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ABSTRACT

MATHEMATICAL MODELING OF SCAVENGERS AND ZEBRAS ON THE

AFRICAN SAVANNA WITH DISEASE DYNAMICS

Crystal Mackey, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Christopher Kribs

The purpose of this dissertation is to use mathematical models to see how

anthrax in the zebra population in Etosha National Park interacts with scavenger

populations and disease dynamics. First, we study if scavengers can save zebras from

anthrax. Then we introduce a disease in the jackal population to see if anthrax in

zebras can help propagate rabies in jackals. Finally, the last two models we develop

describe the interaction between competing scavengers: jackals and vultures, with

exploitative and interference competition.

Namibia’s Etosha National Park (ENP) is home to many different animals

such as lions, jackals, hyenas, zebras, elephants, etc. Each year grazing animals

are infected and die from anthrax caused by the bacteria Bacillus anthracis. This

increases the number of carcasses in ENP, allowing for scavengers such as jackals

or vultures to feed off these carcasses. The first model, uses a system of nonlinear

differential equations to describe the population dynamics of how disease affects the

populations of zebras, zebra carcasses, and scavengers. Standard qualitative analysis

techniques distinguished outcomes (stable equilibria) using reproduction numbers as
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threshold quantities. We found that when scavengers feed on anthrax laden carcasses,

the scavengers help the zebras reducing spread by orders of magnitude by eliminating

potential infection zones for the zebras. We also identify conditions under which

the presence of anthrax benefits the scavengers, in terms of death-to-birth ratios for

zebras, scavengers, and anthrax.

The zebra carcasses provide a location of conspecific interaction between jackals

and may be a means of disease transmission among the jackals. We study how a

disease in the zebra population may help to propagate a different disease (rabies)

in the jackal population since the carcasses are providing a location of interaction

between the jackals. We aim to answer the following research question: how do

anthrax and rabies affect each other ability to spread? Using standard qualitative

analysis, we found that rabies helps anthrax, and a little anthrax helps rabies invade,

but a high level of anthrax prevents rabies by reducing the jackal population through

its food source.

There are multiple species of scavengers in ENP, and zebra carcasses provide

a food source for facultative and obligate scavengers such as jackals and vultures,

respectively. Since the jackals and vultures are competing for these carcasses we study

the research question: how does the presence of jackals affect the presence of vultures,

in the exploitative model. Analysis verified that classical exploitative competition

allows vultures to survive only when they are better competitors than jackals. In

addition, we found conditions when the vultures are hurt by the presence of anthrax,

and a condition under which the competitive interference caused by vultures’ aerial

quick access to carrion allows them to persist even when jackals are better competitors.

In fact, this extended survival can also allow anthrax to persist when it shouldn’t.
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CHAPTER 1

Introduction

The majority of recently emerging human diseases, including those with environ-

mental reservoirs, originate in animal populations, and it is estimated that 70% come

from wildlife alone [1]. Anthrax is caused by Bacillus anthracis (BA) that essentially

infects ungulates, whereas other mammals, like humans, tend to be incidental hosts

[2]. Inside of Namibia’s Etosha National Park (ENP) there are tourist camps that

attracted over one million visitors in 2011 [3]. Every year rabid animals, mostly

jackals are destroyed inside of the ENP tourist camps. Jackals not only feed on

insects, fruit, carrion, but also on human food waste [4]. In addition, anthrax infected

carcasses are found near the Okaukuejo tourist camp in ENP [4], so the transmission

of rabies and anthrax animal deaths are occurring close to human campsites.

Anthrax is endemic in ENP and there are over two decades worth of data

regarding anthrax outbreaks in bovids, elephants, zebras, and other mammals [2].

Between the years 1975 to 1990, there were 811 anthrax confirmed wildlife deaths in

ENP, and there were an additional 704 suspected anthrax deaths [5]. In non-human

animals, BA is transmitted orally, through the air, or through a cut in the skin [6].

Zebras largely contract anthrax by grazing near the location of a current or previous

(no longer present) infected zebra carcasses [6].

ENP is home to several different types of scavengers including the black-backed

jackal and lappet-faced vulture. Jackals are facultative scavengers meaning they eat

other food sources besides carrion, like fruit and insects [4]. However, vultures are

obligate scavengers meaning they only eat carrion.
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We use mathematical models to see how anthrax in the zebra population in ENP

interacts with scavengers and incorporate disease dynamics. These models consist of

a system of nonlinear ordinary differential equations. In this dissertation, key analysis

techniques such as equilibria stability analysis, bifurcation and qualitative analysis,

and quantitative analysis are used to study each model.

Saad et al. [7], described anthrax transmission in animal populations using a

system of ordinary differential equations. They looked at how anthrax transmits in a

population of herbivorous livestock in one case, and then how anthrax transmits in a

population of carnivores in another case. The authors reported that a vaccination

policy or an animal carcass removal policy can be used to eradicate anthrax in the

livestock herbivore model. However, a vaccination program for wildlife animals is

nearly impossible and we study how scavengers can affect anthrax transmission, and

vice versa.

Borchering et al. [8] developed a spatially explicit mathematical model to study

how resource availability influences the rate of encounters among consumers. They

specifically considered the zebra-anthrax and jackal dynamics in ENP. They found

that when the number of zebra carcasses is low then the addition of more carcasses

increases the jackal-jackal interactions. Whereas, when there is an abundance of

zebra carcasses there is a decrease in jackal-jackal interactions thus the conspecific

encounter rate has a maximum at an intermediate carcass density. Since these

zebra carcasses are a shared resource for jackals this means the carcasses could be

a possible location for a consumer disease like rabies in jackals to be transmitted.

There are consumer-resource models [9, 10] that have studied conspecific encounter

rates for consumers, and how the resources may indirectly facilitate infectious disease

transmission in consumers. Therefore, we aim to study how rabies can be transmitted

within the jackal population when the jackals interact at zebra carcasses in ENP.
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A special type of consumer-resource model is predator-prey systems. There are

several articles that describe predator-prey relationships, where either the predator

has a disease [11, 12, 13, 14], or the prey has a disease [15, 16, 17, 18, 19]. In addition,

there are some papers that model the same disease in both predator and prey species

[20, 21], but there are no papers that have different diseases in both predator and

prey, which we present in Chapter 3.

In this dissertation, we create models describing the interaction between zebras,

jackals, and vultures. In Chapter 2, we develop a deterministic model to describe how

disease affects the population of zebras, zebra carcasses, and scavengers. In Chapter

3, we design a model that considers the jackal-to-jackal interactions at the zebra

carcasses and how rabies can spread depending on the number of zebra carcasses. In

Chapter 4, we look at two different types of competition between an obligate and

a facultative scavenger. In each chapter, standard quantitative analysis techniques

for nonlinear differential equations determine outcomes using basic and demographic

reproductive numbers.
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CHAPTER 2

Can scavengers save zebras from anthrax? A modeling study

2.1 Introduction

In the 1960s, data collection regarding anthrax outbreaks in ungulates and

other mammals began in Etosha National Park (ENP), Namibia. The national park

is about 23, 000 km2 and has a single wet and dry season each year with rain between

November and April [4]. From 1964 to 1992, about 3000 carcasses were confirmed

or suspected cases of anthrax in ENP among 11 different herbivorous species, two

of which are zebras and account for the most deaths [22]. Carnivores are less likely

than herbivores to contract anthrax. Since 1975 to 2012, one jackal, three lions, nine

cheetahs have died from anthrax [4]. The seasonal peak of anthrax cases for elephants

occurs in November at the end of the dry season, whereas the seasonal peak for plains

ungulates occurs at the end of the rainy season in March [22]. Today, ENP remains

one of the most continuous sources of documented anthrax dynamics in any natural

system [2]. The carrion that is provided by the anthrax deaths of zebras feed many

different scavenger species in ENP such as black-backed jackals (Canis mesomelas),

spotted hyenas, white-backed vultures, lappet-faced vultures and others [23].

Anthrax is a zoonosis caused by Bacillus anthracis (BA) and mainly infects

ungulates such as zebras, springbok and wildebeest [2]. BA exists in two forms. One

is a vegetative form, which is not resistant in harsh conditions, such as an acidic

environment. BA can also be found in the form of infectious spores, which are

resistant to harsh conditions and can survive for long periods of time, waiting to infect
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a host [24]. The bacteria can enter an animal through a skin abrasion, inhalation, or

digestion, and leads to death in wildlife [25].

A study by Turner et al. [6] gives insight to the different pathogen sources

and transmission pathways of infectious agents such as BA in grazing animals. After

tracking pathogen concentrations at carcass sites and waterholes for five years it was

found that carcass sites are more likely to be important sources of host-pathogen

contacts than water sources [6]. Furthermore, although BA concentration at carcass

sites in soil and on grasses decay exponentially the bacteria can still be detected in

the soil four years after death at high enough concentrations for a grazing animal

to receive a lethal dose [6]. Previous studies [23, 26] suggest scavengers could help

eliminate these pathogens from the environment that affect ungulates and be a major

factor in determining the speed the disease can spread.

Houston et al. [27] studied the digestive tract of the whiteback griffon vulture

and the role it plays in disease transmission in wild ungulates. In the study, pH values

were measured in different organs, and the digestive tract and stomach were found

to be highly acidic. The authors found that while the vegetative form of BA was

killed in the digestive tract, the highly resistant spores survived [27]. Other studies

also support the survival of BA spores in the digestive tract of scavengers [22, 24].

This suggests that if the anthrax laden carcasses are detected by scavengers before

sporulation takes place, scavengers could help eliminate the spread of anthrax in

wildlife.

Saad-Roy et al. [7] developed a deterministic mathematical model using a system

of differential equations to describe anthrax transmission in animal populations. Their

general model contained susceptible animals, infected animals, infected carcasses and

BA spores in the environment as the state variables. They considered two special

cases of their model. In one case the animals were herbivorous livestock, and in the
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other case the animals were carnivores. A result from their herbivore model showed

that a vaccination policy or an animal carcass removal policy can be used to eradicate

anthrax. However, this would largely depend on the associated costs of vaccination

programs and carcass removal. It it nearly impossible to vaccinate wildlife animals,

so we are interested in determining whether scavengers can be a natural means of

anthrax removal to eradicate anthrax.

This leads us to our question and exploration of how scavengers help elimi-

nate wildlife diseases. We develop a deterministic model using ordinary differential

equations describing how anthrax affects the population dynamics of zebras, zebra

carcasses, and scavengers. While scavengers benefit from the presence of anthrax

(because it provides them with a food source), anthrax is disadvantaged by the

presence of scavengers that help to eliminate the presence of anthrax-causing agent

BA by feeding on zebras. The two scavengers we consider are jackals and vultures.

We will compare the basic reproduction number of anthrax in the presence of jackals

and in the presence of vultures to see if one scavenger is better at ‘eating’ anthrax.

This chapter is organized as follows: in Section 2.2 the model is developed and

the existence conditions are found for each of the four equilibria. In addition, the basic

reproductive numbers are calculated. In Section 2.3 the local stability conditions are

determined. In Section 2.4, we look at reduced systems of our model and determine

the global stability of those two systems. Finally, we end with a discussion of results

and conclusion.

2.2 Model Development

The deterministic mathematical model in this paper uses a system of ordinary

differential equations to describe the epidemic of anthrax among a population of

zebras and scavengers.
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The populations considered in this model are living zebras, zebra carcasses

due to natural death, zebra carcasses due to anthrax, and scavengers, (z, u, c, j,

respectively). The zebra population has a logistic growth term and is removed by

natural death (µz) or by disease-induced death (acz) from grazing near an anthrax

infected carcass site [6]. The carcasses are either naturally decomposing at a rate ρ or

are being eaten by scavengers at a rate of α. Scavengers do not attack living zebras;

they only scavenge on the zebra carcasses. In this model, scavenger survival depends

on the number of carcasses available, bj (u+ c) , and scavengers die naturally at a

rate of d.

z′ = rz
(

1− z

K

)
− µz − acz (2.1)

u′ = µz − ρu− αju (2.2)

c′ = acz − ρc− αjc (2.3)

j′ = bj (u+ c)− dj (2.4)

Scavengers eating anthrax laden carcasses are less likely than herbivores to contract

the disease [4]. Therefore, we assume that scavengers will not die from anthrax.

Moreover, we assume that scavengers do not attack living zebras; their only food

source are zebra carcasses and they can not distinguish between a healthy or infected

carcass. To simplify the food web for analysis, we assume zebras are representative

of all scavenger food sources.
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Symbol Definition

K carrying capacity (zebras)

r intrinsic growth rate of ze-
bras

µ natural zebra death rate

a rate zebras come into con-
tact with infected carcasses
(time · zebras)−1

ρ natural decomposition rate
of carcasses

α rate scavengers come into
contact w/ carcasses to eat
(time · scavengers)−1

b birth rate of scavengers
(time · zebras)−1

d death rate of scavengers

Table 2.1: Parameter table. Units in 1
time

except as noted.

2.2.1 Existence of Equilibria

In this section, we identify the equilibria in our model (it turns out there are

four) and provide the existence condition for each one. The detailed calculations in

this section are in Appendix A.1. We can see that E0(0, 0, 0, 0) is an equilibrium

because equations (2.1)-(2.4) are satisfied when (z∗ = 0, u∗ = 0, c∗ = 0, j∗ = 0), which

represents the extinction equilibrium. Considering z∗ 6= 0, we have

z∗
(
r

(
1− z∗

K

)
− (µ+ ac∗)

)
= 0 =⇒ z∗ = K

[
1− 1

r
(µ+ ac∗)

]
. (2.5)

Plugging (2.5) into (2.3) and setting (2.3) equal to zero we get a quadratic function

in terms of c. When we solve for c, we get the following values:

c∗+ = 0 or c∗− =
r

a

[
1− µ

r
− ρ− αj∗

aK

]
=

r

aK

[
K
(

1− µ

r

)
− ρ+ αj∗

a

]
.
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Replacing c∗ with c∗+ in (3.1) we have

z∗+ = K
[
1− µ

r

]
.

Likewise, replacing c∗ with c∗− in (2.5) gives

z∗− =
ρ+ αj∗

a
. (2.6)

Setting (2.2) equal to zero gives

u∗ =
µz∗

ρ+ αj∗
; (2.7)

with (2.4) equal to zero, we have j∗ = 0 or

u∗ + c∗ =
d

b
. (2.8)

Substituting c∗+ into (2.8) gives

u∗+ =
d

b
.

Consider when c∗+ = 0, so that z∗+ = K
[
1− µ

r

]
. Let j∗ = 0, and substitute into

(2.7) to get

u∗ =
µ

ρ
K
[
1− µ

r

]
.

Therefore, we have the equilibrium

E1 (z∗, u∗, c∗, j∗) = E1

(
K
[
1− µ

r

]
,
µ

ρ
K
[
1− µ

r

]
, 0, 0

)
, (2.9)

which exists when µ < r. The equilibrium E1 is the disease free equilibrium in the

absence of scavengers.

Finally, plugging z∗+ and u∗+ into (2.7) we find

j∗+ =
1

α

[
bµ

d
z∗+ − ρ

]
.

9



Therefore, we have the equilibrium

E2 (z∗, u∗, c∗, j∗) = E2

(
K
[
1− µ

r

]
,
d

b
, 0,

1

α

[
bµ

d
z∗+ − ρ

])
, (2.10)

which exists when µ < r and bµz∗+ > ρd. The equilibrium E2 is the disease free

equilibrium in the presence of scavengers. Now, working with the negative subscript

equilibria, we consider (2.6) and

c∗− =
r

a

[
1− µ

r
− ρ+ αj∗

aK

]
=

r

aK

[
K
(

1− µ

r

)
− ρ+ αj∗

a

]
(2.11)

to find u∗− and j∗−. First, we let j∗− = 0. Then (2.6) becomes

z∗− =
ρ

a
,

(2.7) becomes

u∗− =
µ

a
,

and (2.11) becomes

c∗− =
r

aK

[
K
(

1− µ

r

)
− ρ

a

]
.

Thus we have the equilibrium

E3 (z∗, u∗, c∗, j∗) = E3

(ρ
a
,
µ

a
,
r

aK

[
K
(

1− µ

r

)
− ρ

a

]
, 0
)
, (2.12)

which exists when µ < r and K
(
1− µ

r

)
> ρ

a
. The equilibrium E3 is endemic for

anthrax in the absence of scavengers. When j∗− 6= 0, then using (2.6) and (2.11), (2.8)

becomes

u∗− =
d

b
− r

a

[
1− µ

r
− ρ+ αj∗

aK

]
. (2.13)

Substituting (2.6) and (2.13) into (2.2) and setting it equal to zero gives:

0 =
α2r

a2K
j2
∗

+ α

[
d

b
− r

a

(
1− 2ρ

aK

)]
j∗ +

ρr

a

[
ad

br
+

ρ

aK
− 1

]
(2.14)
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It is shown in Appendix A.1 that there is only one positive root for (2.14), which is

j∗ =
a

α
K

[
1− ad

br

]
− ρ

α
(2.15)

Substituting (A.4) into (2.6) we get the expression for z∗ in E4 which is

z∗ = K

[
1− ad

br

]
. (2.16)

The equilibrium E4 is

E4 (z∗, u∗, c∗, j∗) = E4

(
K

[
1− ad

br

]
,
µ

a
,
d

b
− µ

a
,
a

α
K

[
1− ad

br

]
− ρ

α

)
(2.17)

and exists if and only if ρ
a
< K

(
1− ad

br

)
and ad

bµ
> 1. This equilibrium is endemic for

anthrax in the presence of scavengers.

2.2.2 Basic Reproductive Numbers

The basic reproductive number (BRN) is defined as the average number of

secondary infections that is generated by one infected individual in a population of

susceptible individuals, which can be calculated using the next generation operator

method as in [28]. When the BRN is less than one, the disease free equilibrium is

stable and when the BRN is greater than one, the endemic equilibrium is stable.

In our model we have two disease free equilibria: one without scavengers (E1) and

one with scavengers (E2). The basic reproductive number of anthrax in the absence

of scavengers is RZ = aK(1−m)
ρ

, where the average infection rate is aK (1−m) and

the average duration of infection is 1
ρ
. The basic reproductive number of anthrax in

the presence of scavengers is RJ = ad
bµ
. Here ad

b
is the average infection rate and the

average length of infection is 1
µ
.
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2.3 Local Stability Analysis

To determine the local stability conditions for each equilibrium, we calculate

the Jacobian matrix of our model and evaluate the Jacobian at each equilibrium

point. The equilibrium is stable if and only if the real part of the eigenvalues of the

Jacobian matrix are negative. Therefore, we find the conditions that are required to

have negative eigenvalues. The Jacobian matrix of our model is

J =



r − 2r
K
z − µ− ac 0 −az 0

µ −ρ− αj 0 −αu

ac 0 az − ρ− αj −αc

0 bj bj bu+ bc− d


.

The Jacobian evaluated at the extinction equilibrium is

J (E0) =



r − µ 0 0 0

µ −ρ 0 0

0 0 −ρ 0

0 0 0 −d


.

If the death rate is greater than the birth rate, i.e., µ > r, then the extinction

equilibrium is locally asymptotically stable.

The Jacobian evaluated at E1 is

J (E1) =



µ− r 0 −aK
(
1− µ

r

)
0

µ −ρ 0 −αµ
ρ
K
(
1− µ

r

)
0 0 aK

(
1− µ

r

)
− ρ 0

0 0 0 bµ
ρ
K
(
1− µ

r

)
− d
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→


µ− r −aK

(
1− µ

r

)
0

0 aK
(
1− µ

r

)
− ρ 0

0 0 bµ
ρ
K
(
1− µ

r

)
− d

 = Ĵ (E1) .

The arrow above represents the property of determinants that the 4 × 4 Jacobian

matrix can be reduced to a 3× 3 matrix since the second column in the 4× 4 has

zeros except on the diagonal, resulting in the same eigenvalues.

The eigenvalues are λ1 = −ρ, λ2 = µ − r, λ3 = aK
(
1− µ

r

)
− ρ, and λ4 =

bµ
ρ
K
(
1− µ

r

)
− d. Notice that λ1 is always less than zero, λ2 < 0 if and only if µ < r,

λ3 < 0 if and only if z∗ < ρ
a
, and λ4 < 0 if and only if bµz∗ < dρ. Therefore, E1 is

locally asymptotically stable if and only if z∗ < ρ
a

and bµz∗ < dρ. We rewrite the

local stability conditions in terms of RZ and RJ : RZ < 1 and RZ < RJ .

The Jacobian evaluated at E2 is

J (E2) =



µ− r 0 −aK
(
1− µ

r

)
0

µ −bµ
d
z∗ 0 −αd

b

0 0 z∗
(
a− bµ

d

)
0

0 b
α

(
bµ
d
z∗ − ρ

)
b
α

(
bµ
d
z∗ − ρ

)
0



→


µ− r 0 0

µ −bµ
d
z∗ −αd

b

0 b
α

(
bµ
d
z∗ − ρ

)
0


→

 −bµ
d
z∗ −αd

b

b
α

(
bµ
d
z∗ − ρ

)
0

 = Ĵ (E2)

Thus, two of the eigenvalues of J (E2) are λ1 = z∗
(
a− bµ

d

)
and λ2 = µ− r. Notice

that

λ1 = z∗
(
a− bµ

d

)
< 0 ⇐⇒ a <

bµ

d
⇐⇒ ad

bµ
< 1
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and λ2 = µ−r < 0 if and only if µ < r. The two dimensional Routh–Hurwitz criterion

determines if the other two eigenvalues of the Jacobian matrix of E2 have negative

real parts without having to find the eigenvalues. Considering the matrix Ĵ(E2), the

eigenvalues have negative real parts if tr
(
Ĵ(E2)

)
< 0 and det

(
Ĵ(E2)

)
> 0 [28]. The

trace and determinant of Ĵ(E2) are

tr
(
Ĵ(E2)

)
=
−bµ
d
z∗ and det

(
Ĵ(E2)

)
=
bµ

d
z∗ − ρ.

Notice that the trace is always negative, and the determinant is negative if and only if

bµz∗ > ρd. Recall bµz∗ > ρd is an existence condition for E2. Therefore, E2 is locally

asymptotically stable if and only if ad
bµ
< 1. Recall that RJ = ad

bµ
. When RJ < 1,

anthrax will diminish in the presence of scavengers since E2 is locally asymptotically

stable.

The Jacobian evaluated at E3 is

J (E3) =



− ρr
aK

0 −ρ 0

µ −ρ 0 −αu
a

r
(
1− ρ

aK

)
− µ 0 0 − αr

aK

[
K
(
1− µ

r

)
− ρ

a

]
0 0 0 bµ

a
+ br

aK

[
K
(
1− µ

r

)
− ρ

a

]
− d



→


− ρr
aK

−ρ 0

r
(
1− ρ

aK

)
− µ 0 − αr

aK

[
K
(
1− µ

r

)
− ρ

a

]
0 0 bµ

a
+ br

aK

[
K
(
1− µ

r

)
− ρ

a

]
− d


→

 − ρr
aK

−ρ

r
(
1− ρ

aK

)
− µ 0

 = Ĵ (E3)

Two of the eigenvalues are λ1 = −ρ and λ2 = bµ
a

+ br
aK

[
K
(
1− µ

r

)
− ρ

a

]
− d. Notice

λ1 is always negative, and λ2 is negative if and only if d > bµ
a

+ br
aK

[
K
(
1− µ

r

)
− ρ

a

]
.

We find the trace and determinant and use the two dimensional Routh–Hurwitz
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criterion to determine the sign of the remaining eigenvalues of Ĵ (E3). The trace and

determinant are

tr (J(E3)) = − ρr

aK
and det(J(E3)) = ρ

[
r
(

1− ρ

aK

)
− µ

]
.

The trace is always less than zero, and the determinant is

det(J(E3)) = ρ
[
r
(

1− ρ

aK

)
− µ

]
> 0

⇐⇒ 1− ρ

aK
− µ

r
> 0

⇐⇒ ρ

aK
− µ

r
< 1

⇐⇒ ρ

a
< K

[
1− µ

r

]
. (2.18)

Recall (2.18) is the existence condition for E3. Hence E3 is LAS if and only if

d

b
>
µ

a
+

r

aK

[
K
(

1− µ

r

)
− ρ

a

]
⇐⇒ d

b
>
µ

a
+
r

a
− µ

a
− r

a

ρ

aK

⇐⇒ d

b
>
r

a

(
1− ρ

aK

)
⇐⇒ ad

br
> 1− ρ

aK

⇐⇒ ρ

aK
> 1− ad

br

⇐⇒ ρ

a
> K

(
1− ad

br

)

We rewrite the local stability conditions in terms of RZ and RJ : mRJ + 1−m
RJ

> 1,

where m = µ
r
.
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The Jacobian evaluated at E4 is

J (E4) =



r
(
1− ad

br
− 2

K
z∗
)

0 −az∗ 0

µ −az∗ 0 −αu
a

µ
(
ad
bµ
− 1
)

0 0 αµ
a

(
1− ad

bµ

)
0 bj∗ bj∗ 0


Let A = r

(
1− ad

br
− 2

K
z∗
)
. The characteristic equation is

p(λ) = λ4 + (az∗ − A)λ3 +

[
bj∗α

µ

a

ad

bµ
− az∗

(
A+ µ

(
1− ad

bµ

))]
λ2

+

[
−bj∗αµ

a

ad

bµ
A+ µ

(
ad

bµ
− 1

)
z∗
(
αbj∗ + a2z∗

)]
λ

+

[
−Abj∗αµz∗

(
ad

bµ
− 1

)]
= 0.

(2.19)

Now,

A = r

(
1− ad

br
− 2

K
z∗
)

= r

(
1− ad

br
− 2

K

(
K

[
1− ad

br

]))
= r

(
1− ad

br
− 2 +

2ad

br

)
= r

(
ad

br
− 1

)
< 0 since

ad

br
< 1.

We use the four dimensional Routh–Hurwitz criterion to determine whether the

roots of the polynomial have negative real part. The Routh–Hurwitz criterion holds

without any additional conditions (as shown in appendix A.2); therefore, E4 is locally

asymptotically stable whenever it exists.

A visual representation of the stability analysis is shown in Figures 2.1 and 2.2.

The existence and stability conditions for each equilibrium are summarized in Table

2.2 and can be rewritten in terms of RZ , RJ , and m as in Table 2.3.
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Figure 2.1: Stability Regions. The regions of stability are given by the threshold
conditions RZ = 1, RJ = 1, RZ = RJ , and mRJ + 1−m

RZ
= 1, where m=0.5 in this

plot. If Ei for i = 1, 2, 3, 4 is seen then it means that equilibrium Ei exists in that
region. The − after the Ei means that it is not LAS in that region, whereas + means
that equilibrium Ei is LAS.
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Figure 2.2: Stability Regions with descriptions. Only the regions where there is a
change in which equilibrium is stable is distinguished. In addition, a short description
of the equilibrium is given.

2.4 Global Stability Analysis

A partial global stability analysis is completed for the full four-dimensional

system. We first consider the reduced systems. Global behavior is easiest to examine

through subsystems involving anthrax but no scavengers. We look at global stability

in the ZC and ZUC system, respectively. We show that the equilibria in both

systems are globally stable, that is, the solutions of the system are tending towards

an equilibrium regardless of the initial conditions.

2.4.1 ZC System Global Stability Analysis

The ZC system is the following:

z′ = rz
(

1− z

K

)
− µz − acz (2.20)
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c′ = acz − ρc (2.21)

This system has three equilibria

E0(0, 0), E1

(
K
[
1− µ

r

]
, 0
)

, E2

(ρ
a
,
r

aK

[
K
[
1− µ

r

]
− ρ

a

])
.

To determine global stability of the equilibria we use the Poincaré–Bendixson Theorem.

First we show that there are no limit cycles by Dulac’s Criterion.

Theorem 2.4.1. Dulac’s Criterion If β(x, y) ∈ C1 in a region D ⊆ R2 (simply

connected) and ∂
∂x

(βF ) + ∂
∂y

(βG) 6= 0 in D, then x′ = F and y′ = G has no periodic

orbits contained in D.

Let β(z, c) = 1
zc
∈ C1 in D = {(z, c) ∈ R2 : z, c > 0}. Then

∂

∂z

(
1

zc
· z
[
r
(

1− z

K

)
− µ− ac

])
+

∂

∂c

(
1

zc
· c [az − ρ]

)
=
−r
cK

< 0

in D. Therefore, by Dulac’s Criterion there are no limit cycles in D.

To show that the solutions are bounded, a bounding box is found. The solutions

are bounded between the c-axis, z-axis and the line

z + c = K
(

1− µ

r

)[
1 +

r

4ρ

(
1− µ

r

)]
(2.22)

when E2

(
ρ
a
, r
aK

[
K
(
1− µ

r

)
− ρ

a

])
exists.

To obtain the line in (2.22), notice that

(z + c)′ = rz
(

1− µ

r

)
− µz − ρc < 0

when

1

ρ

[
rz
(

1− z

K

)
− µz

]
< c.

Let g(z) = 1
ρ

[
rz
(
1− z

K

)
− µz

]
. Therefore, if c > g(z) then (z + c)′ < 0. Hence

everything above g(z) will decrease. Note that g(z) is a parabola, where E0(0, 0) and

E1

(
K
[
1− µ

r

]
, 0
)

are the z-intercepts and the vertex is(
K

2

(
1− µ

r

)
,
rK

4ρ

(
1− µ

r

)2)
.
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We add the z-component of E1 and the c-component of the vertex to get the line

(2.22). Hence solutions are bounded and by the Poincaré - Bendixson Theorem all

solutions tend toward an equilibrium point, so for µ < r,

• E0(0, 0) is unstable

• E1

(
K
[
1− µ

r

]
, 0
)

is GAS iff K
(
1− µ

r

)
< ρ

a

• E2

(
ρ
a
, r
aK

[
K
(
1− µ

r

)
− ρ

a

])
is GAS iff K

(
1− µ

r

)
> ρ

a

2.4.2 ZUC System Global Stability Analysis

The ZUC system is

z′ = rz
(

1− z

K

)
− µz − acz (2.23)

u′ = µz − ρu (2.24)

c′ = acz − ρc. (2.25)

This system has three equilibria

E0(0, 0, 0), E1

(
K
[
1− µ

r

]
,
µ

ρ
K
[
1− µ

r

]
, 0

)
, E2

(ρ
a
,
µ

a
,
r

aK

[
K
[
1− µ

r

]
− ρ

a

])
.

Notice that (2.23) and (2.25) decouple from (2.24), and we study those first. We

already studied the ZC system as in section 2.4.1 and we know all solutions at any

initial conditions tends toward some equilibrium, regardless of the parameter values.

We use a result by Thieme [29, 30], to say that the solutions of the ZUC system are

asymptotic to the solutions of (2.24), where z = z∗ and c = c∗:

u(t) =
µz∗

ρ
+ ke−ρt, (2.26)

where k is a constant. As t→∞ we get the u∗ values in E1 and E2 with the respective

z∗ plugged in. Therefore, because ZC decouple from U, the solutions to the ZUC

system are tending towards an equilibrium and hence are globally stable.
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2.4.3 ZUCJ System Global Stability Analysis

The disease free equilibrium in the absence of scavengers is globally asymp-

totically stable if RZ < 1 and D(E1) < 1 holds. Notice that from (2.1) z′ ≤

rz
(
1− z

K

)
− µz. Note that for µ < r z′ = rz

(
1− z

K

)
− µz has a globally stable

equilibrium value of z∗ = K
(
1− µ

r

)
. Then lim sup z ≤ K

(
1− µ

r

)
. Consider (2.2)

without jackals; then u′ ≤ µz − ρu, and substituting in z∗, lim supu ≤ µ
ρ
K (1−m) .

Thus lim supu ≤ µ
ρ
K(1−m).

Consider (2.3) without jackals, we have c′ ≤ (az − ρ)c. Substituting in z∗ we

have lim sup c′ ≤
(
aµ
ρ
K
(
1− µ

r

)
− ρ
)
c. If aµ

ρ
K
(
1− µ

r

)
− ρ < 0, which is equivalent

to RZ < 1, then c goes to zero. In the case where c = 0, (2.4) is j′ ≤ (bu−d)j. Since u

is bounded above, we have lim sup j′ ≤ j
(
bµ
ρ
K
(
1− µ

r

)
− d
)
. If bµ

ρ
K
(
1− µ

r

)
−d < 0,

which is equivalent to D(E1) < 1, then j goes to zero. If RZ < 1 and D(E1) < 1

then j goes to zero and we reduce to the ZU system, which tends towards an unique

equilibrium.

2.5 Scavenger Demographic Reproductive Numbers

We find the scavenger persistence threshold by calculating the scavenger de-

mographic reproduction numbers. We want to determine if the scavengers help

or hurt the anthrax and if the anthrax helps or hurts the scavengers. To answer

these questions we look at the scavenger demographic reproductive number (DRN)

evaluated through a next generation operator type method. The DRN is the birth

rate divided by death rate of the scavengers or the birth rate multiplied by how long

the scavengers reproduce (they reproduce for their entire lives, so it is the death rate).

We have two scavenger free equilibria, that is, one without anthrax (E1) and one with

23



anthrax (E3), so we have two different thresholds for when scavengers persist in the

absence of anthrax D(E1), and in the presence of anthrax D(E3).

Using the Next Generation Operator method [28], the demographic reproduction

number for scavengers in the absence of anthrax is calculated. That is,

D(E1) =
b (u∗ + c∗)

d

∣∣∣∣
E1

=
bµ

ρd
K
(

1− µ

r

)
.

Notice that

D(E1) > 1 ⇐⇒ bµ

ρd
K
(

1− µ

r

)
> 1 ⇐⇒ bµK

(
1− µ

r

)
> ρd ⇐⇒ bµz∗ > ρd,

which is a condition for E1 to be unstable and for E2 to exist. In addition,

RZ > RJ ⇐⇒
aK

(
1− µ

r

)
ρ

>
ad

bµ

⇐⇒
K
(
1− µ

r

)
ρ

>
d

bµ

⇐⇒ K
(

1− µ

r

)
>
ρd

bµ

⇐⇒ bµK
(

1− µ

r

)
> ρd

⇐⇒ bµz∗ > ρd

⇐⇒ D(E1) > 1.

Therefore, D(E1) > 1 is equivalent to RJ < RZ . The presence of scavengers hurts

anthrax if and only if scavengers can persist without anthrax present.

The DRN of scavengers in the presence of anthrax is given below:

D(E3) =
b (u∗ + c∗)

d

∣∣∣∣
E3

=
b

d

(µ
a

+
r

aK

[
K
(

1− µ

r

)
− ρ

a

])
=

b

ad

(
µ+

r

K

[
K
(

1− µ

r

)
− ρ

a

])
=

b

ad

(
µ+ r − µ− pr

aK

)
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=
br

ad

(
1− ρ

aK

)
.

Notice that

D(E3) > 1 ⇐⇒ br

ad

(
1− ρ

aK

)
> 1 ⇐⇒ 1− ρ

aK
>
ad

br
⇐⇒ ρ

a
< K

(
1− ad

br

)
.

Thus D(E3) > 1 is a condition for E4 to exist and E3 to be unstable. In addition,

mRJ +
1−m
RZ

< 1 ⇐⇒ µ

r

ad

bµ
+
(

1− µ

r

) ρ

aK
(
1− µ

r

) < 1

⇐⇒ ad

br
+

ρ

aK
< 1

⇐⇒ ad

br
< 1− ρ

aK

⇐⇒ 1 <
br

ad

(
1− ρ

aK

)
⇐⇒ D(E3) > 1

Thus D(E3) > 1 is equivalent to mRJ + 1−m
RZ

< 1, which implies RJ < RZ .

To see if anthrax helps the scavengers, we show that anthrax increases the

scavenger population precisely when ad
br

is less extreme (closer to 1/2) than m.

Theorem 2.5.1. Let m = µ
r
. Then j∗4 > j∗2 if and only if φ = ad

br
is between m and

1−m.

Proof. Let φ = ad
br

. Then

j∗4 > j∗2 ⇐⇒
aK

α

(
1− ad

br

)
− ρ

α
>
bµ

αd
K (1−m)

⇐⇒ a

(
1− ad

br

)
>
bµ

d
(1−m)

⇐⇒ ad

br

(
1− ad

br

)
>
µ

r
(1−m)

⇐⇒ φ (1− φ) > m (1−m)

⇐⇒ φ2 −m2 +m− φ < 0
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⇐⇒ (φ−m)(φ+m)− (φ−m) < 0

⇐⇒ (φ−m)(φ+m− 1) < 0.

If m > 1
2

then 1−m < ad
br
< m, and if m < 1

2
then m < ad

br
< 1−m. Either way ad

br
is

between m and 1−m.

Next, we look at when the scavenger DRN with anthrax is higher than the

scavenger DRN without anthrax.

Theorem 2.5.2. D(E3) > D(E1) if and only if p (1− p) > m (1−m) , where p = ρ
aK

and m = µ
r
.

Proof. Then

D(E3) > D(E1)

⇐⇒ br

ad

(
1− ρ

aK

)
>
bµ

ρd
K
(

1− µ

r

)
⇐⇒ br

ad
(1− p) > bµ

ρd
K (1−m)

⇐⇒ ρ

aK
(1− p) > µ

r
(1−m)

⇐⇒ p (1− p) > m (1−m)

Therefore, D(E3) > D(E1) if and only if p (1− p) > m (1−m) . Furthermore,

⇐⇒ p (1− p) > m (1−m)

⇐⇒ p2 −m2 +m− p < 0

⇐⇒ (p−m)(p+m)− (p−m) < 0

⇐⇒ (p−m)(p+m− 1) < 0.

If m > 1
2

then 1−m < p < m, and if m < 1
2

then m < p < 1−m. Either way p is

between m and 1−m.
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The values m, φ, and p are death rate to birth rate ratios for zebras, scavengers,

and anthrax. The ratio p = ρ
aK

describes the natural spore-source decay to spore

creation, m = µ
r

is the ratio of natural zebra death to reproduction, and φ = ad
br

is

some measure of natural scavenger death rate to birth rate. The values for D(E1)

and D(E3) tell us if the scavengers will persist whereas, j∗4 and j∗2 give the number of

scavengers that will persist. From theorems 2.5.1 and 2.5.2, anthrax helps scavengers

persist if and only if p is less extreme (closer to 1/2) than m, and increases the

scavenger population if and only if φ is less extreme than m.

If the reproductive number with scavengers RJ is less than the reproductive

number without scavengers RZ then that means scavengers are hurting the repro-

ductive number RZ (hurting anthrax). Therefore, scavenger presence hurts anthrax

exactly when scavengers persist without the anthrax present (at E1 and E3 there is

no anthrax), and if the scavengers do not need the anthrax to persist (do not need

anthrax created carcasses) then their presence hurts anthrax.

2.6 Numerical Analysis

We find parameter values either from previous literature or by estimation.

The basic reproductive numbers for anthrax without scavengers, with jackals, and

with vultures are denoted RZ , RJ , and RV , respectively. We consider two different

scenarios of parameter values and interpret the values for RZ , RJ , and RV .

2.6.1 Parameter Estimation

Some of the parameter values were obtained from previously published papers,

while the others were estimated in this study.
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Symbol Description Value Source

K zebra carrying capacity (zebras) 13000− 15000 [25]

r intrinsic growth rate of zebras 3.06849× 10−3 This study

µ natural zebra death rate 7.67123× 10−4 This study

a rate zebras come into con-
tact with infected carcasses
(week · zebras)−1

1.1433× 10−5 This study

ρ natural decomposition rate of ze-
bra carcasses

0.12727 [31]

αj rate jackals come into con-
tact with carcasses to eat
(week · jackals)−1

0.03608 This study

bj birth rate of jackals
(week · zebras)−1

0.051811 This study

dj death rate of jackals 4.808× 10−3 [32]

αv rate vultures come into con-
tact with carcasses to eat
(week · vultures)−1

0.01927 [27]

bv birth rate of vultures
(time · zebras)−1

0.00959 This study

dv death rate of vultures 9.615× 10−4 [33]

Table 2.4: Parameter table with values. Units in 1
week

except as noted. The three
parameters for scavengers are b, d, and α. A subscript of j is the parameter value for
jackals and a subscript of v is for vultures.

The life expectancy of zebras is 15 years according to [34] or 30 years according

to [35]. We picked 25 years as the life expectancy. After converting years to weeks

we get µ = 1
1300

weeks−1. The intrinsic growth rate was determined by figuring out

how many babies a female zebra will have in her lifetime. Zebras are reproductively

mature at the age of 4 years old [36] and have one baby every 2 years because they

will spend up to a year nursing [35]. We will say a zebra from 21-25 years is too old

to reproduce and therefore a female zebra will have 16 years to bear a foal. Therefore,
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a female zebra will have eight babies in her lifetime. Finally, we account for only

female zebras giving birth by considering only half of the population. Thus we get

r =
1

2
· 8 zebra

zebra · 25 years
· 1 year

52 weeks
= 3.06849× 10−3 week−1.

To calculate the parameter a, we find the area within which zebras travel [25]

and figure out the exposure area that one zebra covers in a single day, which is

distance multiplied by 6 meters (the spore dispersal radius around an infected carcass

is 3 meters in the environment [23]). Then we divide those two areas and the quotient

estimates how many days it takes a zebra to be exposed to the entire zebra habitat.

Next, we divide that number by two because on average the zebra has to cover half

of the habitat before running into a single carcass. Moreover, this is because any one

carcass can be in any one of the days with equal probability so the average is halfway.

The natural decomposition rate of zebra carcasses was taken from [31], which

gave the decomposition rate of deer carcasses in winter months in Wisconsin. The

warmest month in the study was used as a proxy for the natural decomposition rate

of zebra carcasses.

Jackals have a life expectancy of 4 years in the wild [32]. Converting 4 years to

weeks we get the natural death rate of jackals to be

dj =
1

4 years
· 1 year

52 weeks
= 4.80769× 10−3 week−1.

Now, we calculate bj . Coyotes eat 2.5 pounds per day [37]. The average weight

of an adult male coyote is 10.3–16 kilograms (22.71–35.27 pounds), whereas it is

8–14.2 kilograms (17.64–31.31 pounds) for an adult female coyote [38]. A black-backed

jackal weights 5-15 kilograms (11–33 pounds) [39]. We suppose that coyotes weigh

30 pounds and jackals weigh 17 pounds for the remaining calculations. Using the
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previous information, we calculate the amount of food a black-backed jackal needs to

eat, that is,

2.5 pounds

day
· 17 pounds

30 pounds
= 1.42 pounds per day.

One zebra contains 120–130 kilograms of usable meat [40]. We will choose the average

and work with 125 kilograms (275 pounds). We can find how many days it would

take for a jackal to eat a zebra carcass (only consider usable meat):

275 lbs

zebra
· day

1.42 lbs
≈ 194 days

zebra
≈ 27 weeks

zebra
.

Hence αj = 1/27 jackal · week. On average, 5.4 pups are born per year per jackal pair [32].

Thus during the 194 days one jackal is eating one zebra carcass and produces

1 year

365days
· 194.117 days

zebra
· 2.7 baby jackals

jackals · year
=

1.4359 baby jackals

zebra

Now,

bj =
1.4359 jackals

zebra
· 1

27.714 jackal · week
= 0.051811

1

zebra · week
.

Vultures have a life expectancy of 20 years [33]. Converting 20 years to weeks

we get the natural death rate of scavengers to be

dv =
1

20 years
· 1 year

52 weeks
= 9.615× 10−4 week−1.

Vultures eat every 3-4 days and their crop holds 1,200 grams (2.65 pounds) of food

[27]. For calculations, we suppose vultures eat 2.65 pounds of food every 3.5 days.

Therefore, a vulture needs 0.757 pounds of food per day. We calculate how long it

would take a vulture to eat a zebra. It would take 363.28 vulture days to eat a zebra

carcass:

275 lbs

zebra
· day

0.757 lbs
≈ 363.28 days

zebra
≈ 51.90 weeks

zebra
.
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Hence αv = 1/51.90 vulture · week. Vultures produce one offspring every year per every

two vultures [41]:

1 baby vulture

2 vultures · year
=

0.5 baby vultures

vultures · year
.

Thus during the 363.28 days one vulture is eating one zebra carcass and produces

1 year

365days
· 363.28 days

zebra
· 0.5 baby vultures

vultures · year
=

0.4976 baby vultures

zebra
.

Now,

bv =
0.4976 baby vultures

zebra
· 0.01927

vulture · week
= 0.00959

1

zebra · week
.

2.6.2 Threshold quantities

We let all the parameter values be those that are set in table 2.4 with K = 13000

zebras. We found that

RZ = 0.876, RJ = 0.00138, and RV = 0.00149.

Notice that RJ < RV < RZ < 1. This means that any small outbreak of anthrax

will die out in the presence of scavengers since RZ < RJ (RZ < RV ) and RJ < 1

(RV < 1). Furthermore, jackals eradicate anthrax better than vultures when there is

a small outbreak since RJ < RV .

If environmental conditions shift to increase zebras’ exposure rate, for example,

by reducing their grazing territory, then scavengers may become necessary to eliminate

the spread of anthrax. With just a 15% increase in the parameter a, RZ is just greater

than one, and when a increases by 50%, that is, a = 1.71495× 10−5 (zebras ·week)−1

we get

RZ = 1.3138, RJ = 0.0020744, and RV = 0.0022414.

When a takes on this value it means that we are looking at a smaller area that the

zebras are roaming which is 1600 km2 vs 2400 km2. Moreover, we could also view an
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increase in the parameter a to represent a greater distance that the spores diffuse

around an anthrax laden carcass, which could be spread by the wind or by some

other natural means. Since RZ > 1 and RJ , RV < 1, the zebras need the scavengers

present in order to fight the anthrax. Therefore, the zebras benefit from the presence

of scavengers.

2.7 Results and Discussion

Previous modeling studies [7, 42] of anthrax transmission in animal populations

have focused on a control strategy such as vaccination or carcass removal (in [7])

to help eradicate anthrax. These policies are possible for livestock but not for wild

animals. Our model looks at how scavengers affect the dynamics of anthrax in

ungulates (zebras) in the wild.

We looked at the persistence of anthrax as measured by threshold quantities

with and without scavengers. Anthrax persists whenever the basic reproductive

numbers of anthrax with and without scavengers are greater than one. In figure 2.2,

we can easily see that if either RZ < 1 or RJ < 1 then there is no anthrax present and

any small outbreaks will die out. In addition, when RJ < RZ (existence condition

for E2) this shows that the presence of scavengers is hurting the anthrax. Therefore,

when the scavengers feed from the anthrax laden carcasses (thus eating anthrax), this

helps the zebras because the vegetative cells of BA will not sporulate and reside in

the grass or on the ground to infect more zebras.

By definition, when the scavenger DRN without anthrax, D(E1) > 1 then

scavengers persist: E1 is unstable and E2 exists. When D(E3) > 1 then scavengers

persist in the presence of anthrax: E3 is unstable and E4 exists and is stable. The

scavenger DRNs allow us to determine that the presence of scavengers hurts anthrax if

and only if scavengers can persist in the absence of anthrax (RZ > RJ ⇐⇒ D(E1) >

32



1). In addition, we show that the number of scavengers in the presence of anthrax (j∗4)

is higher than the number of scavengers in the absence of anthrax (j∗2) precisely when

the death rate to birth rate ratio of scavengers, φ = ad
br
, is less extreme (closer to 1/2)

than m. Furthermore, the scavenger DRN with anthrax is larger than the scavenger

DRN without anthrax (D(E3) > D(E1)), so that the scavengers persist better in the

presence of anthrax, precisely when the death to birth rate ratio for anthrax p = ρ
aK

is less extreme (closer to 1/2) than the ratio for zebras m. The DRNs allow us to

answer the question: does anthrax help scavengers, in terms of the three death to

birth rate ratios, for zebras (m), anthrax (p), and scavengers (φ). Anthrax fosters

scavenger survival if p is less extreme than m, and increases scavenger population

size if φ is less extreme than m.

Notice that all the threshold quantities are independent of the parameter α,

which describes the rate the scavengers feed from the zebra carcasses. Anthrax

persistence with and without scavengers, and the scavengers’ ability to survive does

not depend on the rate at which scavengers eat from zebra carcasses, but on the rate

at which scavengers convert that feeding into reproduction.

When we consider the various calculations of BRNs in section 2.6.2 we see

that between jackals and vultures neither outperforms the other substantially in

eradicating anthrax. Note that the BRNs of the scavengers were both of a similar

magnitude, but the BRN of anthrax without scavengers was about 650 times larger

than the BRNs of the scavengers. Hence scavengers are effective at reducing anthrax

risk.

One limitation to our model is the assumption that zebra carcasses are represen-

tative of the only food source for scavengers. In fact, scavengers play a more complex

role in the food web. In addition, jackals have been observed attacking and killing

a young adult springbok [43]. However, given scavengers’ estimated efficiency in
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reducing anthrax risk, they are still helpful even if they are less dependent on zebras.

Another limitation of the model is that scavengers will not necessarily eat from a

fresh carcass and, therefore, the vegetative cells of the BA may have transformed into

resistant spores. In this case, the scavengers can potentially play a role in helping to

spread the anthrax rather than eradicating it since spores have been found to pass

through the digestive tract of vultures [27]. In addition, the parameter estimates are

rough and some are not based on any direct measure of infection. It would be helpful

for future field studies to gather more data on the mechanics of anthrax infection like

the rate at which ungulates (zebras) come into contact with BA spores.

34



CHAPTER 3

Modeling anthrax-rabies interactions in zebra-jackal cycles

3.1 Introduction

ENP located in Namibia, contains dry savanna habitat [8], where many different

species live such as zebras, springbok, wildebeest, jackals, and lions [8, 4]. Anthrax

(caused by Bacillus anthracis) is endemic in ENP and mainly infects ungulates such

as zebras [2], producing more carrion in the park that scavengers like black-backed

jackals (Canis mesomelas) can feed on. The anthrax outbreaks in plains ungulates

occur at the end of the rainy season in March [22]. The zebra carcasses are a resource

for the jackals to congregate and interact with one another, which gives the potential

for a different disease to spread within the jackal population, such as the rabies virus.

The rabies virus is a highly fatal communicable disease that attacks the cerebral and

nervous tissues resulting in aggressive behavior like biting or attacking other animals

throughout their 5 to 7 day-long infectious period [8, 32]. It is documented [4] that

rabies not only persists in jackal populations for a short period of time, but it can

persist in jackal populations in northern South Africa independent of spillover from

domestic dogs. Black-backed jackals play an important epidemiological role in ENP

because of their long dispersal distances, high density, and widespread geographic

range [4]. This allows for jackals to interact with others outside of their territory;

spreading disease to another group of jackals while interacting at the carcasses.

Consumer-resource interactions occur everywhere in nature and describe the

consumer coming into contact with a resource. An example of a consumer-resource

relationship is house finches and bird feeders. The consumers are the house finches
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and the resource is the bird feeder [9]. Likewise, in this paper, the consumers are the

jackals and the resources are the zebra carcasses. The encounter rate describes the

interactions between members of the same species, that is, the conspecific encounter

rate.

There are several models of predator-prey systems, where only the predator

is infected by a disease [11, 12, 13, 14], or only the prey is infected by a disease

[15, 16, 17, 18, 19]. In [44], a mathematical model was developed to describe a predator-

prey system, where both species are affected by the same disease. A predator-prey

system can be generalized into a consumer-resource system. In [45], a consumer-plant

resource model was developed where the plant resources are exposed to a disease. The

authors calculated the basic reproduction number (R0) and the consumption number

(C0), which is understood to be a combination of parameters ensuring the consumer

receives enough resources required for survival [46]. While R0 < 1, they found that

when increasing the consumption number the disease was eradicated faster from the

system, which in turn increased the strength of coexistence between the consumer

and the resources resulting in faster disease elimination. When R0 > 1, their model

showed that the disease can be eradicated when the consumption number is large

enough. Therefore, their research suggests that the eradication of certain disease

from a system and strengthening the coexistence between consumers and resources

are associated with each other.

Borchering et al. [8], developed a spatially explicit mathematical model for

resource visitation behavior in order to see how changes in resource availability can

influence the rate of encounters among consumers. They identified and characterized

two qualitatively distinct parameter regimes: a low-resource regime and a high-

resource regime. They found that in a low-resource regime, the addition of more

resources results in more consumer-consumer encounters, whereas in a high-resource
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regime, the addition of more resources led to fewer consumer-consumer encounters.

They conducted a specific case study using location data of jackals and the carcasses

they scavenged on in ENP. The zebras would become infected by anthrax, which

generated more carcasses and the jackals would congregate around the carcasses

increasing the risk of spreading rabies.

There are some models [9, 10] that study the relationship between resource

availability and conspecific encounter rates for consumers, where these resources

may indirectly mediate infectious disease transmission. In [9], the authors studied a

host-pathogen system with house finches and their bacterial pathogen Mycoplasma

gallisepticum, which causes severe conjunctivitis, to determine if the same behaviors

enhance both receiving and the transmission of pathogens. They discovered that

the time a finch spends at a bird-feeder was the best at determining the risk the

finch would become infected. Likewise, the more time an infected finch spent at a

bird-feeder, increased the likelihood of transmitting the bacteria. In [10], a spatially

explicit individual-based model was developed to study the situation when consumers

of the same species meet at a single shared-resource during periods of low resource

availability, such as a watering hole during the dry season. They considered a generic

fecal transmittable disease in a single-host system. From their study the authors saw

that as the lean season increased, the resource sharing increased and this increased the

prevalence of the infectious disease. They concluded that seasonal sharing of resources

helps to spread an infectious disease through a spatially structured population.

In this paper, we developed a model to describe the relationship between

zebra-jackal population dynamics on the one hand, and the transmission dynamics

of anthrax and rabies on the other. We are interested in answering the following

research question: how do anthrax and rabies affect each other’s ability to spread? We

further break this question down to two questions. That is, does rabies help or hurt
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anthrax and does anthrax help or hurt rabies? In our previous work [47], we explored

how scavengers can help eliminate wildlife disease. We focused our attention on the

scavengers jackals and vultures and anthrax as the wildlife disease. We concluded

that scavengers were able to persist better in the presence of anthrax when the death

to birth rate ratio for anthrax is less than the death to birth rate ratio for zebras.

Hence anthrax helps scavengers.

This paper is organized as follows: section 3.2 is the model description, including

the derivation of the encounter rate function, section 3.3 identifies the equilibria in

the model, section 3.4 calculates the basic and invasion reproductive numbers of both

anthrax and rabies and section 3.5 is the local stability of each equilibria. Section 3.6

is broken down into three subsections. First, we look at four different scenarios with

limit cycles and interpret what is happening biologically in each limit cycle. Then

we find which equilibrium is stable when we plug in parameter values obtain from

literature. Finally, we answer the questions: does anthrax amplify rabies and does

rabies amplify anthrax?

3.2 Model

In this paper the deterministic mathematical model uses a system of ordinary

differential equations to describe how population is affected by disease. The popula-

tions considered in this model are the living zebras, the zebra carcasses from natural

death, the zebra carcasses due to anthrax induced death, jackals, and rabid jackals,

(z, u, c, j, i, respectively). The zebra population has a logistic growth term and is

removed by natural death (µz) or by disease-induced death (acz) from grazing near

an anthrax infected carcass site [6]. The carcasses (healthy or infected) are either

naturally decomposing at a rate ρ or are being eaten by healthy and rabid jackals

at a rate of α. The jackal birth depends on how many carcasses are present in the
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environment, and they die at a natural death rate of d. Healthy jackals become

rabid when interacting with rabid jackals at zebra carcasses, which is described by an

encounter rate β dependent on the number of carcasses. Finally, rabid jackals die from

an additional death rate due to rabies δ. Jackals do not attack living zebras; they

only scavenge on the zebra carcasses, which is assumed representative of the jackals’

food sources. Therefore, we assume that jackals depend solely on zebra carcasses

for food regardless of the carcass infection status. A summary of the parameters in

equations (3.1)-(3.5) can be found in table 3.1.

z′ = rz
(

1− z

K

)
− µz − acz (3.1)

u′ = µz − ρu− α (j + i)u (3.2)

c′ = acz − ρc− α (j + i) c (3.3)

j′ = bj (u+ c)− dj − βji (3.4)

i′ = βji− (d+ δ) i (3.5)
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Symbol Definition

K carrying capacity for zebra population (zebras)

r intrinsic growth rate of zebras

µ natural zebra death rate

a rate zebras come into contact with anthrax infected
carcasses (time · zebras)−1

ρ natural decomposition rate of carcasses

α rate jackals come into contact w/ carcasses to eat
(time · jackals)−1

b birth rate of jackals (time · zebras)−1

d natural death rate of jackals

β function describing interaction between healthy and in-
fected jackals (time · jackals)−1

δ additional death rate of jackals from rabies

Table 3.1: Parameter table for system (3.1)-(3.5). Units in 1
time

except as noted.

3.2.1 Encounter function, β

Borchering et al. developed a model to describe the number of conspecific

encounters a typical consumer will have when resources are temporarily available.

The β in our model is a function that captures the encounter rate between jackals at

the same resources, and we use Borchering’s work to derive our β function.

Borchering et al. considered the encounter rate initially to be a function of

three quantities, ρ̃ (same as Borchering’s ρ), κ, and `. Here κ is the resource intensity

parameter from a Poisson spatial process and means that for any region of area A

contained in a spatial region O, the number of resources in that region is Poisson

distributed with mean κA. Similarly, ρ̃ is the consumer intensity parameter. These

intensity parameters correspond to the expected population density produced by

the model for the consumers and resources. The parameter ` is the maximum
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detection distance a consumer can detect a resource. Therefore, all resources within

a circle around the consumer with a radius ` are detected by the consumer. However,

Borchering et al. rewrote the encounter rate as a function of only two quantities by

rescaling: they showed that for every triplet (ρ̂, κ, R) there exists an associated triplet(
1, κ

ρ̃
, l
√
ρ̃
)

that has the same encounter rate. This rescale allows the values inside

the logarithmic functions to be dimensionless [8]. Their model revealed that when

supplemental resources are scarce, conspecific encounter rates at the resource sites

are rare because the consumer isn’t close enough to detect a resource. In addition,

intermediate levels of the supplemental resource availability produced the highest

encounter rates. Finally, when there is an ample amount of resources available,

conspecific encounters are rare because each consumer has its own resource.

Borchering et al. described the relationship between encounter rate and the

number of zebra carcasses on a log-log scale. We want to construct a function that

behaves similarly to the output of Borchering’s encounter rate model: when carcasses

are scarce, the jackal-to-jackal encounter rate is low, when intermediate levels of

carcasses are available, the encounter rate is high, and when carcasses are abundant

the encounter rate is low. We will use a hyperbola to estimate the encounter rate

function.

The general form of a hyperbola is given by

(y − k)2

a2
− (w − h)2

b2
= 1

with center (h, k), vertex (h, k − a), and asymptotes y = k + a
b
(w − h) and

y = k − a
b
(w − h). Note that here y = log(β) and w = log(u∗ + c∗).

From Borchering’s work we know the center of the hyperbola is

(h, k) =

(
log

(
1

πR2

)
, log

(
ρ̂πR2

))
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which is given in [8] by the intersection of the small and large resource regimes. In

addition, we approximate the vertex using information from [8]. The vertex is

(h, k − a) =

(
log

(
1

πR2

)
, log

(
1.48ρ̂R2

))
. (3.6)

This vertex is an estimate and will result in the maximum encounter rate

occurring at a slightly lower number of available carcasses than the number which

truly maximizes the encounter rate. However, this is an acceptable simplification

because not all the carcasses are detectable by the jackals [8].

To find the asymptotes, we consider two cases. One case is when resources

(carcasses) are scarce and another is when resources are abundant. When resources are

scarce, an approximation of the expected number of encounters for a focal consumer

is (u∗ + c∗)ρ̂ (πR2)
2

[8]. Then

y = log(β) = log
(
ρ̂
(
πR2

)2)
+ log(u∗ + c∗)

=⇒ y = log
(
ρ̂
(
πR2

)2)
+ w. (3.7)

The approximation of the expected number of encounters for a focal consumer when

resources are abundant is ρ
u∗+c∗

[8]. Then

y = log(β) = log(ρ̂)− log(u∗ + c∗)

=⇒ y = log(ρ̂)− w. (3.8)

Now, we want to find the relationship between a and b using the asymptotes.

Start with the general form and substitute for k and h using (3.6). That is, for the

low-resource asymptote,

y = k +
a

b
(w − h)
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= log
(
ρ̂πR2

)
+
a

b
w +

a

b
log
(
πR2

)
Then we set the general form above equal to (3.7) to get

log
(
ρ̂πR2

)
+
a

b
w +

a

b
log
(
πR2

)
= w + log

(
ρ̂
(
πR2

)2)
so

a

b
= 1 =⇒ a = b.

We can find a and b using the vertex, that is,

log
(
1.48ρ̂R2

)
= k − a

=⇒ log
(
1.48ρ̂R2

)
= log

(
ρ̂πR2

)
− a

=⇒ a = log
(
ρ̂πR2

)
− log

(
1.48ρ̂R2

)
=⇒ a = log

(
πρ̂R2

1.48ρ̂R2

)
=⇒ a = b = log

( π

1.48

)
.

Therefore, the asymptotes are

y1 = w + log
(
ρ̂
(
πR2

)2)
and y2 = −w + log (ρ̂) .

Let q = a = b. Then solving for y in the general form of the hyperbola we get

y = k ±
√

(w − h)2 + q2.

We will work with

y = k −
√

(w − h)2 + q2

because we are interested in the bottom part of the hyperbola only. Then we have

that
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y = k −
√

(w − h)2 + q2

log(β(u∗ + c∗)) = k −
√

[log(u∗ + c∗)− log(πR2 )]2 + q2

β (u∗ + c∗) = ek−
√

(log(u∗+c∗)+log(πR2))2+q2 .

Let x = u∗ + c∗; then our encounter rate function is given by

β (x) = β0e
−
√

(log(x)+log(πR2))2+q2 , (3.9)

where β0 = ρ̂πR2 and q = log
(

π
1.48

)
. Following Borchering et. al. parameter ranges

for R and ρ̂, we set R = 7km and ρ̂ = 0.2km−1. Figure 3.1 shows what the function

β looks like, which is not a hyperbola because Borchering’s encounter-rate model

was analyzed on a log-log scale. Therefore, we take the exponential to get the

function β. Notice when the zebra carcasses are scarce the encounter rate is low,

when intermediate values of the carcasses are available then encounter rate reaches a

maximum, and when the carcasses are abundant the encounter rate is low again.

0.01 0.02 0.03 0.04 0.05
x=u*+c*

5

10

15

Figure 3.1: Graph of β (u∗ + c∗).
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3.3 Existence of Equilibria

In this section, we identify seven equilibria in our model and provide the

existence conditions for each one. The same five equilibria in [47] are present in this

model, that is, E0, E1, E2, E3, E4 as in table 3.3.

We have two additional equilibria to investigate: E5 and E6. The equilibrium

E5 represents a state where only rabies is present: no anthrax in the zebra population.

The equilibrium E6 represents a state where both anthrax in the zebra population

and rabies in the jackal population are present. Table 3.2 gives a summary of the

equilibrium conditions that arise from the system’s equations ((3.1) through (3.5)).

(1a) z∗ = 0 (1b) z∗ = K
[
1− µ+ac∗

r

]
(2) u∗ = µz∗

ρ+α(j∗+i∗)

(3a) c∗ = 0 (3b) z∗ = ρ+α(j∗+i∗)
a

(4a) j∗ = 0 (4b) u∗ + c∗ = d+β(x)i∗

b

(5a) i∗ = 0 (5b) j∗ = d+δ
β(x)

Table 3.2: Summary of equilibrium components for system (3.1)-(3.5)

3.3.1 Rabies but no anthrax

We look at the equilibrium E5 where there is rabies but no anthrax.

z∗ = K
(

1− µ

r

)
(from 1b)

u∗ =
µz∗

ρ+ α (j∗ + i∗)
(from 2) (3.10)

c∗ = 0 (from 3a)

u∗ =
d+ β(x)i∗

b
(from 4b)
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j∗ =
d+ δ

β(x)
(from 5b)

3.3.1.1 Derive j∗ + i∗ equation

β(x) (j∗ + i∗) = δ + b (u∗ + c∗) (from (4b) and (5b)) (3.11)

(µ+ ac∗) z∗ = rz∗
(

1− z∗

K

)
(from (2.1)) (3.12)

(µ+ ac∗) z∗ = [ρ+ α (j∗ + i∗)] (u∗ + c∗) (from (2.2) and (2.3)) (3.13)

Now, setting (3.12) and (3.13) equal to each other, we get

rz∗
(

1− z∗

K

)
= [ρ+ α (j∗ + i∗)] (u∗ + c∗) (3.14)

From (3.11) we can solve for j∗ + i∗:

j∗ + i∗ =
δ + b (u∗ + c∗)

β(x)
(3.15)

3.3.1.2 Existence

Now, z∗ > 0 when µ < r and j∗ > 0. Since c∗ = 0, we have x = u∗ + c∗ = u∗.

Then

g(x) =
µ

a

(
1− µ

r

) 1

x
− ρ

aK
− α

aK

δ + bx

β(x)
= 0, (3.16)

which comes from solving for j∗ + i∗ in (3.10) and setting it equal to j∗ + i∗ = δ+bx
β(x)

.

Then

j∗ + i∗ =
δ + bx

β(x)
> 0 with j∗ =

d+ δ

β(x)

So we need i∗ =
bu∗ − d
β(x)

≥ 0

⇐⇒ bu∗ − d ≥ 0
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⇐⇒ u∗ ≥ d

b

Thus i∗ ≥ 0 when u∗ ≥ d
b
.

Notice that µ
a

(
1− µ

r

)
1
x
− ρ

aK
in (3.16) is monotone decreasing in x for x > 0.

We find that

g′(x) =
−µ
a

(
1− µ

r

) 1

x2
− α

aK

[
β(x)b− (δ + bx) β′(x)

[β(x)]2

]
.

Then

g′(x) = 0 ⇐⇒ 0 = −µ
a

(
1− µ

r

) 1

x2
− αb

aK

1

β(x)
+

α

aK

δ + bx

xβ(x)

log(x) + log(πR2)√
[log(x) + log(πR2)]2 + q2

=⇒ has no roots unless log(x) + log
(
πR2

)
< 0

=⇒ x <
1

πR2

For x ≥ 1
πR2 , g′(x) < 0 and limx→∞ g(x)→ −∞. Therefore, we need

g

(
d

b

)
=
µ

a

(
1− µ

r

) b
d
− ρ

aK
− α

aK

δ + d

β
(
d
b

) > 0

⇐⇒
β
(
d
b

)
δ + d

· a
α

[
bµ

ad
K
(

1− µ

r

)
− ρ

a

]
> 1

⇐⇒
β
(
d
b

)
δ + d

· a
α

[
1

RJ

K
(

1− µ

r

)
− ρ

a

]
> 1

for E5

(
K
(
1− µ

r

)
, u∗5, 0,

d+δ
β(u∗5)

,
bu∗5−d
β(u∗5)

)
to exist. In terms of reproduction numbers

defined in section 3.4, we can rewrite this condition as RR > 1 (see section 3.4.2).

3.3.2 Anthrax and rabies present

Now, we look at the equilibrium E6 where both rabies and anthrax persist.

z∗ = K

(
1− µ+ ac∗

r

)
(from 1b) (3.17)
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u∗ =
µz∗

ρ+ α (j∗ + i∗)
(from 2) (3.18)

z∗ =
ρ+ α (j∗ + i∗)

a
(from 3b) (3.19)

u∗ + c∗ =
d+ β(x)i∗

b
(from 4b) (3.20)

j∗ =
d+ δ

β(x)
(from 5b) (3.21)

Take (1b) and (3b) to get c∗. Then

K

[
1− µ+ ac∗

r

]
=
ρ+ α (j∗ + i∗)

a

µ+ ac∗

r
= 1− ρ+ α (j∗ + i∗)

aK

c∗ =
1

a

[
r

[
1− ρ+ α (j∗ + i∗)

aK

]
− µ

]
c∗ =

r

aK

[
K
[
1− µ

r

]
− ρ+ α (j∗ + i∗)

a

]
(3.22)

We can see that c∗ ≥ 0 when K
[
1− µ

r

]
≥ ρ+α(j∗+i∗)

a
.

Then plug (3b) into (3.18) to get

u∗ =
µ

a
. (3.23)

For all the expressions that have j∗ + i∗ we can substitute (3.15) into them so

that all the components of the equilibrium are in terms of u∗ + c∗, as we do below.

Therefore,

rz∗
(

1− z∗

K

)
= [ρ+ α (j∗ + i∗)] (u∗ + c∗)

r

a
[ρ+ α (j∗ + i∗)]

(
1− [ρ+ α (j∗ + i∗)]

aK

)
= [ρ+ α (j∗ + i∗)] (u∗ + c∗)

r

a

(
1− [ρ+ α (j∗ + i∗)]

aK

)
= u∗ + c∗

1− ρ

aK
− α

aK

(
δ + b(u∗ + c∗)

β(x)

)
− a

r
(u∗ + c∗) = 0.
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With x = u∗ + c∗, we can rewrite this condition as

f(x) = 1− ρ

aK
− α

aK

(
δ + bx

β(x)

)
− a

r
x = 0.

Hence the equilibrium is E6

(
ρ
a

+ α
a

(
δ+bx
β(x)

)
, µ
a
, x− µ

a
, d+δ
β(x)

, bx−d
β(x)

)
.

Now, we find existence conditions of E6. From (4b) and (3.23) we require that

x = u∗ + c∗ ≥ d

b
and x ≥ µ

a
.

Let

β1(x) =
[log(x) + log(πR2)]

x
√

[log(x) + log(πR2)]2 + q2
= −β

′(x)

β(x)
.

Furthermore, limx→0+ f(x)→∞ and limx→∞ f(x)→ −∞. We find that

f ′(x) = 0 ⇐⇒ 0 = −a
r
− α

aK

[
β(x)b− (δ + bx) β′(x)

[β(x)]2

]
⇐⇒ 0 = −a

r
− α

aK

[
β(x)b+ (δ + bx) β(x)β1(x)

[β(x)]2

]

⇐⇒ 0 =
a

r
+

αb

aKβ(x)

1 +

(
δ

b
+ x

)
1

x

log(x) + log (πR2)√
[log(x) + log (πR2)]2 + q2


⇐⇒ 0 =

a2K

αbr
β(x) +

1 +

(
δ

b
+ x

)
1

x

log(x) + log (πR2)√
[log(x) + log (πR2)]2 + q2


=⇒ has no roots unless log(x) + log

(
πR2

)
< 0

=⇒ x <
1

πR2

For all x > 1
πR2 , f ′(x) < 0. As long as d

b
and µ

a
exceed 1

πR2 , we can replace the

conditions x > d
b

and x > µ
a

with f
(
d
b

)
> 0 and f

(
µ
a

)
> 0.

Also,

f

(
d

b

)
= 1− ρ

aK
− α

aK

[
δ + d

β
(
d
b

)]−ad
br

> 0 ⇐⇒ R̃R =

[
aK

α

(
1− ad

br

)
− ρ

a

]
β
(
d
b

)
d+ δ

> 1
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Therefore, we need

f
(µ
a

)
= 1− µ

r
− ρ

aK
− α

aK

(
δ + bµ

a

β(µ
a
)

)
> 0

⇐⇒ QA =
aK

(
1− µ

r

)
ρ+ α

(
δ+bµ

a

β(µa )

) > 1 (3.24)

for E6 to exist. As will be seen in section 3.4.4, QA is almost identical to anthrax’s

invasion reproductive number R̃A, but where QA has µ
a
, R̃A has d

b
. We want to know

the relationship between µ
a

and d
b
. Notice that E5 has

µK(1−m)

u∗5
= ρ+ α

(
δ + bu∗5
β(u∗5)

)
,

from (3.2) and (3.15). Let

L(x) =
µK(1−m)

x
and R(x) = ρ+ α

(
δ + bx

β(x)

)
.

Then L(x) is monotone decreasing in x for x > 0 and R(x) is monotone increasing in

x for x ≥ 1
πR2 (even a bit sooner), so L(u∗5) = R(u∗5). Then

• L(x) > R(x) for x < u∗5 and

• L(x) < R(x) for x > u∗5 (assuming x ≥ 1
πR2 ).

But now (3.24) becomes:

aK(1−m) > ρ+ α

(
δ + bµ

a

β(µ
a
)

)
⇐⇒ µK(1−m)

µ/a
> ρ+ α

(
δ + bµ

a

β(µ
a
)

)
⇐⇒ L

(µ
a

)
> R

(µ
a

)
⇐⇒ µ

a
< u∗5 (3.25)

Also notice that (from section 3.4.4)

R̃A =
aK(1−m)

ρ+ α
(
δ+bu∗5
β(u∗5)

) =
L
(
µ
a

)
R (u∗5)

< 1
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⇐⇒ L
(µ
a

)
< R (u∗5)

⇐⇒ L
(µ
a

)
< L (u∗5) (since L(u∗5) = R(u∗5))

⇐⇒ u∗5 <
µ

a
(3.26)

By (3.25) and (3.26), we have that u∗5 = µ
a
.

Theorem 3.3.1. R̃A > 1 ⇐⇒ QA > 1.

Proof. Now,

QA =
aK

(
1− µ

r

)
ρ+ α

(
δ+bµ

a

β(µa )

) > 1 ⇐⇒ aK
(

1− µ

r

)
> ρ+ α

(
δ + bµ

a

β
(
µ
a

) )

⇐⇒
µK

(
1− µ

r

)
µ
a

> ρ+ α

(
δ + bµ

a

β
(
µ
a

) )

⇐⇒ L
(µ
a

)
> R

(µ
a

)
⇐⇒ µ

a
< u∗5

⇐⇒ L
(µ
a

)
> L (u∗5)

⇐⇒ L
(µ
a

)
> R (u∗5)

⇐⇒
µK

(
1− µ

r

)
µ
a

> ρ+ α

(
δ + bu∗5
β (u∗5)

)
⇐⇒ ak

(
1− µ

r

)
> ρ+ α

(
δ + bu∗5
β (u∗5)

)
⇐⇒

aK
(
1− µ

r

)
ρ+ α

(
δ+bu∗5
β(u∗5)

) > 1

⇐⇒ R̃A > 1.

Therefore, R̃A > 1 ⇐⇒ QA > 1. Similarly, we can show R̃A < 1 ⇐⇒ QA < 1.

Therefore, E6

(
ρ
a

+ α
a

(
δ+bx
β(x)

)
, µ
a
, x− µ

a
, d+δ
β(x)

, bx−d
β(x)

)
exists when R̃R > 1 and

R̃A > 1.
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Note that if x ≤ d
b

then no rabies can persist and we go back to E4. Also note

that if x ≤ µ
a

then there is no anthrax and we go back to E5.

3.4 Reproductive Numbers

We use the next generation operator method to find the reproductive numbers

in this section.

3.4.1 Basic Reproductive Numbers for Anthrax

We use the basic reproductive numbers from [47] and rename them here.

The basic reproductive number for anthrax in the absence of jackals is denoted

RAO = aK(1−m)
ρ

. The basic reproductive number for anthrax in the presence of jackals

is denoted RAJ = ad
bµ
.

3.4.2 Basic Reproductive Number for Rabies in the absence of Anthrax

To find the basic reproductive number for rabies in the absence of anthrax we

consider the I class as the only infected class. The E2 equilibrium is the disease free

equilibrium with jackals present.

X = {Z,U,C, J} Z = {I}

A =
∂

∂I

(
dI

dt

) ∣∣∣∣
E2

= β(x)j − (d+ δ)

∣∣∣∣
E2

= β

(
d

b

)[
1

α

[
bµ

d
z∗ − ρ

]]
− (d+ δ)

RR =
a

α

[
bµ

ad
K
(

1− µ

r

)
− ρ

a

]
β
(
d
b

)
d+ δ

=
a

α

[
1

RAJ

K (1−m)− ρ

a

]
β
(
d
b

)
d+ δ
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=
aK

α

[
1−m
RAJ

− ρ

aK

]
β
(
d
b

)
d+ δ

3.4.3 Invasion Reproductive Number for Rabies in the presence of Anthrax

The invasion reproductive number (IRN) for rabies in the presence of anthrax,

R̃R is the average number of secondary infections (of rabies) caused by introducing one

rabid jackal into an environment (E4) where anthrax persists in the zebra population

with jackals present.

X = {Z,U,C, J} Z = {I}

A =
∂

∂I

(
dI

dt

) ∣∣∣∣
E4

= β(x)j − (d+ δ)

∣∣∣∣
E4

= β

(
d

b

)[
aK

α

(
1− ad

br

)
− ρ

α

]
− (d+ δ)

R̃R = β

(
d

b

)[
aK

α

(
1− ad

br

)
− ρ

α

]
1

d+ δ

=

[
aK

α

(
1− ad

br

)
− ρ

α

]
β
(
d
b

)
d+ δ

=
aK

α

[
(1−mRAJ)− ρ

aK

] β (d
b

)
d+ δ

3.4.4 Invasion Reproductive Number for Anthrax in the presence of Rabies

The IRN for anthrax in the presence of rabies, R̃A, presupposes that there

are jackals so there can be rabies. R̃A represents the average number of secondary

anthrax infections caused by introducing one anthrax infect zebra carcass into an

environment, where rabies already persists in the jackal population. The only anthrax

class that is considered infected is C and the E5 equilibrium is where rabies is present

but anthrax is absent.
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X = {Z,U, J, I} Z = {C}

A =
∂

∂C

(
dC

dt

) ∣∣∣∣
E5

=
∂

∂C
(acz − ρc− α (j + i) c)

∣∣∣∣
E5

= az − ρ− α (j + i)

∣∣∣∣
E5

= aK
[
1− µ

r

]
− ρ− α

(
δ + bu∗5
β(u∗5)

)
Let M = aK

[
1− µ

r

]
and D = ρ+ α

(
δ+bu∗5
β(u∗5)

)
. Then

R̃A = MD−1 =
aK

[
1− µ

r

]
ρ+ α

(
δ+bu∗5
β(u∗5)

)
The basic and invasion reproduction numbers are summarized in table 3.4 for both

anthrax and rabies.

3.5 Stability Analysis

Stability analysis was carried out for equilibria E0 through E5 using the Jacobian

matrix and standard methods; details are given in appendix B.1.

The extinction equilibrium, E0 is locally asymptotically stable if the zebra birth

rate is less than the zebra death rate, i.e. r < µ.

The equilibrium where only zebras and healthy zebra carcasses are present is

E1, and it exists when µ < r. E1 is locally asymptotically stable if and only if z∗ < ρ
a

and bµz∗ < ρd.

The equilibrium E2 exists when µ < r and bµz∗ > ρd. This equilibrium describes

when zebras, uninfected carcasses, and jackals are present. E2 is locally asymptotically

stable if and only if β
(
d
b

) (
bµ
d
z∗ − ρ

)
< α (d+ δ) (the same as RR < 1) and ad

bµ
< 1.

The equilibrium E3 exists when µ < r and K
(
1− µ

r

)
> ρ

a
. E3 describes when

zebras and anthrax are present. We find that E3 is locally asymptotically stable if

and only if u∗ + c∗ = µ
a

+ r
aK

[
K
(
1− µ

r

)
− ρ

a

]
< d

b
.
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The equilibrium E4 exists when ρ
a
< K

[
1− ad

br

]
& ad

bµ
> 1. This equilibrium is

where zebras, anthrax and jackals are present. We find that E4 is locally asymptotically

stable whenever β
(
d
b

)
j∗4 < d+ δ, i.e., R̃R < 1.

The equilibrium E5 is where zebras, jackals, and rabies are present and it

exists when u∗ > d
b

or equivalently when RR > 1. We discover that E5 is locally

asymptotically stable if and only if R̃A < 1 and d
b
< u∗5 <

d+
√
d2+4bµK(1−m)

2b
.

Through numerical exploration, we found a limit cycle that occurred when

u∗5 >
d+
√
d2+4bµK(1−m)

2b
. This was verified by selecting points outside and inside of the

limit cycle to see it spiral inward and outward, respectively.

Table 3.3 summarizes the existence and stability conditions of each of the seven

equilibria.
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To find the stability of E6, we took an ad hoc approach. Numerical exploration

for E6 revealed a Hopf bifurcation beyond which a limit cycle is stable. In order

to identify numerically where in the parameter space the Hopf bifurcation occurs,

we consider a two-dimensional cross-section in β0 and a as proxies for rabies and

anthrax transmission, respectively. The Hopf bifurcation curve begins as the u∗5 =

d+
√
d2+4bµK(1−m)

2b
line (indicating a Hopf bifurcation of E5), and where it crosses the

R̃A = 1 curve, it instead begins to denote a Hopf bifurcation of E6 (H(a) is the

highest value of β0 for which E6 is stable for a particular value of a). The resulting

graph is presented in figure 3.2 along with RAJ = 1, RR = 1, R̃R = 1, and R̃A = 1,

and u∗5 =
d+
√
d2+4bµK(1−m)

2b
. Recall that β0 denotes the constant coefficient as defined

in section 3.2.1, which is the horizontal axis.
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Figure 3.2: Bifurcation Graph. The vertical axis is a and the horizontal axis is
β0. The regions are generated by plotting RA = 1, RR = 1, R̃A = 1, R̃R = 1,

u∗5 =
d+
√
d2+4bµK(1−m)

2b
, and β0 = H(a). The regions are labeled with the equilibrium

that is LAS followed by a brief description of that equilibrium. The abbreviation
‘L.C.’ is short for limit cycle. The region that is in a rectangular box is blown up
as a sub-figure to see how all the curves come together. Note the curve coming in
from the top of the sub-figure is R̃R = 1, and the curve coming in from the right
is R̃A = 1 as labeled in the large plot. In addition, the sub-figure displays how the
R̃R = 1 curve goes to the right and then to the left, which shows how many a values
there are associated with one β0 value.

The equilibria that have regions of stability in figure 3.2 are E2, E4, E5, and

E6. The equilibrium E2 is where rabies and anthrax are absent and E4 is where rabies

is absent and anthrax is present. The E2 and E4 equilibria share an opposite stability
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boundary condition, that is, if RA < 1 then E2 is stable but if RA > 1 then E4 is

stable. The bold solid line (R̃R = 1 and RR = 1) is the threshold for when rabies

can persist with or without anthrax. Rabies is present in the equilibria E5 and E6.

The equilibrium E5 is where anthrax is absent and E6 is where anthrax are present.

The E5 and E6 equilibria share an opposite stability boundary condition, that is, if

R̃A < 1 then E5 is stable and if R̃A > 1 then E6 is stable. The thin solid line (RA = 1

and R̃A = 1) is the threshold for anthrax to persist in the presence and absence of

rabies. The dashed line (u∗5 =
d+
√
d2+4bµK(1−m)

2b
and β0 = H(a)) is the threshold for

when the solutions oscillate leading to a limit cycle. A limit cycle occurs when rabies

is present and anthrax is absent (E5 limit cycle) and when both anthrax and rabies

persist (E6 limit cycle). In figure 3.2, the jackal population persists in order for rabies

to exist. Therefore, equilibria E1 and E3 are not seen in figure 3.2 because jackals

are not present in those equilibria.

To understand why the curve R̃R = 1 veers off to the right and approaches

some asymptote we investigate what is happening with the parameter a. We do this

by writing R̃R = 1 as a quadratic function in terms of a. Then using the quadratic

equation we can find the values between which a must be bounded.

Consider when R̃R = 1 then

R̃R =

[
K

α
a− dK

brα
a2 − ρ

α

]
β
(
d
b

)
d+ δ

= 1

=⇒ K

α
a− dK

brα
a2 − ρ

α
=
d+ δ

β
(
d
b

)
=⇒ dK

brα
a2 − K

α
a+

ρ

α
+
d+ δ

β
(
d
b

) = 0

=⇒ a2 − br

d
a+

br

dK

[
ρ+

α (d+ δ)

β
(
d
b

) ]
= 0
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Using the quadratic formula, we define

a± =
1

2

br
d
±

√√√√(br
d

)2

− 4
br

dK

(
ρ+

α(d+ δ)

β
(
d
b

) )  . (3.27)

Therefore, 0 < a± <
br
d

and exists if and only if br
d
> 4

K

[
ρ+ α(d+δ)

β( db )

]
. Hence

R̃R > 1 if and only if a2 − br
d
a+ br

dK

[
ρ+ α(d+δ)

β( db )

]
< 0.

Note that

β

(
d

b

)
=ek−

√
(log(d/b)+log(πR2))2+q2

=β0 e
−
√

(log(d/b)+log(πR2))2+q2 .

Notice that as β0 →∞ in (3.27), the fraction α(d+δ)

β( db )
→ 0. Therefore, the asymptote

occurs at limβ0→∞ a+ = 1
2

(
br
d

+
√(

br
d

)2 − 4ρbr
dK

)
. We can rewrite the condition

br
d
> 4

K

[
ρ+ α(d+δ)

β( db )

]
, which is independent of a as below.

br

d
>

4

K

[
ρ+

α (d+ δ)

β
(
d
b

) ]
=⇒ β0 >

α (d+ δ)(
e−
√

(log(d/b)+log(πR2))2+q2
) (

brK
4d
− ρ
) .

Let A = α(d+δ)

e
−
√

(log(d/b)+log(πR2))2+q2
. When

• β0 < A
( brK4d −ρ)

then there is no a value where R̃R = 1,

• β0 = A
( brK4d −ρ)

then there is 1 a value where R̃R = 1,

• A
( brK4d −ρ)

< β0 <
A

ρ(D(E1)−1) then there are 2 a values where R̃R = 1, where

D(E1) = bµ
ρd
K(1−m), [47] and

• β0 > A
ρ(D(E1)−1) there is 1 a value where R̃R = 1.

D(E1) is the scavenger demographic reproductive number, which describes the ability

for jackals to persist in the absence of anthrax [47]. These regions can be seen from

left to right in figure 3.2 by observing the graph of H(a).
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3.6 Discussion

Section 3.6 is broken down into three subsections. First, we present and

biologically interpret what is happening in four different scenarios with limit cycles.

Then we find which equilibrium is stable when we plug in parameter values obtain

from literature, and finally, we answer the questions: does anthrax amplify rabies

and does rabies amplify anthrax?

3.6.1 Limit Cycle

In this section, four different scenarios are presented with limit cycles and we

interpret biologically what is happening in each limit cycle. We verified numerically

that there is an unstable equilibrium in the middle of the limit cycle: E6 has two

eigenvalues (complex conjugates) with a positive real part, while the other three

eigenvalues have negative real parts.
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Figure 3.3: Limit Cycle. R = 7

In figure 3.3, the zebra population starts to increase because there is plenty of

food available and they are not near their carrying capacity. Once the zebras reach

a critical mass they start to get infected quickly. That is, zebras are tripping over
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infected carcasses, which is increasing the contact rate between zebras and infected

carcasses. Therefore, all the zebras get infected and die. Then the zebra carcasses are

decaying for a time period until the jackals discover the carcasses and eat them all.

Then the jackals die out because they depleted their food source and since carcasses

are scarce they are interacting more so they all get rabies and die.
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Figure 3.4: Limit Cycle. R = 1

In figure 3.4, the maximum detection radius for jackals is decreased to R = 1.

Here the zebras are increasing in size and as some get infected the infected carcasses

start to increase as the zebras start to decrease. Then as the infected carcasses start

to increase the jackal population starts to increase because they have food. Once the

number of carcasses decrease, this drives more jackals to the same carcasses, hence

increasing the contact rate between healthy and rabid jackals. Therefore, the rabid

jackals increase but since the carcasses are gone the jackals run out of food until the

next anthrax outbreak in zebras occur.
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Figure 3.5: Limit Cycle. R = 3

In figure 3.5, the maximum detection radius for jackals was changed from seven

to three. This means that the jackals are not able to detect carcasses that are as

far away from them. There is still a similar story as described above for figure 3.3;

however, there are small changes. Once the zebras are all dead and the land is

saturated with carcasses, the jackals find the carcasses and eat them quickly. Then

as the jackals are dying, they get rabies and die.
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Figure 3.6: Limit Cycle. R = 12
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Figure 3.6 is the same story except because the detection distance is farther

(R = 12) this allows the jackals to find their own carcass so they do not have to share

once the carcasses become less abundant. Hence rabies is not the main cause of death

when the jackals can detect resources further away.

3.6.2 Numerical Analysis

Some of the parameter values were obtained from previously published papers

as listed in table 3.5, while the others were estimated in the previous chapter.

Symbol Description Value Source

K zebra carrying capacity
(zebras)

13000− 15000 [25]

r intrinsic growth rate of ze-
bras

3.06849× 10−3 [47]

µ natural zebra death rate 7.67123× 10−4 [47]

a rate zebras come into con-
tact with infected carcasses
(week · zebras)−1

1.1433× 10−5 [47]

ρ natural decomposition rate
of zebra carcasses

0.12727 [31]

α rate jackals come into con-
tact with carcasses to eat
(week · jackals)−1

0.03608 [47]

b birth rate of jackals
(week · zebras)−1

0.051811 [47]

d death rate of jackals 4.808× 10−3 [32]

δ additional death rate of jack-
als from rabies

1.4 [32]

Table 3.5: Parameter table with values. Units in 1
week

except as noted.
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When the parameter values in table 3.5 and the ρ̂ and R values from the end

of section 3.2.1 are plugged in, the equilibrium that is stable is E5, which describes

when rabies is present and anthrax is absent. To figure out where we are on the

β curve, we find u∗ by finding the root of the g function. The root occurs when

u∗ = 4.71 carcasses (recall c∗ = 0), which is on the down slope of the β function.

Hence the jackal-to-jackal encounter rate is high enough for the rabies to persist. For

these parameter values the condition x > 1
πR2 , which is assumed in section 3.3 for the

existence for E5 and E6 is certainly satisfied. When we increase a by a factor of 15,

that is, a = 1.715× 10−4 then we just make it in the region where E6 is stable: rabies

is still present, but now anthrax persists. An increase in the parameter a describes

the zebra coming into contact with anthrax more, which may be due to an increase

distance of the spore spreading around an infected zebra carcass. However, this large

of an increase seems unlikely to happen. In addition, we changed the parameter

β0 by a factor of 3.2 × 10−4 to just get into the region where E2 is stable. This

also is unlikely to happen. After changing other parameters, E5 was still the stable

equilibrium. Through numerical exploration, we conclude that we are well inside the

region of stability for E5.

3.6.3 Does anthrax amplify rabies? Does rabies amplify anthrax?

We want to answer the question: does anthrax amplify rabies? Recall RR and

R̃R and notice that the only difference is 1−m
RAJ

in RR and 1−mRAJ in R̃R.

Theorem 3.6.1. Anthrax amplifies rabies: RR < R̃R when RAJ is between 1 and

1−m
m

.

Proof.

RR < R̃R ⇐⇒
1−m
RAJ

< 1−mRAJ
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⇐⇒ 1−m < RAJ −mR2
AJ

⇐⇒ mR2
AJ −RAJ + (1−m) < 0

Solve for RAJ using the quadratic formula. Then RAJ must be between 1±|1−2m|
2m

.

Therefore, when

• m < 1
2

=⇒ 1 < RAJ <
1−m
m

or

• m > 1
2

=⇒ 1−m
m

< RAJ < 1

is satisfied then anthrax amplifies rabies.

From the ZUCJ system in [47], we know jackal presence interferes with anthrax;

therefore, we would guess that the presence of rabies interferes with the jackals.

Looking at figure 3.2 we can see that when rabies is present (R̃R > 1 and RR > 1), it

is easier to cross the threshold for anthrax persistence (the decrease in the R̃A = 1

curve). Therefore, the rabies amplifies anthrax.

3.7 Conclusion

To understand how the prevalence of zebra carcasses affects rabies we look at

the β plot in figure 3.1. When u∗ + c∗ is small (left side of maximum) the encounter

rate is low because there are not enough zebra carcasses for the jackals to find. When

u∗ + c∗ is large the encounter rate is low because each jackal has its own carcasses to

feed from. When u∗ + c∗ is in the middle, the right amount of zebra carcasses are

available to force the jackals to interact often, which causes high encounter rates as

well as the maximum encounter being achieved. When we use the parameter estimates

in section 3.6.2, equilibrium E5 is stable. Equilibrium E5 describes where anthrax is

absent and rabies is present; therefore, there are jackal to jackal interactions. Since
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jackals are present and hence interacting we want to know the number of zebra

carcasses available to understand the conspecific encounter rate. We can find u∗ by

finding the root of the g function and we get that u∗ = 4.71 carcasses (recall c∗ = 0),

which is on the down slope of the β function. Since E5 is stable, the encounter rate

is high enough for the rabies to persist in the jackal population.

One question of interest is does anthrax help or hurt rabies? When anthrax

persists at a low level, anthrax makes it easier for rabies to persist. This occurs

precisely when RAJ is between 1 and 1−m
m

regardless if m is less than or greater than

1
2
. The sub-figure in figure 3.2, shows how R̃R = 1 curve goes to the left and then

to the right. This means that when anthrax barely persists, it helps the rabies a

little bit, but if there is a lot of anthrax it hurts rabies and eventually to the point

where rabies can’t persist (figure 3.2). This invoked the question, why is it that

if anthrax is bad enough, the rabies can’t persist? The a value where rabies is no

longer able to persist is exactly where the horizontal asymptote occurs, which is at

a = 1
2

(
br
d

+
√(

br
d

)2 − 4ρbr
dK

)
. We were also able to find the β0 value that is associated

to the left most point on the R̃R = 1 curve: β0 = A
( brK4d −ρ)

.

The reason why rabies cannot persist if there is too much anthrax is because

the rabies is driven by the jackal population. The ability for rabies to persist is

dependent on the jackal population at that moment when rabies starts to break out,

which is E4 when anthrax is already present. At that point, the jackal population is

driven by food generation, so that anthrax actually increases the food supply but at

the same time it decreases the long term food supply visible in z∗4 = K
(
1− ad

br

)
, so a

negatively impacts the number of long term zebras and the jackal population also

depends on a to generate short term food. Therefore, a is depended upon twice in a

nonlinear way: once in the generation of food for the jackals and once in the impact

of reducing the long term zebra population. It is a negative quadratic dependence
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(cf. section 3.5) because of the way it reduces the zebra population. Hence if the

anthrax is transmitted too well it reduces the jackal population to the point where

rabies cannot spread.

Another question we answer is does rabies help or hurt anthrax? From figure

3.2 we can see that when rabies is present, it is easier to cross the threshold for

anthrax persistence (the decrease in the R̃A = 1 curve). This is because the jackals

help to get rid of the anthrax by eating infected carcasses, which is how the anthrax

stays in the environment. Therefore, if there are fewer jackals present then anthrax is

not getting eaten and the anthrax is left unhindered to spread. Therefore, rabies is

helping anthrax and the more rabies present means the less anthrax there needs to

be for it to persist.

In addition, when β0 is high enough or when rabies is contagious enough (figure

3.2), this leads to a destabilizing effect which causes a limit cycle because the jackals

are able to come into contact with each other frequently. However, if the anthrax

spreads well then the rabies will get suppressed and then there will not be a limit

cycle. The limit cycles only exist when rabies persists.

One limitation of the model that we have seen in [47] is that the zebra carcasses

are representative of all the food that jackals consume. Another limitation is that

the encounter rate between jackals would be higher because we only consider the

interactions between jackals at carcasses. However, jackals are social animals, living

in groups [4]. Therefore, there would be more interaction between them than what

our β function captures specifically when the number of carcasses is zero.

For future work, the jackals can be modeled as facultative scavengers meaning

they have an alternative food source to survive since the carcasses are not required for

jackal survival. In addition, we can add an obligate scavenger, like the vulture, to the

system to see how jackals and vultures compete for carcasses. According to the study
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[48], the authors discovered the absence of vultures at carcasses was associated with

longer carcass decomposition times, more individual mammals at carcasses, mammals

spending more time at carcasses, and mammals coming into contact with one another

more frequently. In our case, we could see if the presence of vultures lowers the

jackal-to-jackal encounter rate leading to a decrease in the ability of rabies to spread.
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CHAPTER 4

Competition between Obligate and Facultative Scavengers

4.1 Introduction

Every year there is an anthrax (caused by Bacillus anthracis) outbreak among

the zebra population in Etosha National Park. When zebras die from anthrax a

localized infection zone (LIZ) is established. This is the zone in which the anthrax is

residing in the soil in a three meter radius around the carcass [23]. The bacteria can

survive in the soil for up to four years, which infects zebras that graze near the previous

carcass sites by pawing at the soil, and hence kicking up the bacteria onto the grasses

they eat [6]. Zebra carcasses provide a place for scavengers like jackals and vultures

to come into contact with each other. Jackals are facultative scavengers meaning

they do not rely only on carrion for food: they eat insects, small animals, and fruit

as well [4]. Vultures are the only obligate scavengers and are able to rapidly consume

large carcasses [27]. Avian scavengers are able to locate carrion easier than terrestrial

scavengers because they fly and have keen eyesight, which give them a competitive

advantage over terrestrial scavengers [27, 49]. However, mammalian scavengers have

a competitive advantage over avian scavengers because they have a larger body size

and greater strength [50]. In [50], the authors observed that mammalian scavengers

are diurnal and therefore, mammalian and avian scavengers are actively searching for

food at the same time. They further noted that avian scavengers will arrive at the

carcasses first, but a mammalian scavenger can displace them. Likewise, the authors

in [51] reported that the time of the day the jackals, hyaenas, lions, or vultures arrived

at the kill sites did not have any significant variation.
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There are two different types of competition: exploitative and interference.

Exploitative competition occurs when species compete for the same limited resource,

and interference competition is when one species depletes another species’ resources

by interference such as fighting. In [52], Jensen provides models of pure exploitative

and pure interference competition, finds the equilibria of each model, and then tests

the models against real data. Jensen notes that many different model forms are

possible to describe these two different forms of competition. The Lotka-Volterra

model is a basic example of interference, while a similar model can be used to describe

exploitative competition with the difference that each species impacts the carrying

capacity of the other species. The equilibria in both models are the same. Next,

the two models are compared with real data and the models both fit the data well

with subtle differences. Jensen argues that this is important because the nature of

competition requires the study of interactions and cannot be observed with data only.

In this paper, we develop two models: one describing exploitative competition

and another describing interference competition. We discuss the exploitative model

development in Section 4.2. In Section 4.3, we identify equilibria and when each

equilibrium exists for the exploitative model. In Section 4.4, we find the basic

reproductive numbers of anthrax and the demographic numbers of vultures. In

Section 4.5, we find stability conditions for each equilibrium. In Section 4.6, parameter

estimates are given and finally results for the exploitative model are in Section 4.7.

Then we switch and discuss the model development of the interference model in

Section 4.8. Next, we find the existence and stability conditions of the equilibria in

Sections 4.9 and 4.11, respectively. Finally, we end with results for the interference

model and tie together the two models.
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4.2 Model Development: Exploitative Competition

In this paper the deterministic mathematical model uses a system of ordinary

differential equations to describe exploitative competition between jackals and vultures

for zebra carcasses. The populations considered in this model are the living zebras,

the zebra carcasses from natural death, the zebra carcasses due to anthrax induced

death, jackals, and vultures, (z, u, c, j, v, respectively). The zebra population has a

logistic growth term and is removed by natural death (µz) or by disease-induced death

(acz) from grazing near an anthrax infected carcass site [6]. The carcasses (healthy or

infected) are either naturally decomposing at a rate ρ or are being eaten by jackals

or vultures at a rate of α. The jackals birth rate bj depends on how many carcasses

that are present in the environment and they die at a natural death rate of dj. In

addition, since jackals are facultative scavengers, the S term captures an alternative

food source for the them. Finally, the vultures birth rate bv strictly depends on the

number of zebra carcasses available and the vultures die at a natural death rate of

dv. Jackals do not attack living zebras; they only scavenge on the zebra carcasses

or eat other food sources such as insects, fruit, small mammals, and scavenge on

lion and spotted hyena kills [4]. We assume that vultures only scavenge on zebra

carcasses, which is representative of the vultures’ food sources. Therefore, we assume

that vultures depend solely on the zebra carcasses for food regardless of the carcass

infection status. A summary of the parameters in equations (4.1)-(4.5) can be found

in Table 4.1.

z′ = rz
(

1− z

K

)
− µz − acz (4.1)

u′ = µz − ρu− αjju− αvvu (4.2)

c′ = acz − ρc− αjjc− αvvc (4.3)
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j′ = bjj (u+ c)− djj + S (4.4)

v′ = bvv (u+ c)− dvv (4.5)

Symbol Definition

K carrying capacity for zebra population (zebras)

r intrinsic growth rate of zebras

µ natural zebra death rate

a rate zebras come into contact with anthrax infected
carcasses (time · zebras)−1

ρ natural decomposition rate of carcasses

αj rate jackals come into contact w/ carcasses to eat
(time · jackals)−1

bj birth rate of jackals (time · zebras)−1

dj natural death rate of jackals

αv rate vultures come into contact w/ carcasses to eat
(time · vultures)−1

bv birth rate of vultures (time · zebras)−1

dv natural death rate of vultures

S alternative food source for jackals (jackal/time)

Table 4.1: Parameter table for the equations (4.1)–(4.5). Units in 1
time

except as
noted.

4.3 Existence of Equilibria: Exploitative Model

In this section, we identify five equilibria in our model.

Since the jackals’ ability to survive does not depend only on carcasses they will

never become extinct. Therefore, we do not have an extinction equilibrium. We have

the jackal-only equilibrium E0

(
0, 0, 0, S

dj
, 0
)
, which always exists. The equilibrium

E1

(
K
(

1− µ

r

)
,
µK

(
1− µ

r

)
ρ+ αjj∗1

, 0, j∗1 , 0

)
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describes when there is no disease or vultures present, which exists when µ < r (see

Appendix C.1 for the expression of j∗1).

The equilibrium

E2

(
ρ+ αjj

∗
2

a
,
µ

a
,
r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

)
, j∗2 , 0

)
,

which exists when
ρ+αjj

∗
2

a
< K

(
1− µ

r

)
describes when anthrax is present and vultures

are absent (see Appendix C.1 for the expression of j∗2 .)

The equilibrium where only anthrax is absent is

E3

K (1− µ

r

)
,
dv
bv
, 0,

S

dj − bj
(
dv
bv

) , 1

αv

(
µbv
dv
K
(

1− µ

r

)
− (ρ+ αjj

∗
3)

) ,

which exists when dv
bv
<

dj
bj
, and µbv

dv
K
(
1− µ

r

)
> ρ+ αjj

∗
3 .

The equilibrium where all components are present is

E4

K (1− adv
rbv

)
,
µ

a
,
dv
bv
− µ

a
,

S

dj − bj
(
dv
bv

) , 1

αv

(
aK

(
1− adv

rbv

)
− (ρ+ αjj

∗
4)

) ,

which exists when dv
bv
<

dj
bj
, adv
rbv

< 1, adv
µbv

> 1, and aK
(

1− adv
rbv

)
> ρ+ αjj

∗
4 .

In the next section we will show that for both E3 and E4 the competition

condition dv
bv
<

dj
bj

is implied by the last condition (µbv
dv
K
(
1− µ

r

)
> ρ + αjj

∗
3 and

aK
(

1− adv
rbv

)
> ρ+ αjj

∗
4 , respectively) and can thus be discarded.

4.4 Reproductive Numbers

The basic reproductive number (BRN) is defined as the average number of

secondary infections that is generated by one infected individual in a population of

susceptible individuals, which can be calculated using the next generation operator

method as in [28]. When the BRN is less than one, the disease free equilibrium is

stable and when the BRN is greater than one, the endemic equilibrium is stable. The
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demographic reproductive number (DRN) is the birth rate divided by death rate of

the scavengers or the birth rate multiplied by how long they reproduce (scavengers

reproduce their entire lives, so it is the reciprocal of the death rate). Similarly to the

BRN, when the DRN is less than one, the scavenger will die out, and when the DRN

is greater than one, the scavenger persists.

In the single-scavenger model of [47], there are two disease free equilibria: one

without scavengers (E1[47]) and one with scavengers (E2[47]). The basic reproductive

number of anthrax in the absence of scavengers is RZ = aK(1−m)
ρ

, (note: m = µ
r
)

where the average infection rate is aK (1−m) and the average duration of infection is

1
ρ
. The basic reproductive number of anthrax in the presence of scavengers is RJ = ad

bµ
.

Here ad
b

is the average infection rate and the average length of infection is 1
µ
.

We use the next generation operator method as described in [28]. The disease

free equilibrium without vultures is E1. First, we find the BRN of anthrax in the

absence of vultures. That is,

X = {Z,U, J, V } Z = {C}

A =
∂

∂C

(
dC

dt

) ∣∣∣∣
E1

= aK
(

1− µ

r

)
− (ρ+ αjj

∗
1)

RAO =
aK

(
1− µ

r

)
ρ+ αjj∗1

(4.6)

Next, we find the BRN of anthrax in the presence of vultures. The disease free

equilibrium in the presence of vultures is E3.

X = {Z,U, J, V } Z = {C}

A =
∂

∂C

(
dC

dt

) ∣∣∣∣
E3

= aK
(

1− µ

r

)
− µbv

dv
K
(

1− µ

r

)

RAV = aK
(

1− µ

r

) dv
µbv

1

K
(
1− µ

r

) =
adv
µbv
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The DRN of vultures in the absence of anthrax is

DV (E1) =
bv(u

∗ + c∗)

dv

∣∣∣∣
E1

=
bv
dv

µK
(
1− µ

r

)
ρ+ αjj∗1

(4.7)

The DRN of vultures in the presence of anthrax is

DV (E2) =
bv(u

∗ + c∗)

dv

∣∣∣∣
E2

=
bv
dv

(
µ

a
+

r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

))
=
bv
dv

(
r

a

(
1− z∗2

K

))
=
rbv
adv

(
1− ρ+ αjj

∗
2

aK

)
We see how one of the existence conditions for E3 is dv

bv
<

dj
bj

, which insures

j∗3 > 0, but we will show that DV (E1) > 1 implies dv
bv
<

dj
bj
.

Theorem 4.4.1. Let x =
dj
bj

, y = dv
bv

, and m = µ
r
. Then DV (E1) > 1 implies y < x.

Proof. Note that we can rewrite dv
bv
<

dj
bj

as y < x, and we can rewrite DV (E1) > 1

as y < µK(1−m)
ρ+αjj∗1

. The inequality (4.8),

F <
1

2

[
(F +H) +

√
(F +H)2 +GH

]
, (4.8)

with G,H > 0, trivially holds. Note that F =
µz∗1
αjx
− ρ

αj
, G = 4ρ

αj
, and H = S

dj
. Now,

F <
1

2

[
(F +H) +

√
(F +H)2 +GH

]
⇐⇒ µz∗1

αjx
− ρ

αj
<

1

2

µz∗1
αjx
− ρ

αj
+
S

dj
+

√(
µz∗1
αjx
− ρ

αj
+
S

dj

)2

+ 4
ρS

αjdj

 .
⇐⇒ µz∗1

αjx
− ρ

αj
< j∗1

⇐⇒ µK(1−m)− xρ < αjxj
∗
1

⇐⇒ µK(1−m)

ρ+ αjj∗1
< x
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Therefore, we have just shown that µK(1−m)
ρ+αjj∗1

< x. Therefore,

y <
µK(1−m)

ρ+ αjj∗1
< x

shows that y < µK(1−m)
ρ+αjj∗1

implies y < x. Hence we only need to write DV (E1) > 1 as

an existence condition for E3.

Next, we do a similar proof with the existence conditions for E4.

Theorem 4.4.2. Let x =
dj
bj

, y = dv
bv

, and m = µ
r
. Then DV (E2) > 1 implies y < x.

Proof. Note that we can rewrite dv
bv
<

dj
bj

as y < x, and we can rewrite DV (E2) > 1

as y < r
a

(
1− ρ+αjj

∗
2

aK

)
. The inequality (4.9),

F <
1

2

[
F +
√
F 2 +G

]
, (4.9)

with G > 0, trivially holds. Let F = 1
αj

(
aK

(
1− a

r
x
)
− ρ
)
, and G = 4a2KS

αjbjr
. Now,

F <
1

2

[
F +
√
F 2 +G

]
⇐⇒

 1

αj

(
aK

(
1− a

r
x
)
− ρ
)

+

√(
− 1

αj

(
aK

(
1− a

r
x
)
− ρ
))2

+ 4
a2KS

αjbjr


>

2

αj

[
aK

(
1− a

r
x
)
− ρ
]

⇐⇒ αjj
∗
2 > aK

(
1− a

r
x
)
− ρ

r

a

(
1− ρ+ αjj

∗
2

aK

)
< x

Therefore, r
a

(
1− ρ+αjj

∗
2

aK

)
< x. Therefore,

y <
r

a

(
1− ρ+ αjj

∗
2

aK

)
< x

shows that y < r
a

(
1− ρ+αjj

∗
2

aK

)
implies y < x. Hence we can exclude y < x as an

existence condition for E4.
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4.5 Stability Analysis

All calculations for this section are shown in Appendix C.2.

The equilibrium E0

(
0, 0, 0, S

dj
, 0
)

always exists, and is locally asymptotically

stable (LAS) when the zebra birth rate is less than the zebra death rate, i.e. r < µ.

The equilibrium

E1

(
K
(

1− µ

r

)
,
µK

(
1− µ

r

)
ρ+ αjj∗1

, 0, j∗1 , 0

)

exists when µ < r and is LAS when RAO =
aK(1−µr )
ρ+αjj∗1

< 1 and DV (E1) =
µbv
dv

K(1−µr )
ρ+αjj∗1

<

1.

The equilibrium

E2

(
ρ+ αjj

∗
2

a
,
µ

a
,
r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

)
, j∗2 , 0

)

exists when
aK(1−µr )
ρ+αjj∗2

> 1, and is LAS when
aK(1−advrbv

)
ρ+αjj∗2

< 1. We relate this latter

stability condition of E2 to DV (E2) < 1 below in Theorem 4.5.1.

Theorem 4.5.1. rbv
adv

(
1− ρ+αjj

∗
2

aK

)
< 1 if and only if

aK(1−advrbv
)

ρ+αjj∗2
< 1.

rbv
adv

(
1− ρ+ αjj

∗
2

aK

)
< 1 ⇐⇒ − ρ+ αjj

∗
2

aK
<
adv
rbv
− 1

⇐⇒ ρ+ αjj
∗
2 > aK

(
1− adv

rbv

)

⇐⇒
aK

(
1− adv

rbv

)
ρ+ αjj∗2

< 1

Therefore, by Theorem 4.5.1 that means DV (E2) < 1 can replace
aK(1−advrbv

)
ρ+αjj∗2

< 1 when

we talk about stability conditions for E2. Hence we have proven that the above

conditions are required for E2 to be LAS, and numerical analysis indicates it is the

only condition.
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The equilibrium

E3

K (1− µ

r

)
,
dv
bv
, 0,

S

dj − bj
(
dv
bv

) , 1

αv

(
µbv
dv
K
(

1− µ

r

)
− (ρ+ αjj

∗
3)

) ,

exists when dv
bv
<

dj
bj
, and

µbv
dv

K(1−µr )
ρ+αjj∗3

> 1, and is LAS when RAV = adv
µdv

< 1.

The equilibrium where all components are present is

E4

K (1− adv
rbv

)
,
µ

a
,
dv
bv
− µ

a
,

S

dj − bj
(
dv
bv

) , 1

αv

(
aK

(
1− adv

rbv

)
− (ρ+ αjj

∗
4)

) ,

which exists when dv
bv
<

dj
bj
, RAV = adv

µbv
> 1, and

aK(1−advrbv
)

ρ+αjj∗4
> 1. The stability for E4

was determined through numerical exploration. We found that whenever E4 existed

it is always LAS.

Furthermore, notice that the stability condition for E1 is similar to the existence

condition of E2. Numerically, we checked to see if j∗1 = j∗2 when RAO = 1 and the

two j-values were equal. We also did this to see if j∗1 = j∗3 when DV (E1) = 1 and for

j∗2 = j∗4 when DV (E2) = 1, which both also held.

Numerical explorations indicate that all LAS equilibria are in fact globally

asymptotically stable. Existence and stability conditions are summarized in Table

4.3 and Table 4.6 has the conditions written using the BRNs and DRNs.
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4.6 Parameter Estimates

Some of the parameter values were obtained from previously published papers

as listed in Table 4.4, while the others were previously estimated in [47]. Since jackals

are facultative scavengers and can find food from other sources besides carrion, we

need to estimate bj , αj , and S. In [47], it was assumed that zebras were representative

of all the jackals’ food. However, we make this distinction of jackals being facultative

scavengers now. In [53], the diet of a golden jackal was studied and the authors

obtained data of the stomach contents. They report that 55% of the weight of the

stomach content was from carrion and viscera. This means 45% is from some other

food source.

From [47], we use that jackals eat 1.42 pounds of food per day. Since 55% of

the stomach food content is carrion [53], we say 55% of the 1.42 pounds of food per

day is the amount of food from carrion, which is 0.781 pounds per day. Now, we find

how many days it takes a jackal to eat a zebra carcass:

275 lbs

zebra
· day

0.781 lbs
≈ 352.1126 days

zebra
≈ 50.3018 weeks

zebra
.

Therefore, αj = 1/50.3018 jackal · week. On average, 5.4 pups are born per year per

jackal pair [32]. Therefore, during the 352.1126 days one jackal eating a zebra carcass

produces

1 year

365 days
· 352.1126 days

zebra
· 2.7 baby jackals

year
=

2.604 baby jackals

zebra
.

Now,

bj =
2.604 jackals

zebra
· 1

50.3018 jackal · week
=

0.0517808

zebra · week
.
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Symbol Description Value Source

K zebra carrying capacity (zebras) 13000− 15000 [25]

r intrinsic growth rate of zebras 3.06849× 10−3 [47]

µ natural zebra death rate 7.67123× 10−4 [47]

a rate zebras come into contact with infected
carcasses (week · zebras)−1

1.1433× 10−5 [47]

ρ natural decomposition rate of zebra carcasses 0.12727 [31]

αj rate jackals come into contact with carcasses
to eat (week · jackals)−1

0.01988 This study

bj birth rate of jackals (week · zebras)−1
0.0517808 This study

dj death rate of jackals 4.808× 10−3 [32]

αv rate vultures come into contact with carcasses
to eat (week · vultures)−1

0.01927 [27]

bv birth rate of vultures (week · zebras)−1
0.00959 [47]

dv natural death rate of vultures 9.615× 10−4 [33]

S alternative food source for jackals
(jackal/week)

6.144× 10−4 This study

Table 4.4: Parameter table with values. Units in 1
week

except as noted.

Next we find S, which is the alternative food source and makes up 45% of the

weight of the stomach content of a jackal [53]. From E0, we know that j∗0 = S
dj

and we

know the value for dj. Therefore, we can estimate j∗0 to be the observed jackal density

multiplied by the 45% of food from non-scavenged sources. We use the jackal density

given in [8], which is 0.2 km−2. The area of Etosha National Park is 22,915 km2 [4].

Hence

j∗0 =
0.2 jackal

km2 × 22, 915 km2 × 0.45× 1.42 lbs = 0.1278 jackal · lbs.

Then S is

S = 0.1278 jackal · lbs× 4.808× 10−3

week
=

6.144× 10−4 jackal · lbs

week
.
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When the parameter values from Table 4.4 are plugged into the system we

get that the E1 equilibrium is LAS. This equilibrium represents the disease free

equilibrium without vultures. If we increase bv
dv

by a factor of 1.09, which is the same

as increasing bv by a factor of 1.09, we get that E3 is LAS. E3 is where anthrax is

absent but vultures are present.

If we increase the parameter a by a factor of 723, then E2 is LAS, which is where

anthrax is present, and vultures are absent. This is a significantly large increase,

which seems unlikely to happen in real life. Biologically, if a is increased then that

means the zebras are coming into contact more often with anthrax laden carcasses.

4.7 Results: Exploitative Model

We set out to answer the question how does the presence of jackals affect the

presence of vultures? Using the previous work in [47] for scavengers (we specifically

work with vultures here and add subscript v’s), the demographic reproduction number

for vultures in the absence of anthrax and jackals is

D(E1[47]) =
bvµ

ρdv
K
(

1− µ

r

)
,

and the DRN of vultures in the absence of anthrax but in the presence of jackals is

DV (E1) =
bvµ

(ρ+ αjj∗1) dv
K
(

1− µ

r

)
.

Notice that the only difference is in the denominator of D(E1[47]) and DV (E1). Since

αjj
∗
1 > 0, we can see that D(E1[47]) > DV (E1). This means that in the absence of

anthrax, the vultures are able to persist better in the absence of jackals because in

DV (E1), we can see how jackals are eating the carcasses, which in turns lowers the

birth rate for the vultures because there are fewer carcasses available to eat.
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From [47], the DRN of vultures in the presence of anthrax, absence of jackals is

D(E3[47]) =
rbv
adv

(
1− ρ

aK

)
,

and the DRN of vultures in the presence of anthrax and jackals is

DV (E2) =
rbv
adv

(
1− ρ+ αjj

∗
2

aK

)
.

Here the difference is in the numerator and αjj
∗
2 > 0. Therefore, D(E3[47]) > DV (E2).

In the presence of anthrax, the vultures persist better without jackals present because

again we can see how jackals are helping to get rid of the carcasses, which decreases

the food source for vultures, lowering vulture birth rate.

In setting out to answer the question if anthrax affects vultures, we compare v∗3

and v∗4 to each other. Recall that

v∗3 =
1

αv

(
µbv
dv
K
(

1− µ

r

)
− (ρ+ αjj

∗
3)

)
and we can rewrite v∗4 as

v∗4 =
1

αv

(
µbv
dv
RAVK

(
1−RAV

µ

r

)
− (ρ+ αjj

∗
3)

)
, (4.10)

and notice that j∗3 = j∗4 . Furthermore, (4.10) is quadratic in RAV , where the linear

term has a positive coefficient and the quadratic term has a negative coefficient, so it

is an upside down parabola. Consider

f(RAV ) = µKRAV −
µ2K

r
(RAV )2 . (4.11)

The vertex of this parabola occurs at
(
r
2µ
, Kr

4

)
. The roots of (4.11) occur at x = 0

and x = r
µ
. We know that r

µ
> 1 since µ

r
< 1 and therefore, we know 1 ∈

(
0, r

µ

)
We

have two cases for when v∗3 > v∗4. That is,

• if r
2µ
< 1, then 1 lies to the right of the vertex and that means the f(1) < Kr

4
.

Therefore, the function value gets lower as you move to the right, thus v∗4 < v∗3
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regardless of what the parameter values are as long as the existence criteria

hold.

• If r
2µ
> 1, then 1 lies to the left of the vertex. The function value is initially higher

than f(1) as you move to the right then after Kr
4

is reached the function values

start to decrease again. Because of symmetry of a parabola f(1) = f
(
µ
r
− 1
)
.

All values after RAV = µ
r
− 1 is when v∗4 < v∗3.

In summary, if µ
r
> 1

2
or RAV >

r
µ
− 1 then the vultures are hurt by the presence of

anthrax.

In order for the vultures to survive we need dv
bv
<

dj
bj

to hold. This means that

the vultures have to beat the jackals in the competition. The vultures beating the

jackals does not affect the jackal survival, but it does affect the vulture survival.

4.8 Model Development: Incorporate Interference Competition

All parameter values are the exact same as previously along with equations

(4.12) and (4.16). The difference is that this model incorporates the effect vultures

have on jackals when competing for zebra carcasses through the parameter κ. We

assume that vultures will be at the carcasses first since they can see carcasses from

long distances, and then the jackals will come and displace due to their size. Since

jackals are facultative scavengers and do not require carcasses for survival, the jackals

will not be at risk of becoming extinct. When k = 0 this means that there is no

competition between the jackals and vultures for carcasses. When k approaches

infinity, the jackals do not get to eat any of the zebra carcasses. When this happens,

the jackals decouple: j′ = S − djj, existing independently from any other class. A

summary of the parameters in equations (4.12)-(4.16) can be found in Table 4.5.
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z′ = rz
(

1− z

K

)
− µz − acz (4.12)

u′ = µz − ρu− αjju

1 + kv
− αvvu (4.13)

c′ = acz − ρc− αjjc

1 + kv
− αvvc (4.14)

j′ =
bjj (u+ c)

1 + kv
− djj + S (4.15)

v′ = bvv (u+ c)− dvv (4.16)

Symbol Definition Units

K carrying capacity for zebra population (zebras)

r intrinsic growth rate of zebras

µ natural zebra death rate

a rate zebras come into contact with anthrax
infected carcasses

(time · zebras)−1

ρ natural decomposition rate of carcasses

αj rate jackals come into contact w/ carcasses
to eat

(time · jackals)−1

bj birth rate of jackals (time · zebras)−1

dj natural death rate of jackals

αv rate vultures come into contact w/ carcasses
to eat

(time · vultures)−1

bv birth rate of vultures (time · zebras)−1

dv natural death rate of vultures

S alternative food source for jackals (jackal/time)

k extent vultures interfere with jackals (vultures)−1

Table 4.5: Parameter table. Units in 1
time

except as noted.

4.9 Equilibria: Interference Competition

For this model we identified five equilibria. The equilibria E0, E1, E2 are

exactly the same as in the exploitative model (equations (4.1)-(4.5)) and therefore,
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the existence conditions remain the same. In the interference model we get two E3

and E4 equilibria. We notate the two E3 equilibria as E3+ and E3−. Similarly for E4,

we write E4+ and E4−. More detailed calculations on how E3 and E4 are found are

in Appendix C.3.

The two different E3 equilibria are

E3+

K (1− µ

r

)
,
dv
bv
, 0,

S

dj − bj
(

dv
bv(1+kv∗3+)

) , v∗3+
 ,

which exists when dv
bv
<

dj
bj

(1 + kv∗3+), or DV (E1) > 1, and

E3−

K (1− µ

r

)
,
dv
bv
, 0,

S

dj − bj
(

dv
bv(1+kv∗3−)

) , v∗3−
 ,

which exists when dv
bv
<

dj
bj

(1 + kv∗3−), and DV (E1) < 1.

In addition, the two E4 equilibria are

E4+

K (1− adv
rbv

)
,
µ

a
,
dv
bv
− µ

a
,

S

dj − bj
(

dv
bv(1+kv∗4+)

) , v∗4+
 ,

which exists when 1 < RAV <
1
m

, and either dv
bv
<

dj
bj

(1 + kv∗4+), or DV (E2) > 1, and

E4−

K (1− adv
rbv

)
,
µ

a
,
dv
bv
− µ

a
,

S

dj − bj
(

dv
bv(1+kv∗4−)

) , v∗4−
 ,

which exists when 1 < RAV <
1
m

, dv
bv
<

dj
bj

(1 + kv∗4−), and DV (E2) < 1. The existence

conditions that take the form dv
bv
<

dj
bj

(1 + kv∗3/4) for E3 and E4 can be written in a

different way and the next section goes into detail with how we can replace those two

conditions.
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4.9.1 Existence

Next, we determine the left most boundary of the interference model where

there are two E3 equilibria.

B2 − 4AC = 0 ⇐⇒ x =
αvry

αvr ± 2r
√
αvk∇ + aKkr − rkρ− a2Kky

(4.17)

Let F = y
x
− 1, G = k

αv

(
µ
y
z∗3 − ρ

)
, and H = ∇k

αv
, where ∇ =

αjS

dj
. Now,

y

x
− 1 ≤ kv∗3

y

x
− 1 ≤ −k

2

(
1

k

(
1− y

x

)
− 1

αv

(
µ

y
z∗3 − ρ

))
± k

2

√[
1

k

(
1− y

x

)
− 1

αv

(
µ

y
z∗3 − ρ

)]2
− 4

αvk

(
µ

y
z∗3 − ρ

)(y
x
− 1
)
− 4∇
αvk

F ≤ 1

2

F +G±

√[(y
x
− 1
)

+
k

αv

(
µ

y
z∗3 − ρ

)]2
− 4FG− 4H


F ≤ 1

2

(
F +G±

√
(F +G)2 − 4FG− 4H

)
F −G ≤ ±

√
(F −G)2 − 4H (4.18)

In order for the right hand side of (4.18) to be real, we require (F −G)2 > 4H, from

which

|F −G| > 2
√
H. (4.19)

If F > G, with H > 0 then (4.18) can never hold. Therefore, we require F < G for

(4.18) to be true, and (4.19) becomes

F ≤ G− 2
√
H. (4.20)

Thus if (4.20), the left hand side of (4.18) is negative and the right hand side of a

real number. Trivially, (4.18) holds for the positive sign on the right hand side. Now,

for v∗3−, we multiply (4.18) by negative one to get

G− F ≥
√

(G− F )2 − 4H, (4.21)
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and this inequality is true. Therefore, the true boundary curve arises not from the

original condition, y < x(1 + kv3), but from (4.20). Furthermore, we show that

F = G− 2
√
H implies x = αvy2

(αv−ρk−2
√
αvk∇)y+kµz∗3

. Now,

F = G− 2
√
H

⇐⇒ y

x
− 1 =

k

αv

(
µ

y
z∗3 − ρ

)
− 2

√
∇k

αv

⇐⇒ y

x
− kµz∗3

αvy
= 1− 2

√
∇k

αv
− kρ

αv

⇐⇒ αvy
2 = x

[
αvy

(
1− 2

√
∇k

αv
− kρ

αv

)
+ kµz∗3

]

⇐⇒ x =
αvy

2

αvy
(

1− 2
√

∇k
αv
− kρ

αv

)
+ kµz∗3

⇐⇒ x =
αvy

2(
αv − ρk − 2

√
∇kαv

)
y + kµz∗3

(4.22)

Similarly, we determine the left most boundary of the interference model where

there are two E4 equilibria.

B2 − 4AC = 0 ⇐⇒ x =
αvry

αvr ± 2r
√
αvk∇ + aKkr − rkρ− a2Kky

(4.23)

Let F = y
x
− 1, G = k

αv
(az∗4 − ρ), and H = ∇k

αv
, where ∇ =

αjS

dj
. Now,

2
(y
x
− 1
)
≤ kv∗4

⇐⇒ 2
(y
x
− 1
)
≤
(y
x
− 1
)

+
k

αv
(az∗4 − ρ)

± k

√[
−1

k

(y
x
− 1
)
− 1

αv
(az∗4 − ρ)

]2
− 4

αvk
(az∗4 − ρ)

(y
x
− 1
)
− 4∇k

αv

⇐⇒ 2F ≤ F +G±

√[(y
x
− 1
)

+
k

αv
(az∗4 − ρ)

]2
− 4FG− 4H

⇐⇒ 2F ≤ F +G±
√

(F +G)2 − 4FG− 4H

⇐⇒ F −G ≤ ±
√

(F −G)2 − 4H (4.24)
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For the right hand side to be a real we require (F −G)2 > 4H if and only if

|F −G| > 2
√
H. (4.25)

If F > G, with H > 0 then (4.24) can never be true. Therefore, we need F < G for

(4.24) to be true, and (4.25) becomes

F ≤ G− 2
√
H. (4.26)

Thus if (4.26) holds, then the left hand side of (4.24) is negative and the right hand

side of (4.24) is real. Trivially, (4.24) holds for the plus sign on the right hand side.

For v4−, we multiply through by negative one to get

F −G ≤ −
√

(F −G)2 − 4H ⇐⇒ G− F ≥
√

(G− F )2 − 4H

so this inequality is true. Therefore, the true boundary curve arises from the condition

given by (4.25). Now, we show that F = G−2
√
H implies x = αvry

αvr±2r
√
αvk∇+aKkr−rkρ−a2Kky

.

F = G− 2
√
H

⇐⇒ y

x
− 1 =

k

αv
(az∗4 − ρ)− 2

√
∇k

αv
+ 1

⇐⇒ 1

x
=

(
1− 2

√
∇k
αv

+ aKk−kρ
αv

)
αvr − a2Kky

αvry

⇐⇒ x =
αvry

αvr − 2r
√
αv∇k + aKkr − rkρ− a2Kky
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Figure 4.1: Bifurcation Graph for the exploitative competition model (4.1)–(4.5).
The vertical axis is a and the horizontal axis is bv

dv
. The regions are created by plotting

the basic reproductive and demographic numbers when they are equal to 1. The
regions are labeled with the corresponding LAS equilibrium. The parameter values
used are in Table 4.4.

93



E
q
u
il

ib
ri

u
m

E
x
is

te
n
ce

L
A

S

E
0
(0
,0
,0
,
S d
j
,0

)
al

w
ay

s
r
<
µ

E
1

( K
( 1
−

µ r

) ,µK
(1
−
µ r
)

ρ
+
α
j
j∗ 1
,0
,j
∗ 1
,0

)
µ
<
r

R
A
O
<

1
&

D
V

(E
1
)
<

1

E
2

( ρ a
+

α
j a
j∗ 2
,
µ a
,
r
a
K

[ K
( 1
−

µ r

) −ρ
+
α
j
j∗ 2

a

] ,j
∗ 2
,0
)

R
A
O
>

1
D
V

(E
2
)
<

1

E
3
+

  K
( 1
−

µ r

) ,d v b v
,0
,

S

d
j
−
b j

(
d
v

b
v
(1

+
k
v
∗ 3
+
)) ,v

∗ 3
+

  
y
<
x

(1
+
k
v 3

+
)

R
A
V
<

1

E
3
−

  K
( 1
−

µ r

) ,d v b v
,0
,

S

d
j
−
b j

(
d
v

b
v
(1

+
k
v
∗ 3
−
)) ,v

∗ 3
−

  
y
<
x

(1
+
k
v 3

+
)

&
D
V

(E
1
)
<

1
n
ev

er

E
4
+

  K
( 1
−

a
d
v

r
b v

) ,
µ a
,
d
v

b v
−

µ a
,

S

d
j
−
b j

(
d
v

b
v
(1

+
k
v
∗ 4
+
)) ,v

∗ 4
+

  
1
<
R
A
V
<

1 m
&

y
<
x

(1
+
k
v 4

+
)

w
h
en

ev
er

it
ex

is
ts

E
4
−

  K
( 1
−

a
d
v

r
b v

) ,
µ a
,
d
v

b v
−

µ a
,

S

d
j
−
b j

(
d
v

b
v
(1

+
k
v
∗ 4
−
)) ,v

∗ 4
−

  
1
<
R
A
V
<

1 m
,
D
V

(E
2
)
<

1
&
y
<
x

(1
+
k
v 4

+
)

n
ev

er

T
ab

le
4.

6:
S
u
m

m
ar

y
of

th
e

ex
is

te
n
ce

an
d

lo
ca

l
st

ab
il
it

y
fo

r
th

e
fi
ve

eq
u
il
ib

ri
a

fo
r

th
e

in
te

rf
er

en
ce

co
m

p
et

it
io

n
m

o
d
el

(4
.1

2)
–(

4.
16

).
R
A
O

=
a
K

(1
−
µ r
)

ρ
+
α
j
j∗ 1

,
R
A
V

=
a
d
v

µ
b v

,
D
V

(E
1
)

=
b v d
v

µ
K

(1
−
µ r
)

ρ
+
α
j
j∗ 1

,
an

d
D
V

(E
2
)

=
r
b v
a
d
v

( 1
−

ρ
+
α
j
j∗ 2

a
K

) .

94



4.10 Reproductive Numbers

The reproductive and demographic numbers of the interference model reduce

to the same expressions as in the exploitative model.

The basic reproductive number of anthrax in the absence of vultures, RAO is

easy to see how it is the same as equation (4.6). Next, we find the BRN of anthrax

in the presence of vultures. The disease free equilibrium in the presence of vultures is

E3.

X = {Z,U, J, V } Z = {C}

A =
∂

∂C

(
dC

dt

) ∣∣∣∣
E3

= az∗3 − ρ−
αjj

∗
3

1 + kv∗3
− αvv∗3

= ak
(

1− µ

r

)
− ρ− αjS

dj (1 + kv∗3)− bj dvbv
− αvv∗3

Then

RAV 2 =
aK

(
1− µ

r

)
ρ+

αjS

dj(1+kv∗3)−bj
dv
bv

+ αvv∗3
.

Now, plugging in v∗3, and using Mathematica to simplify the expression we get

RAV 2 =
adv
µbv

K(r − µ)

rK
(
1− µ

r

) =
adv
µbv

= RAV .

The demographic reproductive number of vultures in the absence of anthrax,

DV (E1) and DRN of vultures in the presence of anthrax DV (E2) are both easy to

see how they are the same values as in the exploitative model.

4.11 Stability

The stability conditions of E0, E1, and E2 are the same as in the exploitative

model. The stability conditions are summarized in Table 4.6. Stability regions are

shown in Figure 4.2 for each equilibria. Note that where E3 and E4 are LAS (in
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Figures 4.2, 4.3b, and 4.3c) it is E3+ and E4+ that are LAS since E3− and E4− are

not stable whenever they exist. More detail are provided in Appendix C.1 for the

stability conditions for E3 and E4.

Figure 4.2: Stability regions for the interference model, (4.12)–(4.16) with k = 0.005.
The vertical axis is a and the horizontal axis is bv

dv
. The regions are created by the

vulture demographic numbers (DV (E1) = 1 and DV (E2) = 1), the basic reproductive
numbers of anthrax (RAO = 1 and RAV = 1), and the curves y = x(1 + kv∗3) and
y = x(1 + kv∗4), which represents vultures survivability with interference competition.
The regions are labeled with the equilibria that are LAS. Note that where E3 and E4

are LAS it is E3+ and E4+ that are LAS since E3− and E4− are not stable whenever
they exist.
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4.12 Results: Interference Competition

In this section we discuss the results for the interference model, which are

equations (4.12)–(4.16). We see (in Figures 4.3a and 4.3b or 4.3c ) that interference

competition extends the region of vulture survival in parameter space by reversing

the direction of the bifurcation at vulture extinction.

(a)

.
(b) (c)

Figure 4.3: The vertical axis is dv
bv

and the horizontal axis is
dj
bj
. The regions are

created by the vulture demographic numbers (DV (E1) = 1 and DV (E2) = 1), and the
basic reproductive numbers of anthrax (RAO = 1 and RAV = 1). (a) Stability regions
for the exploitative model, (4.1)–(4.5). (b) Stability regions for the interference model,
(4.12)–(4.16) with k = 0.0005. The left most curve for the ‘Interference Model E3’ is
y = x(1 + kv∗3), and for the ‘Interference Model E4’ is y = x(1 + kv∗4). (c) Stability
regions for the interference model with k = 0.05.

Figures 4.3b and 4.3c present the regions of existence and stability for each

equilibrium in competition-related parameter space, with all other parameters held

constant. The only difference between Figures 4.3b and 4.3c is the k value. Figure

4.3b has a smaller k value than Figure 4.3c. A larger k value means that the vultures

interfere more with jackal feeding. We see how the interference regions for both E3

and E4 extend closer to x = 0 in Figure 4.3c. When RAV < 1 and DV (E1) > 1 hold
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then only E3+ is stable (orange region, Figures 4.3b and 4.3c). As
dj
bj

decreases so that

DV (E1) < 1 then E3+ and E1 are both stable and E3− exists (blue region, Figures

4.3b and 4.3c). If we decrease
dj
bj

more so that y > x(1 + kv∗3) then E3+ and E3− will

annihilate each other and only E1 is stable (left white region, Figures 4.3b and 4.3c).

When RAV > 1 and DV (E2) > 1 then we are in the region where only E4+

exists (green region, Figures 4.3b and 4.3c). As
dj
bj

decreases so that DV (E2) < 1 and

RAO > 1 then we go from only E4+ being stable to both E4+ and E2 being stable

and E4− exists (right red region, Figures 4.3b and 4.3c). If we continue to decrease

dj
bj

to where RAO < 1, then the two equilibria that are stable are E4+ and E1 (left red

region, Figures 4.3b and 4.3c). In this region, anthrax can spread with vultures, but

not without. If we decrease
dj
bj

more so that y > x(1 + kv∗4) then E4+ and E4− will

annihilate each other and only E1 is stable (left white region, Figures 4.3b and 4.3c).

Suppose we are in the region where RAV > 1 and DV (E2) > 1, but far enough over so

that when we increase dv
bv

to where DV (E2) < 1 then E2 becomes stable (right white

region, Figures 4.3b and 4.3c). This means the vultures cannot survive (v∗4 → 0)

because the vulture demographic number with anthrax is less than one, and so E4

crosses to E2 and is stable. If we increase dv
bv

while we are in the region y < x(1 +kv∗4),

RAO > 1, and RAV > 1 (right red region, Figures 4.3b and 4.3c), then the vultures

are not able to compete with the jackals and the vultures die out, making E2 stable.

If now RAO < 1 (left red region, Figures 4.3b and 4.3c), and we increase dv
bv

so that

y > x(1 + kv∗4) then E4− and E4+ annihilate each other and only E1 is stable (left

white region, Figures 4.3b and 4.3c). If we are in the region where E1 and E3+ are

stable (blue region, Figures 4.3b and 4.3c) and we increase dv
bv

so that RAV > 1 then

anthrax persists and E4+ becomes stable (left red region, Figures 4.3b and 4.3c).
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Now, we discuss the three new regions seen in Figures 4.2, 4.3b, and 4.3c due to

the interference model. With interference competition we have a region where both

E1 and E3+ are locally asymptotically stable, so now vultures persist where normally

(in exploitative model) no vultures were able to persist. When anthrax is present,

vultures are able to persist where they normally would not be able to, which is the

combined E2 and E4+ region. Finally, the other region we gain in the interference

model is where both E1 and E4+ are locally asymptotically stable. In this region, we

have both vultures and anthrax present, where normally anthrax and vultures did

not exist.

When we plug in the parameter values from Table 4.4 into the interference

model and look at how k plays a role in the behavior of the system we see that when

k is 2.1× 10− vultures−1 or any number greater than that then we are in the region

where both E1 and E3+ are locally asymptotically stable. Therefore, the interference

competition helped the vultures to survive, where normally they would be extinct. If

k is 2.1× 10−5 vultures−1, then only E1 is locally asymptotically stable.

To interpret these results biologically, we return to the question of vulture

survival. In the interference model in order for vultures to persist in an environment

where zebras contract anthrax, vultures must reproduce efficiently meaning DV (E2) >

1, and be competitive with jackals, y < x(1 + kv∗). The competitive edge, k, granted

by interference competition extends vulture survivability into some scenarios where

normally they would not be able to co-persist with jackals (i.e., DV (E2) < 1).

4.13 Discussion

In this paper, we developed two models describing the interaction between

jackals and vultures, that is, exploitative and interference competition. We analyzed

systems of nonlinear ordinary equations to describe the dynamics between competing

99



scavengers and anthrax-zebra interactions. We answer the following research questions:

how does the presence of jackals affect the presence of vultures, by considering the

demographic reproduction numbers of vultures, and how does the nature of the

competition affect the vultures’ survivability? When we compared the demographic

reproduction numbers of vultures, we saw that in the absence and presence of anthrax,

the vultures are able to persist better in the absence of jackals in both instances. This

is due to the fact that vultures solely depend on carcasses to reproduce. However,

the jackals are eating those carcasses, which results in less food for the vultures and

therefore a lower vulture birth rate.

From Figure 4.1, we see that the presence of anthrax and vultures make it

harder for each other to persist. That is, the threshold for anthrax to persist increases

when vultures are present and the threshold for vultures to persist increases when

anthrax is present. We can also see that when anthrax is transmitting well enough, the

zebra population (and thus the number of carcasses) becomes too small for vultures

to have enough food to eat.

We also want to see if anthrax affects vultures. Therefore, we found conditions

for when the number of vultures without anthrax (v∗3), is greater than the number of

vultures with anthrax (v∗4). When the death-to-birth rate ratio of zebras is greater

than 1
2

or when the basic reproductive number of anthrax in the presence of vultures

is greater than r
µ
− 1, then the vultures are hurt by anthrax.

In addition, in order for the vultures to persist, we need the vultures to beat

the jackals in the competition for zebra carcasses: the death to birth rate ratio of

vultures needs to be less than the death to birth rate ratio of jackals. Vultures are

obligate scavengers, relying on carcass availability, whereas the jackals are facultative

scavengers and can find other food sources. Therefore, if the vultures get to the

carcasses before the jackals, the jackal population will not go extinct.
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The difference between the exploitative model (k = 0) and the interference

model (k > 0) model is that in the interference model, vultures interfere with jackal

feeding to an extent k, by arriving at the carrion before jackals. Without interference,

vulture survival is determined purely by their demographic reproductive numbers

(with or without anthrax present), but interference extends the region of vulture

survival in parameter space by reversing the direction of the bifurcation at vulture

extinction, analogous to a backward bifurcation in epidemic modeling. In addition,

using our best estimate parameter values, exploitative competition alone cannot

account for vulture survival.

One limitation of the model, is the assumption that the zebra carcasses are

representative of all vulture food. Another limitation is how the interaction between

scavengers is modeled. We assume that vultures will arrive at the carcass sites before

jackals because of their keen eyesight and advantage of flying long distances. However,

jackals are able to see at night and may find a carcass just before sunrise to beat the

vultures.

A future study that can be done is to see how the transmission of rabies in

jackals is affected with exploitative and interference competition between jackals and

vutlures. Under the conditions where vultures are out competing the jackals, we

would expect less jackal-to-jackal encounters at zebra carcasses and therefore, less

rabid jackals. However, if vultures are not able to survive then we would have the

same results that we saw in Chapter 3.
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CHAPTER 5

Conclusion

In this paper, we studied anthrax-zebra and scavenger interactions with disease

dynamics using systems of non-linear differential equations. In the literature there

are several predator–prey systems that consider only one disease in either one of the

species or in both of the species. This dissertation looks at two different diseases in

the two different species, which has not been seen yet.

In Chapter 2, we developed a model that consisted of zebras, uninfected

carcasses, infected carcasses, and scavengers. We set out to find how scavengers

help to eliminate anthrax in the zebra population in ENP. Scavengers (jackals and

vultures) did benefit from the presence of anthrax because it created more carcasses

(food) for them. However, anthrax was at a disadvantage when the scavengers were

present because they would eat the anthrax thus eliminating it from the environment.

In Chapter 3, we modeled anthrax-rabies interactions in zebra-jackals cycles.

We wanted to see how anthrax in zebras can help propagate rabies in jackals, since

the zebra carcasses provide a location for the jackals to interact with each other. Our

results show that depending on the amount of anthrax present, it may help or hurt

the ability for rabies to persist. We also see that rabies is helping anthrax because the

less jackals there are means anthrax is not being eaten or rid of from the environment.

In Chapter 4, we consider two different types of competition models: exploitative

and interference competition. We aim to answer the question how the nature of

competition affects the vultures’ survivability? Analysis showed that interference

competition extends the threshold for where the vultures can survive, meaning
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typically where vultures are not able to persist, they can now persist with interference

competition. We also found that exploitative competition alone cannot account for

vulture survival.

Lastly, we discuss how our conclusions might help inform ENP wildlife man-

agement. In Chapter 2, we saw that the scavengers are clearly a helpful force in

controlling anthrax infection in zebras and keeping outbreaks in check. In Chapter

3, we looked at how anthrax and rabies affect each other. Ideally, we want to man-

age the carcass density (away from what maximizes the β function) to limit jackal

interactions in order to control rabies, which in turn will prevent wild fluctuations

(limit cycles) that could endanger zebras or jackals. In Chapter 4, first, we saw that

vultures appear to persist here only because of the competitive (interference) edge

their flight lends them. Secondly, competition between scavenger types may amplify

anthrax outbreaks because the total scavenging (by both types) may go down under

interference competition.
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Antoni Margalida. Modeling ecosystems using p systems: The bearded vulture, a

case study. In International Workshop on Membrane Computing, pages 137–156.

Springer, 2008.

[34] HLA Bartlam-Brooks, MC Bonyongo, and Stephen Harris. Will reconnecting

ecosystems allow long-distance mammal migrations to resume? A case study of

a zebra Equus burchelli migration in Botswana. Oryx, 45(2):210–216, 2011.

[35] Liu He, Wu Zhaozheng, Zhang Jinguo, Wang Zezhong, and Wang Yue. Hand

rearing common zebra (Equus quagga). Animal Husbandry and Feed Science,

6(1):4, 2014.

[36] John S Millar and Richard M Zammuto. Life histories of mammals: an analysis

of life tables. Ecology, 64(4):631–635, 1983.

[37] Neal Bolton. Hunting the Hunter: The Coyote Hunter’s Handbook. CreateSpace

Independent Publishing Platform, 2017.

[38] Marc Bekoff and Eric M Gese. Coyote (Canis latrans). USDA National Wildlife

Research Center-Staff Publications, page 224, 2003.

[39] Robert S James, DM Scott, RW Yarnell, and ADJ Overall. Food availability and

population structure: How do clumped and abundant sources of carrion affect the

genetic diversity of the black-backed jackal? Journal of Zoology, 301(3):184–192,

2017.

[40] Sean Nel. Expected harvest. 2017.

[41] Thomas Frederick Johnson. Exceptional nest attendance and solo breeding

attempt by an African White-backed Vulture. Vulture News, 74(1):31–34, 2018.

[42] PR Furniss and BD Hahn. A mathematical model of an anthrax epizoötic in the
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A.1 Equilibrium Calculations for Chapter 2

We calculate the equilibria and existence conditions. To get (2.1) we consider

z∗ 6= 0, and we have

z∗
(
r

(
1− z∗

K

)
− (µ+ ac∗)

)
= 0

r

(
1− z∗

K

)
= (µ+ ac∗)

1− z∗

K
=

1

r
(µ+ ac∗)

z∗

K
= −

[
1

r
(µ+ ac∗)− 1

]
z∗ = K

[
1− 1

r
(µ+ ac∗)

]
.

Plugging (2.1) into (2.3) and setting (2.3) equal to zero we have

c∗
(
aK

[
1− 1

r
(µ+ ac∗)

]
− ρ− αj∗

)
= 0

−a2K
r

(c∗)2 + c∗
(
aK − aKµ

r
− ρ− αj∗

)
= 0.

Then either

c∗+ = 0 or c∗− =
r

a

[
1− µ

r
− ρ− αj∗

aK

]
=

r

aK

[
K
(

1− µ

r

)
− ρ+ αj∗

a

]
.

Replacing c∗ with c∗+ in (2.1) we have

z∗+ = K
[
1− µ

r

]
.

Likewise, replacing c∗ with c∗− in (2.1) gives (2.6):

z∗− = K

[
1− 1

r

(
µ+

ar

a

[
1− µ

r
− ρ+ αj∗

aK

])]
= K

[
1− µ

r
− 1 +

µ

r
+
ρ+ αj∗

aK

]
= K

[
ρ+ αj∗

aK

]
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=
ρ+ αj∗

a
.

Setting (2.2) equal to zero gives (2.7):

µz∗ − ρu∗ − αj∗u∗ = 0

u∗ =
µz∗

ρ+ αj∗
;

with (2.4) equal to zero, we have j∗ = 0 or we get (2.8):

bj∗ (u∗ + c∗)− dj∗ = 0

b (u∗ + c∗) = d

u∗ + c∗ =
d

b
.

Substituting c∗+ into (2.8) gives

u∗+ =
d

b
.

Finally, plugging z∗+ and u∗+ into (2.7) we find

d

b

(
ρ+ αj∗+

)
= µz∗+

dρ

b
+
αd

b
j∗+ = µz∗+

αd

b
j∗+ = µz∗+ −

dρ

b

j∗+ =
b

αd

[
µz∗+ −

dρ

b

]
j∗+ =

1

α

[
bµ

d
z∗+ − ρ

]
.

Therefore, we have the equilibrium

E2

(
z∗+, u

∗
+, c

∗
+, j

∗
+

)
= E2

(
K
[
1− µ

r

]
,
d

b
, 0,

1

α

[
bµ

d
z∗+ − ρ

])
,

which exists when µ < r and bµz∗+ > ρd. The equilibrium E2 is the disease free

equilibrium in the presence of scavengers.
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Consider when c∗+ = 0, so that z∗+ = K
[
1− µ

r

]
. Letting j∗ = 0,

u∗ =
µ

ρ
K
[
1− µ

r

]
.

Therefore, we have the equilibrium

E1 (z∗, u∗, c∗, j∗) = E1

(
K
[
1− µ

r

]
,
µ

ρ
K
[
1− µ

r

]
, 0, 0

)
,

which exists when µ < r. The equilibrium E1 is the disease free equilibrium in the

absence of scavengers.

Now, working with the negative subscript equilibria, we consider (2.6) and get

(2.11):

c∗− =
r

a

[
1− µ

r
− ρ+ αj∗

aK

]
=

r

aK

[
K
(

1− µ

r

)
− ρ+ αj∗

a

]
to find u∗− and j∗−. First, we let j∗− = 0. Then (2.6) becomes

z∗− =
ρ

a
,

(2.11) becomes

c∗− =
r

aK

[
K
(

1− µ

r

)
− ρ

a

]
,

and (2.7) becomes

u∗− =
µρ

ρa
=
µ

a
.

Thus we have the equilibrium

E3 (z∗, u∗, c∗, j∗) = E3

(ρ
a
,
µ

a
,
r

aK

[
K
(

1− µ

r

)
− ρ

a

]
, 0
)
,

which exists when µ < r and K
(
1− µ

r

)
> ρ

a
. The equilibrium E3 is endemic for

anthrax in the absence of scavengers.

When j∗− 6= 0, then using (2.6) and (2.11), (2.8) becomes

u∗− =
d

b
− r

a

[
1− µ

r
− ρ+ αj∗

aK

]
.
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Substituting (2.6) and (2.13) into (2.2) and setting it equal to zero gives (2.14):

0 =
µ (ρ+ αj∗)

a
− ρ

[
d

b
− r

a

(
1− µ

r
− ρ+ αj∗

aK

)]
− αj∗

[
d

b
− r

a

(
1− µ

r
− ρ+ αj∗

aK

)]
0 =

µ (ρ+ αj∗)

a
− ρd

b
+
ρr

a

(
1− µ

r
− ρ

aK

)
− αρr

a2K
j∗ − αd

b
j∗ +

αr

a

(
1− µ

r
− ρ

aK

)
j∗ − α2r

a2K
j∗2

0 =
µρ

a
+
αµ

a
j∗ − ρd

b
+
ρr

a
− ρµ

a
− ρ2r

a2K
− αρr

a2K
j∗ − αd

b
j∗ +

αr

a
j∗ − αµ

a
j∗ − αρr

a2K
j∗ − α2r

a2K
j2
∗

0 =− ρd

b
+
ρr

a
− ρ2r

a2K
− αρr

a2K
j∗ − αd

b
j∗ +

αr

a
j∗ − αρr

a2K
j∗ − α2r

a2K
j2
∗

0 =− ρd

b
+
ρr

a
− 2αρr

a2K
j∗ − ρ2r

a2K
− αd

b
j∗ +

αr

a
j∗ − α2r

a2K
j2
∗

0 =− α2r

a2K
j2
∗

+ α

[
r

a
− d

b
− 2ρr

a2K

]
j∗ +

ρr

a

[
1− ad

br
− ρ

aK

]
0 =− α2r

a2K
j2
∗

+ α

[
r

a

(
1− 2ρ

aK

)
− d

b

]
j∗ +

ρr

a

[
1− ad

br
− ρ

aK

]
0 =

α2r

a2K
j2
∗

+ α

[
d

b
− r

a

(
1− 2ρ

aK

)]
j∗ +

ρr

a

[
ad

br
+

ρ

aK
− 1

]
Consider the quadratic formula, where the quadratic is represented as Aj2 +

Bj + C = 0. If AC < 0, then a unique positive root exists. In this problem, that

means C < 0 since A > 0. Hence we get

C < 0 =⇒ ρ

aK
+
ad

br
< 1

=⇒ ρ

a
< K

(
1− ad

br

)
=⇒ ρ

a
< K

(
1− adµ

bµr

)
=⇒ ρ

a
< K

(
1−RJ

µ

r

)
, (A.1)

where RJ = ad
bµ

and is discussed in section 2.2.2.

The quadratic equation has two positive roots if C > 0, B < 0 and B2 > 4AC

then there are 2 positive roots. For our problem we get

C > 0 =⇒ ρ

aK
+
ad

br
> 1 (A.2)
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and

B < 0 =⇒ ad

ba
− rb

ba

(
1− 2ρ

aK

)
< 0

=⇒ ad− rb
(

1− 2ρ

aK

)
< 0

=⇒ 1− 2ρ

aK
>
ad

br

=⇒ 2ρ

aK
+
ad

br
< 1 (A.3)

However, conditions (A.2) and (A.3) contradict each other; therefore, our quadratic

equation must have only one positive root, which occurs with condition (A.1).

From the quadratic equation (2.14), we get

j∗ =
−α
[
d
b
− r

a

(
1− 2ρ

aK

)]
+
√[

α
[
d
b
− r

a

(
1− 2ρ

aK

)]]2 − 4α2r
a2K

ρr
a

[
ad
br

+ ρ
aK
− 1
]

2α2r
a2K

=

abKrα + a2K

(
−dα + b

√
(ad−br)2α2

a2b2

)
− 2brαρ

2brα2

=
abKrα + a2K

(
−dα + b (br−ad)α

ab

)
− 2brαρ

2brα

=
abKr + a2K

(
br
a
− 2d

)
2brα

− ρ

α

=
2abKr − 2a2Kd

2brα
− ρ

α

=
abKr − a2Kd

brα
− ρ

α

=
a

α

[
K

(
1− ad

br

)]
− ρ

α
. (A.4)

Substituting (A.4) into (2.6) we get the expression for z∗ in E4 which is

z∗ =
ρ

a
+
α

a
j∗

=
ρ

a
+
α

a

[
a

α

[
K

(
1− ad

br

)]
− ρ

α

]
=
ρ

a
+K

(
1− ad

br

)
− ρ

a
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= K

(
1− ad

br

)
The equilibrium E4 is represented as

E4 (z∗, u∗, c∗, j∗) = E4

(
K

[
1− ad

br

]
,
µ

a
,
d

b
− µ

a
,
a

α
K

[
1− ad

br

]
− ρ

α

)
and exists if and only if ρ

a
< K

(
1− ad

br

)
and ad

bµ
> 1. This equilibrium is endemic for

anthrax in the presence of scavengers.

A.2 Stability of E4 for Chapter 2

We use the 4D Routh-Hurwitz Criterion to find the stability of E4. Consider

the characteristic equation p(λ) = λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0. For 4D

Routh Hurwitz criterion, the conditions are B1 > 0, B4 > 0, B1B2 > B3, and

B3 (B1B2 −B3) > B2
1B4 for the roots of p(λ) to have negative real part.

Let

B1 = (az∗ − A)

B2 = bj∗α
µ

a

ad

bµ
− az∗

(
A+ µ

(
1− ad

bµ

))
B3 = −bj∗αµ

a

ad

bµ
A+ µ

(
ad

bµ
− 1

)
z∗
(
αbj∗ + a2z∗

)
B4 = −Abj∗αµz∗

(
ad

bµ
− 1

)
.

Now we will show that the conditions needed above hold.

B1 = (az∗ − A) > 0 since A < 0.

B4 = −Abj∗αµz∗
(
ad

bµ
− 1

)
> 0 (recall

ad

bµ
> 1 for E4 to exist)
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B1B2 −B3 = (az∗ − A) bj∗α
µ

a

ad

bµ
− az∗

(
A+ µ

(
1− ad

bµ

))
−
(
−bj∗αµ

a

ad

bµ
A+ µ

(
ad

bµ
− 1

)
z∗
(
αbj∗ + a2z∗

))
= az∗bj∗α

µ

a

ad

bµ
− a2z∗2

[
A+ µ

(
1− ad

bµ

)]
− Abj∗αµ

a

ad

bµ
+ Aaz∗

[
A+ µ

(
1− ad

bµ

)]
+ Abj∗α

µ

a

ad

bµ
+ µ

(
1− ad

bµ

)
az∗
(
az∗ +

α

a
bj∗
)

= −A(az∗)2 + A2(az∗)− A(az∗)µ

(
ad

bµ
− 1

)
+ µaz∗

α

a
bj∗

> 0 since
ad

bµ
> 1 and A < 0.

B3 (B1B2 −B3)−B2
1B4 =

[
−bj∗αµ

a

ad

bµ
A+ µ

(
ad

bµ
− 1

)
z∗
(
αbj∗ + a2z∗

)]
×
[
−A(az∗)2 + A2(az∗)− A(az∗)µ

(
ad

bµ
− 1

)
+ µaz∗

α

a
bj∗
]

−
[
(az∗)2 + 2az∗(−A) + A2

] [
(−A)bj∗α

µ

a
(az∗)

(
ad

bµ
− 1

)]
= A2bj∗α

µ

a
(az∗)2

ad

bµ
+ (−A)3 bj∗α

µ

a
(az∗)

ad

bµ

+ A2bj∗α
µ

a
(az∗)µ

(
ad

bµ
− 1

)
ad

bµ
+ (−A)(bj∗)2

(
α
µ

a

)2
(az∗)

ad

bµ

+ (−A)bj∗α
µ

a
(az∗)3

(
ad

bµ
− 1

)
+ A2bj∗α

µ

a
(az∗)2

(
ad

bµ
− 1

)
+ (−A)bj∗α

µ

a
(az∗)2 µ

(
ad

bµ
− 1

)2

+ (bj∗)2
(
α
µ

a

)2
(az∗)2

(
ad

bµ
− 1

)
+ (−A)(az∗)4µ

(
ad

bµ
− 1

)
+ A2(az∗)3µ

(
ad

bµ
− 1

)
+ (−A)(az∗)3µ2

(
ad

bµ
− 1

)2

+ (bj∗)
(
α
µ

a

)
(az∗)3µ

(
ad

bµ
− 1

)
− (−A)bj∗α

µ

a
(az∗)3

(
ad

bµ
− 1

)
− (−A)3bj∗

(
α
µ

a

)
(az∗)

(
ad

bµ
− 1

)
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− 2A2bj∗α
µ

a
(az∗)2

(
ad

bµ
− 1

)
= A2bj∗α

µ

a
(az∗)2 + (−A)3 bj∗α

µ

a
(az∗) + A2bj∗α

µ

a
(az∗)µ

(
ad

bµ
− 1

)
ad

bµ

+ (−A) (bj∗)2
(
α
µ

a

)2
(az∗)

ad

bµ
+ (−A)bj∗α

µ

a
(az∗)2µ

(
ad

bµ
− 1

)2

+ (bj∗)2
(
α
µ

a

)2
(az∗)2

(
ad

bµ
− 1

)
+ (−A)(az∗)4µ

(
ad

bµ
− 1

)
+ A2(az∗)3µ

(
ad

bµ
− 1

)
+ (−A)(az∗)3µ2

(
ad

bµ
− 1

)2

+ (bj∗)
(
α
µ

a

)
(az∗)3µ

(
ad

bµ
− 1

)
> 0 since

ad

bµ
> 1 and A < 0.

We have shown that B1 > 0, B4 > 0, B1B2 > B3, and B3 (B1B2 −B3) > B2
1B4

without any additional conditions; therefore, E4 is locally asymptotically stable

whenever it exits.
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B.1 Stability Analysis for Chapter 3

The Jacobian matrix for system (3.1)-(3.5) is

J =



r − 2r
K
z − µ− ac 0 −az 0 0

µ −ρ− α(j + i) 0 −αu −αu

ac 0 az − ρ− α(j + i) −αc −αc

0 bj + β(x)β1(x)ij bj + β(x)β1(x)ij b(u+ c)− d− β(x)i −β(x)j

0 0 0 β(x)i β(x)j − d− δ


,

where

β1(x) =
[log(x) + log(πR2)]

x
√

[log(x) + log(πR2)]2 + q2
= −β

′(x)

β(x)
.

The Jacobian matrix evaluated at the extinction equilibrium, E0 is

J(E0) =



r − µ 0 0 0 0

µ −ρ 0 0 0

0 0 −ρ 0 0

0 0 0 −d 0

0 0 0 0 −d− δ


.

If the zebra birth rate is less than the zebra death rate, i.e. r < µ, then the extinction

equilibrium is locally asymptotically stable.

The Jacobian matrix for E1

(
K
[
1− µ

r

]
, µ
ρ
K
[
1− µ

r

]
, 0, 0, 0

)
is

J (E1) =



µ− r 0 −aK
[
1− µ

r

]
0 0

µ −ρ 0 −αµ
ρ
K
[
1− µ

r

]
−αµ

ρ
K
[
1− µ

r

]
0 0 aK

[
1− µ

r

]
− ρ 0 0

0 0 0 bµ
ρ
K
[
1− µ

r

]
− d 0

0 0 0 0 −d− δ
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→



µ− r 0 −aK
[
1− µ

r

]
0

µ −ρ 0 −αµ
ρ
K
[
1− µ

r

]
0 0 aK

[
1− µ

r

]
− ρ 0

0 0 0 bµ
ρ
K
[
1− µ

r

]
− d



→


µ− r 0 0

µ −ρ −αµ
ρ
K
[
1− µ

r

]
0 0 bµ

ρ
K
[
1− µ

r

]
− d


→

−ρ −αµ
ρ
K
[
1− µ

r

]
0 bµ

ρ
K
[
1− µ

r

]
− d

 .

The eigenvalues are λ1 = −d − δ, λ2 = az∗ − ρ, λ3 = bµ
ρ
z∗ − d, λ4 = −ρ,and

λ5 = µ− r. Notice that λ1 and λ4 are always negative. However, λ2 < 0 if and only if

z∗ < ρ
a
, λ3 < 0 if and only if bµz∗ < ρd, and λ5 < 0 since µ < r. Hence E1 is locally

asymptotically stable if and only if z∗ < ρ
a

and bµz∗ < ρd.

The Jacobian matrix for E2

(
K
[
1− µ

r

]
, d
b
, 0, 1

α

[
bµ
d
z∗ − ρ

]
, 0
)

is

J (E2) =



µ− r 0 −az∗ 0 0

µ − bµ
d
z∗ 0 −αd

b
−αd

b

0 0
(
a− bµ

d

)
z∗ 0 0

0 b
α

(
bµ
d
z∗ − ρ

)
b
α

(
bµ
d
z∗ − ρ

)
0 −1

α
β
(
d
b

) (
bµ
d
z∗ − ρ

)
0 0 0 0 1

α
β
(
d
b

) (
bµ
d
z∗ − ρ

)
− d− δ



→



µ− r 0 −az∗ 0

µ − bµ
d
z∗ 0 −αd

b

0 0
(
a− bµ

d

)
z∗ 0

0 b
α

(
bµ
d
z∗ − ρ

)
b
α

(
bµ
d
z∗ − ρ

)
0
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→


µ− r 0 0

µ − bµ
d
z∗ −αd

b

0 b
α

(
bµ
d
z∗ − ρ

)
0


→

 − bµ
d
z∗ −αd

b

b
α

(
bµ
d
z∗ − ρ

)
0

 = Ĵ(E2).

After evaluating the Jacobian matrix at E2, the eigenvalues are λ1 = 1
α
β
(
d
b

) (
bµ
d
z∗ − ρ

)
−

d− δ, λ2 =
(
a− bµ

d

)
z∗, and λ3 = µ− r. Note λ1 < 0 if and only if β

(
d
b

) (
bµ
d
z∗ − ρ

)
<

α (d+ δ), λ2 < 0 if and only if RAJ = ad
bµ
< 1, and λ3 < 0 since µ < r. We find the

trace, determinant and use the 2-dimensional Routh-Hurwitz criterion to determine

the sign of the real part of the remaining eigenvalues. The determinant, that is,

det
(
Ĵ(E2)

)
= bµ

d
z∗−ρd, is positive since bµz∗ > ρd (that is, RAO > RAJ). The trace:

tr
(
Ĵ(E2)

)
= −bµ

d
z∗ is always negative. Hence E2 is locally asymptotically stable if

and only if β
(
d
b

) (
bµ
d
z∗ − ρ

)
< α (d+ δ) (the same as RR < 1) and ad

bµ
< 1.

The Jacobian matrix for E3

(
ρ
a
, µ
a
, r
aK

[
K
(
1− µ

r

)
− ρ

a

]
, 0, 0

)
is

J (E3) =



−ρr
aK

0 −ρ 0 0

µ −ρ 0 −αµ
a

−αµ
a

r
K

(
K
(
1− µ

r

)
− ρ

a

)
0 0 −αr

aK

(
K
(
1− µ

r

)
− ρ

a

) −αr
aK

(
K
(
1− µ

r

)
− ρ

a

)
0 0 0 b (u∗ + c∗)− d 0

0 0 0 0 −d− δ



→



−ρr
aK

0 −ρ 0

µ −ρ 0 −αµ
a

r
K

(
K
(
1− µ

r

)
− ρ

a

)
0 0 −αr

aK

(
K
(
1− µ

r

)
− ρ

a

)
0 0 0 b (u∗ + c∗)− d
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→


−ρr
aK

0 −ρ

µ −ρ 0

r
K

(
K
(
1− µ

r

)
− ρ

a

)
0 0


→

 −ρr
aK

−ρ
r
K

(
K
(
1− µ

r

)
− ρ

a

)
0

 = Ĵ(E3).

The equilibrium E3 exists when µ < r and K
(
1− µ

r

)
> ρ

a
. Three of the eigenvalues of

J(E3) are λ1 = −d− δ, λ2 = b (u∗ + c∗)− d, and λ3 = −ρ. Notice that λ1 = −d− δ

is always negative, λ2 = b (u∗ + c∗) − d < 0 if and only if u∗ + c∗ < d
b

, λ3 = −ρ is

always negative. The trace and the determinant of Ĵ(E3) are

tr
(
Ĵ(E3)

)
=
−ρr
aK

and det
(
Ĵ(E3)

)
=
ρr

K

[
K
(

1− µ

r

)
− ρ

a

]
.

The trace is always negative and the determinant is positive since K
(
1− µ

r

)
>

ρ
a
. Therefore, E3 is locally asymptotically stable if and only if u∗ + c∗ = µ

a
+

r
aK

[
K
(
1− µ

r

)
− ρ

a

]
< d

b
.

The equilibrium E4 exists when ρ
a
< K

[
1− ad

br

]
& ad

bµ
> 1. The Jacobian matrix

for E4

(
K
[
1− ad

br

]
, µ
a
, d
b
− µ

a
, a
α
K
[
1− ad

br

]
− ρ

α
, 0
)

is

J (E4) =



r
(
1− ad

br
− 2

K
z∗
)

0 −az∗ 0 0

µ −az∗ 0 −αu
a

−αµ
a

µ
(
ad
bµ
− 1
)

0 0 αµ
a

(
1− ad

bµ

)
αµ
a

(
1− ad

bµ

)
0 bj∗ bj∗ 0 −β

(
d
b

)
j∗

0 0 0 0 β
(
d
b

)
j∗ − d− δ
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→



r
(
1− ad

br
− 2

K
z∗
)

0 −az∗ 0

µ −az∗ 0 −αu
a

µ
(
ad
bµ
− 1
)

0 0 αµ
a

(
1− ad

bµ

)
0 bj∗ bj∗ 0


= Ĵ(E4).

The equilibrium E4 exists when ρ
a
< K

[
1− ad

br

]
& ad

bµ
> 1. We note that matrix

Ĵ(E4) (cf. B.1) is exactly the Jacobian of E4 in [47] and found that it was locally

asymptotically stable whenever it existed. Now, consider the eigenvalue λ = β
(
d
b

)
j∗−

d−δ < 0 when β
(
d
b

)
j∗ < d+δ. Therefore, E4 is locally asymptotically stable whenever

β
(
d
b

)
j∗4 < d+ δ, i.e., R̃R < 1.

The equilibrium E5 exists when u∗ > d
b

or equivalently when RR > 1. The

Jacobian matrix for E5

(
K
(
1− µ

r

)
, u∗, 0, d+δ

β(u∗)
, bu

∗−d
β(u∗)

)
is

J (E5) =



µ− r 0 −az∗ 0 0

µ −ρ− α
(
δ+bu∗

β(u∗)

)
0 −αu∗ −αu∗

0 0 az∗ − ρ− α
(
δ+bu∗

β(u∗)

)
0 0

0
(
δ+bu∗

β(u∗)

)
[b+ β1(u

∗) (bu∗ − d)]
(
δ+bu∗

β(u∗)

)
[b+ β1(u

∗) (bu∗ − d)] 0 d− bu∗

0 0 0 bu∗ − d 0



→


−ρ− α

(
δ+bu∗

β(u∗)

)
−αu∗ −αu∗(

δ+bu∗

β(u∗)

)
[b+ β1(u

∗) (bu∗ − d)] 0 d− bu∗

0 bu∗ − d 0
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The eigenvalues are

λ1 = az∗ − ρ− α
(
δ + bu∗5
β(u∗5)

)
< 0 ⇐⇒ R̃A =

aK
(
1− µ

r

)
ρ+ α

[
δ+bu∗5
β(u∗5)

] < 1

and λ2 = µ− r < 0 since µ < r. We find the rest of the characteristic polynomial and

then use the Routh-Hurwitz Criterion to determine the stability of E5.

Let S = b+ β1(u
∗) (bu∗ − d) . Then the remaining characteristic polynomial is

p(λ) = 0, where

p(λ) =λ3 − λ2
(
−ρ− αδ + bu∗

β(u∗)

)
+ λ

[
αu∗

δ + d

β(u∗)
S + (d− bu∗)2

]
+ (d− bu∗)2

[
ρ+ α

δ + bu∗

β(u∗)

]
− αu∗ d+ δ

β(u∗)
(d− bu∗)S

=λ3 + λ2
(
ρ+ α

δ + bu∗

β(u∗)

)
+ λ

[
αu∗

δ + d

β(u∗)
S + (d− bu∗)2

]
+ (d− bu∗)2

[
ρ+ α

δ + bu∗

β(u∗)

]
− αu∗ d+ δ

β(u∗)
(d− bu∗)S.

The third order Routh Hurwitz criteria are as follows: Let λ3+a1λ
2+a2λ+a3 =

0. Then Re(λ) < 0 if and only if a1 > 0, a1a2 > a3, and a3 > 0. Clearly, we see that

a1 = ρ+ α
δ + bu∗

β(u∗)
> 0.

Now,

a3 = (d− bu∗)2
[
ρ+ α

δ + bu∗

β(u∗)

]
− αu∗ d+ δ

β(u∗)
(d− bu∗)S > 0 ⇐⇒ S > 0.

Theorem B.1.1. S = b + β1(x) (bx− d) > 0, where β1(x) =
[log(x)+log(πR2)]

x
√

[log(x)+log(πR2)]2+q2
,

q = log
(

π
1.48

)
, ρ̂ > 0, and R > 0.

Proof. We rewrite S as

S = b+
log(x) + log(πR2)

x
√

(log(x) + log(πR2))2 + q2
(bx− d)
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= b+
log(x) + log(πR2)√

(log(x) + log(πR2))2 + q2

(
b− d

x

)

= b

1 +
log(x) + log(πR2)√

(log(x) + log(πR2))2 + q2

(
1− d/b

x

) (B.1)

Note ∣∣∣∣1− d/b

x

∣∣∣∣ < 1 and

∣∣∣∣∣∣ log(x) + log(πR2)√
(log(x) + log(πR2))2 + q2

∣∣∣∣∣∣ < 1

since x > d
b

and [log(xπR2)]2 > 0 always. Then
√

(log(x) + log(πR2))2 + q2 >

log(xπR2) regardless of the sign of log(xπR2). Therefore, the product of two terms

with magnitude less than one has a magnitude less than one. Hence the expression in

hard brackets in (B.1) is always greater than 0. Therefore, a3 > 0.

The last part we need to show is that a1a2 > a3.

a1a2 − a3 > 0 ⇐⇒ (d− bu∗)2
[
ρ+ α

δ + bu∗

β(u∗)

]
+ αu∗

d+ δ

β(u∗)
S

[
ρ+ α

δ + bu∗

β(u∗)

]
− (d− bu∗)2

[
ρ+ α

δ + bu∗

β(u∗)

]
− αu∗ d+ δ

β(u∗)
S(bu∗ − d) > 0

Therefore we need to show that

ρ+ α
δ + bu∗

β(u∗)
> bu∗ − d. (B.2)

We know that

j∗ + i∗ =
δ + bu∗5
β(u∗5)

by (3.15) and ρ+ α (j∗5 + i∗5) =
µK(1−m)

u∗5
by (2.2).

So the condition becomes

µK(1−m)

u∗5
> bu∗5 − d,

which can be rewritten as

b(u∗5)
2 − du∗5 −

µK(1−m)

u∗5
< 0.
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Clearly,

b · 02 − d · 0− µK(1−m)

u∗5
< 0,

so the condition is satisfied for some u∗5 > 0. We need u∗5 between the roots

d±
√
d2 + 4bµK(1−m)

2b
,

but recall that u∗5 >
d
b

(satisfied when RR < 1). So the condition is

d

b
< u∗5 <

d+
√
d2 + 4bµK(1−m)

2b
. (B.3)

Hence E5 is locally asymptotically stable if and only if R̃A < 1 and d
b
< u∗5 <

d+
√
d2+4bµK(1−m)

2b
.
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APPENDIX C
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C.1 Equilibria Calculations: Exploitative Model

Table C.1 gives a summary of the equilibrium conditions that arise from the

system’s equations, (4.1) through (4.5).

(1a) z∗ = 0 (1b) z∗ = K
[
1− 1

r
(µ+ ac∗)

]
(2) u∗ = µz∗

ρ+αjj∗+αvv∗

(3a) c∗ = 0 (3b) c∗ = r
aK

(
K
(
1− µ

r

)
− ρ+αjj

∗+αvv∗

a

)
(4) j∗ = S

dj−bj(u∗+c∗)

(5a) v∗ = 0 (5b) u∗ + c∗ = dv
bv

Table C.1: Summary of equilibrium components for system (4.1)-(4.5)

To find E1 we consider (1b), (2), (3a), (4), and (5a) in table C.1. Substitute (2)

into (4) to get

j∗1 =
S

dj − bj
(

µz∗1
ρ+αjj∗1

) ⇐⇒ (
dj −

bjµz
∗
1

ρ+ αjj∗1

)
j∗1 = S

⇐⇒ bjµz
∗
1

ρ+ αjj∗1
j∗1 = djj

∗
1 − S

⇐⇒ bjµz
∗
1j
∗
1 = (djj

∗
1 − S) (ρ+ αjj

∗
1)

⇐⇒ bjµz
∗
1j
∗
1 = djρj

∗
1 + αjdj (j∗1)2 − ρS − αjSj∗1

⇐⇒ αjdj (j∗1)2 + (djρ− bjµz∗1 − αjS) j∗1 − ρS = 0. (C.1)
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Consider a quadratic equation of the form ax2 + bx+ c = 0. If ac < 0 then there is

only one positive root. In (C.1), a > 0 and c < 0, thus ac < 0 and there is exactly

one positive root, which is

j∗1 =
bjµz

∗
1 + αjS − djρ+

√
(djρ− bjµz∗1 − αjS)2 + 4αjdjρS

2αjdj
(C.2)

In summary, E1

(
K
(
1− µ

r

)
,
µK(1−µr )
ρ+αjj∗1

, 0, j∗1 , 0

)
exists when µ < r.

To find E2 we consider (1b), (2), (3b), (4), and (5a) in table C.1. To get u∗2 = µ
a
,

we substitute (3b) into (2). We solve for c∗2 in (1b) and then substitute (3b) in for z∗2 ,

that is,

z∗2
K

= 1− µ

r
− a

r
c∗2

⇐⇒ c∗2 =
r

a

(
1− µ

r
− z∗2
K

)
⇐⇒ c∗2 =

r

aK

(
K
(

1− µ

r

)
− z∗2

)
⇐⇒ c∗2 =

r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

)
(C.3)

Substitute (C.3) into (4), we get

j∗2 (dj − bj (u∗2 + c∗2)) = S

j∗2

(
dj − bj

(
µ

a
+

r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗

a

)))
= S

αjbjr

a2K
(j∗2)2 +

(
dj +

bjρr

a2K
− bjµ

a
− bjr

a

(
1− µ

r

))
j∗2 − S = 0

(j∗2)2 +
a2K

αjbjr

(
dj +

bjρr

a2K
− bjµ

a
− bjr

a

(
1− µ

r

))
j∗2 −

a2K

αjbjr
S = 0

(j∗2)2 +

(
aK

αj

(
adj
rbj
− 1

)
+

ρ

αj

)
j∗2 −

a2K

αjbjr
S = 0 (C.4)
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Note that (C.4) is a quadratic equation where the coefficient on the quadratic term

is positive and the constant is negative. This means there is exactly one positive

solution which is

j∗2 =
1

2

aK
αj

(
1− adj

rbj

)
− ρ

αj
+

√(
aK

αj

(
adj
rbj
− 1

)
+

ρ

αj

)2

+ 4
a2K

αjbjr
S

 (C.5)

Therefore, we get that

E2

(
ρ+ αjj

∗
2

a
,
µ

a
,
r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

)
, j∗2 , 0

)
,

which exists when
ρ+αjj

∗
2

a
< K

(
1− µ

r

)
.

To find E3 we consider (1b), (2), (3a), (4), and (5b) in table C.1. We have that

c∗3 = 0, so we can easily get that z∗3 = K
(
1− µ

r

)
. We substitute (3a) into (5b) to get

u∗3 = dv
bv
, and then we easily get that j∗3 = S

dj−bj( dvbv )
. Finally, we solve for v∗ in (2) and

then substitute what we got for z∗3 , u
∗
3, and j∗3 to get v∗3 = 1

αv

(
bvµz∗3
dv
− (ρ+ αjj

∗
3)
)
.

Therefore, we get that

E3

K (1− µ

r

)
,
dv
bv
, 0,

S

dj − bj
(
dv
bv

) , 1

αv

(
µbv
dv
K
(

1− µ

r

)
− (ρ+ αjj

∗
3)

) ,

which exists when dv
bv
<

dj
bj
, and µbv

dv
K
(
1− µ

r

)
> ρ+ αjj

∗
3 .

To find E4 we consider (1b), (2), (3b), (4), and (5b) in table C.1. We substitute

(5b) into (4) to get

j∗4 =
S

dj − bj
(
dv
bv

) . (C.6)

We substitute (3b) into (2) to get

u∗4 =
µ

a
(C.7)

Plugging u∗4 into (5b), we get

c∗4 =
dv
bv
− µ

a
(C.8)
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Then plugging (C.8) into (1b), we get

z∗4 = K

[
1− 1

r
(µ+ ac∗4)

]
= K

[
1− 1

r

(
µ+

aµ

a

(
adv
µbv
− 1

))]
= K

(
1− µ

r
− adv
rbv

+
µ

r

)
= K

(
1− adv

rbv

)
We solve for v∗ in (2) and then substitute z∗4 and u∗4 to get

v∗4 =
1

αv

(
µz∗4
u∗4
− (ρ+ αjj

∗
4)

)
=

1

αv

(
aK

(
1− adv

rbv

)
− (ρ+ αjj

∗
4)

)
(C.9)

Therefore, we get that

E4

K (1− adv
rbv

)
,
µ

a
,
dv
bv
− µ

a
,

S

dj − bj
(
dv
bv

) , 1

αv

(
aK

(
1− adv

rbv

)
− (ρ+ αjj

∗
4)

) ,

which exists when dv
bv
<

dj
bj
, adv
µbv

> 1, and aK
(

1− adv
rbv

)
> ρ+ αjj

∗
4 .

C.2 Stability Analysis

The Jacobian matrix for system (4.1)-(4.5) is

J =



r − 2r
K
z − µ− ac 0 −az 0 0

µ −ρ− αjj − αvv 0 −αju −αvu

ac 0 az − ρ− αjj − αvv −αjc −αvc

0 bjj bjj bj(u+ c)− dj 0

0 bvv bvv 0 bv(u+ c)− dv


.
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The Jacobian matrix evaluated at the E0 equilibrium is

J(E0) =



r − µ 0 0 0 0

µ −ρ− αj Sdj 0 0 0

0 0 −ρ− αj Sdj 0 0

0
bjS

dj

bjS

dj
−dj 0

0 0 0 0 −dv


.

If the zebra birth rate is less than the zebra death rate, i.e. r < µ, then the E0

equilibrium is locally asymptotically stable.

Recall that E1

(
K
(
1− µ

r

)
,
µK(1−µr )
ρ+αjj∗1

, 0, j∗1 , 0

)
exists when µ < r. The Jacobian

matrix for E1 is

J (E1) =



µ− r 0 −aK
[
1− µ

r

]
0 0

µ −ρ− αjj∗1 0 −αju∗ −αvu∗1

0 0 aK
[
1− µ

r

]
− ρ− αjj∗1 0 0

0 bjj
∗
1 bjj

∗
1 bju

∗
1 − dj 0

0 0 0 0 bvu
∗
1 − dv



→



µ− r 0 −aK
[
1− µ

r

]
0

µ −ρ− αjj∗1 0 −αju∗1

0 0 aK
[
1− µ

r

]
− ρ− αjj∗1 0

0 bjj
∗
1 bjj

∗
1 bju

∗
1 − dj



→


µ− r 0 0

µ −ρ− αjj∗1 −αju∗1

0 bjj
∗
1 bju

∗
1 − dj


→

−ρ− αjj∗1 −αju∗1

bjj
∗
1 bju

∗
1 − dj

 = Ĵ(E1)
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The eigenvalues are λ1 = bvu
∗
1−dv, λ2 = aK

[
1− µ

r

]
−ρ−αjj∗1 , and λ3 = µ− r.

Then

λ1 < 0 ⇐⇒ u∗1 <
dv
bv

⇐⇒
µK

(
1− µ

r

)
ρ+ αjj∗1

<
dv
bv

⇐⇒ bv
dv

µK
(
1− µ

r

)
ρ+ αjj∗1

< 1

⇐⇒ DV (E1) < 1.

Also,

λ2 = aK
[
1− µ

r

]
− ρ− αjj∗1 < 0

⇐⇒ aK
[
1− µ

r

]
< ρ+ αjj

∗
1

⇐⇒
aK

(
1− µ

r

)
ρ+ αjj∗1

< 1

⇐⇒ RAO < 1

and λ3 < 0 since µ < r. Using Routh Hurwitz 2-D criterion, we find the trace and

determinant of Ĵ(E1) to find other stability conditions. First, we find when the trace

of Ĵ(E1) < 0. That is,

tr
(
Ĵ(E1)

)
=− ρ− αjj∗1 + bju

∗
1 − dj < 0

⇐⇒ bju
∗
1 − dj < ρ+ αjj

∗
1

⇐⇒ u∗1 <
dj + ρ+ αjj

∗
1

bj
(C.10)

Note that for j∗1 > 0 implies that u∗1 <
dj
bj

; therefore, the condition (C.10) is always

satisfied since u∗1 <
dj
bj
<

dj+ρ+αjj
∗
1

bj
.

det
(
Ĵ(E1)

)
= (−ρ− αjj∗) (bju

∗
1 − dj) + αju

∗
1bjj

∗
1 > 0
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⇐⇒ ρdj − ρbju∗1 + αjdjj
∗
1 > 0

⇐⇒ ρ+ αjj
∗
1 >

ρbj
dj
u∗1

⇐⇒ u∗1 <
dj
bj

(
1 +

αj
ρ
j∗1

)
(C.11)

Note that for j∗1 > 0 implies that u∗1 <
dj
bj

; therefore, the condition (C.11) is always

satisfied since u∗1 <
dj
bj
<

dj
bj

(
1 +

αj
ρ
j∗
)

. Therefore, E1 is LAS if and only if DV (E1) =

bv
dv

µK(1−µr )
ρ+αjj∗1

< 1 and RAO =
aK(1−µr )
ρ+αjj∗1

< 1.

The Jacobian matrix for E2 is

J (E2) =



− r
K
z∗2 0 −az∗2 0 0

µ −az∗2 0 −αju∗2 −αvu∗2

ac∗2 0 0 −αjc∗2 −αvc∗2

0 bjj
∗
2 bjj

∗
2 bj(u

∗
2 + c∗2)− dj 0

0 0 0 0 bv(u
∗
2 + c∗2)− dv



→



− r
K
z∗2 0 −az∗2 0

µ −az∗2 0 −αju∗2

ac∗2 0 0 −αjc∗2

0 bjj
∗
2 bjj

∗
2 bj(u

∗
2 + c∗2)− dj


= Ĵ(E2)

One eigenvalue is λ1 = bv(u
∗
2 + c∗2)− dv. For λ1 < 0 we have

bv(u
∗
2 + c∗2)− dv < 0

⇐⇒ u∗2 + c∗2 <
dv
bv

⇐⇒ µ

a
+

r

aK

(
K
(

1− µ

r

)
− ρ+ αjj

∗
2

a

)
<
dv
bv

⇐⇒ r

a

(
1− ρ+ αjj

∗
2

aK

)
<
dv
bv
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⇐⇒ ρ+ αjj
∗
2

aK
> 1− adv

rbv

⇐⇒
aK

(
1− adv

rbv

)
ρ+ αjj∗2

< 1

⇐⇒ DV (E2) < 1.

The analysis for using the 4D Routh-Hurwitz criterion was complex; therefore, through

numerical exploration, we found that no addition stability conditions exist.

The Jacobian matrix for E3 is

J (E3) =



µ− r 0 −az∗3 0 0

µ −µbv
dv
z∗3 0 −αju∗3 −αvu∗3

0 0 aK
(
1− µ

r

) (
1− µbv

adv

)
0 0

0 bjj
∗
3 bjj

∗
3 bju

∗
3 − dj 0

0 bvv
∗
3 bvv

∗
3 0 0



→



µ− r 0 0 0

µ −µbv
dv
z∗3 −αju∗3 −αvu∗3

0 bjj
∗
3 bju

∗
3 − dj 0

0 bvv
∗
3 0 0



→


−µbv

dv
z∗3 −αju∗3 −αvu∗3

bjj
∗
3 bju

∗
3 − dj 0

bvv
∗
3 0 0

 = Ĵ(E3)

The eigenvalues are λ1 = aK
(
1− µ

r

) (
1− µbv

adv

)
and λ2 = r − µ. Notice that λ1 < 0

if and only if adv
µbv

< 1 and λ2 < 0 since µ < r is an existence condition.
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We find the rest of the characteristic polynomial and then use the 3-D Routh-

Hurwitz Criterion to determine the stability of E3.

p(λ) =

(
−µbv
dv
z∗3 − λ

)[
(bju

∗
3 − dj) (−λ) + λ2

]
+
αjdv
bv

(−bjj∗3λ) +
αvdv
bv

(bju
∗
3 − dj − λ) (bjv

∗
3)

=
bvµ

dv
z∗3 (bju

∗
3 − dj)λ−

bvµ

dv
z∗3λ

2 + (bju
∗
3 − dj)λ2 − λ3 −

αjdv
bv

bjj
∗
3λ

+
αvdv
bv

bjv
∗
3 (bju

∗
3 − dj)−

αvdv
bv

bjv
∗
3λ

=− λ3 +

(
bju
∗
3 − dj −

bvµ

dv
z∗3

)
λ2 +

(
bvµ

dv
z∗3 (bju

∗
3 − dj)−

αjdv
bv

bjj
∗
3 −

αvdv
bv

bjv
∗
3

)
λ

+
αvdv
bv

bjv
∗
3 (bju

∗
3 − dj)

=λ3 +

(
bvµ

dv
z∗3 − (bju

∗
3 − dj)

)
λ2 +

(
αjdv
bv

bjj
∗
3 −

bvµ

dv
z∗3 (bju

∗
3 − dj) +

αvdv
bv

bjv
∗
3

)
λ

+
αvdv
bv

bjv
∗
3 (dj − bju∗3)

Let p(λ) = 0. The third order Routh Hurwitz criteria are as follows: Let λ3 + a1λ
2 +

a2λ+ a3 = 0. Then Re(λ) < 0 if and only if a1 > 0, a1a2 > a3, and a3 > 0. We see

that

a1 =
µbv
dv
z∗3 + (dj − bju∗3) > 0

since dv
bv
<

dj
bj
. In addition,

a3 =
αvdv
bv

bjv
∗
3 (dj − bju∗3) > 0

since dv
bv
<

dj
bj
.

Now,

a1a2 − a3 =

[
µbv
dv
z∗3 + (dj − bju∗3)

] [
µbv
dv
z∗3 (dj − bju∗3) +

αjdv
bv

bjj
∗
3 +

αvdv
bv

bjv
∗
3

]
− αvdv

bv
bjv
∗
3 (dj − bju∗3)

=
bvµ

dv
z∗3

[
µbv
dv
z∗3 (dj − bju∗3) +

αjdv
bv

bjj
∗
3 +

αvdv
bv

bjv
∗
3

]
+ (dj − bju∗3)

[
αjdv
bv

bjj
∗
3 +

µbv
dv
z∗3 (dj − bju∗3)

]
> 0
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since dv
bv
<

dj
bj
. This means there are no additional stability criteria. Therefore, E3 is

LAS if and only if adv
µbv

< 1.

The Jacobian matrix for E4 is

J (E4) =



r
(
adv
rbv
− 1
)

0 −az∗ 0 0

µ aK
(
adv
µbv
− 1
)

0 −αju∗ −αvu∗

µ
(
adv
µbv
− 1
)

0 az ∗ −µK
r

(
adv
µbv
− 1
)

−αjc∗ −αvc∗

0 bjj
∗ bjj

∗ bj
dv
bv
− dj 0

0 bvv
∗ bvv

∗ 0 0


.

C.3 Equilibria Calculations: Interference Model

Table C.2 gives a summary of the equilibrium conditions that arise from the

system’s equations, (4.12) through (4.16).

(1a) z∗ = 0 (1b) z∗ = K
[
1− 1

r
(µ+ ac∗)

]
(2) u∗ = µz∗

ρ+
αjj

∗

1+kv∗+αvv
∗

(3a) c∗ = 0 (3b) z∗ = 1
a

(
ρ+

αjj
∗

1+kv∗
+ αvv

∗
)

(4) j∗ = S

dj−
bj(u

∗+c∗)
1+kv∗

(5a) v∗ = 0 (5b) u∗ + c∗ = dv
bv

Table C.2: Summary of equilibrium components for system (4.12)-(4.16)

Equilibrium E3 comes from (1b), (2), (3a), (4), and (5b) in table C.2. Since

c∗3 = 0 then (1b) simplifies to z∗3 = K
(
1− µ

r

)
, and (5b) reduces to u∗3 = dv

bv
.
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Plugging (5b) and (4) into (2) we get

dv
bv

=
µz∗3

ρ+
αjS

(1+kv∗3)dj−
bjdv

bv

+ αvv∗3
. (C.12)

The rearranging we get a quadratic equation in v∗3:

− αvdjk (v∗3)2 +

(
−αvdj + djk

(
µbv
dv
z∗3 − ρ

)
+
αvdvbj
bv

)
v3 +

(
µbv
dv
z∗3 − ρ

)(
dj −

bjdv
bv

)
− αjS = 0

(v∗3)2 +

(
1

k

(
1− dvbj

bvdj

)
− 1

αv

(
µbv
dv
z∗3 − ρ

))
v∗3 +

1

αvk

(
µbv
dv
z∗3 − ρ

)(
dvbj
bvdj

− 1

)
+

αjS

αvdjk
= 0. (C.13)

Therefore, we have that

v3± = −1

2

(
1

k

(
1− dvbj

bvdj

)
− 1

αv

(
µbv
dv
z∗3 − ρ

))

± 1

2

√[
1

k

(
1− dvbj

bvdj

)
− 1

αv

(
µbv
dv
z∗3 − ρ

)]2
− 4

(
1

αvk

(
µbv
dv
z∗3 − ρ

)(
dvbj
bvdj

− 1

)
+

αjS

αvdjk

)
(C.14)

Next, we show that there is only one positive root. Using the general form

A (v∗3)2 +Bv∗3 +C = 0, we note that A > 0, so we show that C < 0 to ensure there is

only one positive root to (C.13).

Theorem C.3.1. If DV (E1) > 1 or dv
bv
∈ (0, y3−) ∪ (y3+,∞) hold, then C =

1
αvk

(
µbv
dv
z∗3 − ρ

)(
dvbj
bvdj
− 1
)

+
αjS

αvdjk
< 0

Proof.

Case 1. If
bjdv
djbv
− 1 < 0 then

µbv
dv
z∗3 − ρ >

−αjS

dj

(
bjdv
djbv
− 1
)

⇐⇒ µbv
dv
z∗3 > ρ+

αjS

dj

(
1− bjdv

djbv

)
140



⇐⇒
µbv
dv
z∗3

ρ+
αjS

dj

(
1−

bjdv

djbv

) > 1

⇐⇒
µbv
dv
z∗3

ρ+ αjj∗3 [1st model]
> 1

⇐⇒ DV (E1) > 1,

since j∗3 [1st model] = S

dj

(
1−

bjdv

djbv

) . Furthermore, j∗3 [1st model] = j∗1
[
2nd model

]
=

j∗1 [1st model] , and we have already seen in section 4.5 that when DV (E1) = 1 that

j∗3 [1st model] = j∗1 [1st model] .

Case 2. Let x =
dj
bj

and y = dv
bv

. If
bjdv
djbv
− 1 > 0 then(

µbv
dv
z∗3 − ρ

)(
dvbj
bvdj

− 1

)
+
αjS

dj
< 0

⇐⇒ − ρ

x
y2 +

(
µ

x
z∗3 + ρ+

αjS

dj

)
y − µz∗3 < 0

⇐⇒ y2 −
(
µz∗3
ρ

+ x+
αjSx

djρ

)
y +

µxz∗3
ρ

> 0,

so

y3± =
1

2

µz∗3
ρ

+ x+
αjSx

djρ
±

√(
µz∗3
ρ

+ x+
αjSx

djρ

)2

− 4
µz∗3x

ρ

 . (C.15)

Therefore, C > 0 when either DV (E1) > 1 or dv
bv
∈ (0, y3−)∪(y3+,∞) is satisfied.

This means there is only one positive value for v∗3.

Equilibrium E4 comes from (1b), (2), (3b), (4), and (5b) in table C.2. We find

u∗4 by substituting (3b) into (2) to get

u∗4 =

µ
a

(
ρ+

αjj
∗
3

1+kv∗4
+ αvv

∗
4

)
ρ+

αjj∗4
1+kv∗4

+ αvv∗4
=
µ

a
. (C.16)
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Now, (5b) becomes u∗4 + c∗4 = dv
bv
⇐⇒ c∗4 = dv

bv
− µ

a
. In order for c∗4 > 0, we

need adv
µbv

> 1. By substituting the c∗4 into (1b), we get z∗4 = K
(

1− adv
rbv

)
. Next, we

plug (4) into (2) and use u∗4 = µ
a

to get

µ

a
=

µK
(

1− adv
rbv

)
ρ+

αjS

(1+kv∗4)
(
dj−

bjdv

bv(1+kv∗4)

) + αvv∗4

⇐⇒ µ

a
=

µK
(

1− adv
rbv

)
ρ+

αjS

dj(1+kv∗4)−
bjdv

bv

+ αvv∗4

⇐⇒ µ

a

(
ρ+

αjS

dj (1 + kv∗4)− bjdv
bv

+ αvv
∗
4

)
= µK

(
1− adv

rbv

)
⇐⇒ αjS =

(
dj (1 + kv∗4)− bjdv

bv

)(
aK

(
1− adv

rbv

)
− ρ− αvv∗4

)
⇐⇒ (v∗4)2 +

[
1

k

(
1− dvbj

bvdj

)
− 1

αv
(az∗4 − ρ)

]
v∗4

+
1

αvk

[
(az∗4 − ρ)

(
dvbj
bvdj

− 1

)
+
αjS

dj

]
= 0 (C.17)

Therefore,

v∗4 =− 1

2

[
1

k

(
1− dvbj

bvdj

)
− 1

αv
(az∗4 − ρ)

]

± 1

2

√[
1

k

(
1− dvbj

bvdj

)
− 1

αv
(az∗4 − ρ)

]2
− 4

αvk

[
(az∗4 − ρ)

(
dvbj
bvdj

− 1

)
+
αjS

dj

]
.

Next, we show that there is only one positive root. Using the general form A (v∗4)2 +

Bv∗4 + C = 0, we note that A > 0, so we show that C < 0 to ensure there is only one

positive root to (C.17).

Theorem C.3.2. If DV (E2) > 1 or dv
bv
∈ (0, y4−) ∪ (y4+,∞) is true, then C =

(az∗4 − ρ)
(
dvbj
bvdj
− 1
)

+
αjS

dj
< 0

Proof.
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Case 3. If
bjdv
djbv
− 1 < 0 then

az∗4 − ρ >
−αjS

dj

(
bjdv
djbv
− 1
)

⇐⇒ az∗4 > ρ+
αjS

dj

(
1− bjdv

djbv

)
⇐⇒ az∗4 > ρ+ αjj

∗
4

[
1st model

]
⇐⇒ az∗4

ρ+ αjj∗4 [1st model]
> 1

⇐⇒ DV (E2) > 1,

since j∗4 [1st model] = S

dj

(
1−

bjdv

djbv

) . Furthermore, j∗4 [1st model] = j∗2
[
2nd model

]
=

j∗2 [1st model] , and we have already seen in section 4.5 that when DV (E2) = 1 that

j∗4 [1st model] = j∗2 [1st model] .

Case 4. Let x =
dj
bj

and y = dv
bv

. If
bjdv
djbv
− 1 > 0 then

(az∗4 − ρ)

(
dvbj
bvdj

− 1

)
+
αjS

dj
< 0(

aK
(

1− a

r
y
)
− ρ
)(y

x
− 1
)

+
αjS

dj
< 0

⇐⇒ a2K

xr
y2 +

[
−aK

x
− a2K

r
+
ρ

x

]
y +

(
−αjS
dj
− ρ+ aK

)
> 0

so

y4± =
1

2

aK
x

+
a2K

r
− ρ

x
±

√(
−aK

x
− a2K

r
+
ρ

x

)2

+ 4
a2K

xr

(
αjS

dj
+ ρ− aK

) .

(C.18)

Therefore, C > 0 when either DV (E2) > 1 or dv
bv
∈ (0, y4−)∪(y4+,∞) is satisfied.

This means there is only one positive value for v∗4.
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