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ABSTRACT

INVERSE PROBLEMS AND FORWARD PROPAGATION OF OPTICAL FLOW

John Montalbo, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professors: Dr. Gaik Ambartsoumian & Dr. Souvik Roy

Optical flow is a concept originally introduced in computer vision that quantifies,

and aids in the presentation of, motion (flow field) between two or more images.

In essence, it is a solution of an inverse problem recovering a vector field between

images through optimization techniques. This work studies the possibility of using

optical flow and various techniques of forward propagation of the recovered flow

field for a pair of image processing tasks in magnetic resonance imaging (MRI). It is

shown that the proposed framework can be efficient in approximating missing image

layers, as well as in generation of deliberately modified synthetic MRI images. We

present the underlying mathematical hypotheses necessary for the applicability of

the method, practical limitations associated with it, and potential mechanisms for its

future improvements.
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CHAPTER 1

Introduction

1.1 Problems in Medical Imaging and Applications of Optical Flow

Imaging modalities such as magnetic resonance imaging (MRI) or ultrasound

imaging (US) are incredibly powerful tools that aid in the preoperative planning and

postoperative stages of medicine [13]. In the case of MRI, the 2-dimensional images

of parallel slices at different depths are detailed and give great images of the body.

Major abnormalities can be seen with relative ease by a trained doctor. However,

within a certain class of medical problems, detailed information might be hard to

see due to low contrast, objects might be time-consuming to identify, and/or such

identification can even be subjective from doctor to doctor [13,18].

For imaging scientists this creates a ripe area of interesting and challenging

problems that can be solved using image classification and segmentation techniques.

Image classification problems can be loosely defined as “determining the what”,

whereas image segmentation “determines the where”. And because of the medical

need, one could argue that these types of problems are extremely important and

urgent in all of imaging science.

In the broader perspective, with the deluge of images that humans create

everyday, there comes a real need to classify and sort them into understandable pieces

for the use data collection and analysis purposes.

This thesis presents a mathematical framework equipped with various compu-

tational tools to assist with certain aspects of MRI.
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In the medical imaging community there is a significant need to give doctors

tools that may aid them in their daily practices, and the need to automatically segment

and detect abnormalities is real [13,18]. To this end, the study of convolutional neural

networks (CNNs) and their variants provide invaluable algorithms for the imaging

scientist because of their incredible success in image segmentation and classification

tasks [6, 11,14,20,24]. U-net and other convolutional neural networks have been an

incredible asset for image segmentation techniques tasks [6, 20].

However, there is no “free lunch” when utilizing these algorithms. In order for

modern machine learning techniques to be effective, they require a “large” data pool

from which to learn [16]. Just how “large” this data pool needs to be is not an exact

science. But as a general rule of thumb the amount of data that you should need to

train your algorithm should be large enough to encompass the variation of the objects

to be modeled. The number of data points that you need to properly model your

problem can range in between a few hundred all the way to hundreds of thousands

or more data points [16,20]. But what if you do not have access to a large pool of

different images or significant instances of the objects you are trying to classify?

This is where data augmentation techniques come in handy. There are relatively

simple ways to generate new cases from existing cases using affine and non-affine

transformations. Some standard techniques are image scaling, rotation, reflection,

shearing, and grid warping [22]. Depending on the problem in question some of these

are more viable that others, but these serve as useful methods to generate new data

points from existing ground truths.

Some of the existing data augmentation techniques, while simple to imple-

ment, fail to take into account existing geometry of the scene. They blindly ro-

tate/skew/sheer an image without taking into account whether regions in question

can (or should) rotate/skew/sheer (e.g., will such changes be anatomically viable?).
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In many cases, access to such data is very limited and may take years or

decades to accumulate (e.g. due to privacy laws and the need to de-identify medical

images, expert manpower needed for manual segmentation of the images, etc). This

is where new techniques and innovation can come in and help. With this in mind

we take this idea and use an area of computer vision, called optical flow, to come

up with a new technique for generating synthetic data. This new technique uses

existing geometry of scenes and only allows variation for regions of existing images

that have proven that motion is possible. It also has potential for incorporation of

mathematical descriptions of viable transformations developed by synergistic teams

of mathematicians and radiologists.

While we did not have time to utilize the data generated by our method to

train a neural network, the obtained results in data augmentation are very promising.

They can be used as an important first step in developing a platform for segmentation

and analysis of clinical MRI. Another application of our method to clinical MRI is

creation of additional image slices between existing ones to improve the resolution.

A specific area of interest of our work was pelvic MR imaging, due to an ongoing

collaboration between the University of Texas at Arlington and the University of

Texas Southwestern Medical School departments of Radiology and Urology.

This thesis is arranged as follows; we first introduce the pelvic organ disorders

to call attention to the need for more robust image processing techniques in this

area. We then go through the necessary derivations for our modification of optical

flow technique developed by Horn and Schunck (HS). We discuss the accuracy of our

modified HS algorithm through a reconstruction technique and how this leads to a

data creation framework. Next we discuss meaningful transformations of the motion

field and how this process can be localized. We discuss when reconstruction methods

will fail in the absence of “noise” and then introduce the Explicit Pixel Movement
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framework for codifying motion into images. We then discuss both standard and

non-standard numerical methods for solving systems of ODE’s and how they produce

different results. And finally we discuss a specific set of transformations, that are area

preserving, which is due to the well known brightness consistency condition. We also

furnish plenty of codes and examples within the appendices for the curious reader.

1.2 Clinical Applications

Pelvic organ disorders (POD), or sometimes referred to as pelvic floor disorders,

are a class of medical disorders that affect 1 out of every 4 women in the United

States in their lifetime [13]. These conditions occur when the pelvic floor muscles

and tissue tear or weaken and this erosion of muscle/tissue causes the organs in the

pelvic region to move through the area in an unconstrained manner [13,18], which

wouldn’t occur in a healthy pelvic region.

Various surgical and non-surgical options exist to help repair the damaged

regions [13]. One of these options is the placement of synthetic implants, such as

a sling or mesh to help keep a healthy boundary between the pelvic organs, to

support organs from sagging, etc. [13]. However, sometimes these meshes and slings

themselves cause problems of various types (infection, erosion into organs, etc) and

must be removed [13]. Preoperative planning for the removal of these implants

involves imaging the region with either ultrasound tomography or magnetic resonance

imaging. Each of these techniques has its own pros and cons. In case of MRI, the

problem is that mesh/sling and scar tissue are hard to differentiate in an MRI, i.e.

they have similar contrast [13]. Distinguishing between the meshes/slings and scar

tissue is time consuming and difficult even for trained radiologists. Therefore, there is

a need for accurate computer algorithms that can automatically segment and classify

the pelvic floor organs and implants in MRI.
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The slices that are generated in an MRI sequence come in three distinctly

orthogonal orientations. These are the axial, sagittal, and coronal views and are

classified according to how the slices are taken in 3-D space (see Figure 1.1).

Figure 1.1. (Left) Full view. (Middle-Left) Sagittal plane. (Middle-Right) Axial
plane. (Right) Coronal plane. Figure made in Paint 3D.

Typically a single view is chosen beforehand and a sequence of equally spaced

images is generated in that view. This produces high resolution images in the chosen

view orientation. The resolution in the direction normal to the slices (i.e. the distance

between the slices) is usually very crude (4-5 times worse that the resolution within

the slice).

Overcoming this hardware limitation, by (algorithmically) producing accurate

approximations of 2D image slices in between the recovered slices that are far from

each other, will be of substantial clinical value. A simple interpolation does not

produce the desired result, as we will show later in this dissertation.
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Figure 1.2. Successive images in a “data cube”. Regions of interest may change shape
or disappear in between two images.

1.2.1 Clinical Data Used in the Dissertation

Most of the algorithms developed in this dissertation have been tested on

pelvic floor MR images of real patients. These images have been obtained at the

University of Texas Southwestern Medical Center, fully de-identified according to the

requirements of all applicable privacy laws and then transferred to the University of

Texas at Arlington as part of a Material Transfer Agreement between two institutions.

I would like to thank Dr. Gaurav Khatri and Dr. Philippe Zimmern for making these

images available for my research, as well as for their consultations with our research

group.

1.2.2 Funding Acknowledgment

Part of my research has been supported by the US National Foundation grant

NSF DMS-1616564. During (2016-2020) academic years I was also supported by a
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GAANN (Graduate Assistance in Areas of National Need) fellowship funded by the

Grant P200A150062 awarded to the Department of Mathematics at the University of

Texas at Arlington.
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CHAPTER 2

Optical Flow: Inverse Problems

2.1 Introduction

Optical flow is the study of motion within an image. It gives us a way to track

and quantify how particles (pixels) change in time with respect to a sequence of

images. This then allows for some very interesting applications such as

• image segmentation [8]

• video compression [17]

• motion tracking technology [12]

Helmholtz in his 1925 Treatise on Physiological Optics is often credited for

starting this discussion of how humans see objects as distinct [9]. In his treatise he

describes how small changes in the eyes must aid humans in the depth perception

process. Through these small changes, the brain must be capturing information about

how close or far away an object is.

And much of the discussion from 1925 onward had been about better articulating

this process or about dealing with the problem as a more abstract concept. It is

not until the 80’s, when computational speed and storage had caught up, do we see

explicit algorithms on how to find this motion field. In 1981 two papers are written

that show how this motion field can be generated.

In 1981 Horn and Schunck (HS), laid out a framework for Optical Flow from a

“first principles” standpoint [10]. Their approach uses a constraint on the brightness

patterns and imposes a smoothness condition to arrive at an explicit iterative method

to find the motion field. That is, they assume that pixels present in one time instance
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can be found in another, as long as the amount of time that has passed is very

small. Moreover, they require that pixels in small regions of the image domain “move

together with similar motion”.

Also in 1981 Lucas and Kanade (LK), tackled the problem in a different way [15].

They assumed that all pixels within a small region move with similar velocities, but

solved the problem via a least squares approximation and managed to give another

explicit method to find the motion field.

Much of the science after these two works deals with imposing different types

of constraints. These constraints usually manifest themselves as changes in the cost

functional, or by changing the regularization term.

In this work we are creating a general framework that can then be built upon

by future researchers. We first propose a “proof of concept” approach to test whether

optical flow can be used in the creation of synthetic data. Having shown results

using simple models via the classical Horn and Schunck approach we then use the

recovered flow field to solve inverse problems in MRI. We show how high resolution

images can be built using what we call an explicit pixel movement structure. We

show that using a hybrid mixture term we can approximate slices in between two

high resolution images. Our hope is that by showing viability in our methods we

can entice succeeding data scientists and image processing engineers to further this

preliminary work.

2.2 Definitions, Notations and Formulation of the Problem

We think of an image E(x, y) as a scalar valued function defined on a set of

points (x, y) ∈ Ω ⊆ R × R. We call Ω the domain of the image. For every point

(sometimes referred to as a pixel) in Ω we associate a value E, usually called the

brightness or intensity of that pixel. We also view a sequence {En} as a collection of
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Figure 2.1. The brightness pattern E(x, y, t) in the image frame corresponding to t
can be found at location (x+ δx, y + δy) at time t+ ∆t.

n images, typically called a video. To enable us to use the tools of analysis, we will

also consider a “continuous version” of that sequence, i.e. when the discrete values of

n are instead replaced with a continuous time variable t. The intensity value of pixel

(x, y) at moment t is then denoted as E(x, y, t).

For the function E(x, y, t) we will assume that E(x, y, t) is known for all values

of (x, y) for all t, and that the derivatives Ex, Ey, Et exist with Ex, Ey, Et ∈ L∞(Ω).

Here Ω is the closure of the image domain Ω = {(x, y) ∈ (a, b) × (c, d)}. And as a

reminder, a function f ∈ L∞(Ω) if we can find C < ∞ such that |f | ≤ C almost

everywhere. This space is called the space of essentially bounded functions.

Let us assume that our function E(x, y, t) satisfies the following assumption:

for any small ∆t, one can find functions

δx(x, y, t,∆t), δy(x, y, t,∆t)

such that

E(x+ δx, y + δy, t+ ∆t) = E(x, y, t). (2.1)

That is, we assume that we can find the pixel value E with coordinates (x, y, t)

in some other location (x+ δx, y + δy, t+ ∆t). This is referred to as the brightness

consistency constraint (BCC) [1,3,5,10,21]. This ensures that after a small amount
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of time ∆t has passed, we can find the pixel E that was located at point (x, y, t) in

some other location (x+ δx, y + δy, t+ ∆t). Another requirement is that

lim
∆t→0

δx(x, y, t,∆t) = 0, (2.2)

lim
∆t→0

δy(x, y, t,∆t) = 0, (2.3)

and

lim
∆t→0

E(x+ δx, y + δy, t+ ∆t) = E(x, y, t), (2.4)

Assuming that the following limits exist, we now define the following functions

u(x, y, t) := lim
∆t→0

δx(x, y, t,∆t)

∆t
(2.5)

v(x, y, t) := lim
∆t→0

δy(x, y, t,∆t)

∆t
(2.6)

Remark 1. So far we have not assumed that E is smooth, and (2.5-2.6) hold even if

E(x, y, t) is not smooth.

The requirements that we have imposed are not too restrictive as to deem their

study frivolous. For example, affine transformations for small time increments allow

regions of images to stay relatively close to their starting positions. E.g., if we took an

image E(x, y, t) and moved all of its pixels in, say a cardinal direction (translation),

then every pixel E(x, y, t) can be found in another location E(x+ δx, y + δy, t+ ∆t).

If we enforce an additional condition that E ∈ C1(Ω) we can use Taylor’s

theorem for multiple variables, and E(x+ δx, y + δy, t+ ∆t) can be expressed as

E(x+ δx, y + δy, t+ ∆t) = E(x, y, t) +
∂E

∂x
· δx+

∂E

∂y
· δy +

∂E

∂t
·∆t+ H.O.T. (2.7)

Here by H.O.T. we mean higher order terms. Now, dividing (2.7) throughout by ∆t

and then taking ∆t→ 0 we arrive at
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∂E

∂x
u+

∂E

∂y
v +

∂E

∂t
= 0, (2.8)

which we will often write as

Exu+ Eyv + Et = 0 (2.9)

Remark 2. Even though we would like a sort of smoothness for our terms Ex, Ey, and

Et, when actually implementing these ideas in practice we may only have piece-wise

smoothness.

We will often refer to the function

A(x, y, t) = Ex · u+ Ey · v + Et, (2.10)

as the advection function, or sometimes the advection term.

The inverse problem associated with this optical flow construction can then be

cast as follows: Given E(x, y, t) (and hence knowing the terms Ex, Ey, Et in (2.9)),

find the associated u(x, y, t), v(x, y, t) that satisfy (2.9).

Aside from the assumptions above we also assume that our unknowns u, v,∇u,∇v ∈

L2(Ω) and that both u = v = 0 on ∂Ω. That is, we are assuming that u, v ∈ H1
0 .

Again, to remind the reader, an Lp space is defined as the space of functions

along with a measure space (Ω,
∑
, µ) whose norm as defined below is finite

‖f‖p :=

(∫
Ω

|f |pdµ
)1/p

<∞.

The Sobolev space W 1,2(Ω) is defined as the space of all functions f on a domain

S such that

W 1,2(Ω) = {f ∈ L2(Ω) : Dα(f) ∈ L2(Ω) , |α| = 1},

where α is an index term. The Sobolev space W 1,2 is usually denoted as H1, and

an important subspace of H1 is the space H1
0 which is the closure of infinitely

differentiable functions compactly supported in Ω in H1.
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2.2.1 Optimization

The main difficulty at this point is that (2.9) has no unique solution [2]. For

example, suppose we have a constant image (an image that is colored by any one

color throughout its domain) E(x, y, t) = c for all (x, y) ∈ Ω and all values of t > 0

(where c ∈ R). Then we have

E(x+ δx, y + δy, t+ ∆t) = E(x, y, t) = c ∀(x, y) ∈ Ω.

Then

∂E

∂x
=
∂E

∂y
=
∂E

∂t
= 0 ∀(x, y) ∈ Ω,

thus any functions (u, v) will satisfy

Exu+ Eyv + Et = 0.

To make the problem well defined, one would have to impose additional restric-

tions. Horn and Schunck determined unknown functions (u, v) in (2.9) as minimizers

of a global cost function J(u, v) (described below) via regularization [10, 21]. That is,

they find u and v in H1
0 that minimize

J(u, v) =

∫ b

a

∫ d

c

((Ex · u+ Ey · v + Et)
2 + λ2(‖∇u‖2 + ‖∇v‖2) dx dy. (2.11)

The first term in the integral is the square of the advection term (2.9) and in

an ideal scenario should be identically zero. But in reality we will not have the first

term be actually zero, so we use it as a penalty term to penalize the model from being

away from zero. The second term was added by HS to assure that neighboring points

have similar velocities. The term λ > 0 is a parameter used to control the effect of

the 2nd term. Large values of λ are used for smooth motion, and small values of λ is

for “jerking” motion.
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The function J(u, v) is strictly convex [21] and hence for the corresponding

optimization problem, the minimization of J(u, v), has a unique solution [4]. It can

be shown that solving the minimization problem (2.11) comes down to solving its

corresponding Euler-Lagrange equations (EL) [21]. These are given by

∂J

∂u
= (E2

xu+ ExEyv + ExEt)− λ2∆u = 0, (2.12)

∂J

∂v
= (ExEyu+ E2

yv + EyEt)− λ2∆v = 0. (2.13)

where ∆ := ∂xx + ∂yy. The expressions in (2.12) and (2.13) are referred to as the

Gateaux derivatives.

Instead of solving (2.12) and (2.13) analytically we consider the discretized

version and make the substitution ∆u ≈ 5(u− u) and ∆v ≈ 5(v − v). Here (u, v) are

localized averages of (u, v) centered at point (x, y). A discussion about the details

of this substitution is coming in the next section. Then we solve the discretized

coupled EL equations, where every function is evaluated at (x, y, t), which leads to

the following system

(Exu+ Eyv + Et)Ex − 5λ2(u− u) = 0,

(Exu+ Eyv + Et)Ey − 5λ2(v − v) = 0.

We will soon discuss why the approximations for ∆u,∆v are appropriate. But

taking it to be true, we have

A

u
v

 =

5λ2u− ExEt

5λ2v − EyEt

 (2.14)

where

A =

E2
x + 5λ2 ExEy

EyEx E2
y + 5λ2

 . (2.15)
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This leads us to

u
v

 =

E2
x + 5λ2 ExEy

EyEx E2
y + 5λ2


−1

︸ ︷︷ ︸
A−1

5λ2u− ExEt

5λ2v − EyEt

 . (2.16)

The matrix inverse above is well defined since

| det(A)| = |25λ4 + 5λ2(E2
x + E2

y)| > 0.

2.2.2 The 5-point Stencil

We now turn our attention to the approximations of the ∆u,∆v from the

previous section. Let us consider the following discretization formulas for u(x, y, t)

using Taylor’s formula (here we assume a spatial discritization of (x, y) and step size

of h)

u(i, j, k) := u(xi, yj, tk)

u(i+ 1, j, k) = u(i, j, k) + h · ux(i, j, k) +
h2

2!
· uxx(i, j, k) +O(h3)

u(i− 1, j, k) = u(i, j, k)− h · ux(i, j, k) +
h2

2!
· uxx(i, j, k)−O(h3) (2.17)

u(i, j + 1, k) = u(i, j, k) + h · uy(i, j, k) +
h2

2!
· uyy(i, j, k) +O(h3)

u(i, j − 1, k) = u(i, j, k)− h · uy(i, j, k) +
h2

2!
· uyy(i, j, k)−O(h3).

Remark 3. For the rest of this dissertation we normalize and define h = 1, as well as

denote xi = i.

Adding together the previous equations and ignoring the higher order error

terms, we then have

u(i, j, k) + u(i+ 1, j, k) + u(i− 1, j, k) + u(i, j + 1, k) + u(i, j − 1, k) =

5 · u(i, j, k) + uxx(i, j, k) + uyy(i, j, k).
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We define

u :=
1

5
(u(i, j, k) + u(i+ 1, j, k) + u(i− 1, j, k) + u(i, k + 1, j) + u(i, j − 1, k)) .

(2.18)

Figure 2.2. The 5-point stencil. We approximate u and v through its “neighboring”
points.

Thus we have

u = u+
1

5
(uxx + uyy)

that is, 5(u− u) = uxx + uyy, which leads to

∆u =

(
∂2

∂x2
+

∂2

∂y2

)
u ≈ 5(u− u). (2.19)

A similar calculation with the function v(i, j, k) would lead to

∆v =

(
∂2

∂x2
+

∂2

∂y2

)
v ≈ 5(v − v). (2.20)

The approximation that we make for our terms ∆u,∆v are different from the

approximations that HS make in their paper [10].
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2.3 Solutions and Numerical Scheme

Now back to the matters at hand, we are almost done with the derivation

of our numerical scheme to calculate the optical flow. We just need to finish the

computation from hereu
v

 =

E2
x + 5λ2 ExEy

EyEx E2
y + 5λ2


−1 5λ2u− ExEt

5λ2v − EyEt

 .
By direct computation of the right-hand side we haveE2

x + 5λ2 ExEy

EyEx E2
y + 5λ2


−1 5λ2u− ExEt

5λ2v − EyEt

 =

=
1

(E2
x + E2

y)(E
2
y + 5λ2)− E2

xE
2
y

·

E2
y + 5λ2 −ExEy

−EyEx E2
x + 5λ2

 ·
5λ2u− ExEt

5λ2v − EyEt



=
1

(E2
x + E2

y)(E
2
y + 5λ2)− E2

xE
2
y

·

 (E2
y + 5λ2)(5λ2u− ExEt)− ExEy(5λ2v − EyEt)

−EyEx(5λ2u− ExEt) + (E2
x + 5λ2)(5λ2v − EyEt)



=
1

25λ4 + 5λ2(E2
x + E2

y)
·

 5λ2E2
yu− ExEtE2

y + 25λ4u− 5λ2ExEt − 5λ2ExEyv + ExEtE
2
y

−5λ2ExEyu+ E2
xEyEt + 5λ2E2

xv − E2
xEyEt + 25λ4v − 5λ2EyEt



=
1

25λ4 + 5λ2(E2
x + E2

y)
·

 5λ2E2
yu+ 25λ4u− 5λ2ExEt − 5λ2ExEyv

−5λ2ExEyu+ 5λ2E2
xv + 25λ4v − 5λ2EyEt



=
1

5λ2 + E2
x + E2

y

·

 E2
yu+ 5λ2u− ExEt − ExEyv

−ExEyu+ E2
xv + 5λ2v − EyEt

 .
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Thus we have

u
v

 =
1

5λ2 + E2
x + E2

y

·

 (5λ2 + E2
y)u− ExEyv − ExEt

−ExEyu+ (E2
x + 5λ2)v − EyEt

 ,
which means

(5λ2 + E2
x + E2

y)u = (5λ2 + E2
y)u− ExEyv − ExEt (2.21)

(5λ2 + E2
x + E2

y)v = −ExEyu+ (E2
x + 5λ2)v − EyEt. (2.22)

At this point we have our solutions for (u, v) from the coupled equations above.

However, to be consistent with the expressions that Horn and Schunck derived in

their paper, we will subtract −(5λ2 + Ex + E2
y)u and −(5λ2 + E2

x + E2
y)v from the

previous equations. We then end up with

(5λ2 + E2
x + E2

y)u− (5λ2 + E2
x + E2

y)u =

(5λ2 + E2
y)u− ExEyv − ExEt − (5λ2 + E2

x + E2
y)u

(5λ2 + E2
x + E2

y)v − (5λ2 + E2
x + E2

y)v =

− ExEyu+ (E2
x + 5λ2)v − EyEt − (5λ2 + E2

x + E2
y)v

which can be written

(5λ2 + E2
x + E2

y)(u− u) = −E2
xu− ExEyv − ExEt

(5λ2 + E2
x + E2

y)(v − v) = −ExEyu− E2
yv − EyEt.

This means

u− u =
−Ex(Exu+ Eyv + Et)

5λ2 + E2
x + E2

y

,

v − v =
−Ey(Exu+ Eyv + Et)

5λ2 + E2
x + E2

y

,

and we finally arrive at
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u = u− Ex(Exu+ Eyv + Et)

5λ2 + E2
x + E2

y

, (2.23)

v = v − Ey(Exu+ Eyv + Et)

5λ2 + E2
x + E2

y

. (2.24)

At this point we have the solutions that we sought via (2.23) and (2.24). From

here the HS-method solves (2.23) and (2.24) via a Gauss-Seidel iterative scheme [10]

un+1 = un − Ex(Exu
n + Eyv

n + Et)

5λ2 + E2
x + E2

y

, (2.25)

vn+1 = vn − Ey(Exu
n + Eyv

n + Et)

5λ2 + E2
x + E2

y

, (2.26)

In their iterative scheme HS compute the next estimates for the flow field

(un+1, vn+1) via the previous iterates (un, vn). In practice we usually initialize the

values (u1, v1) = (0, 0) and run the algorithm for only a few values of n (typically

between 10-15 iterations).

2.4 Verifying the Accuracy of the Recovered Vector Field

So now that we have our velocity vectors (u, v) we know the values that satisfy

Exu+ Eyv + Et = 0.

Since we know

∂E

∂t
= lim

∆t→0

E(x, y, t+ ∆t)− E(x, y, t)

∆t

then for a pair of images E1, E2 separated by a time increment of ∆t within an image

sequence, we can put

E1(x, y, t) = E(x, y, t), E2(x, y, t) = E(x, y, t+ ∆t).

Then
∂E

∂t
≈ E2 − E1

∆t
. (2.27)
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Thus we have

Exu+ Eyv +
E2 − E1

∆t
≈ 0

⇒ E2 − E1

∆t
≈ −(Exu+ Eyv) (2.28)

⇒ E2 − E1 ≈ −∆t(Exu+ Eyv)

We obtain

E2 ≈ E1 −∆t(Exu+ Eyv). (2.29)

Using (2.29) we can check whether our numerical scheme is being computed

correctly, since we happen to know beforehand what the actual image 2 was supposed

to be. We will also denote the quantity on the right hand side of (2.29) as

Ẽ2 := E1 −∆t(Exu+ Eyv). (2.30)

Figure 2.3. (Left) Original Image 1. (Middle Left) Original Image 2. (Middle Right)
Flow field generated. (Right) A reconstructed version of Image 2 via (2.29).

In the figure above we run our modified HS algorithm with the parameters

listed in the table below. These parameters are proportional to the actual resolutions

in the MRI used to obtain the images.
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δx .6875 mm

δy .6875 mm

∆t 4.4 mm

Iterations 5

λ 10−7

With the setup prescribed as above we are able to achieve a relative error as

Relative Error =
‖Ẽ2 − E2‖p
‖E2‖p

=


= .0335 if p = 2

= .0450 if p = F

Here ‖ · ‖2 is the induced matrix norm and ‖ · ‖F denotes the Frobenious norm.

Just to remind the reader the 2-norm and the Frobenius norm are calculated as

‖A‖2 =
√
λmax(A∗A)

‖A‖F =

(
m∑
i=i

n∑
j=1

|ai,j|2
)1/2

where λmax(·) denotes the largest eigenvalue of a matrix.
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CHAPTER 3

Optical Flow: Modified Forward Propagation

So far we have shown that the optical flow algorithm provided by Horn and

Schunk can produce an accurate vector field between two images. Through recon-

struction of the second image (using the first one together with the flow field) we

can verify how well the algorithm is performing. This is a benchmark for the rest

of this dissertation because what we discuss in Chapter 3 and 4 is how we can use

this information in creative ways. More specifically, we have two goals in mind. Here

we present the goals of the following chapters and their associated sections for the

reader.

1. Creation of new information from the computed flow field.

(a) Section 3.1: Transformations of (u, v).

(b) Section 3.2: Localization of Change.

(c) Section 3.3: Analysis of ‖Exu+ Eyv + Et‖.

2. Improving the MRI resolution by utilizing the flow field.

(a) Section 4.1: Deficiencies in Blind Interpolation Processes.

(b) Section 4.2: The Explicit Pixel Movement Framework.

(c) Section 4.3: Explicit Movement in MRI.

(d) Section 4.4: Methods of Forward Propagation.

(e) Section 4.5: Area Preserving Transformations.

For our first goal we would like to use the computed flow field to generate new

data. So in Section 3.1 we discuss how we may slightly modify our flow field to this

end. In Section 3.2 we discuss how we can localize this process. Then in Section 3.3
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we talk about the need for adding noise into synthetic images to make sure that the

brightness consistency constraint is satisfied.

As for our second goal, we would like an automated process that will create

high resolution images between two given images. Sections 4.1, 4.2, 4.3, 4.4 and 4.5

lead the reader trough the creation of what we ultimately call the Forward Hybrid

Propagation Model, which allows us to achieve high quality images to be used to

“fill in” the gap between two images. We discuss how simpler linear methods fail,

why HS is not enough, how to overcome technical challenges, and how to “mix” new

information into data frames.

3.1 Transformations of u and v

In the reconstruction equation Ẽ2 = E1 −∆t(Ex · u + Ey · v) we assume the

knowledge of accurate estimates for (u, v) via the algorithm of Horn and Schunck. One

could also use one of the other variants of the optical flow problem to solve for (u, v),

however different approaches make different assumptions [4,21]. Regardless of how the

components are computed, a natural question to ask is what type of transformations

on u, v are interesting from a data generation standpoint. Considering this, the first

type of transformation that we employed was the following

u→ εu, v → εv, (3.1)

where ε ∈ [0, 1]. This seems like a natural choice because if ε = 0 we have

u→ 0, v → 0,

i.e. there is no movement in the scene. This makes complete sense because in our

equation it is equivalent to

Ẽ2 = E1 −∆t(Ex · 0 + Ey · 0) = E1.

23



On the other hand if ε = 1 we have

u→ u, v → v,

which means that there is no change in your velocity functions, so the scene plays

out as usual. Analytically, if we change (u, v)→ (εu, εv) we have

Ẽ2 = E1 −∆t(Ex · u+ Ey · v)

= E1 −∆t(εExu+ εEyv)

= E1 − ε∆t(Ex · u+ Ey · v)

We note that E1 − E2 can be computed as

E2 − E1 = −∆t(Ex · u+ Ey · v).

So we have

Ẽ2 = E1 + ε(E2 − E1),

= εE2 + (1− ε)E1.

Thus we may view the function F (u, v) = (εu, εv) as a homotopy from E1 to

E2 as ε goes from 0 to 1. In fact, when ε = 1/2 we have

Ẽ2 =
E1 + E2

2
.

For different values of ε we can get different images as shown here
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Figure 3.1. At the top left we start with a value of ε = 0 and continue increasing in a
serpentine pattern.

In this case we are starting at an image E1 and evolving our ε in

Ẽ2 = E1 −∆t(εEx · u+ εEy · v)
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from ε = 0 until ε = 1 which makes Ẽ2 close to E2. These images are taken from

an MRI scan of a patient in sagittal view. For reference, images 1 and 2 are taken

directly one after another in the same orientation.

Figure 3.2. Image pairs from a sequence in an MRI scan tell information about a
cross-section of a volume after a change in depth.

3.2 Localization of Change

Now that we have shown that the transformations u → εu and v → εv will

produce good results, we explore what will happen if the changes were not made

globally. That is, what if we could localize changes in the components u and v so

that only a portion of the image changes? This would give us freedom to localize

changes, instead of having global variation.
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With this idea in mind we would like to choose a transformation scheme that

will affect our components u(x, y) and v(x, y) smoothly around a point (x, y) ∈ Ω.

To this end, we employ a Gaussian centered at (h, k)

f(x, y) = e−σ
2·((x−h)2+(y−k)2), (3.2)

which will determine the support of the change. The points (h, k) can be chosen

randomly or can be predetermined beforehand. In our numerical experiment we

picked (h, k) ∈ U{(x, y) ∈ N × N| 1 ≤ x ≤ n and 1 ≤ y ≤ m}, where U(B) is a

uniform distribution of set B. We say points, plural, because in practice we would

like to generate many different images so building an algorithm with this in mind is

more effective than doing things one at a time. Therefore, we are actually talking

about a family of Gaussians

fs(x, y) = e−σ
2
s ·((x−hs)2+(y−ks)2), (3.3)

where s ∈ {1, 2, 3, ..., Kend} and Kend is the number of locations that one would like

the algorithm to modify. This would allow different regions to be affected by the

change. The variance σ2
s can likewise be randomly chosen per each trial, or it can

be predetermined. The variation should be large enough to affect a non-trivial region

around (hs, ks), but not so large as to affect the entire image.
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Figure 3.3. Using a localized approach allows us to only change a subset of pixels
within our image.

3.3 Analysis of ‖Exu+ Eyv + Et‖

We now turn our attention to the advection term

A(x, y, t) = Ex · u+ Ey · v + Et.

In an ideal scenario we would have A(x, y, t) be zero. This would determine

how “faithful” we are to satisfying our brightness consistency constraint

E(x+ δx, y + δy, t+ ∆t) = E(x, y, t).

But because of errors that accumulate via numerical implementation, non-

optimal choices of λ2, and other various violations in assumptions, in practice this

will not usually be the case. However, the advection equation
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A(x, y, t) = 0, (3.4)

is still useful, because it will tell you whether or not the reconstruction was successful.

Since we may always have some sort of imperfections in our implementation we would

expect Exu+ Eyv + Et = η, where η is a “small” amount of error. The size of η is

an indicator of the quality of the reconstruction (the smaller it is, the better is the

quality).

We now introduce a simple phantom to illustrate how things can be “evaluated”

by the advection term and also to show how noise has an effect on our advection

term. To this end, we take a black and white image of a circle (which was generated

in MATLAB) and move it 1 pixel in the north-east direction. To familiarize the

reader with the layout of the upcoming experiments and tables, we will first show

the 1 pixel movement, a 25 pixel movement, and a 50 pixel movement. We start out

our discussion with no noise term added.
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Figure 3.4. (Top-left) Original circle. (Top-middle) Original Circle 2. (Top-right)
Reconstructed Circle 2. (Middle-left) Original circle w/noise = 0 . (Middle-middle)
Original circle 2 w/noise = 0. (Middle-right) Reconstructed Circle 2. (Bottom-left)
MRI 1. (Bottom-middle) MRI 2. (Bottom-right) Reconstructed MRI 2.

With a 1 pixel movement it is really hard to see any difference between the

images. We can however keep track of norms of different terms and use that instead

of visual inspection to emphasize differences. To this end, we will introduce the

following norms

NormExEy =
√
‖Ex‖2 + ‖Ey‖2 (3.5)

NormEt = ‖Et‖ (3.6)

NormAdvec = ‖Ex · u+ Ey · v + Et‖ (3.7)
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NormDiff = ‖Ẽ2 − E2‖ (3.8)

NormRel = ‖Ẽ2 − E2‖/‖E2‖ (3.9)

The term NormExEy tells us the magnitude of overall “variation” in an image.

The second term NormEt gives us an idea of how “different” image 1 and image 2

are. The third term, NormAvec, tells us how far away we are from satisfying the

BCC. The fourth term, NormDiff, is the difference between the reconstructed image

2 and the actual image 2. The reconstructions in the last column of Figure (3.4),

rows 1 and 2, are being compared to the image in the first row second column. The

last term, NormRel, is the relative error of the reconstructed image 2 and the actual

image 2.

Here is the table with all of these values from Figure (3.4). Note that the first

two numerical columns in Table (3.1) are the same, this is done on purpose to setup a

“table template” that will be used many times throughout this section. As we progress

through this section we will a noise term which will cause the middle column to

change, so the choice to add a noise = 0 column is purposeful. The hope is that this

aids the reader with understanding the format of subsequent tables in this section.

Circles Circles w/noise = 0 MRI

NormExEy 21.5407 21.5407 10.9188
NormEt 7.5515 7.5515 5.7264

NormAdvec 7.5169 7.5169 0.2514
NormDiff 7.5169 7.5169 3.4232
NormRel 0.0447 0.0447 0.0283

Table 3.1. Norm data from Figure (3.4)

The main thing to take away from this table is that the advection error is large,

even in this simple case. All we have done is moved our circle a small amount. Still
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our advection error is large. The MRI pairs on the other hand have a relatively small

advection error, and the reconstruction is doing well.

Before we continue, we can actually explain why the terms NormAdvec and

NormDiff are very close to each other in the case of circles without noise.

Let us assume that

NormAdvec = ‖Ex · u+ Ey · v + Et‖ = η1,

NormDiff = ‖Ẽ2 − E2‖ = η2.

In the case where we have no noise term (either artificially added or coming

naturally from the scene) with the chosen images of circles we have that Ex = Ey = 0

almost everywhere. This is because we are using piece-wise constant images. This

means that

NormAdvec = ‖Ex · u+ Ey · v + Et‖ =

∥∥∥∥E2 − E1

∆t

∥∥∥∥ = η1,

and using Ẽ2 = E1 −∆t · (Exu+ Eyv),

NormDiff = ‖Ẽ2 − E2‖ = ‖E1 − E2‖ = ‖E2 − E1‖ = η2.

Since we use ∆t = 1, we arrive at

η1 = ‖E2 − E1‖ = η2

When we add artificial noise to our images (or if our images come with their

own noise, as is the case with the MRIs) we actually make the derivatives to be

non-zero, which then translates to our errors η1 6= η2.

Next we will add a small amount of noise (uniformly additive 1% noise) to the

circles and then show the same table as above, but with updated values.
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Figure 3.5. (Top-left) Original circle. (Top-middle) Original Circle 2. (Top-right)
Reconstructed Circle 2. (Middle-left) Original circle w/noise = 1%. (Middle-middle)
Original circle 2 w/noise=1%. (Middle-right) Reconstructed Circle 2. (Bottom-left)
MRI 1. (Bottom-middle) MRI 2. (Bottom-right) Reconstructed MRI 2.

Figure (3.5) and Figure (3.4) look practically the same. The amount of noise

being added to the circles is 1% of uniformly random noise. This is because our

movement is very small and the noise term that is being used is also very small. This

results in images that are very close to their denoised partners visually. However the

effects can be seen in the following table (3.2).

The only column that has changed is the 2nd column. The NormExEy term has

changed because now there are more spatial changes in our images. The second term
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Circles Circles w/noise = 0.01 MRI

NormExEy 21.5407 21.5472 10.9188
NormEt 7.5515 7.5515 5.7264

NormAdvec 7.5169 3.1224e-04 0.2514
NormDiff 7.5169 1.6009 3.4232
NormRel 0.0447 1.8583e-06 0.0283

Table 3.2. Norm data from Figure (3.5)

NormEt has not changed because the same noise term is added to circle 1 and circle 2.

But our advection term, NormAdvec, has gone down substantially. This means that

our BCC is almost perfectly being satisfied. The difference between the reconstructed

circle 2 and the original circle 2 is smaller, but the relative error between the two,

NormRel, has gone down a lot.

Before we move our circles by a larger amount, we will stay with this example

and add more noise. We will spare the image sequences and instead give a table of

the results, again these are all with a 1 pixel movement in the top-right direction.

Circles Noise = 0 Noise = 0.01 Noise = 0.05 Noise = 0.10

NormExEy 21.5407 21.5472 21.6301 21.8394
NormEt 7.5515 7.5515 7.5515 7.5515

NormAdvec 7.5169 3.1224e-04 9.2171e-05 2.6838e-06
NormDiff 7.5169 1.6009 8.0166 16.0075
NormRel 0.0447 1.8583e-06 5.4855e-07 1.5452e-08

Table 3.3. Norm data from Figure (3.5), but with three different noise terms

We see that adding more noise to an image has many different effects on the

norm terms. Fist of all, it translates to more variation in our simple image and

therefore our NormExEy term grows. The NormEt term is not changed throughout
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this process because the same noise term is being added to circle 1 and circle 2. If we

were to add different noise terms then this term would change.

We will now move the circles 25 pixels in the top-right direction, and we will

add a 5% noise term to aid in the reconstruction. We show the results of the images

first and then the table of the relevant data.

Figure 3.6. (Top-left) Original circle. (Top-middle) Original Circle 2. (Top-right)
Reconstructed Circle 2. (Middle-left) Original circle w/noise=5%. (Middle-middle)
Original circle 2 w/noise=5%. (Middle-right) Reconstructed Circle 2. (Bottom-left)
MRI 1. (Bottom-middle) MRI 2. (Bottom-right) Reconstructed MRI 2.

Lastly we move our images 50 pixels and put the noise level at 5%.
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Circles Circles w/noise = 0.05 MRI

NormExEy 21.5407 21.5785 10.9188
NormEt 66.4386 66.4386 5.7264

NormAdvec 66.1581 7.3121e-04 0.2514
NormDiff 66.1581 8.0188 3.4232
NormRel 0.3937 4.3518e-06 0.0283

Table 3.4. Norm data using from Figure (3.6) with 5% noise

Figure 3.7. (Top-left) Original circle. (Top-middle) Original Circle 2. (Top-right)
Reconstructed Circle 2. (Middle-left) Original circle w/noise=5%. (Middle-middle)
Original circle 2 w/noise=5%. (Middle-right) Reconstructed Circle 2. (Bottom-left)
MRI 1. (Bottom-middle) MRI 2. (Bottom-right) Reconstructed MRI 2.
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Circles Circles w/noise = 0.05 MRI

NormExEy 21.5407 21.5794 10.9188
NormEt 104.2776 104.2776 5.7264

NormAdvec 104.0771 0.0093 0.2514
NormDiff 104.0771 8.0080 3.4232
NormRel 0.6194 5.5326e-05 0.0283

Table 3.5. Norm data from Figure (3.7)

3.3.1 Discussion of Results

We can see that without noise the reconstruction is not good in the case of

circular phantoms. This is because our reconstruction method relies on the fact that

Ex ·u+Ey ·v+Et = 0. For the images we are trying to work with (piecewise constant

images, 1 in the support and 0 otherwise) the spatial derivatives Ex and Ey would

be zero almost everywhere, which then eliminate u and v in (2.30) used for forward

propagation. This then causes our Ẽ2 = E1, which is not what we are trying to do.

So the addition of noise is an important pre-processing step, when dealing with simple

phantoms. It is not needed in the case of the MRIs, for example, because with those

images they naturally come with 1) texture from the different parts of the anatomy

and 2) noise from their acquisition.

We are also capable of reconstructing the image (the piece-wise constant circles)

without noise by subtracting it out at the end of our algorithm. Namely, let us

assume the same noise term (say ϕ) is being added to the images W1 = E1 + ϕ and

W2 = E2 + ϕ. One can then run our algorithm on the noised images W1 and W2 and

once complete, simply put Ẽ2 := Ẽ2 − ϕ. In other words, if the original images do

not have enough spatial variation, one can artificially add certain amount of noise

to make the algorithm applicable. Then, once the new images are generated, the

artificially added noise can be subtracted.
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One more useful piece of information that is given by the tables in this section

is the fact that knowledge of the norms NormExEy and NormEt does not provide

enough information to tell before computing the components u and v whether the

BCC is satisfied or not (e.g. see Table 3.3 on page 30). That is, if all you were given

from an image sequence was the first two rows of the norms table, it is impossible to

know which image pairs satisfy the BCC and which do not.
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CHAPTER 4

Approximation of Intermediate Slices in MRI

We now turn our attention to the need of improving the resolution between the

slices and how the techniques developed so far can be modified to achieve this goal.

We first begin with a discussion concerning why standard interpolation techniques

will not work for our purposes. Then we briefly discuss why the HS formulation is not

enough to solve the problem alone. Next we discuss a way to add motion into a scene

via Pixel Movement. And finally we discuss the Hybrid Methods that incorporate

several processes working together to arrive at the completion of our second goal.

4.1 Deficiencies in Blind Interpolation Processes

Let us explore why a simple interpolation does not produce the types of images

that we would like. That is, given two image slices we would like to produce an

approximation for the intermediate slices between the given two.

Suppose we are given the two images in Figure 4.1. What we have done is taken

a circular mass and moved it in the north-western direction from one slice to another.

What we would like for the “approximation of the images in the intermediate slices”

is the singular mass shifted by a progressively increasing fraction of the distance

between Image 1 and Image 2.

To test whether a straightforward interpolation will suffice, we can use, for

example, MATLAB’s built-in interp3 command to try and get intermediate slices.

But this produces blurred images for the intermediate slices and fails to give the type

of successive images that we would like to have. This is not a deficiency in MATLAB,
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but rather a lack of proper association between points in one image and points in

another. We discuss this in more detail in the text that follows.

Figure 4.1. Take a circle and move it in the north-western direction.

In the previous figure, we have taken a circle and moved it in the north-western

direction. We put these images into a volume at depth z = 1 for Image 1 and z = 2

for Image 2. We used interp3 to get the intermediate depths between z = 1 and

z = 2, but what comes out are images of this type (see next figure).
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Figure 4.2. Interpolated images from the previous given two. We see that the
intermediate slices have an additive blur from one image to another. (Top left) z = 1,
(Bottom Right) z = 2. To be read from top left, to top middle, to top right, then
middle left, middle middle, etc..

Intuitively, if we were to couple each pixel in Image 1 with a unique “corre-

sponding” shifted pixel in Image 2, then a simple linear interpolation would provide a

“perfect” approximation of the shifted images in the intermediate slices between the

two images. But that type of information about pairwise correspondence of points is

certainly not available. Instead, the interpolation process tries to approximate the

values of the function in the new slices using correspondence between entire regions

(supports of the discs) and the functional values there. The result is the “blurry”

approximation that is not adequate for our needs.
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Let us now discuss why the (HS) formulation is not enough either. To give you

an idea of what happens if we simply try and use (HS) formulation alone we offer the

following figure.

Figure 4.3. A sketch of an attempt to approximate the middle slice between two
images using half of the time step size in HS.

Let us start out with an image E1 that has the value 1 inside the red circle and

0 everywhere else. The second image, E2, contains the same disc at a shifted location.

Define A = Exu + Eyv (see the previous figure). By taking a portion of A, in this

case half, we get the 4th image. And by finally computing E1 − 1
2
A we get the last

figure. That is, if we want to use the reconstruction term to give us a nice smooth

shift from Image 1 to Image 2 it will fail just like our linear interpolation did. By

taking the middle term we get an average of the two images, and by taking different

time increments for ∆t (not equal to 0 or 1) we would always have a “shadow” either

of Image 1 or Image 2 within our data frame.
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4.2 The Explicit Pixel Movement Framework

After solving the inverse problem of optical flow, the pixel movement has been

codified into the functions u and v. To take advantage of this information we can

think of how to evolve each pixel in time with the direction (u, v). Supposing that

we have a pixel located in position (x0, y0), we would like to evolve that pixel along

velocity vector field (u, v) with time t ∈ [0, 1]. I.e. we want to find the new coordinates

(x, y) that (x0, y0) evolves to in a given time t. For a small value of t, and initial

conditions

x(0) = x0, (4.1)

y(0) = y0, (4.2)

we can approximate the coordinates of the new pixel location at

x = x0 + t · u, (4.3)

y = y0 + t · v. (4.4)

With this fairly simple setup we can actually track pixel movement in time.

This is a first order Euler method for solving an initial value problem for a system

of ordinary differential equations (ODE’s). The general formulation of the problem

could first be cast as an autonomous system

dx

dt
= u(x, y), (4.5)

dy

dt
= v(x, y), (4.6)

and ultimately as a non-autonomous system

dx

dt
= u(x, y, t), (4.7)

dy

dt
= v(x, y, t), (4.8)
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In the following demonstration we take the phantom located at the origin and

evolve it in time with the constant flow of u = 1 and v = 1. We do this for 20

iterations, with a time step of .5.

Figure 4.4. (Left) Original phantom. (Right) Phantom moved with u = 1, v = 1.
Result of 20 iterations with step size .5.

The underlying flow field can be visualized as such

Figure 4.5. Zoomed-in flow field.
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We can think of the motion as taking every pixel present in the scene and

“walking” diagonally, in unison, towards the top right part of the image. This motion

is smooth and continuous so all pixels are moved in the same manner.

We need not be restricted to linear flow fields. For example, if we would like to

evolve our images in a nonlinear way, say u = cos(x) and v = sin(y), then after 10

iterations, with step size .1 we have the following figure.

Figure 4.6. Using a non-linear flow field.

Let us now go back to the task of generating images of intermediate slices

between two given images. In the upcoming experiments we use two synthetic images

(of the same type as in our previous figures) to generate the (u, v) pair via our

Horn-Schunck algorithm between the two images. We then feed this information into

our motion algorithm and show the results.
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Just to give a bit more information, we put the terms δx = δy = .5 and ∆t = 1

(these are needed for the computation of Ex, Ey and Et). We then set the time

step to be equal to .5, which would mean that Image 1 should move (evolve) in the

direction of Image 2 and would (hypothetically) arrive in 2 iterations. However, after

2 iterations we have the following

Figure 4.7. Using the flow field generated by HS after 2 iterations, with step size
equal to .5.

We are trying to evolve the phantom, centered at (0, 0), on the left into another

phantom with the same structure, but moved in the north-western direction, centered

at (−20, 20) (see next figure). After the 2 iterations very little movement has happened

overall. If we allow the algorithm to run more iterations (for example 10 steps instead

of 2), we arrive at the following images.
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Figure 4.8. (Left) Image 1. (Middle) Image 2. (Right) Evolved Image 1 using the
flow field generated from Image 1 and Image 2.

The movement that has occurred is inaccurate, as seen in the Evolved Image in

Figure (4.8). Below we present also the quiver plot of the velocity vectors.

Figure 4.9. Flow field generated from Image 1 and Image 2.
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We can see movement happening within the scene, but it is not uniform. Some

portions of the image are being moved correctly (in the NW direction), but some

pixels are not being moved at all.

Figure 4.10. Zoom-in of the top-left portion of the phantom.
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Figure 4.11. Evolved Image with the flow field prescribed via Image 1 and Image 2.
(Top-Left) Starting Image. (Top-Middle) Evolved Image 1 step. (Top-Right) Evolved
Image 2 steps. (Middle-Left) Evolved Image 3 steps. Etc..
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In other words, the field generated by the HS-method is yielding a non-uniform

motion. To correct this we will update the (u, v) after every iteration of our algorithm.

In essence we start with the (u, v) given by the original Image 1 and Image 2. After

one step of pixel movement we recalculate our (u, v) in between Image 2 and our

Evolved Image, as seen below. Again, we are taking Image 1 and evolving it with our

flow field, so the images in the next figure are resultant steps after each iterate. After

our updates we arrive at the following set of images.

Figure 4.12. Evolved Image with the flow field generated via Image 1 and evolved
Image 1 after 10 steps.

While still imperfect, we can see through the relative error

Relative Error =
‖Ẽ − E2‖
‖E2‖

that our motion is yielding better and better results after each iterate.
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Figure 4.13. Relative error between Image 2 and the Evolved Image.

We can see that updating our (u, v) after each iterate causes the image to evolve

towards Image 2.
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Figure 4.14. Evolved Image with updated (u, v).
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Because the flow field that we are generating comes with errors and is non-

uniform, we can fix this by applying a Gaussian filter to the field “smoothening” it

after each generation of (u, v). As a result, the pixels will be oriented along the most

pronounced directions. We employ the imgaussfilt() command in MATLAB to the

components (u, v) after they are computed. One may think of this function as the

discritized convolution between u and a Gaussian kernal with a prescribed variance

(v is also “smoothened” in the same fashion). More details can be found in “help

imgaussfilt” in MATLAB for more discussion.

Figure 4.15. Updated (u, v) along with a Gaussian filter on (u, v).

We can see that by correcting (u, v) after each step and passing a Gaussian

filter over the results we arrive at an Evolved Image that more closely resembles our

target Image 2.
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Figure 4.16. Updated (u, v) along with a Gaussian filter on (u, v).
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As we iterate through our algorithm, the relative error between the Evolved

Image and Image 2 decreases.

Figure 4.17. The relative error of the original image with the new image.

By smoothening our flow field we are able to locally correct inaccuracies in the

flow field and we arrive at a type of motion more aligned with our original goal. The

amount with which one should smoothed these fields is largely ad hoc. It should be

enough to orient pixels in a common direction, but not so severe as to delete crucial

path information from the (u, v).

4.3 Explicit Movement in MRI

In this section we apply the method described in Section 4.2 to actual MR

images obtained in clinical setting. Using the explicit movement method we can take

a pair of our MRIs and generate a method to move pixels from a starting image
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(Image 1) to another image (Image 2). We will begin with the following image pair

and explain the method as we go along. For the algorithm in its entirety please see

the end of Appendix A.

Figure 4.18. Original image pair.

These two images are two successive slices of an MRI sequence. We can see

that while they have some similarities, there are key differences between them. The

shadowy region in the bottom right corner of Image 2 is not present in Image 1. The

bone in the middle left portion of Image 1 becomes larger in the second image.

Using the explicit pixel movement technique covered in the previous section,

we can actually attempt to deform Image 1 into Image 2. But the main deviation

from our previous methods of changing the flow field (u, v) discussed in Sections 3.1

and 3.2 (global and local change in the fields (u, v)), is that here we have movement
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of the image scene in between each iteration. In Section 3.1 we would have Image 1

and then add to it a portion of the ∆t · (Ex · u+ Ey · v) term until we arrived at the

second image. Here we apply the ODE framework of forward propagation and use the

advection term to help us update the flow field after each iteration of the movement.

This key difference is better viewed in real-time via a movie created by the data

terms. One may need to implement our code in the Appendix to fully appreciate the

differences.

Figure 4.19. Image 2 and Evolved Image.

As one can see, we arrive at an image on the right that is very close to the

target Image 2. There are some differences though. In the middle of the image a part

of the intestine is not quite where it should be. We also have a few speckles towards
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the bottom left part of the Evolved Image that should not be there. Also directly in

the center of the evolved image we don’t have the correct shape.

In the following figure we can see the intermediate images that are being

generated after each iteration.

Figure 4.20. The sequence of generated images.
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4.4 Methods of Forward Propagation

By now we have a few different methods in our toolbox to create images. We

have done the groundwork with Horn and Schunck’s framework and have shown

classes of images, where reconstruction of Ẽ is possible, and others where extra

information is needed (E.g. addition of a noise term). But after completing the HS

algorithm we have been using different techniques to fill in the “in-between” data

from our original data. We wanted to know how one can meaningfully generate this

intermediate data that captures the movement of our image. That is, how can one

deform Image 1 into Image 2 via these processes that we have stated so far?

We now discuss the pros and cons of each of the methods we have used so far.

Approach 1 Propagating via HS

Utilizing an iterative method for generating (u, v) that satisfies the advection

equation, we varied our (u, v) to get approximate data in the intermediate layers (see

Figure 2.4). We showed that, in the MRI case, no extra information was needed and

the image generated via

Ẽ2 = E1 −∆t · (Ex · u+ Ey · v)

is almost an exact Image 2. But in the case of the simple phantoms, we needed to

add a noise term before our pseudo-Image 2 and actual Image 2 would agree. This

method is simple to implement, but has major flaws when it comes to intermediate

approximations, since their evolution is “additive”. By that we mean that we are

taking Image 1 and adding successively larger portions of −∆t · (Ex · u + Ey · v)

through each iterate. This has the net effect of taking parts of Image 1 that should

move to become Image 2, and “dimming” their contribution in the intermediary.

While at the same time taking regions of Image 2 that are not present in Image 1

and slowly adding them into the scene.
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This may be acceptable as a first step and we can use this methods and variants

to generate new data from our existing two images. But the way we evolve through

the intermediate steps leaves something to be desired. We want the regions of our

first image to continuously move and/or deform into Image 2, and with this method

boundaries are not moving. But instead they are dimming and brightening through

the iterates.

Approach 2 The ODE approach

The second approach was to start from a system of ODEs

dx

dt
= u

dy

dt
= v

with the initial data (x(0), y(0)) = (x0, y0) and evolve these images via a prescribed

flow field (u, v) (See Figure 2.18 and Appendix B). We saw here that in the case of

simple phantoms we had to recalculate (u, v) after each iteration and initialize our

starting guess for (u, v) differently to make sure that the motion that was seen in the

intermediate steps was correct. We also had to apply a Gaussian filter to (u, v) to

correct for inaccuracies of our flow field. This is needed because the (u, v) that we

get from HS will fail to be accurate around the boundary of a purely synthetic image.

Sharp corners on the boundary imply a discontinuity of our flow field and thus those

pixels in the boundary need to be adjusted.

Approach 3 The Hybrid Approach

By taking the ODE approach, with iterative updates, and the flow field calculator

from HS we are able to get actual motion within our intermediate steps (See Figure

2.27). But this relies on continual updates within our flow field and more parameters

to tune. That leads to a major difficulty for the hybrid case, namely the need to tune

a lot of parameters.
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One needs to make choices for λ, the Gaussian filter, the proportions of previous

data A and the advection term to “mix” (See Appendix A) in the pixel update stage.

We take a portion p of the previous iterate, and a portion q = 1− p of the advection

term and mix them together in the image update stage

A := p · A+ q ·
(
A1 − t · (E0

x · u0 + E0
y · v0)

)
,

where E0
x, E

0
y , U

0, V 0 are the Ex, Ey, u, v terms that are satisfied for the original image

pair, and A1 is the original Image 1. Different proportions of these terms leads to

different images. In Figure 2.26 we take p = q = 1/2, but this is another thing to

keep in mind.

We also explore changing our coordinate updates. When using the ODE

approach we used

x = x0 + t · u

y = y0 + t · v

This is a first order explicit Euler method, where we discard the higher order

terms. This works great as a proof of concept model, however we wanted to change

this framework as well to see how this is affecting our intermediate images. So we

also used a nonstandard finite difference scheme, specifically a non-standard explicit

Euler method, of the form

x = x0 +
(1− e−γ·t) · u

γ
,

y = y0 +
(1− e−γ·t) · v

γ
,

where γ is a parameter you choose. The choice of a secondary method was inspired

by work from Dimitrov and Kojouharov [7]. It involves no further computation than

the one done above, so the speed is not affected.
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The following images are the result of running the standard Euler’s method

and the non-standard Euler’s method side by side. We choose p = .90 and q = .10 for

the mixing term and γ = .5 for the parameter in the NSE. Some things that stand

out is that for initial values of the iterates both methods seem to be giving similar

results. We are running 20 iterations and for about 15 of them they are similar. Not

until iterations after 15 do they start to drastically differ.

Figure 4.21. (Left) Actual Image 2. (Middle) Final iteration using Euler’s method.
(Right) Final iteration using Non-standard Euler γ = .5.

Again, since we are limited by the medium, we take samples of each of the

methods as they evolve and show iterates {1, 5, 15, 20}, to give the reader a sense of

what the movie of these looks like.
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Figure 4.22. (Left column) Samples of evolution method using Euler. (Right column)
Samples of evolution method using Non-standard Euler γ = .5.
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4.5 Area Preserving Transformations

During our discussions on flow propagation an interesting fact seemed to

present itself, namely the fact that the brightness consistency constraint implies area

preservation. To expand on that for a moment, the brightness consistency constraint

(BCC) says, in plain English, that all of the pixels that are present in one moment

of time can be found “close by” in another moment of time. It is sort of a closed

system, where we allow pixels to change in a small region, but we do not let pixels

instantly “pop into existence” or “delete” themselves from the image.

This implies that the corresponding transformations should be area preserving.

In the case of affine transformations, the area preserving ones are limited to the

following four and their compositions:

• shifts/translations

• rotations

• squeezing

• shear

Almost all of these transformations are linear except for one. Shifting an

image is not linear because it would take the origin to another location. The other

three are linear. Area preserving affine transformations are called special affine

transformations.

The interesting thing about linear transformations in the plane is that they

correspond to matrix multiplication. Forms of the matrices for the aforementioned

linear transformations are well known, for example

BRot =

cos t − sin t

sin t cos t

 BDial =

t 0

0 1
t

 BShear =

1 t

0 1

 , (4.9)
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where the matrices BRot, BDial, and BShear correspond to rotation, dilation and shearing

respectively. Here t is a parameter that determines the “size” of the transforma-

tion. For example in the rotation matrix BRot, t is the angular amount of rotation

counterclockwise of a point.

In our setup, we would like to accomplish the same by mapping the vector

(x(0), y(0)) to a vector (x(t), y(t)) not through a vector matrix multiplication, but

by solving an initial value problem. That is, given a point located at (x(0), y(0)) we

want to find the (x(t), y(t)) satisfying the following system

x′(t)
y′(t)

 = A

x(t)

y(t)

 . (4.10)

Remark 4. Notice, that the matrix A in formula (4.10) is not the same as the matrix

of the corresponding linear transformation. Here we assume that A is a matrix of

constant coefficients.

This is a classical initial value problem that is found in any textbook about

ODEs. If A is such that it has two linearly independent eigenvectors v̄(1) and v̄(2)

and the eigenvalues λ1, λ2 are real, then we have the following solutionx(t)

y(t)

 = c1e
λ1t

v(1)
1

v
(1)
2

+ c2e
λ2t

v(2)
1

v
(2)
2

 . (4.11)

This coupled with our initial condition that at time t = 0 our pixel is located

at (x(0), y(0)), implies that we have

x(0)

y(0)

 = c1v̄
(1) + c2v̄

(2) =

v(1)
1 v

(2)
1

v
(1)
2 v

(2)
2


︸ ︷︷ ︸

V

c1

c2


︸ ︷︷ ︸
c̄
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V −1 exists because of the linear independence of v̄(1) and v̄(2), hence we can

write the following

c̄ = V −1

x(0)

y(0)

 .
We may also write our solution (4.15) as

x(t)

y(t)

 = V

c1e
λ1t

c2e
λ2t

 = V

eλ1t 0

0 eλ2t


︸ ︷︷ ︸

Λ

c1

c2


︸ ︷︷ ︸
c̄

= V ΛV −1

x(0)

y(0)

 .

Let us make the substitution that

B = V ΛV −1. (4.12)

The representation (4.12) is a composition of transformations usually called the

change of basis formula. Utilizing this new notation we have

x(t)

y(t)

 = B

x(0)

y(0)

 . (4.13)

Which geometrically implies application of a scaling transformation along new

basis vectors coinciding with the eigenvectors of matrix A.Thus

det(B) = det(V ΛV −1) = det(V ) · det(Λ) · det(V )−1 = e(λ1+λ2)t. (4.14)

For area preservation (i.e. for scaling to be a squeezing transformation) we

would want | det(B)| = 1. Then, we want

|e(λ1+λ2)t| = 1
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which means either

t = 0 or λ1 = −λ2

At the moment t = 0 we naturally have area preservation, because no movement

has occurred. And since we want the general result we must have λ1 = −λ2.

Example 1 A system that corresponds to the “squeezing” of the plane along the

x-axis and y-axis can be written as follows

x′(t)
y′(t)

 =

 x(t)

−y(t)

 . (4.15)

We can rewrite this system as follows

x′(t)
y′(t)

 =

1 0

0 −1

 ·
x(t)

y(t)

 .
One can see that | det(A)| = 1, the eigenvalues λ1 = 1 and λ2 = −1 are real and

the eigenvectors v̄1 = [1, 0]T and v̄2 = [0, 1]T are linearly independent. And finally,

the solution of this system with initial condition at time t = 0 at pixel (x(0), y(0)) is

x(t)

y(t)

 =

1 0

0 1

 ·
et 0

0 e−t

 ·
1 0

0 1


−1 x(0)

y(0)

 .
Hence

x(t)

y(t)

 =

et 0

0 e−t


x(0)

y(0)

 .
For an idea of what this motion looks like please see Figure B.6 in Appendix B.

Example 2 We can try the following system
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x′(t)
y′(t)

 =

 x(t) + y(t)

3x(t)− y(t)

 , (4.16)

which again can be written asx′(t)
y′(t)

 =

1 1

3 −1

 ·
x(t)

y(t)

 .

Here we have λ1 = 2, λ2 = −2 and the eigenvectors are v̄1 = [1, 1]T and

v̄2 = [−1, 3]T . This makes our solution take the form

x(t)

y(t)

 =

1 −1

1 3

 ·
e2t 0

0 e−2t

 ·
1 −1

1 3


−1 x(0)

y(0)


For an idea of what this motion looks like please see Figure B.7 in Appendix B.

Example 3 For a case where we do not have real eigenvalues or real eigenvectors we

could do the same sort of analysis with the rotation system given by

x′(t)
y′(t)

 =

−y(t)

x(t)

 (4.17)

which can be written as

x′(t)
y′(t)

 =

0 −1

1 0

 ·
x(t)

y(t)


our eigenvalues are now λ1 = i, λ2 = −i and our eigenvectors are v̄1 = [i, 1]T =

[0, 1]T + i[1, 0]T and v̄2 = [−i, 1]T = [0, 1]T + i[−1, 0]T . Then for our solution we have
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x(t)

y(t)

 = c1

cos t

0

1

− sin t

1

0


+ c2

sin t

0

1

+ cos t

1

0




Which can be written as

x(t)

y(t)

 =

−c1 sin t+ c2 cos t

c1 cos t+ c2 sin t

 =

− sin t cos t

cos t sin t


c1

c2

 .
We can determine our initial conditions via

x0

y0

 =

0 1

1 0


c1

c2


where

c1

c2

 =

0 1

1 0


x0

y0

 .
Now we arrive at

x(t)

y(t)

 =

− sin t cos t

cos t sin t


0 1

1 0


x0

y0

 =

cos t − sin t

sin t cos t


x0

y0

 .
For an idea of what this motion looks like please see Figure B.1 in Appendix B.

Example 4 For our last example we have the system

x′(t)
y′(t)

 =

y(t)

0

 (4.18)

which corresponds to shear motion. We can instead write this as
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x′(t)
y′(t)

 =

0 1

0 0


x(t)

y(t)

 .
This system has the eigenvalue λ = 0 with algebraic multiplicity 2, and

eigenvector v̄(1) = [1, 0]T . We then go searching for a generalized eigenvector

v̄(1) = [ν1, ν2]T through the following process

(A− λI)v̄(2) = v̄(1)

yields


0 1

0 0

− 0

1 0

0 1



ν1

ν2

 =

1

0


0 1

0 0


ν1

ν2

 =

1

0

 .
This means that 0ν1 + 1ν2 = 1, so we arrive at ν2 = 1 and ν1 is “free”. We

choose ν1 = 0, thus our generalized eigenvector is v̄(2) = [0, 1]T . It is well known that

solutions of this type will take the form

x(t)

y(t)

 = c1e
atv̄(1) + c2e

at
(
tv̄(1) + v̄(2)

)

= c1

1

0

+ c2

t
1

0

+

0

1


 .

We then determine the coefficients via

x(0)

y(0)

 =

c1

0

+

 0

c2

 =

c1

c2

 .
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Thus our solution becomes

x(t)

y(t)

 = x(0)

1

0

+ y(0)

t
1

0

+

0

1




=

y(0)t+ x(0)

y(0)


=

1 t

0 1


x(0)

y(0)

 .
For an idea of what this motion looks like please see Figure B.7 in Appendix B.
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APPENDIX A

Codes
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We have assembled the codes that were used in the creation of this thesis. The

first code that we have is the one that is needed to compute the terms

∂E

∂x
,
∂E

∂y
,
∂E

∂t
.

These codes are needed in the creation of (u, v) via the Horn-Schunck method.

func t i on [ Ex , Ey , Et ] = Compute ExEyEt (A,B, delX , delY , delT )

[ n ,m] = s i z e (A) ; % input an image ( matrix ) o f s i z e n x m

Ex = ze ro s (n ,m) ; % i n i t i a l i z e the d e r i v a t i v e s

Ey = ze ro s (n ,m) ; % as zero matr i ce s

Et = ze ro s (n ,m) ;

f o r i = 2 : n−1

f o r j = 2 :m−1

Ex( i , j ) = (A( i +1, j ) − A( i , j ) )/ delX ;

Ey( i , j ) = (A( i , j +1) − A( i , j ) )/ delY ;

Et ( i , j ) = (B( i , j ) − A( i , j ) )/ delT ;

end

end

The diligent reader will notice that we do not compute the partial derivatives

around the boundary points. This is because we have no macro-data about our image

beyond what is given on the grid. So we assume that along the boundary

∂E

∂x
=
∂E

∂y
= 0.

The things that must be furnished from the user are A, the first image, B, the

second image, and the spatial and temporal differences.
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Next these components are fed into an iterative method to compute (u, v).

f unc t i on [U,V] = UVflow (Ex , Ey , Et , lambda , Kend)

[m, n ] = s i z e (Ex ) ; % intake the dimensions

U = ze ro s (n ,m) ; % i n i t i a l i z e (u , v ) as zero matr i ce s

V = ze ro s (n ,m) ;

f o r k = 1 : Kend

f o r i = 2 :m−1

f o r j = 2 : n−1

Uavg = (U( i , j ) + U( i +1, j ) + U( i −1, j ) + . . .

U( i , j +1) + U( i , j −1))/5;

Vavg = (V( i , j ) + V( i +1, j ) + V( i −1, j ) + . . .

V( i , j +1) + V( i , j −1))/5;

P = Ex( i , j )∗Uavg + Ey( i , j )∗Vavg + Et ( i , j ) ;

D = 5∗ lambdaˆ2 + (Ex( i , j ) )ˆ2 + (Ey( i , j ) ) ˆ 2 ;

U( i , j ) = Uavg − (Ex( i , j )∗P)/D;

V( i , j ) = Vavg − (Ey( i , j )∗P)/D;

end

end

end

To generate the images from Appendix B we now show a completed algorithm

from end-to-end. The major steps of the following code (written in MatLab) involve

• Define original image domain Ω

• Generate an image on that domain

• Specify the following parameters

– the time interval
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– the values for ∆x, ∆y

– the (u, v) that you would like to use

• Finally generate (or sample) the resulting images

Our implementation here should be fairly straightforward to anyone with an

intermediate understanding of MatLab. But we have tried our best to comment each

piece of the code to make implementation easier for the reader.

% Domain d e f i n i t i o n

a = −3;

b = 3 ;

% Number o f sub−i n t e r v a l s

m = 100 ;

% Generating mesh

x = l i n s p a c e ( a , b ,m+1);

y = l i n s p a c e ( a , b ,m+1);

[ x , y ] = meshgrid (X,Y) ;

[ alpha , beta ] = s i z e ( x ) ;

% Set the number o f i t e r a t i o n s

maxiter = 10 ;

% Pre s c r i b e the f low f i e l d

U = −y ;

V = x ;

A = ze ro s (m+1,m+1);

A0 = ze ro s (m+1,m+1);

% Generate the image to be moved

f o r i = 1 :m+1

f o r j = 1 :m+1

i f i < j

A0( i , j ) = . 1 ;

end

i f ( x ( i , j ))ˆ2+ + ( y ( i , j ) )ˆ2 < 1ˆ2

A0( i , j ) = 1 ;

end

i f ( x ( i , j ) )ˆ2 + ( y ( i , j ) )ˆ2 < . 5ˆ2

A0( i , j ) = . 5 ;

end

end

end

75



f i g u r e (2 )

s u r f (x , y , A0 , ’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

pause ( 0 . 0 1 )

% Time step

dt = 0 . 0 5 ;

% I n i t i a l p i x e l g r id

x0 = x ;

y0 = y ;

f i g u r e (2 )

f o r i t e r = 1 : maxiter

f o r i = 1 :m+1

f o r j = 1 :m+1

% Moving o ld p i x e l s

% to new p i x e l l o c a t i o n

x ( i , j ) = x0 ( i , j ) + dt∗ U( i , j ) ;

y ( i , j ) = y0 ( i , j ) + dt∗ V( i , j ) ;

% Mapping i n t e n s i t i e s

A( i , j ) = A0( i , j ) ;

end

end

% Reass ign ing new p i x e l s

x0 = x ;

y0 = y ;

% Save the coo rd ina t e s

MovieY ( : , : , i t e r ) = y ;

MovieX ( : , : , i t e r ) = x ;

MovieA ( : , : , i t e r ) = A;

% View the r e s u l t s

s u r f (x , y ,A, ’ Edgecolor ’ , ’ none ’ )

t i t l e ( [ ’ i t e r = ’ , num2str ( i t e r ) ] )

a x i s ([−2 ,2 −2 2 ] )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

pause ( 0 . 1 )

% R e i n i t i a l i z i n g the

A = ze ro s (m+1,m+1);

end

f o r i = 1 : maxiter−1

subplot (3 , 3 , i )

s u r f (MovieX ( : , : , i ) , . . .

MovieY ( : , : , i ) , . . .

MovieA ( : , : , i ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

a x i s ([−2 ,2 −2 2 ] )

end
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We now furnish the code for the pixel movement and (u, v) update method. In

this code we intake an MRI (this is read-in as a DICOM file which is then converted

to a data type double for manipulation), then generate the pair (u, v) in between the

two input images. This information is held for later use. We then evolve in time.

Within each step we update our grid and use the advection equation to update

pixels at each iteration. We also modify our parameter λ to better reflect the type

of motion that is begin seen in between each iterate. As a reminder to the reader,

a λ = 0 means abrupt motion and a larger value of λ means that our motion is

smoother.

We are also smoothing our flow field, this is to make sure that regions move in

each time step with similar motion.

% Def ine a g r id to work on

a = −5;

b = 5 ;

% Generate po in t s

[ x , y ] = meshgrid (X,Y) ;

[ alpha , beta ] = s i z e ( x ) ;

% Decide how many i t e r a t i o n s

maxiter = 20 ;

% Image s l i c e 1

A1 = dicomread ( ’ IM 0008 ’ ) ;

% Image s l i c e 2

A2 = dicomread ( ’ IM 0009 ’ ) ;

% Convert data types

A1 = im2double (A1 ) ;

A2 = im2double (A2 ) ;

A = ze ro s ( alpha , beta ) ;

f i g u r e

subplot ( 1 , 2 , 1 )

s u r f (x , y , f l i p (A1 ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

subplot ( 1 , 2 , 2 )

77



s u r f (x , y , f l i p (A2 ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

% Image pa i r data

de lx = . 6 8 7 5 ;

de ly = . 6 8 7 5 ;

d e l t = 4 . 4 ;

% Compute S p a t i a l d e r i v a t i v e s

[ Ex , Ey , Et ] = . . .

Compute ExEyEt (A1 , A2 , . . .

delx , dely , d e l t ) ;

%Compute U,V

[U,V] = . . .

UVflow (Ex , Ey , Et ,10ˆ( −5) ,15) ;

% Or i entat ion and s c a l i n g

% U = f l i p (U) / 1 0 ;

% V = f l i p (V) / 1 0 ;

% Make c o p i e s o f o r i g i n a l data

U0 = U;

V0 = V;

Ex0 = Ex ;

Ey0 = Ey ;

Et0 = Et ;

% I n i t i a l p i x e l g r id

x0 = x ;

y0 = y ;

time = 0 ;

f i g u r e

f o r i t e r = 1 : maxiter

% A = ones ( alpha , beta ) ;

f o r i = 1 :m+1

f o r j = 1 :m+1

% Moving the o ld

% p i x e l l o c a t i o n

x ( i , j ) = x0 ( i , j ) + time∗U( i , j ) ;

y ( i , j ) = y0 ( i , j ) + time∗V( i , j ) ;

% Mapping the i n t e n s i t i e s

A( i , j ) = .5∗A( i , j ) + .5∗A1( i , j ) . . .

− . 5∗ time ∗(Ex0( i , j )∗U0( i , j ) . . .

+ Ey0( i , j )∗V0( i , j ) ) ;

end

end

% Reass ign ing new p i x e l s

x0 = x ;
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y0 = y ;

% Display images

s u r f (x , y , f l i p (A ) , . . .

’ Edgecolor ’ , . . .

’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

pause ( 0 . 2 )

% Update time

time = time + . 2 2 ;

% Recompute s p a t i a l data

[ Ex , Ey , Et ] = Compute ExEyEt (A, A2 , . . .

delx , dely , de l t −.22∗ time ) ;

% Recompute U,V

[U,V] = UVflow (Ex , Ey , Et , . . .

10ˆ( −2 .2 ) ,5 ) ;

% Smooth U,V

U = i m g a u s s f i l t (U, 1 0 ) ;

V = i m g a u s s f i l t (V, 1 0 ) ;

% Or i entat ion

U = f l i p (U) ;

V = f l i p (V) ;

end

The last code that we will give is the one for the Euler vs Non-standard Euler

method that produce Figures 2.28 and 2.29.

a = −5;

b = 5 ;

m = 319 ;

[ x , y ] = meshgrid (X,Y) ;

[ alpha , beta ] = s i z e ( x ) ;

maxiter = 20 ;

A1 = dicomread ( ’ IM 0008 ’ ) ;

% image s l i c e 1

A2 = dicomread ( ’ IM 0009 ’ ) ;

% image s l i c e 2

A1 = im2double (A1 ) ;

% convert to type double

A2 = im2double (A2 ) ;

% convert to type double
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AE = ze ro s ( alpha , beta ) ;

ANs = ze ro s ( alpha , beta ) ;

AE1 = ze ro s ( alpha , beta ) ;

ANs1 = ze ro s ( alpha , beta ) ;

% gamma = max(max(A1 ) ) ;

de lx = . 6 8 7 5 ;

% x − spac ing in the image

de ly = . 6 8 7 5 ;

% y − spac ing in the image

d e l t = 4 . 4 ;

% t − spac ing in the image

[ Ex , Ey , Et ] = . . .

Compute ExEyEt ( . . .

A1 , A2 , delx , dely , d e l t ) ;

[U,V] = . . .

UVflow (Ex , Ey , Et ,10ˆ( −5) ,15) ;

U0 = U;

V0 = V;

Ex0 = Ex ;

Ey0 = Ey ;

Et0 = Et ;

Ex1 = Ex ;

Ey1 = Ey ;

Ex2 = Ex ;

Ey2 = Ey ;

U1 = U;

U2 = U;

V1 = V;

V2 = V;

% I n i t i a l p i x e l g r id

x0 = x ;

y0 = y ;

x0E = x ;

y0E = y ;

x0Ns = x ;

y0Ns = y ;

q = . 5 ;

time = 0 ;

P = . 9 ;

Q = 1 − P;

f i g u r e

pause (3 )

subplot ( 1 , 3 , 1 )

s u r f (x0E , y0E , . . .
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f l i p (A2) , ’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

f o r i t e r = 1 : maxiter

f o r i = 1 :m+1

f o r j = 1 :m+1

xE( i , j ) = x0E( i , j ) + time∗U1( i , j ) ;

yE( i , j ) = y0E( i , j ) + time∗V1( i , j ) ;

xNs ( i , j ) = x0Ns ( i , j ) + . . .

(1−exp(−q∗ time ) )∗U2( i , j )/ q ;

yNs ( i , j ) = y0Ns ( i , j ) + . . .

(1−exp(−q∗ time ) )∗V2( i , j )/ q ;

AE( i , j )= P∗AE( i , j )+Q∗A1( i , j ) − . . .

Q∗ time ∗(Ex0( i , j )∗U0( i , j ) + . . .

Ey0( i , j )∗V0( i , j ) ) ;

ANs( i , j )= P∗ANs( i , j )+Q∗A1( i , j ) − . . .

Q∗ time ∗(Ex0( i , j )∗U0( i , j ) + . . .

Ey0( i , j )∗V0( i , j ) ) ;

end

end

X1Move ( : , : , i t e r ) = xE ;

Y1Move ( : , : , i t e r ) = yE ;

AEMove ( : , : , i t e r ) = AE;

X2Move ( : , : , i t e r ) = xNs ;

Y2Move ( : , : , i t e r ) = yNs ;

ANsMove ( : , : , i t e r ) = ANs ;

% Reass ign ing new p i x e l as

% the o ld p i x e l s

x0E = xE ;

y0E = yE ;

x0Ns = xNs ;

y0Ns = yNs ;

subplot ( 1 , 3 , 2 )

s u r f (xE , yE , f l i p (AE) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 1 , 3 , 3 )

s u r f (xNs , yNs , f l i p (ANs ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )
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colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

pause ( 0 . 1 )

time = time + . 2 2 ;

[ Ex1 , Ey1 , Et1 ] = . . .

Compute ExEyEt (AE, A2 , . . .

delx , dely , de l t −.22∗ i t e r ) ;

[ U1 , V1 ] = UVflow (Ex1 , Ey1 , Et1 . . .

, 10ˆ ( −2 .2 ) , 5 ) ;

[ Ex2 , Ey2 , Et2 ] = . . .

Compute ExEyEt (ANs , A2 , . . .

delx , dely , de l t −.22∗ i t e r ) ;

[ U2 , V2 ] = UVflow (Ex2 , Ey2 , Et2 , . . .

10ˆ( −2 .2 ) ,5 ) ;

i f i t e r < maxiter /2

U1 = i m g a u s s f i l t (U1 , 1 0 ) ;

V1 = i m g a u s s f i l t (V1 , 1 0 ) ;

U2 = i m g a u s s f i l t (U2 , 1 0 ) ;

V2 = i m g a u s s f i l t (V2 , 1 0 ) ;

e l s e

U1 = i m g a u s s f i l t (U1 , 1 5 ) ;

V1 = i m g a u s s f i l t (V1 , 1 5 ) ;

U2 = i m g a u s s f i l t (U2 , 1 5 ) ;

V2 = i m g a u s s f i l t (V2 , 1 5 ) ;

end

U1 = f l i p (U1 ) ;

V1 = f l i p (V1 ) ;

U2 = f l i p (U2 ) ;

V2 = f l i p (V2 ) ;

end

f i g u r e

subplot ( 4 , 2 , 1 )

s u r f (X1Move ( : , : , 1 ) , . . .

Y1Move ( : , : , 1 ) . . .

, f l i p (AEMove ( : , : , 1 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 2 )

s u r f (X2Move ( : , : , 1 ) , . . .

Y2Move ( : , : , 1 ) , . . .

f l i p (ANsMove ( : , : , 1 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )
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subplot ( 4 , 2 , 3 )

s u r f (X1Move ( : , : , 5 ) , . . .

Y1Move ( : , : , 5 ) , . . .

f l i p (AEMove ( : , : , 5 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 4 )

s u r f (X2Move ( : , : , 5 ) , . . .

Y2Move ( : , : , 5 ) , . . .

f l i p (ANsMove ( : , : , 5 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 5 )

s u r f (X1Move ( : , : , 1 0 ) , . . .

Y1Move ( : , : , 1 0 ) , . . .

f l i p (AEMove ( : , : , 1 0 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 6 )

s u r f (X2Move ( : , : , 1 0 ) , . . .

Y2Move ( : , : , 1 0 ) , . . .

f l i p (ANsMove ( : , : , 1 0 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 7 )

s u r f (X1Move ( : , : , 2 0 ) , . . .

Y1Move ( : , : , 2 0 ) , . . .

f l i p (AEMove ( : , : , 2 0 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )

subplot ( 4 , 2 , 8 )

s u r f (X2Move ( : , : , 2 0 ) , . . .

Y2Move ( : , : , 2 0 ) , . . .

f l i p (ANsMove ( : , : , 2 0 ) ) , . . .

’ Edgecolor ’ , ’ none ’ )

view (0 ,90 )

colormap ( f l i p u d ( gray ) )

a x i s ( [ a , b a b ] )
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APPENDIX B

Explicit Motion Examples
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We have the following examples

u = −y

v = x;

Figure B.1. Rotating an image.
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u = 2

v = 0

Figure B.2. Motion with constant field.
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u = −.5 · sin(2 ∗ y)

v = .5 · sin(2 ∗ x)

Figure B.3. Using the paired sine functions.
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u = 1.5 · x

v = 1.5 · y

Figure B.4. Expansion of the image domain.
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u = −.5 · x

v = −.5 · y

Figure B.5. Contraction of entire image domain.
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u = x

v = −y

Figure B.6. Squeezing of the entire image.
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u = x+ y

v = 3x− y

Figure B.7. Evolution of the image dictated by the system above.
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u = y

v = 0

Figure B.8. Shear motion.
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