.055 0.004 238.966 1 .000 0.048 0.061 

Average_Flow_Depth -0.142 0.063 5.123 1 0.024 -0.264 -0.019 

Length_of_Pipe_ft 0 0 0.77 1 0.38 -0.001 0 

Pipe_Slope 0.012 0.049 0.066 1 0.797 -0.083 0.108 

Average_Flow_in_Pipe_percent_full 0.049 0.016 9.373 1 0.002 0.018 0.08 

Pipe_Diameter_in 0.074 0.023 10.784 1 0.001 0.03 0.118 

Average_Velocity_ft_per_s -0.056 0.069 0.671 1 0.413 -0.192 0.079 

[Pipe_Material=CCFRPM] -4.482 110.391 0.002 1 0.968 
-

220.845 
211.88 

[Pipe_Material=FRP] -1.151 0.294 15.351 1 .000 -1.726 -0.575 

[Pipe_Material=PVC] 0.066 0.152 0.185 1 0.667 -0.233 0.364 

[Pipe_Material=RCP] -0.202 0.225 0.81 1 0.368 -0.643 0.238 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Probit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.70: Results of test of parallel lines obtained based on ordinal regression using Probit link 

function and considering initial condition gradings: full model 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Null Hypothesis .000       

General 33.729b .c 33 . 
The null hypothesis states that the location parameters (slope coefficients) 

are the same across response categories. 
a. Link function: Probit. 

b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 

c. The log-likelihood value of the general model is smaller than that of the 
null model. This is because convergence cannot be attained or ascertained 
in estimating the general model. Therefore, the test of parallel lines cannot 

be performed. 
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Model without average flow in pipe (%full).: 

The results associated with the ordinal regression model with Probit function developed 

without average flow in pipe (%full) are presented in the following tables. The proportional 

odds assumption is validated in this model, and the age of sewer pipe is observed to be a 

significant independent variable. 

Table 5.71: Table containing model fitting information (ordinal regression using Probit link 
function and considering initial condition gradings) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.58       

Final .000 1377.58 10 .000 
Link function: Probit. 

 
Table 5.72: Results of Goodness-of-Fit tests (ordinal regression using Probit link function and 

considering initial condition gradings) 

Goodness-of-Fit 

  
Chi-

Square 
df Sig. 

Pearson 2784.73 3266 1.000 

Deviance 1012.33 3266 1.000 

Link function: Probit. 

 
Table 5.73: Table containing Pseudo R-Square values for ordinal regression using Probit link 

function and considering initial condition gradings 

Pseudo R-Square 

Cox and Snell 0.814 

Nagelkerke 1.000 

McFadden 1.000 

Link function: Probit. 
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Table 5.74: Parameter estimates obtained based on ordinal regression using Probit link function 

and considering initial condition gradings 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 2.078 0.327 40.369 1 .000 1.437 2.719 

[Overall_Grading = 2.00] 2.452 0.33 55.097 1 .000 1.804 3.099 

[Overall_Grading = 3.00] 3.177 0.339 87.739 1 .000 2.512 3.842 

[Overall_Grading = 4.00] 4.538 0.38 142.951 1 .000 3.794 5.282 

Location 

Age_of_Pipe_years 0.053 0.003 235.375 1 .000 0.046 0.06 

Average_Flow_Depth 0.039 0.02 3.771 1 0.052 0 0.077 

Pipe_Diameter_in 0.016 0.012 1.746 1 0.186 -0.008 0.041 

Pipe_Slope 0.01 0.049 0.039 1 0.843 -0.086 0.105 

Length_of_Pipe_ft 0 0 1.126 1 0.289 -0.001 0 

Average_Velocity_ft_per_s -0.013 0.067 0.038 1 0.846 -0.145 0.119 

[Pipe_Material=CCFRPM] -4.455 111.554 0.002 1 0.968 
-

223.098 
214.188 

[Pipe_Material=FRP] -1.03 0.29 12.602 1 .000 -1.599 -0.461 

[Pipe_Material=PVC] -0.029 0.148 0.039 1 0.842 -0.319 0.261 

[Pipe_Material=RCP] -0.125 0.221 0.32 1 0.572 -0.559 0.308 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Probit. 

a. This parameter is set to zero because it is redundant. 
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Table 5.75: Results of test of parallel lines obtained based on ordinal regression using Probit link 

function and considering initial condition gradings 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Null Hypothesis .000       

General .000b .000 30 1.000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Probit. 

b. The log-likelihood value is practically zero. There may be a 
complete separation in the data. The maximum likelihood estimates do 

not exist. 

 
 

5.1.12 Ordinal regression using Complementary Log-Log link function and 

considering initial condition gradings 

The following tables are obtained by considering initial condition gradings of assets (i.e. 

overall condition grading of 1 is assumed for all sewer pipes at the beginning of their 

service lives). Based on the following results, the Deviance Goodness-of-Fit test yielded 

satisfactory result; additionally, both likelihood ratio test available within model fitting 

information table as well as test of parallel lines were satisfactory too. Therefore, 

proportional odds assumption is validated for this model. These results also illustrate that 

the age of sewer pipe is a significant predictor of the model as well. 
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Table 5.76: Table containing model fitting information (ordinal regression using Complementary 
Log-Log link function and considering initial condition gradings) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.578       

Final .000 1377.578 11 .000 
Link function: Complementary Log-log. 

 

Table 5.77: Results of Goodness-of-Fit tests (ordinal regression using Complementary Log-Log 
link function and considering initial condition gradings) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 11474.448 3265 .000 

Deviance 1010.252 3265 1.000 

Link function: Complementary Log-log. 

 

Table 5.78: Table containing Pseudo R-Square values for ordinal regression using 
Complementary Log-Log link function and considering initial condition gradings 

Pseudo R-Square 

Cox and Snell 0.814 

Nagelkerke 1.000 

McFadden 1.000 

Link function: Complementary Log-log. 
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Table 5.79: Parameter estimates obtained based on ordinal regression using Complementary 
Log-Log link function and considering initial condition gradings 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 3.159 0.556 32.236 1 .000 2.069 4.25 

[Overall_Grading = 2.00] 3.511 0.559 39.395 1 .000 2.415 4.608 

[Overall_Grading = 3.00] 4.18 0.569 53.905 1 .000 3.064 5.296 

[Overall_Grading = 4.00] 5.301 0.592 80.143 1 .000 4.141 6.462 

Location 

Age_of_Pipe_years 0.051 0.003 228.645 1 .000 0.044 0.058 

Average_Flow_Depth -0.14 0.059 5.609 1 0.018 -0.255 -0.024 

Pipe_Diameter_in 0.069 0.021 10.799 1 0.001 0.028 0.11 

Pipe_Slope -0.006 0.042 0.023 1 0.879 -0.089 0.076 

Length_of_Pipe_ft 0 0 1.642 1 0.2 -0.001 0 

Average_Velocity_ft_per_s -0.006 0.059 0.011 1 0.916 -0.122 0.109 

Average_Flow_in_Pipe_percent_full 0.05 0.015 10.585 1 0.001 0.02 0.08 

[Pipe_Material=CCFRPM] -1.166 0.4 8.488 1 0.004 -1.95 -0.382 

[Pipe_Material=FRP] -1.002 0.242 17.102 1 .000 -1.477 -0.527 

[Pipe_Material=PVC] 0.139 0.132 1.107 1 0.293 -0.12 0.398 

[Pipe_Material=RCP] -0.258 0.197 1.708 1 0.191 -0.644 0.129 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Complementary Log-log. 
a. This parameter is set to zero because it is redundant. 
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Table 5.80: Results of test of parallel lines obtained based on ordinal regression using 
Complementary Log-Log link function and considering initial condition gradings 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Null Hypothesis .000       

General .000b .000 33 1.000 

The null hypothesis states that the location parameters (slope 
coefficients) are the same across response categories. 

a. Link function: Complementary Log-log. 
b. The log-likelihood value is practically zero. There may be a 

complete separation in the data. The maximum likelihood estimates 
do not exist. 

5.1.13 Ordinal regression using Negative Log-Log link function and 

considering initial condition gradings 

The results pertaining to ordinal regression utilizing Negative Log-Log link function and 

by considering perfect condition for the sewer pipes at the beginning of their service lives, 

are presented in this section. Based upon the outcome of this model, it is found that the 

Goodness-of-Fit test (Deviance and Pearson), likelihood ratio test available within model 

fitting information table and the test of parallel lines all yield satisfactory results. Hence, 

considering proportional odds assumption is also validated, this deterioration model seems 

to be suitable. Moreover, the independent variable denoting the age of assets is observed 

to be a significant variable of the model. The following tables show the results achieved 

based on this model. 
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Table 5.81: Table containing model fitting information (ordinal regression using Negative Log-
Log link function and considering initial condition gradings) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.578       

Final 1020.842 356.736 11 .000 

Link function: Negative Log-log. 

 

Table 5.82: Results of Goodness-of-Fit tests (ordinal regression using Negative Log-Log link 
function and considering initial condition gradings) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 2199.367 3265 1.000 

Deviance 1020.842 3265 1.000 

Link function: Negative Log-log. 

 

Table 5.83: Table containing Pseudo R-Square values for ordinal regression using Negative Log-
Log link function and considering initial condition gradings 

Pseudo R-Square 

Cox and Snell 0.353 

Nagelkerke 0.434 

McFadden 0.259 

Link function: Negative Log-log. 
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Table 5.84: Parameter estimates obtained based on ordinal regression using Negative Log-Log 
link function and considering initial condition gradings 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% 
Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 4.378 0.779 31.608 1 .000 2.852 5.905 

[Overall_Grading = 2.00] 4.877 0.783 38.782 1 .000 3.342 6.412 

[Overall_Grading = 3.00] 5.897 0.792 55.468 1 .000 4.345 7.449 

[Overall_Grading = 4.00] 8.438 0.884 91.099 1 .000 6.705 10.17 

Location 

Age_of_Pipe_years 0.072 0.005 194.162 1 .000 0.062 0.082 

Average_Flow_Depth -0.141 0.078 3.264 1 0.071 -0.293 0.012 

Pipe_Diameter_in 0.077 0.028 7.363 1 0.007 0.021 0.132 

Pipe_Slope 0.036 0.067 0.287 1 0.592 -0.095 0.166 

Length_of_Pipe_ft 0 0 0.385 1 0.535 -0.001 0 

Average_Velocity_ft_per_s -0.202 0.091 4.893 1 0.027 -0.381 -0.023 

Average_Flow_in_Pipe_percent_full 0.049 0.02 6.19 1 0.013 0.01 0.087 

[Pipe_Material=CCFRPM] -20.38 0 . 1 . -20.38 -20.38 

[Pipe_Material=FRP] -1.267 0.435 8.492 1 0.004 -2.12 -0.415 

[Pipe_Material=PVC] 0.066 0.204 0.106 1 0.745 -0.334 0.467 

[Pipe_Material=RCP] 0.064 0.287 0.05 1 0.823 -0.499 0.627 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Negative Log-log. 
a. This parameter is set to zero because it is redundant. 
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Table 5.85: Results of test of parallel lines obtained based on ordinal regression using Negative 
Log-Log link function and considering initial condition gradings 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Null 
Hypothesis 

1020.842       

General 994.760b 26.082c 33 0.798 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Negative Log-log. 

b. The log-likelihood value cannot be further increased after 
maximum number of step-halving. 

c. The Chi-Square statistic is computed based on the log-
likelihood value of the last iteration of the general model. 

Validity of the test is uncertain. 

 

5.1.14 Ordinal regression using Cauchit link function and considering 

initial condition gradings 

In this section, the deterioration model is constructed through Cauchit link function and 

assuming sewer pipes are initially in perfect condition (i.e. overall condition grading 1). 

Based on the results presented in the following tables, it is observed that both the Goodness-

of-Fit test (Deviance and Pearson) and the likelihood ratio test available within model 

fitting information table show satisfactory outcomes for this model. On the other hand, test 

of parallel lines indicate that the proportional odds assumption is not validated for this 

deterioration model. Moreover, it is observed that the age of sewer pipe is a significant 

predictor of this deterioration model. Although the proportional odds assumption was not 

satisfied in this model, however, for illustration and comparison purposes this model is 

presented herein. 
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Table 5.86: Table containing model fitting information (ordinal regression using Cauchit link 
function and considering initial condition gradings) 

Model Fitting Information 

Model 
-2 Log 

Likelihood 
Chi-

Square 
df Sig. 

Intercept 
Only 

1377.578       

Final 1079.734 297.844 11 .000 

Link function: Cauchit. 

 
Table 5.87: Results of Goodness-of-Fit tests (ordinal regression using Cauchit link function: full 

model and considering initial condition gradings) 

Goodness-of-Fit 

  Chi-Square df Sig. 

Pearson 2473.949 3265 1.000 

Deviance 1079.734 3265 1.000 

Link function: Cauchit. 

 
Table 5.88: Table containing Pseudo R-Square values for ordinal regression using Cauchit link 

function and considering initial condition gradings 

Pseudo R-Square 

Cox and Snell 0.305 

Nagelkerke 0.374 

McFadden 0.216 

Link function: Cauchit. 
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Table 5.89: Parameter estimates obtained based on ordinal regression using Cauchit link function 
and considering initial condition gradings 

Parameter Estimates 

  Estimate 
Std. 

Error 
Wald df Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[Overall_Grading = 1.00] 2.832 1.183 5.732 1 0.017 0.514 5.15 

[Overall_Grading = 2.00] 3.612 1.195 9.133 1 0.003 1.27 5.955 

[Overall_Grading = 3.00] 5.346 1.238 18.643 1 .000 2.919 7.773 

[Overall_Grading = 4.00] 21.96 5.734 14.665 1 .000 10.721 33.199 

Location 

Age_of_Pipe_years 0.095 0.01 90.212 1 .000 0.075 0.115 

Average_Flow_Depth 0.033 0.114 0.083 1 0.773 -0.191 0.257 

Pipe_Diameter_in 0.043 0.042 1.008 1 0.315 -0.041 0.126 

Pipe_Slope -0.111 0.135 0.669 1 0.413 -0.376 0.155 

Length_of_Pipe_ft 0 0 0.084 1 0.772 -0.001 0.001 

Average_Velocity_ft_per_s -0.238 0.133 3.183 1 0.074 -0.499 0.023 

Average_Flow_in_Pipe_percent_full 0.001 0.03 0 1 0.985 -0.058 0.059 

[Pipe_Material=CCFRPM] 
-

2206.815 
0 . 1 . 

-
2206.815 

-
2206.815 

[Pipe_Material=FRP] -2.316 0.692 11.187 1 0.001 -3.673 -0.959 

[Pipe_Material=PVC] -0.824 0.298 7.657 1 0.006 -1.408 -0.24 

[Pipe_Material=RCP] -0.8 0.426 3.53 1 0.060 -1.635 0.035 

[Pipe_Material=VCP] 0a . . 0 . . . 

Link function: Cauchit. 
a. This parameter is set to zero because it is redundant. 
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Table 5.90: Results of test of parallel lines obtained based on ordinal regression using Cauchit 

link function and considering initial condition gradings 

Test of Parallel Linesa 

Model 
-2 Log 

Likelihood 
Chi-Square df Sig. 

Null Hypothesis 1079.734       

General .000b 1079.734 33 .000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. Link function: Cauchit. 

b. The log-likelihood value is practically zero. There may be a 
complete separation in the data. The maximum likelihood estimates 

do not exist. 
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5.2 Results Based on LightGBM Method 

In this section, the deterioration model developed based on LightGBM is presented. By 

using the test size of 20% in LightGBM model, the number of estimators equal to 1000, 

and the number of leaves equal to 31, and using the maximum depth of 5, the following 

tables demonstrate the confusion matrices for both training and testing sets of data. 

Furthermore, it should be noted that in developing LightGBM model, it is assumed that at 

the beginning of their service lives, sewer pipes are in perfect condition gradings. 

 

Table 5.91: Confusion matrix for LightGBM (testing set) 

 Predictions 

Observations 0 1 

0 153 3 

1 7 1 

 

Table 5.92: Confusion matrix for LightGBM (training set) 

 Predictions 

Observations 0 1 

0 599 0 

1 0 57 
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Once the confusion matrices of training and testing sets are obtained, the next step is to 

find the feature importance pertaining to the independent variables of the model. The graph 

demonstrating the feature importance associated with different features is presented below: 

 

Figure 5.1: Feature importance associated with each predictor obtained utilizing LightGBM 
model 

 

In the above figure, various independent variables of the developed model corresponding 

to each of the feature columns are as follows: 
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Table 5.93: Feature descriptions associated with different feature labels (LightGBM) 

Feature Label Feature Description 

Column_0 CCFRPM 

Column_1 FRP 

Column_2 PVC 

Column_3 RCP 

Column_4 VCP 

Column_5 Pipe Diameter (in) 

Column_6 Pipe Age (years) 

Column_7 Pipe Slope 

Column_8 Pipe Length (ft) 

Column_9 Average Flow Pipe % Full 

Column_10 Average Velocity (ft/s) 

Column_11 Average Flow Pipe Flow Depth 
 

Based on the results obtained from feature importance, it is thus concluded that based on 

the model developed utilizing LightGBM, the most important independent variables of the 

models are in the following order: 

Table 5.94: Table illustrating the order of feature descriptions from highest to lowest based on 
LightGBM 

Feature Label Feature Description 

Column_8 Pipe Length (ft) 
Column_11 Average Flow Pipe Flow Depth 
Column_9 Average Flow Pipe % Full 

Column_10 Average Velocity (ft/s) 
Column_7 Pipe Slope 
Column_6 Pipe Age (years) 
Column_5 Pipe Diameter (in) 
Column_2 PVC 
Column_4 VCP 
Column_0 CCFRPM 
Column_1 FRP 
Column_3 RCP 
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Once the significance of each individual independent variables of the model are obtained, 

next the receiver operating characteristic (ROC) curve of the model is presented. 

 

Figure 5.2: ROC curve obtained based on LightGBM model 

The corresponding values of false positive rates and true positive rates for LightGBM 

method are presented in the table below.  
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Table 5.95: True positive and false positive rates obtained based on LightGBM 

LightGBM Model 

False Positive 
Rate 

True Positive 
Rate 

0 0 

0.00641026 0 

0.00641026 0.125 

0.0769231 0.125 

0.0769231 0.25 

0.115385 0.25 

0.115385 0.375 

0.134615 0.375 

0.134615 0.5 

0.160256 0.5 

0.160256 0.625 

0.173077 0.625 

0.173077 0.75 

0.269231 0.75 

0.269231 0.875 

0.288462 0.875 

0.288462 1 

0.794872 1 

0.807692 1 

1 1 

It is observed that as illustrated in the receiver operating characteristic curve obtained based 

on LightGBM model, the area under the ROC curve is equal to 0.85. 

5.3 Results Based on CatBoost Method 

This section demonstrates the model developed based on CatBoost approach. Similar to 

LightGBM, the test size utilized in developing CatBoost model is also 20%. When using 
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CatBoost, the number of iterations is equal to 500, and the values corresponding to depth 

and the learning rate of the model are set to 5 and 0.2, respectively. The following tables 

illustrate the confusion matrices corresponding to training set as well as testing set. Similar 

to LightGBM model, when developing CatBoost model, it is assumed that the sewer pipes 

initially (i.e. at the beginning of their service lives) have perfect condition gradings. 

Table 5.96: Confusion matrix for CatBoost (testing set) 

 Predictions 

Observations 0 1 

0 151 5 

1 7 1 

 

Table 5.97: Confusion matrix for CatBoost (training set) 

 Predictions 

Observations 0 1 

0 599 0 

1 0 57 

 

In CatBoost approach, similar to LightGBM model, after obtaining the confusion matrices 

pertaining to training and testing sets, the feature importance associated with each of the 

predictors of the model is presented in this section. The graph illustrated below contains 

the feature importance for various features utilized in CatBoost model. 
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Figure 5.3: Feature importance associated with each predictor obtained based on CatBoost model 

In this graph, each of the columns correspond to a different independent variable of the 

CatBoost model. The predictors and their associated columns are the same as presented 

earlier for LightGBM model. It is observed that based on the feature importance of each of 

the independent variables used in the CatBoost model, the predictors with highest to lowest 

values of feature importance are as presented in the following table: 
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Table 5.98: Table illustrating the order of feature descriptions from highest to lowest based on 
CatBoost model 

Feature Label Feature Description 
Feature 

Importance 
(%) 

Column_6 Pipe Age (years) 40.3572 

Column_10 Average Velocity (ft/s) 16.5263 

Column_8 Pipe Length (ft) 11.1402 

Column_11 
Average Flow Pipe Flow 

Depth 
9.53081 

Column_7 Pipe Slope 6.22713 

Column_9 Average Flow Pipe % Full 6.16123 

Column_5 Pipe Diameter (in) 5.20763 

Column_2 PVC 2.39256 

Column_4 VCP 0.929102 

Column_1 FRP 0.705604 

Column_3 RCP 0.603758 

Column_0 CCFRPM 0.218479 

 

The receiver operating characteristic (ROC) curve obtained based on CatBoost model is 

presented in the following figure. 
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Figure 5.4: ROC curve associated with CatBoost model 

The following table illustrates the points (false positive rates and true positive rates) 

corresponding to the receiver operating characteristic curve obtained based on CatBoost 

model: 
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Table 5.99: True positive and false positive rates obtained based on CatBoost model 

CatBoost Model 

False Positive Rate True Positive Rate 

0 0 

0.00641026 0 

0.025641 0 

0.025641 0.125 

0.0576923 0.125 

0.0576923 0.5 

0.115385 0.5 

0.115385 0.625 

0.179487 0.625 

0.179487 0.75 

0.217949 0.75 

0.217949 0.875 

0.224359 0.875 

0.224359 1 

1 1 

 

Based on the observations made in the receiver operating characteristic curve obtained by 

utilizing CatBoost approach, the area under this curve has a value of 0.88. 

When comparing CatBoost and LightGBM, it is observed that the area under the ROC 

curve for LightGBM is equal to 0.85, whereas this area for CatBoost is equal to 0.88. 

Therefore, this demonstrates that when comparing these models based on their 

corresponding area under the ROC curve, CatBoost shows a better performance in 

modeling the set of data. 
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5.4 Comparing LightGBM and CatBoost models 

In this section, considering the observations made based on the results pertaining to feature 

importance and receiver operating characteristic curves, LightGBM and CatBoost are 

compared. 

5.4.1 Feature importance 

Based on the models constructed using LightGBM and CatBoost, the significant features 

pertaining to each model are compared in the following table. In this table, it is observed 

that in CatBoost model, the feature which has the highest feature importance is the age of 

sewer pipe, whereas based on LightGBM approach, pipe length has the highest feature 

importance. However, based on both methods features such as pipe slope, pipe dimeter, 

PVC, and VCP are ranked similar among all features. 

Table 5.100: Table comparing the order of feature descriptions (highest to lowest) for LightGBM 
and CatBoost models 

LightGBM Model CatBoost Model 
Feature 
Label 

Feature Description 
Feature 
Label 

Feature Description 

Column_8 Pipe Length (ft) Column_6 Pipe Age (years) 

Column_11 
Average Flow Pipe Flow 

Depth 
Column_10 Average Velocity (ft/s) 

Column_9 Average Flow Pipe % Full Column_8 Pipe Length (ft) 

Column_10 Average Velocity (ft/s) Column_11 
Average Flow Pipe Flow 

Depth 

Column_7 Pipe Slope Column_7 Pipe Slope 

Column_6 Pipe Age (years) Column_9 Average Flow Pipe % Full 

Column_5 Pipe Diameter (in) Column_5 Pipe Diameter (in) 

Column_2 PVC Column_2 PVC 

Column_4 VCP Column_4 VCP 

Column_0 CCFRPM Column_1 FRP 

Column_1 FRP Column_3 RCP 

Column_3 RCP Column_0 CCFRPM 
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5.4.2 ROC comparison 

Based on the results associated with receiver operating characteristic curves for both 

LightGBM and CatBoost models, and as shown in the following figure , it is observed that 

except for the beginning part of the graphs and a small portion after that, CatBoost seems 

to be a more suitable model for the sewer pipe data set. In other words, when the false 

positive rate is less than 0.0256 and when the false positive rate is between 0.1731 and 

0.1795, LightGBM seems to be a more suitable model comparted to CatBoost; however, 

in all other cases, the model developed through CatBoost will be a more suitable model for 

sewer pipe data set. 

Furthermore, the area under the receiver operating characteristic curves for LightGBM and 

CatBoost are 0.85 and 0.88, respectively. The greater area under the receiver operating 

characteristic curve in CatBoost model demonstrates a more suitable model for sewer pipe 

data set.  

 

Figure 5.5: Receiver operating characteristic curves for LightGBM and CatBoost models 
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5.5 Results of Service Life of Pipe Using LightGBM and CatBoost 

The probability of failure with respect to age of a vitrified clay sewer pipe obtained based 

on both LightGBM model and CatBoost model is presented in the following figure. 

 

 

Figure 5.6: Probability of failure with respect to age of sewer pipe obtained based on LightGBM 

and CatBoost models 
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the probability of failure with respect to age obtained based on LightGBM model is 

observed to be greater compared to the probability of failure calculated based on CatBoost 

approach.  
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LightGBM as well as Catboost approaches, can become smoother transitions. However, 

herein, since the conditions of assets were available only for one age, therefore, in the 

graphs demonstrating the probability of failure with respect to age of asset, and obtained 

based on LightGBM and CatBoost, jumps in the probability values are observed.  

In the following section, the results associated with statistical models are included as well. 

5.6 Results of Service Life of Pipe Using Artificial Intelligence Based and 

Statistical models 

In the following figure, the results obtained based on binomial and multinomial logistic 

regressions are included as well. It is observed that the service lives obtained through 

binomial logistic regression and multinomial logistic regression are 48 and 47 years, 

respectively.  

 

Figure 5.7: Probability of failure with respect to age of sewer pipe (including binomial and 

multinomial logistic regressions) 
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Furthermore, results pertaining to binomial logistic regression and multinomial logistic 

regression considering initial condition ratings of the sewer pipe are illustrated in the 

following figure as well. In these two additional models, it is assumed that at the beginning 

of their service lives, the sewer pipes are at perfect conditions. 

 

Figure 5.8: Probability of failure with respect to age of sewer pipe (including binomial and 

multinomial logistic regressions with initial condition grading)  

Based on the models developed through binomial logistic regression and multinomial 

logistic regression, and assuming that the sewer pipes were initially in perfect condition 

ratings, the service life of the asset is observed to be 46 and 45 years, respectively. 

Ordinal regression by using the logit function as the associated link function and by 

considering the initial rating of sewer pipes is presented below as well. Based on this figure, 

it is observed that the service life obtained based on ordinal regression with logit link 

function is equal to 46 years. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120

Pr
ob

ab
il

it
y 

of
 F

ai
lu

re

Age of asset (years)

LightGBM, CatBoost and Statistical Models
LightGBM Model

CatBoost Model

Binomial Logistic
Regression

Multinomial Logistic
Regression

Binomial Logistic
(with initial rating)

Multinomial Logistic
(with initial rating)



237 
 

 

Figure 5.9: Probability of failure with respect to age of sewer pipe (including ordinal regression) 

5.7 Effect of population on service life of gravity sewer pipes 

In order to consider the effect of population growth, the annual rate of population growth 

is assumed to be 0.01. This assumption is solely for the purpose of illustrating the effect of 

population growth on the probability of failure of sewer pipes throughout their age as well 

as its impact on the service life of sewer pipes. The effect of increase in population is 

expected to be observed through the volume of the sewer flow which enters the sewer pipe. 

Therefore, considering this occurrence in sewer pipes the impact of increase in population 

could be implemented on the probability of failure of sewer pipes with respect to their age 

as well as their associated service lives. 
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5.7.1 Effect of population on service life of gravity sewer pipes utilizing 

artificial intelligence-based models 

The following figure demonstrates the effect of population growth on the probability of 

failure of a sewer pipe based on CatBoost modeling. In this figure, the asset is made up of 

vitrified clay. Based on this figure it is observed that the probability of failure of asset with 

respect to age of sewer pipe is subjected to increase. Furthermore, it is observed that the 

service life of sewer pipe without consideration of population growth is 44 years, whereas 

by considering the population growth the service life of this asset is decreased to 42 years. 

 

 

Figure 5.10: Effect of population growth on probability of failure (utilizing CatBoost model) 
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Figure 5.11: Influence of population growth on probability of failure (based on LightGBM 

model) 

Based on the observation made from the LightGBM model, similar to CatBoost approach, 

in comparison to the LightGBM model without consideration of population growth, when 

the population growth is taken into account, the probability of failure of sewer pipe is thus 

increased and therefore, the service life of the sewer pipe is subjected to reduction. Herein 

when the population growth is not considered, based on LightGBM model, the service life 

of the sewer pipe is 44 years; however, when the population growth is considered for the 

sewer pipe, the service life obtained based on LightGBM model is decreased to 36 years. 
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to age of sewer pipe is increased when population growth is taken into consideration. 

Moreover, it is observed that due to effect of population growth, the service life of this 

sewer pipe is decreased from 52 years to 51 years. 

 

Figure 5.12: Effect of population growth on probability of failure with respect to age of asset 

(Binomial Logistic Regression) 

Similarly, the following figure shows multinomial logistic regression model of the pipe. 

As it is observed in this figure, similar to binomial logistic regression model, the probability 

of failure of the VCP sewer pipe is increased when population growth is taken into 

consideration. Additionally, by considering the population growth, the service life of this 

sewer pipe is subjected to reduction from 51 years to 40 years. 
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Figure 5.13: Influence of population growth on probability of failure (Multinomial Logistic 

Regression) 

Next, by assuming that the pipe is in perfect condition at the beginning of its service life, 

and by using binomial logistic regression the following figure presents the probability of 

failure of the pipe with respect to age of asset. This figure shows that, similar to previous 

observations, when the increase in population is considered, the probability of failure and 

the service life of the VCP sewer pipe are subjected to increase and reduction, respectively; 

It is further realized that the service life of this asset with and without the effect of 

population growth has values of 48 and 49 years, respectively. 
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Figure 5.14: Effect of population growth on probability of failure with respect to age (Binomial 

Logistic Regression considering initial ratings) 

Utilizing multinomial logistic regression and assuming that the asset has perfect condition 

at the beginning of its service life, the probability of failure of the sewer pipe with respect 

to its age is shown in the following figure. As seen in this figure, effect of population 

growth includes increase in probability of failure of the VCP pipe as well as decrease in 

service life. The values obtained for service life of this asset with and without the effect of 

population growth are equal to 40 and 48 years, respectively. 
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Figure 5.15: Influence of population growth on probability of failure (Multinomial Logistic 

Regression considering initial ratings) 

Results pertaining to modeling the asset via ordinal regressions with logit, complementary 

log-log, and probit functions as the corresponding link functions are presented in the 

following figures. In these models, it is assumed that the condition of the pipe at the 

beginning of its service has been perfect. When taking the population growth into 

consideration, the probability of failure of the sewer pipe with respect to age of the pipe is 

increased in the ordinal regressions as well. When the logit function is used as the link 

function, the service life of the asset without taking into account the population growth has 

a value of 49 years. However, when the population growth is considered, the service life 

of the pipe is decreased to 46 years. When the link function of the ordinal regression is 

complementary log-log function, the service life with and without considering the 

population growth are 39 and 48 years, respectively. Using Probit function as the link 

function of the regression and when the population growth is accounted for, the service life 

is decreased from 49 year to 42 years. 
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Figure 5.16: Effect of population growth on probability of failure with respect to age of asset 

(Ordinal Regression: Logit function and by considering initial ratings) 

 

 

Figure 5.17: Influence of population growth on probability of failure (Ordinal Regression: 

Complementary Log-Log function and by considering initial ratings) 
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Figure 5.18: Effect of population growth on probability of failure with respect to age of asset 

(Ordinal Regression: Probit link function and by considering initial ratings) 

 

5.8 Effect of independent variables on service life of gravity sewer pipes 

In this section, based on the deterioration models developed using statistical approach and 
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gradings were not available for assets), the influence of various independent variables on 

service life of sewer pipes as well as the probability of failure of assets are investigated. 

These independent variables are as follows: Age of pipe, Diameter of pipe, Pipe material, 

Average velocity of sewer flow, Average flow depth, Pipe slope, Length of pipe, Average 

flow in pipe (percent full). Moreover, it should be noted that proportional odds assumption 

was not validated through Cauchit link function and the results associated with this method 

is solely for illustration and comparison purposes. 
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5.8.1 Influence of pipe material on service life of gravity sewer pipes 

Based on the results obtained through statistical approach, it was observed that for the 

sewer pipes considered in this study, when utilizing binomial logistic regression, 

multinomial logistic regression, ordinal regressions using various link functions (i.e. Logit, 

Probit, complementary log-log, negative log-log, and Cauchit functions), for the same 

sewer pipe, and without altering values of any other independent variables of the sewer 

pipe, the service lives associated with different pipe materials from highest to lowest value 

correspond to the following pipe materials: 

 FRP 

 PVC 

 RCP 

 VCP 

Therefore, it is observed that the highest and lowest values of service life for these sewer 

pipes, considering values of all other independent variables remained unchanged, 

correspond to FRP and Vitrified Clay pipes, respectively. This observation may be due to 

the fact that, as illustrated in the data acquisition section, compared to FRP pipes, VCP 

pipes had significantly higher condition grading (in operational, structural, and overall 

categories). However, when considering these data, the ages of the pipes should also be 

accounted for. The lower service life obtained for vitrified clay pipes maybe due to the fact 

that vitrified clay pipes are in the brittle pipe categories, and are therefore more likely to 

gain higher condition grading (particularly considering structural condition grading) and 

moreover VCP pipes are more susceptible to sudden failure as well.  

Furthermore, with regards to influence of pipe material on probability of failure of sewer 

pipes, it is observed that at any given point in time, the probability of failure obtained for 

different pipe materials from highest to lowest probability of failure correspond to the 

following pipe materials: 
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 VCP 

 RCP 

 PVC 

 FRP 

The same reasoning discussed for service life of sewer pipes with different pipe materials, 

can also be considered for probabilities of failure of sewer pipes as well.  

 

Figure 5.19: Probability of failure with respect to age for different pipe materials (Binomial 

Logistic Regression) 
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Figure 5.20: Service life of assets for different pipe materials (Binomial Logistic Regression) 

 

 

Figure 5.21: Probability of failure with respect to age for different pipe materials (Multinomial 

Logistic Regression) 
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Figure 5.22: Service life of assets for different pipe materials (Multinomial Logistic Regression) 

 

Figure 5.23: Probability of failure with respect to age for different pipe materials (Ordinal 

Regression: Logit Link Function) 
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Figure 5.24: Probability of failure with respect to age for different pipe materials (Ordinal 
Regression: Probit Link Function) 

 

Figure 5.25: Probability of failure with respect to age for different pipe materials (Ordinal 
Regression: Complementary Log-Log Link Function) 
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Figure 5.26: Probability of failure with respect to age for different pipe materials (Ordinal 
Regression: Negative Log-Log Link Function) 

 

Figure 5.27: Probability of failure with respect to age for different pipe materials (Ordinal 
Regression: Cauchit Link Function)  
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5.8.2 Influence of pipe diameters on service life of gravity sewer pipes 

For the sewer pipes considered in this study, the results obtained through statistical models 

illustrate that when modeling based upon binomial logistic regression, multinomial logistic 

regression, ordinal regressions using various link functions (i.e. Logit, Probit, 

complementary log-log, negative log-log, and Cauchit functions), for the same gravity 

sewer pipe, and while no changes are made in the values of other independent variables of 

the gravity sewer pipe, when the size of the pipe diameter increases, the service lives of 

sewer pipes are subjected to reduction.  It is further observed that increase in the sewer pipe 

diameter results in increase in the probability of failure of sewer pipe too. 

This observation may stem from variations in the installation of sewer pipes, bedding and 

backfill conditions, as well as depth of the sewer pipes (which can differ for different pipe 

diameters). The data associated with these potential factors were not available for 

processing.     

With regards to significance of diameter of pipe, in the following methods, this parameter 

was found to be significant: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression using Probit link function 

Ordinal regression using Complementary Log-Log link function 

It should be noted that when using all independent variables for Ordinal regression with 

Negative Log-Log and Logit link function, pipe diameter was determined as a significant 

variable as well, however, in their associated final models which some predictors were 

eliminated, based on these link functions, as well as Cauchit link function, pipe diameter 

was not significant.  
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Figure 5.28: Probability of failure with respect to age for various pipe diameters (Binomial 

Logistic Regression) 

 

 

Figure 5.29: Service life of assets for various pipe diameters (Binomial Logistic Regression) 



254 
 

 

Figure 5.30: Probability of failure with respect to age for various pipe diameters (Multinomial 

Logistic Regression) 

 

 

Figure 5.31: Service life of assets for various pipe diameters (Multinomial Logistic Regression) 
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Figure 5.32: Probability of failure with respect to age for various pipe diameters (Ordinal 

Regression: Logit Link Function) 

 

Figure 5.33: Probability of failure with respect to age for various pipe diameters (Ordinal 

Regression: Probit Link Function) 



256 
 

 

Figure 5.34: Probability of failure with respect to age for various pipe diameters (Ordinal 

Regression: Complementary Log-Log Link Function) 

 

Figure 5.35: Probability of failure with respect to age for various pipe diameters (Ordinal 

Regression: Negative Log-Log Link Function) 
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Figure 5.36: Probability of failure with respect to age for various pipe diameters (Ordinal 

Regression: Cauchit Link Function) 

 

5.8.3 Influence of length of sewer pipes on service life of gravity sewer pipes 

For the sewer pipes considered in this study, it was observed that through implementation 

of the following methods, both the service life and probability of failure of sewer pipes 

were not impacted by the length of the sewer pipe: 

Binomial logistic regression 

Ordinal regression with Logit link function 

Ordinal regression with Probit link function 

Ordinal regression with Complementary Log-Log link function 

Ordinal regression with Cauchit link function 
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However, when utilizing multinomial logistic regression and ordinal regression with 

Negative Log-Log link function, it was observed that increasing the length of the sewer 

pipe slightly impacted the service life by decreasing its value and increasing the probability 

of failure of pipe with respect to age of pipe. Therefore, due to observations made from the 

majority of the methods, it can be concluded that based on the available data set and 

regression methods used herein, the length of the sewer pipes did not seem to have an 

impact on the service life of the sewer pipes considered in this study.  

Length of sewer pipes was not found to be a significant independent variable in any of 

the statistical models developed herein. Hence, this verifies the observations made that 

this predictor does not seem to alter the service life of assets. 

 

Figure 5.37: Probability of failure with respect to age for different pipe lengths (Binomial 

Logistic Regression) 

 

 



259 
 

 

Figure 5.38: Probability of failure with respect to age for different pipe lengths (Multinomial 

Logistic Regression) 

 

Figure 5.39: Comparing probabilities of failure for different pipe lengths (Multinomial Logistic 

Regression) 
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Figure 5.40: Service life of assets for different pipe lengths (Multinomial Logistic Regression) 

 

 

Figure 5.41: Probability of failure with respect to age for different pipe lengths (Ordinal 

Regression: Logit Link Function) 
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Figure 5.42: Probability of failure with respect to age for different pipe lengths (Ordinal 

Regression: Probit Link Function) 

 

Figure 5.43: Probability of failure with respect to age for different pipe lengths (Ordinal 

Regression: Complementary Log-Log Link Function) 
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Figure 5.44: Probability of failure with respect to age for different pipe lengths (Ordinal 

Regression: Negative Log-Log Link Function) 

 

Figure 5.45: Comparing probabilities of failure for different pipe lengths (Ordinal Regression: 

Negative Log-Log Link Function) 
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Figure 5.46: Probability of failure with respect to age for different pipe lengths (Ordinal 

Regression: Cauchit Link Function) 

5.8.4 Influence of slope of sewer pipes on service life of gravity sewer pipes 

Based on the developed models, it was observed that when utilizing the following modeling 

techniques, the values of service life of sewer pipes and the probability of failure of sewer 

pipes with respect to age were slightly decreased and increased, respectively due to 

increase in pipe slope: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression with Probit link function 

Ordinal regression with Complementary Log-Log link function 

On the other hand, by using the following methods, by increasing the slope of sewer pipes, 

the values of service life of sewer pipes and the probability of failure of sewer pipes with 
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respect to age were slightly increased and decreased, respectively: 

Ordinal regression with Logit link function 

Ordinal regression with Cauchit link function 

Ordinal regression with Negative Log-Log link function 

Considering the Cauchit link function was solely utilized for comparison purposes, as it 

did not satisfy the test of parallel lines and therefore, proportional odds assumption was not 

satisfied, it is concluded that the majority of the modeling techniques demonstrate that due 

to increase in the pipe slope, the values of service life of sewer pipes and the probability of 

failure of sewer pipes with respect to age were slightly decreased and increased, 

respectively.  

However, based on the results obtained from all of the statistical deterioration models, the 

slope of sewer pipe was not determined as a significant predictor of these models. 

Therefore, this verifies the slight and varying impact of this predictor on service life and 

probability of failure of pipes. 

 

Figure 5.47: Probability of failure with respect to age for various pipe slopes (Binomial Logistic 
Regression) 
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Figure 5.48: Comparing probabilities of failure for various pipe slopes (Binomial Logistic 

Regression) 

 

 

Figure 5.49: Service life of assets for various pipe slopes (Binomial Logistic Regression) 
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Figure 5.50: Probability of failure with respect to age for various pipe slopes (Multinomial 

Logistic Regression) 

 

Figure 5.51: Comparing probabilities of failure for various pipe slopes (Multinomial Logistic 

Regression) 
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Figure 5.52: Service life of assets for various pipe slopes (Multinomial Logistic Regression) 

 

 

Figure 5.53: Probability of failure with respect to age for various pipe slopes (Ordinal 

Regression: Logit Link Function) 
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Figure 5.54: Comparing probabilities of failure for various pipe slopes (Ordinal Regression: 

Logit Link Function) 

 

Figure 5.55: Probability of failure with respect to age for various pipe slopes (Ordinal 

Regression: Probit Link Function) 
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Figure 5.56: Comparing probabilities of failure for various pipe slopes (Ordinal Regression: 

Probit Link Function) 

 

Figure 5.57: Probability of failure with respect to age for various pipe slopes (Ordinal 

Regression: Complementary Log-Log Link Function) 
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Figure 5.58: Comparing probabilities of failure for various pipe slopes (Ordinal Regression: 

Complementary Log-Log Link Function) 

 

Figure 5.59: Probability of failure with respect to age for various pipe slopes (Ordinal 

Regression: Negative Log-Log Link Function) 
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Figure 5.60: Comparing probabilities of failure for various pipe slopes (Ordinal Regression: 

Negative Log-Log Link Function) 

 

Figure 5.61: Probability of failure with respect to age for various pipe slopes (Ordinal 

Regression: Cauchit Link Function) 
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5.8.5 Influence of average velocity of sewer flow on service life of gravity 

sewer pipes 

With regards to the influence of average velocity of sewer flow on service life of the gravity 

sewer pipes considered in this study, it is observed that the results obtained through 

statistical models illustrate that when deterioration models are constructed based upon 

binomial logistic regression, multinomial logistic regression, ordinal regressions using 

Logit, Complementary Log-Log, and Cauchit link functions, for the same gravity sewer 

pipe, and while other independent variables of the gravity sewer pipe remain unaltered, by 

increasing the value of average velocity of the sewer flow in the pipe, the service lives of 

sewer pipes are decreased.  

Furthermore, it is observed that in these deterioration models, by increasing the average 

sewer velocity, the probability of failure of sewer pipe with respect to age of sewer pipe 

was subjected to increase. The properties of the sewer flow may have an impact on how 

the average velocity of the flow affects the service life and probability of failure of the 

sewer pipe, however, these properties were not available for the study at hand. These 

observations maybe due to the fact that by increasing the average velocity of the sewer 

flow, erosion is subjected to increase and therefore, the probability of failure of sewer pipe 

increases and the service life of sewer pipes are decreased. 

On the other hand, when using ordinal regression with negative log-log link function, 

changes in the values of average velocity of the sewer flow do not change the service life 

of sewer pipes; this is due to the fact that this parameter was eliminated in this model so 

that the proportional odds assumption can be validated. Similar observations were made 

for probability of failure of pipes with respect to age of sewer pipe. Moreover, when ordinal 

regression with Probit link function is utilized for deterioration modeling of sewer pipes, it 

is observed that by increasing the average velocity of the sewer flow, the service life of 

sewer pipe is subjected to small increase in its value. However, based on the results from 

various methods, it can be concluded that the governing result would be decrease of service 
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life and increase of probability of failure as average velocity of the sewer flow increases, 

since the majority of the methods have yielded this result. 

Moreover, it should be noted that in all of the statistical deterioration models considered 

herein, the average velocity of sewer flow was not determined to be a significant 

independent variable of these models. Therefore, this explains why the changes in average 

flow velocity had different and inconsistent results using different methods. 

 

Figure 5.62: Probability of failure with respect to age for different average flow velocities 

(Binomial Logistic Regression) 
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Figure 5.63: Comparing probabilities of failure for different average flow velocities (Binomial 

Logistic Regression) 

 

 

Figure 5.64: Service life of assets for different average flow velocities (Binomial Logistic 

Regression) 
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Figure 5.65: Probability of failure with respect to age for different average flow velocities 

(Multinomial Logistic Regression) 

 

Figure 5.66: Comparing probabilities of failure for different average flow velocities 

(Multinomial Logistic Regression) 
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Figure 5.67: Service life of assets for different average flow velocities (Multinomial Logistic 

Regression) 

 

Figure 5.68: Probability of failure with respect to age for different average flow velocities 

(Ordinal Regression: Logit Link Function) 
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Figure 5.69: Comparing probabilities of failure for different average flow velocities (Ordinal 

Regression: Logit Link Function) 

 

Figure 5.70: Probability of failure with respect to age for different average flow velocities 

(Ordinal Regression: Probit Link Function) 
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Figure 5.71: Comparing probabilities of failure for different average flow velocities (Ordinal 

Regression: Probit Link Function) 

 

Figure 5.72: Probability of failure with respect to age for different average flow velocities 

(Ordinal Regression: Complementary Log-Log Link Function) 
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Figure 5.73: Probability of failure with respect to age for different average flow velocities 

(Ordinal Regression: Negative Log-Log Link Function) 

 

Figure 5.74: Probability of failure with respect to age for different average flow velocities 

(Ordinal Regression: Cauchit Link Function) 
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5.8.6 Influence of average flow depth on service life of gravity sewer pipes 

Based on the results obtained through the following deterioration models, it is observed 

that when the average flow depth of pipes is increased, the service life of sewer pipe is 

subjected to increase and the probability of failure of sewer pipe is subjected to reduction: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression with Probit link function 

Ordinal regression with Complementary Log-Log link function 

On the other hand, when the following deterioration techniques are utilized, increase in the 

value of average flow depth in pipe results in decrease in the service life of sewer pipe as 

well as increase in the associated probability of failure of pipe with respect to age: 

Ordinal regression with Logit link function 

Ordinal regression with Negative Log-Log link function 

Ordinal regression with Cauchit link function 

Considering the proportional odds assumption is not satisfied when using Cauchit link 

function in ordinal regression, it can be concluded that based on the majority of the 

modeling approaches, by increasing the value of average flow depth in pipe, the service 

life of sewer pipe will be subjected to increase and the associated probability of failure of 

pipe will be decreased. 

Considering the deterioration models developed herein were based upon various diameters 

of pipes, therefore, the effect of average flow depth in pipes should be taken into 

consideration alongside the diameter of the sewer pipe; hence, investigating the effect of 

average flow in pipe (%full) on service life and probability of failure of sewer pipes, which 

is presented in the following section, can yield more comprehensive insights. 
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Additionally, based on the following statistical deterioration models, the average flow 

depth in pipes was determined to be a significant independent variable of the model: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression using Probit link function 

In ordinal regression using Logit link function, prior to elimination of average flow in pipe 

(%full), the average flow depth in pipe was determined to be significant, however, once 

the aforementioned variable was eliminated, this predictor was not determined to be a 

significant independent variable. 

 

Figure 5.75: Probability of failure with respect to age for various average flow depths (Binomial 

Logistic Regression) 
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Figure 5.76: Service life of assets for various average flow depths (Binomial Logistic 

Regression) 

 

Figure 5.77: Probability of failure with respect to age for various average flow depths 

(Multinomial Logistic Regression) 
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Figure 5.78: Service life of assets for various average flow depths (Multinomial Logistic 

Regression) 

 

Figure 5.79: Probability of failure with respect to age for various average flow depths (Ordinal 

Regression: Logit Link Function) 
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Figure 5.80: Probability of failure with respect to age for various average flow depths (Ordinal 

Regression: Probit Link Function) 

 

Figure 5.81: Probability of failure with respect to age for various average flow depths (Ordinal 

Regression: Complementary Log-Log Link Function) 
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Figure 5.82: Probability of failure with respect to age for various average flow depths (Ordinal 

Regression: Negative Log-Log Link Function) 

 

Figure 5.83: Probability of failure with respect to age for various average flow depths (Ordinal 

Regression: Cauchit Link Function) 
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5.8.7 Influence of average flow in pipe (%full) on service life of gravity 

sewer pipes 

By investigating the effect of average flow in pipe (%full) on service life and probability 

of failure of sewer pipes with respect to age, it is observed that by increasing the value of 

average flow in pipe (%full), the following modeling approaches resulted in reduction of 

service life of sewer pipes as well as increase in the probability of failure of sewer pipes 

with respect to age: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression with Probit link function 

Ordinal regression with Complementary Log-Log link function 

However, since average flow in pipe (%full) was eliminated from the following 

deterioration models (in order for proportional odds assumption to be validated) thus by 

using the following models, it was observed that probability of failure of sewer pipes with 

respect to age and the service life values were not impacted due to changes made in average 

flow in pipe (%full): 

Ordinal regression with Logit link function 

Ordinal regression with Negative Log-Log link function 

Furthermore, using ordinal regression with Cauchit link function illustrated that by 

increasing the average flow in pipe (%full), service life of sewer pipes were increased and 

the probability of failure of sewer pipes with respect to age was decreased; however, as 

stated earlier, through test of parallel lines, it was observed that Cauchit function did not 

satisfy the proportional odds assumption and therefore, is solely used for illustration and 

comparison purposes.  
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Hence, based on the results from majority of the modeling techniques utilized herein, it can 

be concluded that increase in the value of average flow in pipe (%full) results in increase 

in the probability of failure of sewer pipes and therefore, decrease in their associated 

service life values. This observation maybe due to the fact that when average flow in pipe 

(%full) increases, therefore, depending on the properties of the flow (which its related data 

were not available in this study), occurrences such as corrosion, erosion, exfiltration etc. 

can be increased; moreover, increase in the value of average flow in pipe (%full) can be a 

sign of infiltration as well. Hence, these occurrences could lead to higher probabilities of 

failure in sewer pipe and reduction in their service life values. 

Moreover, by using the following deterioration models, the average flow in pipe (%full) 

was found to be a significant independent variable: 

Binomial logistic regression 

Multinomial logistic regression 

Ordinal regression with Probit link function 

Ordinal regression with Complementary Log-Log link function 
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Figure 5.84: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Binomial Logistic Regression) 

 

 

Figure 5.85: Service life of assets for different values of average flow in pipes (%full) (Binomial 

Logistic Regression) 
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Figure 5.86: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Multinomial Logistic Regression) 

 

 

Figure 5.87: Service life of assets for different values of average flow in pipes (%full) 

(Multinomial Logistic Regression) 
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Figure 5.88: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Ordinal Regression: Logit Link Function) 

 

Figure 5.89: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Ordinal Regression: Probit Link Function) 
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Figure 5.90: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Ordinal Regression: Complementary Log-Log Link Function) 

 

Figure 5.91: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Ordinal Regression: Negative Log-Log Link Function) 
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Figure 5.92: Probability of failure with respect to age for different values of average flow in 

pipes (%full) (Ordinal Regression: Cauchit Link Function) 
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Chapter 6 : Summary of Results and Concluding Remarks 

In the study at hand, statistical and artificial intelligence based models were utilized to 

estimate the service life of sewer pipes. Statistical models applied for this purpose are as 

follows: 

 Binomial logistic regression 

 Multinomial logistic regression 

 Ordinal regression (with various link function) 

 LightGBM modeling 

 CatBoost algorithm 

With regards to ordinal regression, suitability of various available link functions were 

tested. These link functions are as follows: 

 Logit function 

 Probit function 

 Complementary log-log function 

 Negative log-log function 

 Cauchit function 

Based on the results obtained through test of parallel lines, it was realized that the 

proportional odds assumption cannot be validated for ordinal regression using Cauchit link 

function. However, for illustration and comparison purposes, the results associated with 

this link function are also included as well.  

Furthermore, when utilizing statistical models, two different approaches were taken; in the 

first approach it was assumed that the initial condition grading of sewer pipes was not 

known; and in the second approach, it was assumed that the sewer pipes were in perfect 

condition at the start of their operation. In other words, in the second approach it was 

assumed that the installations of sewer pipes were conducted perfectly and no initial 

damages or inherent defects were present in sewer pipes. 
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Additionally, in this study, the effects of various independent variables for the inspected 

sewer pipes were investigated as well. The independent variables considered herein are as 

follows: 

 Age of pipe  

 Diameter of pipe  

 Pipe material 

 Average velocity of sewer flow 

 Average flow depth 

 Pipe slope 

 Length of pipe 

 Average flow in pipe (percent full) 

In addition to the aforementioned independent variables, the effect of population growth 

on the estimated service life of sewer pipes was investigated as well. The annual rate of 

population growth utilized in this study was assumed to be 0.01. It should be noted that by 

using more pertinent independent variables the models may yield more accurate 

estimations. In this study however, only the data related to the aforementioned independent 

variables were available for developing deterioration models.  

6.1 Influence of various predictors on service life of gravity sewer pipes 

In this dissertation, based on the models developed without considering the initial condition 

of sewer pipes (as these condition gradings were not available), the influence of various 

predictors on service life of gravity sewer pipes as well as the probability of failure 

associated with them were investigated. Based on the observations made herein, the 

summary of results pertaining to effect of each available independent variable considered 

in this study are stated as follows: 
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6.1.1 Summary of effect of pipe material on service life of sewer pipes 

The deterioration models developed using binomial logistic regression, multinomial 

logistic regression, ordinal regressions with various Logit, Probit, complementary log-log, 

negative log-log, and Cauchit link functions, demonstrate that for the sewer pipes 

considered in this study, and considering values of all other independent variables are the 

same, the highest to lowest values of service life associated with various pipe materials are 

as follows: 

 FRP 

 PVC 

 RCP 

 VCP 

Additionally, the aforementioned pipe materials correspond to lowest to highest probability 

of failure of sewer pipes with respect to age of assets. Various factors which potentially 

play a role on how pipe material influences the service life are discussed in this dissertation. 

For instance, FRP and PVC are flexible pipes, whereas RCP and VCP are brittle and 

therefore, more susceptible to higher condition states especially structural defects. 

6.1.2 Summary of effect of pipe diameters on service life of sewer pipes 

The results obtained based on statistical models, i.e. binomial logistic regression, 

multinomial logistic regression, ordinal regressions using various link functions (Logit, 

Probit, complementary log-log, negative log-log, and Cauchit link functions), illustrated 

that by increasing the sewer pipe diameter, reduction in the values of service lives of sewer 

pipes are observed and moreover, the associated probability of failure of assets with respect 

to age of pipes will increase. Factors such as differences in bedding and backfill conditions, 

the installation process of sewer pipes, and depth of the assets can be influential herein; 

however, the data pertaining to these factors were not available. 
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Furthermore, diameter of sewer pipe was determined to be a significant independent 

variable when applying binomial logistic regression, multinomial logistic regression, 

ordinal regression with Probit and Complementary Log-Log link function. It was further 

realized that before eliminating predictors in ordinal regression with Negative Log-Log 

and Logit link function (in order for them to satisfy test of parallel lines), diameter of sewer 

pipe was a significant variable in these models as well, however, by removing predictors 

in those models, diameter of pipe was no longer significant. 

6.1.3 Summary of effect of average velocity of sewer flow on service life of 

sewer pipes 

When examined based on deterioration models constructed through binomial logistic 

regression, multinomial logistic regression, ordinal regressions using Logit, 

Complementary Log-Log, and Cauchit link functions, it was observed that when the value 

of average velocity of the sewer flow in the pipe is increased, the associated service lives 

of pipes are then decreased and this also resulted in probabilities of failure of sewer pipes 

with respect to age of assets to increase. The decline in the service life of assets due to 

increased flow velocity maybe due to increased occurrences of erosion, and flow 

properties. 

Average velocity of flow was removed from ordinal regression with negative log-log link 

function in order to satisfy the proportional odds assumption and thus the service life and 

probability of failure of pipes do not vary due to changes in average flow velocity. 

Furthermore, based on the model obtained from ordinal regression with Probit link function 

increase in the average velocity of the sewer flow, results in small decline in the service 

life of sewer pipe. Due to the results obtained from the majority of the deterioration models, 

it can be concluded that the governing result is increase in probability of failure and decline 

in service life due to increase in average velocity of the sewer flow. 
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Based on the deterioration models considered herein, the average velocity of sewer flow 

was not found to be a significant predictor in these models, hence, explaining different and 

inconsistent results associated with effects of this variable in different methods. 

6.1.4 Influence of population growth on service life of gravity sewer pipes 

Considering an annual population growth of 0.01, it was observed that when using artificial 

intelligence based models, i.e. LightGBM and CatBoost models, and by taking into account 

the effect of population growth, the service life of sewer pipes are subjected to reduction. 

Furthermore, when population growth is taken into consideration, the probability of failure 

of gravity sewer pipes are also increased. The same observation was made when using 

statistical deterioration models, as illustrated in previous sections. The reason behind 

reduction of service life of sewer pipes due to population growth maybe due to the fact that 

when population increases, the volume of the sewer flow is therefore increased as well; 

this subsequently results in more occurrences of blockages, overflows, corrosions, 

erosions, etc. that may occur due to the sewer and its properties (such as amount of debris 

carried by the sewer, acidity, alkalinity, etc. of the sewer flow). These factors can also 

contribute to the increase in proximities of failure of sewer pipes with respect to age of 

pipes. 

6.1.5 Summary of effect of length of sewer pipes on service life of sewer 

pipes 

Based upon deterioration models obtained using binomial logistic regression, ordinal 

regression with Logit, Probit, Complementary Log-Log, and Cauchit link functions, it was 

realized that changes in the length of sewer pipe resulted in no variation in the service life 

and probability of failure of sewer pipes. Additionally, multinomial logistic regression and 

ordinal regression with Negative Log-Log link function illustrated that the service life and 

probability of failure of assets were slightly affected by increase and decrease in their 

values, respectively. Hence, based on the majority of models, it can be stated that the 
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service life and probability of failure of assets are not notably impacted due to variations 

made in the length of sewer pipes. 

Based on the statistical models considered herein, length of assets was not found to be a 

significant predictor. Therefore, this verifies the aforementioned results that this 

independent variable does not seem to influence the service life of sewer pipe. 

6.1.6 Summary of effect of slope of sewer pipes on service life of sewer 

pipes 

By increasing the slope of sewer pipe, models based on binomial logistic regression, 

multinomial logistic regression, and ordinal regressions using Probit and Complementary 

Log-Log link functions, demonstrated slight increase and decrease in the probability of 

failure and service life of sewer pipes, respectively. However, utilizing ordinal regressions 

with Logit, Cauchit, and Negative Log-Log link functions showed that due to increase in 

the pipe slope, the probability of failure was subjected to slight reduction and therefore, 

service life of assets increased. Taking into account that Cauchit link function does not 

satisfy proportional odds assumption and is solely presented for comparison purposes, it 

can thus be stated that based on the majority of the models, when the slope of pipe is 

increased, service life and the probability of failure of sewer pipes are slightly subjected to 

decline and increase, respectively.  

However, the results from statistical models illustrated that the slope of pipe was not a 

significant predictor in these models; thus, verifying the slight and varying impact of this 

independent variable on service life and probability of failure of assets. 

6.1.7 Summary of effect of average flow depth on service life of sewer pipes 

The outcome of deterioration models based on binomial logistic regression, multinomial 

logistic regression, and ordinal regressions using Probit and Complementary Log-Log link 

functions show that by increasing the average flow depth in assets, the values of service 
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life and probability of failure of sewer pipes are increased and decreased, respectively; 

moreover, the results obtained utilizing ordinal regressions with Logit, Negative Log-Log, 

and Cauchit link functions illustrate that when the average flow depth in pipe is increased, 

the service life and the associated probability of failure of assets will be subjected to 

reduction and increase, respectively. Therefore, as Cauchit link function is only used for 

comparison purposes, the majority of techniques demonstrate that effect of increasing the 

average flow depth in pipes will result in an increase in service life and decrease in 

probability of failure of sewer pipes. However, it should be noted that since the models 

were developed using different pipe sizes, the average flow depth of the pipe should be 

considered alongside the diameter of the pipe, hence, more accurate insights can be 

achieved by considering the influence of average flow in pipe (%full) as well. 

Additionally, average flow depth in pipe was found to be significant using binomial logistic 

regression, multinomial logistic regression, and ordinal regression with Probit link 

function; prior to elimination of average flow in pipe (%full) in ordinal regression using 

Logit link function, average flow in pipe (%full) was also a significant predictor, however, 

by removing the aforementioned variable, average flow depth was not determined to be a 

significant predictor. 

6.1.8 Summary of effect of average flow in pipe (%full) on service life of 

sewer pipes 

Considering models developed through binomial logistic regression, multinomial logistic 

regression, ordinal regressions using Probit and Complementary Log-Log link functions, 

it is observed that when the average flow in pipe (%full) increases, service life of assets 

are reduced and the probability of failure of pipes are increased. Furthermore, as average 

flow in pipe (%full) was eliminated from ordinal regressions with Logit and Negative Log-

Log link functions so that these models satisfy proportional odds assumption, therefore, 

when using these models functions, this predictor did not affect the service life and 

probability of failure of sewer pipes. However, results from Cauchit link function showed 
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that increase in average flow in pipe (%full) resulted in increase in service life and decrease 

in probability of failure of sewer pipes. It should be noted that Cauchit function is only 

used for comparison purposes (it didn’t validate proportional odds assumption). 

Therefore, the majority of the models illustrate decrease in service life and increase in the 

probability of failure of sewer pipes when average flow in pipe (%full) is increased. The 

factors resulting increase in the probability of failure can be associated with the flow 

properties (its data were not available), which can increase erosion, corrosion, exfiltration, 

etc.; additionally, increase in the average flow in pipe (%full) maybe due to infiltration as 

well, which can further increase the probability of failure of asset and reduce the service 

life. 

Furthermore, based on models obtained using binomial logistic regression, multinomial 

logistic regression, ordinal regression with Probit and Complementary Log-Log link 

function, the average flow in pipe (%full) was determined to be a significant predictor. 

6.2 LightGBM and CatBoost models  

A summary of comparison between models developed based on LightGBM and CatBoost 

algorithms are presented herein.  

6.2.1 Receiver Operating Characteristic Curves Associated with 

LightGBM and CatBoost models  

It was observed that the area underneath receiver operating characteristic curve (AUC) 

associated with CatBoost algorithm was greater than AUC associated with LightGBM 

model. Based on the obtained results, it is observed that the area under the receiver 

operating characteristic curves associated with LightGBM model is 0.85, whereas AUC 

for CatBoost algorithm is computed to be 0.88. The greater area under the receiver 

operating characteristic curve associated with CatBoost algorithm, illustrates a more 

suitable model for the available sewer pipe data set. 
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Based on the receiver operating characteristic curves for both LightGBM and CatBoost, it 

is observed that for the sewer pipe data set considered in this study, CatBoost seemingly 

results in a more suitable model compared to LightGBM (except for the beginning part of 

the graphs and a small portion after that). Based on the receiver operating characteristic 

curves, except for the cases wherein the false positive rate is less than 0.0256 or the false 

positive rate is between 0.1731 and 0.1795 (in which LightGBM seems to be a more 

suitable model), in all other instances, CatBoost algorithm will deliver a more suitable 

model for the available sewer pipe data set. 

6.2.2 Feature Importance Associated with LightGBM and CatBoost models  

Based on the results obtained from LightGBM and CatBoost models, the independent 

variables were ranked from the highest to the lowest feature importance. It is observed that 

the age of the sewer pipe has the highest feature importance in CatBoost model, whereas 

in the LightGBM model, the highest feature importance is associated with the pipe length. 

Furthermore, pipe slope, pipe dimeter, PVC, and VCP have the same ranks in both 

methods. 

6.3 Influence of initial condition grading of sewer pipes on service life 

When initial condition grading of sewer pipes is taken into consideration in developing the 

deterioration models, and given the sewer pipes are initially at perfect condition, the 

deterioration models will be more conservative. In other words, the deterioration rate of 

sewer pipes will be potentially greater compared to the rate of deterioration in models 

developed without considering the initial condition grading of sewer pipes. 

For instance, in the case of a model developed through binomial logistic regression, when 

the initial condition grading of sewer pipes are not accounted for, the coefficient of the age 

of the pipe is equal to 0.060; however, when the initial condition grading of sewer pipes 

are considered, the coefficient of the binomial logistic regression model associated with 

age of pipe is equal to 0.100. In other words, when the initial condition grading of sewer 
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pipes are not taken into consideration, when age of pipe increases by one year, the odds 

ratio increases by 6.18%; however, by considering the initial condition grading of sewer 

pipes, based on binomial logistic regression model, by increasing the age of pipe by one 

year, the odds ratio will be subjected to 10.52% increase. Based on this observation, it is 

concluded that for the sewer pipes considered in this study, by considering the initial 

condition grading of pipe, the results will be more conservative compared to the case 

wherein the initial condition grading of sewer pipes are not accounted for. 

6.4 Summary of Results Based on Binomial Logistic Regression: 

When modeling deterioration of the sewer pipes considered in this study, it was observed 

that binomial logistic regression was a suitable modeling approach (based on Ombinus tests 

of model coefficients as well as Hosmer and Lemeshow test). Furthermore, the 

classification table based on this deterioration model illustrated 83.2% overall accuracy. 

However, the percent of correct predictions associated with survival and failure of sewer 

pipes (condition gradings of 0 and 1 in binomial logistic regression) were 95.7% and 

16.9%, respectively. Therefore, it is observed that the percent correct predictions of sewer 

pipes which did not meet failure criterion was much higher compared to sewer pipes which 

were considered to be in failure condition.  

When initial condition gradings of sewer pipes are also taken into consideration, it is 

observed that both Ombinus tests of model coefficients as well as Hosmer and Lemeshow 

test are satisfied. Furthermore, based on the classification table it was observed that the 

percent of correct predictions associated with survival and failure of sewer pipes were 

97.6% and 16.9%, respectively. Moreover, the overall percent of correct predictions was 

computed to be 91.2%, which is greater than the case wherein the initial condition grading 

of sewer pipes were not accounted for. However, similar to the model without initial 

condition grading of sewer pipes, it is observed that the correct predictions obtained with 

regards to sewer pipes which did not meet failure criterion was much more accurate 

compared to sewer pipes which were considered to be in failure condition. 
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6.5  Summary of Results Based on Multinomial Logistic Regression: 

The deterioration model developed based on multinomial logistic regression was found to 

be suitable based on Goodness-of-Fit test as well as likelihood ratio test available within 

model fitting information table. Additionally, based on the classification table for the 

developed model, it was observed that condition gradings 1 and 4 had 88.7% and 72.9% 

accuracy in predictions, respectively; whereas condition gradings 2, 3, and 5 had only 

1.8%, 11.5%, and 33.3% correct predictions, respectively. The overall percent of correct 

predictions was found to be 59.3%. Therefore, based on these results, it seems that for the 

sewer pipes considered in this study, multinomial logistic regression model is best suited 

for predicting condition gradings of 1 and 4, and condition gradings 2, 3, and 5 were poorly 

predicted. 

When initial condition states of sewer pipes are accounted for, it is observed that 

multinomial logistic regression once again satisfies Goodness-of-Fit test test as well as 

likelihood ratio test available within model fitting information table. With regards to 

classification table, it is observed that the overall percent of correct predictions is equal to 

79.8%; which is greater than the overall correct predictions obtained without considering 

the initial condition grading of sewer pipes (20.5% higher). Once again, the highest percent 

of correct predictions are associated with condition gradings 1 and 4 with 96.8% and 

72.9%, respectively. For condition gradings 2, 3, and 5, the percent of correct predictions 

are respectively 9.1%, 3.8%, and 16.7%. Even though by considering the initial condition 

grading of sewer pipes the percent of correct predictions are increased for the overall 

condition grading prediction (from 59.3% to 79.8%) as well as condition gradings 1 (from 

88.7% to 96.8%) and 2 (from 1.8% to 9.1%), however, for condition gradings 3 and 5, the 

percent of correct predictions have declined from 11.5% to 3.8% and from 33.3% to 16.7%, 

respectively; and for condition grading 4, this percentage remains constant at 72.9%. 
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6.6  Summary of Results Based on Ordinal Regressions: 

The summary of results associated with each of link functions utilized in this study are as 

follows: 

6.6.1 Link function: Logit 

When ordinal regression with Logit link function was used to estimate the service life of 

sewer pipes, it was observed that even though the obtained model satisfied Goodness-of-

Fit test and likelihood ratio test available within model fitting information table, however, 

considering the result pertaining to test of parallel lines, the proportional odds assumption 

was not satisfied for the sewer pipes considered in this study. By further investigation, it 

was observed that upon removal of the average flow in pipe (%full) from the model, the 

Goodness-of-Fit test as well as likelihood ratio test available within model fitting 

information table were still satisfied and additionally, based on the results obtained from 

test of parallel lines, it was observed that the proportional odds assumption was also 

satisfied. 

By considering the initial condition grading of sewer pipes, it is observed that by using the 

full model and without the need to eliminate any of the independent variables of the model 

(unlike the case wherein the initial condition states are not accounted for), not only were 

the Goodness-of-Fit test as well as likelihood ratio test available within model fitting 

information table satisfied, but also test of parallel lines illustrated that the proportional 

odds assumption was satisfied too. 

6.6.2 Link functions: Probit 

Based on the obtained results, it was observed that ordinal regression utilizing Probit link 

function satisfied the Goodness-of-Fit test as well as likelihood ratio test available within 

model fitting information table. Furthermore, it was observed that based on the outcome of 

test of parallel lines, the proportional odds assumption was satisfied as well. 
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When initial condition states of sewer pipes were used with Probit link function, it was 

observed that similar to Logit link function wherein the initial condition states of sewer 

pipes were not accounted for, even though the developed model through Probit link 

function satisfied both Goodness-of-Fit test and likelihood ratio test available within model 

fitting information table, nevertheless, based on test of parallel lines, it was concluded that 

the proportional odds assumption was not satisfied. It was, however, observed that when 

the average flow in pipe (%full) was removed from the model, besides satisfying the 

Goodness-of-Fit test and likelihood ratio test available within model fitting information 

table, and based upon the test of parallel lines, the proportional odds assumption was 

satisfied as well. 

6.6.3 Link function: Negative Log-Log 

Even though the model developed based on ordinal regression with Negative Log-Log link 

function did satisfy Goodness-of-Fit test as well as likelihood ratio test available within 

model fitting information table, test of parallel lines did not yield desirable result and it 

was realized that proportional odds assumption is not validated. However when the average 

flow in pipe (%full) and the average velocity of flow in sewer pipe were removed, it was 

observed that the new model satisfied the Goodness-of-Fit test (Pearson and Deviance), the 

likelihood ratio test available within model fitting information table, and test of parallel 

lines. Therefore, proportional odds assumption is validated. 

When the initial condition states of sewer pipes were taken into account, the results based 

on Negative Log-Log link function illustrated that the Goodness-of-Fit test results as well 

as likelihood ratio test available within model fitting information table were satisfied. 

Based on the test of parallel lines it was realized that the proportional odds assumption was 

satisfied as well. 
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6.6.4 Link functions: Complementary Log-Log 

By using ordinal regression with Complementary Log-Log link function, it was observed 

that only one the Goodness-of-Fit test results was satisfactory (i.e. deviance). Furthermore, 

likelihood ratio test available within model fitting information table was desirable as well. 

Additionally, the proportional odds assumption was found to be satisfied through test of 

parallel lines. 

Similarly, when the initial condition grading of sewer pipes were taken into account, the 

results based on Complementary Log-Log link function illustrated that only one the 

Goodness-of-Fit test results was satisfactory (i.e. deviance) and likelihood ratio test 

available within model fitting information table was also satisfied. The outcome of test of 

parallel lines showed that the proportional odds assumption was satisfied as well. 

6.6.5 Link functions: Cauchit 

Ordinal regression utilizing Cauchit link function did not yield satisfactory results through 

test of parallel lines, and elimination of independent variables (similar to the procedure 

described for Negative Log-Log and Logit link functions) did not help with this test either; 

therefore, the proportional odds assumption was not satisfied with Cauchit link function. 

However, it was observed that the Goodness-of-Fit test result as well as likelihood ratio 

test available within model fitting information table yielded satisfactory results. Even 

though the proportional odds assumption was not satisfied, however, for purposes of 

illustration and comparison the results of this method was also discussed herein.  

Similarly, by considering the initial condition states of sewer pipes, the same observation 

was made for Cauchit link function. Even though the Goodness-of-Fit test result as well as 

likelihood ratio test available within model fitting information table yielded satisfactory 

results, however, based on the test of parallel lines, it was observed that the proportional 

odds assumption was not satisfied. 
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6.7 Summary of research 

In this dissertation an effort has been made to investigate the deterioration of sewer pipes 

utilizing various artificial intelligence-based as well as statistical models. Furthermore, by 

assuming failure criteria, as specified in the dissertation, service lives associated with sewer 

pipes can be estimated based on the aforementioned deterioration models. However, it 

should be noted that for various sewer pipes and based on the availability of suitable data, 

and due to different failure modes that could occur in different sewer pipes, the results will 

be subjected to uncertainties and variation. In other words, the estimated service lives and 

deterioration curves could change for different sewer pipes and based on the decision-

makers’ priorities and failure criteria as well as the available data. Therefore, for various 

projects and sewer pipes, the suitable modeling approach may differ; i.e. a model which 

yields suitable results for one project may not necessarily yield suitable and reliable results 

in another project. This stems from the assumptions and uncertainties associated with the 

aforementioned approaches. 
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