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Abstract

Image segmentation and registration are indispensable tools for the

aid in medical diagnoses by experts.

The current gold-standard for image segmentation is manual labeling

of pixels by experts which is cumbersome and inefficient. In the paper

by Zhu et. al. [21] grids are generated through the deformation method

for grid generation and differential properties of these grids are used in a

deep learning algorithm for image segmentation. In this dissertation, we

develop a new method for generating grid images based on the Variational

Method. This new grid generation method generates grids based on image

pixel intensities which improves upon the deformation method for grid

generation in constructing such grids.

Image registration is used in quantitative analysis based on the grid

representation of the registration field, but this is an ill-posed problem.

Therefore, many models of regularization are used to regularize the prob-

lem. As a result there are many different models that have many different

grid representations with large discrepancies. In fact, even the same model

with different parameters often result in different deformations with large

discrepancies. In this dissertation, we develop a platform for combining

different registration fields generated by different methods with the aim

of improving robustness.
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Chapter 1

Introduction

1.1 Diffeomorphisms and Grid Generation

A diffeomorphism is a mapping between manifolds that is differentiable with differ-

entiable inverse. Diffeomorphism is an active research area in differential geometry

[7, 21].

Two already established methods for grid generation are the deformation method

and the Variational Method.

We review both the deformation method for grid generation and the Variational

Method in this dissertation. Both methods serve as aids for new developments in

image segmentation and registration.

1.1.1 Deformation Method

In [9] Dacorogna and Moser first proved the existence of diffeomorphism under a

Jacobian determinant constraint. Later, in [14] Liao and Anderson proposed a refor-

mulation of the deformation method to construct diffeomorphisms numerically rep-
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resented by grids and named the method deformation method for grid generation. In

[6, 12] the Least-Squares Finite Element Method (LSFEM) was implemented to solve

the divergence-curl system that arises in the formulation of the deformation method

for grid generation.

1.1.2 Variational Method

Another method for grid generation based on the deformation method was developed

in [7, 8] called the Variational Method. The Variational Method constructs a diffeo-

morphism φ via an iterative process based on a cost functional the Sum of Squared

Differences (SSD).

1.2 Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple seg-

ments by labeling pixels. The goal of image segmentation is that of identifying land-

marks or regions of interest within the image (e.g. identifying a tumor within a brain

image). Quantitative analysis is very common in many neurological diseases such

as Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis (MS), cancer, and

infectious and degenerative diseases [21]. In this quantitative analysis MRI segmen-

tation is used to quantify changes in brain structure.

In Zhu et. al. [21], the deformation method for grid generation is used to generate

grids that resemble images based on pixel intensity (grid images). Differential prop-

erties of the grid images are then computed (Jacobian determinant (JD), divergence

(DIV), and curl vector (CV)) and used as features in training on a convolutional neu-
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ral network (CNN) to improve performance of brain segmentation. Some drawbacks

to the grids generated by the deformation method in the paper by Zhu et. al. [21]

are that the grids depend on a set of optimization parameters and they are lacking

in accuracy.

In this dissertation, we propose a new 2D grid generation algorithm based on

the Variational Method with an appropriate choice for the prescribed Jacobian de-

terminant (JD) that relies only on the information provided in the image file; thus

eliminating the need for optimization parameters as well as producing high accuracy.

1.3 Image Registration

Currently, image registration is widely used in many areas such as computer vision, bi-

ological imaging, remote sensing, and medical imaging [18]. In particular, deformable

image registration in medical imaging has been an active research topic for decades

[3].

Image registration is the process of aligning two or more images according to a

similarity measure. Assuming that a pair of registered images differ only by Gaus-

sian noise, registration accuracy can be evaluated by measuring pixel (voxel for 3D)

intensity difference of the registered image pair [16]. A common similarity measure

used to measure pixel difference is the Sum of Squared Differences (SSD) between

pixel intensity of corresponding pixels between an image pair. A perfect registration

results in SSD = 0.

There are two general types of deformable image registration: affine registration

(i.e. alignment via rotation, reflection, scaling, translation, and shearing) and non-

13



linear registration. Affine registration is very limited in accuracy due to the limited,

linear transformations available and cannot overcome the misalignment of local de-

tails. Therefore, nonlinear registration models are needed for an adequate level of

registration accuracy.

One popular methodology to performing nonlinear image registration is the use

of diffeomorphism to identify a deformation that accurately aligns image data.

In this dissertation, we investigate a new application of diffeomorphic averaging.

We apply the grid averaging concept from [19, 20] to the registration fields (defor-

mation grids) of an image registration algorithm that relies on a parameter θ. We

then extend this idea to averaging various registration fields that have already been

determined by varying registration methods with diffeomorphic guarantees. This acts

as a starting point for building a platform for averaging diffeomorphic registration

fields of varying registration methods to improve robustness of desirable grid repre-

sentations of the registration field while retaining high alignment accuracy for a given

registration pair.

1.4 Organization

This dissertation contains 6 chapters. The organization of this dissertation is as

follows: chapter 1 is the introduction. chapters 2 and 3 review the deformation

method for grid generation and the Variational Method for grid generation, respec-

tively. Chapter 4 presents an appropriate prescription for the Jacobian determinant

based on normalized image pixel intensities for use in the Variational Method to

accurately generate grids directly from images. Chapter 5 presents a platform for

14



averaging grid representations for diffeomorphisms obtained from various registration

algorithms as an aim to produce more robust deformations in image registration.

Finally, Chapter 6 presents conclusions of the new developments.
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Chapter 2

The Deformation Method for Grid Generation

2.1 Introduction

In the field of differential geometry, a diffeomorphism is a bijective map between man-

ifolds that is smooth and has smooth inverse. Diffeomorphism is an active research

area in differential geometry [7, 22]. In [9] Dacorogna and Moser first proved the exis-

tence of diffeomorphism under a Jacobian determinant constraint. Later, in [14] Liao

and Anderson proposed a reformulation of the deformation method to construct dif-

feomorphisms numerically represented by grids, hence the name deformation method

for grid generation. In [6, 12] the Least-Squares Finite Element Method (LSFEM)

was implemented to solve the divergence-curl system that arises in the formulation of

the deformation method for grid generation. Further development in triangular mesh

generation was performed in [15] and development of higher order mesh generation

in [19]. More recently, the deformation method for grid generation has been applied

toward image segmentation and image registration [21, 22].

In [21] Zhu et. al. apply the deformation method for grid generation to produce

grid representations of input images in order to use first-order differential operators
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including the Jacobian determinant (JD), divergence (DIV), and curl vector (CV) of

the corresponding generated grid. Then, these first-order differential operators are

used as CNN channels with other modalities (T1-weighted, T1-IR, and T2-FLAIR)

or single T1-weighted modality to improve the performance of brain segmentation.

In [22] Zhu et. al. apply the deformation method for grid generation as a means

to again obtain first-order differential operators and are then used on the VoxelMorph

CNN architecture of [10].

2.2 Deformation Method for Grid Generation

The goal of the deformation method is to construct a family of diffeomorphisms φ(ξ, t)

such that J(φ) = f0(φ, t) for a given monitor function f0(x, t), for every t ∈ [t0, T ].

In particular, we consider t ∈ [0, 1]. See Figure 2.1 for a 2D depiction of the problem

we aim to solve.

Let Ω0 and Ωt be simply connected, bounded, moving (or fixed) domains such

that Ω0 ⊂ Rn and Ωt ⊂ Rn where n = 2, or n = 3, and t ∈ [0, 1]. Let v(x, t) be the

velocity field associated with the boundary ∂Ωt. Here we required that v(x, t) · n =

Ω0 Ωt

ξ x

φ(ξ, t)

Figure 2.1: The deformation method method in 2D (moving boundary case)

seeks to determine the diffeomorphism φ(ξ, t) from domain Ω0 to domain Ωt

where |Ω0| = |Ωt|.

17



0 everywhere on ∂Ωt where n is the outward normal vector of ∂Ωt. Employing

this boundary condition ensures that points on the initial boundary remain on the

boundary of the new domain (slippery wall condition). Given a strictly positive,

scalar function that is continuously differentiable (i.e. 0 < f(x, t) ∈ C1) with domain

Ωt × [0, 1] with constraints


f(x, 0) = 1,∫

Ωt

1

f(x, t)
dx = |Ω0|,

(2.1)

we determine a new diffeomorphism φ(ξ, t) : Ω0 → Ωt such that

J(φ(ξ, t)) = det∇φ(ξ, t) = f(φ(ξ, t), t) (2.2)

for every t ∈ [0, 1]. We do this in a two-step process.

First, solve the div-curl system:



∇ · u(x, t) = −
∂

∂t

 1

f(x, t)

 on Ωt

∇× u(x, t) = 0 on Ωt

u(x, t) =
v(x, t)

f(x, t)
on ∂Ωt

(2.3)

Solving this div-curl system is done by LSFEM in [6, 12] to determine the vector field

u(x, t). Due to the complexity of LSFEM we do not go into detail of the method in

this work. Once we have determined u(x, t) we then solve the deformation ODE for

each fixed ξ ∈ Ω0:

18




∂φ(ξ, t)

∂t
= f(φ(x, t), t) · u(x, t) on Ωt

φ(ξ,0) = ξ on ∂Ωt.

(2.4)

This can be done by many ODE solvers (e.g. Explicit-Euler Method). Once solved,

we have the diffeomorphic map φ(ξ, t).

See Algorithm 1 for implementation.

Algorithm 1: Deformation Method for Grid Generation

Result: Construct diffeomorphism φ(Ω0, 1)

1 Initialize: t = 0,φ(ξ, 0) = ξ, f(x, 0) = 1, dt = 0.1

2 Prescribe: f(x, t)

3 while t ∈ [0, 1] do

4 Update: f(x, t) with t = t+ dt

5 Normalize: f(x, t) = f(x, t) ·
∫

Ωt

1
f(x,t)

dx

6 Compute: − ∂
∂t

(
1

f(x,t)

)
7 Solve: div-curl system 2.3 by LSFEM to obtain u(x, t) on Ωt

8 Apply: boundary conditions to u(x, t)

9 Update: φ(ξ, t) from Ωt to Ωt+dt by solving ODE 2.4

10 Update: t = t+ dt

11 end

12 Output: φ

19



Chapter 3

The Variational Method with Prescribed Jacobian

Determinant for Grid Generation

3.1 Introduction

In this chapter we review the Variational Method for constructing diffeomorphisms

which is based on the deformation method. This is a key component of the devel-

opment discussed in the following chapters. The Variational Method for determining

diffeomorphisms was developed in [7, 8] and constructs a diffeomorphism φ via an it-

erative process. This method aims to minimize a cost functional, the Sum of Squared

Differences (SSD), defined as

SSD =
1

2

∫
Ω

(J(φ(x))− f0(x))2 + α|curl(φ(x))− g0(x)|2dx

based on prescribed Jacobian determinant and curl vector, where J(φ(x)) is the

Jacobian determinant of the diffeomorphism φ and α ≥ 0 is a weight parameter on the

curl term. In [7] there are three variational methods presented: Variational Method

with Prescribed Jacobian Determinant (version 1); Variational Method with Prescribed

20



Jacobian Determinant and Curl Vector (version 2); and version 3 generalizes the

prescribed functions in version 2 (i.e. f0(x) and g0(x) are generalized to f0(φ(x))

and g0(φ(x)), respectively). Both version 2 and 3 consider the parameter α ≥ 0

as a weight on the prescribed curl vector term in the cost functional that is to be

minimized. Version 1 is equivalent to the special case when α = 0. We specifically

focus on version 1 with a slight variant in the constraint as it applies to our generation

of grids directly from images (we refer to these as grid images) in the next chapter of

this dissertation.

3.2 2D Variational Method with Prescribed Jaco-

bian Determinant

We now proceed in reviewing the Variational Method with prescribed Jacobian Deter-

minant (version 1) from [7] in 2D, but with a variant constraint. For details on the

Variational Method for 3D see chapter 3 of [7].

Let Ω be a simply connected, bounded region such that Ω ⊂ Rn where n = 2 (for

2D). Let 0 < f0(x) ∈ C1 be a scalar function with domain Ω along with

∫
Ω

f0(x)dx = |Ω|. (3.1)

We wish to find a diffeomorphism, φ : Ω→ Ω that minimizes the Sum of Squared

Differences (SSD) cost functional

SSD =
1

2

∫
Ω

(J(φ(x))− f0(x))2 dx (3.2)
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subject to the constraint


∆φ(x) = f(x) on Ω

φ(x) = x on ∂Ω

(3.3)

where f(x) is a control function.

In order to minimize SSD we apply gradient descent. To apply gradient descent we

first must derive the variational gradient, ∂SSD
∂f

. Since our framing of the problem is

the 2D case (n = 2), we let φ(x) = (φ1(x, y), φ2(x, y)) and f(x) = (f1(x, y), f2(x, y)).

Let δf be a variation of f that vanishes at the boundary. Then

SSD =
1

2

∫
Ω

(J(φ(x))− f0(x))2 dx

δSSD =

∫
Ω

(J(φ(x))− f0(x)) δJ(φ(x))dx. (3.4)

Note that since J(φ(x)) = det

φ1x φ1y

φ2x φ2y

 = φ1xφ2y − φ2xφ1y, then by product rule

δJ(φ) = δ(φ1xφ2y − φ2xφ1y) = δφ1xφ2y + φ1xδφ2y − δφ2xφ1y − φ2xδφ1y. Thus

δSSD =

∫
Ω

(J(φ)− f0) δ(φ1xφ2y − φ2xφ1y)dx

=

∫
Ω

(J(φ)− f0) (δφ1xφ2y + φ1xδφ2y − δφ2xφ1y − φ2xδφ1y)dx

=

∫
Ω

(J(φ)− f0) [(φ2y,−φ2x) · ∇δφ1 + (−φ1y, φ1x) · ∇δφ2] dx

Define a1 = − (J(φ)− f0) (φ2y,−φ2x) and a2 = − (J(φ)− f0) (−φ1y, φ1x). We get

δSSD =

∫
Ω

(−a1 · ∇δφ1 − a2 · ∇δφ2)dx. (3.5)

22



We introduce a vector-valued function g = (g1, g2) satisfying



∆g1 = ∇ · a1 on Ω

∆g2 = ∇ · a2 on Ω

g1, g2 = 0 on ∂Ω.

(3.6)

Recall two corollaries of the Divergence Theorem:

Corollary 1. By applying the divergence theorem to the product of a scalar function

v and a vector field u on domain Ω

∫
Ω

(u · ∇v + v (∇ · u)) dV =

∫
∂Ω

(vu · n) dS, (3.7)

where n is the outward unit normal vector.

Corollary 2. By applying the divergence theorem to the product of a scalar function

v and a vector field ∇w on domain Ω

∫
Ω

(∇w · ∇v + v(∆w))dV =

∫
∂Ω

(v∇ · n)dS, (3.8)

where n is the outward unit normal vector.

Note that since v = fi, i = 1, 2 vanishes at the boundary, then φ1 and φ2 also vanish

at the boundary, and the integrals on the right-hand side of both corollaries vanish

as a result.
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δSSD =

∫
Ω

(−a1 · ∇δφ1 − a2 · ∇δφ2) dx (3.9)

=

∫
Ω

(∇ · a1δφ1 +∇ · a2δφ2) dx (3.10)

=

∫
Ω

(∆g1δφ1 + ∆g2δφ2) dx (3.11)

=

∫
Ω

(g1δ∆φ1 + g2δ∆φ2) dx (3.12)

=

∫
Ω

((g1, g2) · δ∆φ) dx

=

∫
Ω

(g · δf) dx (3.13)

Proceeding from 3.9 to 3.10 we apply Cor. 1 with v = φ1 and u = −a1 or v = φ2

and u = −a2 as needed to switch the order of ∇. Proceeding from 3.11 to 3.12 we

apply Cor. 2 twice with v = φ1 and w = g1 or v = φ2 and w = g2 as needed. Finally,

from 3.13 we end up with

δSSD

δf
= g = (g1, g2). (3.14)

See Algorithm 2 for the implementation of the Variational Method with prescribed

Jacobian determinant.
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Algorithm 2: Variational Method with Prescribed Jacobian Determinant

Result: Iteratively generate diffeomorphism φ

1 Prescribe: f0

2 Initialize: f = 0, φ(x) = x, better = true

3 while ∆t > ttol and ratio > ratiotol and iter > itermax do

4 if better = true then

5 Compute: (J(φ(x))− f0), a1, a2, ∇ · a1, ∇ · a2

6 Solve: Poisson equations to obtain g1 and g2

7 Compute: δSSD
δf

based on g1 and g2

8 end

9 Update: fnew = fold −∆t · δSSD
δf

10 Solve: Poisson equations to obtain φ1 and φ2

11 Check: SSD and compute ratio

12 if SSD decreases then

13 better = true

14 ∆t = ∆t · tup

15 fold = fnew

16 else

17 better = false

18 ∆t = ∆t · tdown

19 end

20 end

21 Output: φ
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Chapter 4

Grid Generation Based on Image Pixel Intensities

4.1 Introduction

Now that we have reviewed the Variational Method with Prescribed Jacobian De-

terminant we are ready to present a novel approach to generating grids based on

images (we refer to these grids as grid images henceforth). In particular, we ap-

ply the variational approach of chapter 3 using image pixel intensities to determine

the prescribed Jacobian determinant. Motivation for generating grids directly from

images (i.e. generating grid images) arises in image segmentation.

Image segmentation is the process of partitioning a digital image into multiple

segments by labeling pixels. The goal of image segmentation is that of identifying

landmarks within the image (e.g. identifying a tumor within a brain image). Quan-

titative analysis is very common in many neurological diseases such as Alzheimer’s

disease, epilepsy, schizophrenia, multiple sclerosis (MS), cancer, and infectious and

degenerative diseases [21]. In this quantitative analysis MRI segmentation is used to

quantify changes in brain structure.

Currently, the gold-standard for image segmentation is left to experts to manually
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analyze images and perform segmentation which is expensive, time consuming, and

prone to human error [21]. For this reason, development of an automated process

for image segmentation is highly sought after. Generating an accurate, canonical

grid corresponding to an image is a key tool for automating the image segmentation

process. Furthermore, in [21] grid images are generated that are aimed to resemble

the input image. Features from these grids (Jacobian determinant (JD), divergence

(DIV), and curl vector (CV)) are then used for data training in convolutional neural

networks (CNNs) in an effort for automating the image segmentation process.

The general idea presented in this dissertation for grid generation directly from

images should apply to both 2D and 3D images. Although 3D grids should be viable

with similar formulation as that which is presented in this chapter, 3D grids have not

yet been implemented and is left for future work.

The underlying idea for our approach in obtaining a grid image φ is that grid

cell size corresponds to a pixel (voxel for 3D) intensity value: the larger the cell size

the brighter the pixel value corresponding to that cell; the smaller the cell size the

darker the pixel value corresponding to that cell. For an expanding grid cell size we

have J(φ) > 1 (corresponds to a brighter pixel value); for a shrinking grid cell size

J(φ) < 1 (corresponds to a darker pixel value); and J(φ) ≈ 1 when a pixel is gray

(neither bright or dark, but rather an average of bright and dark). Of course, we

also require that J(φ) > 0 everywhere to ensure φ is a diffeomorphism. To achieve

J(φ) > 0 we normalize pixel intensity within an image to avoid zero or negative pixel

values, and then prescribe our JD based on pixel intensities throughout the image.

All versions of the Variational Method from [7] require a prescribed Jacobian

determinant. From [19] we know that diffeomorphism constructed by Jacobian de-
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terminant alone does not ensure uniqueness, but prescribed Jacobian determinant

and curl vector together does. Even though uniqueness of the diffeomorphism is not

guaranteed with a prescribed Jacobian determinant alone, surprisingly, we see in this

chapter that if we prescribe the Jacobian determinant in a particular way, even with-

out a prescribed curl vector, we obtain an accurate grid that resembles the input

image. From the grid generated we may extract the curl vector associated with the

grid (i.e. the curl vector is updated based on version 1 of the variational method once

the final iteration of grid generation is complete). Many grid generation techniques

require the specification of various optimization parameters (e.g. the deformation

method used in [21] relies on a choice for dt, grid spacing h, and number of grid

nodes N). The grid we obtain through the Variational Method with prescribed Ja-

cobian determinant does not require strict optimization parameters. We simply base

the prescription of the Jacobian determinant on the pixel intensity throughout the

given input image and the grid is automatically generated. In particular, we compare

results of our method with grids generated in Figure 1 of [21] and Figure 1 of [22].

4.2 Prescribing the Jacobian Determinant Based

on Pixel Intensities

In this section we first derive the mathematical framework for the monitor function

f0 based on the necessary conditions for version 1 of the Variational Method, and

then discretize our result.
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4.2.1 Mathematical Formulation of the Prescribed Jacobian

Determinant

Recall from version 1 of the Variational Method that we must have the following

conditions if we desire application of the method for grid generation in 2D.

Let Ω ⊂ R2 be simply connected and bounded with scalar function 0 < f0(x) ∈ C1

such that

∫
Ω

f0(x)dx = |Ω|. (4.1)

To satisfy these conditions, suppose we have a function 0 < I0(x) ∈ C1 on domain

Ω such that f0(x) = k · I0(x) for some scalar k > 0. Then 0 < f0(x) ∈ C1 and we

need only determine the scalar k for which 4.1 holds. Proceeding we have

∫
Ω

f0(x)dx =

∫
Ω

k · I0(x)dx

= k

∫
Ω

I0(x)dx

= |Ω|

⇓

k =
|Ω|∫

Ω
I0(x)dx

. (4.2)

4.2 suggests if we define our monitor function f0 as

f0(x) =

 |Ω|∫
Ω
I0(x)dx

 · I0(x) (4.3)
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then our conditions for carrying out version 1 of the Variational Method are satisfied

and we iteratively generate a diffeomorphism φ. Now we are ready to discretize and

apply this monitor function as the prescribed JD for grid generation directly from

images.

4.2.2 Discretization of the Prescribed Jacobian Determinant

For our purposes here, we consider 2D gray scale images and therefore our domain

Ω is all points within the rectangular boundary of an image. The measure on Ω is

then the total area encompassing any given image in question. That is, for an image

that has m pixels by n pixels, |Ω| = m · n. Since pixel intensity is a function of a

pixel’s location we might consider f0(x) = I(x), where I(x) is the pixel intensity

value at the point x ∈ Ω. However, it’s possible that the pixel intensity at any given

location might be zero (or even negative depending on the image file information). To

avoid non-positive pixel intensities throughout the image, we apply the normalization

I0(x) = I(x) + Imax + ε where Imax = maxy |I(y)|,∀y ∈ Ω and ε > 0 for each

pixel location x ∈ Ω within the image. Furthermore, it is not necessarily the case

that
∑
x I0(x) = m · n. So we must choose to define f0(x) in such a way that the

discretized summation will agree with |Ω| = m · n. Basing our function assignment

on the formulation that lead to 4.3 we might consider the following assignment for

f0(x):

f0(x) =
m · n∑
i I0(xi)

I0(x) (4.4)

for i = 1, 2, . . . ,m · n and xi ∈ Ω.
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Since an image is essentially just a uniform grid with pixel intensities assigned at

each node, the discrete summation over our function should equal the total area of

the uniform grid. That is,
∑
x f0(x) = |Ω|. Performing this summation we find

∑
x

f0(x) =
∑
x

m · n∑
i I0(xi)

I0(x)

=
m · n∑
i I0(xi)

∑
x

I0(x)

= m · n

= |Ω|. (4.5)

Algorithm 3 demonstrates the full process of normalizing pixel intensity and gen-

erating the grid image φ.

With I0 > 0,∀x ∈ Ω we use f0 = m·n∑
I0
I0 as our prescribed JD in our Variational

Method for grid generation. Note that we are directly generating a grid from an

image without the use of parameters; we generate the grid φ solely based on the

image file information. Also of note, one caveat of this method lies in the gradient

descent portion of the algorithm. For n × n images, we can take larger (artificial)

time steps (e.g tup = 1.1 for stepping up and tdown = 2/3 when stepping down). For

m × n images, the stopping criterion is met too quickly and does not produce an

accurate grid so we need to use smaller time steps (e.g. tup = 1.01 when stepping

up and tdown = 0.99 when stepping down). A simple if statement based on image

dimensions handles this phenomena.

Next we view some examples and compare to other grid image results.
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Algorithm 3: Generation of Grid Image φ

Result: Normalizes image pixel intensity; prescribes JD; output φ

1 Initialize: ε = 0.1

2 Input: I0 = read(image file) (gray scale image of size m× n pixels)

3 Update (double precision): I0 = double(I0)

4 Update (fixed boundary): I0 = resize(I0,m− 2, n− 2)

5 Compute: Imax = max(|I0|)

6 Update: I0 = I0 + Imax + ε

7 Compute: k =
m · n∑
x I0(x)

8 Compute: f0 = k · I0

9 Call: Algorithm 2

4.3 Examples of Grid Images

In this section we perform numerical experiments that show the robustness and ac-

curacy of our method. All of the grid images generated in blue in this section

use Algorithm 3 with optimization parameters as follows: ttol = 10−15, ratiotol =

0.001, itermax = 5000. The program (written in Matlab) prompts the user for a

string (the name of the image file name) and then generates the grid image based

on the file requested. An if statement is used to handle the tup and tdown conditions

mentioned in the latter portion of the previous section based on image dimensions.

All computations are performed on a machine with Intel® Core™ i7-9700K CPU @

3.60 × 8 GHz and 16 GiB of memory.
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4.3.1 Experiment 1: Generating Grid Images from Familiar

Images

min JD max JD Relative SSD Num. Iterations Time (sec)

φMona 0.5225 1.2269 0.0062 5000 97.98

φPearl 0.8381 1.7358 0.0163 5000 29.35

φJ 0.8677 1.7676 0.0053 5000 110.62

φV 0.8478 1.7259 0.0053 5000 99.41

Table 4.1: Numerical summary of grid images generated by Variational

Method.

We begin with an example of the Mona Lisa since this image is familiar, and easily

demonstrates the accuracy of the grid generated.

See Figure 4.1 for the original Mona Lisa image (256 by 256 pixels) side-by-side

with our generated grid image (horizontal and vertical step size of h = 1). See Figure

4.2 for an enlarged view of the grid shown in 4.1b. Due to the grid being saved in

Matlab as an image and being rescaled the grid lines in the image appear quite dense,

however, the minimum Jacobian determinant is positive indicating a diffeomorphic

map (no mesh folding occurs; see Table 4.1). Figure 4.3 shows an enlarged view of a

courser grid with slightly bigger step size (h = 2).

In the grids generated we clearly see that darker pigments show contracting grid

cell size and lighter pigments show expanding grid cell size (black-ish areas contract;

33



(a) IMona (b) φMona

(c) J(φMona) (d) |IMona − J(φMona)|

Figure 4.1: Grid image of Mona Lisa (256×256 pixels): (a) Original image,

IMona, (b) Grid image, φMona, (c) Image formed by J(φMona), (d) Absolute

error between IMona and J(φMona).
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Figure 4.2: Enlarged view of Figure 4.1b based on Mona Lisa image (256

by 256 pixels) with grid step size of h = 1.
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Figure 4.3: Enlarged course grid based on Mona Lisa image (256 by 256

pixels) with plotted grid step size of h = 2.

36



(a) IPearl (b) φPearl

Figure 4.4: Girl with the Pearl Earing (128 by 128 pixels): (a) Original

Image, IPearl, (b) Grid Image, φPearl.

white-ish areas expand). Although the grid may not match the image perfectly in a

visual sense, we do see strong resemblance to the input image, and all major landmarks

in the image are easily seen (e.g. eyes, nose, mouth, hair, etc). Furthermore, the

image can be recovered by plotting the JD of the grid (J(φ)) and we see visually the

accuracy of the grid’s cell size correspondence to the image pixel values. Figure 4.1d

shows the absolute error between pixel values and JD.

Figures 4.4, 4.5, and 4.6 show additional experiments with The Girl with the Pearl

Earing; an image of the capital letter J; and an image of the capital letter V, respec-

tively. Each grid image shows remarkable resemblance to each of the corresponding

input images.

See Table 4.1 for numerical summary associated with each image-grid pair. Here

the relative SSD indicates the ratio of the SSD between J(φ) and the image pixel

intensity with the initial SSD between the JD of the initialized uniform grid (before
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(a) IJ (b) φJ

Figure 4.5: Letter J (192 by 190 pixels): (a) Original Image, IJ , (b) Grid

Image, φJ .

(a) IV (b) φV

Figure 4.6: Letter V (191 by 190 pixels): (a) Original Image, IV , (b) Grid

Image, φV .
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any iterations are computed) and the image pixel intensity (i.e. Relative SSD =

SSDfinal/SSDinitial).

Seeing the success of the grid images generated here, we now move on to experi-

ments involving slices of brain images.

4.3.2 Experiment 2: Comparing Grid Images

Seeing the success of our grid generation with familiar images we now proceed to

comparing results with grids generated in [21] and [22]. In both of these papers

grids are generated via the deformation method for grid generation as discussed in

chapter 2 (see Algorithm 1 for implementation). The images from which the grids

were generated are 2D brain slices from the IBSR public dataset and MRBrainS18

Challenge dataset.

Using the 2D slice from the IBSR public dataset as our input image we obtain

a grid with strong resemblance of the original image as expected from our previous

experiment. The grid image highlights important features within the image (e.g.

white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF)). See Figure

4.7 for a side-by-side view.

Next we compare the grid generated by our novel approach (see Figure 4.7b)

with the grid generated by the deformation method of chapter 2 in Fig. 1 of [21].

In comparing these two grid images it is visually clear that the novel approach to

generating grid images is an improvement to that of the deformation method. See

Figure 4.8 for the side-by-side comparison.

Taking the same approach as with the sample slice from the IBSR public dataset
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(a) IIBSR (b) φIBSR

Figure 4.7: Grid generated by Variational Method based on pixel intensity

of IBSR slice: (a) Original Image, IIBSR, (b) Grid Image, φIBSR.

(a) φIBSRdef (b) φIBSR

Figure 4.8: Comparison of grids: (a) Grid generated by deformation

method in Fig. 1 of [21], φIBSRdef , (b) Grid generated by Variational

Method, φIBSR.
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(a) IMRBrainS18 (b) φMRBrainS18

Figure 4.9: Grid generated by Variational Method based on pixel inten-

sity of MRBrainS18 slice: (a) Original image, IMRBrainS18, (b) Grid Image,

φMRBrainS18.

we proceed in comparing the Variational Method approach for generating the grid

image with the deformation method approach for generating the grid image. We

first generate the grid image using the Variational Method for the sample slice from

MRBrainS18 Challenge dataset. See Figure 4.9 for a side-by-side view of the input

image and grid image as generated by the Variational Method. Now comparing grids,

Figure 4.10 shows a side-by-side comparison of the grid images generated by both

methods.

In our comparison we again visually see that the grid image as generated by our

Variational Method is an improvement to the deformation method in highlighting the

features of the original brain image including WM, GM, and CSF. See Table 4.2 for
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(a) φMRBrainS18 def (b) φMRBrainS18

Figure 4.10: Comparison of grids: (a) Grid generated by deformation

method in Fig. 1 of [22], φMRBrainS18 def , (b) Grid generated by Variational

Method, φMRBrainS18.
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Grid Image min JD max JD Relative SSD Num. Iterations Time (sec)

φIBSR 0.7048 1.4746 0.0096 5000 29.43

φMRBrainS18 0.7181 1.5147 0.0103 2438 43.23

Table 4.2: Numerical summary of grid images generated by Variational

Method.

the numerical summary. Notice that the number of iterations for the MRBrainS18

slice is 2438. The artificial time step fell below the tolerance and stopped at that

iteration.
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Chapter 5

Averaging Image Registration Deformation Fields

5.1 Introduction

Currently, image registration is widely used in many areas such as computer vision, bi-

ological imaging, remote sensing, and medical imaging [18]. In particular, deformable

image registration in medical imaging has been an active research topic for decades

[3]. In particular, brain image analysis is based on accurate and robust registration.

Unfortunately, the current methods do not provide this [18]. In this chapter we devise

a new platform to combine registration deformations generated by different methods

or the same method with varying parameters. Different methods such as those based

on physical models, for example, the hyper-elastic or fluid flow models, make their

own assumptions on underlying tissue properties. Each model has its own strengths

and shortcomings. Therefore, it makes sense to combine their registration fields. In

so doing, we hope that this maintains high accuracy.

Image registration is the process of aligning two or more images according to a

similarity measure. Assuming that a pair of registered images differ only by Gaus-

sian noise, registration accuracy can be evaluated by measuring pixel (voxel for 3D)
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intensity difference of the registered image pair [16]. A common similarity measure

used to measure pixel difference is the Sum of Squared Differences (SSD) between

pixel intensity of corresponding pixels between an image pair. A perfect registration

results in SSD = 0. Another common measure of registration accuracy is the Jaccard

similarity coefficient (JSC) defined by

JSC =
|DTr ∩Rr|

|DTr ∪Rr|
(5.1)

where DTr and Rr represent the segmented regions of interest (landmarks within the

image) in the deformed template (after registration) and the reference, respectively

[18]. Essentially, the JSC identifies how well regions of interest are aligned. A perfect

registration yields JSC = 1.

There are two general types of image registration: affine registration (i.e. align-

ment via rotation, reflection, scaling, translation, and shearing) and nonlinear reg-

istration. Affine registration is usually performed as a preprocessing step before

nonlinear registration is performed since these methods are relatively cheap compu-

tationally. Nonlinear registration models are not so cheap computationally and there

are many different nonlinear models that have been proposed.

In all the many nonlinear registration models that exist, there is no current

gold-standard model. Some popular nonlinear registration methods include Diffu-

sion model [11], Large Deformation Diffeomorphic Metric Mapping (LDDMM) [4],

DARTEL [1], diffeomorphic demons [17], the hyper-elastic model [5], and standard

symmetric normalization (SyN) [2]. In [18] Zhang and Chen propose a new registra-

tion method by reformulating the Lam and Lui Beltrami measure as developed in [13]
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as a direct regularizer for controlling the JD. Furthermore, Zhang and Chen compare

their new registration method with various other registration models (see Table 5 of

Zhang and Chen [18]). From Zhang and Chen’s comparison of their proposed method

with other methods it’s clear that different registration models produce quite different

grid representations of the registration field when considering SSD, min JD, max JD,

and JSC.

In [19, 20] diffeomorphic registration fields are averaged to obtain a new diffeo-

morphic registration field by averaging the JD and CV of the deformation fields and

then prescribing these as the JD and CV in the Variational Method. That is, for N

registration fields (φ1,φ2, . . . ,φN) one obtains an average deformation field φavg by

prescribing JD as J(φavg) = 1
N

∑
i J(φi) and CV as curl(φavg) = 1

N

∑
i curl(φi) in

version 2 of the Variational Method with α = 1.

In this chapter, we investigate a new application of diffeomorphic averaging. We

apply the grid averaging concept to varying parameters of an image registration al-

gorithm that relies on a parameter θ. We do this as a starting point for building a

platform for averaging diffeomorphic registration fields of varying registration meth-

ods to improve robustness of grid representation of registration fields.

5.2 Review of Image Registration Field Averaging

In this section we review the image averaging process of [19, 20] based on a template

(moving) image. We do this for clarification of what is meant by averaging image

registration deformation fields (registration fields). The general idea is illustrated in

Figure 5.1.
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If1 If2

Im

x
x

φ1(x) φ2(x)

Iavg = Im ◦ φavg

φavg(x)

Figure 5.1: Averaging an image pair (If1 and If2) based on template (mov-

ing) image Im by averaging deformation fields (φ1 and φ2).
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Given two fixed images, If1 and If2 , we desire to find an “average” image or a

fusion of the two images, Iavg. We perform registration for the pair If1 and Im and the

registration field that registers these two images is denoted φ1 (i.e. If1 = Im◦φ1). We

then perform registration again, but this time for the image pair If2 and Im and the

registration field that registers these two images is denoted φ2 (i.e. If2 = Im ◦φ2). To

obtain the fused images we average the registration fields φ1 and φ2 by version 2 of the

Variational Method. That is, we prescribe JD and CV as J(φavg) = 1
2
(J(φ1)+J(φ2))

and curl(φavg) = 1
2
(curl(φ1) + curl(φ2)) and minimize SSD

SSD =
1

2

∫
Ω

(J(φ(x))− f0(x))2 + α|curl(φ(x))− g0(x)|2dx (5.2)

with α = 1 subject to the constraint


∆φ(x) = f(x) on Ω

φ(x) = x on ∂Ω.

(5.3)

With the obtained deformation field φavg we then have Iavg = Im ◦ φavg.

5.3 Experiments in Averaging Registration Fields

for Varying Parameters of a Given Registra-

tion Model

In [19, 20], given N diffeomorphisms (φ1,φ2, . . . ,φN) we construct a new diffeomor-

phism φavg by prescribing JD and CV with J(φavg) = 1
N

∑
i J(φi) and curl(φavg) =
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1
N

∑
i curl(φi), respectively, which generates what we refer to as an average deforma-

tion field. The previous section illustrates the idea for N = 2.

We consider a single image pair and look for two different registrations Reg1

with registration field φ1 and Reg2 with registration field φ2. We average these two

registration fields and re-sample the moving image on the new average registration

field φavg. In doing this we summarize some key features about the deformation field,

namely, min JD, max JD, and SSD for further analysis.

5.3.1 Experiment 1

We first perform image registration with an image pair of The Girl with the Pearl

Earing and a distorted version of the Girl with the Pearl Earing (see Figure 5.2). We

designate the non-distorted image as the fixed image If and the distorted image as

the moving image Im. The registration algorithm depends on a parameter θ. For the

first registration, Reg1, we assign θ = 0.5 and obtain the registration field φ1. See

Figure 5.3 for the deformation field φ1 and the re-sampled moving image Im ◦φ1. See

Table 5.1 for min JD, max JD, and SSD.

Girl with the

Pearl Earing
min JD max JD SSD

φ1 0.3952 1.7431 2277.66

φ2 0.6114 1.7318 2275.77

φavg 0.5079 1.7347 2271.95

Table 5.1: Girl with the Pearl Earing registration field summary.
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(a) If (b) Im

Figure 5.2: Image pair to be registered: (a) Fixed image, (b) Moving image.

Next, we perform another registration, Reg2, with parameter θ = 0.75 and obtain

registration field φ2 and re-sampled moving image Im ◦ φ2. See Figure 5.4 for the

deformation field φ2 and the re-sampled moving image Im ◦φ2 and Table 5.1 for min

JD, max JD, and SSD.

Finally, we average these two registration fields by prescribing J(φavg) = φ1+φ2

2

and curl(φavg) = curl(φ1)+curl(φ2)
2

and then re-sample the moving image on the new

average registration field φavg. See Figure 5.5 for the deformation field φavg and the

re-sampled moving image Im ◦ φavg. See Table 5.1 for min JD, max JD, and SSD.

Comparing each registration field and each re-sampling in Table 5.1 we see that

the SSD actually improves upon both registration fields. However, this is not the

only significance in performing this experiment. We also see that the range of the

JD also changes. In particular, the range of the JD narrows. We note this important

observation here and continue on to our next experiment.
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(a) φ1 (b) Im ◦ φ1

Figure 5.3: Girl with the Pearl Earing registration, Reg1: (a) Registration

field φ1 generated with registration parameter θ = 0.5, (b) Moving image Im

re-sampled on registration field φ1.

(a) φ2 (b) Im ◦ φ2

Figure 5.4: Girl with the Pearl Earing registration, Reg2: (a) Registration

field φ2 generated with registration parameter θ = 0.75, (b) Moving image

Im re-sampled on registration field φ2.
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(a) φavg (b) Im ◦ φavg

Figure 5.5: Girl with the Pearl Earing re-sampled on average registration

field: (a) Average registration field φavg, (b) Moving image Im re-sampled

on registration field φavg.

5.3.2 Experiment 2

We perform the experiment again just as in Experiment 1, but now with a new image

pair. Here we use an image pair of the Mona Lisa and the same distortion as that

in Example 1 applied. Once again, the fixed image If is the non-distorted image and

the distorted image is the moving image Im. See Figure 5.6 for the image pair in

question.

We use the same registration algorithm as before, again, Reg1 with parameter

θ = 0.5 (see Figure 5.7) and Reg2 with parameter θ = 0.75 (see Figure 5.8). Finally

we average the grids based on average JD and average CV just as before and re-sample

the moving image Im on the average deformation field φavg (see Figure 5.9). Table

5.2 shows the min JD, max JD, and SSD for each deformation field and re-sampling.
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Mona Lisa min JD max JD SSD

φ1 0.5926 1.9438 6546.51

φ2 0.1844 2.4445 6622.42

φavg 0.4906 1.9949 6561.91

Table 5.2: Mona Lisa registration field summary.

In this second experiment we see that we improve the SSD from the second reg-

istration, but not from the first registration. However, the SSD is only slightly worse

which means the accuracy is still reasonably high. The accuracy is not necessarily all

we should be concerned with though.

Although accuracy is important, we also desire a registration field that is a “good”

grid to represent our deformation. If we closely examine the grids generated repre-

senting each registration field, which grid is most desirable?

Let’s examine the different deformations more closely. Figure 5.10 shows all three

deformation grids together.

With a cursory glance we notice in Figure 5.10b that there are some grid cells

that are peculiarly small and some grid cells that seem peculiarly large in areas when

compared to 5.10a and 5.10b. We get a sense for this from the range of JD listed

in Table 5.2. The deformation field φ2 in 5.10b does not have the same cell size

consistency as the other two (i.e. the distribution of the JD is not as consistent as

that of φ1 and φavg). We get a sense for this since the range of JD for φ2 is larger

than the other two registration fields. Investigating further, we plot the distribution

for the JD of each grid in 5.11. We see in 5.11b that the distribution of JD for φ2
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(a) If (b) Im

Figure 5.6: Image pair to be registered: (a) Fixed image, (b) Moving image.

sharply drops off on the right side and has several values that continue beyond 1.5 and

is skewed right. The distribution for JD for φ1 in 5.11a appears to be approximately

symmetric. The distribution for the JD of φavg looks to have picked up some slack

in averaging the JD of the two distributions φ1 and φ2. A similar phenomena occurs

in our first example. That is, the range of the JD in Example 1 with the registration

of the Girl with the Pearl Earing narrows after averaging just as has happened in

averaging in this example has narrowed the range of the JD.

Considering the findings here and in Example 1, we propose a platform for building

new deformation fields from existing ones to improve robustness in grid representa-

tions of registration fields in the next section.
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(a) φ1 (b) Im ◦ φ1

Figure 5.7: Mona Lisa registration, Reg1: (a) Registration field φ1 gener-

ated with registration parameter θ = 0.5, (b) Moving image Im re-sampled

on registration field φ1.

(a) φ2 (b) Im ◦ φ2

Figure 5.8: Mona Lisa registration, Reg2: (a) Registration field φ2 gener-

ated with registration parameter θ = 0.75, (b) Moving image Im re-sampled

on registration field φ2.
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(a) φavg (b) Im ◦ φavg

Figure 5.9: Mona Lisa re-sampled on average registration field: (a) Average

registration field φavg, (b) Moving image Im re-sampled on registration field

φavg.
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(a) φ1 (b) φ2

(c) φavg

Figure 5.10: Mona Lisa registration deformation fields: (a) Deformation

field from Reg1, (b) Deformation field from Reg2, (c) Deformation field

formed by averaging deformation fields from Reg1 and Reg2.
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(a) J(φ1) (b) J(φ2)

(c) J(φavg)

Figure 5.11: Distribution of JD of deformation fields for Mona Lisa regis-

tration: (a) Distribution of J(φ1), (b) Distribution of J(φ2), (c) Distribution

of J(φavg).
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5.4 Construction of Robust Deformation Fields from

Existing Ones

With the results of Example 1 and Example 2 of the previous section in mind, we

now propose a new methodology of obtaining new registration fields from established

ones, but leave the implementation of the discussion in this section for future work.

Specifically, in the previous two examples, we averaged grids of an existing image

registration algorithm with varying parameters and saw that the range of the JD

became narrower after averaging. Furthermore, the spread of the distribution of

the JD also narrowed and became more symmetric after averaging in Example 2

while retaining high accuracy. We now extend this concept to averaging established

deformation fields from differing image registration models.

We will use Table 5 of Zhang and Chen [18] as a guide for this novel idea of

constructing desirable registration grids from already constructed registration grids.

Table 5.3 shows a sample of Table 5 of [18]. In [18], a new method based on Beltrami

coefficient (namely, New 3) is proposed and compared to various image registration

models. In their conclusion, Zhang and Chen highly recommend their New 3 model

as a new robust method. Their accuracy as measured by relative SSD and JSC

is quite impressive, however, examining Table 5 of Example 5.4 in [18] we notice

that the min JD and max JD are quite far apart, and, therefore, this suggests the

grid representation of the registration field (even though no visual of the grid itself is

provided) has quite different cell size at least somewhere within the grid representation

of the registration field (i.e. a less desirable grid represents the registration field). In
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Registration

Method
min JD max JD SSD (%) JSC (%)

New 3 0.0051 49.9309 3.47 95.34

Hyper-elastic

model
0.4181 3.6192 4.44 93.51

LDDMM 0.0319 20.8164 5.18 93.79

DDemons 0.1846 2.6309 18.89 87.40

Table 5.3: Sample of Table 5 of [18].

fact, for their proposed New 3 model we see from Table 5.3 that min JD is very small

and max JD is quite large. Such a small min JD means the grid representation itself

comes close to folding and therefore close to losing the topology in at least one region

of the grid. Also, since max JD is so large there is at least one very large grid cell

within the grid indicating a large local deformation within a region of the grid. The

visual grid representation is likely not desirable based on this observation.

Further examining Table 5 of the same paper, we notice that min JD and max JD

for say the hyper-elastic model [5] and the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) [4] models result in quite different grid representations of their

respective deformation fields. The hyper-elastic model has a much narrower spread

than both New 3 and LDDMM models for this particular registration.

Although there are other registration methods in the original Table 5 of [18], we

focus on the four methods in the sample table of Table 5.3 as a starting point for our

future considerations. We do not currently have the grid representations for these

60



particular registrations, but codes are available on-line and URLs are designated for

both hyper-elastic model and LDDMM in Zhang and Chen [18].

The expectation is that averaging over the grid representations for each of the

models listed in Table 5.3 should produce a narrower distribution of the JD while

maintaining high accuracy and thus determining a more robust registration field than

that of those constructed by the LDDMM and New 3 models.

Another consideration is averaging over a less accurate registration model with

higher accuracy models (e.g. averaging the registration fields of New 3, Hyper-elastic

model, and DDemons). Even though the DDemons registration algorithm has the

second-worst accuracy in Table 5 of Zhang and Chen [18], perhaps the accuracy will

adjust higher while the JD distribution narrows.

Further investigation is of course required, but we now have a platform for our

future investigation.
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Chapter 6

Conclusion

We conclude this dissertation with a summary of our new developments.

Firstly, we propose a new method for generating grids directly from images. This

is done by first normalizing pixel intensity to be greater than zero: I(x) > 0. Nu-

merically, we can do this in the following way: I0(x) = I(x) + Imax + ε where Imax =

maxy |I(y)|,∀y ∈ Ω and ε > 0. Once normalized, we prescribe the JD based on the

normalized pixel intensity for the 2D Variational Method: f0(x) = m·n∑
i I0(xi)

· I0(x) for

i = 1, 2, . . . ,m · n and xi ∈ Ω. Due to the significant visual improvement of the grid

images compared to those produced by the deformation method, we propose this new

method of generating grid images to be used in place of the deformation method for

the improvement of the image segmentation process. In addition to improved visual

performance, the new variational approach for generating grid images does not rely

heavily on optimization parameters as the deformation method does.

Secondly, based on promising results of experiments involving a single registra-

tion algorithm with varying parameters, we developed a platform for constructing

more robust registration grids by means of version 2 of the Variational Method with

prescribed JD and CV and parameter α = 1 based on averages of existing registra-
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tion fields (i.e. J(φavg) = 1
N

∑
i J(φi) and curl(φavg) = 1

N

∑
i curl(φi)). The goal

of this work is to level out the distribution of the JD so that the distribution has

a narrower spread and ideally is approximately symmetric while maintaining high

accuracy when the moving image is re-sampled on the average registration field. In

performing this grid averaging we hope to produce more robust grid deformations for

image registration.
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