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ABSTRACT

Efficient Construction and Explanation of Machine Learning Models through

Database Techniques

SONA HASANI, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Gautam Das

Machine learning (ML) has been widely adopted in the last few years and it has

had an undeniable impact on the ways many organizations make decisions. While

great advances have been made in developing new ML algorithms and applications,

there is a major need for scalable ML solutions in order to meet the demands of the

Big data era. In this dissertation, we focus on improving the efficiency of two main

machine learning solutions through database techniques: i) efficient construction of

machine learning models, and ii) efficient explanation of machine learning models

for multiple predictions.

First, we introduce application of machine learning in complex analytic pro-

cessing. Recently, there has been extensive interest in the database community for

supporting quick and interactive ad-hoc analytic queries on ML models trained over

large datasets. Data is typically stored in large data warehouses with multiple di-

mension hierarchies. In this dissertation, we investigate the feasibility of efficiently

constructing approximate ML models for new queries from previously constructed

ML models by leveraging the concepts of model materialization and reuse. We pro-
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pose algorithms that can support a wide variety of ML models such as generalized

linear models for classification along with K-Means and Gaussian Mixture models

for clustering. We also propose a cost based optimization framework that identifies

appropriate ML models to combine at query time.

The second ML problem we tackle in this dissertation is in the area of explana-

tion. ML algorithms are increasingly used for automated decision making in diverse

domains. The widespread use of ML models has necessitated the development of

algorithms for explaining their predictions. Generating concise and accurate expla-

nations often increases user trust and understanding of the model prediction. The

research community has mobilized to develop sophisticated algorithms for generat-

ing explanations. Usually, the implementations of popular explanation algorithms

are highly optimized for a single prediction. However, in practice, explanations of-

ten have to be generated in a batch for multiple predictions at a time. We propose

a principled and lightweight approach for identifying redundant computations and

several effective heuristics for speeding up multiple explanation generation. Our

approach is inspired by Multi Query Optimization. Our techniques are general and

could be applied to a wide variety of explanation algorithms.

For all the problems, we provide extensive experiments over real-world and

synthetic datasets, using popular ML algorithms and popular explainers.
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CHAPTER 1

Introduction

Machine Learning (ML) has become an invaluable tool that is used by organi-

zations to glean insight from their data. While ML has made incredible progress in

the recent years in providing valuable insight, given the sheer size of data available

it can immensely benefit from improved efficiency. In this dissertation we investi-

gate how to use established database techniques in order to improve the efficiency of

machine learning solutions. In particular, we look at two specific machine learning

applications: Ad-hoc ML model construction for analytic queries and generating

explanations for predictive ML models for multiple predictions. These two areas in

ML are described briefly as follows.

1.1 Ad-hoc ML Models Construction for Analytic Queries

Almost all the major database vendors have added analytical capabilities on

top of their database engines. Even though there has been extensive work from the

ML community on developing faster algorithms, building an ML model is often a

major bottleneck and consumes a lot of time due to the sheer size of the datasets

involved. We investigate the feasibility of building faster ML models for a popular

class of analytic queries by leveraging two fundamental concepts from database

optimization - materialization and reuse.

Consider a typical workflow of a data scientist. She issues a query (SQL or

otherwise) to retrieve relevant data that is stored in a data warehouse. This data is

used to build an ML model for classification, clustering, etc. The model is then used
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for performing complex analytic processing such as predicting customer churn in a

geographic region. This process of retrieving data, building an ML model and using

the model for analytic processing subsumes a large portion of analytic workflows.

We argue that these ad-hoc analytic queries on ML models often exhibit a number of

appealing properties that enable a better and faster approach than building models

from scratch every time. Some of these properties include:

• Meaningful SQL Predicates. The queries that are used to retrieve relevant data

are not chosen at random and often have a specific business interpretation.

The data chosen for analysis often belongs to explicit domain hierarchies over

country, year, department, vendor, product category, etc.

• Tolerance for Approximate ML Models. Data scientists are often willing to sac-

rifice some accuracy of exploratory analysis if they can obtain “close enough”

estimates from approximate ML models quickly.

• Opportunities for ML Model Reuse. In a typical enterprise, data scientists and

engineers often create hundreds to thousands of ML models for exploratory

purposes that are then discarded after one-time use. If these models have been

materialized (instead of being discarded), then one can build an approximate

ML model for the superset by reusing the models for the various subsets.

In this dissertation, we investigate opportunities for model materialization and

reuse to speed up analytic queries [1]. We propose a two-phase approach. We store

ML models along with small amount of additional meta-data and statistics during

a “pre-processing phase”; During the “runtime phase”, we identify the relevant ML

models to reuse and quickly construct an approximate ML model from them. In

this dissertation, we investigate reuse of popular supervised and unsupervised ML

models. In supervised learning, we consider Generalized Linear Models (GLMs) that

subsumes many popular classifiers such as logistic regression and linear SVMs. In
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unsupervised learning, we consider two canonical clustering approaches: K-Means

and Gaussian Mixture Models (GMMs). For each of them, we propose two orthog-

onal approaches for generating approximate ML models.

• Model Merging. In this approach, we store some additional metadata during

the pre-processing phase such that during the run-time phase, one can combine

the ML models in a principled manner without going back to data.

• Coresets. Coresets are a small weighted set of tuples such that ML models

built from the coresets are provably closer to ML models built on the entire

data. During the pre-processing phase, one can construct coresets for each

pre-built model. During the run-time phase, we build the ML model from the

union of coresets in a fraction of time.

1.2 Generating Explanations for Multiple Predictions

Nowadays Machine Learning has become an inseparable part of many indus-

tries. In various domains such as finance, management, and medicine Machine

Learning is used to build predictive models. These models are trained on the avail-

able data and will be used to make a prediction for future data. Depending on

the nature and size of the data, different machine learning algorithms can be used

including regression, classification, and clustering. While some machine learning

algorithms such as linear regression and decision trees are self-explanatory and are

easy to understand, other algorithms such as deep learning or random forest are

more difficult to interpret for domain experts. Many computer scientists, statis-

ticians, and mathematicians have a general understanding about machine learning

algorithms and how they work, but even for the simple ML algorithms many domain

experts are unaware of their details. It is clear that Machine Learning algorithms are

strongly dependant on their training data. ML algorithms report evaluation metrics
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such as accuracy and confusion matrix to evaluate their prediction quality on the

test data. Additionally, you can evaluate the probability assigned to the predicted

label for a given data point as a measure of model’s confidence in its prediction.

However, studies show that even models with high accuracy can be unreliable be-

cause of their training data. In some domains these mistakes can lead to a disaster.

For example, in medicine or crisis management fields if we trust an unreliable model

it can have horrible consequences. Therefore, it is crucial to provide interpretable

explanations about the prediction of an ML model to equip the domain expert with

some additional knowledge and help him evaluate the trustworthiness of the model.

In order to make ML models more transparent, a line of research is focused on gen-

erating human understandable explanations on ML algorithms’ output. If the users

cannot evaluate the trustworthiness of a model, they are unable to decide if they

should use it or not. Since machine learning algorithms make their decision only

based on their training data, if the training data is not fair, many problems can leak

into the decision function of the ML models trained on that data.

Machine learning model explanations can be categorized into two broad cate-

gories: Global Explanations: There are several research studies that attempt to

explain the global behaviour of a model. Although there exist globally interpretable

ML models such as linear models or decision trees, many ML models are too com-

plicated to be explained globally and as a whole. In such cases, even the global

explanation can be very confusing and hard to understand. Therefore, some studies

focus on providing several simpler explanations where each explanation is applicable

to a part of the model. Local Explanations: Some models may be very hard to be

explained as a whole but explanations can be provided to explain their behavior in

different local neighborhoods. A few examples of local explanation methods include

LIME [2], Anchor [3], and SHAP [4].
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Alternatively, the ML explanation methods can be categorized into model

agnostic and model specific methods. Model specific explainers have prior knowledge

about what ML model is used and can leverage this additional information to provide

more accurate and customized explanations for the outcome of the ML model. On

the other hand, model agnostic explanation methods treat the ML model as a black

box and generate the explanations without having additional knowledge about the

internal detail of the ML model.

In this work, we focus on local explanations. Available local explanation al-

gorithms are optimized for explaining individual predictions. In applications such

as responsible AI [5, 6] or explanations summarization [7, 8], explaining data clean-

ing [8, 9, 10] there is a need to generate explanations for multiple predictions in a

batch setting. Generating explanations often cannot be done in real-time (in mil-

liseconds). For example, generating a single explanation using LIME takes 17, 15,

6, 6 and 5 seconds respectively for the 5 datasets evaluated in the paper.

So, an organization might pre-compute all the explanations in a batch setting

and retrieve them as needed.

Sequentially processing one explanation at a time could take too much time.

Using a cluster and parallelizing the explanation generation would give results faster

but could waste precious computing resources. Given the rapidly increasing carbon

footprint of ML algorithms [11], and the widespread deployment of explanation

algorithms, there is a pressing need for smarter algorithms for this critical problem.

Our Proposed Approach. In this study, we propose a principled and scalable

approach for generating explanations for multiple predictions. The key insight is

that there are a number of redundant computations that could be avoided by lever-

aging techniques such as materialization and reuse. Our techniques were inspired by
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Multi-Query Optimization (MQO) [12, 13]. Given a query workload, MQO seeks to

identify common sub-expressions across queries, so that the reevaluation cost could

be minimized. We describe a general set of heuristics for speeding up explanation

algorithms and discuss how these ideas could be instantiated for popular explana-

tion algorithms requiring minimal changes and very low overhead. Our proposed

approach achieves significant speedup without compromising the explanation qual-

ity. In short, we adapt the techniques pioneered by the database community to solve

a practical problem in data science.

1.3 Dissertation Organization

In chapter 2, we advocate treating ML models as first class citizens and in-

vestigate opportunities for model materialization and reuse to speed up analytic

queries. Given the relative acceptability of approximate ML models in exploratory

analysis, we believe that data scientists would willingly sacrifice model accuracy

for near real-time model building. We propose a two-phase approach. We store

ML models along with small amount of additional meta-data and statistics during

a “pre-processing phase”; During the “runtime phase”, we identify the relevant ML

models to reuse and quickly construct an approximate ML model from them.

In chapter 3, we introduce ApproxML, a system implemented based on the

solution described in chapter 2.

Finally, in chapter 4, we introduce the problem of Explaining Multiple Pre-

dictions and propose a principled and scalable approach for generating explanations

for multiple predictions. We describe scalable algorithms for three popular expla-

nation algorithms – LIME, Anchor, and SHAP – and present empirical analysis of

the speedups achieved by our approach.



CHAPTER 2

Efficient Construction of Approximate Ad-Hoc ML Models through

Materialization and Reuse

Machine learning has become an essential toolkit for complex analytic pro-

cessing. Data is typically stored in large data warehouses with multiple dimension

hierarchies. Often, data used for building an ML model are aligned on OLAP hier-

archies such as location or time. In this paper [1], we investigate the feasibility of

efficiently constructing approximate ML models for new queries from previously con-

structed ML models by leveraging the concepts of model materialization and reuse.

For example, is it possible to construct an approximate ML model for data from

the year 2017 if one already has ML models for each of its quarters? We propose

algorithms that can support a wide variety of ML models such as generalized lin-

ear models for classification along with K-Means and Gaussian Mixture models for

clustering. We propose a cost based optimization framework that identifies appro-

priate ML models to combine at query time and conduct extensive experiments on

real-world and synthetic datasets. Our results indicate that our framework can sup-

port analytic queries on ML models, with superior performance, achieving dramatic

speedups of several orders in magnitude on very large datasets.

2.1 Introduction

Machine Learning (ML) has become an invaluable tool that is used by organi-

zations to glean insight from their data. Almost all the major database vendors have

added analytical capabilities on top of their database engines. Even though there

7
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has been extensive work from the ML community on developing faster algorithms,

building a ML model is often a major bottleneck and consumes a lot of time due to

the sheer size of the datasets involved. In this paper, we investigate the feasibility

of building faster ML models for a popular class of analytic queries by leveraging

two fundamental concepts from database optimization - materialization and reuse.

2.1.1 Analytic Queries on ML Models

Recently, there has been extensive interest in the database community for

enabling interactive ad-hoc analytics on ML models. Consider a typical workflow

of a data scientist. She issues a query (SQL or otherwise) to retrieve relevant

data that is stored in a data warehouse. This data is used to build an ML model

for classification, clustering, etc. The model is then used for performing complex

analytic processing such as predicting customer churn in a geographic region. This

process of retrieving data, building a ML model and using the model for analytic

processing subsumes a large class of analytic workflows. We argue that these ad-hoc

analytic queries on ML models often exhibit a number of appealing properties that

enables a better and faster approach than building models from scratch every time.

Some of these properties include:

• Meaningful SQL Predicates. The queries that are used to retrieve relevant

data are not chosen at random and often have a specific business interpreta-

tion. Data warehouses often impose OLAP hierarchies and most of the analytic

queries are aligned along the hierarchy. The data chosen for analysis often be-

longs to explicit domain hierarchies over country, year, department, vendor,

product category, etc. For example, the domain scientist might want to re-

trieve data for years 2018/2017 or for continents Asia/Europe/North America,

etc. Building models on an arbitrary subset of the data is typically rare.
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• Tolerance for Approximate ML Models. Building a ML model takes a lot

of time for large datasets which is inconvenient when it is primarily used

for exploratory analysis. Data scientists are often willing to sacrifice some

accuracy of exploratory analysis if they can obtain “close enough” estimates

from approximate ML models quickly.

• Opportunities for ML Model Reuse. In a typical enterprise, data scientists and

engineers often create hundreds to thousands of ML models for exploratory

purposes that are then discarded after one-time use. If a data scientist needs

to build an ML model for all the data from year 2017, it is likely that some

other data scientist(s) has created ML models for the various quarters of 2017.

If these models have been materialized (instead of being discarded), then one

can build an approximate ML model for 2017 by reusing the models for the

various quarters of 2017.

2.1.2 Technical Challenges

There are a number of technical challenges that one must overcome before ML

models are reused for building approximate ML models for exploratory purposes.

While there has been extensive work on building a ML model efficiently, there is

a relative paucity of work in combining multiple pre-built ML models. Consider a

straightforward scenario whereby the data is already partitioned and both super-

vised (e.g., SVMs) and unsupervised (e.g., K-Means) models have been built for

each partition. Given a set of partitions and their corresponding SVMs, how can

one construct a single SVM that performs comparably to one that is built from

scratch on the combined data from the partitions? Similarly, given a set of K-

Means centroids for each of the partitions, is it possible to approximately compute

K-Means centroids for the union of the partitions? Further, is it possible to give any
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theoretical guarantees for the approximate ML model? How can we trade-off time

and space to get an ML model with a better approximation? Is there a cost model

that enables to decide when building an ML model from scratch is preferable to

combining pre-existing ML models? Is it possible to come up with an optimization

framework that decides which models to reuse, how to combine those models with

minimum cost? Given an analytic workload and a space budget, is it possible to

identify ML models to materialize to achieve significant speedup to later queries?

2.1.3 Outline of Technical Results

In this paper, we advocate treating ML models as first class citizens and in-

vestigate opportunities for model materialization and reuse to speed up analytic

queries. We propose a two-phase approach. We store ML models along with small

amount of additional meta-data and statistics during a “pre-processing phase”; Dur-

ing the “runtime phase”, we identify the relevant ML models to reuse and quickly

construct an approximate ML model from them.

In this paper, we investigate reuse of popular supervised and unsupervised

ML models. In supervised learning, we consider Generalized Linear Models (GLMs)

that subsumes many popular classifiers such as logistic regression and linear SVMs.

Note that our approach extends to any ML algorithm that uses Stochastic Gradient

Descent (SGD) for training. In unsupervised learning, we consider two canonical

clustering approaches: K-Means and Gaussian Mixture Models (GMMs). For each

of them, we propose two orthogonal approaches for generating approximate ML

models.

• Model Merging. In this approach, we store some additional metadata during

the pre-processing phase such that during the run-time phase, one can combine

the ML models in a principled manner without going back to data.
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Figure 2.1. Overview of Our Approach.

• Coresets. Coresets are a small weighted set of tuples such that ML models

built from the coresets are provably closer to ML models built on the entire

data. During the pre-processing phase, one can construct coresets for each

pre-built model. During the run-time phase, we build the ML model from the

union of coresets in a fraction of time.

These two approaches enable a data analyst to trade-off performance and

model approximation. The merging based approach is often extremely fast but

does not provide tunable approximation of the objective function. On the other

hand, the coreset based approach might take more time (though much less than

re-training from scratch) but is more flexible and allows one to approximate the

objective function within a factor of ε.

There has been increasing interest from the database community on build-

ing systems for ML model management (see Section 2.8 for further details). Our

approaches can easily be retrofitted over these systems to facilitate rapid construc-

tion of approximate ML models. We further discuss our potential limitations in

Section 2.7.
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2.2 Background

Dataset. Let D denote a relation with n tuples and d attributes A = {A1, . . . , Ad}.

We partition the schema A into X, Y where X is the set of predictor/independent

attributes and Y the predicted/dependent attribute(s). The schema also has a

set of dimension attributes Z = {Z1, . . . , Zl} that are associated with pre-defined

dimensional hierarchies. Each tuple ti is also associated with a unique identifier tid

that imposes a total ordering in D. As an example, tid could be an automatically

incrementing sequence or time-stamp indicating when the tuple was created. For

example, an ML model for credit card approval might have X = {Age, Gender,

Salary,Education, City} with Y={Approval}. The dimensional attribute Z = {City}

is associated with the hierarchy City ⇒ State⇒ Country ⇒ Continent⇒ All.

Query Model. Let q be the analytic query specified on D that returns a result set

Dq over which the ML model is built. We consider the following types of queries

that subsumes most queries used for model building.

• Range based Predicate: These queries are specified by an attribute Xi and

range [a, b] such that they filter all tuples with value of Xi falling between a

and b.

• Dimension based Predicate: These queries filter tuples that have specific values

for one or more dimensional attributes. Using the example above, the predicate

State = ‘Texas’ filters all credit card applications from Texas.

• Arbitrary Predicates: These queries use complex query predicates (including

a combination of range and dimension based) to select relevant data.

Pre-Materialized Models. We denote the exact model built on Dq as M(Dq)

while its approximation as M̃(Dq). We assume the availability of pre-materialized

exact models {M1,M2, . . . ,MR} built from previous analytic queries. Each of these
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models is annotated with relevant information (such as State = ‘Texas’). Given

an arbitrary query q, let Mq ⊆ MD be the set of pre-built models that could be

used to answer it approximately where |Mq| = r.

Example. Consider a database D = {1, . . . , 1000} where we have a set of built

ML models {M1, . . . ,M10} over ranges {P1 = [1, 100], P2 = [101, 200], . . . , P10 =

[901, 1000]}. Given a query q1 = [101, 500], then Mq1 = {M2,M3,M4,M5}. If

necessary, one can build appropriate models for tuples from Dq for which no pre-

built models exist. Given a query q2 = [51, 550], the set of models to answer them

will beMq2 = {M([51, 100] ∪ [501, 550]),M2,M3,M4,M5}

2.2.1 ML Primer

K-Means. K-Means is a widely used clustering algorithm that partitions data into

K clusters. Formally, given a set of points X ∈ Rd, the K-Means clustering seeks to

find K cluster centers in Rd (also called as centroids) such that the sum of squared

errors (SSE) is minimized [14]. Given a set of data points X and centroids C, the

SSE is defined as

SSE(X , C) =
∑
x∈X

d(x,C)2 =
∑
x∈X

minc∈C ||x− c||22 (2.1)

Even though clustering with K-Means objective is known to be a NP-Complete

problem, there are a number of efficient heuristics and approximation algorithms.

The most popular heuristic algorithm is Lloyd’s algorithm. It works by randomly

choosing K initial centroids from X . Each point x ∈ X is assigned to the nearest

cluster centroid. Then, the cluster centroid is updated as the mean of the points

assigned to the cluster. This process of cluster assignment and centroid update
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is repeated till the change in cluster centroids between iterations is below some

threshold.

Gaussian Mixture Models (GMM). GMM is one of the most popular mixture

models used for unsupervised clustering. GMM models the data in terms of mix-

tures of multiple components where each component is a multi-variate Gaussian

distribution. A multi-variate Gaussian distribution generalizes the one-dimensional

Gaussian distribution (specified by a mean and variance) to higher dimensions and

is specified by a mean vector µ of dimension d and a covariance matrix Σ of dimen-

sion d× d. GMM is a probabilistic/soft version of K-Means where each data point

could be assigned to multiple clusters with different probabilities.

Suppose we are given a set of d-dimensional data points X = {x1, x2, . . . , xn} ⊆

Rd. We fit X as Gaussian mixture model parameterized by θ = [(w1, µ1,Σ1), (w2, µ2,Σ2),

. . . , (wk, µK ,ΣK)] where the i-th mixture component is a d-dimensional multi-variate

Gaussian N (µi,Σi) with wi being its prior probability. Note that the prior proba-

bilities of the components sum up to 1 - i.e.
∑K

i=1wi = 1. Given the data X , GMM

estimates the parameters θ that maximizes the likelihood through the Expectation-

Maximization (EM) algorithm.

Generalized Linear Models (GLM). GLM covers a large class of popular ML

models including logistic regression (LR), support vector machines (SVM). Due to

their widespread applicability and popularity, GLMs have been extensively studied

and shown to have a number of appealing theoretical properties. They have natural

convex optimization formulations wherein every local minima is also a global min-

ima. While we restrict our attention to popular supervised ML models, we would

like to note that our methods described in this section can be easily adapted for

other GLMs such as linear regression and other log-linear models.



15

Coresets. A coreset is a weighted subset of the data such that an ML model built on

the coreset very closely approximates one built on the entire data [15]. Specifically,

a weighted set C is said to be a ε-coreset for dataset D if (1 − ε)φD(·) ≤ φC(·) ≤

(1 + ε)φD(·) where φ(·) corresponds to the objective function of a model - such

as Sum of Squared Errors (SSE) for K-Means. The SSE for the cluster centroids

obtained by running K-Means algorithm on the coreset is within a factor of (1 + ε)

of SSE obtained by running K-Means on the entire data.

2.3 Approximation by Model Merging

In this section, we investigate how to construct approximate ML models for a

query q by merging pre-built (exact) ML models. Specifically, we focus on scenarios

where we can construct the approximate model purely from the pre-built models

without retrieving data Dq. Our proposed approach has a number of appealing

properties such as: (a) orders of magnitude faster than building the model from

scratch; (b) provable guarantees on approximation; (c) minimal sacrifice of model

accuracy.

Pre-built ML Models. LetMq = {M1,M2, . . . ,Mr} be the set of pre-built ML

models that must be merged to obtain the approximate ML model M̃(Dq). Let

θ(Mi) be the relevant parameters of model Mi that must be materialized. This

information is dependent on the ML algorithm. For K-Means, θ(Mi) is the set of K

centroids and the number of data points assigned to each of the clusters. For GMM,

θ(Mi) = [(w1, µ1,Σ1), (w2, µ2,Σ2), . . . , (wK , µK ,ΣK)] where the i-th mixture com-

ponent is a d-dimensional multi-variate Gaussian N (µi,Σi) with wi being its prior

probability. For GLM such as Logistic Regression, θ(Mi) corresponds to the regres-



16

sion coefficients while for SVM, it corresponds to the coefficients of the separating

hyperplane.

2.3.1 Model Merging for K-Means

Given an arbitrary query q, our objective is to efficiently output K centroids

C̃q such that SSE for C̃q is close to SSE of Cq where Cq is the set of centroids

obtained by running K-Means algorithm from scratch on the entire Dq. We seek to

do this by only using the information θ(Mi) - the cluster centroids and the number

of data points assigned to it.

K-Means++ [16] is one of the most popular algorithms for solving K-Means

clustering. It augments the classical Lloyd’s algorithm with a careful randomized

seeding procedure and results in a O(logK) approximation guarantee. Due to its

simplicity and speed, K-Means++ has become the default algorithm of choice for

K-Means clustering. Hence, we assume that all the cluster centroids were obtained

through the K-Means++ algorithm.

Let Cw represent the union of all cluster centroids from all the models Mi ∈

Mq. As before, if there were some tuples in Dq that were not covered by modelsMq,

one can readily run K-Means on those tuples and add those cluster centroids to Cw.

For each centroid cj ∈ Cw, we assign the number of data points associated with it

in the original partition as its weight w(j). We then run the weighted variant of K-

Means++ algorithm on Cw and return the K cluster centroids as the output. If the

centroids were obtained using some other algorithm, our algorithm proposed below

still works as an effective heuristic but does not provide any provable approximation

guarantees. Algorithm 1 provides the pseudocode of the approach while Figure 2.2

provides an illustration.
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Algorithm 1 Merging K-Means Centroids
1: Input: Set of ML models Mq, K
2: Cw = ∪ri=1 K-Means centroids for Mi

3: ∀ clusters cj ∈ Cw, w(cj) = number of data points assigned to cj
4: Run weighted K-Means++ on Cw
5: return the cluster centroids C̃q

k Centroids 

Partition 1
K-Means++ K Centroids  

+ K weights

Weighted  
K-Means ++Partition 2

Partition r

K-Means++ K Centroids  
+ K weights

K-Means++ K Centroids  
+ K weights

Figure 2.2. Illustration of Two Level K-Means Merging Approach.

Complexity Analysis. The time complexity is O(n′×K × d×L) where n′ is the

number of cluster centroids and L is the number of iterations required K-Means++

before convergence. Since the number of clusters are much smaller than the number

of data points, the clustering results can be obtained extremely fast. In order to run

Algorithm 1, we only need to store the cluster centroids for each of the partitions

that requires O(K × d) space.

Theorem 1 The SSE of cluster centroids produced by Algorithm 1 has an approxi-

mation ratio of O(logK) to the SSE of cluster centroids Cq obtained by running K-

Means++ on Dq. Furthermore, they also have an approximation ratio of O(log2K)

to the SSE of the optimal cluster centroids C∗q .

Our theorem can be proved by directly adapting the proofs from [17, 18].

Please refer to the appendix of [19] for the proof. The only difference is that we
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Table 2.1. Summary of Notations

Symbol Description
Dq Data selected by query q
M(Dq) Model trained on entire data from

scratch
M̃(Dq) Approximate model by merging
M1, . . . ,Mr Pre-built models for constructing

M̃(Dq)
D1, . . . , Dr Data used to train model Mi

Cq Clusters centers through K-
Means++ on Dq

C̃q Cluster centers through merging
C∗q Optimal cluster centers for data

Dq

Ci Cluster centers through K-
Means++ for Di. i.e.
Ci = {ci1, . . . , ciK}

Cw Union of cluster centers Ci with
number of tuples in cluster cij as
its weight w(cij)

NC(Ci, x) Nearest cluster center in Ci to x
d(x, y) Euclidean distance between x and

y
wi, µi,Σi Prior probability, mean vector and

covariance matrix of a GMM com-
ponent

use K-Means++ for both the stages. Since K-Means++ provides an bi-criteria

approximation of (O(logK), O(1)), the proof directly follows from [19].

2.3.2 Model Merging for GMM

We next investigate the problem of reusing pre-built Gaussian mixture models

to efficiently answer other GMM based ML queries. Given a query q, we assume

the availability of pre-built ML models Mq = M1, . . . ,Mr that are parameterized

by θ(Mj) = [(wj1 , µj1 ,Σj1), . . . , (wjK , µjK ,ΣjK )]. We seek to post-processes the
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Gaussian mixtures obtained from each partition to approximate the GMM on Dq.

There are totally K × r Gaussian components that we must process to just K

components.

Ineffective Approaches. The approach that we used for merging K-Means models

does not work here. The output of the K-Means algorithm can be parameterized

by the centroids that are simply vectors and can be re-clustered. In contrast, the

output of GMM is a Gaussian mixture where each Gaussian distribution in it is

parameterized by mean vector, covariance matrix and a prior probability. Given a

set of data points, GMM works by estimating the parameters of a Gaussian mixture

that maximizes the likelihood. While the likelihood that a point is generated by a

Gaussian distribution is straightforward to compute, the likelihood that a Gaussian

distribution generated another is not.

Another approach is to try some clustering algorithm other than GMM such

as K-Means. We begin by randomly choosing K distributions as initial centroids.

Using the Bhattacharya distance, we can easily identify the closest centroid for each

Gaussian distribution. We could also re-compute the centroids by averaging the

Gaussian distributions. However there are two issues with this approach: (a) the

process of merging multiple Gaussian distributions to one is very expensive and (b)

the resulting Gaussian distributions could be arbitrarily far away from the ones that

we could have obtained by running GMM from scratch.

Iterative Merging of GMM Components. The key idea is to use another popu-

lar clustering algorithm - hierarchical clustering. We begin by normalizing the prior

probabilities of all the Gaussian mixtures by wji =
wji
Z

where Z =
∑r

j=1

∑K
i=1wji .

One can also use a sophisticated normalization technique such as those described

in [20]. We can consider the problem of obtaining GMM for Dq as analogous to
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constructing a mixture of Gaussian mixture models. This can be achieved by itera-

tively merging two Gaussian components till only K of them are left. Algorithm 2

provides the pseudocode and Figure 2.3 an illustration.

Algorithm 2 Iterative Merging of Gaussian Components
1: Input: Set of ML models Mq, K
2: T = ∪ri=1 Gaussian mixture components of Mi

3: Normalize the weights of all GMM in T
4: while number of components > K do
5: Merge the two most similar Gaussian components
6: Recompute the parameters of the merged components
7: return the parameters of the Gaussian mixture

Figure 2.3. Merging for GMM.

Selecting Components to Merge. One of the key steps in Algorithm 2 is the

selection of two Gaussian components to merge. There has been extensive work in

statistical community about appropriate measures to select components for merg-

ing [21, 22, 23]. Intuitively, one seeks to select two distributions that are very

similar to each other. In our work, we use the Bhattacharyya dissimilarity measure

for this purpose and choose the pair of components with least distance between
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them. Given two multi-variate Gaussian distributions N1(µ1,Σ1) and N2(µ2,Σ2),

their Bhattacharyya distance is computed as:

DB(N1,N2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2)

+
1

2
ln

(
|Σ|√
|Σ1||Σ2|

)

Σ =
Σ1 + Σ2

2

(2.2)

Merging Gaussian Components. Once the two components with the least Bhat-

tacharyya distance has been identified, we merge them into a single Gaussian com-

ponent while taking into account their respective mixing weights, mean vectors and

covariance matrices. Given two multi-variate Gaussian distributions N1(µ1,Σ1) and

N2(µ2,Σ2) with mixing weights w1 and w2, the merged component [21, 22, 23] is

described by N (µ,Σ) with mixing weights w where,

w = w1 + w2

µ =
1

w
[w1µ1 + w2µ2]

Σ =
w1

w

[
Σ1 + (µ1 − µ)T (µ1 − µ)

]
+
w2

w

[
Σ2 + (µ2 − µ)T (µ2 − µ)

]
=
w1

w
Σ1 +

w2

w
Σ2 +

w1w2

w2

(
(µ1 − µ2)(µ1 − µ2)

T
)

(2.3)

2.3.3 Classifier Combination by Parameter Mixtures

In this subsection, we describe an effective approach for merging supervised

ML models. As before we are given a query q representing the subset Dq and the

corresponding pre-built ML models Mq. Our objective is to post-process the ML
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models Mi ∈ Mq to produce an approximate model M̃(Dq) such that it approxi-

mates the classifier M(Dq) trained on Dq.

Algorithm 3 shows the pseudocode for the approach. Given a set of pre-built

ML models, we average their corresponding model parameters and return that as the

model M̃q. As we shall show in Section 2.6, this surprisingly simple algorithm works

extremely well for most ML models and especially so for GLMs. This approach can

be considered as analogous to distributed statistical inference where we partition

the data into a number of chunks, build optimal models for each individually and

then in a single round of communication average the parameters.

Algorithm 3 AVGM: Average Mixture Algorithm
1: Input: ML ModelsMq for partitions covering Dq

2: Collect model parameters θ(Mi) ∀Mi ∈Mq

3: return θ(M̃q) = 1
r

∑r
i=1 θ(Mi)

Complexity Analysis and Approximation Guarantees. Algorithm 3 is a

linear time algorithm whose complexity is proportional to the number of models

being merged. The parameter averaging method, dubbed Average Mixture (AVGM),

has been previously described for a number of ML models such as MaxEnt models

including Conditional Random Fields (CRFs) [24], Perceptron-type algorithms [25]

and for a larger class of stochastic approximation models in [26]. This algorithm

was formally analyzed in [26] and [27]. [26] showed that one of the key advantages

of AVGM is that averaging r parameter vectors reduces the variance by O(r−
1
2 ).

A sharper analysis was provided by [27] that showed the surprising result that this

simple approach matches the error rate of the traditional (centralized) approach

that builds the model from scratch over Dq. This is achieved under mild conditions
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such as the number of partitions is less than the data points in each partition -

specifically |Pq| <
√
|Dq| which holds almost all the time.

2.4 Approximation by Coresets

The model merging approach proposed in Section 2.3 is very efficient with

the approximate ML suffering from minimal loss in accuracy compared to the ML

model built from scratch. However, in many cases, one might desire for tunable

guarantees on the degree of approximation of the ML model. An alternate approach

to speedup model building is to train the model on a smaller number of data points.

However, these data points must be carefully chosen so that they provide a close

approximation of the objective function of the ML model trained from scratch. The

natural approach of uniform sampling often does not work well in practice or requires

very large sample size for sufficient approximation. In this section, we describe

how one can leverage the concept of Coresets [15] from computational geometry

for arbitrarily approximating the objective function with a smaller number of data

points.

Coresets. Coresets provide a systematic approach for sampling tuples proportional

to their contribution to the objective function. Recall from Section 2.2 that a

weighted set C is said to be a ε-coreset for dataset D if (1 − ε)φD(·) ≤ φC(·) ≤

(1+ ε)φD(·). Coresets are a natural solution to the problem of obtaining ML models

with tunable approximation - by varying the value of ε, we can achieve coresets with

higher or lower approximation. Naturally, lower ε requires a larger sized coreset.

Coresets can be stored as a pair (wi, ti) where wi is the weight of tuple ti ∈ C.

Two Phase Approach. Our proposed approach consists of two phases. In the

pre-processing phase, we compute an ε-coreset Ci for the selected by each of the
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Figure 2.4. Two Phase Approach.

pre-built models. In the runtime phase, we identify the set of partitions Pq that

could be used to answer q. We construct a coreset for all the tuples that were

not covered by pre-existing partitions. Finally, we do a union of all the relevant

coresets and run an appropriate ML model on it and provide the resulting model as

an approximation.

2.4.1 Coreset Construction

We now provide a brief description of how to construct coresets for each par-

tition for various ML models. Note that the definition of coreset is intrinsically tied

to the objective function of the ML model. For example, coresets are defined based

on SSE for K-Means, log likelihood for GMM and so on. Hence, one cannot reuse

the coreset constructed for one ML model (such as K-Means) for the other (such as

GMM).

A common strategy for computing coreset is to sample the data points pro-

portional to their contribution for φ. Consider the K-Means clustering problem that
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seeks to minimize the SSE. Suppose we are given a set of optimal cluster centroids

and an arbitrary data point x. If x is close to its nearest cluster centroid, then one

need not include x in the coreset with high probability. Instead, one can “approxi-

mate” x’s contribution to SSE through its cluster centroid (by increasing its weight

by 1). If a point is distant from its nearest centroid, then it has a large contribution

to SSE and hence must be included in the coreset with high probability. Intuitively,

coreset construction can be considered as an importance sampling problem where

data points are sampled based on their contribution to φ (such as SSE for K-Means).

In practice, one does not have the optimal cluster centroids. The key research prob-

lem in coreset construction is to approximate the importance of a data point to SSE

(φ in general), without knowing the optimal cluster centroids. This is often achieved

by choosing a careful surrogate function φ′ that is a good approximation of φ and

can be computed efficiently.

Surrogate Functions for Coresets. A surrogate function for a coreset must

satisfy two desirable properties: (a) it must provide an ε-coreset with small number

of data points and (b) it must be lightweight so as to compute the importance of a

data point in one or two passes over the entire data. Consider the surrogate function

for K-Means defined in [28].

p(x) =
1

2

1

|Di|
+

1

2

d(x, µ(Di))
2∑

x′∈Di d(x′, µ(Di))2
(2.4)

Given a set of points Di and x ∈ Di, it computes the importance of x by measuring

the distance of x to the mean vector µ(Di). Data points that are far away from the

mean vector are provided with higher importance. The first term of the equation

ensures that every data point has a non-zero probability of being picked. Note that

this function is lightweight, efficient, computable in just two passes over the data
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and embarrassingly parallel to implement. It also provides an ε-coreset as proved

in [28]. Coreset algorithms exist for ML models such as GMM [29], SVM [30],

Logistic Regression [31], etc. Each of these algorithms vary in how the importance

of the data point is computed.

Algorithm 4 provides the pseudocode for coreset construction.

Algorithm 4 Coreset Construction
1: Input: Set of data points Dq, Coreset size m
2: for each x ∈ Dq do
3: Compute contribution of x based on a surrogate of φ
4: ∀x ∈ Dq, Compute sampling probability p(x)
5: Ci = m points from Dq chosen through importance sampling
6: ∀x ∈ Ci, compute the weight w(x)
7: return coreset Ci

Complexity Analysis. For most of the popular ML models, there exist efficient

coreset construction algorithms that run in time linear on the size of the dataset.

For example, the algorithm proposed in [28] requires two passes - one to compute

the mean of all data points and one to perform importance sampling.

2.4.2 Coreset Compression

The size of the coreset depends on the value of ε which is often end-user defined.

A smaller value of ε requires better approximation and thereby larger coresets. Most

of the state-of-the-art coreset algorithms often have the intriguing property that the

coreset size depends primarily on ε and is independent of the size of the dataset. For

example, one needs a K-Means coreset of size Ω(
dk+log 1

δ

ε2
) [28] to ensure that with

probability of at least 1 − δ, coreset Ci is an ε-lightweight coreset. Given K = 10

and d = 5, one can obtain an ε = 0.1-coreset with probability 0.95 by getting a
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sample of at least 5000 regardless of the size of dataset. ε = 0.2-coreset requires

approximately 1250 samples.

Consider a scenario where one needs to build a ML model for the entire USA

where pre-built coresets exist for each state. Based on the observation above, we

store approximately 5000 tuples as coreset for each state. When we pool them

together, there are 250K tuples for the entire USA. Since coresets have the composi-

tional property where if C1 is an ε-coreset for D1 and C2 is an ε-coreset for D2, then

C1 ∪ C2 is an ε-coreset for D1 ∪D2. Hence, the set of 250K tuples is an 0.1-coreset

for entire USA. However, if we had constructed coreset directly over the entire data

from USA, we would have only gotten 5000 tuples. We solve this conundrum by

coreset compression. Simply put, we invoke a coreset construction algorithm with

the same ε on the pooled set of tuples and choose a smaller number of tuples with

highest importance - say of size 10,000 instead of 250,000. As we shall show in

experiments, this approach works well in practice with minimal loss of accuracy.

2.5 Optimization Considerations

2.5.1 Choosing ML Models to Reuse

The first major problem is to identify an optimal execution strategy - given a

set of materialized models and an analytic query, how can one build an approximate

ML model efficiently? For ease of exposition, we describe our approach for analytic

queries specified as ranges such as building an ML model for tuples [lb, ub]. This

approach can easily be adapted for OLAP queries over a single dimension.

Example. Consider a dataset with 1 million tuples with 4 materialized models for

tuples M1 = [1, 500K], M2 = [500K, 1M ], M3 = [300K, 900K], M4 = [900K, 1M ].

Given a new query q = [250K, 1M ], there are many ways to answer it. The tradi-
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tional strategy S1 builds an ML model from scratch for all of q. Or one could build

an ML model from scratch for [250K, 300K] and then merge it with M3 and M4

(Strategy S2). Alternatively, one could build an ML model for [250K, 500K] and

then merge it with M2 (Strategy S3). Furthermore, each of these options can be

either done using coresets or by model merging.

Cost Model. In order to perform cost based optimization, we need an objective

cost model that quantifies various execution strategies. Broadly speaking, the cost

involves three components: (a) cost of building a model CBuild from a set of (possibly

weighted) tuples (b) cost of merging a model Cmerge and (c) cost of building a

coreset Ccoreset. For example, the cost of strategy S1 is CBuild([250K, 1M ]) and S2

is CBuild([250K, 300K]) + CMerge(M2) + CMerge(M3). Optionally, one could also

use a cost component for penalizing the loss of accuracy. In practice, efficiently

estimating the accuracy of a model before building it is a non-trivial task. All the

algorithms described in the paper provide rigorous worst case guarantees about the

approximate model that we use as a proxy for their eventual performance. As an

example, if the models have a coreset with ε = 0.1, it provides an approximation

of 10%. Henceforth, we focus on the scenario where the models obtained by either

merging or through coresets already exceed the quality requirements of the analyst.

If this is not acceptable, the analyst can build the model from scratch.

In our paper, we treat the cost model as an orthogonal issue that is often

domain specific. The only constraint that must be satisfied by the cost model is

that it is monotonic. In other words, all things being equal, building a model with

Ni tuples should cost more than one with Nj tuples if Ni > Nj. Our algorithm

produces an optimal execution strategy as long as the cost function is monotonic.
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Finding the Optimal Execution Strategy. We formulate the problem of finding

the optimal execution strategy as finding the shortest path in a graph with minimum

weight. Our approach involves three steps. First, we retrieve a set of materialized

models that can be used to answer q. A model built on [lb′, ub′] is considered relevant

if it is a subset of q = [lb, ub]. For example, for q = [250K, 1M ], the modelM1 is not

relevant. Second, we collect the set of distinct lb, ub values from the relevant models

including q. In the running example, it will be V = {250K, 300K, 500K, 900K, 1M}.

Third, we construct an execution strategy graph - a weighted, directed and complete

graph - that succinctly encodes all possible execution strategies to solve q. We build

two graphs - one to identify the best execution strategy using the coreset approach

and another for the merging approach. Informally, each of the distinct lb, ub values

collected in Step 2 form the nodes. A directed edge eij exists between nodes vi and

vj if vi < vj. If there exists a model with lb and ub corresponding to vi and vj,

then weight(eij) = CMerge(vi, vj). This corresponds to the cost of directly using

this model. If not, weight(eij) = CBuild([250K, 300K]) for the merging approach

and weight(eij) = Ccoreset([250K, 300K])+CBuild(C([250K, 300K)) for coreset based

approach. This corresponds to the cost of directly building an ML model for this

range or building a coreset for this range and building an ML model over the coreset.

Once the graph is constructed, the minimum cost execution strategy can be obtained

by identifying the shortest path between the nodes corresponding to lb and ub - say

by using Dijkstra’s algorithm. Each edge eij = (vi, vj) in the shortest path either

corresponds to a pre-existing ML model built on (vi, vj) or requires one to build one

between (vi, vj). Algorithm 5 provides the pseudocode for this approach.

Choosing ML Models to Reuse for Arbitrary Queries When the queries are

range predicates on individual attributes, Algorithm 5 provides the optimal strategy.
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Algorithm 5 Optimal Execution Strategy
1: Input: q = [lb, ub], all materialized modelsMD

2: Mq = Filter the relevant models fromMD

3: V = Distinct end points for {q ∪Mq}
4: for each pair (vi, vj) ∈ V with vi < vj do
5: Add edge with appropriate weight (Cbuild(vi, vj) or Cmerge(vi, vj))
6: Sopt = Shortest path between vlb and vub
7: Execute strategy Sopt to build an approximate ML model for q

However, when the queries has predicates over multiple attributes or over OLAP

hierarchies, then optimally choosing the models for reuse becomes an instantiation

of exact set cover - a known NP-complete problem. To see why, each pre-built model

can be considered as a set of tuples from which they were built. The query q can

be considered as the set of tuples retrieved by it - i.e. Dq. Our objective is to select

a small number of sets such that each tuple in Dq is covered by exactly one set.

We propose a natural greedy approach that works well in practice even when

the number of queries is large. Of course, when the problem instances are small, one

can essentially use a brute force approach to identify the optimal solution. We begin

by pruning all pre-built models that are not proper subsets of Dq. This eliminates

all models that contain tuples that are not retrieved by Dq. Using the cost model,

we choose the model from the set of candidates that provide the most benefit (e.g.,

it covers most tuples with least cost). Once the modelMi is chosen, we do two types

of pruning. First, we remove all the tuples covered by Mi from Dq so that in the

next rounds, the cost model gives higher weight to tuples that are not yet covered.

Second, we remove all pre-built models that are not proper subsets of Dq \Mi. This

ensures that the same tuple is not covered by multiple chosen models and thereby

having higher impact.
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2.5.2 Selecting Models for Prebuilding

Suppose we are given set of queries Q that is representative of the ad-hoc

analytic queries that could be issued in the future. These could be obtained from a

workload or analytic query logs from the past. In this subsection, we first consider

the problem of selecting L models to materialize so as to maximize the number of

queries in Q that can be sped up through model reuse. We then briefly discuss the

case where workload Q is not available. We address this problem in two stages.

In the candidate generation step, we enumerate the list of possible ML models to

build. In the candidate selection step, we propose a metric to evaluate the utility of

selecting a model and use it to pick the best L models.

Candidate Generation. Given a workloadQ = {q1 = [lb1, ub1], q2 = [lb2, ub2], . . . , qM =

[lbM , ubM ]}, our objective is to come up with L ranges such that they could be used

to answer Q. Note that we are not limited to selecting ranges from Q. As an

example, one could identify a sub-range that is contained in multiple queries to ma-

terialize. We generate the set of candidate models as follows. First, we select the

list of all distinct lb, ub values. We then consider all possible ranges (l, u) such that

l < u and there exists at least one query in Q that contains the range (l, u). This

ensures that we consider all possible ranges that could be reused to answer at least

one query in Q.

Candidate Selection. In this step, we design a simple cost metric to compare two

sets of candidate models. We can see that the cost of not materializing any model

is equivalent to the traditional approach of building everything from scratch. So

we have Cost({}) =
∑M

i=1Cbuild(qi). This gives us a natural method to evaluate a

candidate set. We assume the availability of the corresponding models and compute

the cost of answering Q. We use Algorithm 5 to estimate the optimal cost of building
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a given query. The difference between Cost({}) and Cost({ri1 , ri2 , . . .}) provides the

utility of choosing models ri1 , ri2 , . . . to materialize. Given this setup, one can use

a greedy strategy to select the L models with highest utility. At each iteration, we

pick a range ri such that it provides the largest reduction in cost of answering all

queries in Q.

If the workload information is not available, one could use some simple strate-

gies to choose which models to materialize. The equi-width strategy creates L par-

titions by splitting the range [1, n] into L equal sized parts {[1, bn
L
c], [dn

L
e, b2n

L
c] . . .}.

Alternatively, one could also choose the L largest values of a given OLAP dimension.

For example, if one of the dimensions is Country, then one could choose to pre-build

models for the L largest countries.

Selecting Models for Arbitrary Queries. The above proposed approach can

be naturally adapted for arbitrary queries. Given a set of workload Q, we generate

the set of candidates as follows. Let M = {} be the set of candidate models to

pre-build. For each pair of queries (qi, qj) ∈ Q, we add {qi, qj, qi ∪ qj, qi ∩ qj} to the

set of candidate models M . Once the set of candidate models are constructed, we

compute its weight based on how much it can contribute for speeding up queries

in Q. We greedily choose the model from M with most benefit and re-compute

the benefits of remaining candidate models. We repeat this iterative process till L

models are chosen.

2.6 Experiments

2.6.1 Experimental Setup

Hardware and Platform. All our experiments were performed on a quad-core 2.2

GHz machine with 16 GB of RAM. The algorithms were implemented in Python.
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Figure 2.5. Evaluating approaches for building an approximate ML model for a
workload of OLAP queries on the Hamlet datasets..

Scikit-Learn (version 0.19.1) was used to train the ML models [32]. Vowpal wab-

bit [33] (version 8.5.0) was used for online learning.

Datasets and Algorithms. For evaluating our classification algorithms (SVM

and LR), we used 7 diverse datasets for binary classification. For datasets with

OLAP style hierarchies, we selected 5 datasets from the Hamlet repository [34] -

Movies, Yelp, Walmart, Books and Flights. We also selected two large datasets -

SUSY and HIGGS from LibSVM repository [35, 36]. The size of the datasets vary

from 200K tuples all the way to 11M tuples. For evaluating clustering, we generated
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Figure 2.6. Evaluating approaches for building an approximate ML model for a
workload of random queries on the Hamlet datasets..

a synthetic dataset with 5M data points, 20 features and 10 clusters using publicly

available generator [32]. Each of the experiments was run with 5 different random

seeds and the results are averaged. We evaluated a total of 8 algorithms - coreset

and merging based algorithms for K-Means, GMM, SVM and Logistic Regression

respectively. We compared each of these algorithms against two baseline algorithms

where the analytic query is answered by running the ML model from scratch and

by an incremental algorithm.
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Figure 2.7. Evaluating approaches for building an approximate ML model for queries
over the entire dataset. Abbreviations: Same as Figure 2.8. Legend for Figures 7a,
7b and 8a same as that of 8b..

Performance Measures. We evaluate the efficacy of our algorithms against the

baseline approach along two dimensions: time and ML model accuracy. Speedup

Ratio (SR) is defined as the ratio of time taken for building an ML model over the

data to the time taken to build a model by reusing existing ML models. It measures

the time savings that one can obtain by building an approximate ML model from

other ML models as against building it from scratch. We also evaluate the difference

in model performance in order to ensure that the benefit in time does not come at

the cost of model accuracy. For classification, we measure the difference in accuracy
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Figure 2.8. Evaluating impact of Coverage Ratio on building an approximate ML
model. Abbreviations: MG/CR - Merging/Coresets; HG/SS - HIGGS/SUSY, KM
- KMeans.

(DA) between the exact and approximate models. For example, a difference of 0.1 is

obtained when the exact and approximate models have an accuracy of 99.9 and 100.0

respectively. For K-Means, we measure the clustering similarity through Adjusted

Rand Index (ARI). ARI can be informally described as the ratio of agreements

between two clusterings with respect to all possible pairs of data points. Specifically,

if nss and ndd are the number of pair of tuples that were assigned to same cluster and

different clusters respectively, then RI = nss+ndd

(|Dq |
2 )

. Adjusted Rand Index performs

chance normalization on Rand Index such that it has an expected value of 0 for
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Figure 2.9. Evaluating the impact of Approximation Ratio for Coresets..

independent clusterings and 1 for identical clusterings. For GMM, we use relative

error between the likelihood for the entire produced by the two models. If the value

is closer to 1, then we obtained a model that is very close to the exact one. Note

that both these methods are in the same range of [0, 1] with a value closer to 1 being

preferred. In the charts, we use the generic term “clustering dissimilarity” to denote

the corresponding distance measure (i.e. 1 - ARI or 1 - relative error).

Evaluation Methodology. We consider four ML models: Logistic Regression

(LR), Support Vector Machines (SVM), K-Means and Gaussian Mixture Models

(GMM). We used the implementations provided from scikit-learn. In our exper-
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Figure 2.10. Evaluating the impact of Coreset compression..

iments, we did not use any hyper parameter tuning and set those to the default

values of scikit-learn. Our experiments showed that the impact of hyper parameters

(such as learning rate or regularizer) was minimal when each of the merged model

used the same or similar value. For K-Means and GMM, the number of clusters

was set to 10. We used the classical non-nested 5-fold cross validation and report

the average of accuracy over the testing data for 5 runs. Each of the chosen coreset

algorithms ([28, 29, 30, 31] also provide a closed form solution to compute the size

of the coreset to achieve ε-approximation. Conservatively, we multiply the estimate

by 4.

Query Workload. We consider two types of query workloads. Random workload

involves queries where the query predicate is chosen at random (such as build a

model for tuples with id in the range [1M, 2M]). We shuffled the data using 5

different random seeds to ensure that the results are not due to chance. OLAP

workload involves queries that have predicate over the attributes that have OLAP

hierarchies imposed on them. Specifically, we considered all OLAP cuboids that

contained at least 1% of the tuples. Then, we generated queries by considering all
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possible subsets of the cuboids of the same predicate. As an example, in the movies

dataset, the ratings vary between 1-5. We considered all 26 possible combinations

of the ratings of size at least 2 (i.e.
∑5

j=2

(
5
j

)
= 26). This process was repeated for

each attribute and each dataset.

In our final set of experiments, we study the impact of various parameters

on our algorithm. These experiments are performed on the synthetic dataset for a

specific query: build an ML model over the entire data. The data has been randomly

partitioned into 2, 5, and 10 partitions. As an example, the data is partitioned

into 10 equal sized partitions and an ML model has been pre-materialized for each

partition. For each query in the workload, we assume that there is always a set of

pre-built models that can be used to approximate the query. We also investigate

the impact of queries that are not fully covered by pre-built models.

2.6.2 Experimental Results

Evaluating the Model Merging based Approach. In our first set of experi-

ments, we evaluate the performance of the model merging based approach for both

classification and clustering based ML models. Figures 2.5(a)-2.7(a) show the re-

sults for all three types of query workloads. For each type of queries, our approach

achieves substantial speedup over both baseline approaches with significant speedup

whenever the analytic query has high selectivity. For example, our approach achieves

a significant speedup as much as 107 for HIGGS. In concrete numbers, training a

Linear SVM on the entire HIGGS dataset with 11M tuples takes around 1.5 hours

while simply merging the models takes just milliseconds. Another key thing to no-

tice is that the benefit improves dramatically with larger datasets such as HIGGS

and SUSY getting orders of magnitude speedup over the smaller datasets. The ben-

efit is especially significant for compute intensive training algorithms such as SVM.
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Furthermore, the number of models to be merged that correspond to the number

of partitions has at most negligible impact. These observations support our origi-

nal hypothesis that one can significantly speed up analytic queries by reusing ML

models. Our approach has the potential to make ML more interactive and near

real-time. These benefits extend for clustering also. We achieve a speedup of at

least 104 for both K-Means and GMM based clustering over large datasets.

Figures 2.5(b)-2.7(b) show that this substantial speedup does not have any

major impact on the model accuracy. The performance of the exact and approximate

ML models are almost identical with their accuracy values varying only in the third

or fourth decimal places. Even for a large dataset such as HIGGS that had a testing

set with 500K tuples, this only corresponds to a handful of mis-classifications. For

a number of exploratory analytic ML tasks this is an acceptable trade-off when

one can get results in many orders of magnitude faster. Since our experiments

were conducted on multiple datasets in the Hamlet repository, we also provide the

error bars for Figures 2.5 and 2.6. Note that while the error bars seem quite large,

the actual differences were very small (e.g., in the order of 0.1 for Figure 2.5(b).

The differences for results on speedup ratio is also miniscule. Another interesting

observation is that the difference in model accuracy actually decreases for larger

datasets. This is consistent with the theoretical results from [27].

Evaluating Coreset based Approach. In the next set of experiments, we evalu-

ate the performance of the coreset based approach for both classification and clus-

tering based ML models for various query workloads. We assume the availability

of coresets for each partition that are then pooled together and a weighted variant

of the ML model algorithm was invoked on it. By default, we set the coreset ap-

proximation ratio as ε = 0.1. Figures 2.5(c) and 2.6(c) show the performance of the
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coreset based approach for OLAP and random query workloads. Figure 2.7(a) and

(c) show the same for queries over the entire dataset.

Our approach typically provides a speedup between 5-15 with larger speedups

for bigger datasets and expensive algorithms such as SVM. This is due to the fact

that most coreset algorithms can approximate a dataset with at most logarithmic

number of points thereby providing substantial speedups over the traditional ap-

proach that runs on the entire dataset. While the coreset based approach provides

an order of magnitude speedup over the current approach, it pales in comparison

against the speedups provided by model merging based approaches. This is due to

the fact that one has to run the expensive model training algorithm (for e.g., O(n3)

for SVM) on the coreset. Figures 2.5(d), 2.6(d), 2.7(b) and (d) show the impact

on accuracy is minimal. Even though ε = 0.1, the difference in accuracy was much

lower around 1-2% for GLM and almost negligible for clustering. Furthermore, as

the number of partitions increases, the difference in model accuracy decreases. This

is due to the fact that the union of coresets often have slightly more redundant in-

formation that helps in improving the performance. Overall, this set of experiments

show that coresets can provide approximate models that are as accurate as the exact

ones and often sufficient enough for exploratory ML purposes.

Impact of Coverage Ratio. In our next set of experiments, we studied the impact

of coverage ratio on the performance of our algorithms. Informally, the coverage ratio

corresponds to the ratio of the query for which we could reuse pre-built ML models.

So a coverage ratio of 100% means that we can completely answer an analytic query

using pre-built models while a coverage ratio of 0% means that we have to build

the model from scratch. In our experiments, we focused on a scenario where the

data is partitioned in 10 partitions. So for a coverage ratio of 20%, we assumed



42

that pre-built models exist for two randomly chosen partitions. We then build a

single exact model for the remaining 8 partitions and then combine it with the 2

models. For coresets, this corresponds to running a coreset algorithm on the 80% of

the data, combining it with pre-computed coresets for the other two partitions and

running the ML model.

Figures 2.8(a) and 2.8(c) show the time taken in seconds for model building.

As expected, the running time of our approach depends significantly on the availabil-

ity of pre-built models. For example, if pre-built models are completely available,

our model merging approach just requires a few milliseconds. However, if pre-built

models only exist for 80% of the data, it provides a speedup of 5x as one needs to

train the model only for 20% of the data. As shown previously, the impact on accu-

racy of the model - for both classification and clustering - is minimal to non-existent.

A similar behavior can be observed for coresets. As the coverage ratio increases, the

speedup ratio provided by the coreset also increases with minimal impact on model

accuracy.

Impact of Coreset Approximation Ratio. In our final set of experiments, we

vary the approximation ratio of the coreset from ε = [0.05, 0.1, 0.2]. A smaller value

of ε provides a tighter approximation at the cost of a larger coreset. Figures 2.9(a)

and 2.9(b) show that as value of ε increases, the speedup ratio also improves. This

is due to the fact that a smaller coreset suffices to guarantee a larger approximation

of ε. Figures 2.9(c) and 2.9(d) show an interesting result wherein increasing the

value of ε - say by doubling it - does not result in a significant reduction in model

accuracy. Instead, the impact is quite minimal! This seems to confirm the central

observation in coreset theory that real-world data often have substantial redundant

information that can be effectively approximated by coresets.
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Impact of Coreset Compression. In the final set of experiments, we study the

efficacy of coreset compression. Figure 2.10 shows the results. As expected, coreset

compression has minimal impact on accuracy yet has a significant improvement

in reducing the time take for model building. This behavior is pronounced when

there are multiple models to be merged which is precisely the scenario where coreset

compression has the most impact.

2.7 Discussion

The experimental results show that our proposed approaches can be used for

efficiently generating approximate ML models. In this section, we briefly discuss the

scenarios in which our approach is relevant and when it might not be.

In general, our approach is often geared to be used in exploratory ML analysis.

In this stage of the analysis pipeline, the data scientist is often exploring various

hypotheses and is often willing to trade accuracy for real-time response. In the

production environment where the data scientist would want to maximize accuracy,

our approach might not be applicable.

We would like to note that the suitability of queries for building ML models

is an orthogonal issue that is determined by the domain expert. For example, it

is possible that building a model over the union of data from 2017 and 2018 is

inadvisable due to issues such as staleness or concept drift. In such a case, building

of an exact ML model (via traditional methods) or an approximate ML model (via

our approach) are both inappropriate. Our focus is on building an approximate ML

model efficiently when the data scientist deems such a model to be relevant.

Thoroughly understanding the limitations of our approach is a key focus of our

future work. A non exhaustive list of scenarios where our approach might provide

less robust results include:
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• Concept Drift is said to occur when the statistical properties of the target vari-

able changes over time. As an example, the data for 2017 and 2018 might be

so different that building a model over the union of the data is not meaningful.

• Skewness of Model Data Sizes. If the constituent models have very skewed

distribution of selectivity, model merging does not provide robust results. As

an example, consider individual models that are built for ratings=1 to rat-

ings=5. Often, the ratings express a U-shaped distribution where there are

more tuples with ratings 1 or 5 with substantially less tuples for ratings 2, 3,

and 4. If the ratings 1 and 5 account for 90% of the tuples, the results could

also be skewed.

• Skewness of Labels. If in a binary classification problem, 90% of the tuples

belong to one class, naive merging could result in a biased classifier.

2.8 Related Work

Data Management Challenges in Machine Learning. Recently there has been

extensive interest in integrating ML capabilities into databases from both industry

and academia. Most major commercial database products such as IBM System ML,

Oracle ORE, SAP HANA already support analytic queries over database engines.

Academic product such as MLLib [37] and MADLib [38] also support similar inte-

grations. There has been work on integrating ML primitives into database engines

such as [39], using SQL style declarative languages for ML model training [40, 41].

Recent work also tried to use key concepts from data management for speeding up

ML analytic tasks. These include materialization for feature selection [34, 42], using

database style cost optimizer for predicting performance of ML tasks [43, 44, 41].

Incremental processing of ML based analytic queries was considered in [45]. Please
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refer to [46] for additional details about various data management related issues in

ML.

Management of ML Models. Recently, there is increasing interest in man-

aging key artifacts of ML process such as ML models [47, 48] and datasets [49].

[48, 50] focus on a unified data, model and lifecycle management for deep learning

while [51, 52] seek to manage models for other applications such as model diagnosis,

visualization and provenance. As ML model management systems become main-

stream, they could be used to identify relevant models for a new ML model query.

Our approaches can be easily retrofitted on top of these systems.

Speeding Up Analytic Queries. There has been extensive work on speeding up

analytic queries in databases. Two techniques are especially relevant: approximate

query processing (AQP) and cube materialization. AQP [53] relies on the fact that

exact answers are not always required and provides approximate answers - often for

aggregate queries - at interactive speeds. The common techniques include sampling

and construction of synopses [54, 55]. Our coreset based approach can be considered

analogous to synopses for AQP. There also has been extensive work on efficiently

materializing OLAP cubes by leveraging partial computations [56]. There has been

extensive followup work that computed interesting statistical aggregates on OLAP

cubes such as [57, 58, 59, 60]. The work [57] is especially relevant to our problem.

Prediction cubes summarizes a predictive model trained on the data corresponding

to an OLAP data cube. Our approach can be used to speedup [57] by building

approximate ML models for data cubes from its component cubes. Another recent

work [61] is complementary to our effort as it focuses on speeding mean value and

multi-variate regression queries. In contrast, we focus on ML analytic queries for

classification and clustering.
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Approximating ML Models. A number of ML algorithms often use iterative

algorithms such as gradient descent. A common approach for approximating the ML

model is to stop after a fixed number of iterations [14, 62]. However, this typically

does not provide any rigorous guarantees. Coresets were originally proposed in

computational geometry that provide strong approximation guarantees. There has

been extensive work on coresets for various ML models such as K-Means [28, 63, 64,

65], GMM [29], kernel density estimation [66], logistic regression [31, 67], SVM [30,

68, 69], Bayesian networks [70] and so on. A recent work [42] also used the concept

for coresets. They focused on speeding up analytic queries for feature selection

process by using coresets as a principled sampling appproach. In contrast, our work

assumes that feature selection/engineering is already completed and use coresets to

build models with strong approximation guarantees. They also have an elegant idea

of warm starting where they train some models more efficiently by reusing prior

models with related features. For example, a model with feature set F can be used

to speed up another one that has feature set F \ f or F ∪ f where f is a single

feature. In contrast, our approach is for a fixed feature set F where the data that

is used to train the model varies.

Another area related to our work is transfer learning [71] where the objective

is to train a model for one domain/dataset and reuse it for another. Our work

primarily considers a single dataset. How to adapt ideas from transfer learning so

that we can transfer the model trained on a query Q to a related query Q′ is an

interesting research problem.

2.9 Conclusion

In this paper, we presented an approach to answer ad-hoc analytic queries on

ML models in an approximate manner at interactive speeds. Our key observation
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was that most of these queries are often aligned on OLAP hierarchies and it must

be possible to materialize and reuse ML models. We presented two orthogonal ap-

proaches based on coresets and model merging to answer popular ML algorithms in

classification and clustering. We also proposed an algorithm to identify an optimal

execution strategy for an analytic query and to determine which models to material-

ize. Our experimental results on a wide variety of real-world datasets show that our

approach can result in orders of magnitude in speedup with negligible approximation

cost.



CHAPTER 3

ApproxML: Efficient Approximate Ad-Hoc ML Models through Materialization

and Reuse

Machine learning (ML) has gained a pivotal role in answering complex pre-

dictive analytic queries. Model building for large scale datasets is one of the time

consuming parts of the data science pipeline. Often data scientists are willing to sac-

rifice some accuracy in order to speed up this process during the exploratory phase.

In this paper, we propose to demonstrate ApproxML, a system that efficiently con-

structs approximate ML models for new queries from previously constructed ML

models using the concepts of model materialization and reuse. ApproxML supports

a variety of ML models such as generalized linear models for supervised learning,

and K-means and Gaussian Mixture model for unsupervised learning.

48
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3.1 Introduction

Machine learning has become a fundamental tool to gain insight from data.

During the exploratory phase data scientists repetitively build numerous ML models

in order to achieve higher accuracy. Consider a typical workflow of a data scientist.

She issues a query to retrieve data from a data warehouse and builds an ML model

(classification, clustering, etc.) on the retrieved data. The model is then used for an-

alytic processing such as predicting revenue of a particular product. These analytic

queries on ML models often have properties that allow a faster approach compared

to building models from scratch. First, they usually have a specific business in-

terpretation rather than being chosen at random. For example, a data scientist

may want to retrieve data for a specific time period (month, semester, year) or for

a specific location (city, state, country), etc. Moreover, data scientists are often

willing to sacrifice some accuracy in the exploratory phase if they can obtain good

enough approximate ML models very fast. In addition, data scientists and engi-

neers from the same organization create many ML models for exploratory purposes

that are discarded after one-time use. There is a very high chance that in future

another member of that organization wants to build an ML model using the same

data or a superset of it. Such properties render analytic queries good candidates for

approximation as well as enable the potential to reuse their results fully or partially.
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ML development revolves around experimentation. Recently systems such as

mlflow [72] and modelDB [73] are developed to streamline the process by treating ML

models as first class citizens and allow them to be stored with associated metadata.

Nevertheless, building an ML model still remains a major bottleneck and consumes

huge amount of time and resources due to sheer size of the datasets. If we can

speed up the model building process by producing approximate models during an

exploratory phase, it will dramatically improve the efficiency of the data scientist.

In this paper, we introduce ApproxML, a system based on [1] that rapidly builds

approximate ML models for analytic queries by utilizing two fundamental techniques

materialization and reuse from database optimization. Suppose the analyst has

access to pre-built ML models for each month and wants to build a model for the

entire year. Currently, one builds the model from scratch using the data from the

desired year. ApproxML allows one to combine the pre-built models to create model

for that year much more efficiently.

ApproxML is a system that enables ML model approximation and reuse for

popular supervised and unsupervised learning approaches. A demonstration ses-

sion of ApproxML consists of three parts. The first part details the core features

of the system by showcasing the approximate models supported. Next, the user

will experience tradeoffs in accuracy of these approximate models compared with

exact approaches. Finally, the user will be exposed on the practical utility of the

materialization of ML models for a given workload and the ability to reuse them

experiencing the associated speedups.
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3.2 ApproxML Overview

ApproxML enables the user to build approximate model for popular supervised

and unsupervised ML models for a given analytic query and a set of materialized

models.

Technical Challenges There are several challenges to tackle in order to build

efficient approximate ML models such as a)If we have access to a set of pre-built

models, would it be possible to combine them in a few milliseconds to construct

an approximate model instead of spending minutes/hours to build a model from

scratch? b)How can we efficiently identify the relevant models among many possible

choices? c)What information should be materialized for each model to make it

reusable in future?

ApproxML generates approximate ML models in a two-phase approach. Dur-

ing “pre-processing phase”, the model passively stores the ML models built by the

data analyst to a model DB along with small amount of additional meta-data such

as the data used and model parameters; During the “run-time phase”, for a new

query, it identifies the relevant and reusable pre-built ML models and efficiently

constructs an approximate ML model from them.
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Pre-processing	phase Run-time	phase	

Dataset

ML	model	repository
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Find	the	optimum	set	of	
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Cost	–based	
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Approximate	
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Parse	input	Analytic	
Query	and	output	results

Figure 3.1. ApproxML Overview.

ApproxML offers two orthogonal methods for generating approximate ML

models, a)model merging approach, and b)coreset-based approach. In model merg-

ing approach, the relevant models are carefully merged without going back to the

data. The merging based approach is often extremely fast. If there is a need

for approximate ML models with tunable approximation ratio, ApproxML offers

coreset-based approach where it builds a model from a chosen set of coresets. Core-

sets are a small weighted set of tuples such that ML models built from the coresets

are provably closer to ML models built on the entire data. There has been extensive

work on coresets for various ML models. For more details about the algorithms we

used please refer to [1]. We implemented logistic Regression and linear SVMs as

examples of Generalized Linear Models (GLMs) for supervised learning. In unsu-

pervised learning, we implemented K-means and Gaussian Mixture Model (GMM).

Figure 3.1 demonstrates the system overview of ApproxML.
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3.2.1 Run-time phase

During the run-time phase, we assume we have access to a repository of the

pre-built models. The user submits an analytic query through the front-end. Front-

end will parse the the information about the dataset, the intended ML algorithm,

the approximation method (model merging, coreset-based), etc. and will pass them

to the cost-based optimizer in the back-end. The optimizer will retrieve all relevant

pre-built models from the pre-built model repository. It will identify which of the

retrieved pre-built models should be reused and what additional partial models have

to be built from scratch. Then these partial models are passed to the “Approximate

model builder” component to be combined efficiently to get the final approximate

model. Details of each step is explained as follows.
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Cost-based optimizer To identify optimum pre-built models to reuse is a major

problem. Consider a dataset with 1 million tuples from year 2010 to 2015. Let’s

assume the relevant ML models for every month and every quarter are materialized.

Given a new query for the entire year of 2014, there are many ways to answer it. One

can build a model from scratch. Another option is to retrieve the materialized models

for all 12 months of the year 2014 and build an approximate model by combining

them. Alternatively, one can build a model by combining the materialized models

for four quarters of year 2014. There are many more possible options for this simple

example. Cost-based optimizer will retrieve all relevant pre-built models from the

repository of pre-built models for the given analytic query. The cost-based optimizer

finds the optimum set of pre-built models by taking into account different costs

involved such as (a) cost of building a model from original data, (b) cost of merging

a model and (c) cost of building a coreset. It is possible that some parts of the input

query are not covered by the pre-built models. In that case, the exact model for

those partitions has to be built using the relevant data from original dataset. At the

end, a set of ML models are passed to the “approximate model builder" component.

Approximate model builder In the coreset-based approach, the approximate

model is built by training the intended ML model using the union of the coresets as

training data. In model merging approach, for each ML algorithm the parameters

of partial models are combined through a principled manner such that the objective

function of the approximate model is very close to the objective function of the model

built from the scratch. The reuse strategy for each algorithm is briefly explained as

follows.
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For K-means, given a set of K centroids and their corresponding weights,

the weighted variant of K-means++ algorithm is applied to the union of the given

centroids and the final K cluster centroids are returned as the output. For GMM, the

mean vectors and covariance matrices of previously built GMM models on different

partitions of the data are combined by running a hierarchical clustering algorithm

and iteratively merging two closest Gaussian components till only K of them are

left. We used Bhattacharyya distance to measure the distance between two Gaussian

components. For supervised learning, the parameters of the approximate model are

calculated by averaging the corresponding parameters of the pre-built models. For

Logistic Regression, model parameter corresponds to the coefficients while for linear

SVM, it corresponds to the coefficients of the separating hyperplane. Please refer

to [1] for further details.

3.2.2 Pre-processing phase

In the pre-processing phase, a set of models are built and stored in the pre-

built model repository. These models are selected to be reused for the future queries

in the best way using a workload or analytic query logs from the past. To identify

the best models to materialize, first, the list of possible ML models to build for a

given workload history is enumerated. In the next step a greedy algorithm is applied

to identify the models with highest benefit for the given workload. These selected

models are materialized and stored in the pre-built model repository.
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Repository of ML models In the pre-processing phase, exact ML models are

built for several partitions of data and their corresponding metadata is stored in

a repository. These pre-built models may contribute to future approximate mod-

els. For model merging approach the model parameters are materialized while for

coreset-based approach the coresets and their corresponding weights are recorded.

In the model merging scenario ,for K-means ApproxML stores K centroids and the

weight associated with each cluster. In GMM, it stores the mean vector and the

covariance matrix of each component along with their relative weights. For Logistic

Regression it stores the coefficients and for SVM it stores the coefficients of the

separating hyperplane.

3.2.3 User Interface

The user interface of ApproxML consists of three main sections including

configuration panel, results section, and building partial models. Each section is

described in detail as follows.

3.2.3.1 Configuration section

In this section the user can submit an analytic query and customize the fol-

lowing options for approximate ML model.

ML task: The user can choose if she wants to build a classifier or a clustering

model. If she chooses clustering option, she can specify the number of clusters as

well.

ML algorithm: The user can choose between Logistic Regression and Linear SVM

for classification task and K-means and GMM for clustering task.
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Dataset: The user will select a dataset in this section. An overview of the dataset

will be shown to the user. For any selected dataset, appropriate query range or

OLAP hierarchy options for customizing the query becomes available. For example,

for Flights dataset the user can customize the analytic query range by specifying

the FROM and TO parameters as shown in Figure 3.2(a).

Approximate/Exact: The user has the option to select between the approximate

and exact models. If she chooses the exact model, the entire data for the given

analytic query will be retrieved from the selected dataset, and the exact model will

be built on the entire data from scratch. If the approximate option is selected, the

user can then choose between model merging and coreset-based methods.

Model merging/Coreset-based: Based on the user’s input in this section, the

approximate model will be built using either model merging or the coreset-based

methods. If coreset-based method is chosen, an approximation ratio should also be

selected.

Figure 3.2(a) illustrates the configuration panel for building a Logistic Regres-

sion classifier on Flights dataset using the data from 10 April 2015 to 15 October

2015 through a model merging approach. Figure 3.3(a)shows the configuration for

building a K-means clustering model on the FIFA2019 dataset using coreset-based

approach with approximation ratio of 10% for the data of Europe.
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Figure 3.2. (a)Configuration panel for approximate Logistic Regression,(b) Build partial
Logistic Regression models.

3.2.3.2 Results Section

In the results section of ApproxML, the statistics and quantitative measures

of the generated ML model is reported to the user. For classifiers, training accuracy

and testing accuracy are shown. Cost of building the model is also reported to the

user. In clustering scenario, Adjusted Rand Index (ARI) and likelihood are shown

for K-means and GMM respectively. If an approximate model is built, in addition

to the total cost of building the approximate model, the partial costs including the

merging cost, cost of building coresets, and costs of building the partial models for

the new partitions are also reported. Finally, the user can see which pre-built models

were retrieved from the pre-built model repository and reused for this particular

approximate ML model. Figure 3.3(b) shows an example of results section for an

approximate K-means model with 5 clusters using coreset-based approach.
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Figure 3.3. (a)Configuration panel for approximate K-means,(b)Results.

3.2.3.3 Build Partial Models

In this section, the user can upload a workload, select a dataset, and customize

the parameters of an ML model. The data is then retrieved from the dataset,

partitioned into optimum partitions, the exact model is built for each partition, and

the corresponding metadata for the models are saved in the ML model repository.

Figure 3.2(b) shows an example of this section.

3.2.4 System Implementation

ApproxML’s backend is implemented in Python 3.6. Scikit-Learn (version

0.19.1) was used to train the ML models. Pandas library was used to save the

query results in dataframes. We used Flask for session management and database

connection tools.
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Datasets: For classification, we selected 5 datasets from the Hamlet repository [34]

including Movies, Yelp, Walmart, Books and Flights. In addition, we used Flights

dataset 1. For evaluating clustering algorithms we used Santander customer trans-

action data 2 and FIFA 2019 dataset 3. Additionally, we generated a synthetic

dataset with 5M data points, 20 features and 10 clusters using publicly available

generator [32].

3.3 Demonstration Plan

3.3.1 System Setup and Audience Interactions

We shall provide 3 laptops with ApproxML pre-installed on them. The datasets

and repository of the pre-built models are stored on a server. We will also keep local

copies of the datasets and the ML repository on the demo laptops in case of a bro-

ken internet. We will store a set of pre-built models in the ML model repository for

each dataset. Visitors to the demo can freely select the dataset and ML algorithm of

interest, specify the query of interest, and then observe the accuracy and efficiency

of the output approximate models and compare them with the exact model built

from the scratch. Additionally, they can experience the pre-processing phase by

materializing ML models for a given workload.

3.3.2 Demonstration Scenarios

In this section, we describe several scenarios about how the audience can

interact with ApproxML.
1https://www.kaggle.com/miquar/explore-flights-csv-airports-csv-airlines-csv/data
2www.https://www.kaggle.com/c/santander-customer-transaction-prediction/data
3 https://www.kaggle.com/karangadiya/fifa19
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A: Classification using Flights 2015 data In the configuration panel, the user

can choose classification for ML task and Logistic Regression as ML algorithm. After

selecting the Flights dataset and adjusting query range, the user can once build the

approximate model with model merging and once with coreset-based approach. The

pre-built models that are reused for the approximate model will be reported to the

user along with different costs involved in making the approximate models. She

can then choose to build the exact model from scratch for the same configuration

and compare its efficiency and accuracy with those of the approximate models. The

same process can be repeated for generating approximate linear SVM model.

B: Clustering using FIFA 2019 data In the configuration panel, the user can

select clustering as the ML task, K-means as the ML algorithm, and set the num-

ber of clusters. After selecting the FIFA 2019 dataset, and setting “category" to

“continent" and “value" to “Europe", she can build an approximate model once with

model merging and once with coreset-based approach. To compare the efficiency

and accuracy of the approximate models, she can choose to build an exact model

with the same configuration and evaluate the Adjusted Rand Index for goodness of

clustering, cost of building the model for the exact model and various costs involved

in the approximate models. She can repeat the same steps for GMM as well. In

order to compare the approximate and exact GMM models, the likelihood measure

is shown for clustering similarity.
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C: Materialize models for Flights 2015 data In the “Build partial model" panel,

user can choose the ML model as clustering, the ML algorithm as K-means, select

number of clusters, and choose Flights 2015 dataset. We will provide a text file

containing a workload that the user can upload to the system. The user can submit

the request once for model merging approach and once for coreset-based approach

with approximation ratio set to 10%. The user will see the optimum partitions

identified by ApproxML for materialization. We will also show the saved centroids

and coresets and their corresponding weights in the pre-built model repository. The

same process can be repeated for Logistic Regression, linear SVM, and GMM.

3.4 Summary

We demonstrate ApproxML, a system that efficiently constructs approximate

ML models for new queries from previously constructed ML models by leveraging

the concepts of model materialization and reuse. In order to generate approximate

ML models, ApproxML takes a two-phase approach. In the pre-processing phase it

partitions the data and builds exact ML models on each partition and saves their

meta data in a pre-built model repository. During the run-time phase, it reuses the

pre-built models and combines them efficiently to create an approximate model for

a new analytic query.



CHAPTER 4

Barracuda: Faster Algorithms for Generating Explanations for Multiple

Predictions

Machine learning (ML) models have achieved widespread adoption in the last

few years. Generating concise and accurate explanations often increases user trust

and understanding of the model prediction. Usually, the implementations of popu-

lar explanation algorithms are highly optimized for a single prediction. In practice,

explanations often have to be generated in a batch for multiple predictions at a time.

To the best of our knowledge, there has been no work for efficiently generating ex-

planations for more than one prediction. While one could use multiple machines to

generate explanations in parallel, this approach is sub-optimal as it does not leverage

higher-level optimizations that are available in a batch setting. We propose a prin-

cipled and lightweight approach for identifying redundant computations and several

effective heuristics for dramatically speeding up explanation generation. Our tech-

niques are general and could be applied to a wide variety of explanation algorithms.

We demonstrate this over a diverse set of algorithms including, LIME, Anchor, and

SHAP. Our empirical experiments show that our methods impose very little over-

head and require minimal modification to the explanation algorithms. They achieve

more than 20x speedup over baseline approaches that generate explanations in a

sequential manner.
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4.1 Introduction

The widespread use of ML models has necessitated the development of algo-

rithms for explaining their predictions. Explanations increase user trust and un-

derstanding of the model. It also has diverse applications, including model trans-

parency [74, 75, 76], debugging [8], accountability [6], auditing [74, 77], fairness [5],

explanation summarization [7, 8] and others [78, 79]. An increasing number of

countries espouse a “right to explanation” [74]. Popular techniques for explaining

predictions are widely used and have been incorporated into the ML offerings of

Google [75], AzureML [76], and others [80]. However, current algorithms are op-

timized for explaining individual predictions. In applications such as responsible

AI [5, 6] or explanations summarization [7, 8], explaining data cleaning [8, 9, 10]

there is a need to generate explanations for multiple predictions in a batch setting.

Generating explanations often cannot be done in real-time (in milliseconds). For ex-

ample, generating a single explanation using LIME takes 17, 15, 6, 6 and 5 seconds

respectively for the 5 datasets evaluated in the paper.

So, an organization might pre-compute all the explanations in a batch setting

and retrieve them as needed.

To the best of our knowledge, there has been no prior work on speeding up

explanations for multiple predictions. Sequentially processing one explanation at

a time could take too much time. Using a cluster and parallelizing the explana-

tion generation would give results faster but could waste precious computing re-

sources. Given the rapidly increasing carbon footprint of ML algorithms [11], and

the widespread deployment of explanation algorithms, there is a pressing need for

smarter algorithms for this critical problem.
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Our Proposed Approach. In this paper, we propose a principled and scalable

approach for generating explanations for multiple predictions. The key insight is

that there are a number of redundant computations that could be avoided by lever-

aging techniques such as materialization and reuse. Our techniques were inspired

from Multi-Query Optimization (MQO) [12, 13]. Given a query workload, MQO

seeks to identify common sub-expressions across queries, so that the reevaluation

cost could be minimized. We describe a general set of heuristics for speeding up ex-

planation algorithms and discuss how these ideas could be instantiated for popular

explanation algorithms requiring minimal changes and very low overhead. Our pro-

posed approach achieves significant speedup without compromising the explanation

quality. In short, we adapt the techniques pioneered by the database community to

solve a practical problem in data science.

Opportunities for Optimization. Consider two popular algorithms that build a

local surrogate model – LIME [2] and Anchor [3]. Intuitively, both these approaches

perturb the data, apply the blackbox classifier on the perturbations, and use the

resulting predictions to generate explanations. Naive optimization techniques such

as persisting all the perturbations are not viable as it requires a large amount of

memory while providing minor improvements. A more effective approach is to do a

lightweight preprocessing of the dataset and use the collected statistics to generate

perturbations smartly. For example, if two tuples ti and tj have some overlap, one

could generate perturbations that could be used for the explanations of both of

them. We identify a number of such opportunities and propose effective heuristics

for speeding up the explanations.

Summary of Contributions.
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• We identify an important problem of generating explanations for multiple

predictions over tabular data.

• We analyze popular explanation algorithms, identify multiple redundant com-

putations and develop scalable algorithms inspired by database techniques.

• We conduct extensive experiments that show that Barracuda can achieve

significant speedups over diverse datasets with very little overhead

4.2 Preliminaries

In this section, we formally define the problem of generating explanations

for multiple predictions. Next, we introduce Barracuda, a framework that adapts

popular explanation algorithms for this problem and provides a consistent and trans-

parent API to the end-user.

4.2.1 Problem Statement

We are given a batch of tuples B = {t1, t2, . . . , tn}, a classifier C and an

explainer E . Let yi = C(ti) be the prediction for tuple ti and ei = E(ti, C) be the

corresponding explanation. Our goal is to generate explanations for the predictions

of all the tuples in B. The explanations could be in the form of a rule “IF Ai = u

then class=Positive”. It could be weights associated with each attributes such that

attributes vital for the prediction getting a higher value. We shall describe the

different type of explanations in Section 4.3.
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Explanations for Multiple Predictions (EMP) Problem: Given

a batch of tuples B, classifier C and explainer E , efficiently generate ex-

planations for each of tuples ti such that the cumulative cost of computing

explanations is minimized.

A straightforward approach would assign more resources by running the explanation

algorithms in parallel on very many machines. Instead, we propose a more promis-

ing and simpler approach inspired by multi-query optimization [12, 13] that achieves

speed up by avoiding redundant computations by materializing them. As we shall

show in our experiments, our approach outperforms the parallelization strategy for

batches as small as 1000.
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Offline and Online Variants. There are two concrete variants of EMP prob-

lem that are of interest to a practitioner. In the offline variant, we are provided

with a batch of individual predictions that must be explained. In a number of data

science applications, the set of tuples on which the predictions need to be made

and explained is available beforehand. Emerging scenarios in responsible AI and

explanation summarization work by generating explanation for each tuple in the

test set and post-processing the generated explanations. This allows a number of

optimization opportunities by performing a lightweight pre-processing to identify

the redundant computations. These could then be pre-computed and materialized

for later use. The other is the online scenario where the predictions arrive one at

a time and we need to compute explanations for them immediately. We do not

have the luxury of pre-hoc identifying the redundant computations and might also

have additional constraints on resource consumption. We need to identify promis-

ing candidates for redundant computations in a principled manner. Our proposed

approaches are generic enough to handle both the scenarios. Figure 4.1 illustrates

the key components of our proposed approach.

Figure 4.1. Illustration of our proposed approach.
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4.2.2 Barracuda API

We have built Barracuda, a Python library that provides efficient explana-

tions for a group of tuples. We support major algorithms for individual explanations,

including LIME, Anchor, KernelSHAP and many others. It provides a unified inter-

face for invoking explanations for individual and multiple predictions. Barracuda

is also modular and can easily accommodate new optimizations and other popular

explanation algorithms. Figure 4.2 shows how Barracuda could be invoked for

LIME explainer. Note that the optimizations are transparent to the user.

from Barracuda import
BatchLIMEExplainer

explainer = BatchLIMEExplainer
()

#Explain a single prediction
explanation = explainer.explain

(x)
#Explain multiple predictions
explanations = explainer.

explain(X_test)

from Barracuda import
StreamingLIMEExplainer

explainer =
StreamingLIMEExplainer ()

for x in X_test:
#Explain tuples one at a time
explanation = explainer.
explain(x)

#Clear the partial computations
explainer.clear ()

Figure 4.2. Code snippet showcasing the Offline and Online variant of Barracuda..

4.3 Explaining Multiple Predictions for LIME, Anchor and SHAP

In this section, we provide the necessary background for three explanation

algorithms and describe how Barracuda modified them for explaining multiple

predictions. For the sake of exposition, we focus on the optimizations that provide

the most bang for the buck, easy to implement, and are generalizable to other

explanation algorithms.



70

Desiderata for Explanation Algorithm Selection. We focus on three algo-

rithms – LIME [2], Anchor [3], and KernelSHAP [4]. These algorithms use diverse

techniques and are exemplars in showing the generality of our approach. The algo-

rithms are widely used in academia, industry, and incorporated into the explainable

AI services of major cloud ML providers [75, 76, 81].

Algorithm Model
Agnostic?

Technique Explanation

LIME Y Perturbation Feature impor-
tance

Anchor Y Perturbation Rules
KernelSHAPY Shapley values Feature

contribution

Table 4.1. Categorization of major Explanation Algorithms discussed in the paper

We next provide necessary details of these three algorithms and describe how

Barracuda modified them for EMP problem. Barracuda takes a uniform ran-

dom sample of the batch and applies a traditional frequent itemset algorithm. Each

frequent itemset f is of the form {Ai = u,Aj = v, . . .} where Ai, Aj, . . . are arbi-

trary features and u, v, . . . , are the corresponding values of those features that are

frequent in the batch. The sample size is heuristically chosen as max(1000, 1% of

batch).
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4.3.1 LIME for EMP Problem

LIME Primer. Local interpretable model-agnostic explanations (LIME) [2] is a

seminal work that trains an interpretable surrogate model to approximate the black-

box classifier C and generate explanations. The explanation of LIME corresponds to

a small set of attributes with relative weights. For a two class classification problem,

attributes that contribute to positive class will have positive weights while those

contribute to the other class will have negative weights. We can obtain an order-

ing of the importance of the attributes to the prediction by sorting based on the

weights. LIME consists of four key operations: (1) perturbing ti to obtain samples

S; (2) running blackbox classifier C on S; (3) training an interpretable model Cint

on S that acts as a surrogate for C; (4) generating explanations for ti by analyzing

Cint Profiling on LIME shows that the steps (1) and (2) account for more than 95%

of total execution time.
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Adapting LIME for EMP. One can simultaneously minimize the cost of both

steps (1) and (2). First, let us dig deeper into how the perturbations are done for

tabular data. For categorical attributes, LIME perturbs them by sampling values

according to the data distribution from the training dataset. By default, it dis-

cretizes numerical data and treats it as categorical. Alternatively, it can perturb

a numerical feature by sampling from a unit Normal distribution and performing

inverse operation of mean-centering and scaling [2]. Barracuda relies on two key

insights. First, the perturbations are performed for each feature independently and

based on a distribution that is fixed for each tuple. For example, consider two ar-

bitrary tuples ti and tj. During perturbation, the probability that a feature Ai will

be set the value u, for both ti and tj, is exactly same as the proportion of u in

the training dataset. Second, given two arbitrary perturbations made by LIME, we

must prefer those that could be reused for multiple tuples.

We compute the frequent itemsets F and for each f ∈ F , we compute τ per-

turbations. For example, if f = (Ai = u,Aj = v), then we create τ perturbations

such that all of them have (Ai = u,Aj = v) while the values for other features are

obtained using LIME’s perturbation techniques. The parameter τ is set automat-

ically by Barracuda based on the resource constraints. The classifier is invoked

on each of the perturbations and its output is stored. Given a new tuple ti for

explanation, we check if ti contains any of the frequent itemsets. If so, we pool

the τ perturbations corresponding to those itemsets. For the remaining perturba-

tions, we follow the same procedure as LIME. The reused perturbations and their

labels result in savings in terms of both classifier invocations and needless creation

of perturbations. The pseudocode can be found in Algorithm 6.
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Algorithm 6 LIME for EMP Problem
1: Input: A batch B, blackbox classifier C, number of samples N
2: Compute frequent itemsets F over B
3: Generate τ perturbations ∀f ∈ F
4: Invoke C on all perturbations and store the output in P
5: for each tuple ti ∈ B do
6: S = retrieve reusable samples and labels from P
7: S ′ = Obtain N − |S| perturbations, invoke C on them
8: S = S ∪ S ′
9: Compute proximity between ti and each s ∈ S
10: Train interpretable model M using S
11: Generate explanations for ti using M
12: return explanations for B

4.3.2 Anchor for EMP Problem

Anchor Primer. Anchor [3] is another popular perturbation based explantion

algorithm that outputs easy to understand rules of the form IF Ai = u AND Aj = v

THEN class=1. For each rule, Anchor also provides two metrics – precision and

coverage. Precision is the proportion of tuples in which the rule holds. Coverage is

the fraction of tuples on which the predicates of the rule holds. Given a tuple ti and

a desired threshold on precision, Anchor provides a rule with high coverage whose

precision exceeds the bound. Anchor consists of three key steps: (1) Generating

candidate rules; (2) Estimating their precision; (3) Identify K best candidates with

high precision and coverage and repeating from step 1 till the precision constraints

are satisfied.
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Adapting Anchor for EMP. Similar to LIME, Anchor provides multiple opportu-

nities for optimization. The key bottleneck in Anchor is the estimation of precision

of a candidate rule. For example, let IF Ai = u THEN class=1 be such a rule. A

naive approach would be to generate various samples where Ai = u and the other

attributes are obtained by using training data distribution. For each of the sample

data points, we invoke the classifier and report the proportion in which class=1

occurs. Since classifier invocation is very expensive, Anchor uses a sophisticated

multi-armed-bandits to minimize the number of such calls.

We begin by identifying the frequent itemsets F . For each f ∈ F , we estimate

the precision of rules. If the precision of a rule containing f as its predicate is

higher than the user provided threshold, then the rule could be used as an Anchor

for all tuples containing f . Since f was a frequent itemset, it is likely to have a high

coverage. The second optimization is to bootstrap the computation of precision for

candidate rules containing a superset of frequent itemsets. Let Ai = u be a frequent

itemset. Then the process of estimating its precision required the generation of

various sample data points and the invocation of classifier on it. Consider a rule

IF Ai = u AND Aj = v THEN class=1. Instead of estimating the precision from

scratch, we can scan the samples generated for Ai = u, find the subset that also

contains Aj = v. By computing the proportion of those that have class=1, we can

obtain a preliminary estimate that could be refined as needed. Finally, the coverage

of the rules are fixed for each candidate rule. Hence, we materialize the coverage

of all the candidate rules so that they are not recomputed again and again. Given

multiple candidate rules satisfying the requirements, we pick the rule with least

predicates. Algorithm 7 describes coarse-grained pseudocode.
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Algorithm 7 Anchor for EMP Problem
1: Input: A batch B, blackbox classifier C
2: Compute frequent itemsets F over B
3: Generate candidate rules R using F and estimate their precision
4: for each tuple ti ∈ B do
5: R′ = {}
6: loop
7: Generate candidate rules by appending new predicates from ti to R′
8: if precision of any candidate rule r ∈ R′ satisfies precision constraints then
9: Use r as Anchor
10: else
11: Bootstrap precision for the candidate rules R′ from materialized samples

12: Add current precision estimates of rules to R
13: Find best candidate rules R′′ ⊆ R′

14: Update precision of rules R′′
15: return explanations for B

4.3.3 KernelSHAP for EMP Problem

Shapley Values. SHAP [4] is a family of explanation algorithms that use Shapley

values which is a principled approach to allocate credit for a feature. Given a

tuple ti, one could use Shapley values to compute the contribution/importance of

each feature value Aj = v in ti. Intuitively, Shapley values computes the marginal

contribution for each feature over all possible subsets of features. Computing the

exact Shapley value requires exponential time. Hence, the values are computed

approximately through sampling [82]. Feature importances computed via Shapley

values have a number of appealing theoretical properties.
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KernelSHAP Primer. KernelSHAP can estimate the feature importances of any

blackbox functions. It consists of four major steps: (1) Generate multiple random

feature subsets, estimate its weight through SHAP kernel and convert each feature

subset to a random perturbations through sampling from the training data distri-

bution; (2) Apply blackbox classifier on the random data perturbations; (3) Build a

weighted linear and interpretable model; (4) Compute the Shapley values for each

feature

Adapting KernelSHAP for EMP. First, we obtain the frequent itemsets F and

generate τ random perturbations. Suppose the feature subset is Ai = u,Aj = v.

Then for each of the τ perturbations, we set their Ai to u and Aj to v. The

other attribute values are filled by sampling according to their data distribution.

We invoke the classifier on each of these random data perturbations and store the

predictions. KernelSHAP computes M random data perturbations before feeding

them to an interpretable model. Given a tuple ti for explanation, we identify if it

contains any feature subset that is frequent. If so, then we can reuse all random

perturbations and their labels. For the remaining budget, we randomly chose a

feature subset and check if it is a superset of any other frequent itemset. If so, we

can again reuse those data perturbations. For example, if Ai = u is frequent but

Ai = u,Aj = v is not, we can still scan the random data perturbations of Ai = u for

those that also have Aj = v. Another key optimization is to choose random feature

subsets in proportion to the weight provided by SHAP kernel defined as [4].

π(m, s) =
m− 1(

m
s

)
× s× (m− s)

(4.1)
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Here m is the maximum size of the feature subset while s is the size of current

feature subset. We can see that when s is small or s ∼ m, the value π(m, s) is large.

In other words, generating feature subsets that are either very small (1 or 2) or very

large (as large as m or m − 1) is preferable to feature subsets of intermediate size

such as m/2. This optimization has been previously observed in [83]. Algorithm 8

puts together all these ideas.

Algorithm 8 KernelSHAP for EMP Problem
1: Input: A batch B, blackbox classifier C, number of samples N
2: Compute frequent itemsets F over B
3: Generate τ random data perturbations ∀f ∈ F
4: Invoke C on all perturbations and store the output in P
5: for each tuple ti ∈ B do
6: S = S ′ = {}
7: if ti contains any frequent itemset then
8: S = S∪ retrieve the perturbations and their labels from P
9: while |S|+ |S ′| < N do
10: Pick feature subset size according to Equation 4.1
11: Pick a random subset s
12: if s is a superset of any frequent itemset then
13: S ′ = S ′∪ any relevant perturbations from P
14: Invoke C on perturbations from S ′

15: S = S ∪ S ′
16: Compute weight of each s ∈ S using SHAP kernel
17: Train an interpretable model M
18: Generate explanations for ti using M
19: return explanations for B

4.3.4 Optimization Principles used by Barracuda

In this subsection, we abstract the generic ideas behind Barracuda that

could be used to speedup other perturbation based explanation algorithms over

tabular data.
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Materialization and Reuse of Perturbations. The key insight is to identify the

expensive computations that are repeated and materialize the intermediate results.

For example, invoking blackbox classifiers is often the biggest bottleneck account-

ing for 88% of the execution time for LIME and 92% for Anchor for Census-Income

dataset. However, it is often unlikely that random perturbations of two tuples would

have produced a common sample whose classifier invocation could be minimized. In

such a case, we need to engineer opportunities for reuse by leveraging additional

techniques. For example, our approach for LIME exploited the fact that for tab-

ular data, perturbations are based on training data distribution. By preferentially

selecting perturbations that could be reused, we achieved tremendous speedups.

Caching Other Invariant Results. The precision and coverage of a rule are

invariant and do not change for different tuples. Even if they are inexpensive, it is

sub-optimal to repeatedly calculate them. One can design a cache to store these

invariant results for reuse. In some cases such as coverage, it is often clear that it

is an invariant. In other cases, such as precision in Anchor, the parameter is often

derived/estimated using a complex approach like multi-armed bandit which makes

the invariance non-obvious. Similarly, other notions of invariance might exist and

one could achieve good speedup by pre-computing them.

4.3.5 Streaming Variant of Barracuda

Barracuda could also be invoked in a streaming setting where individual

predictions arrive one at a time and explanations have to be generated for them.

Barracuda uses a simple adaptation to retrofit the ideas developed for the batch

setting for application in the streaming setting. Barracuda is given a memory

budget that constrains the amount of auxiliary information that could be saved

such as frequent itemsets and perturbations.
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Let us consider the LIME explanation algorithm. At the beginning, the tuples

arrive one at a time and we do not have sufficient information to identify which of

them are frequent itemsets. For the first tuple t1, we generate and store all the

perturbations along with their labels to a repository P . Clearly, there is no saving

yet. For the second tuple to be explained t2, we check if we can reuse any of the

perturbations of t1. If so, we reuse the perturbations as appropriate. If not, we

generate perturbations of t2, invoke the classifier and store these perturbations with

labels to P . We also store the set of tuples that are being explained {t1, t2, . . . , }.

This process repeats until one of the conditions get satisfied: (a) P exceeds

the memory budget or (b) number of tuples exceed a certain threshold (automat-

ically chosen by Barracuda such as 100). When the former happens, we kick

out perturbations based on the LRU (least recently used) policy. At the limit, this

approach implicitly ensures that perturbations containing frequent itemsets will not

be kicked out. When the latter (b) happens, we run a frequent itemset mining

algorithm and also store the negative border of the frequent itemsets. An itemset

{Ai = u,Aj = v} is in the negative border if it is not frequent but all of its immediate

subsets i.e. {Ai = u} and {Aj = v} are frequent.

Let F be the set of frequent itemsets and their negative border. For each

item f ∈ F , we compute the frequency of f in the set of tuples. Once this is

done, we purge the tuples as they no longer are needed. Due to the way in which

F is constructed, the perturbation repository P already consists of perturbations

containing itemsets from F . If not, we purge that perturbation and use the obtained

savings to generate perturbations of f ∈ F .
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When new set of tuples arrive, we update the frequency of itemsets in F and

reuse perturbations as appropriate from P . We also persist the next set of tuples

so that the frequent itemsets can be recomputed. Any frequent itemset f ∈ F

that becomes infrequent is kicked out along its perturbations from P . We can see

that this intuitive approach computes useful perturbations while keeping fresh by

periodically recomputing the frequent itemsets. This property makes the algorithm

dynamic and responsive to changes in the input stream.

4.3.6 Discussion

Handling Numeric Data. Barracuda relies on frequent itemsets which are well

defined for categorical attributes. Both LIME and Anchor discretize numeric data

(such as by quartile discretization) before generating perturbations. Barracuda

computes the frequent itemset over the discretized data. Of course, if discretization

is not done the opportunity for identifying redundant computation decreases.

Barracuda Optimizations and Anchor Explanation Quality.
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The two optimizations used by Barracuda to speed up Anchor are exact.

First, Barracuda caches invariant results such as precision and coverage of a

candidate rule and avoids recomputing it. Second, Barracuda speeds up precision

computation of candidate rules by reusing perturbations. For e.g. the precision of

a rule R1 such as “IF Ai = u and Aj = v THEN class=1” is obtained by generating

various perturbations where Ai = u and Aj = v, invoking classifier and finding

the fraction for which class=1. We can see that one could reuse the perturbation

of R1 for candidate rules R2 (“IF Ai = u THEN class=1”) and R3 (“IF Aj = v

THEN class=1”). Furthermore, the reverse is also possible. We can reuse any of

the perturbations of R2 and R3 that matches the predicate of R1 to compute the

precision of R1. Once again, this optimization is exact.

Barracuda Optimizations and LIME/KernelSHAP Explanation Quality.

Both LIME and KernelSHAP generate a perturbation of tuple ti as follows.

First, they fix the value of a random subset of attributes (say that of A1, A2).

For each of the other attribute (Aj ∈ {A3, A4, . . .}), they choose a value from

Domain(Aj) according to frequency distribution. This perturbation is passed to

a classifier for getting the label. Then the whole process is repeated to get another

perturbation. Barracuda pre-generates perturbations for frequent itemsets. If

tuple ti has a frequent itemset f , one could reuse the pre-computed perturbations of

f as and when LIME or KernelSHAP picks the set of attributes f . Once again, this

on-demand reuse of cached perturbations does not introduce any approximation.
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Dataset #Tuples #CatA #NumA #MaxDC SeqB BC-B BC-S
Census (KDD) 299285 27 15 18 261.2 30.8 93.3
Recidivism 9549 14 5 20 93.7 10.4 31.2
lendingclub 42536 26 24 837 292.5 29.3 91.4
KDD Cup 1999 4000000 13 27 490 101.7 8.5 26.8
Covertype 581012 44 10 7 100.8 9.2 28

Table 4.2. Performance of Barracuda over diverse datasets. #CatA, #NumA
are the number of categorical and numerical attributes. #MaxDC is largest domain
cardinality of the categorical attribute. SeqB gives the time taken in minutes by
the sequential baseline for explaining 1000 tuples. BC-B and BC-S show the time
taken (in minutes) by the batch and streaming variant of Barracuda for the same
set of 1000 tuples in the same order.
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4.4 Experiments

We conducted extensive empirical experiments that demonstrate that Bar-

racuda achieves significant speedup over baseline approaches by minimizing re-

dundant computations for three widely used explanation algorithms.
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4.4.1 Experimental Setup

Hardware and Platform. All our experiments were performed on a quad-core

2.2 GHz machine with 16 GB of RAM. Barracuda and the various explanation

algorithms are all implemented in Python.

Datasets. We conduct experiments over five diverse benchmark datasets. The

Census-Income dataset [84] consists of 42 demographic and employment related

variables and predicts whether the person makes $50K annually. The recidivism

dataset is used to predict recidivism for individuals released from prison [85]. The

lending club dataset predicts whether a loan will result in default or late payment.

These three datasets have been used in prior explanation work such as [3]. KDDCup

1999 dataset seeks to build a network intrusion detector by predicting whether a

connection is normal or abnormal [86]. The CoverType dataset from UCI repository

tries to predict forest cover type from cartographic variables [86]. Each of these

datasets are diverse in number of total, categorical and numerical attributes. The

categorical attributes also have a wide spectrum in terms of domain cardinality. The

details about these datasets are provided in Table 4.2. We partition the dataset into

1/3 and 2/3. We used the former for training the ML model and used the latter for

prediction and explanation.
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Explanation Algorithms. We focus on three representative algorithms – LIME,

Anchor and SHAP as they use different algorithmic techniques and produce very dif-

ferent explanations. Our implementation of Barracuda was based on Microsoft’s

InterpretML library [79]. Due to space limits, we conduct our experiments on ran-

dom forest classifier. Since Barracuda achieves speedup by minimizing the number

of classifier invocations, this does not materially affect the conclusions. We used the

default hyperparameters for the explanation algorithms (such as ε = 0.1, δ = 0.05

for Anchor). The default value of τ was set to 100.

Baseline Algorithms. We consider two baseline approaches. The first approach

generates explanations sequentially one prediction at a time. Specifically, we con-

sider a distributed variant where the explanation generation is spread across 1, 4 or

8 machines. Each machine process the same amount of data. We dub this approach

as Dist-1, Dist-4 and Dist-8 respectively. Given a batch of 10000 predictions to

explain, Dist-8 will split them into 1250 predictions and spread them to 8 machines.

The second baseline is Greedy. Given a memory budget, this approach stores all

the perturbations until the budget is exhausted. When generating explanation, it

reuses existing perturbations and their labels if possible. Otherwise, it generates

new explanations and uses the LRU (least recently used) policy to replace unused

perturbation. By default, we assumed that the space budget is 10x the size of the

batch.
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Batch Sizes. We evaluate both the offline and online variants of Barracuda using

the same set of tuples processed. We vary the batch size from 10 to 50K tuples.

The order in which the tuples are processed is the same for all the algorithms. In

the offline scenario, this denotes the set of tuples for which explanations has to be

generated. In the online scenario, Barracuda receives an explanation request one

at a time. We randomly generated 10 different permutations and report the average

results.
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Performance Measures. We measure our proposed algorithms based on two

dimensions – scalability and explanation quality. The former measures how much

faster are the algorithms of Barracuda over the baselines described above. Specif-

ically, we use two key metrics – runtime and overhead. We report the wall-clock

time. None of the existing implementations of LIME, SHAP and Anchor use mul-

tiprocessing. While Barracuda does use multiprocessing, we disable it to show

that our superior performance comes from algorithmic improvements that minimize

the number of classifier invocations. For the distributed version of the baseline (say

Dist-8), we report the average time taken by the 8 machines as the runtime. Note

that Barracuda runs only on a single core of a single machine. The overhead

measures the percentage of time taken by Barracuda for housekeeping purposes

such as computing frequent itemsets and retrieving relevant perturbations. The

second dimension is that of explanation quality. Even though the optimizations

of Barracuda are exact, we nevertheless empirically show that the explanations

are equivalent to the sequential approach. We empirically measure the fidelity of

explanations generated by the sequential approach along two metrics: feature im-

portance values and rank. For LIME and SHAP, we can represent the contribution

of each feature as a real-valued number. We measure the Euclidean distance between

the explanation generated by original LIME/SHAP and the Barracuda variants.

Using the importance values, we can compute a ranked list of features. We use

Kendall-τ to measure the rank correlation between the ranking produced by origi-

nal LIME/SHAP and Barracuda variant. Given a batch of tuples, we compute

the Kendall-τ for each of the tuple in the batch and compute its average.
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4.4.2 Experimental Results

Comparison against Baseline Approaches. We begin by evaluating Bar-

racuda against the distributed and greedy baselines. We use LIME explainer

to explain the predictions of random forest classifier trained over Census-Income

dataset. Figure 4.3 shows the performance of Barracuda as the batch size is var-

ied from 10 to 50K. Overall, Barracuda provides the best results and achieves a

speedup of 10.8 for a batch size of 1000 which increases to 20.9 for a batch size of

50K. Even though Barracuda ran on a single core of a single machine, it outper-

forms Dist-8 for batch sizes of 1000. The disparity in performance increases as the

batch size is increased with Barracuda being almost 3x faster than Dist-8 for a

batch size of 50K. In the offline scenario, one might have to generate explanations

for a large batch – such as for the entire test set consisting of thousands of tuples.

This demonstrates the efficacy of algorithmic ideas of Barracuda.

The speedup increases with larger batch sizes as one could make informed

decisions about the redundant computations through frequent itemsets. Given that

the biggest bottleneck is invocation of the blackbox classifier, this shows that Bar-

racuda reduces the number of invocations by a factor of 10! The other baseline

Greedy achieves substantial speedup for small batches that decreases for larger

batches. This decrease is due to the algorithm’s sub-optimal decisions regarding

which perturbations to persist and which to remove. Blindly persisting all per-

turbations is not an effective strategy. In contrast, Barracuda takes a holistic

approach and produces consistent and significant speedups.
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Further evidence of this can be found in Table 4.2. Here, we compare the per-

formance of the sequential approach (Dist-1) against the offline and online variant

of Barracuda for explaining 1000 tuples using LIME explainer for random forest

classifier. Even for a small batch size of 1000, Barracuda achieves a speedup of

7x or higher. We can see that the mixture of categorical and numerical attributes

do not materially affect the performance of Barracuda. In fact, the performance

improves for datasets with large number of numerical attributes such as KDDCup.

This is primarily due to the discretization applied by the explainers that converts

numerical attributes to categorical attributes. Often, these derived categorical at-

tributes have a smaller domain cardinality than the original one and thereby pro-

vides an additional speedup. We can also see that the number of attributes does

not materially affect the performance.

Offline Setting. Figures 4.4- 4.6 show the speedup achieved by Barracuda for

three explainers – LIME, Anchor and SHAP – for three classifiers for a variety of

batch settings. One can make the following observations: Barracuda achieves as

much as 20x speedup over the baseline sequential approach. There is only minor

difference between the speedups for different classifiers. Since invoking blackbox

classifier accounts for more than 90% of the time taken, we can infer that speedup is

primarily achieved by minimizing the number of calls to the classifier by intelligently

materializing and reusing the perturbations. Among the algorithms, LIME achieves

the least speedup of ∼ 11x for a batch size of 1000 when explaining LR classi-

fier. The corresponding speedups for Anchor and SHAP are 9x and 8x respectively.

Due to the simplicity of LIME, the major speedup is achieved by materializing the

perturbations.
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Online Setting. Figures 4.9- 4.11 shows the performance of Barracuda in an

online scenario. Overall, the trends largely mirror those from the batch scenario.

One can see that the speedups achieved in the batch setting dwarves that from

the streaming setting. This is not surprising due to the ability of Barracuda to

pre-process the data and carefully chose the perturbations to materialize. While the

streaming based approach has a slower start obtaining only 25% of the speedup of

that of batch setting, it improves to more than 60% for larger batches. Of course,

one could achieve higher speedups through smarter frequent itemset computation.

Barracuda Overhead. We evaluate the overhead of Barracuda in the batch

setting – for LIME explainer for random forest over Census-Income dataset. Bar-

racuda mines the frequent itemsets, computes the perturbations and invokes the

classifiers on the perturbations. For each tuple in the batch, it retrieves the relevant

perturbations. The computation of frequent itemsets is done on a uniform random

sample of size 1% of the batch size or 1000 whichever is larger). The small size

ensures that this step is not very expensive. The computation of perturbations and

classifier invocation gets amortized overall. Retrieving relevant perturbations is also

a lightweight operation. Figure 4.7 shows that the percentage overhead imposed by

Barracuda is as little as 3% and 2% for batch size of 10K and 50K respectively.

Given the significant speedup achieved by Barracuda, this is a small price to pay.
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We next study the impact of varying the resource budget for Barracuda for

random forest classifier for different explanation algorithms. We vary the number

of perturbations stored for each frequent itemset between 1 to 1000. Figure 4.8

shows the result. Even storing 10 perturbations provides a 5x speedup for LIME.

Interestingly, storing beyond 100 perturbations per frequent itemset does not provide

any additional benefit. This is due to the fact that each tuple usually contains a

handful of frequent itemsets. Hence, the number of perturbations generated by the

traditional LIME explainer that contains them is also limited.

Explanation Quality. We also conducted additional experiments on how the

optimizations of Barracuda affects the explanation quality. For LIME and SHAP,

the explanation could be construed as a real-valued vector over the features. For

LIME, these values could be positive (that feature contributes towards the predicted

label) or negative (that feature contributes against the predicted label). For SHAP,

the values are positive with features having higher values contributing more to the

prediction. Using these importance values, one could also rank the features.
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Given two sets of explanations – one from the unmodified LIME/SHAP and

another from Barracuda’s – we measure the explanation quality along two dimen-

sions: (a) the amount of deviation between the feature importances (b) the deviation

in ranking of features. Barracuda always achieves the same ranking of features.

We found that the maximum deviation in explanation values to be as small as 0.1.

For KernelSHAP, this is not surprising as our algorithm from Section 4.3.3 avoids

needless recomputations through materialization. Our optimizations do not have

any major impact due to LIME giving different weights to perturbations based on

the distance from the tuple being explained. Finally, our modifications to Anchor

also does not affect the explanation quality in anyway. It lets the algorithm work

as is while minimizing needless recomputations by materializing perturbations and

caching the precision and coverage of candidate rules which are invariant.
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4.5 Related Work

Explanations of ML Models. ML explanation has applications in model debug-

ging, detecting bias, ensuring operational safety, among others [78, 79]. In the last

few years, there has been a groundswell of work for explaining and/or interpret-

ing ML models sometimes with different motivations [87, 77]. Explaining complex

models is often very challenging [88, 89, 90]. Hence, a number of recent research

focus instead on generating explanations for individual predictions. Some local ex-

planation algorithms explain the model introducing interpretable surrogate models

in the local neighborhood of an individual prediction such as LIME [2] or Anchor [3].

Some popular explanation techniques provide explanations in the form of computing

the contribution of individual features (such as SHAP [4]). These algorithms are

incorporated into ML platforms of the industry sector including Google [75] and

AzureML [76] among others. Robustness of the existing explanation methods are

studied in [91]. Recently, there has been a number of work on generating explana-

tions for database and data curation settings [10, 9, 8, 92].

Speeding up ML through Database Techniques. There has been extensive

work focusing on making ML algorithms more efficient through well established

database techniques. Some have used the concept of Materialization and reuse to

speedup the ML model construction [1, 93]. Similarly, other database techniques

like pipelining and operator pushdown are used to speedup ML tasks [94]. Query

optimization techniques have been used to speedup random forest inference [95]

and video queries [96, 97]. A recent work [98] used Multi query optimization [12]

techniques to speedup the individual explanations of a CNN based model. There

has been extensive work on implementing efficient and extensible algorithms for

MQO [13, 99].
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4.6 Conclusion

In this paper, we introduced a practical data science problem – efficiently

generating explanations for a batch of predictions. Given the increasing popularity

of explanation algorithms and their adoption in academia and industry, there is a

pressing need to develop scalable algorithms. Our proposed Barracuda introduces

a number of non-trivial adaptations for the ML context in order to identify redun-

dant computations. It achieves significant speedups over baseline approaches. There

are a number of interesting next steps such as extending this techniques for non-

tabular data and other major class of explanation algorithms. While the proposed

optimizations are exact, it is possible that one could achieve substantial speedup by

allowing certain approximation in the explanations generated.
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