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1. Overview of Deep Learning in Neuroimaging  

1.1 Introduction 

Over the past few decades, medical imaging techniques, such as computed tomography (CT), 

magnetic resonance imaging (MRI), positron emission tomography (PET), mammography, 

ultrasound, and X-ray, have been used for the early detection, diagnosis, and treatment of diseases. 

In the clinic, mostly human experts such as radiologists and physicians have performed medical 

image interpretation. However, given wide variations in pathology and the potential fatigue of 

human experts, researchers and doctors have begun to benefit from computer-assisted 

interventions. Although the rate of progress in computational medical image analysis has not been 

as rapid as that in medical imaging technologies, the situation is exponentially improving with the 

introduction of machine learning techniques. Machine learning is a technique for recognizing 

patterns that can be applied to medical images. Machine learning begins with computing the image 

features that are believed to be of importance in making the prediction or diagnosis of interest [1]. 

Recently deep learning applications have gained momentum as they do not require any manual 

image feature identification and calculation as a first step. Instead the features are identified as part 

of the learning process. The unprecedented success of deep learning is mostly due to the following 

factors: (a) advances in high-tech central processing units (CPUs) and graphics processing units 

Figure 1: Representation of Single Artificial Neuron 
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(GPUs), (b) the availability of a massive amount of data (i.e., big data), and (c) optimizations and 

developments in learning algorithms, such as U-net, auto-encoders, and generational adversarial 

networks for biomedical image processing [2]. 

Technically, deep learning can be regarded as an improvement over conventional artificial neural 

networks in that it enables the construction of networks with multiple (more than two) layers. An 

Artificial Neural Network (ANN) is a computational model that is inspired by the way biological 

neural networks in the human brain process information. The basic unit of computation in a neural 

network is the neuron, often called a node or unit. It receives input from some other nodes or an 

external source and computes an output. Each input has an associated weight (w), which is 

assigned based on its relative importance to other inputs. The node applies a function f (defined 

below) to the weighted sum of its inputs, as shown in Figures1 and 2.  The network in Figure 1 

takes numerical inputs X1 and X2 and has weights w1 and w2 associated with those inputs. 

Additionally, there is another input one with weight b (called the Bias) associated with it. The 

feedforward neural network was the first and simplest type of artificial neural network devised. It 

contains multiple neurons (nodes) arranged in layers. Nodes from adjacent layers 

have connections or edges between them. All these connections have weights associated with 

them. 

Figure 2: Artificial Neuronal Network (ANN) with one hidden layer 
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Convolutional Neural Networks (CNN) are the key resources in deep learning. They are based on 

a mathematical operation called convolution. A convolution is just a multiplication of an input 

image (which is a matrix) with a kernel (which is another matrix, aka filters) to generate  a different 

image.  In the example in Figure 3, a kernel called a Sobel filter has been applied over the Y-axis. 

The output image enhances the borders in the Y-axis (typically, in computer vision, the X-axis 

corresponds to the height and the Y-axis to the width). The key advantage of convolutions is that 

they produce new images, related to the original one, that enhance different areas of the input. 

They are featuarizers, or automatic feature generators. That is the key concept that makes deep 

learning so powerful. 

A CNN is a neural network with many hidden layers that can use convolutions in any dimension 

(1D, 2D or 3D), to generate features hierarchically. The first layer or input layer convolves the 

input image to generate another set of images, usually called feature maps, creating a different 

representation of the input. The second layer, or first hidden layer, convolves the first feature maps 

to generate another set of feature maps, which are representations of the first hidden layer, and so 

on until the output layer is reached. Finally, a hierarchical structure is obtained where each layer 

contains images that are representations of the previous ones.  Using several convolutional layers, 

deep neural networks can discover hierarchical feature representations such that higher-level 

features can be derived from lower-level features. Because these techniques enable hierarchical 

Figure 3: Representation of output from Sobel Filter 

https://render.githubusercontent.com/view/ipynb?commit=fb4b1584ddedc7b1cea09b51e181dcd34a734299&enc_url=68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f686f617068756d616e6f69642f736369626c6f675f737570706f72742f666234623135383464646564633762316365613039623531653138316463643334613733343239392f415f47656e746c655f496e74726f64756374696f6e5f746f5f434e4e2f496e74726f5f434e4e2e6970796e62&nwo=hoaphumanoid%2Fsciblog_support&path=A_Gentle_Introduction_to_CNN%2FIntro_CNN.ipynb&repository_id=69788507#Convolution
https://en.wikipedia.org/wiki/Artificial_neural_network
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feature representations to be learned solely from data, deep learning has achieved record-breaking 

performance in a variety of artificial intelligence applications and grand challenges 

(see https://grand-challenge.org).  

 

1.2 Deep Learning applications in Neuroimaging  

Improvements in computer vision prompted the use of deep learning in medical image analysis, 

such as image segmentation, lesion detection, image registration, image fusion, image annotation, 

computer-aided diagnosis (CADx) and prognosis, and lesion/landmark detection [3]. Possibly the 

most widespread application of machine learning-based diagnosis is in neurodegenerative 

diseases, where researchers aim to diagnose Alzheimer’s disease or other forms of dementia or 

predict conversion from mild cognitive impairment (MCI) to dementia, based on brain MR images 

[4-6]. This is likely driven, at least in part, by the public availability of large datasets with 

diagnostic labels, such as the Alzheimer’s disease Neuroimaging Initiative (ADNI), Brain Tumor 

Segmentation Challenge (BRATS) and Open Access Series of Imaging Studies (OASIS) [7-9]. 

Most initial deep learning applications in neuroradiology have focused on using computer vision 

techniques for detection and segmentation of anatomical structures and the detection of lesions, 

such as hemorrhage, stroke, metastases, aneurysms, primary brain tumors, and white matter 

hyperintensities. There are other innovative applications of AI in various technical aspects of 

medical imaging, including image acquisition, image registration, artifact correction, super-

resolution, and dose reduction [10, 11]. 

1.3 Challenges in Applying Deep Learning Techniques in Neuroimaging 

https://grand-challenge.org/
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Deep learning has demonstrated excellent performance in automating several tasks in 

neuroimaging. However, there are some significant challenges and limitations. The significant 

challenges in applying the ML/DL techniques to the medical image analysis include: 

1. Deep learning is an intensely data-hungry technology. It requires a vast number of well-

labeled examples to achieve accurate classification and validate its performance for clinical 

implementation.  

2. In the medical imaging domain, especially in neuroimaging, acquiring sufficient data for 

deep learning model development is a significant challenge. Collaboration between 

institutions could address this situation by sharing data. However, sharing medical data 

faces various legal, privacy, technical and data-ownership challenges. Several frameworks 

and techniques such as cyclic independent and identically distributed and federated 

learning between the institutions by passing the deep learning model between institution 

without sharing the data are being proposed to overcome such issues [12] 

3. The neuroimaging data is mostly three dimensional (3D). Most of the models developed to 

date, and successful model architectures are in 2D space. High dimensional neuroimaging 

data is associated with memory and computational challenges. This is typically dealt with 

using smaller sized extracted patches or using 2D models on 3D data 

4. Class imbalances and collecting a lot of data in smaller samples is another significant 

problem in medical imaging. Neuroimaging typically has wider datasets with more features 

collected on fewer samples than taller datasets, as well as inherentclass imbalances. For 

example, in brain tumor studies, there are vastly more normal subjects available than brain 

tumor subjects. Ideally, a dataset should have more numbers of samples (subjects) and 

fewer but important features (age, head impact exposure) collected on them, creating a 
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taller problem (more rows and fewer columns). Instead, in medical images such as MRI, 

more than a hundred thousand voxels data aree collected in a relative smaller number of 

subjects to identify a few hundred abnormal voxels (a wider problem, more columns than 

rows). This results in wider data sets with a large number of features collected on only a 

few subjects, causing the machine learning algorithms to overfit on the training data. In 

such cases, the application of ML algorithms requires feature selection and proper tuning 

of the hyperparameters of the model to avoid overfitting so that a model can generalize and 

behave the same as it did on training data. Training a complex classifier with a small dataset 

always carries the risk of overfitting. Deep learning models tend to fit the data 

exceptionally well, but this does not mean that they generalize well. Many studies used 

different strategies to reduce overfitting, including regularization, early stopping, and drop 

out). Overfitting can be evaluated by the performance of the algorithm on a separate test 

data set and by using cross-validation approaches. The algorithm may not perform well on 

similar images acquired in different centers, on different scanners, or with different patient 

demographics. Larger data sets from different centers are typically acquired in different 

ways using different scanners and protocols, with subtly different image features, leading 

to poor performance[13]. Overcoming this problem, known as “brittle AI,” is an essential 

area of research if these methods are to be used widely [10]. 

5. Deep networks are generally regarded as “black boxes” where data is input, and an output 

prediction, whether classification or image, is produced [13]. As deep learning algorithms 

rely on complicated interconnected hierarchical representation to produce its prediction, 

interpreting these predictions becomes very difficult, which has been coined “The Mythos 
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of Model Interpretability” [14]. Some estimates of the network uncertainly in prediction 

would be helpful to interpret better the images produced. 

In summary, deep learning is a machine learning method that encompasses supervised, 

unsupervised, and semi-supervised learning. Deep learning methods demonstrate  robust 

performance, often better than humans in various medical imaging applications. However, there 

are several challenges associated with the clinical translation of such algorithms. Despite the 

promises made by many studies, the reliable application of deep learning for neuroimaging 

remains in its infancy, and many challenges remain. 

1.4 Dissertation Aims: 

The goal of this dissertation is to apply advanced deep learning methods in three distinct domains 

of neuroimaging, 1. Exploratory Analyses, 2. Image Synthesis, and 3. Clinical applications in 

neuroimaging.  

Exploratory Analyses 

Machine learning models have been extensively applied in exploratory analyses to identify 

functional changes in the brain under various diseased conditions such as Attention 

Deficit/Heractivitiy Disorder (ADHD)  and Alzheimer’s Disease (AD).  However, machine 

learning has not been used to infer functional networks in the brain. in this work, wewe developed 

a machine learning (ML) based inference methodfor functional MRI data (fMRI). called 

BrainNET. We validated the proposed model on ground truth simulation data. BrainNET 

outperformed standard correlation methods in terms of accuracy and sensitivity across simulations 

and various confounders such as the presence of cyclic connections, and even with truncated fMRI 

sessions of only 2.5 min. We evaluated the performance of BrainNET on the open-source “ADHD 
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200 preprocessed” data from the Neuro Bureau. BrainNET was able to identify significant changes 

in global graph metrics between ADHD groups and typically developing children (TDC), whereas 

correlation and partial correlation was unable to find any differences. The proposed method 

efficiently tackles the overfitting problem and considers each region of interest (ROI) as a separate 

feature and each time point as the sample, such that the resulting data has more columns than 

features.  

Further, we applied BrainNET in an exploratory study to analyze the effects of head impact 

exposure (HIE) from subconcussive impacts on youth and high school (ages 9-18) football players 

to understand the functional network architecture in the human brain. In this study, we utilized 

graph theory,ML and data-driven methods to examine functional changes in the brain over a single 

season of American football. This study demonstrates an association between changes in 

functional connectivity related to HIE level in youth and high school football.  

Image Synthesis 

Second, we developed a novel deep learning algorithm to synthesize post gadolinium contrast 

images using only non-contrast MR images. In this study, we used novel deep learning approaches 

to synthesize T1 post-contrast (T1c) Gadolinium enhancement from non-contrast multi-parametric 

MR images (T1w, T2w, and FLAIR) in patients with primary brain tumors. Two expert 

neuroradiologists independently scored the synthesized post-contrast images using a 3-point scale 

(1, poor; 2, good; 3, excellent). The predicted T1c images demonstrated structural similarity, 

PSNR, and NMSE scores of 95.62 37.8357, and 0.0549, respectively. Our model was able to 

synthesize Gadolinium enhancement in 92.8% of the cases. Specific advantages of our strategy 

included the use of a more diverse dataset through the BRATS dataset.  While introducing more 
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heterogeneity to the training dataset, this environment also enhances the generalizability of the 

trained networks.  Further, standard preprocessing applied to all the data acquired with different 

clinical protocols and various scanners from multiple institutions make this approach useful for 

generalizing automated approaches across institutions, when differences in hardware and software 

can significantly alter image representations. 

Clinical Applications 

Finally, we developed DL algorithms to aid clinical applications of neuroimaging in identifying 

genetic mutation status in brain tumor patients and segmenting brain tumors with state-of-the-art 

results. For brain tumor segmentation, we developed multiple 2D and 3D segmentation models 

with multiresolution input to segment brain tumor components and then ensemble them to obtain 

robust segmentation maps. Ensembling reduced overfitting and resulted in a more generalized 

model. Multiparametric MR images of 335 subjects from the BRATS 2019 challenge were used 

for training the models. Further, we tested a classical machine learning algorithm with features 

extracted from the segmentation maps to classify subject survival range. Preliminary results on the 

BRATS 2019 validation dataset demonstrated excellent performance with DICE scores of 0.898, 

0.784, 0.779 for the whole tumor (WT), tumor core (TC), and enhancing tumor (ET), respectively.  

The Ensemble of multiresolution 2D networks achieved 88.75%, 83.28%, and 79.34% dice for 

WT, TC, and ET, respectively, in a test dataset of 166 subjects. For brain tumor IDH mutation 

classification, we proposed an automated pipeline with minimal preprocessing and tested several 

state-of-the-art deep learning algorithms to predict IDH status noninvasively using deep learning 

and T2-weighted (T2w) MR images  

The specific aims of the dissertation research are presented below: 
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1. Develop a machine learning based fMRI network inference method  

2. Investigate the effect repetitive subconcussive head impact on youth and high school 

football players using data-driven and machine learning methods 

3. Develop a deep learning method to synthesize post gadolinium contrast images with only 

using non-contrast images 

4. Develop deep learning methods to achieve state-of-the-art brain tumor segmentation results 

5. Apply state of the art deep learning algorithms to classify brain tumor IDH mutation status 

1.5 Overview of Thesis 

This document is an article-based dissertation with chapters 2-6 being referred to conference, 

journal and in preparation articles fulfilling the aims set out. 

• Chapter 1: Overview of deep learning applications in neuroimaging is discussed along 

withthe challenges in applying such algorithms for clinical translation. Finally, a summary 

of contributions is provided with an overview of the dissertation. 

• Chapter 2: A detailed description of a novel machine learning based fMRI network 

inference method called BrainNET is discussed based on the paper published in the Brain 

Connectivity Journal (2020) 

• Chapter 3: A data-driven and machine learning based exploratory approach to identify 

changes in functional connectivity in the brains of young football players subjected to 

repetitive head impact exposure is discussed.  

• Chapter 4. A novel deep learning approach to synthesize T1 post-contrast (T1c) 

Gadolinium enhancement from non-contrast multi-parametric MR images (T1w, T2w, and 

FLAIR) in patients with primary brain tumors is discussed in this chapter. 
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• Chapter 5:  We developed ensemble deep learning algorithms of using multiple resolutions 

and multidimensional, deep learning algorithms in a clinical application to segment brain 

tumor into its sub-components with  state of the art results. 

• Chapter 6:  We utilized several state of the art deep learning algorithms in a clinical 

application to predict IDH mutation status using T2w MRI alone. 
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2.1 Abstract 

Background: To develop a new fMRI network inference method, BrainNET, that utilizes an 

efficient machine learning algorithm to quantify contributions of various regions of interests 

(ROIs) in the brain to a specific ROI. 

Methods: BrainNET is based on Extremely Randomized Trees (ERT) to estimate network 

topology from fMRI data and modified to generate an adjacency matrix representing brain network 

topology, without reliance on arbitrary thresholds. Open source simulated fMRI data of fifty 

subjects in twenty-eight different simulations under various confounding conditions with known 

ground truth was used to validate the method. Performance was compared with correlation and 

partial correlation (PC). The real-world performance was then evaluated in a publicly available 

Attention-deficit/hyperactivity disorder (ADHD) dataset including 134 Typically Developing 

Children (mean age: 12.03, males: 83), 75 ADHD Inattentive (mean age: 11.46, males: 56) and 93 

ADHD Combined (mean age: 11.86, males: 77) subjects. Network topologies in ADHD were 

inferred using BrainNET, correlation, and PC. Graph metrics were extracted to determine 

differences between the ADHD groups.   

Results: BrainNET demonstrated excellent performance across all simulations and varying 

confounders in identifying true presence of connections. In the ADHD dataset, BrainNET was able 

to identify significant changes (p< 0.05) in graph metrics between groups. No significant changes 

in graph metrics between ADHD groups was identified using correlation and PC.  

 

Keywords—Brain, Connectivity Analysis, fMRI, Machine Learning. 
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2.2 Introduction 

The brain is a complex interconnected network that balances segregation and specialization of 

function with strong integration between regions, resulting in complex and precisely coordinated 

dynamics across multiple spatiotemporal scales [15]. Connectomics and graph theory offer 

powerful tools for mapping, tracking, and predicting patterns of disease in brain disorders 

through modeling brain function as complex networks [16]. Studying brain network organization 

provides insight in understanding global network connectivity abnormalities in neurological and 

psychiatric disorders [17]. Several studies suggest that pathology accumulates in highly 

connected hub areas of the brain [18, 19] and that cognitive sequelae are closely related to the 

connection topology of the affected regions [20]. An understanding of network topology may 

allow prediction of expected levels of impairment, determination of recovery following an insult 

and selection of individually tailored interventions for maximizing therapeutic success [21]. A 

large number of network inference methods are being used to model brain network topology 

with varying degrees of validation. A recent study [22] evaluated some of the most common 

methods, including correlation, partial correlation, and Bayes NET, to infer network topology 

using simulated resting state functional magnetic resonance images (fMRI) data with known 

ground truth and found that performance can vary widely under different conditions.  

Development of statistical techniques for valid inferences on disease-specific group differences 

in brain network topology is an active area of research [23, 24]. Machine learning methods have 

been used in neuroimaging for disease diagnosis and anatomic segmentation [25, 26]. Brain 

Network Construction and Classification (BrainNetClass) and GraphVar toolboxes provide a full 

pipeline from network construction to classification. BrainNetClass comprise various fMRI 
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network inference methods such as correlation, partial correlation, and higher-order functional 

connectivity for brain network inference followed by feature extraction for machine learning 

model development and testing [27, 28]. Very few studies have attempted to apply machine 

learning methods on direct time series of fMRI to infer brain networks [25, 29-31]. Recent work 

in machine learning approaches for inference of Gene Regulatory Networks (GRN) has 

demonstrated excellent performance [32-34]. Interestingly, these same approaches to gene 

regulatory networks can be used to infer brain networks. In this study, we describe a new 

network inference method called BrainNET, inspired by machine learning methods used to infer 

GRN [35].  

Yan et al. devised a bidirectional Long Short-Term Memory (LSTM) deep learning network (Full-

BiLSTM) to effectively learn the periodic fMRI brain status changes using both past and future 

information for each brief time segment. They then fused them to form the final output by taking 

a dynamic functional connectivity matrix calculated using the sliding window approach as input. 

[36]. Higher-order functional connectivity was developed by Chen et al., by taking dynamic 

relations between the brain regions to infer network topology [37]. Yu et al. proposed a novel 

method using connectivity weighted sparse representation to construct optimal brain functional 

networks from rs‐fMRI data. The method has taken advantage of both Pearson's correlation and 

sparse representations, which are the two most commonly used brain network modeling 

approaches. This ensures the construction of more biologically meaningful brain networks by a 

unified framework that integrates connectivity strength, group structure, and sparsity. Yu et al. 

used l1‐norm regularized linear regression or sparse representation (SR) [38], which learns a 

linear relationship while BrainNET considers the non-linear relationships. The above mentioned 
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methods, including BrainNetClass and GraphVAR focus on using machine learning methods for 

computer-aided diagnosis by predicting the cognitive metrics or classifying a group of the 

subjects, whereas BrainNET uses machine learning for inferring the networks directly. 

Validation of BrainNET was performed using fMRI simulations with known ground, as well as in 

real-world ADHD fMRI datasets. In this study, publicly available resting state fMRI simulated data 

[22] was used to validate BrainNET’s ability to infer networks. The real-world performance of 

BrainNET was then evaluated in a publicly available data set of Attention-deficit/hyperactivity 

disorder (ADHD). ADHD is one of the most common neurodevelopmental disorders in children 

with significant socioeconomic and psychological effects [39, 40].It can be difficult to diagnose 

due to the overlapping nature of symptoms, with resultant diagnostic errors and over-prescribing 

of medications due to misdiagnosis [41]. ADHD has widespread but often subtle alterations in 

 

Figure 4: Schematic overview of the BrainNET model. For N nodes in fMRI data (X), each node will have m 

time points such that 𝑋 =  { 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . , 𝑥𝑁}, where xi is the vector representation of m time points 

measured as𝑥𝑖  = (𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, 𝑥𝑖

4, … , 𝑥𝑖
𝑚)𝑇. Each node’s time series (xn) is predicted from all other nodes 

time series (x-n) using the ERT regressor. Node Importance of each node for predicting the target node are 

extracted and populated in the importance matrix. The average of the upper and lower triangle of the matrix is 

thresholded at (1/Num of Nodes) to obtain an adjacency matrix representing the network topology 
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multiple brain regions affecting brain function [42, 43]. Neuro Bureau, a collaborative 

neuroscience forum,  has released fully processed open source fMRI data “ADHD-200 

preprocessed” from several sites [44, 45] providing an ideal dataset to test the BrainNET model 

and compare its performance with standard correlation and partial correlation (PC), which is the 

most widely used methodology to infer brain networks using fMRI data. 

2.3 Materials and Methods 

2.3.1 Datasets 

2.3.1.1 MRI Simulation Data 

Open source rs-fMRI simulation data representing brain dynamics was used to validate the 

BrainNET model [22]. The data were simulated based upon the dynamic causal 

modeling fMRI forward model, which uses the non-linear balloon model for vascular dynamics, 

in combination with a neural network model [22]. The open source dataset has 28 simulations; 

each including simulated data for 50 subjects with a varying number of nodes and several 

confounders (e.g., shared input between the nodes, varying fMRI session lengths, noise, cyclic 

connections and hemodynamic lag variability changes). Additional details on the simulations can 

be found in the original study [22] (Table I).  

ADHD data: Preprocessed rs-fMRI data were obtained from the ADHD-200 database (http://fcon 

1000.projects.nitrc.org/indi/adhd200/). IRB approval is not required for de-identified data 

received from an open repository. Seven different sites contributed to the ADHD-200 database 

for 776 rs-fMRI data acquisitions. The data were preprocessed using the Athena pipeline and was 

https://www.sciencedirect.com/topics/medicine-and-dentistry/functional-magnetic-resonance-imaging
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provided in 3D NifTI format. Additional information on the Athena pipeline and “ADHD 200 

preprocessed” data is detailed by Bellec et al [44].  

In our study, subjects identified with ‘No Naïve medication’ status, or questionable quality on rs-

fMRI data were excluded. The remaining subjects were age-matched between the groups 

resulting in 135 Typically Developing Children (TDC) (mean age: 12.00, males: 83), 75 ADHD 

Inattentive (ADHD-I) (mean age: 11.46, males: 56) and 93 ADHD Combined (ADHD-C) (mean age: 

11.86, males: 77) subjects. Mean time series from 116 ROI’s in the AAL atlas [46] were extracted 

using the NILEARN package [47].   

2.3.2 BrainNET Model Development 

The objective of BrainNET is to infer the connectivity from fMRI data as a network with N different 

nodes in the brain (i.e., ROI’s), where edges between the nodes represent the true functional 

connectivity between nodes. At each node, there are measurements from m time points 𝑋 =

 { 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . , 𝑥𝑁}, where xi is the vector representation of m time points measured as 

𝑥𝑖  = (𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, 𝑥𝑖

4, … , 𝑥𝑖
𝑚)𝑇 . 

Our method assumes that fMRI measurement of BOLD (Blood Oxygen Level Dependent) 

activation at each node is a function of each of the other nodes’ activation with additional 

random noise.  

 

For the jth node with m time points, a vector can be defined denoting all nodes except the jth node 

as  
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𝑥−𝑗 =  (𝑥1, 𝑥2, 𝑥𝑗−1, 𝑥𝑗+1, … . . , 𝑥𝑁 ), then the measurements at the jth node can be represented 

as a function of other nodes as 

𝑥𝑗  =  𝑓𝑗(𝑥−𝑗)  +  Ɛ𝑗 

where Ɛj is random noise specific to each nodej. We further assume that function ƒj () only 

exploits the data of nodes in x-j that are connected to nodej. The function ƒj () can be solved in 

various ways in the context of machine learning. Since the nature of the relationship between 

different .ROIs in the brain is unknown and expected to be non-linear [48], we choose a tree 

based ensemble method as it works well with a large number of features with non-linear 

relationships and is computationally efficient. We utilized Extremely Randomized Trees (ERT), an 

ensemble algorithm similar to Random Forest, which aggregates several weak learners to form a 

robust model. ERT uses a random subset of predictors to select divergences in a tree node and 

then selects the “best split” from this limited number of choices [49]. Finally, outputs from 

individual trees are averaged to obtain the best overall model [50]. BrainNET infers a network 

with N different nodes by dividing the problem into N different sub problems, and solving the 

function ƒj () for each node independently as illustrated in Figure 4. The steps are listed below:  

For j = 1 to N nodes 

• Fit the ERT regressor with all the nodes data, except the jth node, to find the function fj that 

minimizes the following mean squared error: 

1/𝑚 ∑ (xj − fj(x−j))
2

m

k=1
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• Extract the weight of each node to predict node j,  

 

W(j, n) = {
w𝑛     ⅈf n ≠ j
0        ⅈf n = j

 

 

where wn is the weight of node to predict node j and n= 1 to N. 

• Append the weights values to the Importance matrix 

The importance score for each node (Nodej) to predict (Nodei) is defined as the total decrease in 

impurity due to splitting the samples based on Nodej [49]. GINI index is used here as the measure 

of impurity.  Let “S” denote a node split in the tree ensemble and let (SL, SR) denote it's left and 

right children nodes. Then, the decrease in impurity ΔImpurity(S) from node split “S” based on 

Nodej to predict Nodei is defined as 

 

ΔImpurⅈty(S𝑖𝑗)  =  Impurⅈty(S) – (N𝐿/N𝑃) ∗ Impurⅈty (S𝐿) − (N𝑅/N𝑃) ∗ Impurⅈty (S𝑅) 

 

where, SL and SR are left and right splits and NP, NL, NR are number of samples reaching parent, 

left and right nodes respectively. Let 𝕍k be the number of ensembles, which uses ROIj for splitting 

trees. Then, the importance score for Nodej  
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for predicting Nodei is calculated as the average of node impurities across all trees, i.e. 

Importance of ROIji  

I(ⅈ, j) =  ∑G∈𝕍kΔImpurⅈty (S𝑖𝑗)/T 

where T is the number of trees in the ensemble. 

 

Figure 5: Comparison of BrainNET using ERT, RF and LASSO algorithms to infer brain network topology. Accuracy 

(Left), Sensitivity (Middle) and Specificity (Right) for BrainNET using Extremely Randomized Trees (ERT), Random 

Forest (RF), and LASSO (L1) algorithms on symmetrized and non-symmetrized importance matrices.  ERT and RF 

performed similar and better than linear LASSO method. The performance is similar between the symmetrized 

(ERT_Sym, RF_Sym, RF_Sym) and non-symmetrized matrices for each of the methods.  
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Table 1: Simulations and corresponding confounders  

Simulation Nodes 

fMRI 

session 

length (min) 

TR 
Noise 

(%) 

HRF std 

dev (s) 
Other factors 

1 5 10 3 1 0.5   

2 10 10 3 1 0.5   

3 15 10 3 1 0.5   

4 50 10 3 1 0.5   

5 5 60 3 1 0.5   

6 10 60 3 1 0.5   

7 5 250 3 1 0.5   

8 5 10 3 1 0.5 shared inputs 

9 5 250 3 1 0.5 shared inputs 

10 5 10 3 1 0.5 global mean confound 

11 10 10 3 1 0.5 
bad ROIs (time series 

mixed with each other)  

12 10 10 3 1 0.5 
bad ROIs (new random 

time series mixed in) 

13 5 10 3 1 0.5 backwards connections 

14 5 10 3 1 0.5 cyclic connections 

15 5 10 3 0.1 0.5 stronger connections 

16 5 10 3 1 0.5 more connections 

17 10 10 3 0.1 0.5   

18 5 10 3 1 0   

19 5 10 0.25 0.1 0.5 neural lag = 100 ms  

20 5 10 0.25 0.1 0 neural lag = 100 ms  

21 5 10 3 1 0.5 2-group test 

22 5 10 3 0.1 0.5 Non stationary connection strength 

23 5 10 3 0.1 0.5 stationary connection strength 

24 5 10 3 0.1 0.5 
only one strong 

external input 

25 5 5 3 1 0.5   

26 5 2.5 3 1 0.5   

27 5 2.5 3 0.1 0.5   

28 5 5 3 0.1 0.5   
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Table 2. Sensitivity, Specificity, Accuracy, and C-sensitivity for each inference method across simulations. Optimum 

thresholds (with highest performance calculated using simulated data) were used for PC and correlation. The 

BrainNET threshold was set to [1/number of nodes]. No thresholds were used for C-sensitivity, which is a measure 

of fraction of true positives that are estimated with a higher connection strength than the 95th percentile of the false 

positive distribution. 

 
 Sensitivity Specificity Accuracy C-Sensitivity 

Simulation Corr PC BN Corr PC BN Corr PC BN Corr PC BN 

1 0.97 1.00 0.99 0.96 0.90 0.89 0.97 0.98 0.97 0.85 0.98 0.90 

2 0.94 0.99 0.96 0.99 0.87 0.93 0.94 0.98 0.96 0.48 0.96 0.90 

3 0.95 1.00 0.95 0.95 0.80 0.92 0.95 0.98 0.95 0.68 0.92 0.87 

4 1.00 1.00 0.92 0.68 0.59 0.95 0.99 0.99 0.92 0.91 0.88 0.90 

5 0.96 1.00 1.00 1.00 1.00 0.97 0.97 1.00 0.99 1.00 1.00 1.00 

6 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 

7 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.99 1.00 1.00 1.00 

8 0.75 0.90 0.95 1.00 0.90 0.81 0.80 0.90 0.93 0.06 0.47 0.67 

9 0.75 0.90 0.96 1.00 1.00 0.88 0.80 0.92 0.95 0.00 0.20 0.78 

10 0.78 0.99 0.98 1.00 1.00 0.94 0.83 0.99 0.97 0.91 1.00 0.94 

11 0.80 0.93 0.93 1.00 0.79 0.73 0.82 0.91 0.91 0.18 0.01 0.12 

12 0.93 0.99 0.96 0.95 0.77 0.93 0.93 0.96 0.95 0.74 0.84 0.86 

13 1.00 1.00 0.95 0.00 0.20 0.86 0.80 0.84 0.93 0.24 0.24 0.72 

14 0.79 0.93 0.95 1.00 1.00 0.88 0.82 0.94 0.94 0.10 0.35 0.48 

15 0.75 1.00 0.98 1.00 1.00 0.86 0.80 1.00 0.95 0.65 1.00 0.87 

16 0.94 1.00 0.98 0.96 0.86 0.75 0.95 0.96 0.92 0.42 0.81 0.81 

17 0.92 0.99 0.98 1.00 0.99 0.95 0.93 0.99 0.98 0.69 0.99 0.96 

18 0.99 1.00 0.99 1.00 0.94 0.91 0.99 0.99 0.98 1.00 1.00 0.91 

19 0.85 1.00 1.00 0.80 0.80 0.91 0.84 0.96 0.98 0.80 0.80 0.96 

20 0.85 1.00 1.00 0.80 0.80 0.91 0.84 0.96 0.98 0.80 0.80 0.98 

21 0.97 1.00 0.98 0.96 0.90 0.89 0.97 0.98 0.96 0.85 0.98 0.88 

22 0.99 0.95 0.99 0.20 0.31 0.84 0.83 0.82 0.96 0.20 0.26 0.81 

23 0.75 0.96 0.92 1.00 1.00 0.88 0.80 0.97 0.91 0.60 1.00 0.63 

24 0.75 0.90 0.85 1.00 1.00 0.79 0.80 0.92 0.84 0.57 0.82 0.36 

25 0.92 0.98 0.94 0.84 0.75 0.83 0.91 0.93 0.92 0.44 0.71 0.72 

26 0.98 1.00 0.93 0.35 0.41 0.79 0.86 0.88 0.90 0.55 0.59 0.61 

27 0.90 0.96 0.96 0.85 0.80 0.82 0.89 0.93 0.93 0.59 0.76 0.76 

28 0.92 0.98 0.98 0.90 0.89 0.87 0.91 0.96 0.95 0.43 0.84 0.88 

Average 0.90 0.98 0.96 0.86 0.83 0.88 0.89 0.95 0.95 0.60 0.76 0.80 
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Table 3. Comparison of Extremely Randomized Trees (ERT), Random forest and LASSO performances in inferring 

brain network topology using simulation 

 Accuracy Sensitivity Specificity 

Extremely 

Randomized Trees 

94.83 96.71 86.91 

Random Forest 94.59 95.88 89.25 

LASSO 84.87 82.45 97.00 

 

The importance of each node to predict all other node time series is extracted from the model and an NxN 

(where N is the number of nodes) importance matrix is generated with the diagonal equal to zero. Each 

row of the importance matrix represents normalized weights of each node in predicting the target node. 

The extracted adjacency matrix is affected in two ways. First, due the row-wise normalization, the upper 

triangular values of the importance matrix are not same as the lower triangle values. We therefore take 

the average of the upper triangle and the lower triangle of the matrix to make it symmetric to determine 

the presence of connection between to the nodes. 

 

Figure 6: Sensitivity analysis for correlation and partial correlation.  Average sensitivity (true positive rate) and 

specificity across 28 simulations for the correlation and PC method is plotted as a function of threshold ranging 

between zero to one hundred percent.  Optimum threshold is found using simulation ground truth at 20% and 16% 

for correlation and PC respectively. 
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This procedure does not allow directionality of the connections to be determined. The 

comparison between ERT, Random forest and base line LASSO in inferring network topology with 

the lower and upper triangle, averaged (symmetrized) and non-averaged (non-symmetrized), is 

provided in Fig.5 (Table.3) Second, again because of the row-wise normalization, the sum of each 

row in the importance matrix is one. Since the importance values are normalized with respect to 

number of nodes in the analysis, we used a threshold that is inversely proportional to the number 

of nodes (i.e., threshold = 1/number of nodes) in the network to produce a final adjacency matrix 

representing the network topology. The selection of threshold is not based on statistical theory 

and it is not made to keep the FPR below a nominal level, but it results in a dynamically changing 

threshold based on the number of nodes in the network.   

2.3.3  Analysis 

2.3.3.1 Evaluation of inference methods on simulation data 

2.3.3.1.1 Evaluation of inference methods on simulation data using C-sensitivity 

The network topology was inferred using BrainNET, correlation and PC. The network topology 

inferred by correlation and PC method may vary drastically based on the values used to threshold 

connectivity matrix. Hence, we evaluated the ability of the inference methods based on 

BrainNET, correlation and PC to detect the presence of connection between the nodes in terms 

of c-sensitivity. C-sensitivity quantifies how well the true positives (TP) are separated from the 

false positives (FP) by measuring the fraction of TPs that are estimated with a higher connection 

strength than the 95th percentile of the FP distribution. C-sensitivity is a measure of success in 

separating true connections from false positive connections and it is calculated by counting 
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number of true positive above 95th percentile of false positives and then divided by total number 

of true positives [22].  

Effects of simulation parameters such as TR (repetition time), number of nodes, noise, HRF 

(Hemodynamic Response Function) standard deviation, shared inputs, bad ROI’s (Region of 

Interest), backward, strong and cyclic connections and strong inputs on c-sensitivity of the 

inference methods were evaluated using mixed-effects model with a random effect for the 

simulation to control for the effect of the specific generating model. The mixed-effects models 

were fit across subjects under different simulations to analyze the effects of simulation 

parameters on C-sensitivity of the inference methods. The parameter estimates from each 

regression were then summarized across subjects in terms of their effect size [22]. 

2.3.3.2 Evaluation of inference methods on simulation data using threshold 

Thresholding can be applied to suppress spurious connections that may arise from measurement noise 

and imperfect connectome reconstruction techniques and to potentially improve statistical power and 

interpretability [21]. However, based on the threshold value, the connection density of each network 

inferred by correlation and PC may vary from network to network after the threshold has been applied. 

Using a less stringent lower threshold values results higher false positive values (lower sensitivity) and 

more stringent threshold results in higher false negatives (lower specificity). This can lead to wide 

variability in computed graph metrics, as they are typically susceptible to the number of edges in a graph. 

Identifying an appropriate threshold to infer the underlying brain network topology is critical.  

Hence, we evaluated the specificity, sensitivity and accuracy of correlation and PC under varying 

thresholds. The results show that the network topology inferred using correlation and PC method may 

vary drastically based on the threshold values (Fig.6). An optimum threshold for correlation methods can 
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be very difficult to find in real life experimental data. However, given the ground truth for the simulation 

data we calculated the optimum threshold values for the correlation methods and compared their 

performance at optimum threshold with BrainNET. The optimal thresholds are defined where the 

correlation and PC methods performed with the best sensitivity and accuracy. It is important to note that 

BrainNET is not optimized on this simulation data and the threshold is based on the number of nodes 

inferred in the network. Specificity, sensitivity and accuracy of correlation and PC at threshold values of 

30% (Corr30, PC30) and optimum (Corropt, PCopt) values are estimated and compared with BrainNET. We 

further evaluated the specificity, sensitivity and accuracy of the Corropt and PCopt with BrainNET for each 

simulation.  Similar to the C-sensitivity, we calculated the effect of simulation parameters on sensitivity 

and specificity of BrainNET, Corropt and PCopt.  

 

Figure 7: Evaluation of inference methods under varying thresholds. Boxplots of Accuracy (Left), Sensitivity (Middle) 

and Specificity (Right) across 28 simulations for correlation and PC for optimum and thirty percent threshold (Corropt, 

Corr30, PCopt and PC30), and BrainNET. ‘*’ represents statistically significant differences from BrainNET 

performance. 
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2.3.4 Evaluation of inference methods on ADHD data 

BrainNET, correlation and PC was applied to the real-world ADHD data to evaluate whole brain 

network changes in ADHD subtypes (i.e., ADHD-Combined (ADHD-C), ADHD Inattentive (ADHD-I) 

compared to Typically Developing Children (TDC). Mean time series from 116 ROI’s in the AAL 

atlas [46] were extracted using the NILEARN package [47]. The BrainNET model was applied to 

extract an importance matrix for each subject. The importance matrix was then thresholded at 

1/number of nodes (e.g., 1/116 for the AAL atlas regions) to obtain an adjacency matrix for each 

subject (BN). Functional Network connectivity was calculated between the 116 ROIs using 

correlation and PC. The connectivity matrices are thresholded at a threshold of 20% and 30% 

(Corr20, Corr30, PC20, and PC30) (No optimum threshold for real world experimental data).  Graph 

theoretic metrics were extracted using each of these methods for each group.  Network 

differences between the three groups TDC, ADHD-I and ADHD-A were then computed using t-

tests on the graph metrics. Site effects and effects of age and handedness were removed using 

the Combat multi-site harmonization method [51], an effective harmonization technique that 

removes both  unwanted variation associated with the site and preserves biological associations 

in the data [52].  

Graph Metrics: Graph theoretical metrics representing global and local characteristics of network 

topology were used to compare between the groups in the ADHD dataset. The GRETNA MATLAB 

toolbox (v2.0,https://www.nitrc.org/projects/gretna/) was used to extract additional graph 

theoretical metrics including shortest path length, global network efficiency, and betweenness 

centrality[53]. The Networkx package in python was used to extract the graph theoretical 

metrics, including Density, Average Clustering Coefficient and Characteristic Path length [54].  

https://www.nitrc.org/projects/gretna/
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Two sample t-tests between groups were performed using the GRETNA toolbox. Bonferroni 

multiple comparisons correction was applied with statistical significance set at p < .05. 

Node Metrics: The Nodal Shortest Path Length (NSPL) is defined as the shortest mean distance 

from a particular node to all other nodes in the graph. Shorter NSPL represents greater 

integration[15]. The Betweenness Centrality (BC) measures a node's influences in information 

flow between all other nodes [55]. BC quantifies the influence of a node and is defined as the 

number of shortest paths passing through it.  

Global Metrics: Network Efficiency is a more biologically relevant measure representing the 

ability of the network to transmit information globally and locally. Networks with high efficiency, 

both globally and locally, are said to be economic small world networks. [56]. The density of the 

graph is defined as the ratio of number of connections in the network to the number of possible 

connections in the network.  Average Clustering is the fraction of a node's neighbors that are 

neighbors of each other. The clustering coefficient of a graph is the average clustering coefficient 

(ACC) over all nodes in the network. Networks with high clustering coefficient are considered 

locally efficient networks. Characteristic Path length (CPL) is the average shortest path length 

between nodes in the graph, with a minimum number of edges that must be traversed to get 

from one node to another. CPL indicates how easily information can be transferred across the 

network [15].   

2.4 Experimental Results 

2.4.1 Simulation Data 

2.4.1.1 Evaluation of inference methods using C-sensitivity 
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BrainNET performed significantly better than correlation (p<0.001) and equivalent to partial 

correlation (p > 0.05) methods with c-sensitivity of 79.53%, 59.82% and 75.75% respectively 

across 28 simulations (Fig.8A) (Table. 2).   

The study on effect of simulation parameters on the c-sensitivity of inference methods showed 

that increasing the number of nodes and session duration doesn’t have much effect on any of 

the inference methods (Fig.8B). Having shared inputs between the nodes affected the correlation 

and PC method more drastically than BrainNET method. Selection of bad ROIs with mixed time 

series between them affected all the inference methods negatively, however selection of bad 

ROIs with randomly random time series mixed between them did not affect the inference 

methods drastically. Presence of cyclic and backward connection between the nodes affected 

the correlation and PC methods but not BrainNET. The presence of only one strong input affected 

the performance of BrainNET method but not the other methods. In summary, BrainNET 

performance was robust under various confounding factors but prone to selection of inaccurate 

ROIs with mixed time series between them and networks with only one strong input. Both PC 

and correlation methods were affected by shared inputs between the nodes, selection of 

inaccurate ROIs, backward, cyclic and stationary-nonstationary connections between the nodes 
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Figure 8: C-sensitivity. Boxplots of c-sensitivity for BrainNET, correlation and partial correlation (PC) (left). The 

effects of different simulation parameters on the C-sensitivity, sensitivity and specificity of inference methods using 

mixed effects model. The colorbar represents effect size of each simulation parameter on the c-sensitivity, sensitivity 

and specificity of inference methods (right). 

2.4.1.2 Evaluation of inference methods using threshold 

The accuracy, sensitivity, and specificity for each method across all 28 simulated data sets were 

estimated at thresholds of 30% and at optimum value for correlation and PC, and at threshold of 

1/number of nodes for BrainNET (Fig.7). BrainNET achieved higher accuracy and specificity at 

threshold at 30% compared to the Corr30 and PC30 method as shown in Fig.7. PCopt achieved 

slightly higher accuracy than BrainNET across 28 simulations, but no significant difference in 

terms of specificity and accuracy even at it optimum (p>0.05) (Fig.7). As expected the specificity 

and sensitivity of correlation and PC methods varies with threshold and it will be difficult to find 

an optimum threshold in a real life dataset. BrainNET showed more robust performance with 

little variance across the simulation compared to other methods (Fig.9). 
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The study on effect of simulation parameters on sensitivity and specificity after threshold for 

BrainNET, PCopt and Corropt, showed that the sensitivity of the inference methods doesn’t get 

affected by the simulation parameters. The specificity of the correlation and PC methods were 

negatively affected even at their optimum threshold in the presence of backward connections. It 

is important to note that specificity and sensitivity were calculated after we thresholded the 

connectivity matrices from each of these methods (1/ number of nodes for BrainNET and 

optimum threshold for others). After the threshold, BrainNET’s performance became robust and 

consistent across all the simulation parameters.  

 

 

Figure 9: Comparison of Correlation (Corropt) and partial correlation (PCopt) at their optimum threshold to 

BrainNET. Accuracy (Left), Sensitivity (Middle) and Specificity (Right) for correlation, BrainNET and PC for 28 

simulations. Sensitivity, specificity and accuracy are all robust across different simulation cases, while PC and 

correlation methods show fluctuations even with their optimal threshold for functional connectivity. 
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2.4.2 Evaluation of inference methods on ADHD data 

BrainNET was able to identify significant changes (p < 0.05) in global network efficiency, network 

density, characteristic path length, betweenness centrality and shortest path in the ADHD data.  

Correlation and PC was not able to detect significant changes in any of the whole-brain analyses 

(Corr20, Corr30, PC20, and PC30).  

TDC and ADHD: Statistical analysis of the BrainNET adjacency matrix demonstrated a significant 

decrease in global Network efficiency, an increase in CPL and an increase in the shortest path 

length in the right medial temporal gyrus in ADHD compared to TDC (Fig.11A).  While the analysis 

of the correlation adjacency matrix did not show any significant changes, the PC30 demonstrated 

a trending increase in CPL in ADHD compared to TDC (p=0.07).  Betweenness centrality and Node 

level local efficiency did not show any changes between the groups in any of the three methods. 
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Figure 10: Global graph metrics. The probability density functions and boxplots of global graph metrics with 

significant changes (p<0.05) between the groups, ADHD (both ADHD-I and ADHD-C), ADHD-I, ADHD-C and TDC. 

CPL – Characteristic Path Length. 

TDC and ADHD-I: Statistical analysis of the BrainNET adjacency matrix demonstrated a significant 

decrease in global network efficiency, a decrease in density, an increase in CPL and an increase 

in shortest path length in the right  superior orbital right, right heschl’s gyrus  and right medial 

temporal gyrus nodes in the ADHD-I group compared to TDC (Fig.11A). The correlation method 

did not show any relation between the groups. No relationship was found in other graph metrics 

studied in any of the methods. 

TDC and ADHD-C: Statistical analysis of the BrainNET adjacency matrix demonstrated a significant 

decrease in density. No significant relation was found in any other graph metrics for any of the 

three methods. 
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ADHD-I and ADHD-C: Statistical analysis of the BrainNET adjacency matrix demonstrated a 

significant decrease in global network efficiency, a decrease in density, an increase in CPL, an 

increase in shortest path length of the right olfactory node (Fig.11A). A significant increase in 

betweenness centrality of the right precuneus node in the ADHD-I group compared to ADHD-C 

was observed for both BrainNET (Fig.11B). No relationship was found in other graph metrics 

studied for any of the methods. 

 

Figure 11: Node level graph metrics. Nodes with significant increases in NSPL in ADHD-I compared to ADHD-C 

(orange) and in ADHD-I compared to ADHD-C (red) are plotted in the left. Nodes with significant increases in 

betweenness centrality in ADHD-I compared to ADHD-C are plotted on the right. 

2.5 Discussion 

BrainNET was developed to infer brain network topology using ERT [57]. The ERT regressor is 

used to develop a tree based ensemble model to predict each node’s time series from all other 

node time series. The tree based ensemble methods are ideal for inferring complex functional 

brain networks as they are efficient in learning non-linear patterns even where there are  a large 

number of features [58].  The importance matrix is then thresholded to generate an adjacency 
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matrix representing the fMRI topology.  The BrainNET model is applicable to both resting-state 

and task-based fMRI network analysis.  It can be easily adapted to datasets with varying session 

lengths and can be used with different parcellation schemes. A unique feature of the BrainNET 

approach is that it is implemented at the subject level.  It does not need to be trained on big 

datasets as it infers the network topology based on each individual subject’s data.  

2.5.1 BrainNET Inference of Network Topology in Simulated fMRI Data 

2.5.1.1 Evaluation of inference methods using C-sensitivity 

BrainNET demonstrated excellent performance across all the simulations and varying 

confounders. It achieved significantly higher c-sensitivity than correlation (p<0.05) and 

equivalent to PC (p=0.38) (Fig.8A). BrainNET performance remained high in the simulations 

across varying session lengths, number of nodes, neural lags, cyclic connections, and changing 

number of connections. BrainNET performed weakest in simulations with one primary strong 

external source around the network. This causes every node to be highly correlated with other 

nodes and it becomes very difficult to distinguish direct from indirect connections [22]. It is 

important to highlight that this kind of one strong external input just for one node is highly 

unlikely in real life scenarios. BrainNET, similar to PC and correlation methods, was affected by 

selection of bad ROI’s with time series mixed between them. In this simulation, there are 10 

nodes, and each node shares a relatively small amount of the other node time series in a 

proportion of 0.8:0.2. Since the features have shared data between the nodes in this simulation, 

it limits discrimination of true connectivity between nodes. The leakage of data between nodes 

can be minimized in fMRI analysis by selecting independent regions using functionally derived 

parcellation or methods such as ICA.  
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One concern with this approach is that as the number of nodes increases, the threshold [1/ 

(number of nodes)] similarly decreases and may result in increased false positives at this low 

threshold value. The study on effect of number of nodes on the c-sensitivity of BrainNET shows 

that c-sensitivity of BrainNET does not get affected by the number of nodes (Fig.8B). This can be 

interpreted that the ability of BrainNET to distinguish between true and false positives increases 

with the increasing number of nodes and the corresponding lower threshold values doesn’t 

necessarily affect its inference.  

Shared inputs between the nodes, can be thought of as distinct sensory inputs that feed into one 

or more nodes. These shared inputs between the nodes could be deleterious if not modelled 

[22]. BrainNET is robust to the shared inputs between the nodes, whereas c-sensitivity of PC and 

correlation are negatively affected (Fig.8B). The performance on varying connection strength 

over time was tested by simulations of stationary-nonstationary connection strengths between 

the nodes. BrainNET was least affected by nonstationary connection strengths between the 

nodes (Fig.8B). The robust performance of BrainNET in simulations with increasing number of 

nodes, TR, shared inputs, backward, cyclic and non-stationary connections represents a 

promising aspect of the BrainNET method for inferring brain network topology in real life 

experimental data (Fig.8B). 

2.5.1.2 Evaluation of inference methods using thresholds 

In this study we compared the performance of correlation and PC in inferring underlying network 

topology at optimum threshold values estimated using ground truth (Corropt and PCopt). We also 

compared the performance of these methods against BrainNET at 30% threshold (Corr30 and 
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PC30) (Fig.7). BrainNET performed significantly better than PC30, Corr30 and Corropt (p<0.05). At its 

optimum threshold, PCopt performed relatively equivalent to BrainNET in terms of accuracy. 

However, PCopt showed decreased specificity with increasing number of nodes (sim1-4) and 

presence of nonstationary, backward connections (sim13 and sim22) (Fig.7). Nonstationary 

connections represent the varying strengths of connections between nodes which are believed 

similar to those at the neuronal level and being studied in fMRI. The higher sensitivity and lower 

specificity of PCopt represents higher numbers of false positive connections which will affect the 

statistical power of group analysis. The results show that the performance of the PC and 

correlation method vary under different thresholds and that BrainNET had better performance 

than these methods even in their optimum (PCopt and Corropt) (Fig.9). The study on effect of 

number of nodes on the c-sensitivity of BrainNET shows robust performance across all the 

confounders. 

A major strength of the BrainNET approach is that it provides a unique threshold to determine 

the true network topology.  In correlation-based approaches, there is no defined correlation 

cutoff to determine the true network topology. Instead, multiple approaches are employed, or 

multiple thresholds applied to generate different networks.  Typically, the network cost has been 

used to define the cutoff value for defining true connections in correlation-based approaches 

[59].  Multiple costs are then applied to generate multiple instances of the network topology, 

and analyses are performed to determine the variation in network metrics across these costs, or 

variation in group differences across thresholds [60].  The BrainNET approach provides a single 

threshold obviating the need for these imprecise and convoluted thresholding approaches.    
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2.5.2   Evaluation of inference methods on ADHD Data 

Global metrics: Previous studies have shown that ADHD is often associated with changes in 

functional organization of the brain and lower network efficiencies in ADHD  [40, 43]. BrainNET 

was effective in identifying the subtle changes in the ADHD subjects and supports the notion that 

the functional organization of brain changes in ADHD (Fig.10) by identifying statistically 

significant changes in graph metrics between ADHD subjects and typically developing children  

Our results demonstrate that there is a decrease in density, network efficiency and an increase 

in CPL in ADHD compared to TDC. A decrease in density suggests that the number of connections 

is decreased in ADHD compared to TDC. This can be interpreted as an increase in the cost of 

wiring in the brain. The increase in CPL and decrease in network efficiency is expected given that 

there is a decrease in density suggesting that there is increased difficulty in transferring 

information across the brain in ADHD. The observed abnormalities in global network topology 

was identified in ADHD-I but not in participants with ADHD-C compared with TDC, however 

changes between the ADHD-C and ADHD-I were observed. The differential changes observed 

between the ADHD subtypes may reflect clinical distinctions between the inattentive and 

combined subtypes of ADHD. Further investigations may shed light on detailed brain-behavior 

phenotype associations in this neuropsychiatric disorder [61, 62].  

Local Metrics:  

BrainNET identified increased NSPL in ADHD-I compared to ADHD-C suggesting lesser integration 

of the prefrontal cortex (PFC) in ADHD-I.  The PFC is a part of Default Mode Network (DMN) and 

plays a crucial role in regulating attention, behavior, and emotion, with the right hemisphere 
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specialized for behavioral inhibition [63]. The DMN refers to the brain circuitry that includes the 

medial prefrontal cortex, posterior cingulate, precuneus, and the medial, lateral, and inferior 

parietal cortices [64]. These results support previous studies demonstrating that ADHD is 

associated with structural changes and decreased function of the PFC circuits, especially in the 

right hemisphere [63]. BrainNET also demonstrated that betweenness centrality of the right 

precuneus, also a part of DMN was increased in ADHD-I compared to ADHD-C group. This 

suggests increased influence of the precuneus in ADHD-I (Fig.11B). Abnormalities within the DMN 

have also been found in children in previous studies with ADHD and especially changes in 

centrality of the right precuneus, which is an important discriminatory feature for classifying 

ADHD-I and ADHD-C [65] . 

Our results also show that the NSPL of the right heschl’s gyrus and right medial temporal gyrus is 

increased in the ADHD-I group compared to TDC. The NSPL of the olfactory cortex was increased 

in ADHD-I compared to ADHD-C (Fig.11A). Deficits in olfactory function are found in 

neurodegenerative and neuropsychiatric disorders and represent a topic of interest in ADHD [66]. 

Increased NSPL was found in the right olfactory region in ADHD-I compared to ADHD-C suggesting 

lesser integration.   Deficits in olfactory ability have been linked to impulsive tendencies within 

the healthy population and have discriminatory features in identifying people at risk of impulse-

control-related problems, supporting the planning of early clinical interventions [67]. Further 

studies are required to investigate whether functional network topology can be used as a 

biological marker for early diagnosis, treatment and prognosis of ADHD. 
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It is important to note that the proposed method measures non-linear relationships while 

correlation methods measure linear relationships, which may have resulted in the lower 

performance of correlation in inferring non-linear brain dynamics. Although PC performed 

relatively similarly to BrainNET in the simulation data, it didn’t achieve statistical significance in 

the ADHD data.  This may be due to the false positives identified reducing the statistical power 

of the analysis. BrainNET can be added to the standard inference methods such as PC and 

correlation methods, by using a mask derived from BrainNET importance matrix and applying to 

the correlation matrix. The output from this combined method will have nodes determined by 

BrainNET, with Pearson correlation values assigned between the connections.  This will avoid 

using arbitrary thresholds, increase the specificity of the standard inference methods by adding 

non-linearity and allowing analysis of connectivity changes between nodes, which cannot be 

performed with an adjacency matrix derived only from BrainNET.  

 

Limitations:  BrainNET takes relatively longer to infer the adjacency matrix than the correlation 

method. BrainNET took approximately 3 seconds per subject whereas the correlation and partial 

correlation method just took 0.001 and 9.3 seconds respectively. Longer running time makes 

BrainNET challenging to apply for voxel-wise analysis. 

2.6 Conclusion 

We describe BrainNET, a new network inference method to estimate fMRI connectivity that was 

adapted from Gene Regulatory methods. We validated the proposed model on ground truth 

simulation data [22]. BrainNET outperformed Pearson correlation in terms of accuracy and 
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sensitivity across simulations and various confounders such as the presence of cyclic connections, 

and even with truncated fMRI sessions of only 2.5 min. We evaluated the performance of 

BrainNET on the open-source “ADHD 200 preprocessed” data from Neuro Bureau. BrainNET was 

able to identify significant changes in global graph metrics between ADHD groups and TDC, 

whereas correlation and PC was unable to find any differences. BrainNET can be used 

independently or combined with other existing methods as a useful tool to understand network 

changes and to determine the true network topology of the brain under various conditions and 

disease states.  

  



 

45 

 

2.7 References 

1. Abraham, Alexandre, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller, Jean Kossaifi, Alexandre Gramfort, 

Bertrand Thirion, and Gaël Varoquaux. 2014. 'Machine learning for neuroimaging with scikit-learn', Frontiers in neuroinformatics, 8: 14. 

2. Achard, Sophie, and Ed Bullmore. 2007a. 'Efficiency and cost of economical brain functional networks', PLoS computational biology, 3: e17. 

3. Achard, Sophie, and Ed %J PLoS computational biology Bullmore. 2007b. 'Efficiency and cost of economical brain functional networks', 3: 

e17. 

4. Arnsten, Amy FT %J The Journal of pediatrics. 2009. 'The emerging neurobiology of attention deficit hyperactivity disorder: the key role of 

the prefrontal association cortex', 154: I. 

5. Avena-Koenigsberger, Andrea, Bratislav Misic, and Olaf Sporns. 2018. 'Communication dynamics in complex brain networks', Nature 

Reviews Neuroscience, 19: 17. 

6. Barber, Anita D, Lisa A Jacobson, Joanna L Wexler, Mary Beth Nebel, Brian S Caffo, James J Pekar, and Stewart H %J Neuroimage: clinical 

Mostofsky. 2015. 'Connectivity supporting attention in children with attention deficit hyperactivity disorder', 7: 68-81. 

7. Bellec, Pierre, Carlton Chu, Francois Chouinard-Decorte, Yassine Benhajali, Daniel S Margulies, and R Cameron Craddock. 2017. 'The neuro 

bureau ADHD-200 preprocessed repository', Neuroimage, 144: 275-86. 

8. Breiman, Leo. 2017. Classification and regression trees (Routledge). 

9. Buckner, Randy L, Jorge Sepulcre, Tanveer Talukdar, Fenna M Krienen, Hesheng Liu, Trey Hedden, Jessica R Andrews-Hanna, Reisa A 

Sperling, and Keith A Johnson. 2009. 'Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and 

relation to Alzheimer's disease', Journal of neuroscience, 29: 1860-73. 

10. Camacho, Diogo M, Katherine M Collins, Rani K Powers, James C Costello, and James J Collins. 2018. 'Next-generation machine learning 

for biological networks', Cell. 

11. Chen, Xiaobo, Han Zhang, Yue Gao, Chong‐Yaw Wee, Gang Li, Dinggang Shen, and Alzheimer's Disease Neuroimaging Initiative %J 

Human brain mapping. 2016. 'High‐order resting‐state functional connectivity network for MCI classification', 37: 3282-96. 

12. Cortese, Samuele, Clare Kelly, Camille Chabernaud, Erika Proal, Adriana Di Martino, Michael P Milham, and F Xavier Castellanos. 2012. 

'Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies', American Journal of Psychiatry, 169: 1038-55. 

13. Crossley, Nicolas A, Andrea Mechelli, Jessica Scott, Francesco Carletti, Peter T Fox, Philip McGuire, and Edward T Bullmore. 2014. 'The 

hubs of the human connectome are generally implicated in the anatomy of brain disorders', Brain, 137: 2382-95. 

14. dos Santos Siqueira, Anderson, Biazoli Junior, Claudinei Eduardo, William Edgar Comfort, Luis Augusto Rohde, and João Ricardo Sato. 

2014. 'Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data', BioMed Research 

International, 2014. 

15. Finkle, Justin D, Jia J Wu, and Neda Bagheri. 2018. 'Windowed Granger causal inference strategy improves discovery of gene regulatory 

networks', Proceedings of the National Academy of Sciences, 115: 2252-57. 

16. Fornito, A., A. Zalesky, and M. Breakspear. 2015. 'The connectomics of brain disorders', Nat Rev Neurosci, 16: 159-72. 

17. Fornito, Alex, Andrew Zalesky, and Edward Bullmore. 2016. Fundamentals of brain network analysis (Academic Press). 



 

46 

 

18. Fortin, Jean-Philippe, Nicholas Cullen, Yvette I Sheline, Warren D Taylor, Irem Aselcioglu, Philip A Cook, Phil Adams, Crystal Cooper, 

Maurizio Fava, and Patrick J %J Neuroimage McGrath. 2018. 'Harmonization of cortical thickness measurements across scanners and sites', 

167: 104-20. 

19. Geurts, Pierre, Damien Ernst, and Louis Wehenkel. 2006. 'Extremely randomized trees', Machine learning, 63: 3-42. 

20. Ghanizadeh, Ahmad, Maryam Bahrani, Ramin Miri, and Ali Sahraian. 2012. 'Smell identification function in children with attention deficit 

hyperactivity disorder', Psychiatry investigation, 9: 150. 

21. Hagberg, Aric, Dan Schult, Pieter Swart, D Conway, L Séguin-Charbonneau, C Ellison, B Edwards, and J Torrents. 2013. 'Networkx. High 

productivity software for complex networks', Webová strá nka https://networkx. lanl. gov/wiki. 

22. Herman, Aleksandra M, Hugo Critchley, and Theodora %J Scientific reports Duka. 2018. 'Decreased olfactory discrimination is associated 

with impulsivity in healthy volunteers', 8: 15584. 

23. Hilger, Kirsten, and Christian J Fiebach. 2019. 'ADHD symptoms are associated with the modular structure of intrinsic brain networks in a 

representative sample of healthy adults', Network Neuroscience, 3: 567-88. 

24. Irrthum, Alexandre, Louis Wehenkel, and Pierre Geurts. 2010. 'Inferring regulatory networks from expression data using tree-based methods', 

PloS one, 5: e12776. 

25. Kim, Won Hwa, Nagesh Adluru, Moo K Chung, Ozioma C Okonkwo, Sterling C Johnson, Barbara B Bendlin, and Vikas Singh. 2015. 'Multi-

resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease', Neuroimage, 118: 103-17. 

26. Kim, Won Hwa, Annie M Racine, Nagesh Adluru, Seong Jae Hwang, Kaj Blennow, Henrik Zetterberg, Cynthia M Carlsson, Sanjay Asthana, 

Rebecca L Koscik, and Sterling C Johnson. 2019. 'Cerebrospinal fluid biomarkers of neurofibrillary tangles and synaptic dysfunction are 

associated with longitudinal decline in white matter connectivity: A multi-resolution graph analysis', NeuroImage: Clinical, 21: 101586. 

27. Lin, Pan, Jubao Sun, Gang Yu, Ying Wu, Yong Yang, Meilin Liang, and Xin Liu. 2014. 'Global and local brain network reorganization in 

attention-deficit/hyperactivity disorder', Brain imaging and behavior, 8: 558-69. 

28. Milham, Michael P, Damien Fair, Maarten Mennes, and Stewart HMD Mostofsky. 2012. 'The ADHD-200 consortium: a model to advance 

the translational potential of neuroimaging in clinical neuroscience', Frontiers in systems neuroscience, 6: 62. 

29. Murugesan, G., B. Saghafi, E. Davenport, B. Wagner, J. Urban, M. Kelley, D. Jones, A. Powers, C. Whitlow, J. Stitzel, J. Maldjian, and A. 

Montillo. 2018. 'Single Season Changes in Resting State Network Power and the Connectivity between Regions: Distinguish Head Impact 

Exposure Level in High School and Youth Football Players', Proc SPIE Int Soc Opt Eng, 10575. 

30. O’Neill, Thomas J, Elizabeth M Davenport, Gowtham Murugesan, Albert Montillo, and Joseph A Maldjian. 2017. 'Applications of resting 

state functional mr imaging to traumatic brain injury', Neuroimaging Clinics, 27: 685-96. 

31. Pellegrini, Enrico, Lucia Ballerini, Maria del C Valdes Hernandez, Francesca M Chappell, Victor González-Castro, Devasuda Anblagan, 

Samuel Danso, Susana Muñoz Maniega, Dominic Job, and Cyril Pernet. 2018. 'Machine learning of neuroimaging to diagnose cognitive 

impairment and dementia: a systematic review and comparative analysis', arXiv preprint arXiv:1804.01961. 

32. Petralia, Francesca, Pei Wang, Jialiang Yang, and Zhidong Tu. 2015. 'Integrative random forest for gene regulatory network inference', 

Bioinformatics, 31: i197-i205. 

https://networkx/


 

47 

 

33. Qian, Xing, Francisco Xavier Castellanos, Lucina Q Uddin, Beatrice Rui Yi Loo, Siwei Liu, Hui Li Koh, Xue Wei Wendy Poh, Daniel Fung, 

Cuntai Guan, and Tih-Shih %J NeuroImage: Clinical Lee. 2019. 'Large-scale brain functional network topology disruptions underlie symptom 

heterogeneity in children with attention-deficit/hyperactivity disorder', 21: 101600. 

34. Saeed, Fahad. 2018. 'Towards quantifying psychiatric diagnosis using machine learning algorithms and big fMRI data', Big Data Analytics, 

3: 7. 

35. Sidlauskaite, Justina, Karen Caeyenberghs, Edmund Sonuga-Barke, Herbert Roeyers, and Jan R Wiersema. 2015. 'Whole-brain structural 

topology in adult attention-deficit/hyperactivity disorder: Preserved global–disturbed local network organization', NeuroImage: Clinical, 9: 

506-12. 

36. Smith, S. M., K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich. 2011. 

'Network modelling methods for FMRI', Neuroimage, 54: 875-91. 

37. Sporns, Olaf. 2018. 'Graph theory methods: applications in brain networks', Dialogues in Clinical Neuroscience, 20: 111. 

38. Stam, Cornelis J, and Jaap C Reijneveld. 2007. 'Graph theoretical analysis of complex networks in the brain', Nonlinear biomedical physics, 

1: 3. 

39. Strobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. 2007. 'Bias in random forest variable importance measures: 

Illustrations, sources and a solution', BMC bioinformatics, 8: 25. 

40. Supekar, Kaustubh, Mark Musen, and Vinod Menon. 2009. 'Development of large-scale functional brain networks in children', PLoS biology, 

7: e1000157. 

41. Turki, Turki, Jason TL Wang, and Ibrahim Rajikhan. 2016. "Inferring gene regulatory networks by combining supervised and unsupervised 

methods." In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 140-45. IEEE. 

42. Tzourio-Mazoyer, Nathalie, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, 

and Marc Joliot. 2002. 'Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI 

single-subject brain', Neuroimage, 15: 273-89. 

43. Waller, Lea, Anastasia Brovkin, Lena Dorfschmidt, Danilo Bzdok, Henrik Walter, and Johann Daniel %J Journal of neuroscience methods 

Kruschwitz. 2018. 'GraphVar 2.0: A user-friendly toolbox for machine learning on functional connectivity measures', 308: 21-33. 

44. Wang, Jinhui, Xindi Wang, Mingrui Xia, Xuhong Liao, Alan Evans, and Yong %J Frontiers in human neuroscience He. 2015. 'GRETNA: a 

graph theoretical network analysis toolbox for imaging connectomics', 9: 386. 

45. Wang, Jinhui, Xinian Zuo, and Yong %J Frontiers in systems neuroscience He. 2010. 'Graph-based network analysis of resting-state functional 

MRI', 4: 16. 

46. Warren, David E, Jonathan D Power, Joel Bruss, Natalie L Denburg, Eric J Waldron, Haoxin Sun, Steven E Petersen, and Daniel Tranel. 

2014. 'Network measures predict neuropsychological outcome after brain injury', Proceedings of the National Academy of Sciences, 111: 

14247-52. 

47. Wehenkel, Marie, Christine Bastin, Christophe Phillips, and Pierre Geurts. 2017. "Tree ensemble methods and parcelling to identify brain 

areas related to Alzheimer’s disease." In 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 1-4. IEEE. 

48. Weyandt, Lisa, Anthony Swentosky, and Bergljot Gyda %J Developmental neuropsychology Gudmundsdottir. 2013. 'Neuroimaging and 

ADHD: fMRI, PET, DTI findings, and methodological limitations', 38: 211-25. 



 

48 

 

49. Williams, Nitin, and Richard N Henson. 2018. "Recent advances in functional neuroimaging analysis for cognitive neuroscience." In.: SAGE 

Publications Sage UK: London, England. 

50. Yamashita, Ayumu, Noriaki Yahata, Takashi Itahashi, Giuseppe Lisi, Takashi Yamada, Naho Ichikawa, Masahiro Takamura, Yujiro 

Yoshihara, Akira Kunimatsu, and Naohiro %J PLoS biology Okada. 2019. 'Harmonization of resting-state functional MRI data across multiple 

imaging sites via the separation of site differences into sampling bias and measurement bias', 17: e3000042. 

51. Yan, Weizheng, Han Zhang, Jing Sui, and Dinggang Shen. 2018. "Deep chronnectome learning via full bidirectional long short-term memory 

networks for MCI diagnosis." In International conference on medical image computing and computer-assisted intervention, 249-57. Springer. 

52. Yu, Renping, Han Zhang, Le An, Xiaobo Chen, Zhihui Wei, and Dinggang %J Human brain mapping Shen. 2017. 'Connectivity strength‐

weighted sparse group representation‐based brain network construction for M CI classification', 38: 2370-83. 

53. Zaharchuk, G, E Gong, M Wintermark, D Rubin, and CP Langlotz. 2018. 'Deep learning in neuroradiology', American Journal of 

Neuroradiology, 39: 1776-84. 

54. Zhou, Zhen, Xiaobo Chen, Yu Zhang, Dan Hu, Lishan Qiao, Renping Yu, Pew‐Thian Yap, Gang Pan, Han Zhang, and Dinggang %J Human 

Brain Mapping Shen. 2020. 'A toolbox for brain network construction and classification (BrainNetClass)'. 



 

49 

 

3 Resting state fMRI distinguishes subconcussive head impact exposure levels in youth and high 

school players over a single season of football 

 
Authors: Gowtham Krishnan Murugesan, MS1,2

., Thomas O Neill, MD1,2., Elizabeth M Davenport, 

PhD1,2., Ben Wagner, B.M1,2., Jillian E. Urban, PhD6., Mireille E. Kelley, MS6., Derek A. Jones, MS6., 

Alexander K. Powers, MD7., Christopher T. Whitlow, MD., PhD6,7., M.H.A, Joel D. Stitzel, PhD6.,  

Joseph A. Maldjian1, 2, M.D and Albert Montillo, PhD2, 3, 4, 5.  

 
1,2Department of Radiology, UT Southwestern, Dallas, TX, USA  

3,4Department of Bioinformatics, UT Southwestern, Dallas, TX, USA 
4,5Wake Forest School of Medicine, Winston-Salem, NC, USA 

 

Author contributions: Gowtham Krishnan Murugesan designed the work, analyzed and 

interpreted the data, and wrote the paper. Dr. Joseph Maldjian, Dr. Albert Montillo, provided 

expert knowledge and mentorship to develop the method. Ben Wagner contributed in developing 

MRI analysis. Others, contributed in data collection and to review the paper. 

 

 

 

  



 

50 

 

Advances in Knowledge: 

• Our study demonstrates the existence of an association between functional changes with 

subconcussive head impact exposure during a single season of play through a machine learning 

analysis approach.  

• The findings highlight the covert effects of subconcussive head impact exposure and warrant 

further longitudinal study to understand its physiological and functional consequences over a period 

of time. 

Implication for Patient Care: 

• This work demonstrates the ability of machine learning approaches coupled with advanced 

neuroimaging techniques to identify changes in the functional organization of the brain in a single 

season of American football.  

Summary Statement: 

• This study provides additional support to the growing body of evidence that there are detectable 

changes in the brain from playing a single season of football, even in the absence of clinically 

diagnosed concussion. 
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3.1 Abstract 

Purpose: To quantify the association of head impact exposure (HIE) with functional changes in the brain 

measured through resting-state functional MRI (rs-fMRI) using graph theoretical and data-driven methods.  

Methods: Anatomical T1 weighted MRI and functional rs-fMRI scans were acquired from 200 athletes 

immediately before and after a season of American football in an IRB approved study of high school and 

youth football. During all practices and games, the football players were instrumented with the Head Impact 

Telemetry (HIT) system, in which an array of accelerometers were mounted inside the football helmet to 

measure linear acceleration and estimate rotational acceleration of the skull. The combined Risk Weighted 

cumulative Exposure (RWEcp) for the season was computed for each player using both linear and rotational 

acceleration. Players with RWEcp higher than two standard deviations from mean exposure are identified 

as high HIE, and similar data size of age-matched players with lower exposure are identified as low HIE, 

resulting in 28 high and 34 low HIE players. Neurophysiological relevant networks were extracted using 

Independent Component Analysis (ICA), and Functional network connectivity (FNC) between the 

networks is extracted using a Machine learning based network inference method called BrainNET and 

compared to standard correlation-based connectivity. Percentage changes of global and local graph metrics 

over a single season of football are extracted from FNC and used as input features to inform four different 

classifiers to classify HIE of players. The performances of different pipelines are compared, and feature 

analysis is done on the best performing pipeline. In summary, we developed multiple data-driven and graph 

theoretical based biomarker extraction pipelines with two different network inference methods to inform 

four different classifiers to classify HIE of the players.  

Results: The pipelines using BrainNET derived connectivity achieved consistently better results than 

standard correlation methods in all the four classifiers. The combination of BrainNET and the extremely 

randomized trees classifier achieved top performance with an accuracy of 87.14+/-12.3% (p-value<0.001) 

in classifying the HIE exposure of the players. Feature analysis using the best performing pipeline suggests 

that nodal changes in posterior DMN, sensory-motor, and auditory networks provide the highest 

contribution to the classification power of the models.    
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Conclusion:  Robust performance of multiple pipelines with above chance level predictions demonstrates 

an association between changes in functional connectivity related to the HIE level in youth and high school 

football. The current study provides additional support to the growing body of evidence that there are 

detectable changes in brain health from playing a single season of football, even in the absence of clinically 

diagnosed concussion.  

Keywords: Resting-state, fMRI (rs-fMRI), machine learning, high school, youth, football, head impact 

exposure, group ICA, subconcussion 
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3.2 Introduction 

In contact sports, such as American football, each player can sustain several hundred subconcussive head 

impacts in a single season [68]. Understanding the effect of such head impact exposure (HIE) in youth (9-

13 years old) and high school (14-19 years old) football players on brain development is of growing concern 

[69, 70].  Compared to professional and collegiate football players, players at the youth and high school 

level have received limited attention despite constituting the majority (70%) of all football players [68]. 

Moreover, these players may be particularly vulnerable to brain injury due to the rapid brain maturation 

during this age range[70]. Recent resting-state functional MRI (rs-fMRI) studies have provided evidence 

for changes in the functional connectivity related to subconcussive head impacts in contact sports, including 

youth populations [71, 72].   

     Zhu et al. demonstrated the ability of functional connectivity of the default mode network (DMN) to 

serve as a potential biomarker to monitor dynamic changes in brain function after sports related concussion 

[73]. Neurophysiological changes in youth football athletes with exposure to subconcussive impacts have 

also been reported with changes in the resting state DMN [69, 74-77]. Studies have shown that 

subconcussive impact exposure is associated with more significant disturbances in recognizing emotions 

and attending to feelings [78]. Previously, high school football athletes with subconcussive head impacts 

during a season were observed to have decreased functional connectivity in the DMN relative to pre-season 

measures [75]. Altered DMN functional network connectivity was also reported in 24 active collegiate 

football players despite receiving only low levels of subconcussive HIE[79, 80] [69]. Functional network 

changes over a single season were able to distinguish the player's head impact exposure in previous studies, 

which supports the notion that intrinsic network changes occur as a result of sub-concussive head impacts 

[26, 79]. Neurocognitive and sensory-motor deficits were reported in military personnel subjected to 

subconcussive low-level blast events more frequently during training[81]. Recent animal studies have found 

that low grade cranial impacts in anaesthetized rodent models which were designed to replicate the impact 

suffered by sports players can result in impaired motor function [82]. Though most of the work focus on 

studying specific networks such as DMN and sensory-motor, notable studies suggest that subconcussion 
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can result in spatially heterogeneous changes in local connectivity due to the diffuse nature of head 

impacts[83].   

The purpose of this study is to determine the effect of repetitive subconcussive head impacts on whole-

brain network topology using data-driven methods. Our contributions in this work are three-fold: First, we 

utilized data-driven independent component analysis to identify neurophysiological relevant functional 

networks. Second, we utilized a machine learning based network topology inference method called 

BrainNET to infer the functional network connectivity between the extracted functional networks and 

compared it to the widely used correlation based connectivity. BrainNET is based on Extremely 

Randomized Trees (ERT) to estimate network connectivity from fMRI data and can generate an adjacency 

matrix representing brain network topology, without needing arbitrary thresholds as are required in standard 

approaches. BrainNET is shown to have higher sensitivity than the standard correlation method in 

identifying true connections between functional nodes and enables to identify subtle functional changes in 

conditions such as ADHD [84]. Third, we extracted local and global graph metrics from FNC using both 

BrainNET and the standard correlation method and calculated percentage change of each graph metric over 

pre and postseason for each player to examine the functional changes between players with low and high 

HIE over a season of American football using four different machine learning based classification 

algorithms. Feature analysis of the best performing classifier revealed it had identified regions with 

functional changes relevant to the HIE level. In summary, we developed multiple data-driven and graph 

theoretical based biomarker extraction pipelines with two different network inference methods to inform 

four different classifiers to classify the HIE level of the players. 

3.3 Materials and Methods 

3.3.1 Study cohort 

This study includes 62 football players enrolled in a study of high school and youth football approved by 

the Wake Forest School of Medicine Institutional Review Board (IRB) [85]. Anatomical T1 weighted MRI 

and functional rs-fMRI scans were acquired from all subjects before and after the football season. Subjects 
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with a history of concussion, neurological, developmental, or psychiatric disorders were excluded from the 

study.  

3.3.2 Computation of the Head Impact Exposure (HIE) measure 

During all practices and games, the football players were instrumented with the Head Impact Telemetry 

(HIT) system [85, 86], in which an array of accelerometers were mounted inside the football helmet to 

measure linear acceleration and estimate rotational acceleration of the skull. The Risk Weighted cumulative 

Exposure (RWE) for the season was computed for each player using linear and rotational acceleration [87].  

To compute each RWE metric, the risk of concussion for each impact for each player was calculated using 

the linear, rotational, and combined probability risk functions previously developed by Rowson et al [88-

90]. This biomechanical metric non-linearly weights the severity of each head impact experienced by an 

athlete over the course of a season using one of three concussion risk functions. The RWE metric evaluated 

in this study is combined risk-weighted exposure (RWECP), which accounts for the combined peak resultant 

linear and rotational accelerations of each impact.  Compared to using a discrete measure such as the 

 

Figure 12: Distribution of head impact exposure, RWEcp.  Subjects with RWEcp above two standard deviation 

from mean RWEcp are identified as High HIE and age matched players with lower RWEcp of similar data size 

are identified as Low HIE players. Red and orange line represents mean and two standard deviation from mean 

respectively 
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number of head impacts a player receives, the RWE metric, a single number representing the cumulative 

exposure over the season,  provides a better quantification of cumulative HIE of the player as it incorporates 

both the number and magnitude of impacts in a single metric [70].  

     The players were dichotomized into two groups based on the REWcp. Twenty-eight players with 

RWEcp two standard deviations above mean RWEcp are considered as High HIE group (RWEcp mean: 

1.9055+/-0.6395) and aged matched 34 players with low RWEcp are considered as Low HIE group 

(RWEcp mean: 0.0472 +/-0.0236).   A histogram of the distribution of RWECP is shown in Fig. 12. In this 

way, two age-matched groups were formed with a clear separation of HIE levels.  

3.3.3 MRI Data Acquisition 

MRI data were acquired on a three Tesla Siemens Skyra MRI scanner using a 32-channel human head/neck 

coil (Siemens Medical, Erlangen, Germany). T1-weighted images were obtained for anatomic correlation 

using a 3D volumetric Magnetization Prepared Rapid Acquisition Gradient Echo sequence with isotropic 

resolution of 0.9 mm3: repetition time (TR) = 1900 msec; echo time (TE) = 2.93 msec; inversion time 

 
 

Figure 13: A. Thirty independent components are extracted using independent component analysis B. Nineteen 

neurophysiological relevant components are selected by expert radiologist (JAM) C. Mean time course for each 

neurophysiological relevant networks are calculated D. Functional brain network topology is calculated using 

BrainNET and Correlation methods. E. Five nodal and three global graph metrics are extracted for each subject. 

F. Percentage change of graph metrics for each player is calculated by considering pre-season metrics as 

baseline, resulting in total 98 features. G. Four different classifiers are used to classify HIE level with 10 fold 

cross validation. Permutation testing is done for 1000 times to determine statistical significance of each model. I. 

Feature analysis is done using top performing model to identify functional changes in brain relevant to HIE level. 
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(TI) = 900 msec; flip angle = 90 degrees; slices = 176. Six minutes of resting-state fMRI data was obtained 

using gradient-echo echo planar images (TR = 2, TE = 25 ms, flip angle = 90 degrees, acquisition matrix = 

64x64, with a 22 cm FOV, 4 mm slice thickness and 1 mm gap). The participants were instructed to keep 

their eyes open and fixated on a point. To facilitate group ICA, the fMRI data was preprocessed including 

motion correction, spatial smoothing and normalization to a common MNI atlas space using SPM8 [91]  

 

3.3.4 Resting State fMRI Analysis and feature extraction 

3.3.4.1 Extraction functional connectivity of intrinsic network  

After preprocessing the rs-fMRI, ICA was performed to extract thirty (30) independent components using 

temporal concatenation group (spatial) independent components analysis [92] via the InfoMax ICA 

algorithm [93]. The number of components is selected such that it allows fine parcellation of intrinsic 

networks enabling the study of functional connectivity changes between the intrinsic networks such as the 

DMN, Visual, Language, and Sensory Motor [94]. This approach was applied to the pre- and post-season 

fMRI. Each extracted component consists of a pair of tensors, including 1) a group spatial map and 2) an 

activation time course of the spatial map. Back-reconstruction was used to compute subject-specific spatial 

maps and time courses using the GIFT toolbox [93]. The overall processing pipeline is shown in Fig. 13 

Group ICA was applied in order to obtain a consistent set of components for all subjects. ICA outputs 

components that include both neurophysiological-based components of interest and noise-based, nuisance 

components. Multiple attributes were employed to separate the noise components from neurophysiological 

components, including stability across several runs using ICASSO, power ratio,  manual inspection as 

detailed in McKeown et al [95] and a comparison to a functional atlas. In total, 19 components were 

identified of neurophysiological origin, while 11 components were identified as noise or artifact with the 

help of an expert neuroradiologist (T.O). The labels and activation maps of each neurophysiological is 

shown in Figure.16 and 17. 

 The functional connectivity between networks are calculated using subject specific time course.  A mean 

rs-fMRI time series was extracted from the voxels in each network. Functional network connectivity was 
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measured using BrainNET and Pearson’s correlation coefficient of the mean time series from each pair of 

subcomponents. More details on BrainNET can be found in Supplementary Material.  

 

3.3.4.2 Graph Extraction 

Graph theoretical metrics representing global and local characteristics of network topology were extracted 

from both pipelines using BrainNET and correlation methods to compare between the HIE groups. The 

GRETNA MATLAB toolbox (v2.0,https://www.nitrc.org/projects/gretna/) was used to extract additional 

graph theoretical metrics including global network efficiency, nodal shortest path length, nodal efficiency, 

nodal local efficiency, betweenness centrality and degree centrality[53]. The Networkx package in python 

was used to extract the graph theoretical metrics, including Density and modularity[54]. We utilize 

 
 

Figure 14:: Visualization of top 10 feature for HIE level classification. A. Sensory Motor, Auditory, C. Frontal, 

D. Posterior DMN, E. Sensory Motor, F. Visual Medial, G. Language, H. Auditory, I. Frontal DMN, and J. 

Frontal 
 

https://www.nitrc.org/projects/gretna/
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connectivity strength based thresholding for FNC derived using correlation methods. However, such 

thresholding procedure can lead to different network densities across participants and may confound 

subsequent between group comparisons. Thus, for correlation based graph metric we corrected for density 

while calculating graph metrics  

 In summary, we extracted five nodal metrics as described above for 19 networks (5x19) and three global 

metrics constituting a total of 98 features per subject. The percentage changes of each graph metrics 

between post and pre-season (ΔGM) is calculated by subtracting pre-season metrics from post-season 

metrics and dividing by pre-season metrics. In this way, we performed baseline correction and taking the 

changes in the metric during the season into account. Two sample t-tests between high and low HIE groups 

were performed for each graph metrics using the GRETNA toolbox. The nodal comparison is corrected 

using FDR, and between metrics, comparison is corrected using Bonferroni multiple comparisons 

correction with statistical significance set at p < .05.  

Node Metrics: The nodal metrics give complementary information about the organization and the roles of 

the nodes in the functional connectome. The Nodal Shortest Path Length (NSPL) is defined as the shortest 

mean distance from a particular node to all other nodes in the graph. Shorter NSPL represents greater 

integration[15]. The Betweenness Centrality (BC) measures a node's influences in information flow 

between all other nodes [55]. BC quantifies the influence of a node and is defined as the number of shortest 

paths passing through it. Degree centrality (DC) calculates the number of direct connections between a 

given node and the rest of the brain within the entire connectivity matrix of the brain. A node will have a 

high DC if it has numerous direct connections to other nodes, and thus, DC reflects how much of a node 

influences the entire brain areas [96]. Nodal clustering coefficient is defined as the number of triangles in 

the network containing a node divided by the number of connected triples containing the same node [97]. 

The NCC gives the density of local connections involving a given node and is often used to probe the 

node's ability to participate in local information integration. Nodal Efficiency assesses the connectedness 

of the edges among the neighbors of the given node and offers a notion of the network’s local robustness 

to a node’s removal [98].  
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Table 4: Comparison of model performance for pipelines using the BrainNET inference method. Cross-validation 

mean accuracies (percentages) and corresponding p-values 

 

Classifier CV accuracy P-values 

Random Forest 75.71+/-11.1 0.0009 

ERT 87.14+/-12.3 0.0009 

Adaboost 70+/-23.8 0.002 

SVC (linear) 65.71+/-19.2 0.03 

 

Global Metrics: Network Efficiency is a more biologically relevant measure representing the ability of 

the network to transmit information globally and locally. Networks with high efficiency, both globally and 

locally, are said to be economic small-world networks. [56]. The density of the graph is defined as the ratio 

of the number of connections in the network to the number of possible connections in the network[15].  

Modularity describes the extent to which groups of nodes are connected to the members of their group. 

Modularity is essentially an index of how cleanly a network can be subdivided with a given partition, with 

higher values indicating more distinct subnetworks or a greater level of segregation. 

 

3.3.5 Classifier training, evaluation and model selection methodology 

Four classifiers were trained using each individual set of features calculated using correlation and 

BrainNET as inputs (ΔGMBrainNET, ΔGMCorrelation). Historically robust and well performing machine 

learning classifiers were selected, including Adaboost,  linear Support Vector (SV),  Random Forest (RF), 

and Extremely Randomized Trees (ERT) [99]. Features were selected using a sequential forward feature 

selection algorithm in successive iterations. In the first iteration, all features in the feature space are 

individually used for classification, and the best performing feature was added to the subset while being 

removed from the feature space. In each consecutive iteration, individual components of the feature space 

are added to feature subset, and the best performing feature in combination with previous results is kept for 

future use. This resulted in 10 features being chosen as the best graph metrics characteristics that distinguish 

between high HIE and low HIE.  
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The performance of each classifier × feature set combination was systematically evaluated for its ability to 

distinguish between the high and low impact exposure groups. The subjects were stratified into ten equal 

parts for both high and low HIE groups, and a 10 fold cross-validation combined with grid search is 

performed to identify ideal hyperparameters for each classifier (best-classifiers). All the classification 

metrics were acquired using second 10-fold cross-validation on best classifiers of each algorithm and tested 

with data split being the same for all algorithms. We minimized the risk of overfitting by using feature 

selection and using a ten fold cross-validation to ensure that the models are only evaluated on data points 

that it has not seen before. To assess the reliability of each learning model’s accuracy, permutation testing 

was performed for 1000 times by randomly shuffling labels for each run to calculate p-values. To address 

the issue of multiple comparisons, we also reported Bonferroni corrected p-values for these classifiers. 

 

 

 
Figure 15:: Visualization of top feature for HIE level classification from top performing pipeline (BrainNET 

+ ERT). Feature analysis shows that changes in nodal degree centrality of posterior DMN being most 

important feature in identifying HIE level. 
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3.4 Results 

3.4.1 Performance of the classifiers using  ΔGMBrainNET   features 

Multiple models performed significantly better than chance (chance level accuracy = 45.16%) with p-

values<0.006 using graph metrics derived using BrainNET (ΔGMBrainNET). RF and ERT classifiers survived 

multiple comparisons and performed statistically better than chance level with accuracies 75.714% and  

87.14%, respectively, with p-values<0.006 (Table.4). Table 6 also tabulates each graph metrics we studied, 

and Bonferroni corrected p-value corresponding to the between group difference of that feature. The top 10 

most important features activation maps and corresponding feature importances is shown in figure 14 and 

15. 

3.4.2 Performance of the classifiers using ΔGMCorrelation features 

Multiple models performed significantly better than chance (chance level accuracy = 45.16%) with p-

values<0.006 using graph metrics derived using correlation (ΔGMCorrelation) However, using the standard 

correlation based connectivity, only ERT classifiers performed significantly better than chance at 78.04% 

with p<0.006 after multiple comparison correction. (Table. 5) (Figure.18): 

 

Analysis of Selected Features 

To further understand the results, we plotted the importance of each selected feature in classifying HIE of 

players. The results from the top performing pipeline (BrainNET) will be presented in the main body of the 

article. More details about the performance of the correlation pipeline are given in the supplementary 

material. The features representing local characteristics of the networks were identified as important 

features for classification. Measures such as degree centrality of nodal clustering coefficient of frontal 

DMN, posterior DMN and auditory networks, Betweenness centrality of sensory-motor, the clustering 

coefficient of visual network and nodal efficiency of language were top five features used in the 

classification of HIE in players over a single season of football. 
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3.5 Discussion 

In this study, we examined different pipelines, including two different network extraction techniques and 

using four different classifiers along with sequential forward feature selection.      The tested machine 

learning models identified changes in functional connectivity that discriminate against the HIE level. 

Multiple models provided robust discrimination between individual players with high and low impact 

exposure, which underscores the utility of using machine learning to study connectivity changes. This study 

supports the existence of an association between functional connectivity and HIE during a single season of 

play. Feature selection helps to avoid overfitting by reducing feature space to be lesser than the number of 

samples collected. Furthermore, we used 10-fold cross-validation to examine the accuracy of the algorithm 

for each pipeline, which is shown to be better than the leave-one-out cross-validation used in previous 

studies [100]. In addition, 10-fold cross-validation may be used as a substitute for having a separate testing 

set because the model is evaluated on data points it has not seen before [101]. 

 

Previous studies use features such as power spectrum density of networks such as DMN and functional 

connectivity measures extracted using correlation methods between intrinsic networks as features for 

classifying head impact exposure [26, 79]. In this study, not limited to certain networks, we analyzed whole-

brain function changes by utilizing advanced machine learning based BrainNET approach to extract 

functional network connectivity and extracted global and local graph metrics as features for classification. 

Graph theoretic measures give the ability to study intermediate and high levels of the organization across 

the network as a whole, resulting in higher accuracies in classifying HIE of the players than previous 

studies. The fact that the model identifies nodal metric changes across a season of American football 

signifies the fact that the diffuse effects of repetitive subconcussion impact on the functional organization 

of the brain.  

 

3.5.1 Comparison between different pipelines 
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We extracted graph metrics using two different methods and calculated the percentage changes of each 

graph metrics across a season of American football (ΔGMBrainNET, ΔGMCorrelation). ΔGMBrainNET features were 

able to achieve higher classification accuracies with statistical significance. BrainNET measures non-linear 

relationships and avoids using arbitrary thresholds to obtain functional network topology. As a result, this 

method is able to correctly identify true connections between the nodes/networks under study with higher 

sensitivity and hence increases the statistical power of the analysis by reducing false positive connections. 

Hence, the ΔGMBrainNET is able to achieve higher accuracies compared to ΔGMCorrelation. Among the 

classifiers tested, ERT is able to achieve better performance than other classifiers RF, Adaboost, and SVC. 

SVC performed worst may be due to its intrinsic linear nature, making it unable to capture the underlying 

non-linear dynamics of the brain.  The tree-based methods ERT and RF worked better than Adaboost and 

are based ensemble method as it works well with a large number of features with non-linear relationships 

and is computationally efficient. Comparing to RF, ERT is robust in the presence of equally important and 

similar features, such as the graph metrics used in this study. Based on this result, we would suggest 

BrainNET based network construction pipeline using ERT classifiers for graph theoretical measures 

analysis of rs-fMRI to identify functional changes in the Brain. 

 

3.5.2 Analysis of the selected features 

In this study, we examined changes in graph metrics representing both global and local characteristics of 

the network topology. Feature analysis identified only changes in graph metrics representing local 

characteristics of the network topology of different networks to be important in classifying HIE of the 

players. The nodal clustering coefficient changes of Sensory Motor and Visual Medial network, language, 

Betweenness Centrality of sensory-motor, Degree centrality of auditory, frontal and posterior DMN, nodal 

efficiency of the language and nodal local efficiency of frontal DMN and a frontal network were identified 

as top features important to classify the HIF of the players. Traumatic brain injury and repetitive 

subconcussion have been shown to affect DMN, and our results support the notion by identifying several 

parts of the DMN, such as Frontal DMN and Precuneus.  The symptoms and signs associated with TBI 
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include cognitive, motor, mood, and behavioral functions [102]. TBI often affects the visual system; players 

sustaining a concussion frequently complain of sensitivity to visual stimuli [79]. Our results identified local 

changes in networks such as visual, sensory-motor, DMN, and language that was known to be affected in 

TBI; however, our results didn’t identify a significant global change [103]. The multitude of networks 

identified highlights the covert effects of repetitive effects of subconcussive impacts and reflect that 

continued exposure to repetitive subconcussive impacts may result in substantial neurological and 

neuropsychological alterations. The identification of local changes in networks that were repeatedly studied 

in TBI highlights the covert effects of subconcussive HIE and warrants further longitudinal study to 

understand its physiological and functional consequences over a period of time. 

 

Limitations: There are several limitations to the current study. First, the functional and structural changes 

we studied are from a single season of American football. Hence the changes may be transient in nature. A 

long-term longitudinal study with a control group consisting of non-contact sports athletes is needed to 

understand the evolving functional and structural changes in these young athletes. Second, we have used a 

smaller dataset for a classification study. In order to identify the difference between high and low impact 

group, we need to make a clear distinction between the groups using RWEcp, resulting in a smaller subset. 

Performing further studies with more subjects will certainly add confidence in identifying changes due to 

repetitive subconcussive impact exposure. Third, although we tested several classifiers and two different 

methods for FNC extraction, it is entirely possible that several other classifiers and network topology 

inference methods are better suited for this approach. As an exploratory study to examine functional 

changes in the brain due to repetitive subconcussive exposure, we tackled the issues by performing feature 

selection and ten fold cross-validation to achieve as generalized performance as possible. The robust 

classification accuracies between different pipelines suggest that indeed the proposed pipeline is robust, 

and there are functional changes in the brain that occurs as a result of subconcussive head impacts. 

3.6 Conclusion 



 

66 

 

In this study, we utilized graph theory and ML and data-driven methods to examine functional changes in 

the brain over a single season of American football. This study demonstrates an association between 

changes in functional connectivity related to HIE level in youth and high school football. In particular, this 

study examined whether a single season of football results in changes that differentiate the HIE level in 

youth and high school football players in functional connectivity between intrinsic functional networks 

defined by ICA with rs-fMRI. This result establishes the potential use of these features and machine 

learning methods to study changes in the intrinsic network connectivity of players with respect to repetitive 

head impact exposure. The current study provides additional support to the growing body of evidence that 

there are detectable changes in brain health from playing a single season of football, even in the absence of 

clinically diagnosed concussion. Long-term risks need to be evaluated in longitudinal studies. 
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Figure 16: Activation maps of intrinsic components 1-10 extracted using independent component analysis 
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Figure 17: Activation maps of intrinsic components 11-19 extracted using independent component analysis 
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Table 5: Comparison of model performance for pipelines using Correlation inference method. Cross-validation mean 

accuracies (percentages) and corresponding p-values 

 

Classifier CV accuracy P-values 

Random Forest 69.46+/-12.8 0.019 

ERT 70.71+/-13.86 0.0009 

Adaboost 78.04+/-12.85 0.0009 

SVC (linear) 61.96+/-6.08 0.4725 
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Figure 18: Visualization of top feature for HIE level classification from top performing pipeline using correlation 

inference method (Correlation + ERT).  
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Table 6: Statistical two sample t-test results between nodal and global graph metrics extracted from nineteen components. Significant p-values after multiple 

comparisons are highlighted as bold 

 BrainNET 

Graph 
Metrics 

SM SM VM VL Prec. FDMN SM GC Audt Audt Frontal Pa. DMN Pos.DMN FPN GC GC Lang. GC FPN 

BC 0.804 0.086 0.055 0.687 0.606 0.121 0.961 0.191 0.168 0.249 0.441 0.267 0.511 0.099 0.071 0.783 0.333 0.676 0.882 

DC 0.733 0.557 0.324 0.994 0.765 0.904 0.228 0.003 0.160 0.194 0.225 0.722 0.061 0.666 0.559 0.234 0.367 0.504 0.782 

NCC 0.087 0.086 0.151 0.130 0.882 0.216 0.734 0.832 0.529 0.899 0.932 0.543 0.972 0.373 0.068 0.424 0.955 0.524 0.062 

NE 0.453 0.543 0.548 0.718 0.916 0.994 0.216 0.005 0.147 0.235 0.255 0.916 0.008 0.860 0.772 0.276 0.174 0.347 0.793 

NLE 0.199 0.052 0.270 0.040 0.966 0.938 0.794 0.871 0.697 0.548 0.656 0.994 0.567 0.656 0.153 0.404 0.821 0.626 0.095 

GE 0.997                   

Mod 0.390                   

Dens. 0.549                   

 Correlation Coefficient 

BC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 0.983 1.000 1.000 1.000 

DC 0.727 0.660 0.403 0.649 0.746 0.612 0.707 0.594 0.673 0.556 0.571 0.703 0.562 0.379 0.738 0.669 0.661 0.487 0.487 

NCC 0.912 0.839 0.607 1.000 1.000 0.868 0.908 1.000 0.775 0.922 0.699 0.975 0.924 0.904 0.686 0.894 1.000 1.000 0.682 

NE 0.941 0.978 0.660 0.671 0.816 0.837 0.859 0.718 0.953 0.903 1.000 0.924 0.706 0.826 0.942 0.906 0.704 0.764 0.734 

NLE 1.000 1.000 0.505 0.826 0.945 0.994 1.000 1.000 0.924 1.000 0.910 1.000 0.975 1.000 0.849 1.000 0.850 0.491 0.538 

GE 0.917 0.747 0.824                 

Mod                    

Dens.                    
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Appendix I.  

BrainNET Network Inference Methodology 

The objective of BrainNET is to infer the connectivity from fMRI data as a network with N different nodes 

in the brain (i.e., ROI’s), where edges between the nodes represent the true functional connectivity between 

nodes. At each node, there are measurements from m time points 𝑋 =  { 𝑥1, 𝑥2, 𝑥3, 𝑥4, … . , 𝑥𝑁}, where xi is 

the vector representation of m time points measured as 

𝑥𝑖  = (𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, 𝑥𝑖

4, … , 𝑥𝑖
𝑚)𝑇. 

Our method assumes that fMRI measurement of BOLD (Blood Oxygen Level Dependent) activation at 

each node is a function of each of the other nodes’ activation with additional random noise.  

 

For the jth node with m time points, a vector can be defined denoting all nodes except the jth node as  

𝑥−𝑗 =  (𝑥1, 𝑥2, 𝑥𝑗−1, 𝑥𝑗+1, … . . , 𝑥𝑁  ), then the measurements at the jth node can be represented as a function 

of other nodes as 

𝑥𝑗  =  𝑓𝑗(𝑥−𝑗)  + Ɛ𝑗 

 

where Ɛj is random noise specific to each nodej. We further assume that function ƒj () only exploits the data 

of nodes in x-j that are connected to nodej. The function ƒj () can be solved in various ways in the context 

of machine learning. Since the nature of the relationship between different ROIs in the brain is unknown 

and expected to be non-linear [48], we choose a tree based ensemble method as it works well with a large 

number of features with non-linear relationships and is computationally efficient. We utilized Extremely 

Randomized Trees (ERT), an ensemble algorithm similar to Random Forest, which aggregates several weak 



 

78 

 

learners to form a robust model. ERT uses a random subset of predictors to select divergences in a tree node 

and then selects the “best split” from this limited number of choices [49]. Finally, outputs from individual 

trees are averaged to obtain the best overall model [50]. BrainNET infers a network with N different nodes 

by dividing the problem into N different sub problems, and solving the function ƒj () for each node 

independently. The steps are listed below:  

For j = 1 to N nodes 

• Fit the ERT regressor with all the nodes data, except the jth node, to find the function fj that 

minimizes the following mean squared error: 

1/𝑚 ∑ (xj − fj(x−j))
2

m

k=1

 

 

• Extract the weight of each node to predict node j,  

 

W(j, n) = {
w𝑛     ⅈf n ≠ j
0        ⅈf n = j

 

 

where wn is the weight of node to predict node j and n= 1 to N. 

• Append the weights values to the Importance matrix 

The importance score for each node (Nodej) to predict (Nodei) is defined as the total decrease in impurity 

due to splitting the samples based on Nodej [49]. GINI index is used here as the measure of impurity.  Let 

“S” denote a node split in the tree ensemble and let (SL, SR) denote it's left and right children nodes. Then, 

the decrease in impurity ΔImpurity(S) from node split “S” based on Nodej to predict Nodei is defined as 
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ΔImpurⅈty(S𝑖𝑗)  =  Impurⅈty(S) – (N𝐿/N𝑃) ∗ Impurⅈty (S𝐿) − (N𝑅/N𝑃) ∗ Impurⅈty (S𝑅) 

 

where, SL and SR are left and right splits and NP, NL, NR are number of samples reaching parent, left and 

right nodes respectively. Let 𝕍k be the number of ensembles, which uses ROIj for splitting trees. Then, the 

importance score for Nodej  

for predicting Nodei is calculated as the average of node impurities across all trees, i.e. Importance of ROIji  

 

I(ⅈ, j) =  ∑G∈𝕍kΔImpurⅈty (S𝑖𝑗)/T 

 

where T is the number of trees in the ensemble. 

Importance values extracted using a typical Random Forest model can be biased in the presence of two or 

more correlated features since the model will randomly assign importance to any one of the equally 

important features without any preference [104].  This problem is avoided by using the ERT regressor.  
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Abbreviations 

HIE – Head Impact Exposure 

DMN – Default Mode Network 

ICA – Independent Component Analysis 

FNC – Functional Network Connectivity 

RWE – Risk-Weighted Cumulative Exposure 

CV – Cross-Validation 

FDMN – Frontal DMN 

ERT - Extremely Randomized Trees 
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4.1 Abstract : 

Purpose: 

In this study, we used novel deep learning approaches to synthesize T1 post-contrast (T1c)  Gadolinium 

enhancement from non-contrast multi-parametric MR images (T1w, T2w, and FLAIR) in patients with 

primary brain tumors. We utilized imaging data from 335 subjects in the Brain Tumor Segmentation 

Challenge (BRATS) 2019 training set for training and validation of the network. A held out a set of 125 

subjects from the BRATS 2019 validation dataset was used to test the generalization of the model. A 

residual inception dense network called T1c-ET was developed and trained to simultaneously predict T1c 

and segmentation of the enhancing tumor (ET). Two expert neuroradiologists independently scored the 

synthesized post-contrast images using a 3-point scale, evaluating image quality, motion-artifact 

suppression, and contrast enhancement against the ground truth T1c images. The 3-point scale was defined 

as follows: overall image quality and ability to synthesize gadolinium enhancement (1, poor; 3, good; 3, 

excellent). The predicted T1c images demonstrated structural similarity, PSNR, and NMSE scores of 95.62 

37.8357, and 0.0549, respectively. Our model was able to synthesize Gadolinium enhancement in 92.8% 

of the cases. Inter-rater agreement for predicting contrast enhancement was 87.2% (p-value< 4.0e-05). Rater 

1 identified 50, 66, and 9 cases and rater 2 identified 43, 57, and 25 cases (out of the 125 cases) as excellent, 

good, and poor, respectively. We demonstrate the potential of deep learning methods to synthesize T1c 

images from non-contrast multi-parametric MRI images.  The incorporation of additional training data and 

MR sequences such as Diffusion-Weighted Imaging may help further generalize the model. 

Clinical Relevance statement: This study demonstrates the potential of deep learning to reduce the need 

for intravenous gadolinium contrast in the evaluation of primary brain tumors. 
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4.2 Introduction 

Structural MRI offers superior soft tissue contrast over other imaging modalities and plays a crucial role in 

the evaluation of brain tumors by providing information about lesion location, the extent of adjacent tissue 

involvement, and resultant mass effect upon the surrounding brain parenchyma. The administration of 

intravenous gadolinium-based contrast agents shorten T1 relaxation times and further increase tissue 

contrast by accentuating areas where contrast agents have leaked through the blood-brain barrier (BBB) 

into the interstitial tissues resulting in parenchymal enhancement. This BBB breakdown is a key feature 

seen in certain tumors such as high-grade gliomas and can serve as a prognostic tool [105].  

Gadolinium-based contrast agents (GBCAs) have been used for decades in MR imaging and historically 

considered safe for patients with normal renal function[105]. It is well-known that there is a risk of 

nephrogenic systemic fibrosis associated with GBCA administration in patients with renal impairment, 

particularly at higher doses.  However, recent studies have shown gadolinium deposition in tissues 

throughout the body, including the brain, even in the setting of normal renal function, which raises 

additional concerns about the long-term safety of these agents [106]. Persistently increased signal intensity 

on T1-weighted (T1w) MRIs have been reported within the dentate nucleus and globus pallidus following 

prior injections of both linear and macrocyclic GBCAs.   

In lieu of these concerns with Gadolinium toxicity, there has been growing interest in alternative approaches 

for contrast-enhanced MRI.  Examples include manganese-based compounds [107] as well as conceptually 

different approaches such as chemical exchange saturation transfer (CEST) [108]. Recent developments in 

deep learning algorithms have shown promise in the field of image synthesis and reconstruction. Gong et 

al. developed a deep learning method to predict full dose T1w post-contrast images from one-tenth of the 

GBCA dose [109]. Kleeseik et al. developed a Bayesian deep learning architecture for the prediction of 

virtual contrast enhancement from non-contrast MR images, including native T1w (nT1w), T2w, FLAIR, 

DWI, and SWI MR images to predict T1w post-contrast images [110]. Ponnada et al. evaluated whether 
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deep learning can predict enhancing lesions on MRI scans obtained without the use of contrast material in 

multiple sclerosis patients. 

Our contributions in this work are three-fold. First, we developed a novel deep learning network called 

Residual-Inception-Dense Network (RIDNet) to demonstrate the feasibility of a deep learning model to 

synthesize T1 post-contrast images using non-contrast FLAIR, T1w, and T2w images. Second, we utilized 

a multisite imaging data with different imaging characteristics from different scanners to train the model 

and evaluated the ability of the model to synthesize Gadolinium enhancement by two experienced raters. 

Using substantially larger testing data from multiple sites having heterogeneous imaging characteristics 

helps to determine the generalizability of the model accurately. Third, we analyzed the importance and role 

of each input MR sequence in predicting the contrast enhancement giving insights on using. The main 

objective of the study is to investigate the potential of deep learning methods and utility of input MR 

sequences in predicting enhancing lesions without GBCA administration using an open-source multisite 

tumor data from BRATS. 

 

Fig. 19. Residual Inception Densenet (RID). A) RID model for whole tumor (WT) segmentation and B) RID model for 

T1c prediction and enhancing tumor (ET) segmentation  
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4.3 Materials and Methods: 

4.3.1 Data and Preprocessing 

The multimodal Brain Tumor Segmentation Benchmark (BRATS) dataset provides a general platform by 

outsourcing a unique brain tumor dataset for developing deep learning models [8]. The BRATS 2019 

dataset set used in our study was comprised of MRI data of T1, T1c, FLAIR, and T2 from a total of 460 

glioma subjects acquired at multiple institutions[111, 112] including contributions from The Cancer 

Imaging Archive (TCIA), University of Pennsylvania, the University of Alabama in Birmingham, MD 

Anderson Cancer Center in Texas, the Washington University School of Medicine in St.Louis and the Tata 

memorial center in India. The imaging characteristics of the BRATS datasets have wide variability in 

acquisition plane ( sagittal/axial/coronal), volume (2D/3D), and variable slice thickness. 

All subjects had precontrast T1w, T2w, FLAIR, and post-contrast T1w images.  From this set, a single fold 

 

Fig. 20. Residual Inception Densnet (RID) model architecture. RID model for T1c prediction and enhancing tumor (ET) 

segmentation  
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training split of 365 subjects, including 259 HGG subjects and 76 LGG subjects, were used for training, 

while 125 subjets were held out for testing.  The tumor grades for the held out 125 subjects is not made 

available by BRATS. The training dataset was further randomly split into 300 and 35 for training and 

validation of the model.  Testing on substantially larger testing dataset quantifies the generalizabiltiy of the 

model accurately.   

Data preprocessing 

Standard preprocessing steps performed by BRATS include co-registration to an anatomical template[113], 

resampling to isotropic resolution (1 mm3), and skull-stripping[114]. In addition to that, we performedN4 

bias field correction[115] to remove RF inhomogeneity as well as normalizing to zero mean and unit 

variance.  

4.3.2 Network Architecture 

4.3.2.1 Model Description 

 The Residual Inception Dense Network (RID) network was first proposed and developed by Khened et al. 

for cardiac segmentation. We incorporated our implementation of the RID network with a slight 

modification in Keras with a Tensorflow backend (Figure.19) (Figure.20). In the DenseNet architecture, 

the GPU memory footprint increases with the number of feature maps and larger spatial resolution. The 

skip connections from the down-sampling path to the up-sampling path use element-wise addition in this 

 

Fig. 21. Building Blocks of Residual Inception Network. From left to right, dense block, convolution block, transition block 

and projection block 
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model, instead of the concatenation operation in DenseNet, to mitigate feature map explosion in the up-

sampling path. For the skip connections, a projection operation was done using Batch-Norm-1 × 1-

convolution-dropout to match the dimensions for element-wise addition (Figure.21). These additions to the 

DenseNet architecture help in reducing the parameters and the GPU memory footprint without affecting 

the quality of the segmentation output. In addition to performing dimension reduction, the projection 

operation helps in learning interactions of cross channel information [116] and faster convergence. 

Furthermore, the initial layer of the RID networks includes parallel convolutional neural network (CNN) 

branches similar to the inception module with multiple kernels of varying receptive fields, which help in 

capturing view-point dependent object variability and learning relations between image structures at 

multiple scales [117]. 

4.3.2.2 Model Training  

The RID model was trained on 2D input patches of size 64x64x3 extracted from each image slice, with 

three channels. T1w, T2w, and FLAIR images were concatenated to create three channels of the input.  The 

decoder part of the network was bifurcated to give two outputs: a) T1c prediction and b) Enhancing Tumor 

(ET) prediction. Linear activation and sigmoid activation was utilized for T1c and ET prediction, 

respectively. L2 loss assumes the input data set consists of uncorrelated Gaussian signals. This assumption 

is not always true in real-world data and can result in blurry images. In order to create sharper output images, 

we propose to optimize the model with Structural Perception Loss for T1c and dice loss for ET 

segmentation. The Structural Perception loss is a combination of L2, perception, spatial frequency, and 

structural similarity loss. In each stage, the model is trained until convergence with Adam optimizers with 

a learning rate of 0.001 using NVIDIA Tesla P40 GPU’s.  

4.3.3 Structural Perception Loss 

The loss function based on the mean squared error between the pixel values of the original and the 

reconstructed images is the common choice for learning. However, using just MSE (mean squared error; 

L2 loss) results in blurry image reconstruction [118]. The blurred image reconstruction shows a lack of high 
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spatial frequency components that represent edges. In addition to L2 loss, to emphasize the high-frequency 

components, a convolutional layer with a Laplacian filter bank as weights is added to the model and the 

MSE of features, called the spatial frequency loss (SFL), is computed from the output of each filter. 

Perceptual and structural similarity (SSIM) based losses were added to improve model performance. We 

used a pre-trained VGG-16 network to define perceptual loss functions that measure perceptual differences 

in predicted and ground truth images [119]. The VGG loss network remains fixed during the training 

process. The model is trained to optimize the combination of all the above losses, which from now we call 

as structural perception loss. The Structural Perception Loss (SPL) can be represented as follows:  

SPL = (1-α). L2+ α. SSIM + α. SFL+ α. Perceptual 

4.4 Evaluation and Statistical Analysis 

4.4.1 Quantitative Evaluation 

Model performance was evaluated by comparing the model prediction to the ground truth. We computed 

the structural similarity index (SSIM), the peak signal-to-noise ratio (PSNR), normalized mean squared 

error (NMSE), and the Dice coefficient of the ET mask. The PSNR measures the voxel-wise difference, 

NMSE captures the L2 loss, Dice evaluates the overlap of predicted ET tumor mask, and SSIM compares 

nonlocal structural similarity. To evaluate the scores separately for tumor and nontumor regions, we 

segmented the whole tumor and enhancing tumor regions using the algorithm from Murugesan et al. [120]. 

Dice score for ET is calculated for whole-brain without any correction, corrected for the whole tumor (after 

removing predictions outside of whole tumor segmentation), and for ET (after removing predictions outside 

ET tumor segmentation from Murugesan et al.) to quantify the ability of the model in predicting ET 

segmentations.  

4.4.2 Qualitative Evaluation 

To assess the subjective visual quality and the ability of the model to synthesize Gadolinium enhancement, 

a board-certified neuroradiologist (FY. with eight years of experience) and a radiologist (MA. with six years 
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of experience) rated the predicted synthesized contrast enhancement maps by comparing them to the ground 

truth contrast-enhanced T1w scans. For each data set, scores were determined by taking into account general 

image quality and degree of visual conformity of the tumor region using a 3-point Likert scale comprised 

of 1 (none), 2 (good), and 3 (excellent) ratings. To determine the inter-rater agreement, the intraclass 

correlation coefficient was computed using MATLAB. For the differing ratings, the raters agreed on a 

consensus. This consensus rating was used for correlation with the quantitative scores. The consensus 

ratings were also dichotomized into low (1) and high (2 – 3) ratings. 

Table 7: Quantitative Evaluation 

Metrics Region T1c-ET 

SSIM Brain 0.913 

 Tumor 0.903 

 Enhancing Tumor 0.899 

NMSE Brain 0.03 

 Tumor 0.01 

 Enhancing Tumor 0.009 

Dice Brain 0.32 

 Tumor 0.35 

 Enhancing Tumor 0.62 

PSNR Brain 64.35 

 Tumor 48.99 

 Enhancing Tumor 49.93 

 

4.4.3 Importance of the Input MR sequence for prediction 

To determine the influence of the individual MRI sequences on the prediction of the T1c image, we tested 

the trained model by iteratively replacing all voxels within a specific MR sequence with zeros.   

4.5 Results 

4.5.1 Quantitative Evaluation 

The T1c-ET model RID model was tested on 125 held out test subjects.  The T1c-ET model synthesized 

T1c images from multiparametric non-contrast MRI input (FLAIR, T1, and T2). The average PSNR, 

NMSE, and Structural Similarity index for the whole brain was 64.35, 0.03, and 0.91 (Table.7). The tumor 
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and ET regions demonstrate lower SSIM and PSNR compared to normal-appearing brain. The Dice 

coefficient for enhancing tumor on 125 validation subjects was 0.32, 0.35, and 0.62 for uncorrected (whole 

brain), corrected for the whole tumor, and corrected for ET, respectively.  In most cases, the model was 

able to synthesize T1c images with well-defined enhancing regions as shown in Fig.22 A. 

 

 

Figure 22: Synthesize T1c images. Ground truth images (left) and 

Predicted T1c.  

 

A

B

C
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4.5.2 Qualitative Evaluation 

Examples of representative cases are shown in Figure 22, and animation of real and virtual contrast 

enhancement next to each other is shown for an entire image volume (Supplemental Digital Content 1) (I 

will add a video). Comparing the predicted to the ground truth T1w images, 92.8% of the subjective rater 

scores fell within the good and excellent range. The average rating was 2.18 for enhancing and 2.14 for 

non-enhancing tumors. The intraclass correlation coefficient of the two radiologists was 0.87, indicating 

good interrater agreement (p<1e-4).  In a subset of cases, enhancing regions were not as well captured or 

missed compared to the ground truth T1c data, an example of which is shown in Figure 22C.  

4.5.3 Importance of the input MR sequences for prediction contrast enhancement 

By qualitatively examining the outputs of the models by replacing each input sequence with zeros, we were 

able to determine which sequences are important to predict individual components of the output image. The 

analysis shows that the T1w image contributes primarily to brain structural information in the predicted 

 

Figure 23: Importance of input sequences. A. Output with all inputs (T1w, FLAIR and T2w) given to the model, B. 

Output with T1 replaced with zeros in the input, C. Output with FLAIR replaced with zeros in the input, and D. 

Output with T2 replaced with zeros in the output 

T1w FLAIR T2
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output image. On the other hand, FLAIR and T2w images primarily influence the predicted contrast 

enhancement (Fig.23).  

4.6 Discussion 

We demonstrate that the proposed deep learning model was able to synthesize post-contrast T1w images 

for a majority of primary brain tumor cases using only non-contrast FLAIR, T2w, and T1w images. We 

tested model performance on a combined dataset of 125 patients scanned using different scanner vendors 

at multiple institutions.   Qualitative and quantitative evaluations of the predicted images show the robust 

performance of the proposed method for predicting tumor enhancement.  In the majority of cases, enhancing 

and non-enhancing portions of the tumors were correctly predicted. Additionally, the model improved 

image quality compared to the ground truth contrast-enhanced T1w images.  

When compared to earlier work by Gong et al. used low dose Gadolinium-enhanced T1w images to predict 

full dose T1c images, our results represent an advancement as we were able to synthesize predicted contrast-

enhanced images using only non-contrast sequences.  Kleesiek et al. developed the Bayesian network to 

predict post-contrast images using T1, T2, FLAIR, diffusion-weighted imaging (DWI), and susceptibility-

weighted imaging (SWI) as a ten channel input and demonstrated the feasibility of synthesizing post-

contrast images using non-contrast sequences.  Our results further support this approach by demonstrating 

the successful prediction of enhancement in 91.8% dataset with high ratings from evaluators that we tested. 

Moreover, we were able to achieve comparable results (and arguably superior in certain quantitative 

metrics, including PSNR and SSIM) while utilizing fewer sequences (only T1w, T2w, and FLAIR images).   

Certain advantages of our strategy included the use of a more diverse dataset through the BRATS dataset.  

While the two prior studies utilized imaging data from a single institution, BRATS incorporated data from 

multiple sites and includes imaging of varying acquisition characteristics.  While introducing more 

heterogeneity to the training dataset, this environment also enhances the generalizability of the trained 

networks.  Further, standard preprocessing applied to all the data acquired with different clinical protocols 
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and various scanners from multiple institutions make this approach useful for generalizing automated 

approaches across institutions, when differences in hardware and software can significantly alter image 

representations. 

Our qualitative analysis of the importance of input sequences revealed that the FLAIR and T2w images 

contributed complementary information in predicting ET.  This is consistent with the findings from 

Kleesiek et al., who noted that T2w images were most important to predicting contrast enhancement.  

FLAIR and T2w images are generally thought of as having greater contrast-to-noise for delineation of 

pathology compared to T1w images.  Changes related to disruption of the blood-brain barrier that leads to 

contrast enhancement may be better delineated on these sequences, including necrosis and edema.  On the 

other hand, we found that the T1w images contributed information primarily to delineating the overall brain 

structure.  T1w images are often treated as anatomic MR images for their ability to capture anatomic detail, 

including differentiating between white and grey matter.  Of note, although our algorithm utilized only 

T1w, T2w, and FLAIR images, which could reduce scan time, DWI, and lesser degree SWI  (or 

alternatively, a T2*-weighted gradient echo sequence) are standard sequences for most brain MRI 

protocols.  The incorporation of these additional sequences, particularly DWI, could also further improve 

the performance of our network. 

T1c-ET model failed to predict the Gadolinium enhancement in subjects where one or more of the input 

sequences has motion corruption and where the tumor has isointensity in both T2 sequences and FLAIR. 

The failure of the model to predict enhancement in such cases may be due to inadequate representation of 

such tumors with isoitnensity between FLAIR and T1c in the training set. Another limitation that should 

be noted is that we used only brain tumor cases for the training of the model. The current method focuses 

on large tumor lesions and predicting micro brain metastases, and extending it to other body parts needs to 

be investigated further. Expanding the training dataset to normal subjects with pre and post-contrast 

imaging could enhance model performance. The current study should be regarded as a clinical feasibility 

study, and it is not ready for clinical utility.  Further studies with larger subjects and different pathologies 
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should be performed to assess the clinical utility post-contrast synthesize.  Perhaps adding low contrast low 

dose gadolinium contrast along with informative T1w, T2W and FLAIR contrast may increase the 

efficiency of Gadolinium enhancement model to the clinically applicable methodology.  

4.7 Conclusion 

We proposed a novel deep learning architecture to synthesize post-contrast enhancement using only non-

contrast multiparametric MRI input data. The model demonstrated very good quantitative and qualitative 

performance in a substantially larger and heterogeneous testing data and showed that the prediction of 

gadolinium enhancement might be feasible in the near future. FLAIR and T2w images are found to have 

complementary information in predicting Gadolinium enhancement by performing feature analysis. Further 

studies in larger patient collectives with varying neurological diseases are needed to assess the clinical 

practicability of this novel approach. 
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5 Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation 

  

Published: Murugesan, Gowtham Krishnan, et al. "Multidimensional and Multiresolution 

Ensemble Networks for Brain Tumor Segmentation." International MICCAI Brainlesion 

Workshop. Springer, Cham, 2019. [121] 

Authors: Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang 

F. Yu, Baowei Fei, Ph.D., Ananth J. Madhuranthakam, Joseph A. Maldjian 

Author contributions: Gowtham Krishnan Murugesan and Sahil Nalawade designed the work, 

analyzed and interpreted the data, and wrote the paper. Dr. Joseph Maldjian, Dr. Ananth 

Madhuranthakam, Dr. Baowei Fei, and Dr. Fang F Yu, provided expert knowledge and mentorship 

to develop the method. Ben Wagner contributed in developing MRI analysis. Chandan Ganesh 

contributed to review the paper 

This paper is published in International MICCAI Brainlesion Workshop by Springer and 

reproduced in this chapter with permission. 

  



 

98 

 

5.1 Abstract.  

In this work, we developed multiple 2D and 3D segmentation models with multiresolution input to 

segment brain tumor components and then ensembled them to obtain robust segmentation maps. 

Ensembling reduced overfitting and resulted in a more generalized model. Multiparametric MR images of 

335 subjects from the BRATS 2019 challenge were used for training the models. Further, we tested a 

classical machine learning algorithm with features extracted from the segmentation maps to classify 

subject survival range. Preliminary results on the BRATS 2019 validation dataset demonstrated excellent 

performance with DICE scores of 0.898, 0.784, 0.779 for the whole tumor (WT), tumor core (TC), and 

enhancing tumor (ET), respectively and an accuracy of 34.5% for predicting survival.  The Ensemble of 

multiresolution 2D networks achieved 88.75%, 83.28% and 79.34% dice for WT, TC, and ET 

respectively in a test dataset of 166 subjects  

Keywords: Residual Inception Dense Networks, Densenet-169, Squeezenet, Survival Prediction, brain 

tumor segmentation  
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5.2 Introduction: 

Brain Tumors account for 85-90% of all primary CNS tumors. The most common primary brain tumors 

are gliomas, which are further classified into a high grade (HGG) and low grade gliomas (LGG) based on 

their histologic features. Magnetic Resonance Imaging (MRI) is a widely used modality in the diagnosis 

and clinical treatment of gliomas. Despite being a standard imaging modality for tumor delineation and 

treatment planning, brain tumor segmentation on MR images remains a challenging task due to the high 

variation in tumor shape, size, location, and particularly the subtle intensity changes relative to the 

surrounding normal brain tissue. Consequently, manual tumor contouring is performed, which is both 

time-consuming and subject to large inter- and intra-observer variability.  Semi- or fully-automated brain 

tumor segmentation methods could circumvent this variability for better patient management [122, 123]. 

As a result, developing automated, semi-automated, and interactive segmentation methods for brain 

tumors has important clinical implications, but remains highly challenging. Efficient deep learning 

algorithms to segment brain tumors into their subcomponents may help in early clinical diagnosis, 

treatment planning, and follow-up of patients [124].  

 

The multimodal Brain Tumor Segmentation Benchmark (BRATS) dataset provided a comprehensive 

platform by outsourcing a unique brain tumor dataset with known ground truth segmentations performed 

manually by experts [8]. Several advanced deep learning algorithms were developed on this unique platform 

provided by BRATS and benchmarked against standard datasets allowing comparisons between them. 

Convolutional Neural Networks (CNN)-based methods have shown advantages for learning the hierarchy 

of complex features and have performed the best in recent BRATS challenges. U-net [125] based network 

architectures have been used for segmenting complex brain tumor structures. Pereira et al. developed a 2D 

CNN method with two CNN architectures for HGG and LGG separately and combined the outputs in the 

post-processing steps [126]. Havaei et al. developed a multi-resolution cascaded CNN architecture with 

two pathways, each of which takes different 2D patch sizes with four MR sequences as channels [127]. The 
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BRATS 2018 top performer developed a 3D decoder encoder style CNN architecture with inter-level skip 

connections to segment the tumor [128]. In addition to the decoder part, a Variation Autoencoder (VAE) 

was included to add reconstruction loss to the model.  

 

In this study, we propose to ensemble output from Multiresolution and Multidimensional models to obtain 

robust tumor segmentations. We utilized off-the-shelf model architectures (DensNET-169, SERESNEXT-

101, and SENet-154) to perform segmentation using 2D inputs. We also implemented a 2D and 3D Residual 

Inception Densenet (RID) network to perform tumor segmentation with patch-based inputs (64x64 and 

64x64x64).  The outputs from the model trained on different resolutions and dimensions were combined to 

eliminate false positives and post-processed using cluster analysis to obtain the final outputs.  

 

5.3 Materials and Methods: 

5.3.1 Data and Preprocessing 

The BRATS 2019 dataset included a total of 335 multi-institutional subjects [111, 112, 129-131], consisting 

of 259 HGGs and 76 LGGs. The standard preprocessing steps by the BRATS organizers on all MR images 

included co-registration to an anatomical template [113], resampling to isotropic resolution (1×1×1 mm3), 

and skull-stripping [114]. Additional preprocessing steps included N4 bias field correction [115] for 

removing RF inhomogeneity and normalizing the multi-parametric MR images to zero mean and unit 

variance. 

 

The purpose of the survival prediction task is to predict the overall survival of the patient based on the 

multiparametric pre-operative MR imaging features in combination with the segmented tumor masks. 

Survival prediction based on only imaging-based features (with age and resection status) is a difficult task.  
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Additional information such as histopathology, genomic information, radiotracer based imaging, and other 

non-MR imaging features can be used to improve the overall survival prediction. Pooya et.. al. [132] 

reported better accuracy by combining genomic information and histopathological images to form a 

genomic survival convolutional neural network architecture (GSCNN model). Several studies have reported 

predicting overall survival for cerebral gliomas using 11C-acetate and 18F-FDG PET/CT scans [133-135].  

Figure 24: A. Ensemble of Segmentation models (DenseNET-169, SERESNEXT-101 and SENet-154). B. Ensemble methodology 

used to combine the outputs from Segmentation Models to produce output segmentation maps 

 

5.3.2 Network Architecture 

We trained several models to segment tumor components. All network architectures used for the 

segmentation task, except Residual Inception dense Network, were imported using Segmentation models, 

a python package [136]. The models selected for brain tumor segmentation had different backbones 

(DenseNet-169 [137], SERESNEXT-101 [138] and SENet-154 [139] ). The DenseNet architecture has 

shown promising results in medical data classification and image segmentation tasks [140-142]. The 

DenseNet model has advantages in feature propagation from one dense block to the next and overcomes 

the problem of the vanishing gradient [137]. The squeeze and excitation block was designed to improve the 

feature propagation by enhancing the interdependencies between features for the classification task. This 

helps in propagating more useful features to the next block and suppressing less informative features. This 

network architecture was the top performer at the ILSVC 2017 classification challenge. SENet-154 and SE-
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ResNeXt-101 have more parameters and is computationally expensive but has shown good results on the 

ImageNet classification tasks [139]. Three of the proposed models were ensembled to obtain the final 

results. All of these models from the Segmentation Models package were trained with 2D axial slices of 

size 240×240 (Fig. 24). 

 

The Residual Inception Dense Network (RID) was first proposed and developed by Khened et al. for cardiac 

segmentation. We incorporated our implementation of the RID network in Keras with a Tensorflow 

backend (Figure 25). In the DenseNet architecture, the GPU memory footprint increases with the number 

of feature maps of larger spatial resolution. The skip connections from the down-sampling path to the up-

sampling path use element-wise addition in this model, instead of the concatenation operation in DenseNet, 

to mitigate feature map explosion in the up-sampling path. For the skip connections, a projection operation 

was performed using Batch Normalization (BN)-1 × 1-convolution-dropout to match the dimensions for 

element-wise addition (Figure 26). These additions to the Densenet architecture help in reducing the 

parameters and the GPU memory footprint without affecting the quality of segmentation output. In addition 

to performing dimension reduction, the projection operation facilitates learning interactions of cross 

channel information [116] and faster convergence. Further, the initial layer of the RID networks includes 

parallel CNN branches similar to the inception module with multiple kernels of varying receptive fields. 

The inception module helps in capturing view-point dependent object variability and learning relations 

between image structures at multiple-scales. 

 

5.3.3 Model Training and Ensemble Methodology.  

All models from the Segmentation models package were trained with full resolution axial slices of size 

240x240 as input to segment the tumor subcomponents separately. The outputs of each component from 

the models were combined following post-processing steps that included removing clusters of smaller size 
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to reduce false positives. Each tumor component was then combined to form the segmentation map (Figure 

24B). 

 

The RID model was trained on 2D input patches of size 64x64. For each component of the brain tumor 

(e.g., Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET)), we trained a separate RID 

model with axial as well as sagittal slices as input. In addition to the six RID models, we also trained a 

RID with axial slices as input with a patch size of 64x64 to segment TC and Edema simultaneously (TC-

ED). A three-dimensional RID network model was also trained to segment ET and a multiclass TC-ED 

(TC-ED-3D). All models were trained with dice loss and Adam optimizers with a learning rate of 0.001 

using NVIDIA Tesla P40 GPU’s.  

 

5.3.4 Ensemble Methodology.  

 

The DenseNET-169, SERESNEXT-101, and SENet-154 model outputs were first combined to form 

segmentation maps, as shown in Figure 24B, which we will refer to as the Segmentation model output. 

Then, for each component, we combined outputs from the RID models and Segmentation models, as 

shown in Figure 26.  
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Figure 25: Residual Inception Densenet Architecture 

 

 

Figure 26: Building Blocks of Residual Inception Network. From left to right, dense block, convolution block, transition block and 

projection block 

5.3.5 Survival Prediction.  
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The tumor segmentation maps extracted from the above methodology was used to extract texture and 

wavelet based features using the PyRadiomics [143] and Pywavelets [144] packages from each tumor 

subcomponent for each contrast. In addition, we also added volume and surface area features of each 

tumor component [145], along with age.  We performed feature selection based on SelectKBest features 

using the sklearn package [146, 147], which resulted in a reduced set of 25 features. We trained four 

different models, including XGBoost (XGB), K-Nearest Neighbour (KNN), Extremely randomized trees 

(ET), and Linear Regression (LR) models [148] for the survival classification task. An ensemble of the 

four different models was used to form a voting classifier to predict survival in days.  These predictions 

for each subject were then separated into low (<300 days), medium (300-450 days), and long survivors 

(>450 days). Twenty-nine subjects from the validation dataset were used to validate the trained model. 

 

 

Figure 27: An ensemble of multidimensional and multiresolution networks. Top to bottom, the ensemble for the Whole Tumor (WT), 

Tumor Core (TC), and Enhancing Tumor (ET), respectively. 
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5.4 Results 

5.4.1 Segmentation 

The Ensemble of multiresolution 2D networks achieved 89.79%, 78.43% and 77.97% dice for WT, TC, 

and ET respectively in the validation dataset of 125 subjects (Table 8, Fig. 27) and 88.75%, 83.28% and 

79.34% dice for WT, TC, and ET respectively in the test dataset of 166 subjects (Table 9). 

 

Table 8. Validation Segmentation Results for Multiresolution 2D ensemble model and multidimensional 

multiresolution ensemble model 

 

Table 9. Testing Segmentation Results for the Multidimensional and Multiresolution ensemble model 

 

5.4.2 Survival Prediction 

Accuracy and mean square error for overall survival prediction for the 29 subjects using a Voting 

Classifier were 51.7 % and 117923.1, respectively (Table 10). In testing, the proposed method achieved 

41.1% accuracy. 

 

Table 10. Validation Survival results for the Voting Classifier network. 
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5.4.3 Discussion 

We ensemble several models with multiresolution inputs to segment brain tumors. The RID network was 

parameter and memory efficient, and able to converge in as few as three epochs. This allowed us to train 

several models for ensemble in a short amount of time. The proposed methodology of combining 

multidimensional models improved performance and achieved excellent segmentation results, as shown in 

Table 8. For survival prediction, we extracted numerous features based on texture, first-order statistics, 
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and wavelets. Efficient model based feature selection allowed us to reduce the otherwise large feature set 

to 25 features per subject. We trained several classical machine learning models and then combined them 

to improve results on the validation dataset.  

 

 

 

Figure 28:. Example Tumor Segmentation Performance for 3 subjects shown 

in each row. (a) T1-post contrast (T1C), (b) Segmentation output, (c) 

Overlay of segmentation output on the T1-post contrast images. Colors: 

Blue = Non-enhancing tumor + Necrosis, Red = Enhancing Tumor, and 

Green = Edema 
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5.5 Conclusion 

We demonstrated a two-dimensional multiresolution ensemble network for automated brain tumor 

segmentation to generate robust segmentation of tumor subcomponents. We also predicted the overall 

survival based on the segmented mask using an xgboost model. These may assist in diagnosis, treatment 

planning, and therapy response monitoring of brain tumor patients with more objective and reproducible 

measures. 
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6.1 Abstract  

Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and 

therapy. We propose a novel automated pipeline for predicting IDH status noninvasively using 

deep learning and T2-weighted (T2w) MR images with minimal preprocessing (N4 bias correction 

and normalization to zero mean and unit variance). T2w MRI and genomic data were obtained 

from The Cancer Imaging Archive dataset (TCIA) for 260 subjects (120 High grade and 140 Low 

grade gliomas). A fully automated 2D densely connected model was trained to classify IDH 

mutation status on 208 subjects and tested on another held-out set of 52 subjects, using 5-fold cross 

validation.  Data leakage was avoided by ensuring subject separation during the slice-wise 

randomization. Mean classification accuracy of 90.5% was achieved for each axial slice in 

predicting the three classes of no tumor, IDH mutated and IDH wild-type. Test accuracy of 83.8% 

was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52 

subjects. We demonstrate a deep learning method to predict IDH mutation status using T2w MRI 

alone. Radiologic imaging studies using deep learning methods must address data leakage (subject 

duplication) in the randomization process to avoid upward bias in the reported classification 

accuracy.  

Keywords: Isocitrate dehydrogenase (IDH), MRI, Convolutional networks, Deep learning, Tumor 

classification, Radiomics 
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6.2 Introduction 

In 2008 it was reported that some glioblastomas harbor a mutation in a gene coding for the citric 

acid cycle enzyme isocitrate dehydrogenase (IDH) [150].  Subsequent studies revealed that the 

majority of low grade gliomas possess a mutant form of IDH, and that the mutant enzyme catalyzes 

the production of the oncometabolite 2-hydroxyglutarate (2-HG) [151].  Although this product of 

the mutant form of IDH is believed to play a role in the initiation of the neoplastic process, it has 

been observed that gliomas that contain the mutant enzyme have a better prognosis than tumors of 

the same grade that contain only the wild type IDH.  This observation implies that IDH mutated 

and IDH wild type gliomas are biologically different tumors, and led the World Health 

Organization (WHO) to designate them as such in the latest revision of their classification of 

gliomas [152]. Although a presumptive diagnosis of an IDH mutated glioma may be made on the 

basis of MR spectroscopy for 2-HG [153-156], at the present time, the only way to definitively 

identify an IDH mutated glioma is to perform immunohistochemistry or gene sequencing on a 

tissue specimen, acquired through biopsy or surgery. Because the differences between IDH 

mutated and IDH wild type gliomas may have implications for their treatment, especially if 

inhibitors of the mutant IDH enzyme currently in development prove to halt their growth, there is 

interest in attempting to distinguish between these two tumor types prior to surgery.  As noted 

above, one avenue of research involves using MR spectroscopy to measure levels of 2-HG in the 

tumor [154, 157-159].  More recent studies have attempted to utilize machine learning techniques 

to analyze diagnostic MR images and predict IDH mutation status in gliomas using anatomic 

differences between the two tumor types.   

 



 

115 

 

Delfanti et al. demonstrated that genomic information with fluid attenuated inversion recovery 

(FLAIR) MRI could be used for the classification of patient images into IDH wild type, and IDH 

mutation with and without 1p/19q co-deletion [160]. The main determinants for classification were 

tumor border and location, with IDH mutant tumors having well-defined or slightly ill-defined 

borders and predominantly a frontal localization; and IDH wild type tumors demonstrating 

undefined borders and location in non-frontal areas. Chang et al. developed a deep learning 

residual network model for predicting IDH mutation with preprocessing steps including 

resampling, co-registration of multiple sequences, bias correction, normalization and tumor 

segmentation [161].  Using a combination of imaging and age, the model demonstrated testing 

accuracy of 89.1% and an area under the curve (AUC) value of 0.95 for IDH mutation for all image 

sequences combined. Zhang et al. used 103 low grade glioma (LGG) subjects for training a support 

vector machine (SVM) for classifying IDH mutation status, achieving an AUC of 0.83 on testing 

data [162].  In another approach, Chang et al [163] similarly demonstrated that IDH mutation status 

can be determined using T2-weighted (T2w), T2w- Fluid attenuated inversion recovery (FLAIR) 

and T1-weighted pre- and post-contrast images. Preprocessing steps in their work included co-

registration of all sequences, intensity normalization using zero mean and unit variance, 

application of a 3D convolutional neural network (CNN) based whole tumor segmentation tool for 

segmenting the lesion margins, cropping the output tumor mask on all input imaging sequences, 

and resizing individual image slices to 32 x 32 with 4 input sequence channels. The mean accuracy 

result from the model was 94% with a 5-fold cross validation accuracy ranging from 90% to 96% 

[163]. Common to all of these previous methods is the involvement of preprocessing steps, 

typically including some form of brain tumor pre-segmentation or region of interest extraction, 
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and utilizing multiparametric or 3D near-isotropic MRI data that is often not part of the standard 

clinical imaging protocol [161, 163].    

 

In this work, we propose a fully automated deep learning based pipeline using a densely connected 

network model, that involves minimal preprocessing and requires only standard T2w images. A 

similar approach has been previously used for the identification of the O6 – methylguanine-DNA 

methyltransferase (MGMT) methylation status and prediction of 1p/19q chromosomal arm 

deletion [164]. Clinical T2-weighted images are acquired in a short time frame (typically around 

2 minutes), and are robust to motion with current acquisition methods.  Almost universally, high 

quality T2-weighted images are acquired during clinical brain tumor work-ups. The preprocessing 

steps preserve the original image information without the need for any resampling, skull stripping, 

region-of-interest, or tumor pre-segmentation procedures. The advantage of a dense network 

model is that it passes the weights from all the previous blocks to the subsequent blocks, preserving 

the information from the initial layer and aiding in the classification.   

 

The ability to quickly and accurately classify IDH status non-invasively can help with better 

planning, counseling, and treatment of brain tumor patients, especially in cases where biopsy is 

not feasible due to unfavorable tumor locations.  A methodologic contribution that we make 

specifically to the radiologic deep learning literature is on the approach to data randomization for 

2D models. Furthermore, the deep learning approach is fully automated and can be easily 

implemented in the clinical workflow using only T2-weighted MR images. 

 

6.3 Materials and Methods 
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6.3.1 Subjects 

260 subjects from The Cancer Imaging Archive (TCIA) [165] dataset were selected, including 120 

high grade gliomas (HGG) [166] and 140 low grade gliomas (LGG) [167], and based on their pre-

operative status from a pool of 461 subjects.  The genomic information was provided through the 

National Cancer Institute - Genomic Data Commons (GDC) Data Portal [168]. The genomic data 

was available in the following 3 classes: IDH mutated, IDH wild type, and Not Available (N/A). 

The Genomic data of the N/A type was excluded from the pool of 461 subjects. MRI data was 

filtered for any visible artifacts in the images. The final dataset consisted of 260 subjects based on 

the available genomic information, MRI data, pre-operative status and lack of image artifacts on 

the T2w images.  

 

A standard 80:20 data split was employed with 80% training and 20% testing (held-out).  The 80% 

training was further split into a standard 80:20 split of 80% training and 20% validation.  The final 

dataset of 260 subjects was thus randomly divided into a training set (208 subjects, including 

approximately 96 HGG and 112 LGG) and a test set (52 subjects, including approximately 24 

HGG and 28 LGG). This process was repeated separately for each fold during the 5-fold cross 

validation.  

 

For each fold of the cross-validation, 208 subjects with, on average, 9,728 axial slices of T2w 

images were selected for training and validation (7177 slices – No tumor, 1110 slices – IDH 

mutated, 1441 slices– IDH wild type). The start and end slices of the tumor (edge slices) were 

manually labeled for each T2 dataset. These edge slices were excluded from training to provide 

more robust ground truth data. All slices were included for the testing set. Each T2w slice was 
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manually assigned only one label (No Tumor, IDH mutated, or IDH wild type). In order to address 

any class imbalance due to the higher number of no tumor slices, class weights were assigned 

based on the labels in the training dataset.  Although this was a slice-wise training model, slices of 

subjects in the testing set were not mixed into the training set. This is a critical step related to the 

data leakage problem in 2D networks, especially for radiologic deep learning studies [169, 170]. 

This was necessary to avoid bias during testing and an over inflation of the measured accuracies.  

Fifty two subjects with 2522 axial slices (1839 slices– No Tumor, 299 slices– IDH mutated, 384 

slices– IDH wild type) were not included in the training or validation and were used for testing, 

for each fold.  Classification was done on a slice-wise basis (2D) followed by majority voting 

across all slices to provide a patient-level classification. Note that we use the term slice-wise to 

refer to classification of each 2D axial image for IDH status. Similarly, the term subject-wise is 

used for classification of IDH status for each subject. We used a straightforward majority voting 

scheme to determine subject-wise classification based on the majority IDH classification of the 

individual 2D slices. Subjects classified with an equal number of IDH mutated and IDH wild-type 

tumor slices were assigned to the IDH wild type group. 

 

6.3.2 Image Processing 

Minimal standard preprocessing of the T2w images from the TCIA data set was performed prior 

to training (Figure 29). The images were converted from DICOM to nifti format using dcm2nii, 

bias corrected to remove RF inhomogeneity using the N4 bias correction algorithm, zero-mean 

intensity normalized to between -1 and 1, and resampled to 128 x 128 image dimensions to 

improve the computational efficiency during training.  The Inception V4 model however, required 
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input image size of 299 x 299 as a design constraint of this model when originally constructed 

[171, 172].  The total preprocessing time for each subject was less than 1 minute.   

 

 

 

 

 

 

 

 

6.3.3 Model Training 

The following models were used for classification of the T2w images into IDH mutated and IDH 

wild type classes: residual network (ResNet-50), Densely connected network (DenseNet-161), 

and Inception-v4. Our choice of network architectures was based on the best performers from the 

ImageNet challenge for 2015 (ResNET), and 2017 (DenseNet and Inception V4).  The DenseNet 

model, designed by Huang et al [173] received the best paper award at CVPR 2017.   The models 

were trained with the Pycharm and Python IDEs using the Keras python package with 

TensorFlow backend engines. Fine tuning of the 3 classes was performed on all models. The 

three-class labels for each slice were: no tumor, IDH mutated, and IDH wild type. The models 

were originally trained on ImageNet data with 3 channels (RGB).  For our implementation the 3-

channel input was provided as a central slice with the 2 immediate surrounding slices. If the 

central slice was the first or last slice, the surrounding slices were assigned as no value. 

 

 Figure 29: Flowchart of preprocessing steps prior to training the deep learning 

model 
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6.3.4 ResNet-50 Model 

The residual network was implemented as proposed by He et al. [174]. Each residual connection 

adds the input of the block to the output, helping to preserve the information from the previous 

block.  A deep residual network framework was added to the model while maintaining parameter 

numbers to address issues with convergence in the originally proposed model. The residual net 

used the kernel initializer as ‘He normal’ for weight initialization. On top of the residual network 

model, a flattened output was added and sent to the dense layer with the rectified linear unit 

(‘relu’) activation and a dropout of 0.5. The final layer of the model was the classification layer 

with a softmax activation and the number of classes as the output. The residual network model 

used for training was ResNet-50 (Figure 30). 

 

6.3.5 Inception-v4 Model 

The Inception model architecture was designed by the Google Research team [171, 172]. The 

Inception-v4 model is a deep architecture with 41 million parameters and the model is designed 

Figure 30: Architecture of ResNet-50 (50 

layers) Model used for IDH classification 
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with inception blocks and reduction blocks. The inception blocks are used in a sequential manner 

with reduction blocks except for the last inception block, which has an average pooling layer and 

a dropout layer before the classification layer.  

6.3.6 DenseNet-161 Model 

The DenseNet model was based on the design by Huang et al. [173]. This model was inspired by 

the residual network model, which allows the residual connections to pass information from the 

previous layer to the subsequent layer. Dense networks have advantages over other networks by 

alleviating the vanishing gradient problem with feature propagation through the dense 

connection to the subsequent layers.  

The features passed to the subsequent layers in the DenseNet model are not added by summation, 

but are combined using concatenation.  Each block has connections from the previous block such 

that L=number of blocks and the number of connections for each block is L×(L+1)/2, creating a 

dense connectivity pattern or DenseNet. The DenseNet-161 model architecture is shown in 

Figure 31, which illustrates a 5 block approach where the 1st block is the Input layer and each of 

the subsequent 4 blocks are characterized by 2D convolution layers with filter size of (1 x 1) and 

(3 x 3) respectively. The pre-trained model was used to transfer learning and used for 

classification based on the trained information. A 161 layer DenseNet model was used for model 

training. 
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6.3.7 Training, Testing and Statistical Analysis 

Model training was performed on a Nvidia Tesla P100, P40, K40/K80 GPU with 384 GB RAM 

and the model accuracy was assessed for 200 Epochs. The optimizer used for training was the 

Stochastic Gradient Descent [175] as described in Zhang et al.[176] and the learning rate was set 

to 10-5, with a decay of 10-7 and momentum of 0.8.  Data augmentation was performed on the 

training dataset, which included vertical and horizontal flip, random rotation, translation, shear, 

zoom shifts and elastic transformation to minimize overfitting the data. The results were analyzed 

by assessing accuracy, precision, sensitivity, specificity, and F-1 score values.  Figure 32 shows 

the confusion matrix and the equations for calculating the testing parameters. Slice-wise model 

testing was performed based on the output from the 2D model. Subject-wise classification was 

performed based on majority voting across IDH mutated and IDH wild type tumor slices. This 

classification accuracy was computed on the independent test dataset that was separate from the 

testing and validation data sets.  

 

 

Figure 31: Architecture of DenseNet-161 

(161-layers) Model used for IDH 

classification 
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6.3.8 Model training times 

The DensetNet-161 model took approximately 110 hours for training, while the ResNet-50 model 

and the Inception V4 model took approximately 56 hours and 32 hours, respectively.  Testing time 

for individual subject classification was less than 30 seconds for all models. 

 

6.4 Results 

6.4.1 Training, validation, and testing accuracy 

Table 11 shows the accuracy comparison between the ResNet-50, DenseNet-161 and Inception-

v4 models.  The DenseNet-161 model was superior in training, validation, and testing accuracy 

compared to ResNet-50 and Inception-v4. Averaged across the five folds, the slice-wise accuracy 

of the DenseNet-161 model was 90.5 ±1.0% (standard deviation) with an AUC of 0.95 on the held 

out test dataset of 52 subjects.  

 

 

Figure 32: Confusion Matrix and equations for 

calculating accuracy, precision, sensitivity, 

specificity, and F1-score 
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Table 11: Slice-wise accuracy comparisons between the Resnet-50, Inception-v4, and DenseNet-161 model 

averaged for 5 fold cross validation 

 

6.4.2 Accuracy, Precision, Recall/Sensitivity, Specificity, F1 score and AUC Comparison 

Average metrics were computed across folds and classes. The classification accuracy, precision, 

recall/sensitivity, specificity, F1 score and AUC for slice-wise IDH classification with the 

DenseNet-161 model were 90.5 ±1.0%, 79.9 ±3.4%, 83.1 ±3.2%, 94.8 ±0.5%, 81.3 ±3.2% and 

0.95, respectively.  For subject-wise IDH classification, accuracy, precision/positive predictive 

value, recall/sensitivity, specificity, F1 score and AUC were 84.1 ±2.9%, 83.5 ±3.5%, 83.5 ±3.5%, 

83.5 ±3.1%, and 0.84 (Table 12). Slice-wise and subject-wise comparisons of accuracy, precision, 

recall/sensitivity, specificity, F1 score and AUC for each of the 5 fold cross validations for the 

DenseNet-161 model are shown in Table 13. 

Results averaged for 5 fold cross validation  

Model 
Training 

accuracy (%) 
Validation 

accuracy (%) 
 Testing accuracy 

(%) 

Inception-v4 64.8 72.2 1916/2522 (76.1) 

ResNet-50  97.9 96.5 2265/2522 (89.7) 

DenseNet-161 97.9 96.4 2282/2522 (90.5) 
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Table 12: Slice-wise and subject-wise comparison of accuracy, precision, recall, F1-score and AUC parameters 

between the Resnet-50, Inception-v4, and DenseNet-161 model averaged for 5 fold cross validation 

 

Table 13: Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score and AUC parameters for 

each of the fivefold cross validation for the DenseNet-161 model 

 

 

Results averaged for 5 fold cross validation 

Parameters 
Accuracy 

(%) 
Precision 

(%) 
Recall / 

Sensitivity (%) 
Specificity 

(%) 
F1 score 

(%) 
AUC 

Slice wise 

Inception-v4 76.1 59.4 59.2 84.5 58.2 0.86 

ResNet-50 89.7 79.3 81.7 94.1 80.2 0.95 

DenseNet-161 90.5 79.9 83.1 94.8 81.3 0.95 

Subject wise 

Inception-v4 64.2 65.8 65.1 65.1 64.0 0.65 

ResNet-50 81.4 81.5 81.5 81.5 81.4 0.81 

DenseNet-161 83.8 84.1 83.5 83.5 83.5 0.84 

 

DenseNet-161 model  

Fold 
Accuracy 

(%) 
Precision 

(%) 
Recall / 

Sensitivity (%) 
Specificity 

(%) 
F1 score 

(%) 
AUC 

Slice wise 
1 91.7 83.3 86.0 94.9 84.4 0.95 

2 91.0 82.7 84.4 95.1 83.5 0.95 

3 90.1 79.3 81.5 94.5 80.2 0.95 

4 88.7 73.7 77.6 93.9 75.5 0.91 

5 90.9 80.3 86.0 95.4 82.8 0.95 

Subject wise 

1 84.6 84.8 84.0 84.0 84.2 0.84 

2 86.5 87.2 87.5 87.5 86.5 0.87 

3 78.8 79.1 77.9 77.9 78.2 0.78 

4 82.7 83.1 81.8 81.8 82.2 0.82 

5 86.5 86.3 86.6 86.6 86.4 0.87 
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6.4.3 Slice-wise comparison:  

 

The precision for the DenseNet-161 model across 5 fold cross validation was 97.7 ±0.5% for the 

“no tumor” classification, 71.7 ±6.8% for IDH mutation, and 70.3 ±5.5% for IDH wild type. 

6.4.4 Subject-wise comparison: 

For the DenseNet-161 model, the sensitivity and specificity for subject-wise IDH mutation 

classification was 80.9 ±9.4% and 86.2 ±3.8%, respectively. The positive and negative predictive 

values were 82.5 ±2.8% and 85.7 ±6.3%, respectively.  

 

6.5 Discussion 

The results from Tables 11 and 12 show that the ResNet-50 model performed better than the 

Inception-v4 model. The ResNet-50 architecture has residual connections which preserve 

information from the previous layer in the residual block. The DenseNet-161 model performed the 

best of all the three models tested.  Unlike the ResNet-50 model, the DenseNet-161 model 

architecture carries the information from all previous layers and adds the information to the next 

layer. This helped in learning the information from different layers and transferring to the next 

layers. The slice-wise classification AUC results were 0.95 for DenseNet-161, 0.95 for ResNet-

50, and 0.86 for Inception-v4.  

 

Chang et al. [163] demonstrated a high classification accuracy for IDH mutation status using T2w, 

FLAIR, T1w pre- and post-contrast images.  Preprocessing steps included coregistration across 

multiple sequences, intensity normalization to zero mean and unit variance, segmentation of the 

brain tumor and cropping the images and resizing slices to 32 x 32. A 94% mean accuracy on 5-
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fold cross validation was reported.  The approach to classification was slice-wise, similar to our 

model.  In designing the slice-wise classification model, it is important to ensure that none of the 

slices of subjects from the testing set are inadvertently included in the training set.  This can easily 

be overlooked in 2D slice-wise models during the slice randomization process that generate the 

training slices, validation slices, and testing slices.   This can introduce bias in the testing phase 

artificially boosting accuracies by including slices from subjects in the training set that share 

considerable information with different slices but from the same subjects in the testing set.  It is 

not clear in the previously reported 2D models whether this caveat was adhered to. 

An important methodologic contribution that we make specifically to the radiologic deep learning 

literature is on the approach to data randomization for 2D models.  It is critical that imaging 

researchers are aware of the data leakage and subject duplication issue.  This is perhaps unique to 

radiology where multiple slices of pathology are acquired in MRI or CT, with considerable overlap 

in feature content from slice to slice.  Widely used deep learning tools provide the ability to 

perform data randomization using a simple flag in the called routine (e.g., in Keras, or Scikit-

learn[146]).  Use of this flag in 2D imaging based CNNs can lead to bias in the results by 

inadvertently including slices from the same subject in both training and testing cohorts. This is a 

significant concern, as it can lead to data leakage in which examples of the same subject (albeit 

different slices of the same tumor) can appear in the training set and the test set.  The problem of 

data leakage in medical images was discussed by Wegmayr et. al. [177] and Feng et. al.[169] and 

has been referred to as subject duplication in training and testing sets.    In our initial studies, we 

did not account for the data leakage problem and achieved accuracies of 95% with the T2 images 

alone, slightly higher than that of Chang et al [163].  When appropriately accounting for the data 

leakage issue, our accuracies were reduced to the 83.8% reported here.  One of the major 
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contributions of our work is in making the radiology community aware of the data leakage 

problem, as it is very easy to overlook when 2D networks are considered that use image slices as 

input. 

The majority of HGG tumors are IDH wild type (up to 90%).  An algorithm that merely 

distinguishes between HGG and LGG for determination of IDH status is likely of limited value as 

this can be done subjectively with fairly high accuracy on the basis of contrast enhancement.  For 

example, previous studies that used multiparametric MR data for determination of IDH status in 

HGG and LGG may have demonstrated high accuracy predominantly on the basis of contrast 

enhancement features.  The more valuable distinction from a clinical standpoint would be between 

IDH mutated and IDH wild type low grade gliomas in which contrast enhancement is usually 

absent. Our training and testing samples were weighted towards LGG, and there were a 

significant number of IDH wild type LGG in both the training and validation sample (~ 30%).  Our 

testing accuracy for the LGG group was 78.6%.  Additionally, our use of T2w-only images 

eliminates the potential for the algorithm being a contrast-enhancement discriminator. 

 

 Our method provides high accuracy with minimal preprocessing steps as compared to previous 

work. The preprocessing steps in our work only involve N4 bias field correction and intensity 

normalization. Our method also involves no tumor segmentation or ROI extraction as described in 

Chang et al.[161] , which helps in reducing the time, effort and potential sources of error. Our 

method also does not require pre-engineered features to be extracted from the images or 

histopathological data as described in Delfanti et al. [160]. This general approach can be easily 

incorporated into an automated clinical workflow for IDH classification. The minimal 
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preprocessing, and the use of standard T2w images alone makes it promising as a robust clinical 

tool for noninvasively determining IDH mutation status.  

 

Limitations 

This is a retrospective study applying several neural network architectures to the TCIA HGG-LGG 

database to generate a model predicting IDH genotype based only on T2-weighted MR imaging.  

The data set, especially at the subject level, is small in terms of deep learning applications and may 

not generalize well. Fluctuation of performance is also a concern with small data sets. However, 

the TCIA dataset is the largest curated brain tumor dataset publicly available, and it uses data from 

multiple sites using different imaging protocols.   This database consisted of data from 10 different 

institutions out of which 8 institutions contributed GBM/HGG datasets and 5 institutions 

contributed LGG datasets to the TCIA cohort. This provided a very heterogeneous dataset, and we 

believe this is perhaps even better than using data from a single source for deep learning 

applications.   While our current study focused on the classification of T2w images into no tumor, 

IDH mutated, an IDH wild type, future studies can extend this approach to classify IDH1 and IDH2 

subtypes. Accuracies may be further improved with the inclusion of multiparametric imaging data 

in the training model.  Our approach, however, is much more straightforward using T2-weighted 

images alone without the requirement of additional imaging sequences.  Clinically, T2-weighted 

images are typically acquired within 2 minutes, and are robust to patient motion.  The multi-

sequence input required by previous approaches can be compromised due to patient motion from 

lengthier examination times, and the need for gadolinium contrast, especially as the post-contrast 

images are typically acquired at the end of an already lengthy examination time.  For a potential 
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clinical solution, the use of T2-weighted images is a significant strength, as these images are almost 

uniformly acquired without artifacts from patient motion. 

 

6.6 Conclusion 

We demonstrate a deep learning method to predict IDH mutation status using T2-weighted MR 

images alone. The proposed model requires minimal preprocessing to obtain high accuracies, 

without the need for tumor segmentation or extraction of regions of interest, making it promising 

for robust clinical implementation. 

 

Disclosures 

No conflicts of interest 

Acknowledgments 

Support for this research was provided by NCI U01CA207091 (AJM, JAM). 

  



 

131 

 

6.7 References 

[1] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, "Machine learning for medical imaging," Radiographics, vol. 37, no. 2, pp. 505-

515, 2017. 
[2] M. Kim et al., "Deep Learning in Medical Imaging," Neurospine, vol. 17, no. 2, pp. 471-472, Jun 2020. 

[3] J. Sui, M. Liu, J. H. Lee, J. Zhang, and V. Calhoun, "Deep learning methods and applications in neuroimaging," J Neurosci Methods, 

vol. 339, p. 108718, Jun 1 2020. 
[4] J. W. Song, N. R. Yoon, S. M. Jang, G. Y. Lee, and B. N. Kim, "Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and 

Attention-Deficit/Hyperactivity Disorder," Soa Chongsonyon Chongsin Uihak, vol. 31, no. 3, pp. 97-104, Jul 1 2020. 

[5] A. Abrol et al., "Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease," J Neurosci 
Methods, vol. 339, p. 108701, Jun 1 2020. 

[6] M. A. Ebrahimighahnavieh, S. Luo, and R. Chiong, "Deep learning to detect Alzheimer's disease from neuroimaging: A systematic 

literature review," Comput Methods Programs Biomed, vol. 187, p. 105242, Apr 2020. 
[7] C. R. Jack Jr et al., "The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods," Journal of Magnetic Resonance Imaging: 

An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 27, no. 4, pp. 685-691, 2008. 

[8] B. H. Menze et al., "The multimodal brain tumor image segmentation benchmark (BRATS)," IEEE transactions on medical imaging, 
vol. 34, no. 10, pp. 1993-2024, 2014. 

[9] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, "Open Access Series of Imaging Studies 

(OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," Journal of cognitive neuroscience, 
vol. 19, no. 9, pp. 1498-1507, 2007. 

[10] G. Zhu, B. Jiang, L. Tong, Y. Xie, G. Zaharchuk, and M. Wintermark, "Applications of deep learning to neuro-imaging techniques," 

Frontiers in Neurology, vol. 10, p. 869, 2019. 
[11] J. Jurek, M. Kociński, A. Materka, M. Elgalal, and A. Majos, "CNN-based superresolution reconstruction of 3D MR images using thick-

slice scans," Biocybernetics and Biomedical Engineering, vol. 40, no. 1, pp. 111-125, 2020. 

[12] M. J. Sheller et al., "Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data," Scientific 
RepoRtS, vol. 10, no. 1, pp. 1-12, 2020. 

[13] F. Pesapane, C. Volonté, M. Codari, and F. Sardanelli, "Artificial intelligence as a medical device in radiology: ethical and regulatory 

issues in Europe and the United States," Insights into imaging, vol. 9, no. 5, pp. 745-753, 2018. 
[14] Z. C. Lipton, "The mythos of model interpretability," Queue, vol. 16, no. 3, pp. 31-57, 2018. 

[15] O. Sporns, "Graph theory methods: applications in brain networks," Dialogues in Clinical Neuroscience, vol. 20, no. 2, p. 111, 2018. 

[16] A. Fornito, A. Zalesky, and M. Breakspear, "The connectomics of brain disorders," Nat Rev Neurosci, vol. 16, no. 3, pp. 159-72, Mar 
2015. 

[17] A. Avena-Koenigsberger, B. Misic, and O. Sporns, "Communication dynamics in complex brain networks," Nature Reviews 

Neuroscience, vol. 19, no. 1, p. 17, 2018. 
[18] R. L. Buckner et al., "Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to 

Alzheimer's disease," Journal of neuroscience, vol. 29, no. 6, pp. 1860-1873, 2009. 

[19] N. A. Crossley et al., "The hubs of the human connectome are generally implicated in the anatomy of brain disorders," Brain, vol. 137, 

no. 8, pp. 2382-2395, 2014. 

[20] D. E. Warren et al., "Network measures predict neuropsychological outcome after brain injury," Proceedings of the National Academy 

of Sciences, vol. 111, no. 39, pp. 14247-14252, 2014. 
[21] A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of brain network analysis. Academic Press, 2016. 

[22] S. M. Smith et al., "Network modelling methods for FMRI," Neuroimage, vol. 54, no. 2, pp. 875-91, Jan 15 2011. 

[23] W. H. Kim et al., "Cerebrospinal fluid biomarkers of neurofibrillary tangles and synaptic dysfunction are associated with longitudinal 
decline in white matter connectivity: A multi-resolution graph analysis," NeuroImage: Clinical, vol. 21, p. 101586, 2019. 

[24] W. H. Kim et al., "Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer's disease," NeuroImage, 

vol. 118, pp. 103-117, 2015. 
[25] G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin, and C. Langlotz, "Deep learning in neuroradiology," American Journal of 

Neuroradiology, vol. 39, no. 10, pp. 1776-1784, 2018. 
[26] G. Murugesan et al., "Single Season Changes in Resting State Network Power and the Connectivity between Regions: Distinguish Head 

Impact Exposure Level in High School and Youth Football Players," Proc SPIE Int Soc Opt Eng, vol. 10575, Feb 2018. 

[27] Z. Zhou et al., "A toolbox for brain network construction and classification (BrainNetClass)," 2020. 
[28] L. Waller, A. Brovkin, L. Dorfschmidt, D. Bzdok, H. Walter, and J. D. J. J. o. n. m. Kruschwitz, "GraphVar 2.0: A user-friendly toolbox 

for machine learning on functional connectivity measures," vol. 308, pp. 21-33, 2018. 

[29] N. Williams and R. N. Henson, "Recent advances in functional neuroimaging analysis for cognitive neuroscience," ed: SAGE 
Publications Sage UK: London, England, 2018. 

[30] E. Pellegrini et al., "Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and 

comparative analysis," arXiv preprint arXiv:1804.01961, 2018. 
[31] T. J. O’Neill, E. M. Davenport, G. Murugesan, A. Montillo, and J. A. Maldjian, "Applications of resting state functional mr imaging to 

traumatic brain injury," Neuroimaging Clinics, vol. 27, no. 4, pp. 685-696, 2017. 

[32] T. Turki, J. T. Wang, and I. Rajikhan, "Inferring gene regulatory networks by combining supervised and unsupervised methods," in 
2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 140-145: IEEE. 

[33] D. M. Camacho, K. M. Collins, R. K. Powers, J. C. Costello, and J. J. Collins, "Next-generation machine learning for biological 

networks," Cell, 2018. 
[34] J. D. Finkle, J. J. Wu, and N. Bagheri, "Windowed Granger causal inference strategy improves discovery of gene regulatory networks," 

Proceedings of the National Academy of Sciences, vol. 115, no. 9, pp. 2252-2257, 2018. 

[35] A. Irrthum, L. Wehenkel, and P. Geurts, "Inferring regulatory networks from expression data using tree-based methods," PloS one, vol. 
5, no. 9, p. e12776, 2010. 



 

132 

 

[36] W. Yan, H. Zhang, J. Sui, and D. Shen, "Deep chronnectome learning via full bidirectional long short-term memory networks for MCI 

diagnosis," in International conference on medical image computing and computer-assisted intervention, 2018, pp. 249-257: Springer. 

[37] X. Chen et al., "High‐order resting‐state functional connectivity network for MCI classification," vol. 37, no. 9, pp. 3282-3296, 2016. 

[38] R. Yu, H. Zhang, L. An, X. Chen, Z. Wei, and D. J. H. b. m. Shen, "Connectivity strength‐weighted sparse group representation‐based 
brain network construction for M CI classification," vol. 38, no. 5, pp. 2370-2383, 2017. 

[39] K. Hilger and C. J. Fiebach, "ADHD symptoms are associated with the modular structure of intrinsic brain networks in a representative 

sample of healthy adults," Network Neuroscience, vol. 3, no. 2, pp. 567-588, 2019. 
[40] P. Lin et al., "Global and local brain network reorganization in attention-deficit/hyperactivity disorder," Brain imaging and behavior, 

vol. 8, no. 4, pp. 558-569, 2014. 

[41] F. Saeed, "Towards quantifying psychiatric diagnosis using machine learning algorithms and big fMRI data," Big Data Analytics, vol. 
3, no. 1, p. 7, 2018. 

[42] S. Cortese et al., "Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies," American Journal of Psychiatry, vol. 

169, no. 10, pp. 1038-1055, 2012. 
[43] J. Sidlauskaite, K. Caeyenberghs, E. Sonuga-Barke, H. Roeyers, and J. R. Wiersema, "Whole-brain structural topology in adult attention-

deficit/hyperactivity disorder: Preserved global–disturbed local network organization," NeuroImage: Clinical, vol. 9, pp. 506-512, 2015. 

[44] P. Bellec, C. Chu, F. Chouinard-Decorte, Y. Benhajali, D. S. Margulies, and R. C. Craddock, "The neuro bureau ADHD-200 
preprocessed repository," Neuroimage, vol. 144, pp. 275-286, 2017. 

[45] M. P. Milham, D. Fair, M. Mennes, and S. H. Mostofsky, "The ADHD-200 consortium: a model to advance the translational potential 

of neuroimaging in clinical neuroscience," Frontiers in systems neuroscience, vol. 6, p. 62, 2012. 
[46] N. Tzourio-Mazoyer et al., "Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the 

MNI MRI single-subject brain," Neuroimage, vol. 15, no. 1, pp. 273-289, 2002. 

[47] A. Abraham et al., "Machine learning for neuroimaging with scikit-learn," Frontiers in neuroinformatics, vol. 8, p. 14, 2014. 
[48] C. J. Stam and J. C. Reijneveld, "Graph theoretical analysis of complex networks in the brain," Nonlinear biomedical physics, vol. 1, 

no. 1, p. 3, 2007. 

[49] L. Breiman, Classification and regression trees. Routledge, 2017. 
[50] F. Petralia, P. Wang, J. Yang, and Z. Tu, "Integrative random forest for gene regulatory network inference," Bioinformatics, vol. 31, no. 

12, pp. i197-i205, 2015. 
[51] A. Yamashita et al., "Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site 

differences into sampling bias and measurement bias," vol. 17, no. 4, p. e3000042, 2019. 

[52] J.-P. Fortin et al., "Harmonization of cortical thickness measurements across scanners and sites," vol. 167, pp. 104-120, 2018. 
[53] J. Wang, X. Wang, M. Xia, X. Liao, A. Evans, and Y. J. F. i. h. n. He, "GRETNA: a graph theoretical network analysis toolbox for 

imaging connectomics," vol. 9, p. 386, 2015. 

[54] A. Hagberg et al., "Networkx. High productivity software for complex networks," Webová strá nka https://networkx. lanl. gov/wiki, 
2013. 

[55] J. Wang, X. Zuo, and Y. J. F. i. s. n. He, "Graph-based network analysis of resting-state functional MRI," vol. 4, p. 16, 2010. 

[56] S. Achard and E. J. P. c. b. Bullmore, "Efficiency and cost of economical brain functional networks," vol. 3, no. 2, p. e17, 2007. 
[57] P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Machine learning, vol. 63, no. 1, pp. 3-42, 2006. 

[58] M. Wehenkel, C. Bastin, C. Phillips, and P. Geurts, "Tree ensemble methods and parcelling to identify brain areas related to Alzheimer’s 

disease," in 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2017, pp. 1-4: IEEE. 

[59] K. Supekar, M. Musen, and V. Menon, "Development of large-scale functional brain networks in children," PLoS biology, vol. 7, no. 7, 

p. e1000157, 2009. 

[60] S. Achard and E. Bullmore, "Efficiency and cost of economical brain functional networks," PLoS computational biology, vol. 3, no. 2, 
p. e17, 2007. 

[61] X. Qian et al., "Large-scale brain functional network topology disruptions underlie symptom heterogeneity in children with attention-

deficit/hyperactivity disorder," vol. 21, p. 101600, 2019. 
[62] A. D. Barber et al., "Connectivity supporting attention in children with attention deficit hyperactivity disorder," vol. 7, pp. 68-81, 2015. 

[63] A. F. J. T. J. o. p. Arnsten, "The emerging neurobiology of attention deficit hyperactivity disorder: the key role of the prefrontal 

association cortex," vol. 154, no. 5, p. I, 2009. 
[64] L. Weyandt, A. Swentosky, and B. G. J. D. n. Gudmundsdottir, "Neuroimaging and ADHD: fMRI, PET, DTI findings, and 

methodological limitations," vol. 38, no. 4, pp. 211-225, 2013. 

[65] A. dos Santos Siqueira, B. Junior, C. Eduardo, W. E. Comfort, L. A. Rohde, and J. R. Sato, "Abnormal functional resting-state networks 
in ADHD: graph theory and pattern recognition analysis of fMRI data," BioMed Research International, vol. 2014, 2014. 

[66] A. Ghanizadeh, M. Bahrani, R. Miri, and A. Sahraian, "Smell identification function in children with attention deficit hyperactivity 

disorder," Psychiatry investigation, vol. 9, no. 2, p. 150, 2012. 
[67] A. M. Herman, H. Critchley, and T. J. S. r. Duka, "Decreased olfactory discrimination is associated with impulsivity in healthy 

volunteers," vol. 8, no. 1, p. 15584, 2018. 

[68] J. E. Bailes, A. L. Petraglia, B. I. Omalu, E. Nauman, and T. Talavage, "Role of subconcussion in repetitive mild traumatic brain injury," 
J Neurosurg, vol. 119, no. 5, pp. 1235-45, Nov 2013. 

[69] B. Johnson, T. Neuberger, M. Gay, M. Hallett, and S. Slobounov, "Effects of subconcussive head trauma on the default mode network 

of the brain," J Neurotrauma, vol. 31, no. 23, pp. 1907-13, Dec 1 2014. 
[70] B. R. Cobb et al., "Head impact exposure in youth football: elementary school ages 9-12 years and the effect of practice structure," Ann 

Biomed Eng, vol. 41, no. 12, pp. 2463-73, Dec 2013. 

[71] R. Saxena et al., "Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci," Am J Hum Genet, vol. 90, 
no. 3, pp. 410-25, Mar 9 2012. 

[72] S. M. Slobounov et al., "The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single 

football season: A multi-modal neuroimaging study," Neuroimage Clin, vol. 14, pp. 708-718, 2017. 
[73] D. C. Zhu et al., "A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode 

network measured with longitudinal resting-state fMRI over thirty days," J Neurotrauma, vol. 32, no. 5, pp. 327-41, Mar 1 2015. 

[74] B. Johnson et al., "Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study," 
Neuroimage, vol. 59, no. 1, pp. 511-8, Jan 2 2012. 

https://networkx/


 

133 

 

[75] K. Abbas et al., "Effects of repetitive sub-concussive brain injury on the functional connectivity of Default Mode Network in high school 

football athletes," Dev Neuropsychol, vol. 40, no. 1, pp. 51-6, Jan 2015. 

[76] Y. Zhou et al., "Default-mode network disruption in mild traumatic brain injury," Radiology, vol. 265, no. 3, pp. 882-92, Dec 2012. 

[77] T. J. O'Neill, E. M. Davenport, G. Murugesan, A. Montillo, and J. A. Maldjian, "Applications of Resting State Functional MR Imaging 
to Traumatic Brain Injury," Neuroimaging Clin N Am, vol. 27, no. 4, pp. 685-696, Nov 2017. 

[78] C. Gallant and D. Good, "Investigating the relationship between subconcussion and psychiatric symptoms," Archives of Physical 

Medicine and Rehabilitation, vol. 97, no. 10, pp. e65-e66, 2016. 
[79] G. Murugesan et al., "Changes in resting state MRI networks from a single season of football distinguishes controls, low, and high head 

impact exposure," Proc IEEE Int Symp Biomed Imaging, vol. 2017, pp. 464-467, Apr 2017. 

[80] B. Saghafi et al., "Quantifying the Association between White Matter Integrity Changes and Subconcussive Head Impact Exposure from 
a Single Season of Youth and High School Football using 3D Convolutional Neural Networks," Proc SPIE Int Soc Opt Eng, vol. 10575, 

Feb 2018. 

[81] F. Haran, J. D. Handy, R. J. Servatius, C. K. Rhea, and J. W. J. A. N. A. Tsao, "Acute neurocognitive deficits in active duty service 
members following subconcussive blast exposure," pp. 1-13, 2019. 

[82] A. P. Lavender et al., "Repeated Long-Term Sub-concussion Impacts Induce Motor Dysfunction in Rats: A Potential Rodent Model," 

vol. 11, p. 491, 2020. 
[83] B. B. Reynolds, A. N. Stanton, S. Soldozy, H. P. Goodkin, M. Wintermark, and T. J. Druzgal, "Investigating the effects of subconcussion 

on functional connectivity using mass-univariate and multivariate approaches," Brain imaging and behavior, vol. 12, no. 5, pp. 1332-

1345, 2018. 
[84] G. K. Murugesan et al., "BrainNET: Inference of brain network topology using Machine Learning," p. 776641, 2019. 

[85] E. M. Davenport et al., "Abnormal white matter integrity related to head impact exposure in a season of high school varsity football," 

Journal of neurotrauma, vol. 31, no. 19, pp. 1617-1624, 2014. 
[86] J. J. Crisco et al., "Frequency and location of head impact exposures in individual collegiate football players," Journal of athletic 

training, vol. 45, no. 6, pp. 549-559, 2010. 

[87] J. E. Urban et al., "Head impact exposure in youth football: high school ages 14 to 18 years and cumulative impact analysis," Ann 
Biomed Eng, vol. 41, no. 12, pp. 2474-87, Dec 2013. 

[88] S. Rowson and S. M. Duma, "Development of the STAR evaluation system for football helmets: integrating player head impact exposure 
and risk of concussion," Annals of biomedical engineering, vol. 39, no. 8, pp. 2130-2140, 2011. 

[89] S. Rowson and S. M. Duma, "Brain injury prediction: assessing the combined probability of concussion using linear and rotational head 

acceleration," Annals of biomedical engineering, vol. 41, no. 5, pp. 873-882, 2013. 
[90] S. Rowson et al., "Rotational head kinematics in football impacts: an injury risk function for concussion," Annals of biomedical 

engineering, vol. 40, no. 1, pp. 1-13, 2012. 

[91] K. J. Friston, "Statistical parametric mapping," 1994. 
[92] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. Pekar, "A method for making group inferences from functional MRI data using 

independent component analysis," Human brain mapping, vol. 14, no. 3, pp. 140-151, 2001. 

[93] V. Calhoun and T. Adali, "Group ICA of fMRI toolbox (GIFT)," Online at http://icatb. sourceforge. net, 2004. 
[94] O. Dipasquale, L. Griffanti, M. Clerici, R. Nemni, G. Baselli, and F. Baglio, "High-dimensional ICA analysis detects within-network 

functional connectivity damage of default-mode and sensory-motor networks in Alzheimer’s disease," Frontiers in human neuroscience, 

vol. 9, p. 43, 2015. 

[95] M. J. McKeown, L. K. Hansen, and T. J. Sejnowsk, "Independent component analysis of functional MRI: what is signal and what is 

noise?," Current opinion in neurobiology, vol. 13, no. 5, pp. 620-629, 2003. 

[96] X.-N. Zuo et al., "Network centrality in the human functional connectome," Cerebral cortex, vol. 22, no. 8, pp. 1862-1875, 2012. 
[97] E. Bullmore and O. Sporns, "The economy of brain network organization," Nature Reviews Neuroscience, vol. 13, no. 5, pp. 336-349, 

2012. 

[98] J. D. Medaglia, "Graph theoretic analysis of resting state functional MR imaging," Neuroimaging Clinics, vol. 27, no. 4, pp. 593-607, 
2017. 

[99] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of machine learning research, vol. 12, no. Oct, pp. 2825-2830, 

2011. 
[100] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Ijcai, 1995, vol. 14, no. 2, pp. 

1137-1145: Montreal, Canada. 

[101] S. Varma and R. Simon, "Bias in error estimation when using cross-validation for model selection," BMC bioinformatics, vol. 7, no. 1, 
p. 91, 2006. 

[102] H. Zetterberg et al., "Head trauma in sports–clinical characteristics, epidemiology and biomarkers," vol. 285, no. 6, pp. 624-634, 2019. 

[103] W. H. Thompson, E. P. Thelin, A. Lilja, B.-M. Bellander, and P. Fransson, "Functional resting-state fMRI connectivity correlates with 
serum levels of the S100B protein in the acute phase of traumatic brain injury," NeuroImage: Clinical, vol. 12, pp. 1004-1012, 2016. 

[104] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, "Bias in random forest variable importance measures: Illustrations, sources and 

a solution," BMC bioinformatics, vol. 8, no. 1, p. 25, 2007. 
[105] J. E. Villanueva-Meyer, M. C. Mabray, and S. J. N. Cha, "Current clinical brain tumor imaging," vol. 81, no. 3, pp. 397-415, 2017. 

[106] N. Hoggard and G. H. J. T. B. j. o. r. Roditi, "T 1 hyperintensity on brain imaging subsequent to gadolinium-based contrast agent 

administration: what do we know about intracranial gadolinium deposition?," vol. 90, no. 1069, p. 20160590, 2017. 
[107] J. Wang et al., "Manganese-Based Contrast Agents for Magnetic Resonance Imaging of Liver Tumors: Structure–Activity Relationships 

and Lead Candidate Evaluation," vol. 61, no. 19, pp. 8811-8824, 2018. 

[108] S. Viswanathan, Z. Kovacs, K. N. Green, S. J. Ratnakar, and A. D. J. C. r. Sherry, "Alternatives to gadolinium-based metal chelates for 
magnetic resonance imaging," vol. 110, no. 5, pp. 2960-3018, 2010. 

[109] E. Gong, J. M. Pauly, M. Wintermark, and G. J. J. o. M. R. I. Zaharchuk, "Deep learning enables reduced gadolinium dose for contrast‐

enhanced brain MRI," vol. 48, no. 2, pp. 330-340, 2018. 
[110] J. Kleesiek et al., "Can virtual contrast enhancement in brain MRI replace gadolinium?: a feasibility study," vol. 54, no. 10, pp. 653-

660, 2019. 

[111] B. H. Menze et al., "The multimodal brain tumor image segmentation benchmark (BRATS)," vol. 34, no. 10, pp. 1993-2024, 2014. 

http://icatb/


 

134 

 

[112] S. Bakas et al., "Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features," 

vol. 4, p. 170117, 2017. 

[113] T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. J. H. b. m. Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain 

structure," vol. 31, no. 5, pp. 798-819, 2010. 
[114] S. Bakas et al., "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall 

survival prediction in the BRATS challenge," 2018. 

[115] N. J. Tustison et al., "Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements," vol. 99, pp. 166-179, 2014. 
[116] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400, 2013. 

[117] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 

2015, pp. 1-9. 
[118] N. Ichimura, "Spatial Frequency Loss for Learning Convolutional Autoencoders," arXiv preprint arXiv:1806.02336, 2018. 

[119] J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution," in European conference on 

computer vision, 2016, pp. 694-711: Springer. 
[120] G. K. Murugesan et al., "Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation," p. 760124, 2019. 

[121] G. K. Murugesan et al., "Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation," in International 

MICCAI Brainlesion Workshop, 2019, pp. 148-157: Springer. 
[122] Y. Zhuge et al., "Brain tumor segmentation using holistically nested neural networks in MRI images," Medical physics, vol. 44, no. 10, 

pp. 5234-5243, 2017. 

[123] C. G. Bangalore Yogananda et al., "A Fully Automated Deep Learning Network for Brain Tumor Segmentation," Tomography, vol. 6, 
no. 2, pp. 186-193, Jun 2020. 

[124] R. Saouli, M. Akil, and R. Kachouri, "Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in 

MRI images," Computer methods and programs in biomedicine, vol. 166, pp. 39-49, 2018. 
[125] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International 

Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234-241: Springer. 

[126] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, "Brain tumor segmentation using convolutional neural networks in MRI images," IEEE 
transactions on medical imaging, vol. 35, no. 5, pp. 1240-1251, 2016. 

[127] M. Havaei et al., "Brain tumor segmentation with deep neural networks," Medical image analysis, vol. 35, pp. 18-31, 2017. 
[128] A. Myronenko, "3D MRI brain tumor segmentation using autoencoder regularization," in International MICCAI Brainlesion Workshop, 

2018, pp. 311-320: Springer. 

[129] S. Bakas et al., "Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features," 
Scientific data, vol. 4, p. 170117, 2017. 

[130] S. Bakas et al., "Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection," The Cancer 

Imaging Archive, vol. 286, 2017. 
[131] S. Bakas et al., "Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer 

Imaging Archive (2017)," ed, 2017. 

[132] P. Mobadersany et al., "Predicting cancer outcomes from histology and genomics using convolutional networks," vol. 115, no. 13, pp. 
E2970-E2979, 2018. 

[133] S. Kim et al., "The roles of 11 C-acetate PET/CT in predicting tumor differentiation and survival in patients with cerebral glioma," vol. 

45, no. 6, pp. 1012-1020, 2018. 

[134] T. Tsuchida, H. Takeuchi, H. Okazawa, T. Tsujikawa, Y. J. N. m. Fujibayashi, and biology, "Grading of brain glioma with 1-11C-

acetate PET: comparison with 18F-FDG PET," vol. 35, no. 2, pp. 171-176, 2008. 

[135] Y. Yamamoto et al., "11 C-acetate PET in the evaluation of brain glioma: Comparison with 11 C-methionine and 18 F-FDG-PET," vol. 
10, no. 5, p. 281, 2008. 

[136] P. Yakubovskiy, "Segmentation Models," GitHub repository, GitHub 2019. 

[137] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2017, pp. 4700-4708. 

[138] C.-F. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. J. a. p. a. Feris, "Big-little net: An efficient multi-scale feature representation for visual 

and speech recognition," 2018. 
[139] J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in Proceedings of the IEEE conference on computer vision and pattern 

recognition, 2018, pp. 7132-7141. 

[140] L. Chen, Y. Wu, A. M. DSouza, A. Z. Abidin, A. Wismüller, and C. Xu, "MRI tumor segmentation with densely connected 3D CNN," 
in Medical Imaging 2018: Image Processing, 2018, vol. 10574, p. 105741F: International Society for Optics and Photonics. 

[141] J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and I. B. J. I. t. o. m. i. Ayed, "HyperDense-Net: A hyper-densely connected 

CNN for multi-modal image segmentation," vol. 38, no. 5, pp. 1116-1126, 2018. 
[142] J. Islam and Y. J. a. p. a. Zhang, "An Ensemble of Deep Convolutional Neural Networks for Alzheimer's Disease Detection and 

Classification," 2017. 

[143] J. J. Van Griethuysen et al., "Computational radiomics system to decode the radiographic phenotype," vol. 77, no. 21, pp. e104-e107, 
2017. 

[144] G. R. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. J. J. O. S. S. O’Leary, "PyWavelets: A Python package for wavelet 

analysis," vol. 4, no. 36, p. 1237, 2019. 
[145] X. Feng, N. Tustison, and C. Meyer, "Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using 

radiomic features," in International MICCAI Brainlesion Workshop, 2018, pp. 279-288: Springer. 

[146] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," vol. 12, no. Oct, pp. 2825-2830, 2011. 
[147] L. Buitinck et al., "API design for machine learning software: experiences from the scikit-learn project," 2013. 

[148] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference 

on knowledge discovery and data mining, 2016, pp. 785-794: ACM. 
[149] S. Nalawade et al., "Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning," J Med Imaging 

(Bellingham), vol. 6, no. 4, p. 046003, Oct 2019. 

[150] D. W. Parsons et al., "An integrated genomic analysis of human glioblastoma multiforme," Science, 2008. 
[151] H. Yan et al., "IDH1 and IDH2 mutations in gliomas," New England Journal of Medicine, vol. 360, no. 8, pp. 765-773, 2009. 



 

135 

 

[152] D. N. Louis et al., "The 2016 World Health Organization classification of tumors of the central nervous system: a summary," Acta 
neuropathologica, vol. 131, no. 6, pp. 803-820, 2016. 

[153] W. B. Pope et al., "Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic 

resonance spectroscopy," Journal of neuro-oncology, vol. 107, no. 1, pp. 197-205, 2012. 
[154] C. Choi et al., "2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas," Nature 

medicine, vol. 18, no. 4, p. 624, 2012. 

[155] M. I. de la Fuente et al., "Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease 
monitoring in isocitrate dehydrogenase-mutant glioma," Neuro-oncology, vol. 18, no. 2, pp. 283-290, 2015. 

[156] A. Tietze et al., "Noninvasive assessment of isocitrate dehydrogenase mutation status in cerebral gliomas by magnetic resonance 

spectroscopy in a clinical setting," Journal of neurosurgery, vol. 128, no. 2, pp. 391-398, 2017. 
[157] C. Choi et al., "Prospective longitudinal analysis of 2-hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility 

for the management of patients with IDH-mutant glioma," Journal of Clinical Oncology, vol. 34, no. 33, p. 4030, 2016. 

[158] C. Choi et al., "A comparative study of short‐and long‐TE 1H MRS at 3 T for in vivo detection of 2‐hydroxyglutarate in brain tumors," 
NMR in Biomedicine, vol. 26, no. 10, pp. 1242-1250, 2013. 

[159] S. K. Ganji et al., "In vivo detection of 2‐hydroxyglutarate in brain tumors by optimized point‐resolved spectroscopy (PRESS) at 7T," 

Magnetic resonance in medicine, vol. 77, no. 3, pp. 936-944, 2017. 
[160] R. L. Delfanti et al., "Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q 

and ATRX status," Journal of neuro-oncology, vol. 135, no. 3, pp. 601-609, 2017. 

[161] K. Chang et al., "Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from 
MR Imaging," Clin Cancer Res, vol. 24, no. 5, pp. 1073-1081, Mar 1 2018. 

[162] X. Zhang et al., "Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations 

Based on Multimodal MRI," J Magn Reson Imaging, Feb 2 2018. 
[163] P. Chang et al., "Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas," AJNR Am J 

Neuroradiol, vol. 39, no. 7, pp. 1201-1207, Jul 2018. 

[164] Z. Akkus et al., "Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine 
Intelligence," J Digit Imaging, vol. 30, no. 4, pp. 469-476, Aug 2017. 

[165] K. Clark et al., "The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository," Journal of digital 
imaging, vol. 26, no. 6, pp. 1045-1057, 2013. 

[166] L. Scarpace et al., "Radiology data from the cancer genome atlas glioblastoma multiforme [tcga-gbm] collection," The Cancer Imaging 

Archive, vol. 11, p. 4, 2016. 
[167] N. Pedano, A. Flanders, and L. Scarpace, "Radiology data from The Cancer Genome Atlas Low Grade Glioma [TCGA-LGG] 

collection," Cancer Imaging Arch, 2016. 

[168] M. Ceccarelli et al., "Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma," (in 
eng), Cell, vol. 164, no. 3, pp. 550-63, Jan 28 2016. 

[169] X. Feng, J. Yang, Z. C. Lipton, S. A. Small, and F. A. Provenzano, "Deep Learning on MRI Affirms the Prominence of the Hippocampal 

Formation in Alzheimer's Disease Classification," bioRxiv, p. 456277, 2018. 
[170] D. A. Bluemke, "Editor's Note: Publication of AI Research in Radiology," Radiology, vol. 289, no. 3, pp. 579-580, Dec 2018. 

[171] C. Szegedy, "Inception-v4, inception-resnet and the impact of residual connections on learning.," AAAI., vol. Vol. 4. 2017, 2017. 

[172] C. Szegedy, "Going deeper with convolutions.," IEEE Transactions on Computational Imaging, 2015. 

[173] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in CVPR, 2017, vol. 1, 

no. 2, p. 3. 

[174] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2016, pp. 770-778. 

[175] H. Robbins and S. J. T. a. o. m. s. Monro, "A stochastic approximation method," pp. 400-407, 1951. 

[176] T. Zhang, "Solving large scale linear prediction problems using stochastic gradient descent algorithms," in Proceedings of the twenty-
first international conference on Machine learning, 2004, p. 116: ACM. 

[177] V. Wegmayr, S. Aitharaju, and J. Buhmann, "Classification of brain MRI with big data and deep 3D convolutional neural networks," in 

Medical Imaging 2018: Computer-Aided Diagnosis, 2018, vol. 10575, p. 105751S: International Society for Optics and Photonics. 

 

 


