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ABSTRACT 
 
 
 

ACTIVITY RECOGNITION TO MIMIC HUMAN PERCEPTION 

 

ALANKRIT GUPTA, M.S. Computer Science 
 

The University of Texas at Arlington, 2020 
 

 

Supervising Professor: Dr. Manfred Huber 
 
 

The recognition of activities from video is a capability that is important for a wide 

range of applications, ranging from basic scene understanding to the successful prediction 

of behavior in autonomous vehicle applications. At this time, human capabilities in this 

task by far outperform computer applications and thus the idea to mimic human perception 

should be promising. In this thesis we are proposing an architecture that processes videos 

to extract important action instances that describe the essential behaviors contained in any 

video and help us map the information from the video to a machine-understandable form. 

This is an important research area, as it could help us interpret the surrounding environment 

for the visually impaired, detect and characterize human behavior for autonomous vehicles, 

as well as enhance security at some of the most vulnerable places by identifying suspicious 

behavior. All of this illustrates the vast range of possibilities to this technology. The 

architecture proposed here is divided into three major sub-modules, namely: i) 

Localization; ii) Action Detection; iii) Description mapping. In this thesis, all the 

submodules are introduced and their interaction and operation is described before the 
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action detection module is implemented and its performance is demonstrated. In addition, 

the thesis will describe how we could use transfer learning to combine all the proposed 

specialized components to mimic human perception. 
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CHAPTER 1 

 

Introduction 

 

In recent years, the field of Artificial Intelligence (AI) and in particular of Machine 

Learning has made significant advances, allowing for increasingly more complex tasks to 

be addressed. This has opened up many new capabilities and advanced the drive of some 

researchers towards the ability to mimic all the possible human components on a machine. 

With the recent advances in Neural Networks (NN), which has led to some significant 

advancements where these networks are used to predict stocks, classify images, build a 

predictive model to learn from trends and for many other tasks. 

All this progress has revived a drive towards attempts to build a system capable of 

implementing systems that can address a wide range of tasks a human is capable of 

achieving. Keeping this in mind the work in this thesis is driven towards proposing a 

technique focused to mimic human perception. Currently, human perception is one of the 

most researched areas, with the idea for the machine to understand and perceive an 

environment as we do. As perception is mostly considered relative, the focus is mostly on 

being able to understand some of the most important events in time and be able to 

understand the correlation between them. 

The drive to mimic human perception also often underlies efforts to be able to build 

an assistive device focused on helping visually impaired people with some of the most 

basic daily tasks. This could help provide life-changing assistance to them, while also 

giving them an outlook of the world around them. The possibility of this technology does 

not just end here, as work in this direction could also pave the way to secure some of the 
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most vulnerable locations like airports, religious venues, secured official government 

buildings, and many more. As we could use the basic components of this architecture to 

predict a possible localized attack. 

The work proposed here to mimic human perception in the area of video 

interpretation is divided into three specialized sub-components. The first specialized 

component is Localization, with the focus on localizing potential activity instances in time, 

from untrimmed video input. This is an important aspect as it helps identify multiple 

potential action instances taking place in time since an event taking place over a few 

minutes or maybe more might have multiple correlated events taking place. The second 

component is Classification, which helps identify a potential activity taking place in the 

proposed action instance. This plays a crucial role as it provides a summary of a potential 

action instance which could help drive focused information extraction to map various 

events in time. The third component is Description mapping, which focuses on helping 

map various events in time to their description. The proposed architecture uses the feature 

components extracted during classification to establish the relation between different 

proposals over time. 
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CHAPTER 2 

 

Related Work 

 

As the work in this thesis is mainly focused with localization, action recognition, and 

classification, this related work will focus on the most closely related work in these areas 

and show how these sub-components have evolved over time and how the approach 

presented in this thesis, while learning from these approaches, proposes different outlooks 

to them. This section will also discuss how we can work to combine different techniques 

to help learn over different modules.  

ACTIVITY RECOGNITION. Earlier work for the task of activity recognition has 

focused on using predefined concepts, such as in SVO [1], to identify elements in the frame 

to focus on to retrieve information. As the move towards more object-centrically focused 

detection took place, techniques were developed that focused information extraction 

around objects of interest while still using hand-crafted features [12] [13]. With the 

advances in computing and machine learning, most of the most recent work is driven by 

deep learning features to understand the activity. This is crucial as it gets rid of building 

specialized components, which potentially had an issue with transfer learning. 

LOCALIZATION. To localize events in time, a common approach has been to use 

a sliding window approach which helps to extract events in time with varied lengths. This 

approach defines different sized windows to look at the frames together, an approach to 

possibly understand the relation between different frames when seen together [1]. Though 

the sliding window approach might help localize every possible event of varied length, it 

seems to come with quite an overhead which might be unnecessary. In this work, we are 
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proposing a variant of the sliding window, in which we sub-divide video into smaller 16 

frame components, referred to as 1 sub-mod, and taking multiple sub-mods together to a 

specific limit. This two-level mechanism is aimed at helping in detecting localized events 

with a lower overhead. 

For example, taking sub-mods at a stride rate of 1, 2, 4, 8 might help extract relevant 

information for increasingly long activities. The reason for choosing a smaller window of 

16 frames is that it usually provides sufficient information regarding a local change taking 

place within the frames. The pick of 16 frames here is based on experiences form a 

significant amount of prior research experiments [4] [5]. To illustrate this, consider an 

average video has a frame rate of anywhere between 25-30 frames per second (FPS). 

Considering we take 16 frames for a sub-mod, taking stride at the rate 1, 2, 4, 8 will help 

us analyze 16, 32, 64, and 128 frames together, which roughly translates to >.5 sec, >1 sec, 

> 2 secs, > 4 seconds. Though this number might seem small, it helps to locate an important 

activity taking place, as the action change should be summoned in this period. Even though 

a normal activity might extend across longer periods, this could help us to identify localized 

changes in events, including the beginnings and ends of the longer activity. With the 

combination of localizing multiple smaller proposals together, the overlapping proposal 

with the same class could be identified as a single event.  

SPATIO-TEMPORAL ACTION LOCALIZATION. Recently there has been a lot 

of interest in Spatio-temporal aspects of action localization [2]. This is a crucial component 

as it helps understand important spatial components of every frame in a segment. This is 

usually referred to as visual encoding, as it helps in extracting important visual component 

features. Usually, a pre-trained CNN is used to extract features of an individual frame, or 
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a pre-trained C3D network is used to extract features of a segment consisting of multiple 

frames [6] [8]. This vastly helps in directing spatial focus towards the important features 

in a frame, as these networks are extremely deep and are usually trained on huge image-

net datasets [14]. Considering the other aspect of spatio-temporal localization is temporal 

localization, also referred to as sequence encoding. This helps us to understand the relation 

between different frames and how the change from one frame to another helps 

understanding the activity taking place. For temporal localization, LSTM’s [7] are 

frequently used to learn the relations within the sequences of frames. Spatio-temporal 

localization is frequently used for recognition and classification from video, to help 

understand the relationships within a frame as well as in between different frames [15]. 

SST: SINGLE-STREAM TEMPORAL ACTION PROPOSAL [4]. The approach 

for Single-Stream temporal (SST) action detection proposes an alternative to the sliding 

window approach that is used to describe the action in a given video. The sliding window 

approach can be computationally expensive as a result of requiring multiple passes over 

the same video with different temporal scales. In contrast, SST is able to perform its 

processing in a single pass through the window. To achieve this they use a 3D 

Convolutional (C3D) [6][8] network for video input, and train it to effectively capture 

visual and motion information at a small temporal resolution. In order to accumulate 

evidence over time to allow the model to be able to aggregate information so as to 

determine if an action has taken place while ignoring the irrelevant background, this model 

uses recurrent network layers. Since the model needs to process the video in a single pass, 

the recurrent models here need to unroll over the entire input testing video. GRU based 

architectures were found to provide better performance and are thus used here. At each 
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time step, the model outputs confidence scores of multiple proposals. These scores 

themselves are here learned by fully connected layers. The design approach to include 

recurrent networks to fully unroll over the entire video sequence acts as a key property that 

enables the model to operate without using overlapping sliding windows. In this work, the 

authors also observed that the hidden states in the recurrent networks tend to saturate when 

running over many steps resulting in overconfident results. This approach is functionally 

very useful but uploading the whole pre-trained C3D Network on the GPU memory even 

after getting rid of some of the top layers proves to be a huge limitation. 

DAP’s: DEEP ACTION PROPOSAL FOR ACTION UNDERSTANDING [5]. 

Focusing on the success of object proposals in object understanding in images Escorcia et 

al introduced a new approach named Deep Action Proposals (DAP’s) as an efficient 

technique to generate temporal action proposals from videos. The proposed architecture 

retrieves fidelity proposals with lower computational costs. In order to move forward with 

high-level analysis of long untrimmed videos, they suggested to put the development of 

action proposal at the forefront of human activity understanding research. The new 

proposed approach is trained to output temporal locations and scales to a fixed number of 

proposals. The model generates proposals at multiple temporal scales with a single pass, 

including for previously unseen actions. The approach is computationally efficient and runs 

at 134 FPS. They reduce the number of evaluated windows by encoding the video in a 

sequence of visual descriptors. For temporal action proposals they create a hierarchy of 

fragments by hierarchical clustering, based on semantic visual similarity of continuous 

frames. For the implementation DAP uses a pretrained C3D reference model as a visual 

encoder. The DAP network reduces the dimensionality of the representation from the 
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second fully connected layer from 4096 to 500 using PCA. DAP’s action classifier encodes 

features learned by conv-net using VLAD [16]. To measure the quality of temporal 

proposals, they use average recall. In this thesis we will be using a modification of DAP to 

help us propose if a video instance contains a possible action or not. 

TEMPORAL ACTION LOCALIZATION IN UNTRIMMED VIDEOS VIA 

MULTISTAGE CNN [3]. In most work on video processing the datasets used fall into one 

of two types: i) Data that has video level category labels but no temporal annotations 

(weekly supervised); or ii) Data where temporal boundaries have been annotated in 

untrimmed videos. Both of these different types of datasets could help us build networsk 

focused on different segments of the proposed module. In [3] the authors employ multi-

stage segment extraction, a windowed approach, to extract frame segments at different 

lengths with the focus on classifying them as being either an action or a background. The 

action segments are then sent to a classification network, together with an equal distribution 

of background segments, to help learn classes the actions belong to. They later have their 

own version of a localization network with the focus on increasing the score of proposal 

with high Intersection over union (IoU) [9] with the ground truth. This is further 

complemented with Non-Maximum Suppression (NMS) [10] to get rid of proposals with 

a higher IoU access to the ground truth and higher score proposals. While this seems to be 

a good approach, we believe they could extract more information from the discarded 

proposals. Here we propose to use them in our later stages to build a proposal segment with 

longer length. 
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CHAPTER 3 

 

Methodology 

 

The proposed architecture to mimic human perception consists of three specialized 

components. This thesis is proposing the architecture for the whole system, introducing each 

of them with a brief description, while focusing on the classification component in more detail 

and implementing a prototype version of it. The work proposing the architecture is mainly 

focused on how we can incorporate differently trained specialized components to help mimic 

human perception. Since the requirements for each component might vary, this work focuses 

on how we can use transfer learning as well as on the benefit of one specialized unit to improve 

the utility of another. 

Figure 3.1: Proposed Architecture 
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The specialized components comprising the proposed architecture are: 

1. Localization Network: The goal of this component is to temporally localize 

activities within the untrimmed video. 

2. Classification Network: This component’s objective is to identify (classify) the 

activity in the localized segment. 

3. Description mapping: The goal of this component is to map the activity sequence 

to a description of the video content. 

3.1 Localization Network 
 

As the main focus of our proposed architecture is to mimic human perception, one 

aspect of the perception that we need to focus on right away is that a single scene depiction 

or a video might have more than one action instance, which further might be of varied 

lengths. This is the major concern or challenge moving forward with respect to the 

localization module.  The localization we are here referring to is mostly concerned with 

localizing an activity or action instance in time. For the proposed architecture we further 

subdivided this module into two smaller but complimenting sub-components.  

The components as shown in Figure~3.2  are: 

1. Temporal Segmentation 

2. Proposal 
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Figure 3.2: Proposed Localization Module 

3.1.1 Temporal Segmentation 
 
 

The challenge to identify localized action instances in time is generally 

computationally expensive due to the enormous number of possible permutations and 

combinations of all possibly consecutive frames that could correspond to a possible action 

segment proposal. However, this is a necessary evil when concerned with being able to 

detect events in a long and untrimmed video or scene depiction. With the proposed 

architecture we are trying to provide a relatively viable solution that could help extract 

proposals of varied length while also considering the computational overhead. 
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The proposed temporal segmentation module is mostly aimed at long and untrimmed 

video sequences. To help with localized segment retrieval, the first step is to segment the 

entire video into individual frames. This will help to form smaller segmented sequences 

and also be useful when retrieving features for each frame in a segmented proposed 

sequence. 

The approach then then combines frames into sets of 16 frames (1 sub_mod) with a 

skip of 16. This leads to a division of the length of a whole video sequence into t localized 

sub_mods, where t = (length of video)/16.  These sub_mods are then combined with strides 

1, 2, 4, 8, which means that we combine the adjacent n sub_mods to build a sequence length 

of n·16 frames for , capturing sequences of different lengths. 

This extraction process helps us find events in longer sequences while avoiding to 

generate a large overhead to accommodate every possible combination of adjacent frames. 

We will later in the description of our novel classification network define how this 

proposed method for temporal segmentation can help us achieve better results with lower 

overhead when compared with a moving window approach. 

 
 

3.1.2 Proposal  
 

After extracting segments from the untrimmed video sequence, we use a variant of 

DAP’s (Dense Action proposal) [5] to propose probable segment sequences that might 

contain action instances. DAP’s provide us with a confidence score for each proposal, 

allowing the system to select the k proposals with the highest scores.  
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DAP’s is trained using a procedure in which it proposes a segment Si with a 

probability Ci. The goal of this procedure is that the action proposed by the model should 

match the location of actions in the sequence. 

These localized events/actions in time help us to extract proposals localized with 

high action likelihood. The output from this module will act as an input to our classification 

network 

 

 

3.2 Classification Network  
 

After retrieving the possible action segment sequences from the localization 

network, we use those proposed segments as input to the classification network. Since these 

proposed segments are trimmed using the likelihood of an action taking place from the start 

of the proposed sequence to the end of it, this acts as a perfect input to our classification 

network.  

 

Figure 3.3: Proposed Classification Module 

 

The classification architecture uses the concepts of transfer learning to extract visual 

encodings for the proposed segmented sequences. We are using the Inception V3 pre-
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trained CNN model on ImageNet to extract spatial features for each frame in the given 

localized sequence [17]. This avoids training this component from scratch and takes 

advantage of the significantly larger image data set used to train the ImageNet architecture. 

Starting with this we can more efficiently build our classification network. 

The extracted features act as an input to LSTMs at varied time steps since each 

proposed action sequence is of varied length through sub_mod striding at 1, 2, 4, and 8, 

corresponding to the segment lengths generated by the temporal segmentation component. 

The LSTM sequence here acts as a sequence encoder as it extracts information over time 

with each frame feature in the sequence representing a single time frame. 

The output of the LSTM is preserved for every time sequence, serving as the input 

to a Time Distributed Layer which considers the entire sequence of actions over time to 

preserve all vital information, as is is common for LSTMs to forget older input over long 

sequences. This technique helps us preserve the information over long sequences of input 

proposals. 

The output extracted from the time distributed layer is then flattened and fed into a 

dense network which is connected to a SoftMax layer to predict the action class of the 

given proposal. 

As mentioned earlier in the localization module, the proposed method for 

localization can help achieve better results with less overhead compared to a moving 

window approach. This is achieved through a combining stage after the classification 

network. After classifying each proposed video of smaller segments of 16, 32, 64, or 128 

frames, we run a combining task. The purpose of this is to determine if any number of 

nearby action proposals represent the same class. If this is the case, these proposals will be 
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combined to represent a single action sequence of longer length, resulting in many cases in 

segments that are significantly longer than our smaller window lengths. This technique acts 

as a crucial element to reduce the computational overhead while also extracting action 

sequences of longer duration. 

 

 
3.3 Description Mapping  

 

The description mapping uses the information provided by both our previous 

specialized components, i.e. the sequence of action proposals to map these to descriptions 

for the entire video sequence. After running the combining task that combines the nearby 

proposal sequences, we pass those combined proposal segments again through the 

classification network to extract hidden states of those elements. These hidden states are 

extracted from the last fully connected layer of the classification network just before the 

SoftMax layer and provide the input to the Description Mapping component as shown in 

Figure 3.4. 

Figure 3.4: Proposed Description Mapping Model  
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Since we have all the information from the hidden layer before the SoftMax layer of 

the classification network, we feed those hidden representations through LSTMs [11] to 

map them to descriptions. To capture the relationships between different proposals which 

are part of the same video, we feed these hidden representations of the proposals through 

the Description Mapping network based on the order at which these action proposals took 

place in time. 

Some of the datasets that can be used to train these specialized components in a 

supervised method are the MPII-MD movie dataset and the Activity Net Caption dataset 

[18], as both of them are vast datasets with localized captions. This will play a crucial role 

in order to map these hidden representations to their descriptions. 

 

  



 

16 

 

CHAPTER 4 

 

Classification Model Implementation 
 
 

For our classification network implementation, we have used UCF101 [19] as our 

primary dataset. To make the training process easier, we are working here with some data 

preprocessing steps.  

One of the most important components while handling this dataset is to consider an 

efficient and unbiased way of splitting test and training set initially as the dataset contains 

videos of action sequences belonging to the same group. In particular, in this dataset 

separate videos were recorded but with the same actors and the same camera settings. 

Considering this is important since, if videos belonging to the same group are in both the 

train and test set, this could falsely increase the validation accuracy.  

The documentation for UCF101 comes with a train/test split guideline which we are 

following here. This splits the data into a training set with more than 8596 videos, and a 

test set with more than 3418 videos. We are using tests as our validation set to perform an 

early stoppage if validation loss does no longer decrease after a while. 

Using these sets we are subdividing each video into individual frames, helping while 

retrieving a certain sequence length with respect to each video and also helping during 

feature extraction.  

After extracting frames from each video, we form sequences of 40 frames for each 

video and only extract frames from videos of length less than 300 frames. Taking such 

steps helps us extract a frame sequence for every 7.5 seconds of video, which should help 

the network to understand the change in action taking place. 
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These frame sequences are then passed into the Inception V3 pre-trained CNN on 

ImageNet, to extract a spatial feature encoding. This process is run separately from our 

classification network to have all the features available ahead of time and not to have to re-

run the pre-trained Inception network. This helps in faster training by avoiding redundant 

computations as we are not refining the Inception network’s weights. 

Features are extracted for each frame using a feature vector of dimension  2048. 

These features are fed into our LSTM unit for the 40-time steps of the temporal segments 

described above. For the LSTM unit, we return all the hidden time step outputs instead of 

just the final learned LSTM layer output so that we have all the information preserved with 

regards to each time step. 

 

4.1 Experiments and Results 

In the experiments presented here we have worked with early termination and thus a 

relatively small number of iterations of the architecture to avoid overfitting, as some 

architectural changes led to accuracies on the training dataset of close to 100% when 

trained for a long time where additional training led to no further improvements for our 

validation set. In some cases the longer training on the train dataset even led to a decline 

in the validation accuracy. 

We are optimizing using Adam optimizer with a learning rate of 0.00005 and a decay 

at the rate of 0.000001, with RELU activation in each layer. The experiments use cross-

entropy as a loss function and accuracy and top-k categorical accuracy as our evaluation 
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metric. We have used early stoppage at 20 epochs, i.e. if the validation loss does not 

increase after 20 iterations, the model will stop the training process. 

A number of different architectures where tested and a number of additional 

regularization terms and features were included to minimize overfitting further in addition 

to the early stopping criterion described.  

 

 EXPERIMENT 1 

The initial experiment architecture uses the proposed architecture components 

consisting of an LSTM layer, two Time Distributed layers, fully a dense layer and a 

SoftMax layer. In addition, it includes a Dropout layer for additional regularization 

between the LSTM and Time Distributed layers as well as between the Dense and the 

SoftMax layer. The goal here was to further reduce the potential for overfitting. The 

complete used architecture is as follows:  

Figure 4.1: Experiment 1 Architecture 
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Figure 4.2: Experiment 1 Classification Accuracy and Top-5 Accuracy 

This architecture led the model to a training accuracy of 99.5 % just within 8 epochs. 

The validation accuracy, on the other hand, peaked at 72.14% accuracy. This indicates 

significant overfitting as to the best results for the model are achieved in a short span of 8 

epochs. The top-5 categorical accuracy for this model peaked at 89.96%. 

 

EXPERIMENT 2 

To address some of the overfitting observed in the previous architecture, a second 

experimental architecture was built in which a higher dropout rate was combined with an 

additional dense layer, resulting in the following network architecture; 



 

20 

 

 

 

Figure 4.3: Experiment 2 Architecture 
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Figure 4.4: Experiment 2 Classification Accuracy and Top-5 Accuracy 

In this architecture the model’s training accuracy peaked at 90.8 % after 116 epochs. 

On the other hand, the validation accuracy peaked at 72.32% accuracy. This indicates a 

significant decrease in terms of overfitting with a small accuracy improvement on the 

validation set.  The top-5 categorical accuracy peaked at 89.87%, which is not significantly 

different from the previous architecture.  

 

EXPERIMENT 3 

To further test whether overfitting could be further reduced, a third architecture was 

built that reduced the number of dense layers back to 1 while maintaining the higher 

dropout rate. The architecture for this model is as follows: 
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Figure 4.5: Experiment 3 Architecture 
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Figure 4.6: Experiment 3 Classification Accuracy and Top-5 Accuracy 

This architecture again displayed a higher level of overfitting. The model’s training 

accuracy achieved 99 %, while the validation accuracy peaked at 72.79% accuracy, but 

soon declined to 70.5% due to additional overfitting. This demonstrates the 

abovementioned effect of a decline in validation accuracy due to overfitting in later stages 

of training. 
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4.2 Conclusion 

Within the architectures evaluated here, Architecture 2 as shown in Figure 4.3 

proved to be the best model. As reiterated in Figure 4.4, this model showed growth in most 

of the training process without any decline for a longer period of time, indicating a more 

stable model than the other two architectures. Thus, we propose it as our model architecture 

with its details shown again in Figure 4.7. 

Figure 4.7: Classification Model Architecture 

As indicated, our classification network achieved a validation accuracy of 72.32% 

for top-1 proposal and of 89% for top-5 proposals. As indicated, we chose this  architecture, 

due to it showing the least amount of overfitting model and the most consistent increase in 

both training accuracy and validation accuracy during training. Though these results are 

well below the state-of-the-art results, the proposed network is significantly lower 
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complexity. Moreover, since we did not use the pre-trained networks at the same time as 

classification, the weights of these network components were not tailored with respect to 

the given problem and architecture. 
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CHAPTER 5 

 

Conclusion 

  
This thesis proposed an architecture to mimic human perception and implemented 

the classification component which addresses human activity recognition. We proposed an 

architecture consisting of different specialized components that together should increase 

the utility of each of the components as well as of other adjoining components. The 

architecture introduced a novelty approach to reduce overhead while extracting longer 

action proposals, compared to the initial window. In order to mimic human perception, the 

proposed architecture could act as a base element for a number of higher-level operations, 

ranging from an auditory assistance devices for visually impaired people, securing 

vulnerable locations with localized threat predictions, crowd control, fraud monitoring in 

financial, entertainment, grocery shopping sectors and many more. In the future we will 

aim to implement the complete architecture and train it on a larger dataset to fully evaluate 

the synergistic aspects of the proposed components. 
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